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A B S T R A C T

Access to accurate solar resource data is critical for numerous applications, including estimating the yield
of solar energy systems, developing radiation models, and validating irradiance datasets. However, lack of
standardization in data formats and access interfaces across providers constitutes a major barrier to entry
for new users. pvlib python’s iotools subpackage aims to solve this issue by providing standardized Python
functions for reading local files and retrieving data from external providers. All functions follow a uniform
pattern and return convenient data outputs, allowing users to seamlessly switch between data providers and
explore alternative datasets. The pvlib package is community-developed on GitHub: https://github.com/pvlib/
pvlib-python.

As of pvlib python version 0.9.5, the iotools subpackage supports 12 different datasets, including ground
measurement, reanalysis, and satellite-derived irradiance data. The supported ground measurement networks
include the Baseline Surface Radiation Network (BSRN), NREL MIDC, SRML, SOLRAD, SURFRAD, and the
US Climate Reference Network (CRN). Additionally, satellite-derived and reanalysis irradiance data from
the following sources are supported: PVGIS (SARAH & ERA5), NSRDB PSM3, and CAMS Radiation Service
(including McClear clear-sky irradiance).
1. Introduction

The initial step in modeling solar energy systems typically involves
obtaining weather data for the site of interest. In particular, it is
important to obtain accurate and reliable information on the solar
resource, as this is the most influential factor when estimating energy
yield of solar energy systems. There are three primary sources for solar
irradiance data: measurements from ground stations, reanalysis models,
and satellite-derived datasets.

Within each category, there exist numerous data suppliers, encom-
passing both public and commercial datasets. To ease user access to the
different data sources, efforts have been made to create standardized
file formats. Most noticeable are the file formats for typical meteoro-
logical year (TMY) data, e.g., TMY2 [1], TMY3 [2], and EPW formats.
In particular, the TMY3 format has become one of the most commonly
used formats for TMY irradiance data, whereas the EPW file format
has been adopted as the standard for building simulation tools. An
attempt to develop a more flexible file format for solar irradiance and
weather data was developed in the MESOR project [3]. However, the
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MESOR file format never gained widespread adoption. Overall, the
aforementioned file formats have been plagued by several limitations
(e.g., not permitting sub-hourly data or multiple measurements of
the same quantity), which has regrettably led most data providers to
develop their own distinct file structures and data retrieval methods.

Consequently, users are required to scrutinize each data provider’s
documentation and develop customized data solutions. This time-
consuming process is in large part why identifying, accessing, cleaning,
and exploring data can take up to 80% of the time in solar energy
research projects [4]. An even more serious consequence is that this
poses a major barrier to entry, discouraging users from exploring alter-
native datasets, often resulting in the use of sub-optimal data. In line
with this, Gueymard [5] noted that "access to, and easy manipulation of
large specialized atmospheric databases ... constitutes a serious limiting
factor for most solar analysts".

For instance, the Baseline Surface Radiation Network (BSRN) serves
as an illustrative example [6]. BSRN is recognized as the only global
network dedicated to solar radiation measurements and is character-
ized by state-of-the-art infrastructure. However, obtaining data from
vailable online 3 November 2023
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BSRN presents a significant challenge due to the use of a complicated,
non-standard file format. This obstacle compels users to opt for lower-
quality datasets or compromise spatial coverage, both of which are
frequently encountered criticisms in solar energy research [7].

To enhance accessibility to solar resource data, a set of standardized
functions has been developed in the Python programming language.
The aim of this effort is to simplify the process and reduce the effort
required for reading and retrieving solar irradiance data. The set of
tools, called iotools, is part of the photovoltaic (PV) systems modeling
ackage, pvlib python (henceforth referred to as pvlib) [8]. The name
otools derives from the term IO, which stands for Input/Output and
efers to data transfer. This publication concerns the iotools subpackage

contained in pvlib version 0.9.5 [9].
Specifically, the iotools subpackage is a collection of functions for

reading local files and retrieving data from external providers. The
functions have been developed such that they follow a similar and
consistent pattern and return data in a uniform and structured manner.
In this way, the time required for users to obtain and parse solar
radiation data is reduced significantly. Going back to the example of the
BSRN, data can be retrieved using the corresponding iotools function
using only a single line of code, whereas the underlying code which
parses the data spans 200 lines of code and 230 lines of documentation.

Related efforts to promote the accessibility of public solar datasets
have been made in parallel with the development of pvlib iotools.
Most noticeably, the SolarData R package was released in 2018 and
eatured functions for accessing five solar datasets [7]. The following
ear, an update to the SolarData package was released, adding function-
lity for accessing data from the BSRN [4]. Similarly, the OpenSolar

R package [10] provides functions for accessing four different solar
datasets, including data on solar irradiance, PV production, and elec-
tricity consumption. Another example is the Python package IrradPy,
which provides functions for retrieving reanalysis data from MERRA-2
and clear-sky irradiance models [11]. Another initiative was recently
launched by Blanc et al. [12], consisting of releasing quality-controlled
solar irradiance ground measurements in the form of NetCFD files,
following the GEO and FAIR principles. An overview of open-source
tools related to PV modeling can be found at: https://openpvtools.
readthedocs.io [13].

pvlib iotools offers access to 12 different solar irradiance datasets as
of version 0.9.5. Additional benefits of the iotools subpackage include a
proven long-term maintenance record (aiming for quarterly releases),
adherence to documentation best practices, and standardized functions.
In contrast, neither OpenSolar nor IrradPy has received significant
pdates since their initial release. Maintaining momentum in the long
erm is a major challenge faced by scientific software packages with
nly a few developers, where despite best intentions, competing prior-
ties often cause maintenance and new development to drop off over
ime. Relative to the other mentioned packages, iotools association

with the pvlib project means it benefits from the attention of the
broader pvlib community, thereby bolstering long-term maintenance
by decreasing the package’s reliance on the continued availability of
any single individual.

Notably, pvlib’s large community of contributors (+100 contribu-
tors) also allows all contributions to be thoroughly peer-reviewed. In
terms of usage, it can be mentioned the iotools documentation has seen
13.000 visits during the past year, accounting for 7% of visits to the
pvlib documentation. The pvlib source code is available on GitHub:
https://github.com/pvlib/pvlib-python. In addition to the pvlib-python
package, the pvlib ecosystem also includes pvanalytics, a package for
PV data quality assurance and feature recognition algorithms [14],
and twoaxistracking, a package for simulating self-shading in arrays of
two-axis solar trackers [15].

Additional to describing the iotools functionality and supported
datasets, this article aims at providing information for users to make
informed decisions on which datasets to use. The remaining part of
this paper is structured as follows: the function pattern is described in
Section 2, followed by a description of supported ground measurement
datasets in Section 3 and modeled datasets in Section 4. Finally, a
2

discussion of future work is described in Section 6.
2. Function pattern

The iotools functions adhere to a consistent, standardized pattern,
aiming to make it effortless to read and retrieve weather data from
different sources. The standardized pattern is unique to pvlib and
encompasses several aspects, including:

• consistent naming and order of input parameters
• parsing date/time information and setting it as the index
• localizing time zones where applicable
• optional renaming of variables to a standard convention
• parsing metadata
• returning data structures in a uniform manner

This standardization ensures that there are minimal differences be-
tween the various functions, making it easy to switch between data
providers or investigate alternative datasets.

