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ABSTRACT: Nanomaterials are driving advances in technology
due to their oftentimes superior properties over bulk materials. In
particular, their thermal properties become increasingly important
as efficient heat dissipation is required to realize high-performance
electronic devices, reduce energy consumption, and prevent
thermal damage. One application where nanomaterials can play a
crucial role is extreme ultraviolet (EUV) lithography, where
pellicles that protect the photomask from particle contamination
have to be transparent to EUV light, mechanically strong, and
thermally conductive in order to withstand the heat associated with
high-power EUV radiation. Free-standing carbon nanotube (CNT)
films have emerged as candidates due to their high EUV
transparency and ability to withstand heat. However, the thermal
transport properties of these films are not well understood beyond bulk emissivity measurements. Here, we measure the thermal
conductivity of free-standing CNT films using all-optical Raman thermometry at temperatures between 300 and 700 K. We find
thermal conductivities up to 50 W m−1 K−1 for films composed of double-walled CNTs, which rises to 257 W m−1 K−1 when
considering the CNT network alone. These values are remarkably high for randomly oriented CNT networks, roughly seven times
that of single-walled CNT films. The enhanced thermal conduction is due to the additional wall, which likely gives rise to additional
heat-carrying phonon modes and provides a certain resilience to defects. Our results demonstrate that free-standing double-walled
CNT films efficiently dissipate heat, enhancing our understanding of these promising films and how they are suited to applications in
EUV lithography.
KEYWORDS: carbon nanotubes, thermal conductivity, Raman thermometry, lithography, pellicle, extreme ultraviolet

■ INTRODUCTION
The integration of information and communication technology
into society is growing exponentially with sectors, including
smart devices, wearables, transportation, and more. An integral
part of this trend is the miniaturization of components as well
as the incorporation of new functionalities such as mechanical
flexibility. In this regard, nanomaterials offer distinct
advantages over traditional materials, such as bulk silicon,
due to their reduced dimensionality. One type of nanomaterial
that has received significant interest is networks of one-
dimensional materials, such as nanowires or nanotubes made
from materials such as silicon, SiC, and bismuth.1−4 Several
works suggest exploiting the relatively low thermal con-
ductivity of these nanomaterials toward thermoelectric
applications.
Carbon nanotubes (CNTs) are a nanomaterial with

excellent electrical and mechanical properties that make
them a promising material for flexible electronics, with device
applications in chemical and biological sensing, transparent

electrodes, and displays, some of which are already available in
the market.5 Heat dissipation is a critical issue for both flexible
and nonflexible electronics. In the former, typical polymer
substrates such as poly(ethylene terephthalate), PET, have
comparatively low thermal conductivities <0.2 W m−1 K−1.6

For applications such as interconnects in microelectronics,
CNT films are already important due to their favorable thermal
properties.7 For another application, namely, EUV pellicles, the
CNT thermal properties and ability to withstand the heat
associated with EUV exposures become vital, next to high EUV
transparency and mechanical strength of the CNT membrane.8
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Advances in EUV lithography are driving the miniaturization
of integrated circuits to the 5 nm process level and beyond.9,10

Crucial to this advancement is the development of pellicles
that protect the photomasks from damage during lithography.
EUV pellicles were initially fabricated with polysilicon (pSi),
but their low EUV transmission (83%) motivated the search
for other material systems.11 In addition, the thermal
conductivity (κ) of pSi films is rather low, with κ = 14 W
m−1 K−1 for a 1 μm thick film.12 For thinner films, the
increased boundary scattering further reduces this value. This
is true for both pSi and single-crystal silicon, where the thermal
conductivity drops 15-fold as the thickness decreases from 1
μm to 9 nm.13 Other materials include thin graphite or silicon
nitride films. Thin graphite films grown by chemical vapor
deposition have a higher thermal conductivity (κ ≈ 700 W m−1

