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We investigate the List H -Coloring problem, the generalization of graph coloring that asks whether an

input graph G admits a homomorphism to the undirected graph H (possibly with loops), such that each

vertex v ∈ V (G ) is mapped to a vertex on its list L(v ) ⊆ V (H ). An important result by Feder, Hell, and

Huang [JGT 2003] states that List H -Coloring is polynomial-time solvable if H is a so-called bi-arc graph,

and NP-complete otherwise. We investigate the NP-complete cases of the problem from the perspective of

polynomial-time sparsification: can an n-vertex instance be efficiently reduced to an equivalent instance of

bitsizeO (n2−ε ) for some ε > 0?We prove that ifH is not a bi-arc graph, then ListH -Coloring does not admit

such a sparsification algorithm unless NP ⊆ coNP/poly. Our proofs combine techniques from kernelization

lower bounds with a study of the structure of graphs H which are not bi-graphs.
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1 INTRODUCTION

Background and motivation. The List H -Coloring problem is a generalization of the classic
graph coloring problem. For a fixed undirected graph H , possibly with self-loops, an input to
the problem consists of an undirected graph G together with a list L(v ) ⊆ V (H ) for each ver-
tex v ∈ V (G ). The question is whether there is a list homomorphism from G to H : a map-
ping f : V (G ) → V (H ) such that f (u) f (v ) ∈ E (H ) for all uv ∈ E (G ), and such that f (v ) ∈ L(v )
for all v ∈ V (G ). When H is a q-clique and L(v ) = V (H ) for each vertex, List H -Coloring is
equivalent to traditional graph q-colorability.

The classic computational complexity of List H -Coloring for other graphsH has been investi-
gated, next to a long line of work for the non-list version of the problem [1, 4, 23, 25, 31, 34, 35, 40].
As the first step toward the dichotomy, Feder and Hell [14] proved that if H is reflexive (i.e., every
vertex has a self-loop), then ListH -Coloring is polynomial-time solvable ifH is an interval graph,
and NP-complete otherwise. Next, a dichotomy for irreflexive graphs H was proven by Feder et al.
[15]: the problem is polynomial-time solvable ifH is bipartite and additionally its complement is a
circular-arc graph, and in all other cases the problem is NP-complete. It is interesting to mention
that the subclass of bipartite graphs consisting of those which are complements of circular-arc
graphs, was already studied by Trotter and Moore in the context of classifying some posets [42].
Finally, Feder et al. [16] defined a new class of geometric intersection graphs (potentially with
loops), called bi-arc graphs, which encapsulates reflexive interval graphs and (irreflexive) bipar-
tite co-circular-arc graphs. We postpone the definition of bi-arc graphs to Section 4.1. Feder et al.
proved a powerful dichotomy theorem: List H -Coloring is polynomial-time solvable if H is a
bi-arc graph, but NP-complete otherwise.

In this work, we investigate List H -Coloring from the perspective of polynomial-time spar-
sification (cf. [7, 9, 29]). From this viewpoint, the goal is to develop a polynomial-time algorithm
that maps a (potentially dense) n-vertex instance G to a smaller instance G ′ that can be encoded
in f (n) bits for some size function f , yet which has the same yes/no answer as G. Observe that
this is trivial if f (n) = n2; we refer to a sparsification algorithm as non-trivial if it achieves a size
bound of f (n) ∈ O (n2−ε ) bits for some ε > 0.

The general quest for sparsification algorithms is motivated by the fact that they allow instances
to be stored, manipulated, and solved more efficiently: since sparsification preserves the exact
answer to the problem, it suffices to solve the sparsified instance. Our interest in sparsification for
List H -Coloring has a number of motivations, which we now describe.

There is a growing list of problems for which the existence of non-trivial sparsification algo-
rithms has been ruled out under the established assumption NP � coNP/poly, which includes
Vertex Cover [9], Dominating Set [29], Feedback Arc Set [29], and Treewidth [27]. To the
best of our knowledge, to date there is no non-trivial sparsification algorithm for any NP-hard prob-
lem that is defined on general graphs. Could it be that there is no natural NP-hard graph problem
that admits a non-trivial sparsification algorithm? The surprising richness of problems that admit
a polynomial kernelization, a desirable outcome in a different regime of efficient pre-processing
(cf. [18, 21]), may tempt one to believe that for the right problem, something non-trivial can be
done. This belief can be strengthened by considering NP-complete problems that are not defined
on graphs, such as 3-Not-All-Eqal SAT, for which a naïve bound of O (n3) bits on its encoding
size can be improved to O (n2 logn) by interpreting the clauses as degree-2 polynomials [7]. In
an attempt to identify a graph problem that admits non-trivial sparsification, we target the broad
class of List H -Coloring decision problems.

A second motivation for studying List H -Coloring comes from its interpretation as a con-
straint satisfaction problem: an instance of List H -Coloring corresponds to a CSP (Constraint
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Satisfaction Problem) that has a variable for each vertex of the input graph G, which has to be as-
signed a value from the setV (H ). For each edgeuv ofG there is a constraint that the value assigned
to u should be a neighbor (in graph H ) of the value assigned to v , and for each vertex v ∈ V (G )
there is a constraint that the value of v belongs to L(v ). Hence, any NP-hard List H -Coloring
problem translates into a CSP with a non-Boolean domain in which constraints have arity at most
two. Recentwork [7, 32] has led to a number of nontrivial advances in the study of sparsification for
CSPs with a Boolean domain. A natural next step in that line of research is to target non-Boolean
CSPs, of which the List H -Coloring problems form a rich subset.

The last motivation for studying sparsification for List H -Coloring is that it forms the logical
next step in the study of sparsification for coloring problems. Recent work [28, 30] showed that
Graph (List) q-Colorability does not admit non-trivial polynomial-time sparsification for q ≥ 3
unless NP ⊆ coNP/poly. As we explain below, the hardness construction used there crucially relies
on the fact that in standard graph coloring the requirement that two vertices receive different
colors can be enforced simply by adding an edge between them. In the setting of ListH -Coloring
when H is not a clique, this strategy fails. This raises the question whether List H -Coloring may
admit a non-trivial sparsification for such graphs H .