As of pvlib 0.9.5 the iotools subpackage contains two categories of
functions: read functions that read local data files (see Section 2.1) and
get functions that retrieve external data (see Section 2.2). The function
outputs are described in Section 2.3 followed by a description of the
variable mapping in Section 2.4. Last, the documentation is discussed
in Section 2.5 and inconsistencies in Section 2.6.

Listing 1: Illustration of the function patterns for the read and
get-functions. The ellipsis represents possible additional parameters
depending on the specific data provider.� ⊵
# read function pattern
data, meta = read_x(filename , map_variables=True)

# get function pattern (measurement data)
data, meta = get_x(station, start, end,

username, password , ...
map_variables=True, url="https://...")

# get function pattern (modeled data)
data, meta = get_x(latitude, longitude, start, end,

username, password , ...
map_variables=True, url="https://...")� �

2.1. Reading of local data files

Functions for reading local files are named read_x, where the x
is replaced by the dataset name or abbreviation. For example, the
function for reading data files from the BSRN is named read_bsrn. The
main input to the read-functions is the filename parameter, which is
a relative or absolute path to the local data file. An illustration of the
read function pattern is shown in Listing 1.

The user interaction with the various file reading functions is almost
identical for all file types. This is facilitated by the underlying code,
which has been custom developed to parse the specific file type. Thus,
the user avoids needing to understand the semantics of the various file
formats, resulting in significant time savings.

2.2. Retrieval of external data

Retrieval of external data is achieved using the get_x functions. For
data retrieval, there exist two function sub-categories, which depend
on the type of the external dataset. The two dataset categories are
(1) measurement data from ground stations and (2) modeled datasets
covering a large geographical area (reanalysis or satellite-derived).
The main difference in the function patterns is related to the location
specifier (see Listing 1). For ground-measured data, only the station

name or identifier is required to identify the location of interest. In

https://openpvtools.readthedocs.io
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contrast, for modeled irradiance dataset, the location is specified by
the latitude and longitude as these datasets typically are gridded and
have a large geographical coverage. The specification of latitude and
longitude follows ISO 6709, i.e., latitude is defined as degrees north,
and longitude is defined as degrees east. For both types of data retrieval
functions, the desired time frame can be selected by specifying the
start and end parameters.

Accessing certain external datasets may require credentials, e.g., a
username and password or an API key. Information concerning how
to obtain the necessary credentials is included within the function
documentation as appropriate.

2.3. Outputs

Both the read and get-functions return two objects (see the left-
hand side in Listing 1). The first object is the time series data, and the
second object is the associated metadata.

The first element, data, contains the time series data in the form
of a pandas DataFrame, which is a data structure containing tabular
data similar to a spreadsheet. The data object contains several columns
of data, typically global horizontal irradiance (GHI), air temperature,
and other irradiance/weather-related parameters. Columns containing
irradiance data are by default in the units of W/m2. If the external
service returns irradiation values (typically with units of Wh/m2), these
can be converted to irradiance values by specifying the integrated
keyword (defaults to True). Furthermore, the timestamps in the data
file are used to set the index of the DataFrame, making time series
operations convenient. Whenever possible, the index is made time-zone
aware (i.e., information on the timezone is assigned to each timestamp),
which is required when calculating solar position. Users need to be
aware that there is no standard practice as to whether timestamps refer
to the start or end of the period (left or right bin labeling), which is
an important consideration. Users are encouraged to consult the pvlib
documentation and that of the data provider.

The second element, meta, is a dictionary containing the associated
metadata. Metadata varies by data format and provider but commonly
includes latitude/longitude, altitude above mean sea level, and time
zone.

2.4. Variable mapping

Users have the possibility of renaming variables to pvlib’s standard-
ized naming convention by specifying the map_variables parameter.
This is particularly convenient as data providers tend to use their own
naming strategy, even for common parameters. For instance, global
horizontal irradiance (GHI) may be named ‘‘Global Horiz’’ or ‘‘G(h)’’ for
which the corresponding standard pvlib term is ‘‘ghi’’. Both the read
and get-functions feature the map_variables parameter, which is

set to true by default. Other notable standard variable names include
‘‘temp_air’’ for air temperature, ‘‘dni’’ for direct normal irradiance, and
‘‘dhi’’ for diffuse horizontal irradiance.

2.5. Documentation

All public functions in pvlib are thoroughly documented, which
includes a description of the function and the input and output param-
eters. Additionally, the documentation also features links to references,
typically a scientific publication or website providing additional infor-
mation. Important supplementary information may also be specified
in a separate notes section, such as the data frequency, geograph-
ical coverage, or procedures for obtaining credentials. The function
documentation is contained within each function and adheres to the
numpydoc style. The documentation is compiled using Sphinx by the
‘‘Read the Docs’’ platform and displayed at the pvlib website: https:
//pvlib-python.readthedocs.io.

An example of the documentation for the get_bsrn function is
shown in Fig. 1. Note, the specifics of each function implementation
3

Fig. 1. Screenshot of the documentation of the get_bsrn function.

and parameters are not presented here as this information is provided
in the pvlib documentation.

2.6. Inconsistencies

It should be noted that some functions deviate from the general
pattern, as the pattern has evolved during the development of the
package. The existing inconsistencies are mainly related to variable
mapping and the returned data objects. For example, only a data object
was returned for files that did not contain metadata, whereas newer
functions also return an empty metadata object to follow the (data,
meta) output pattern. Work is ongoing to update the existing functions
that do not adhere to the standard function patterns.

https://pvlib-python.readthedocs.io
https://pvlib-python.readthedocs.io
https://pvlib-python.readthedocs.io
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Fig. 2. Geographical distribution of ground stations. Each dot corresponds to a station, with the color corresponding to the station network (inactive stations as of July 2023 are
shown as semi-transparent). For visualization purposes, CRN and inactive SRML stations are not shown. For an interactive map, see www.SolarStations.org.
3. Measurement irradiance data

The highest level of accuracy in assessing irradiance is achieved us-
ing well-maintained and quality-controlled ground-based instruments.
Due to their high accuracy, ground-based measurements are critical
for high-quality applications, e.g., benchmarking modeled irradiance
datasets or developing empirical solar radiation models (e.g., [16,17]).
Moreover, for large-scale solar energy projects, one-year ground mea-
surement campaigns are recommended for ’tuning’ longer time series
of satellite-derived irradiance, a process known as site adaptation [18].
Another benefit of ground-measured irradiance is that measurements
can be made at very high temporal resolution (sub-minute).