K−1)14 but a smaller EUV transmission (70%),15 which limits
their applicability for EUV lithography. Amorphous silicon
nitride has a lower thermal conductivity (2.7 W m−1 K−1)16

and a relatively high EUV absorption (14% for a 16 nm
membrane), which leads to overheating and failure of these
films under EUV powers >80 W.17 To be thermally stable, a
pellicle should have a high EUV transmission and a high
thermal conductivity as this will lead to the smallest
temperature increase due to EUV absorption. Different
materials can handle different heat loads, but as a starting
point, the EUV transmission should be >90%18 and the
thermal conductivity should ideally be higher than that of
current materials that are considered for EUV pellicles, which
means above 10 W m−1 K−1. None of the above candidates
satisfy these requirements. However, several novel pellicle
materials have been proposed to support future EUV scanners
with higher source powers and associated technology nodes, in
particular, metal silicide composite material and CNT-based
pellicles.19

Free-standing CNT films consisting of a randomly oriented
CNT network have been found to be a promising pellicle
material candidate for high EUV source powers, exhibiting
high EUV transmission and thermal and mechanical stability as
well as offering a range of additional advantageous material
properties.19,20 Recent demonstrations have shown that CNT
pellicles have minimal impact on wafer imaging during
exposure in an EUV scanner.21 The stability of free-standing
CNT films under high EUV powers motivates the study of
their thermal properties. Individual CNTs are among the best
conductors of heat with room-temperature thermal conductiv-
ities greater than 2000 W m−1 K−1.22,23 This is reduced by one
or more orders of magnitude in films and sheets made from
CNTs as the tubes form a percolation network (κ = 0.5−200
W m−1 K−1).24−30 Notably, there is an absence of experimental
studies on the thermal properties of double-walled CNT
networks.31 We also note that in most studies, the CNT films
are supported on a substrate. Disentangling the intrinsic and
extrinsic factors contributing to thermal transport is not trivial.
Therefore, determining the intrinsic thermal conductivity of
free-standing CNT films, in particular, double-walled networks,
is both technologically relevant and fundamentally interesting.
In this paper, we investigate the thermal conductivities of

free-standing CNT films using Raman thermometry.32 Using
the temperature-dependent frequency of the G+ Raman mode,
we determine the thermal conductivity at temperatures
between 300 and 700 K of single-walled and double-walled
CNT films (SWCNT and DWCNT, respectively). The
reported values are smaller than those for individual nano-
tubes, highlighting the role played by intertube junctions in
thermal transport of CNT networks.33−39 Interestingly,
DWCNT films are roughly seven times as thermally
conductive as SWCNT films with comparable EUV trans-
mission. This suggests that the second wall prevents additional
phonon-defect scattering, which would otherwise impede

Figure 1. Samples and measurement configurations. (a,b) SEM images of (a) single- and (b) double-walled carbon nanotube (SWCNT and
DWCNT) networks. They are composed of randomly oriented CNT bundles with numerous intertube junctions. (c,d) TEM images of (c)
SWCNT and (d) DWCNT bundles. (e,f) Schematics of the (e) one- and (f) two-laser Raman thermometry techniques (1LRT and 2LRT). The
absorbed laser power locally heats the pellicle (red hot spot), softening the phonon modes. This results in a redshift of their Raman frequency,
which the probe laser probes using Raman scattering spectroscopy. In 1LRT (e), a single laser serves as both the heater and thermometer, while
2LRT (f) employs a separate heating laser. In 2LRT, the scanning probe laser maps the temperature profile.
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thermal transport, and provides a parallel channel for heat
conduction. Importantly, these films efficiently dissipate heat,
making them suitable for applications such as EUV pellicles,
interconnects in integrated circuits, and components in flexible
electronics.

■ EXPERIMENTAL SECTION
We investigated two types of free-standing CNT films containing
either SWCNTs or DWCNTs, which were fabricated as follows.20,40

SWCNTs were collected directly after their synthesis in a floating
catalyst chemical vapor deposition reactor onto a microporous filter.
Random CNT films were further transferred to a support frame and
densified with a solvent.41 DWCNT films were first assembled onto a
filter from a CNT dispersion by means of vacuum filtration. After
filter removal, the DWCNT film floating in solution was transferred
onto a support frame to form the pellicle membrane.40 Figure 1 shows
the SEM images of (a) SWCNT and (b) DWCNT networks. Many
individual CNTs form these networks and randomly connect at
multiple junctions. Catalyst particles from growth are present in both
types of CNT films, which increase their EUV absorption. High-
resolution TEM images of individual CNTs and bundles are shown in
Figure 1c,d.
We study three samples: one DWCNT film (D1) and two SWCNT