Our results. We prove that for all undirected, possibly non-simple, graphs H for which List
H -Coloring is NP-complete, the problem does not admit non-trivial sparsification unless an un-
likely complexity-theoretic collapse occurs. Our proofs combine techniques from kernelization
lower bounds with a careful analysis of the common structures of hard graphs H . To state our
sparsification lower bounds in full generality, we use the notion of generalized kernelization (see
Definition 2.1), where the number of vertices n of the instance plays the role of the complexity pa-
rameter k . A generalized kernelization for ListH -Coloring of size f (n) is therefore a polynomial-
time algorithm that maps any n-vertex inputG, to an equivalent instance (of a potentially different
but fixed decision problem) of bitsize f (n). Since a polynomial-time sparsification algorithm map-
ping to instances of bitsize f (n) yields a generalized kernelization of size f (n), lower bounds on
the latter also apply to the former.

Theorem 1.1. If H is an undirected graph that is not a bi-arc graph, possibly with loops, then List

H -Coloring parameterized by the number of vertices n admits no generalized kernel of size O (n2−ε )
for any ε > 0, unless NP ⊆ coNP/poly.

The techniques employed in the proof of Theorem 1.1 are rather different from those in the
NP-completeness proof for the hard cases of List H -Coloring. Feder et al. [16] establish the NP-
completeness of List H -Coloring when H is not a bi-arc graph, by reducing from 3-Coloring.
They build gadgets in List H -Coloring instances to mimic the effect of a normal edge in 3-
Coloring, and then replace each edge with such a gadget. Although 3-Coloring is known
not to admit any non-trivial sparsification unless NP ⊆ coNP/poly [28, 30], the mentioned NP-
completeness reduction does not transfer this lower bound from 3-Coloring to ListH -Coloring:
as the reduction introduces a gadget (with new vertices) for every edge of the 3-Coloring instance,
it blows up the number of variables.

Our sparsification lower bound therefore follows a different route. We introduce a technical
annotated version of the List P4-Coloring problem. For this annotated problem, we prove a spar-
sification lower bound via cross-composition [3], a technique from kernelization lower bounds.We
give a polynomial-time algorithm that embeds a sequence of t2 instances of the Cliqe problem,

on n vertices each, into a single instance (G ′,L′) of Annotated List P4-Coloring, on O (t ·nO (1) )
vertices, which acts as the logical OR of the Cliqe inputs: there is a list coloring if and only if at
least one Cliqe instance has a solution. The fact that the information from t2 distinct inputs is

packed into a single instance of O (t · nO (1) ) vertices, means that the embedding is very efficient:
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the t2 n-vertex instances of Cliqe carry t2 ·n2 bits of information (for each instance, which edges

are present?), whileG ′ has t2 ·nO (1) potential edges, and therefore carries t2 ·nO (1) bits of informa-

tion. Applying this reduction for t a polynomial innwhose degree depends on the constant innO (1) ,
this intuitively implies thatG ′ cannot be sparsified without losing information. Via the framework
of cross-composition [3] we get the formal result that Annotated List P4-Coloring parameter-
ized by the number of vertices n does not admit a generalized kernelization of size O (n2−ε ) for
any ε > 0 unless NP ⊆ coNP/poly.

To transfer the lower bound for Annotated List P4-Coloring to List H -Coloring for all
graphs H that are not bi-arc, we first use a reduction inspired by Feder et al. [16], to reduce
to the case of bipartite graphs H . Then, we investigate the common structure of simple bipar-
tite non-bi-arc graphs H , which are known to be the simple bipartite graphs H whose comple-
ment is not a circular-arc graph [16]. We uncover a common structure of such graphs that can be
used to prove the incompressibility of the related List H -Coloring problems: we prove all such
graphsH contain five vertices (a,b, c,d, e ) such thatH [{a,b, c,d }] is an induced P4, the open neigh-
borhoods NH (a),NH (c ), and NH (e ) are incomparable (i.e., none of them is contained in another),
and such that also the open neighborhoods NH (b),NH (d ) are incomparable (see Figure 2). This
5-tuple in a bipartite graph H is sufficient to prove hardness of sparsification, which we consider
one of the main contributions of the article: We prove that the 5-tuple can be used to implement
certain gadgets to enforce pairs of vertices to receive different colors in List H -Coloring. By ap-
plying these gadgets sparingly—and not for all edges—we reduce Annotated List P4-Coloring
to List H -Coloring without blowing up the number of vertices, and obtain Theorem 1.1.

Related work. More background on homomorphisms and H -Coloring can be found in the text-
book by Hell and Nešetřil [24], or the survey by Hahn and Tardif [22]. The classical complexity
of H -Coloring has also been investigated when restricted to planar [33], minor-closed [13], and
bounded-degree [19, 41] input graphsG. The complexity of ListH -Coloring was investigated for
bounded-degree graphs [17]. There is also an interesting line of research concerning the descrip-
tive and space complexity [8, 10, 11]. Finally, the fine-grained complexity of both variants was also
investigated [12, 20, 36, 38, 39].

Organization. Section 2 contains preliminaries on kernelization and graphs. In Section 3, we
present a sparsification lower bound for an annotated version of List P4-coloring, which forms
the keystone of our hardness results. In Section 4, we analyze the structure of hard graphs H , and
use that structure to build certain gadgets. These allow us to reduce the annotated problem to
standard List H -Coloring problems and prove Theorem 1.1.

2 PRELIMINARIES

To denote the set of natural numbers 1 to n, we use the following notation: [n] := {1, . . . ,n}. For a
set S , we use the notation

(
S
k

)
:= {S ′ ⊆ S | |S ′ | = k } to denote the set of all size-k subsets of S , and

we define 2S :=
⋃ |S |

k=0

(
S
k

)
. We use the notation Sk := {(s1, . . . , sk ) | s1, . . . , sk ∈ S } to denote the set

of all k-tuples with elements from S . In particular, [n]2 denotes all 2-tuples of elements from [n].

Graphs. All graphs considered in this article are finite and undirected, and do not have parallel
edges. We allow self-loops, unless explicitly stated otherwise. The vertex set and the edge set ofG
are denoted byV (G ) and E (G ), respectively. An edge {u,v} ∈ E (G ) is denoted shortly byuv , and by
vv we denote the loop on the vertex v . For v ∈ V (G ), by NG (v ) we denote the open neighborhood

of v , i.e., the set {u | uv ∈ E (G )}. The closed neighborhood of v is NG [v] := NG (v ) ∪ {v}. For
S ⊆ V (G ), by G[S] we denote the subgraph of G induced by S . A proper q-coloring of G is a
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function f : V (G ) → [q] such that f (u) � f (v ) for all uv ∈ E (G ). Let G and H be graphs. We say
thatG isH -colorable if there exists a function f : V (G ) → V (H ) such that for alluv ∈ E (G ) it holds
that f (u) f (v ) ∈ E (H ). Such a function is also called a homomorphism from G to H . Note that a
graphG has a homomorphism to the complete graphKq if and only ifG is (properly) q-colorable. If
f is a homomorphism from G to H , then we denote it by f : G → H . We write G → H to indicate

that some homomorphism from G to H exists. For a graph G and lists L : V (G ) → 2V (H ) , a list

homomorphism from (G,L) to H is a homomorphism f : G → H , such that for every v ∈ V (G ) it
holds that f (v ) ∈ L(v ). We write f : (G,L) → H if f is a list homomorphism from (G,L) to H , and
(G,L) → H if some f : (G,L) → H exists.