One drawback of ground measurements is the need for quality
controlling the data and the existence of gaps in the data. Exten-
sive quality control of measurement data is crucial as any long-term
dataset inevitably contains some erroneous measurements. Some of
the most common issues include instrument soiling (e.g., due to dust,
pollen, or bird droppings), instrument misalignment, tracker malfunc-
tion, and humidity/frost. However, there is no universal method for
quality-controlling irradiance data; the reader is referred to the recently
developed comprehensive method by Forstinger et al. [16]. Due to the
time-consuming maintenance requirements and high equipment costs,
high-quality solar irradiance monitoring stations are scarce.

The following sections describe the ground station radiation net-
works for which the iotools supports data retrieval. A map of the
supported ground stations is shown in Fig. 2 (with the exception of
the CRN stations). For a global overview of solar radiation monitoring
stations, the reader is referred to the online catalog www.SolarStations.
org, which has been developed through the Assessing Solar initiative by
members of the IEA PVPS Task 16 [19].

3.1. BSRN

The Baseline Surface Radiation Network (BSRN) is the only global
network dedicated to monitoring solar radiation [6]. As of June 2023,
the BSRN features 56 active stations, 1 candidate station, 13 inactive
4

stations, and 6 stations pending status. The network provides all of
its data freely, which can be obtained from an FTP server or www.
pangaea.de. In order for a station to be included in the BSRN network,
it must first demonstrate the ability to provide high-quality data for sev-
eral years. Moreover, all BSRN stations are required to measure all three
components of irradiance using thermopile radiometers and several
additional meteorological parameters (including longwave irradiance),
all at a 1-minute resolution.

One limitation of the BSRN lies in the utilization of an outdated file
format known as the station-to-archive format. The file format splits
each data entry across two lines, making the data difficult to read.
However, this burden is removed by pvlib’s read_bsrn and get_bsrn
functions, which provide an easy way of reading and retrieving BSRN
data. An example of data retrieval from the BSRN is provided in Listing
2. It should be noted that there is not a standardized time frame for
which new data becomes available, thus, users are urged to check data
availability at https://dataportals.pangaea.de/bsrn.

3.2. NREL MIDC

NREL’s Measurement and Instrumentation Data Center (MIDC) pro-
vides irradiance and meteorological data from a network of stations
across the United States. Unlike the BSRN, the MIDC does not have
specific station requirements, e.g., not all stations have thermopile
instruments. The time span and measurement interval also vary from
station to station. As of July 2023, the MIDC network consists of 11
active and 23 inactive stations.

The most notable station in the MIDC network is the Baseline
Measurement System (BMS) at the Solar Radiation Research Labo-
ratory (SRRL) in Golden, Colorado. The BMS features the world’s
largest collection of radiometers in continuous operation [20]. This
includes numerous pyranometers, pyrheliometers, pyrgeometers, spec-
troradiometers, and cloud cameras. Due to the large collection of
continuously operated co-located instruments, the BMS data is ideal for
comparing different types of instruments.

https://SolarStations.org
https://SolarStations.org
https://SolarStations.org
https://SolarStations.org
https://www.pangaea.de
https://www.pangaea.de
https://www.pangaea.de
https://dataportals.pangaea.de/bsrn
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3.3. SRML

The Solar Radiation Monitoring Laboratory (SRML) is part of the
University of Oregon and provides irradiance and meteorological data
from a network of stations in the Northwestern United States. As of July
2023, there are 14 active stations and 24 inactive stations (see the inset
map in Fig. 2). The SRML stations vary in quality and instrumentation,
with some stations measuring all three irradiance components using
high-quality thermopile instruments and others using rotating shadow-
band radiometers. All active stations record data at a 1-minute time
resolution, although much of the historical data is only available at
lower time resolutions. For a detailed description of the SRML network,
see http://solardata.uoregon.edu and [21].

3.4. NOAA SOLRAD and SURFRAD

The National Oceanic and Atmospheric Administration (NOAA) op-
erates two solar radiation monitoring networks in the United States.
The first network is the SOLRAD network, which consists of nine
stations and has operated since the mid-1990s [22]. The time reso-
lution of the SOLRAD data has changed throughout the years, with
measurements being made with a 1-minute frequency since 2015.

The second network is SURFRAD, which at its start in 1995 had four
stations, which was expanded to six in 1998 and to seven in 2003 [23,
24]. The SURFRAD stations have been collecting measurements at a
resolution of 1 min since 2009, while prior to that, they were logged
at a resolution of 3 min.

Generally, SURFRAD stations are of higher quality and better main-
tained than SOLRAD stations. All SURFRAD stations are also part
of the BSRN, although only the full number of parameters can be
obtained from the SURFRAD FTP server. Both the SOLRAD and the
SURFRAD networks measure all three irradiance components using
thermopile radiometers, and the collected data is continuously quality
controlled. The iotools subpackage currently only has a read_surfrad
nd read_solrad function and no dedicated get-functions. However,

both read-functions support passing a URL as the filename parameter
and thus are able to retrieve external data.

3.5. US climate reference network (CRN)

The US Climate Reference Network (CRN) was set up in 2004 with
the aim of providing long-term measurements for climate research [25].
The network is managed by NOAA and consists of 114 sites in the con-
tiguous United States, 21 stations in Alaska, and 2 stations in Hawaii.
The primary variables measured at each site are air temperature,
precipitation, surface temperature, and soil moisture and temperature.
Solar irradiance is also measured but is considered an ancillary ob-
servation and is mainly used for quality-controlling air temperature
measurements. The utilization of non-spectrally flat photodiode sensors
and limited maintenance practices contribute to a considerably higher
uncertainty level than stations specifically designed for solar radiation
monitoring. As a result, users are strongly advised to exercise caution
when employing irradiance measurements from the CRN network for
solar energy applications. Data files can be read using the read_crn
function, which also supports URLs for retrieval of external data.

3.6. Example use case

As previously mentioned, ground-measured irradiance data are nec-
essary for evaluating the uncertainty of solar radiation models and
datasets. A brief example is provided in Listing 2, demonstrating how
to retrieve ground-measured irradiance data from the Cabauw BSRN
station and compare measured and modeled direct normal irradiance
(DNI). The modeled DNI is calculated using three different decomposi-
5

tion models and compared to measured DNI in Fig. 3.
Listing 2: Example of downloading of BSRN data and prediction of
DNI using separation models.� ⊵
import pvlib
import pandas as pd

# fetch measurements from the Cabauw BSRN station
data, meta = pvlib.iotools.get_bsrn(

station=’CAB’,
start=pd.Timestamp(2018, 7, 1),
end=pd.Timestamp(2018, 7, 30),
username=’username’, password=’password’)

# get solar position for each timestamp in " data "
solpos = pvlib.solarposition.get_solarposition(

data.index , meta[’latitude’], meta[’longitude’])

# estimate DNI from GHI using the DISC model
data[’dni_disc’] = pvlib.irradiance.disc(

data[’ghi’], solpos[’zenith’], data.index)[’dni’]
# estimate DNI from GHI using the Erbs model
data[’dni_erbs’] = pvlib.irradiance.erbs(

data[’ghi’], solpos[’zenith’], data.index)[’dni’]
# estimate DNI from GHI using the DIRINT model
data[’dni_dirint’] = pvlib.irradiance.dirint(

data[’ghi’], solpos[’zenith’], data.index)