films (S1 and S2). Table S1 summarizes the thickness and optical
properties of these films. We used atomic force microscopy to
determine the film thickness, see Note S3. The two SWCNT films
have thicknesses of 10.9 nm (S1) and 26.6 nm (S2), controlled by
varying the CNT collection time. For the thicker film, the visible
transmission at 550 nm is lower (89.7% compared with 93.2%).
Notably, although the DWCNT film is the thinnest (8.6 nm), it has
the lowest transmission (88.6%). This is due to the additional wall in
the nanotube structure, which increases absorption.
To study the thermal properties of free-standing CNT films, we use

two variations of Raman thermometry. This noninvasive, all-optical
technique, also referred to as optothermal Raman spectroscopy, is
widely used to measure the thermal conductivity of nanomateri-
als.32,42−44 The first variation of the technique, one laser Raman
thermometry (1LRT), uses a continuous-wave laser beam both as a
thermometer and heat source, see Figure 1e. The calibration of the
thermometer is conducted by leveraging the temperature dependence
of a Raman mode using a low-power laser to avoid self-heating effects.
Once calibrated, power-dependence measurements are performed by
maintaining a constant environmental temperature. In order to be as

accurate as possible, we measure the incident power exactly in the
sample plane using calibrated power meters that are mounted directly
in the Raman thermometry setup. The local temperature is indirectly
monitored via the laser-induced frequency shift using the
thermometer calibration. The absorbed laser light generates an
excited electronic population that relaxes by transferring energy to the
lattice in the form of phonon heat.
The noninvasive aspect of the Raman thermometry technique is

particularly advantageous to study free-standing thin films, as no
additional fabrication steps are necessary, thereby allowing a direct
and reliable determination of the intrinsic thermal properties of
materials such as CNT pellicles.
To estimate the thermal conductivity, we consider that the heat flux

is directed radially outward from the laser spot. In other words, the
heat carried by phonons diffuses from this hot spot. This is valid
assuming that the material has uniform absorption in the out-of-plane
direction and isotropic in-plane thermal conductivity. We neglect
radiative cooling based on calculations in ref 45 for similar
measurements on a material system with similar in-plane conductivity
and temperatures. We obtain the thermal conductivity (κ) by solving
the 2D heat equation for a free-standing membrane42,43

=
i
k
jjjjj

y
{
zzzzzt

R
r2

ln T

P0 (1)

where t is the film thickness, r0 is the laser spot size, and α is a
geometric term (≈1). χT and χP are the changes in Raman mode
frequency as a function of temperature (χT) and absorbed laser power
(χP), respectively. R is the thermal decay length, which is the length
over which the system returns to ambient temperature. Details on
how we obtained the absorbed laser power are given in Note S4.
In the second variant�two-laser Raman thermometry (2LRT)�

the addition of a second focused laser allows for the decoupling of the
heat source and temperature probe, Figure 1f.32 In this configuration,
the probe laser maps the temperature profile by obtaining spatially
dependent Raman spectra with respect to a fixed pump laser that
locally heats the sample. In this way, this technique directly maps the
thermal field distribution. We obtain the thermal conductivity using
the following expression, which is valid in a regime where the thermal
field decays linearly in ln r32

=
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Figure 2. Raman spectra of CNTs. Spectra of SWCNT S1 (red) and DWCNT D1 (blue) networks normalized to the intensity of the peak around
1590 cm−1. Multiple peaks arise from the D, G, 2D, and RBM phonon modes, with the latter shown in the inset. In CNTs, the G peak splits into
two components (G−, G+), each described by a Lorentzian profile (shaded blue), see the main text, allowing us to accurately determine the peak
position. The black dashed line is the sum of these profiles. DWCNT D1 has a smaller D peak and greater 2D peak intensity than those of SWCNT
S1. This suggests that DWCNT D1 has fewer defects and a higher electronic quality. To avoid laser-induced heating, we obtain the spectra on the
part of the CNT films supported by the silicon substrate. The asterisk (*) indicates a peak arising from silicon.
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where P is the absorbed laser power and t is the sample thickness. κ is
obtained from the slope of the temperature (T) against ln (r). In
contrast to 1LRT (eq 1), no prior knowledge about the geometry of
the experimental setup, such as the spot size or thermal decay length,
is required for 2LRT (eq 2).
In order to use Raman thermometry techniques, we first identify a