Parameterized complexity. A parameterized problem Q is a subset of Σ∗ × N, where Σ is a finite
alphabet.

Definition 2.1 (Generalized kernel [3]). Let Q,Q′ ⊆ Σ∗ × N be parameterized problems and let
h : N→ N be a computable function. A generalized kernel for Q into Q′ of size h(k ) is an algorithm
that, on input (x ,k ) ∈ Σ∗ × N, takes time polynomial in |x | + k and outputs an instance (x ′,k ′)
such that (i) |x ′ | and k ′ are bounded by h(k ), and (ii) (x ′,k ′) ∈ Q′ if and only if (x ,k ) ∈ Q. A
generalized kernel is a kernel for Q if Q = Q′.

In our applications, the complexity parameter k will be the number of vertices n. We will use
the framework of cross-composition, introduced by Bodlaender et al. [3], to establish kernelization
lower bounds.

Definition 2.2 (Polynomial equivalence relation [3, Def. 3.1]). An equivalence relation R on Σ∗ is
called a polynomial equivalence relation if the following conditions hold.

— There is an algorithm that, given two strings x ,y ∈ Σ∗, decides whether x and y belong to
the same equivalence class in time polynomial in |x | + |y |.

— For any finite set S ⊆ Σ∗, the equivalence relation R partitions the elements of S into a
number of classes that is polynomially bounded in the size of the largest element of S .

Definition 2.3 (Cross-composition [3, Def. 3.7]). Let L ⊆ Σ∗ be a language, let R be a polynomial
equivalence relation on Σ∗, let Q ⊆ Σ∗ × N be a parameterized problem, and let f : N → N be a
function. An or-cross-composition of L into Q (with respect to R) of cost f (t ) is an algorithm that,
given t instances x1,x2, . . . ,xt ∈ Σ∗ of L belonging to the same equivalence class of R, takes time
polynomial in

∑t
i=1 |xi | and outputs an instance (y,k ) ∈ Σ∗ × N such that

— the parameter k is bounded by O ( f (t ) · (maxi |xi |)c ), where c is some constant independent
of t ; and

— instance (y,k ) ∈ Q if and only if there is an i ∈ [t] such that xi ∈ L.

Theorem 2.4 ([3, Theorem 3.8]). Let L ⊆ Σ∗ be a language, let Q ⊆ Σ∗ × N be a parameter-

ized problem, and let d, ε be positive reals. If L is NP-hard under Karp reductions, has an or-cross-

composition into Q with cost f (t ) = t1/d+o (1) , where t denotes the number of instances, and Q has a

polynomial (generalized) kernelization with size bound O (kd−ε ), then NP ⊆ coNP/poly.

Wewill refer to an or-cross-composition of cost f (t ) =
√
t log(t ) as a degree-2 cross-composition.

By Theorem 2.4, a degree-2 cross-composition can be used to rule out generalized kernels of
size O (k2−ε ) and thus provides a way to obtain sparsification lower bounds. Generalized kernel-
ization lower bounds can be transferred using the notion of linear-parameter transformations.

Definition 2.5 (Linear-parameter transformation). Let P,Q ⊆ Σ∗ ×N be two parameterized prob-
lems. A linear-parameter transformation from P to Q is a polynomial-time algorithm that, given

ACM Transactions on Computation Theory, Vol. 15, No. 3-4, Article 8. Publication date: December 2023.



8:6 H. Chen et al.

an instance (x ,k ) ∈ Σ∗ ×N of P, outputs an instance (x ′,k ′) ∈ Σ∗ ×N of Q such that the following
holds: (i) (x ,k ) ∈ P if and only if (x ′,k ′) ∈ Q, and (ii) k ′ ∈ O (k ).

It is well known [3] that the existence of a linear-parameter transformation from problem P to Q
implies that any generalized kernelization lower bound for P, also holds for Q.

3 LOWER BOUND FOR ANNOTATED LIST P4-COLORING

We prove a sparsification lower bound for the following problem, where we take P4 to be the graph
on vertices {a, b, c, d} with edges ab, bc, cd.

Annotated List P4-Coloring

Input: A tuple (G,L,S, F ), such that G is a simple undirected bipartite graph with biparti-
tion V (G ) = V1 ∪ V2, L : V (G ) → 2{a,b,c,d} with L(v ) ⊆ {a, c} for all v ∈ V1 and L(v ) ⊆ {b, d}
for all v ∈ V2, S = S1, . . . , Sm is a sequence such that Si ⊆ V1 for each i ∈ [m] satisfy-

ing
∑m

i=1 |Si | ≤ 3|V (G ) |, and F ⊆
(
V1

2

)
∪

(
V2

2

)
is a set with |F | ≤ |V (G ) |.

Question: DoesG admit a homomorphism f : V (G ) → {a, b, c, d} to the graph P4 with f (v ) ∈
L(v ) for all v ∈ V (G ), such that for all i ∈ [m] there is a vertex v ∈ Si with f (v ) � c, and such
that for all {u,v} ∈ F we have f (u) � f (v )?

Intuitively, the annotations allow one to express two types of additional constraints on the color-
ing f . Using a set Si , one can enforce that at least one vertex is not colored c. Using a pair {u,v} ∈ F ,
one can enforce thatu andv do not receive the same color. While the latter can easily be expressed
by simply inserting an edge between u and v in a Kq-Coloring instance, this needs a non-trivial
gadget for general graphs H .

Lemma 3.1. Annotated List P4-Coloring parameterized by the number of vertices n admits no

generalized kernel of size O (n2−ε ) for any ε > 0, unless NP ⊆ coNP/poly.

Proof. We will prove this lower bound by giving a degree-2 cross-composition from Cliqe
to Annotated List P4-Coloring. We define a polynomial equivalence relation R on instances of
Cliqe. Let any two instances that ask for a clique that is larger than their respective number of
vertices be equivalent; these are always no-instances. Let two instances of Cliqe be equivalent
under R, when the input graphs have the same number of vertices and the problems ask for a
clique of the same size. It is easy to verify that R is indeed a polynomial equivalence relation.