# plot the measured and estimated DNI for three days
dnis = [’dni’, ’dni_disc’, ’dni_erbs’, ’dni_dirint’]
data[dnis].iloc[:4320].plot(ylabel=’DNI [W/m$^2$]’)� �

Fig. 3. Comparison of measured (blue line) and modeled DNI (output from Listing 2.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

4. Modeled irradiance data

Most modeled irradiance datasets can be categorized as either
satellite-derived or reanalysis. Modeled datasets are used at least in
some stages of most solar energy projects due to several inherent ad-
vantages, despite having a higher uncertainty than what is achievable
from ground-based measurements. The primary advantages of modeled
irradiance datasets are large geographical coverage (continental scale),
long time series (multiple decades), and low cost. Another advantage
of modeled datasets is that they are typically serially complete, i.e., do
not contain gaps.

Satellite-derived irradiance time series are based on cloud identi-
fication based on satellite images. In contrast, reanalysis datasets are
derived from mathematical weather models combined with observa-
tional data. Generally, satellite-derived data tends to have a lower
uncertainty and better spatial and temporal resolution than reanalysis
datasets. However, reanalysis datasets are able to provide complete
global coverage. In contrast, satellite-derived datasets are typically lim-
ited to ±60◦ latitude due to the view angle of geostationary satellites.
It should be noted that satellite-derived irradiance models typically
also rely on input data from reanalysis datasets, e.g., aerosols and
precipitable water vapor.

As of pvlib 0.9.5, the iotools subpackage support six different mod-
eled irradiance datasets from three data providers. A comparison of the
temporal and spatial resolution and coverage of the different datasets

http://solardata.uoregon.edu
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Table 1
Overview of the modeled irradiance datasets available through pvlib iotools. Data providers in parentheses denote the organization disseminating the data. Temporal resolution
corresponds to the lowest available resolution (the number in parenthesis corresponds to the highest resolution of the atmospheric input data). The spatial resolution is approximate;
see Fig. 4 for a detailed view of the spatial coverage.

Dataset Provider Type Time frame Temporal Geographical Nominal spatial
resolution coverage resolution

CAMS All-sky
Radiation

CAMS Satellite 2004– 1-min (15-min) Latitude: ±66◦

Longitude: −65◦ to 180◦
Interpolated to
point of interest

CAMS Clear-sky
Radiation (McClear)

CAMS Reanalysis 2004– 1-min (3-h) Global Interpolated to
point of interest

SARAH-1 CM SAF (PVGIS) Satellite 2005–2016 60-min Latitude: −40◦ to 62◦

Longitude: −65◦ to 128◦
5 km (0.05◦)

SARAH-2 CM SAF (PVGIS) Satellite 2005–2020 60-min Latitude: ±65◦

Longitude: ±65◦
5 km (0.05◦)

ERA5 ECMWF (PVGIS) Reanalysis 2005–2020 60-min Latitude: −60◦ to 75◦ 25 km (0.25◦)

NSRDB PSM3 NREL Satellite 1998–2021 30-min
5-min from 2018

Latitude: −20◦ to 60◦

Longitude: −175◦ to 25◦
4 km
2 km from 2018
is provided in Table 1. Additionally, the geographical coverage of the
datasets is visualized in Fig. 4. All of the supported datasets are public,
i.e., free to use. Each dataset is described in detail in the following
sections, followed by a short example.

4.1. PVGIS

PVGIS is a web application allowing users to retrieve solar irra-
diance from various datasets and estimate PV system energy produc-
tion [26]. Climatic variables, including temperature, wind speed/di-
rection, and humidity, are also available and stem from the ERA5 and
ERA5-Land reanalysis datasets. PVGIS is recognized as one of the most
popular sources for irradiance data and PV production estimates and
is an initiative by the European Commission’s Joint Research Centre
(JRC).

The most recent version is PVGIS 5.2, which was released in March
2022. As of July 2023, PVGIS supports four irradiance datasets, with
the following three being described in the following sections: SARAH,
SARAH-2, and ERA5. PVGIS also supports NSRDB PSM3, although
accessing this dataset using the PSM3 API described in Section 4.2 is
preferred (e.g., PSM3 data available through PVGIS is only available at
1-h resolution and for the period 2005 to 2015). Data from all datasets
is also available for download as a TMY.

4.1.1. SARAH
The Surface Solar Radiation Data Set - Heliosat (SARAH) is a

satellite-derived dataset of all-sky irradiance [27]. The SARAH data
is derived from satellite observations from the geostationary Meteosat
satellites and contain GHI, DNI, and effective cloud albedo. The dataset
is developed by the EUMETSAT Climate Monitoring Satellite Applica-
tion Facility (CM SAF).

PVGIS supports two versions of SARAH, SARAH-1 and SARAH-2.
As seen in Fig. 4, the SARAH-2 dataset covers parts of South America,
Europe, and Africa, whereas the older SARAH-1 dataset also covers
Asia and parts of Australia. SARAH-2 is the successor of SARAH-1,
and PVGIS urges users to use SARAH-2. A validation of SARAH-1 is
presented in [28], and SARAH-2 is validated in [29].

4.1.2. ERA5
With the newest version of PVGIS, data is available for practically all

inhabitable parts of the world due to the addition of ERA5 reanalysis
data [30]. ERA5 is the flagship reanalysis dataset from the European
Centre for Medium-Range Weather Forecasts (ECMWF) [31]. Due to the
higher uncertainty compared to satellite-derived datasets, reanalysis
6

data are primarily used in the polar regions.
4.2. NSRDB PSM3

The NSRDB (National Solar Radiation Database) is a collection of
irradiance and meteorological datasets, the flagship of which is gener-
ated using the Physical Solar Model v3 (PSM3). The PSM3 estimates
the three irradiance components using atmospheric data from various
sources, including cloud properties from NOAA’s GOES satellite im-
agery, aerosols from NASA’s MERRA-2 and MODIS projects, and surface
albedo from MODIS and the National Ice Center’s IMS project. The
NSRDB also provides other meteorological parameters, including ambi-
ent temperature, wind speed and direction, atmospheric pressure, and
other values, based on data from MERRA-2. For a detailed description
of the PSM3, see [32].

The NSRDB datasets are updated once annually, with data for
the previous calendar year typically becoming available sometime in
the second half of the year. The geographical coverage corresponds
roughly to the contiguous US, Mexico, Central America, and northern
South America. The 2-km and 5-min resolution is available from 2018
onwards. Historical data from 1998 onwards are available with a
resolution of 4-km and 30-min. The NSRDB also supports downloading
TMY data.

4.3. CAMS

The CAMS Radiation Service provides time series of global, diffuse,
and direct irradiation at ground level, a product called CAMS All-Sky
Radiation developed by the Copernicus Atmosphere Monitoring Service
(CAMS). The geographical coverage is shown in Fig. 4.