temperature-dependent Raman mode in the samples, which we use
for temperature calibration. The Raman spectra were collected using a
Horiba T64000 Raman spectrometer in a single-grating configuration
with a 2400 g/L grating. All Raman measurements were carried out
using a diode laser (λ0 = 532 nm, Cobolt) focused via a high NA
objective to a 1/e spot size of r1/e = 0.88 μm. In 1LRT, the Raman
laser spot acts both as a heater and as a local temperature probe; see
Figure 1e. For 2LRT, the heat source was a 405 nm laser placed below
the sample (r1/e = 0.79 μm), see Figure 1f. A variable-temperature
cryostat (Linkam) evacuated to a pressure P < 5 × 10−3 mbar housed
the samples. The vacuum conditions both protected the samples from
atmospheric contamination and eliminated unwanted heat dissipation
processes due to convection and thermal conduction to the air. We
used vacuum conditions for both types of Raman thermometry
measurements.
Figure 2 shows the Raman spectra of the DWCNT films D1 and

SWCNT S1 films. The spectra consist of multiple peaks in the
spectral range from 100 to 3000 cm−1 consistent with the observed
data.46−50 We normalize each spectrum to the intensity of the most
prominent peak around 1590 cm−1, which comes from G band
phonons, common to all graphitic compounds. This peak contains
two components, one located near 1590 cm−1 (G+) and the other
around 1570 cm−1 (G−), that arise from the longitudinal (G+) and
circumferential (G−) motions of the carbon atoms in the nanotube,
respectively. The G+ mode frequency is particularly sensitive to
doping,51 strain,52,53 and temperature54,55 while being independent of
tube diameter (dt). On the other hand, the G− frequency is dependent
on dt.

48 Hence, the G+ mode is the most suitable for Raman
thermometry measurements. In the results that follow, we will use the

frequency of the G+ Raman mode as a local temperature probe. The
high-resolution spectrometer used in this work and the high accuracy
of the peak fitting algorithms result in a spectral resolution
approaching 0.05 cm−1. This would allow for the detection of small
changes in temperature (∼2 K). Ultimately, we are limited by the
spatial inhomogeneity of the G+ mode (∼0.8 cm−1, see Note S1),
which corresponds to a temperature uncertainty of ΔT ∼ 30 K.
Having identified a suitable temperature-dependent Raman mode,

we briefly turned our attention to the other features in the Raman
spectra. The peaks around 1340 and 2680 cm−1 arise from the D and
2D phonon modes (see Figure 2), which are associated with defects
and electronic quality, respectively.56 The low intensity of the D peak,
relative to the G, highlights the low defect density of these films.57,58

For the DWCNT film, the higher (lower) intensity of the 2D (D)
mode compared to that of the SWCNT film suggests that the
DWCNT sample has fewer defects and better electronic quality.59

The low-frequency radial breathing modes (RBMs) found between
100 and 500 cm−1 arise from the coherent, radial, out-of-plane motion
of carbon atoms and are unique to CNTs.50 In the inset of Figure 2,
we identify a single peak in the case of SWCNT films and two for
DWCNT films. The presence of these RBMs confirms the single- and
double-walled nature of the CNT films, in agreement with the TEM
images (Figure 1c,d).

■ RESULTS
Using the temperature-dependent G+ Raman mode, we now
calibrated the frequency shift while heating the sample. Figure
3 shows the stage-temperature and laser-power dependence of
the Raman spectra of the free-standing DWCNT films, which
correspond to global and local heating of the CNT film,
respectively. As the stage temperature increases, the G modes
shift to lower frequencies, as shown in Figure 3a.
Increasing the temperature by 100 K red-shifts the G modes

by approximately 3 cm−1. This is due to the softening of the G

Figure 3. Temperature and laser power dependence of DWCNT D1 Raman modes. (a,b) Raman spectra of the free-standing DWCNT film (D1)
obtained as a function of the stage temperature (a) and the laser power (b), which heat the sample globally and locally, respectively. The solid and
dashed lines highlight the G+ frequency at ambient and elevated temperatures, while the black arrow highlights the shift in peak frequency. The
higher the temperature, the greater the shift. (c,d) Shift in G+ mode frequency as a function of temperature (c) and absorbed laser power (d). Here,
the fitting error is smaller than the symbol size. The gradient of a linear fit (black dashed line) provides the calibration for temperature and laser-
induced heating, which are shown in (c,d).
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phonon modes.54,55 By tracking the G+ peak frequency (ωG
+)

as a function of stage temperature, we obtain the temperature
coefficient χT = dωG+/dT = −0.028 cm−1 K−1, Figure 3c. This
agrees with previous reports of DWCNT agglomerates
suspended in methanol60 and SWCNT films supported on
SiO2.