By duplicating one of the inputs multiple times as needed, we can assume the number of inputs
to the cross-composition is a square. Therefore, assume we are given t instances of Cliqe, such

that t ′ :=
√
t is integer and such that each instance has n vertices and asks for a size-k clique.

Enumerate the given input instances as Xi, j for i, j ∈ [t ′] and let Gi, j denote the corresponding
graph. Label the vertices in each instance arbitrarily as x1, . . . ,xn . We show how to create an
instance (G,L,S, F ) that is a yes-instance for Annotated List P4-Coloring if and only if at least
one of the given instances for Cliqe is a yes-instance. Refer to Figure 1 for a sketch.

(1) For each j ∈ [t ′], � ∈ [n], and m ∈ [k] create a vertex p j

�,m
. Let L(p j

�,m
) := {a, c}. Let Pj

contain all created vertices p j

�,m
for � ∈ [n],m ∈ [k]. Let P :=

⋃
j ∈[t ′] Pj .

(2) For each f ∈
(
[k]
2

)
, each e = (e1, e2) ∈ [n]2, and each i ∈ [t ′], create vertices qi

e,f
, r i

e,f
, q̂i

e,f
,

r̂ i
e,f

, si
e,f

, and t i
e,f

. Let Qi := {qi
e,f
, r i

e,f
, q̂i

e,f
, r̂ i

e,f
, si

e,f
, t i

e,f
| f ∈

(
[k]
2

)
, e ∈ [n]2}. Note that

Qi contains 6
(

k
2

)
vertices for each ordered pair of vertices in an n-vertex graph; these pairs

ACM Transactions on Computation Theory, Vol. 15, No. 3-4, Article 8. Publication date: December 2023.
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Fig. 1. A sketch of the created graph G, for n = 4, and k = 3 where x3x4 � E (G2,3). Edges between P and Q
are omitted, except for the edges that result from the fact that x3x4 � E (G2,3). A fat edge between u and v
indicates that {u,v} ∈ F . Vertex sets contained in S are marked in blue. White vertices have lists {b, d} while
black vertices have lists {a, c}. Note that the constructed graph is bipartite with the white and black vertices
as partite sets.

model edges and self-loops. Let Q :=
⋃

i ∈[t ′]Qi . Now let L(qi
e,f

) := L(r i
e,f

) := L(q̂i
e,f

) :=

L(r̂ i
e,f

) := {b, d} and L(si
e,f

) := L(t i
e,f

) := {a, c}.
(3) For each f ∈

(
[k]
2

)
, each e = (e1, e2) ∈ [n]2, and each i ∈ [t ′], do the following. Connect

vertex q̂i
e,f

to vertex si
e,f

, and connect vertex r̂ i
e,f

to vertex t i
e,f

. This ensures that when q̂i
e,f

(respectively, r̂ i
e,f

) gets color d, then si
e,f

(respectively, t i
e,f

) always gets color c, since vertex c

is the unique neighbor of vertex d in P4. If, however, q̂i
e,f

gets color b, then si
e,f

can receive

color a or c. Add the pairs {qi
e,f
, q̂i

e,f
} and {r̂ i

e,f
, r i

e,f
} to F . Verify that when both qi

e,f
and

r i
e,f

get color b, then si
e,f

and t i
e,f

must get color c.

Recall that the goal of the construction is to ensure that the Annotated List P4-Coloring in-
stance (G,L,S, F ) acts as the logical or of the Cliqe instances Xi, j , so that G has a coloring
respecting the lists and annotations if and only if some input graphGi, j has a clique of size k . The
part of G constructed so far allows colorings of G to encode the vertex set of a k-clique through
its behavior on P . Finding a proper list coloring of G entails highlighting vertices from one set Pj

that correspond to a clique in instance Xi, j for some i ∈ [t ′]. The highlighting property will be

enforced by ensuring at least one vertex in each set {p j

�,m
| � ∈ [n]} form ∈ [k] receives color a.
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The index of the vertex that is colored a encodes them-th vertex in the clique to which the coloring
corresponds. The vertices in Qi are then used to verify that the selected vertices form a clique in
Gi, j . The next steps add additional vertices and edges, in order to achieve these properties.

(4) For each i, j ∈ [t ′], consider instance Xi, j . For all f ∈
(
[k]
2

)
and e = (e1, e2) ∈ [n]2, connect

vertex p j

e1,f1
to qi

e,f
and connect p j

e2,f2
to r i

e,f
whenever xe1xe2 � E (Gi, j ). Here f1 < f2 are

such that f = { f1, f2}. Observe that, in particular (sinceGi, j is a simple graph), we have that
xe1xe1 � E (Gi, j ) for all e1 ∈ [n]. Observe also that each vertex qi

e,f
, r i

e,f
has a unique neighbor

in Pj for each j ∈ [t ′].

The above step will allow using the coloring of vertices si
e,f

and t i
e,f

to verify that the vertices

selected in Pj correspond to a clique: when xe1xe2 is not an edge, they will ensure that we cannot
select both.

(5) Add vertices yj and ŷj for all j ∈ [t ′] and let Y := {yj | j ∈ [t ′]}, Ŷ := {ŷj | j ∈ [t ′]}. Let
L(yj ) := L(ŷj ) := {a, c} for all j ∈ [t ′].

(6) Similarly, add vertices zi and ẑi for all i ∈ [t ′] and let Z := {zi | i ∈ [t ′]}, Ẑ := {ẑi | i ∈ [t ′]}.
Let L(zi ) := L(ẑi ) := {a, c}.

(7) Add the sets Ŷ and Ẑ to S. Furthermore, for all i ∈ [t ′], add {yi , ŷi } and {zi , ẑi } to F .

The steps above ensure that at least one vertex yj ∈ Y receives color c and at least one vertex in
zi ∈ Z receives color c. This will indicate that instance Xi, j is selected. We will now put further
constraints on the coloring of Pj and Qi when they correspond to a selected instance.

(8) For all j ∈ [t ′],m ∈ [k], we add the set {yj } ∪ {p j

�,m
| � ∈ [n]} to S.

(9) For all i ∈ [t ′], for all f ∈
(
[k]
2

)
and e ∈ [n]2, add the set {si

e,f
, t i

e,f
, zi } to S.