The CAMS Radiation Service also provides clear-sky irradiation,
denoted CAMS Clear Sky Radiation, derived using the McClear model.
Both the all-sky and clear-sky irradiations are available with a time step
of 1 min, 15 min, 60 min, daily and monthly, starting from 2004 to two
days ago. The data is available in CSV and NetCDF format from the
Copernicus Atmosphere Data Store (ADS) or SoDa. The pvlib function
get_cams retrieves data using the SoDa web service [33]. The param-
eter identifier can be set to either mcclear or cams_radiation
depending on which dataset is desired. Unlike most other datasets, data
from the CAMS Radiation Service is not stored in a database but rather
calculated on-the-fly; thus, only single-point requests are possible. It
should be noted that the spatial resolution of CAMS only refers to the
input data, which are then interpolated in time and space.

The McClear clear-sky model is a fully physical model based on the
radiative transfer model libRadtran [34]. The model relies on inputs
of aerosol properties, water vapor, and ozone from Copernicus. The
ground-level irradiation is derived from the CAMS Clear Sky Radiation
clear-sky irradiation time series coupled with satellite-based cloud
information. The cloud information is extracted in a physical retrieval
from images from the Meteosat Second Generation (MSG) satellite. As
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Fig. 4. Geographical coverage of the modeled irradiance datasets supported by pvlib iotools. Light blue indicates coverage over water. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
of the second half of 2023, CAMS will also process images from the
Himawari-8 satellite, thus adding coverage of Asia, Australia, and New
Zealand as shown in Fig. 4. Irradiation is processed using the Heliosat
−4 method [35,36].

The CAMS data is provided as irradiation in units of Wh/m2; how-
ever, the pvlib get_cams function converts to irradiance (W/m2) if the
integrated keyword is set to true.

4.4. Example use case

Modeled irradiance datasets are often used when reliable ground
station measurements are not available, for example, when estimating
the annual output of a solar farm before the system is actually built.
Listing 3 shows an example of retrieving a year’s worth of weather
data using the pvlib iotools subpackage, passing it through a basic
PVWatts-style [37] PV system performance model built with other pvlib
modules, and finally visualizing a subset of the simulated output power
(Fig. 5).

Listing 3: Basic PV performance model using satellite-based irradiance� ⊵
import pvlib

latitude = 35.0
longitude = -105.0

# fetch 5-minute data for all of 2019:
data, metadata = pvlib.iotools.get_psm3(

latitude=latitude , longitude=longitude ,
api_key=’DEMO_KEY’, email=’user@example.com’,
names=’2019’, interval=5)

# get solar position for each timestamp in " data "
solpos = pvlib.solarposition.get_solarposition(

data.index, latitude , longitude)
# get tracker orientation for each timestamp
tracker_angles = pvlib.tracking.singleaxis(

solpos[’zenith’], solpos[’azimuth’])
# transpose GHI, DHI, DNI into POA irradiance
components = pvlib.irradiance.get_total_irradiance(

tracker_angles[’surface_tilt’],
tracker_angles[’surface_azimuth’],
solpos[’zenith’], solpos[’azimuth’],
data[’DNI’], data[’GHI’], data[’DHI’])

# estimate PV cell temperature and power output
cell_temperature = pvlib.temperature.pvsyst_cell(

components[’poa_global’], data[’Temperature’])
dc_power = pvlib.pvsystem.pvwatts_dc(

components[’poa_global’], cell_temperature ,
pdc0=10000, gamma_pdc=-0.004)

# plot a few days as an example
dc_power.loc[’2019-12-15’: ’2019-12-17’].plot(

ylabel=’DC Power [W]’)
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Fig. 5. A simple DC power prediction for a tracking system, using weather data
retrieved from the NSRDB (output from Listing 3.

5. Licensing

The pvlib python code is open-source and released under a BSD 3-
Clause license. It is up to the user to ensure that the usage of the data
is used in accordance with the data provider’s terms and conditions.

6. Outlook and future work

By providing users with a set of standardized and well-documented
functions, pvlib iotools can significantly reduce the effort and time
requirement of obtaining and working with solar irradiance data, in
particular as all of the data providers discussed provide different access
methods and file formats. Based on our experiences, an API type of data
retrieval, as opposed to an FTP server for example, was found to be
the fastest and easiest method for accessing data, and as a minimum,
it is recommended that data is made available in CSV and JSON file
formats. A REST API with keywords separated by ampersands can be
recommended, which is a simple yet powerful and flexible solution.
Moreover, several stakeholders are promoting the use of the NetCDF file
format, which has several advantages but is not yet sufficiently widely
adopted to be recommended as the only method of data access.

The pvlib community has expressed interest in functionality for
accessing reanalysis data, which is particularly motivated by their
global coverage and short time lag compared to public satellite-derived
irradiance datasets (e.g., data from PVGIS and NSRDB is typically
more than one year old). Specifically, work has been initiated to add
functions for accessing the MERRA-2 and ERA5 reanalysis datasets. Ad-
ditionally, there are ongoing efforts to add functionality for commercial
providers of irradiance data (e.g., Solargis, SolarAnywhere, and Sol-

cast). Furthermore, other public data sources which may be supported
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in the future include Atmospheric Radiation Measurement User Facility
(ARM), Regional Test Centers (RTC), the SAURAN network, AERONET,
and NASA POWER.

Furthermore, the iotools is not limited to irradiance data but should
upport the main data types used in PV performance modeling. With
his in mind, it is planned to add functionality for retrieving precipi-
ation data (for modeling soiling) and horizon profiles (for modeling
ar-shading). The iotools subpackage may in the future also contain
unctions for saving/writing data to specific file formats (e.g., export
ata in the SAM format). Additionally, efforts will be made to en-
ure that future functions adhere to the standard function patterns
escribed in this paper. Lastly, it is important to mention that pvlib
s an open-source library and is always welcome to new contributors.

RediT authorship contribution statement

Adam R. Jensen: Writing – original draft (lead), Software. Kevin S.
Anderson: Writing – original draft (supporting), Software. William F.
Holmgren: Writing – review & editing, Software. Mark A. Mikofski:
Writing – review & editing, Software. Clifford W. Hansen: Writing –
review & editing, Software. Leland J. Boeman: Writing – review &
editing, Software. Roel Loonen: Writing – review & editing, Software.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The author would like to acknowledge Afshin Andreas (NREL) for
providing a list of MIDC stations, Josh Peterson (University of Oregon)
for providing a list of SRML stations, Howard Diamond (CRN) for
providing background information on the CRN network, and Amelie
Driemel (BSRN data curator) for providing insight into the BSRN.
Additionally, Marion Schroedter-Homscheidt (CAMS) was extremely
helpful in providing additional information on the CAMS Radiation
Service, and Nikos Alexandris (Joint Research Centre) provided data
on the PVGIS geographical coverage.