61 Here, the low-power laser acts as a nanoscale
temperature probe.
Having verified that the G+ peak frequency represents the

lattice temperature of the free-standing CNT network, we now
study the dependence on absorbed laser power; see Figure 3b.
Increasing the laser power results in a redshift of the G+ mode
frequency because the absorbed optical energy heats the
pellicle, leading to the softening of the phonon modes. Figure
3d shows the dependence of ωG+ on the absorbed laser power.
The power coefficient is χP = dωG+/dP = −0.066 cm−1 μW−1.
This value is greater than that in previous reports of SWCNT
films supported on SiO2 (χP = −0.01 cm−1 μW−1).30 The
reason that we observe a larger shift, and thus a larger
temperature increase, for the same power is that in their case,
heat sinking into the SiO2/Si substrate was present, meaning
that they required a larger power to reach the same
temperature increase, which corresponds to a smaller χP. For
free-standing CNT films, the local temperature depends

exclusively on the ability of the CNT network to dissipate
heat. We obtain the thermal conductivity using the temper-
ature and power coefficients in eq 1. Taking the thermal decay
length (R) to be the distance over which the temperature
decays from 80 to 20%, we calculate κ = 49.5 ± 9.1 W m−1 K−1

for the DWCNT sample using R ≈ 100 μm. We note that if we
take the decay length to correspond to the 90 to 10% decay
length, we would find R ≈ 130 μm. This would result in a
thermal conductivity of 52 W m−1 K−1, which is within the
reported uncertainty.
Using two-laser Raman thermometry (2LRT), we obtained

the spatial temperature profile shown in Figure 4. The
temperature decays from 700 K close to the heating laser
spot to 300 K when the heating spot and the temperature
probing spot are separated by a few 100 μm. This spatial
profile reveals the steady-state thermal profile in which heat
diffuses radially away from the central hot spot. Intuitively, a
material with a higher thermal conductivity would have a
longer decay length and result in a broader profile.
In the 2LRT model, we extract the spatial dependence of the

temperature close to the tails of the decay (|x| = 200−300 μm).
This describes the thermal transport close to ambient
temperature (300 K). Using eq 2, we obtain a thermal

Figure 4. 2LRT of CNT films. (a) Spatial dependence of the temperature profile obtained by 2LRT of the DWCNT pellicle (D1). The inset shows
the schematic of the experimental setup. We convert the G+ mode frequency to temperature using the calibration obtained in Figure 3 (see also the
main text). (b) Average temperature from positive and negative x positions, shown in a log scale. Here, we obtain the effective thermal conductivity
(κeff) by using eq 2. By binning x regions, we obtain the temperature-dependent value, κeff(T). In (a,b), the gray error bars arise from point-to-point
variations in the G+ peak position, see Note S1. This corresponds to an uncertainty in temperature of ΔT = ± 30 K. (c) κeff(T) for the SWCNT S2
(orange) and DWCNT D1 (blue) samples. The dashed lines follow a T−2 power law, typical for three-phonon (anharmonic) scattering processes.
The inset illustrates a three-phonon process involving two acoustic and optical phonons with momenta k1,2,3.
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conductivity for the DWCNT D1 sample of κ = 44.0 ± 9.9 W
m−1 K−1, which is in good agreement with the values obtained
from 1LRT. Here, the clear advantages of the 2LRT technique
are that we obtain the thermal conductivity close to room
temperature and that we make no assumptions on geometry as
we directly visualize the steady-state temperature profile, which
directly relates to the thermal conductivity.
Having established that both techniques produce similar

values of thermal conductivity, we now investigated the
different samples. First, we note that the thermal conductivity
that we obtain is an ef fective thermal conductivity of the
composite CNT films, κeff. Later, we corrected for the porosity
and extracted a skeleton thermal conductivity of the CNT
networks themselves, which we will call κCNT. The effective
thermal conductivity (κeff) for the investigated CNT samples,
which ranges from 6 to 50 W m−1 to K−1, is plotted in Figure 5.