This concludes the construction of G, L, S and F . Let us start by counting the number of vertices
in G:

|V (G ) | = t ′ · n · k︸���︷︷���︸
|P |

+ t ′ · (n2 ·
(
k

2

)
· 6)

︸��������������︷︷��������������︸
|Q |

+ t ′ + t ′ + t ′ + t ′︸������������︷︷������������︸
|Y |+ |Ŷ |+ |Z |+ |Ẑ |

= O (
√
t · n2 · k2).

Observe that hereby |V (G ) | is properly bounded for a degree-2 cross composition.
We continue by showing thatG is a valid instance of Annotated List P4-Coloring. Verify that

G is bipartite with bipartitionV1 = P ∪Y ∪ Ŷ ∪Z ∪ Ẑ ∪ {si
e,f
, t i

e,f
| f ∈

(
[k]
2

)
, e ∈ [n]2, i ∈ [t ′]} and

V2 = {qi
e,f
, r i

e,f
, q̂i

e,f
, r̂ i

e,f
| f ∈

(
[k]
2

)
, e ∈ [n]2, i ∈ [t ′]}. Hence, V1 contains all vertices whose lists

are a subset of {a, c} and V2 contains all remaining vertices, and it can be verified that the lists of
these vertices are a subset of {b, d}. Observe that indeed each set in F is a subset of eitherV1 orV2,
and each set in S is a subset of V1.

Furthermore, it is straightforward to verify that |F | ≤ |V (G ) | as promised for Annotated List
P4-Coloring (note that we only add elements to F in Steps (3) and (7)). We can also verify that

∑
S ∈S
|S | ≤ 2 · t ′︸︷︷︸

Step (7)

+ t ′ · k · (n + 1)︸����������︷︷����������︸
Step (8)

+ t ′ · n2 ·
(
k

2

)
· 3

︸�����������︷︷�����������︸
Step (9)

≤ 3|V (G ) |.

As such, we have created a valid instance of Annotated List P4-Coloring. The next two claims
show that the constructed graph G indeed acts as the logical or of the given input instances.
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Claim 1. If some input graph Gi∗, j∗ has a clique of size k , then G is annotated P4-colorable.

Proof of Claim. Letting such i∗, j∗ ∈ [t ′] be given, we create an annotated P4-coloring
h : V (G ) → {a, b, c, d} for G. First of all, for all j � j∗ with j ∈ [t ′], let h(yj ) := a and let h(ŷj ) := c.
Let h(yj∗ ) := c and let h(ŷj∗ ) := a. Similarly, for i � i∗, we let h(zi ) := a and let h(ẑi ) := c. Fur-
thermore, define h(zi∗ ) := c and h(ẑi∗ ) := a. Hereby, not all vertices in Ŷ have color c, and not all

vertices in Ẑ have color c, such that we satisfy the sets added to S in Step (7) of the construction.

For all p ∈ Pj for j � j∗, let h(p) := c. Furthermore, for all e ∈ [n]2, f ∈
(
[k]
2

)
and i � i∗ with

i ∈ [t ′], we define h(qi
e,f

) := h(r i
e,f

) = b, h(q̂i
e,f

) := h(r̂ i
e,f

) = d, and h(si
e,f

) := h(t i
e,f

) = c.

It remains to color the vertices in Pj∗ and Qi∗ . Let K = {xi1 , . . . ,xik
} be a clique in Gi∗, j∗ of size

k . For m ∈ [k], � ∈ [n] let h(p j∗

�,m
) := a if im = �. Otherwise, let h(p j∗

�,m
) := c. In this way, for

each m ∈ [k], the set {yj∗ } ∪ {p j∗

�,m
| � ∈ [n]} contains a vertex that receives color a, as desired.

We now extend this coloring to Qi∗ . Let e = (e1, e2) ∈ [n]2 and let f ∈
(
[k]
2

)
such that f = { f1, f2}

for f1 < f2. Let h(qi∗

e,f
) := b if the unique neighbor of qi∗

e,f
in Pj∗ has color a. Otherwise, let

h(qi∗

e,f
) := d. We color r i∗

e,f
in the same way, thus h(r i∗

e,f
) := b if its unique neighbor in Pj∗ has color

a, and h(r i∗

e,f
) := d otherwise. Color q̂i∗

e,f
with the only color in {b, d}\{h(qi∗

e,f
)} and similarly color

r̂ i∗

e,f
with the only color in {b, d}\{h(r i∗

e,f
)}. Finally, let h(si∗

e,f
) := c if h(q̂i∗

e,f
) = d and let h(si∗

e,f
) := a

otherwise. Similarly, let h(t i∗

e,f
) := c if h(r̂ i∗

e,f
) = d and let h(t i∗

e,f
) := a otherwise. This concludes

the definition of h. It remains to show that h is a valid annotated P4-coloring of G. We split this
into three parts.

First of all, we verify that each S ∈ S contains a vertex that does not get color c. For Ŷ and

Ẑ this was verified before. Consider a set {yj } ∪ {p j

�,m
| � ∈ [n]} added in Step (8). Observe that

if j � j∗, then yj has color a and we are done. Otherwise, by definition, we have h(p j∗

im,m ) := a

and thus indeed this set has a vertex of color a. Now consider a set {si
e,f
, t i

e,f
, zi } added in Step (9).

If i � i∗, vertex zi has color a and we are done. Otherwise, if i = i∗, we claim that it cannot
be the case that h(si∗

e,f
) = h(t i∗

e,f
) = c. Suppose toward a contradiction that indeed both these

vertices have color c. By the choice of our coloring, this implies that h(q̂i∗

e,f
) = h(r̂ i∗

e,f
) = d and thus

h(qi∗

e,f
) = h(r i∗

e,f
) = b. Letting e = (e1, e2) ∈ [n]2 and f = { f1, f2} for f1 < f2, that means that qi∗

e,f

and r i∗

e,f
have their unique neighbor in Pj∗ of color a, implying h(p j∗

e1,f1
) = h(p j∗

e2,f2
) = a. So these

edges were constructed in Step (4), implying xe1xe2 � E (Gi∗, j∗ ). Since xe1 ∈ K and xe2 ∈ K , this
contradicts that K is a clique.

Secondly, verify that for all pairs in {u,v} ∈ F , h(u) � h(v ): we only add sets to F in Steps (3)
and (7). We always ensure in the construction that if {u,v} ∈ F , the two vertices get different colors.