Adam R. Jensen was supported by the Danish Energy Agency under
grant numbers 64020-1082 and 134232-510237. Part of the work was
also carried out through participation in the 2021 Google Summer of
Code program.

Kevin S. Anderson and Clifford W. Hansen were supported by the
U.S. Department of Energy’s Office of Energy Efficiency and Renewable
Energy (EERE) under the Solar Energy Technologies Office Award
Number 38267. Sandia National Laboratories is a multimission labo-
ratory managed and operated by National Technology & Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA0003525. This paper
describes objective technical results and analysis. Any subjective views
or opinions that might be expressed in the paper do not necessarily
represent the views of the U.S. Department of Energy or the United
States Government. This material is based upon work supported by the
U.S. Department of Energy’s Office of Energy Efficiency and Renew-
able Energy under the Solar Energy Technologies Office (SETO) and
8

DE-FOA-0001649, Award Number DE-EE0008214.
References

[1] W. Marion, K. Urban, User’s Manual for TMY2s (Typical Meteorological Years) -
Derived from the 1961–1990 National Solar Radiation Data Base, Technical Re-
port, Office of Scientific and Technical Information (OSTI), National Renewable
Energy Laboratory (NREL), 1995, http://dx.doi.org/10.2172/87130.

[2] S. Wilcox, W. Marion, Users Manual for TMY3 Data Sets (Revised), Technical
Report NREL/TP-581-43156, Office of Scientific and Technical Information
(OSTI), National Renewable Energy Laboratory, Golden, Colorado, 2008, http:
//dx.doi.org/10.2172/928611.

[3] C. Hoyer-Klick, H. Beyer, D. Dumortier, M. Schroedter-Homscheidt, L. Wald,
M. Martinoli, C. Schillings, B. Gschwind, L. Menard, E. Gaboardi, L. Ramirez-
Santigosa, J. Polo, T. Cebecauer, T. Huld, M. Suri, M. de Blas, E. Lorenz, C. Kurz,
J. Remund, P. Ineichen, A. Tsvetkov, J. Hofierka, Management and exploitation
of solar resource knowledge, in: Proceedings of the EuroSun 2010 Conference,
International Solar Energy Society, 2010, pp. 1–7, http://dx.doi.org/10.18086/
eurosun.2010.13.10.

[4] D. Yang, SolarData package update v1.1: R functions for easy access of baseline
surface radiation network (BSRN), Sol. Energy 188 (2019) 970–975, http://dx.
doi.org/10.1016/j.solener.2019.05.068.

[5] C.A. Gueymard, Clear-sky radiation models and aerosol effects, in: J. Polo, L.
Martín-Pomares, A. Sanfilippo (Eds.), Solar Resources Mapping: Fundamentals
and Applications, Springer International Publishing, Cham, 2019, pp. 137–182,
http://dx.doi.org/10.1007/978-3-319-97484-2_5.

[6] A. Driemel, J. Augustine, K. Behrens, S. Colle, C. Cox, E. Cuevas-Agulló, F.M.
Denn, T. Duprat, M. Fukuda, H. Grobe, M. Haeffelin, G. Hodges, N. Hyett,
O. Ijima, A. Kallis, W. Knap, V. Kustov, C.N. Long, D. Longenecker, A. Lupi,
M. Maturilli, M. Mimouni, L. Ntsangwane, H. Ogihara, X. Olano, M. Olefs, M.
Omori, L. Passamani, E.B. Pereira, H. Schmithüsen, S. Schumacher, R. Sieger, J.
Tamlyn, R. Vogt, L. Vuilleumier, X. Xia, A. Ohmura, G. König-Langlo, Baseline
surface radiation network (BSRN): Structure and data description (1992–2017),
Earth Syst. Sci. Data 10 (3) (2018) 1491–1501, http://dx.doi.org/10.5194/essd-
10-1491-2018.

[7] D. Yang, SolarData: An R package for easy access of publicly available solar
datasets, Sol. Energy 171 (2018) A3–A12, http://dx.doi.org/10.1016/j.solener.
2018.06.107, URL https://github.com/dazhiyang/SolarData.

[8] W.F. Holmgren, C.W. Hansen, M.A. Mikofski, Pvlib Python: A Python package
for modeling solar energy systems, J. Open Source Softw. 3 (29) (2018) 884,
http://dx.doi.org/10.21105/joss.00884.

[9] W. Holmgren, K. Anderson, C. Hansen, Calama-Consulting, M. Mikofski, A.
Lorenzo, U. Krien, bmu, A.R. Jensen, C. Stark, A. Driesse, DaCoEx, M.S.
de León Peque, kt, N. Priyadarshi, mayudong, Heliolytics, E. Miller, M.A. Anoma,
V. Guo, L. Boeman, J. Stein, W. Vining, jforbess, T. Lunel, A. Morgan, J.
Ranalli, S. Aneja, Carlosbogo, C. Leroy, pvlib/pvlib-python: v0.9.5, Zenodo, 2023,
http://dx.doi.org/10.5281/zenodo.7748922.

[10] C. Feng, D. Yang, B.-M. Hodge, J. Zhang, OpenSolar: Promoting the open-
ness and accessibility of diverse public solar datasets, Sol. Energy 188
(2019) 1369–1379, http://dx.doi.org/10.1016/j.solener.2019.07.016, URL https:
//github.com/fengcong1992/OpenSolar.

[11] J.M. Bright, X. Bai, Y. Zhang, X. Sun, B. Acord, P. Wang, Irradpy: Python package
for MERRA-2 download, extraction and usage for clear-sky irradiance modelling,
Sol. Energy 199 (2020) 685–693, http://dx.doi.org/10.1016/j.solener.2020.02.
061, URL https://github.com/BXYMartin/Python-IrradPy.

[12] P. Blanc, R. Jolivet, L. Ménard, Y.-M. Saint-Drenan, Data Sharing of In-Situ
Measurements Following GEO and FAIR Principles in the Solar Energy Sector,
Technical Report, MINES Paris, PSL Research University, Centre O.I.E. - Centre
Observation, Impacts, Énergie - MINES Paris, 2022, http://dx.doi.org/10.23646/
AC2M-8504.

[13] W.F. Holmgren, C.W. Hansen, J.S. Stein, M.A. Mikofski, Review of open source
tools for PV modeling, in: 2018 IEEE 7th World Conference on Photovoltaic
Energy Conversion, WCPEC a Joint Conference of 45th IEEE PVSC, 28th PVSEC
& 34th EU PVSEC, 2018, pp. 2557–2560, http://dx.doi.org/10.1109/PVSC.2018.
8548231.

[14] K. Perry, W. Vining, K. Anderson, M. Muller, C. Hansen, PVAnalytics: A Python
package for automated processing of solar time series data, in: PV Performance
Modeling and Monitoring Workshop, 2022, URL https://www.osti.gov/biblio/
1887283.

[15] A.R. Jensen, I. Sifnaios, K. Anderson, Twoaxistracking – a Python package for
simulating self-shading of two-axis tracking solar collectors, MethodsX 9 (2022)
101876, http://dx.doi.org/10.1016/j.mex.2022.101876.