In Table S1, we report the optical and thermal properties of
each sample. The effective thermal conductivities of these
CNT networks are 2 orders of magnitude lower than those for
isolated CNTs due to the presence of voids and intertube
junctions that restrict the thermal transport in the CNT
network by introducing boundary resistance.33,36,38,39 These
junctions also act as filters of phonons with mean free paths
greater than the distance between the junctions, greatly
reducing the cumulative contribution to κ.39
For SWCNT S1, κeff = 6.9 ± 2.4 W m−1 K−1 from 1LRT and

κeff = 7.8 ± 0.8 W m−1 K−1 from 2LRT. These values are
comparable to those of SWCNT S2, with κeff = 7.4 ± 1.1 W
m−1 K−1 from 1LRT and κeff = 5.7 ± 0.9 W m−1 K−1 from
2LRT. This is expected as both are SWCNT samples, and the
1LRT and 2LRT fit to the data accounts for differences in
thickness and in visible transmission.
Interestingly, the DWCNT D1 film has the largest effective

thermal conductivity with κeff = 49.5 ± 9.1 W m−1 K−1 from
1LRT and κeff = 44.0 ± 9.9 W m−1 K−1 from 2LRT. This is
roughly seven times higher than that of SWCNT S1 of similar
thickness and EUV transmission, which suggests that the

difference in visible transmission alone, which differs only by a
few percent (see Note S4), cannot explain the enhanced
thermal transport. Indeed, DWCNTs have an additional wall
that provides both a parallel conduction channel for thermal
transport and robust protection against defects that occur in a
single wall. In addition to the intertube junctions, phonon-
defect scattering also filters out medium and long mean free
path phonons further reducing the effective thermal con-
ductivity.62 The lower relative intensity of the D peak in Figure
2 supports the interpretation of a lower defect density in the
DWCNT sample.
Having identified the different values of effective thermal

conductivity in the samples, we now investigated the
temperature dependence of their thermal properties. Typically,
the effective thermal conductivity changes with temperature.
The reduced phonon population at low temperatures and
increased phonon−phonon scattering at high temperatures
suppress thermal transport. Here, we evaluate the effective
thermal conductivity as a function of temperature above
ambient conditions. Rather than only extracting the slope of
∂T/∂ ln (r) close to 300 K, we bin the data into distinct
temperature regimes, Figure 4b. We obtained the thermal
conductivity using eq 2 and the gradient of a linear fit to each
bin, taking the temperature from the mean values.
Figure 4c shows the temperature-dependent effective

thermal conductivity, κeff(T), for the DWCNT films D1 and
SWCNT S2 films. In both cases, κeff(T) is largest close to 300
K before reducing at higher temperatures. The dashed lines
show a temperature dependence of the form κeff(T) ∝ T−2,
which has previously been reported for individual SWCNTs23

and is ascribed to second-order three-phonon scattering
processes involving two acoustic phonons and one optical
phonon, as shown schematically in the inset. Previous studies
reported that the junction thermal conductance is independent
of temperature.39 This result implies that while the intertube
junctions limit the overall thermal resistance, the temperature
dependence arises from the remaining conduction channels
and therefore reflects the intrinsic properties of the CNTs
themselves. Moreover, our observation of a relatively strong
temperature dependence and relatively high effective thermal
conductivity of the CNT network suggests that defects do not
play a significant role. This is consistent with our Raman
spectra, which show very small D peaks (see Figure 2).
We will first discuss the effective conductivity of the entire

CNT film including voids κeff and then focus on the skeleton
conductivity of the CNTs without the voids κCNT. The
effective thermal conductivity of both SWCNT films measured
in this work falls into the lower range of literature values for
SWCNT films (κeff ≈ 2−200 W m−1 K−1),24,30,63,64 reflecting
the random orientation of individual CNTs within these
networks. Indeed, the alignment of SWCNTs by filtration and
a high magnetic field increases the thermal conductivity
substantially (κeff = 210 W m−1 K−1).24 We note that in most
studies, the CNT films are supported on a substrate.
Disentangling the intrinsic and extrinsic factors contributing
to thermal transport is not trivial. Therefore, by using free-
standing CNT films in this study, we directly probe their
intrinsic thermal properties.
Literature reports of the effective thermal conductivity for