Thirdly, we verify the coloring of endpoints of edges inG. First of all, consider the edges added
in Step (3) and observe that we always color the endpoints properly in the description above: if q̂i

e,f

gets color d, we color si
e,f

with c, which is allowed; if q̂i
e,f

has color b, we use color a in si
e,f

which is

again fine. One may verify that the same holds for edges r̂ i
e,f

t i
e,f

. Now consider the edges between

a vertex u ∈ P and v ∈ Q . If u � Pi∗ , it follows that h(u) = c. Since by the lists, h(v ) ∈ {b, d},
this implies that this edge is properly colored. Similarly, if v � Q j∗ , we obtain h(v ) = b and since
h(u) ∈ {a, c}we are again done. Ifu ∈ Pj∗ andv ∈ Pi∗ , one may observe that the edgeuv is properly
colored by definition: v has color d only if it has no neighbors of color a (and h(u) ∈ {a, c} thus
implies h(u) = c), and otherwise v has color b such that the edge is again properly colored by
h(u) ∈ {a, c}. �
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Claim 2. If G has an annotated P4-coloring h, then there exist i∗, j∗ ∈ [t ′] such that Gi∗, j∗ has a

clique of size k .

Proof of Claim. Since Ŷ , Ẑ ∈ S, there exist i∗, j∗ ∈ [t ′] such that h(ŷj∗ ) � c and h(ẑi∗ ) � c,
implying by the lists that h(ŷj∗ ) = h(ẑi∗ ) = a. Since {ŷj∗ ,yj∗ } ∈ F and {ẑi∗ , zi∗ } ∈ F (by Step (7)) we

obtain that h(yj∗ ) = h(zi∗ ) = c. Now since {yj∗ } ∪ {p j∗

�,m
| � ∈ [n]} ∈ S for allm ∈ [k], it follows

that for allm ∈ [k], there exists im ∈ [n] such that h(p j∗

im,m ) = a. Let x1, . . . ,xn be the vertices of

Gi∗, j∗ ; defineK := {xi1 , . . . ,xik
}. We show thatK is a size-k clique inGi∗, j∗ by showing that xim

xim′

is an edge for allm � m′. Observe that this then also proves that all selected vertices are distinct
as the input graphs have no self-loops.

Let m,m′ ∈ [k]. Without loss of generality, let m < m′. Suppose toward a contradic-

tion that xim
xim′ � E (Gi∗, j∗ ). Then, in Step (4), we added the edges p j∗

im,mqi∗

(im,im′ ), {m,m′ } and

p j∗

im′,m′
r i∗

(im,im′ ), {m,m′ } . Note that since we choose xim
,xim′ ∈ K , it must hold that h(p j∗

im,m ) =

h(p j∗

im′,m′
) = a. Since b is the only neighbor of a in the P4, we get h(qi∗

(im,im′ ), {m,m′ } ) =

h(r i∗

(im,im′ ), {m,m′ } ) = b. Since in Step (3) we added {qi∗

(im,im′ ), {m,m′ }, q̂
i∗

(im,im′ ), {m,m′ } } and

{r i∗

(im,im′ ), {m,m′ }, r̂
i∗

(im,im′ ), {m,m′ } } to F , we obtain h(q̂i∗

(im,im′ ), {m,m′ } ) = h(r̂ i∗

(im,im′ ), {m,m′ } ) = d.

Since q̂i∗

(im,im′ ) {m,m′ }s
i∗

(im,im′ ), {m,m′ } and r̂ i∗

(im,im′ ) {m,m′ }t
i∗

(im,im′ ), {m,m′ } are edges in G (also added

in Step (3)), we get that h(si∗

(im,im′ ), {m,m′ } ) = h(t i∗

(im,im′ ), {m,m′ } ) = c. However, note that

{r i∗

(im,im′ ), {m,m′ }, r
i∗

(im,im′ ), {m,m′ }, zi∗ } ∈ S, by Step (9). These three vertices all have color c, con-

tradicting that h is a valid annotated P4-coloring of G. �

Using the claims above and the bound on the size of V (G ) computed earlier, we conclude that
we have given a degree-2 cross-composition to annotated P4-coloring, such that the lower bound
follows from Theorem 2.4. �

4 GADGETS IN HARD GRAPHS FOR LIST H -COLORING

Now we are going back to investigating the List H -Coloring problem, for fixed graphs H . To
transfer the lower bound of Lemma 3.1 to List H -Coloring for all graphs H that are not bi-arc
graphs, we use a two-step process. First, we use an idea of Feder et al. [16] that allows us to
efficiently reduce so-called consistent instances of the List H ∗-Coloring problem, where H ∗ is a
(simple) bipartite graph naturally associated to H , to equivalent instances of List H -Coloring on
the same vertex set. This implies that List H -Coloring is at least as hard to sparsify as consistent
instances of List H ∗-Coloring, where H ∗ is a bipartite graph. Then, we will develop a number
of gadgets to reduce Annotated List P4-Coloring to ListH ∗-Coloring on consistent instances,
in a way that preserves sparsification lower bounds. Together, this chain of reductions will prove
Theorem 1.1.

4.1 Bi-arc Graphs, Associated Bipartite Graphs, and Consistent Instances

Recall that the complexity dichotomy for List H -Coloring was proven in three steps:

(1) for reflexive H , the polynomial cases appear to be interval graphs [14];
(2) for irreflexiveH , the polynomial cases appear to be bipartite co-circular-arc graphs [15]; and
(3) for general graphs, the polynomial cases are the so-called bi-arc graphs [16].

The main idea of showing the final step of the dichotomy was a reduction to the bipartite case.
For a graph H , by H ∗ we denote the associated bipartite graph, defined as follows. The vertex set
of H ∗ is the union of two independent sets: V1 := {x ′ | x ∈ V (H )} and V2 := {x ′′ | x ∈ V (H )}. The
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vertices x ′ ∈ V1 and y
′′ ∈ V2 are adjacent if and only if xy ∈ E. Note that the edges of type x ′x ′′ in

H ∗ correspond to loops in H .
As we mentioned in the Introduction, bi-arc graphs are defined in terms of a certain geometric

representation, but for us it will be much more convenient to use the following characterization
in terms of the associated bipartite graph.

Theorem 4.1 (Feder et al. [16]). LetH be an undirected graph, possibly with loops. The following

are equivalent.

(1) H is a bi-arc graph.

(2) H ∗ is the complement of a circular-arc graph.

Thus, the graphs H for which List H -Coloring is NP-hard, are precisely those for which List
H ∗-Coloring is NP-hard: when H ∗ is not the complement of a circular-arc graph.

Now let us explain how showing the hardness of List H -Coloring can be reduced to show-
ing the hardness of List H ∗-Coloring. Here, we need the notion of a consistent instance of the
problem.