[16] A. Forstinger, S. Wilbert, B. Kraas, C.F. Peruchena, C.A. Gueymard, E. Collino,
J.A. Ruiz-Arias, J.P. Martinez, Y.-M. Saint-Drenan, D. Ronzio, N. Hanrieder, A.R.
Jensen, D. Yang, Expert quality control of solar radiation ground data sets, in:
Proceedings of the ISES Solar World Congress 2021, International Solar Energy
Society, 2021, http://dx.doi.org/10.18086/swc.2021.38.02.

[17] D. Tschopp, A.R. Jensen, J. Dragsted, P. Ohnewein, S. Furbo, Measurement and
modeling of diffuse irradiance masking on tilted planes for solar engineering
applications, Sol. Energy 231 (2022) 365–378, http://dx.doi.org/10.1016/j.
solener.2021.10.083.

http://dx.doi.org/10.2172/87130
http://dx.doi.org/10.2172/928611
http://dx.doi.org/10.2172/928611
http://dx.doi.org/10.2172/928611
http://dx.doi.org/10.18086/eurosun.2010.13.10
http://dx.doi.org/10.18086/eurosun.2010.13.10
http://dx.doi.org/10.18086/eurosun.2010.13.10
http://dx.doi.org/10.1016/j.solener.2019.05.068
http://dx.doi.org/10.1016/j.solener.2019.05.068
http://dx.doi.org/10.1016/j.solener.2019.05.068
http://dx.doi.org/10.1007/978-3-319-97484-2_5
http://dx.doi.org/10.5194/essd-10-1491-2018
http://dx.doi.org/10.5194/essd-10-1491-2018
http://dx.doi.org/10.5194/essd-10-1491-2018
http://dx.doi.org/10.1016/j.solener.2018.06.107
http://dx.doi.org/10.1016/j.solener.2018.06.107
http://dx.doi.org/10.1016/j.solener.2018.06.107
https://github.com/dazhiyang/SolarData
http://dx.doi.org/10.21105/joss.00884
http://dx.doi.org/10.5281/zenodo.7748922
http://dx.doi.org/10.1016/j.solener.2019.07.016
https://github.com/fengcong1992/OpenSolar
https://github.com/fengcong1992/OpenSolar
https://github.com/fengcong1992/OpenSolar
http://dx.doi.org/10.1016/j.solener.2020.02.061
http://dx.doi.org/10.1016/j.solener.2020.02.061
http://dx.doi.org/10.1016/j.solener.2020.02.061
https://github.com/BXYMartin/Python-IrradPy
http://dx.doi.org/10.23646/AC2M-8504
http://dx.doi.org/10.23646/AC2M-8504
http://dx.doi.org/10.23646/AC2M-8504
http://dx.doi.org/10.1109/PVSC.2018.8548231
http://dx.doi.org/10.1109/PVSC.2018.8548231
http://dx.doi.org/10.1109/PVSC.2018.8548231
https://www.osti.gov/biblio/1887283
https://www.osti.gov/biblio/1887283
https://www.osti.gov/biblio/1887283
http://dx.doi.org/10.1016/j.mex.2022.101876
http://dx.doi.org/10.18086/swc.2021.38.02
http://dx.doi.org/10.1016/j.solener.2021.10.083
http://dx.doi.org/10.1016/j.solener.2021.10.083
http://dx.doi.org/10.1016/j.solener.2021.10.083


Solar Energy 266 (2023) 112092A.R. Jensen et al.
[18] J. Polo, C. Fernández-Peruchena, V. Salamalikis, L. Mazorra-Aguiar, M. Turpin,
L. Martín-Pomares, A. Kazantzidis, P. Blanc, J. Remund, Benchmarking on
improvement and site-adaptation techniques for modeled solar radiation datasets,
Sol. Energy 201 (2020) 469–479, http://dx.doi.org/10.1016/j.solener.2020.03.
040.

[19] A.R. Jensen, J.L. Lorente, P. Blanc, Y.-M. Saint-Drenan, AssessingSolar: An
interactive guide to solar resource assessment in Python, in: Proceedings of
the ISES Solar World Congress 2021, International Solar Energy Society, 2021,
http://dx.doi.org/10.18086/swc.2021.37.03.

[20] A. Andreas, T. Stoffel, NREL Solar Radiation Research Laboratory (SRRL):
Baseline Measurement System (BMS), Technical Report DA-5500-56488, National
Renewable Energy Laboratory, Golden, Colorado, 1981, http://dx.doi.org/10.
5439/1052221.

[21] J. Peterson, F. Vignola, Structure of a comprehensive solar radiation dataset, Sol.
Energy 211 (2020) 366–374, http://dx.doi.org/10.1016/j.solener.2020.08.092.

[22] B.B. Hicks, J.J. DeLuisi, D.R. Matt, The NOAA Integrated Surface Irradiance Study
(ISIS)—a new surface radiation monitoring program, Bull. Am. Meteorol. Soc. 77
(12) (1996) 2857–2864, http://dx.doi.org/10.1175/1520-0477(1996)077<2857:
tnisis>2.0.co;2.

[23] J.A. Augustine, J.J. DeLuisi, C.N. Long, SURFRAD – a national surface radi-
ation budget network for atmospheric research, Bull. Am. Meteorol. Soc. 81
(10) (2000) 2341–2358, http://dx.doi.org/10.1175/1520-0477(2000)081<2341:
SANSRB>2.3.CO;2.

[24] J.A. Augustine, G.B. Hodges, C.R. Cornwall, J.J. Michalsky, C.I. Medina, An
update on SURFRAD—the GCOS surface radiation budget network for the
continental United States, J. Atmos. Ocean. Technol. 22 (10) (2005) 1460–1472,
http://dx.doi.org/10.1175/jtech1806.1.

[25] H.J. Diamond, et al., U.S. climate reference network after one decade of
operations status and assessment, Bull. Am. Meteorol. Soc. 94 (4) (2013)
485–498, http://dx.doi.org/10.1175/BAMS-D-12-00170.1.

[26] T. Huld, R. Müller, A. Gambardella, A new solar radiation database for estimating
PV performance in Europe and Africa, Sol. Energy 86 (6) (2012) 1803–1815,
http://dx.doi.org/10.1016/j.solener.2012.03.006.

[27] U. Pfeifroth, S. Kothe, J. Trentmann, R. Hollmann, P. Fuchs, J. Kaiser, M.
Werscheck, Surface Radiation Data Set - Heliosat (SARAH) - Edition 2.1, Satellite
Application Facility on Climate Monitoring (CM SAF), 2019, http://dx.doi.org/
10.5676/EUM_SAF_CM/SARAH/V002_01.