multiwall carbon nanotube (MWCNT) films typically range
from κ = 0.2 W m−1 K−1, for compressed random networks
with a volume fraction of 0.19,38 to κ = 50 W m−1 K−1

measured in the direction parallel to aligned MWCNTs.25 For

Figure 5. Effective thermal conductivity of free-standing CNT films
measured using 1LRT (open symbol) and 2LRT (closed symbol)
techniques. The top and bottom x-axes show the EUV and visible (λ
= 550 nm) transmission of each sample, respectively. The gray line is
a guide to the eye. The DWCNT D1 sample has a much higher
effective thermal conductivity due to the additional wall that provides
additional heat-carrying phonon modes and greater protection against
defects.
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the former, weak bonding between nanotubes impedes thermal
transport across nanotube junctions. Interestingly, our results
on DWCNT D1 reveal a higher thermal conductivity (κeff ≈ 50
W m−1 K−1) than that in typical randomly oriented films of
single- or multi-walled CNTs (κeff ≈ 0.2−2 W m−1

K−1).30,31,38,64 Hence, aligning DWCNTs within the network
should offer further improvements in the thermal conductivity.
It is important to note that the thermal conductivities that

we have obtained using 1LRT and 2LRT are the effective
thermal conductivities of composite films formed by CNTs
and voids. In order to obtain the conductivity of the CNT
network itself, we follow ref 65 and first quantify the porosity
of the films. From image analysis (see Note S2), we obtain
porosities ϕ of 0.301 and 0.254 for the DWCNT and SWCNT,
respectively. We then use the Maxwell-Garnett effective
medium model to obtain the volume correction factor

= +VCNT
1
1

, which is 0.538 and 0.595 for the DWCNT and
SWCNT, respectively. Finally, we extract the thermal
conductivity of the carbon nanotube network κCNT using κeff
= < cos θ > κCNTVCNT, where < cos θ> = 1/3 represents the
angular distribution between the CNT axis and direction of
heat flow in a randomly oriented film. We determine the CNT
skeleton conductivity to be κCNT = 257 W m−1 K−1 and κCNT =
35 W m−1 K−1 for the DWCNT (D1) and both SWCNT
samples (S1/S2), respectively (see Note S2). These values are
relevant for comparison with composite materials containing
CNTs.66

■ CONCLUSIONS
In conclusion, we experimentally studied thermal transport in
free-standing CNT films using Raman thermometry at
temperatures between 300 and 700 K. By calibrating the
softening of a suitable Raman mode (G+) with temperature, we
map the thermal field and extract the temperature-dependent
thermal conductivity, κ(T). At 300 K, κ was measured to be
49.5 W m−1 K−1 for the DWCNT films and 6.9−7.4 W m−1

K−1 for the SWCNT films. The significantly higher value for
DWCNT films arises from the reduced phonon-defect
scattering and additional conductance channel due to the
presence of the second wall in the structure of the nanotube. In
addition, aligning the CNTs should further increase this value.
At higher temperatures, the thermal conductivity decreases
from the value at 300 K following the power law: κ(T) ∝ T−2.
This dependence is due to second-order three-phonon
scattering processes. Interestingly, although the presence of
junctions between neighboring nanotubes impedes the overall
thermal conductivity, the underlying thermal transport
mechanism has the same dependence as that for individual
nanotubes. In future work, it will be interesting to study in
more detail how the effective thermal conductivity of the CNT
network is related to the microscopic structure of the network,
for example, considering the number of tube−tube inter-
connections.
The efficient heat dissipation of free-standing CNT films is

attractive for EUV pellicle applications, where a highly EUV-
transparent pellicle material must withstand the heat associated
with EUV exposures. This study of the thermal properties of
both SWCNT and DWCNT free-standing films enhances our
understanding of how CNTs can advance various applications.
For example, the relatively high effective thermal conductivity
of the DWCNT film containing the CNT network and voids
(49.5 W m−1 K−1) and of the CNT network alone (257 W m−1

K−1) allows for efficient thermal management in flexible
devices. The electrical and thermal properties of CNT films are
also relevant for applications such as interconnects in
integrated circuits, where traditional materials such as copper
perform significantly worse at reduced dimensionality.
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