Definition 4.2. Let F be a connected bipartite graphwith bipartition classesX andY . An instance
(G,L) of List F -Coloring is consistent, if G is bipartite and has a bipartition into classes A,B ⊆
V (G ), such that L(a) ⊆ X for all a ∈ A, and L(b) ⊆ Y for all b ∈ B.

The following proposition follows from the idea of Feder et al. [16], and provides a reduction
from ListH ∗-Coloring to ListH -Coloring that preserves the vertex set ofG. Its exact statement
comes from recent work by an overlapping set of authors [36, 37].

Proposition 4.3 (Okrasa et al. [36, 37]). LetH be a graph and let (G,L) be a consistent instance

of List H ∗-Coloring. Define L′ : V (G ) → 2V (H ) as L′(x ) := {u | {u ′,u ′′} ∩ L(x ) � ∅}. Then,

(G,L) → H ∗ if and only if (G,L′) → H .

4.2 Hard Bipartite Graphs H

The following notion was introduced by Feder et al. [15] (see Figure 2).

Definition 4.4. Let k ≥ 1 and let H be a bipartite graph with bipartition classes X ,Y . Let
U = {u0, . . . ,u2k } ⊆ X and V = {v0, . . . ,v2k } ⊆ Y be ordered sets of vertices such that
{u0v0,u1v1, . . . ,u2kv2k } is a set of edges of H . We say that (U ,V ) is a special edge asteroid (or,
in short, an asteroid) of order 2k + 1, if for every i ∈ {0, . . . , 2k } there exists a ui -ui+1-path Pi,i+1 in
H (indices are computed modulo 2k + 1), such that

(a) there are no edges between {ui ,vi } and {vi+k ,vi+k+1} ∪V (Pi+k,i+k+1) and

(b) there are no edges between {u0,v0} and {v1, . . . ,v2k } ∪
⋃2k−1

i=1 V (Pi,i+1).

Feder et al. showed the following characterization of hard bipartite cases of List H -Coloring,
i.e., bipartite graphs H , whose complement is not a circular-arc graph.

Theorem 4.5 (Feder et al. [15]). A bipartite graph H is not the complement of a circular-arc

graph if and only if H contains an induced cycle with at least six vertices or an asteroid.

While induced cycles of length at least six and asteroids suffice to prove NP-completeness of
List H -Coloring, to prove sparsification lower bounds via Annotated List P4-Coloring we
need a more local structure. We therefore introduce the following notion (see Figure 3).

Definition 4.6. An extended P4 gadget in an undirected simple graph H is a tuple (a,b, c,d, e ) of
distinct vertices in H , such that all of the following hold:
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Fig. 2. A general scheme of a special edge asteroid (left), and a specific example (right).

Fig. 3. Left: A general scheme of an extended P4-gadget. The edges that cannot occur in H (either because
vertices are in the same bipartition class, or because {a,b, c,d } induce a P4, are depicted by red dotted lines.
Black (respectively, gray) vertices have pairwise incomparable neighborhoods. Right: An example of a graph
that admits an extended P4-gadget.

(1) H [{a,b, c,d }] is isomorphic to P4,
(2) the sets NH (a),NH (c ),NH (e ) are pairwise incomparable, and
(3) the sets NH (b),NH (d ) are pairwise incomparable.

Intuitively, if H contains an extended P4 gadget, then the P4 on (a,b, c,d ) allows a List H -
Coloring instance to express a homomorphism problem to P4, while the presence of vertex e
and the incomparability of the neighborhoods allows gadgets to be constructed to enforce the
semantics of the set F and the sequence S in the definition of Annotated List P4-Coloring,
thereby allowing a reduction from that problem to the List H -Coloring problem. The gadgets
needed to simulate the pairwise constraints from F are given by the next lemma.

Lemma 4.7. Let H be a bipartite graph that contains an induced cycle of at least six vertices or

an asteroid. Then, there exists an extended P4 gadget (a,b, c,d, e ) in H . Moreover, for every Q ∈
{{a, c, e}, {b,d }} there is a consistent List H -Coloring instance (GQ ,L) containing two distinguished

vertices γ1,γ2 such that a mapping f : {γ1,γ2} → Q can be extended to a proper list H -coloring

of (GQ ,L) if and only if f (γ1) � f (γ2).

We remark that it is actually sufficient to show that every bipartite graph H that contains an
induced cycle of at least six vertices or an asteroid, contains also an extended P4 gadget. In this
situation, the existence of (G {a,c,e },L) and (G {b,d },L) follows from a result in [36, 37]. However,
for the sake of completeness, we include the whole proof.

Before we proceed to the construction of an extended P4 gadget, let us introduce some defi-
nitions. A walk P is a sequence p1, . . . ,p� of vertices of H , such that pipi+1 ∈ E (H ), for every
i ∈ [� − 1]. We say that P = p1, . . . ,p� is a p1-p�-walk and call � − 1 the length of P. For walks
P = p1, . . . ,p� and Q = q1, . . . ,qm such that p� = q1, we define P ◦ Q := p1, . . . ,p�,q2, . . . ,qm .
We say that two walks P = p1, . . . ,p� and Q = q1, . . . ,qm avoid each other if � = m, p1 � q1, and

ACM Transactions on Computation Theory, Vol. 15, No. 3-4, Article 8. Publication date: December 2023.



Sparsification Lower Bounds for List H -Coloring 8:13

piqi+1,qipi+1 � E (H ) for every i ∈ [� − 1]. For two setsA,B of vertices of a graph, we say that they
are anticomplete, if there is no edge with one endvertex in A and another one in B.

We call the set of three verticesT of a bipartite graphH a special triple if there exists an asteroid
({u0,u1, . . . ,u2k }, {v0,v1, . . . ,v2k }) (we use the notation introduced in Definition 4.4), such that
T = {u0,u1,uk+1}. Observe that the neighborhoods of vertices of every special triple are pairwise
incomparable, as edges u0v0, u1v1, and uk+1vk+1 induce a matching.

Let ({u0,u1, . . . ,u2k }, {v0,v1, . . . ,v2k }) be an asteroid, and let Pi,i+1 for i ∈ {0, 1, . . . , 2k } denote
the paths of this asteroid, satisfying Definition 4.4. Note that ({u0,u2k , . . . ,u1}, {v0,v2k , . . . ,v1}) is
also an asteroid: we can use the same paths as in the first one, but in the reverse direction. We will
refer to this second asteroid as a reversed asteroid.