[28] R. Urraca, A.M. Gracia-Amillo, E. Koubli, T. Huld, J. Trentmann, A. Riihelä, A.V.
Lindfors, D. Palmer, R. Gottschalg, F. Antonanzas-Torres, Extensive validation
of CM SAF surface radiation products over Europe, Remote Sens. Environ. 199
(2017) 171–186, http://dx.doi.org/10.1016/j.rse.2017.07.013.
9

[29] A. Gracia Amillo, N. Taylor, A. Martinez Fernandez, E. Dunlop, P. Mavrogiorgios,
F. Fahl, G. Arcaro, I. Pinedo, Adapting PVGIS to trends in climate, technology
and user needs, in: 38th European Photovoltaic Solar Energy Conference and
Exhibition; 907-911, WIP, 2021, http://dx.doi.org/10.4229/EUPVSEC20212021-
5BO.6.1.

[30] R. Urraca, A.M. Gracia-Amillo, E. Koubli, T. Huld, J. Trentmann, A. Riihelä,
A.V. Lindfors, D. Palmer, R. Gottschalg, F. Antonanzas-Torres, Evaluation of
global horizontal irradiance estimates from ERA5 and COSMO-REA6 reanalyses
using ground and satellite-based data, Sol. Energy 164 (2018) 339–354, http:
//dx.doi.org/10.1016/j.solener.2018.02.059.

[31] H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater,
J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X.
Abellan, G. Balsamo, P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. Chiara,
P. Dahlgren, D. Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M.
Fuentes, A. Geer, L. Haimberger, S. Healy, R.J. Hogan, E. Hólm, M. Janisková,
S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. Rosnay, I. Rozum,
F. Vamborg, S. Villaume, J.-N. Thépaut, The ERA5 global reanalysis, Q. J. R.
Meteorol. Soc. 146 (730) (2020) 1999–2049, http://dx.doi.org/10.1002/qj.3803.

[32] M. Sengupta, Y. Xie, A. Lopez, A. Habte, G. Maclaurin, J. Shelby, The national
solar radiation data base (NSRDB), Renew. Sustain. Energy Rev. 89 (2018)
51–60, http://dx.doi.org/10.1016/j.rser.2018.03.003.

[33] ECMWF, CAMS radiation service, 2021, URL http://www.soda-pro.com/web-
services/radiation/cams-radiation-service/info.

[34] B. Gschwind, L. Wald, P. Blanc, M. Lefèvre, M. Schroedter-Homscheidt, A. Arola,
Improving the McClear model estimating the downwelling solar radiation at
ground level in cloud-free conditions - mcclear-v3, Meteorol. Z. 28 (2) (2019)
147–163, http://dx.doi.org/10.1127/metz/2019/0946.

[35] Z. Qu, A. Oumbe, P. Blanc, B. Espinar, G. Gesell, B. Gschwind, L. Klüser,
M. Lefèvre, L. Saboret, M. Schroedter-Homscheidt, L. Wald, Fast radiative
transfer parameterisation for assessing the surface solar irradiance: The heliosat-
4 method, Meteorol. Z. 26 (1) (2017) 33–57, http://dx.doi.org/10.1127/metz/
2016/0781.

[36] M. Schroedter-Homscheidt, F. Azam, J. Betcke, N. Hanrieder, M. Lefèvre, L.
Saboret, Y. Saint-Drenan, Surface solar irradiation retrieval from MSG/SEVIRI
based on APOLLO next generation and HELIOSAT?4 methods, Meteorol. Z. 31
(6) (2022) 455–476, http://dx.doi.org/10.1127/metz/2022/1132.

[37] A.P. Dobos, PVWatts Version 5 Manual, Technical Report NREL/TP-6A20-62641,
National Renewable Energy Laboratory, Golden, CO, 2014, http://dx.doi.org/10.
2172/1158421.

http://dx.doi.org/10.1016/j.solener.2020.03.040
http://dx.doi.org/10.1016/j.solener.2020.03.040
http://dx.doi.org/10.1016/j.solener.2020.03.040
http://dx.doi.org/10.18086/swc.2021.37.03
http://dx.doi.org/10.5439/1052221
http://dx.doi.org/10.5439/1052221
http://dx.doi.org/10.5439/1052221
http://dx.doi.org/10.1016/j.solener.2020.08.092
http://dx.doi.org/10.1175/1520-0477(1996)077<2857:tnisis>2.0.co;2
http://dx.doi.org/10.1175/1520-0477(1996)077<2857:tnisis>2.0.co;2
http://dx.doi.org/10.1175/1520-0477(1996)077<2857:tnisis>2.0.co;2
http://dx.doi.org/10.1175/1520-0477(2000)081<2341:SANSRB>2.3.CO;2
http://dx.doi.org/10.1175/1520-0477(2000)081<2341:SANSRB>2.3.CO;2
http://dx.doi.org/10.1175/1520-0477(2000)081<2341:SANSRB>2.3.CO;2
http://dx.doi.org/10.1175/jtech1806.1
http://dx.doi.org/10.1175/BAMS-D-12-00170.1
http://dx.doi.org/10.1016/j.solener.2012.03.006
http://dx.doi.org/10.5676/EUM_SAF_CM/SARAH/V002_01
http://dx.doi.org/10.5676/EUM_SAF_CM/SARAH/V002_01
http://dx.doi.org/10.5676/EUM_SAF_CM/SARAH/V002_01
http://dx.doi.org/10.1016/j.rse.2017.07.013
http://dx.doi.org/10.4229/EUPVSEC20212021-5BO.6.1
http://dx.doi.org/10.4229/EUPVSEC20212021-5BO.6.1
http://dx.doi.org/10.4229/EUPVSEC20212021-5BO.6.1
http://dx.doi.org/10.1016/j.solener.2018.02.059
http://dx.doi.org/10.1016/j.solener.2018.02.059
http://dx.doi.org/10.1016/j.solener.2018.02.059
http://dx.doi.org/10.1002/qj.3803
http://dx.doi.org/10.1016/j.rser.2018.03.003
http://www.soda-pro.com/web-services/radiation/cams-radiation-service/info
http://www.soda-pro.com/web-services/radiation/cams-radiation-service/info
http://www.soda-pro.com/web-services/radiation/cams-radiation-service/info
http://dx.doi.org/10.1127/metz/2019/0946
http://dx.doi.org/10.1127/metz/2016/0781
http://dx.doi.org/10.1127/metz/2016/0781
http://dx.doi.org/10.1127/metz/2016/0781
http://dx.doi.org/10.1127/metz/2022/1132
http://dx.doi.org/10.2172/1158421
http://dx.doi.org/10.2172/1158421
http://dx.doi.org/10.2172/1158421

	pvlib iotools—Open-source Python functions for seamless access to solar irradiance data
	Introduction
	Function pattern
	Reading of local data files
	Retrieval of external data
	Outputs
	Variable mapping
	Documentation
	Inconsistencies

	Measurement irradiance data
	BSRN
	NREL MIDC
	SRML
	NOAA SOLRAD and SURFRAD
	US Climate Reference Network (CRN)
	Example use case

	Modeled irradiance data
	PVGIS
	SARAH
	ERA5

	NSRDB PSM3
	CAMS
	Example use case

	Licensing
	Outlook and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