Proposition 4.8. Let ({u0,u1, . . . ,u2k }, {v0,v1, . . . ,v2k }) be an asteroid in a bipartite graph H .

Then, each of the sets {u0,u1,uk+1}, {u0,u2k ,uk }, {v0,v1,vk+1}, and {v0,v2k ,vk } is a special triple

of H .

Proof. The fact that {u0,u1,uk+1} is a special triple follows from the definition. The set {u0,
u2k ,uk } is a special triple because there exists a reversed asteroid ({u0,u2k , . . . ,u1}, {v0,
v2k , . . . ,v1}).

Now let Pi,i+1 for some i ∈ {0, . . . , 2k } be a path satisfying Definition 4.4 for the asteroid
({u0,u1, . . . ,u2k }, {v0,v1, . . . ,v2k }). As uivi ,ui+1vi+1 ∈ E (H ), it is straightforward to verify that
there exists vi -vi+1-path P ′i,i+1, such that {ui+k+1,vi+k+1} and {ui ,ui } ∪V (P ′i,i+1) are anticomplete,

and, if i � {0, 2k }, then {u0,v0} and {ui ,ui } ∪V (P ′i,i+1) are also anticomplete. From this we can con-

clude that ({v0,v1, . . . ,v2k }, {u0,u1, . . . ,u2k }) is also an asteroid, and {v0,v1,vk+1} is a special triple.
The fact that {v0,v2k ,vk } is a special triple comes from combining the previous arguments. �

To make the proof of Lemma 4.7 easier, we first prove the following auxiliary lemma.

Lemma 4.9. LetH be a bipartite, connected graph that contains an asteroid (U ,V ). Then there exist

a special triple T , an extended P4 gadget (a,b, c,d, e ) in H , and

(1) walks A,C,E, starting, respectively, in a, c , and e , and terminating in distinct elements of T ,

such that each two of these walks avoid each other; and

(2) walks B,D, starting, respectively, in b and d , and terminating in distinct elements of T , such

that B and D avoid each other.

Proof. Recall that in the definition of an extended P4 gadget (a,b, c,d, e ), we require that the
appropriate pairs of neighborhoods are incomparable. Actually, we will show a stronger property,
i.e., that each of a, c, e has a private neighbor, which is non-adjacent to the other two vertices. We
extend this notion and call vertices in NH (b)\NH (d ) and in NH (d )\NH (b) private neighbors of b
and d , respectively.

Define F to be a minimal induced subgraph of H that contains any asteroid, and let (U ,V ) =
({u0,u1, . . . ,u2k }, {v0,v1, . . . ,v2k }) be an asteroid in F . Notice that if the neighborhoods of some
vertices are incomparable in F , then so are the neighborhoods of these vertices in H .

For every i ∈ {0, . . . , 2k }, we define Pi,i+1 as follows. First, we choose P̃i,i+1 to be a shortest
one from all {ui ,vi }-{ui+1,vi+1}-paths in F that are anticomplete to {ui+k+1,vi+k+1} and, if i �
{0, 2k }, also to {u0,v0}. We know that at least one such path exists by the definition of an asteroid.

Clearly, exactly one of the vertices ui ,vi and exactly one of the vertices ui+1,vi+1 belong to P̃i,i+1

(as endvertices). Now, if ui (respectively, ui+1) does not belong to P̃i,i+1, append it as the first

(respectively, last) vertex. This way we obtain Pi,i+1. Observe that by the choice of P̃i,i+1 the path
Pi,i+1 is induced.
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The minimality of F implies that every vertex of F belongs to (U ∪ V ) or at least one Pi,i+1.
For every i , we define P∗i,i+1 := V (Pi,i+1)\{ui ,vi ,ui+1,vi+1}. Clearly this set induces a path in F .

Similarly, we define the set P i,i+1 := V (Pi,i+1) ∪ {vi ,vi+1} and note that P0,1 and P2k,0 also induce

paths in F . Indeed, let us consider P0,1, the case of P2k,0 is symmetric. Recall that P0,1 is an induced
path. Furthermore, if v0 (respectively, v1) does not belong to P0,1, then it is non-adjacent to every

vertex from P∗0,1 (by the minimality of P̃0,1) and also to u1 (respectively, u0) by the property (b) in

Definition 4.4. If it does not lead to confusion, we will sometimes identify sets P∗i,i+1, P2k,0, and P0,1

with the paths induced by these sets.
In the proof, we will consider several cases. First, suppose that |P∗0,1 | ≥ 2 or |P∗

2k,0
| ≥ 2. Let

us describe the first case, as the other one is symmetric—we just need to consider the reversed

asteroid. Note that the first two vertices of P0,1 are either u0,v0 or v0,u0. Consider the first case,
as the other one is symmetric, with roles of u’s andv’s switched (recall that by Proposition 4.8 the
set {v0,v1,vk+1} is also a special triple).

Since |P∗0,1 | ≥ 2, we know that there are vertices b, c,d , such that P0,1 starts with u0,v0,b, c,d ,
and b, c ∈ P∗0,1 and d ∈ P∗0,1∪ {u1}. We define an extended P4 gadget to be the tuple (v0,b, c,d,vk+1)

(recall that P0,1 is an induced path). The private neighbors ofv0, c,vk+1 are, respectively,u0,d,uk+1.

The private neighbor of b isv0, and the private neighbor of d is its successor on P0,1, i.e., the fourth
vertex of P∗0,1, or v1 if |P∗0,1 | < 4.

Let R be the shortest d-v1-walk using consecutive vertices of P0,1. Note that its length is at least
one. DefineD := R ◦ v1,u1 and B = b,v0,u0, . . . ,v0,u0, so thatD and B have equal lengths. Sim-
ilarly, we defineA := v0,u0, . . . ,v0,u0, C := c,d ◦ D ◦v1,u1, and E := vk+1,uk+1, . . . ,vk+1,uk+1,
so that they have equal lengths. It is straightforward to verify that these walks satisfy the condi-
tions in the lemma.

So, we can assume that P∗0,1 has at most one vertex, and since {u0,v0} must be anticomplete to
{u1,v1}, we conclude that P∗0,1 contains exactly one vertex, say x .

Repeating the same argument for the reversed asteroid, we obtain that P∗
2k,0

has exactly one

vertex, say x ′ (it might happen that x = x ′).

Let us assume that P0,1 starts withu0,v0, as the other case is symmetric. This means that the con-

secutive vertices of P0,1 are u0,v0,x ,v1,u1. LetQ be a shortest {u1,v1}-{uk+1,vk+1}-path contained
inV (F )\({u0,v0} ∪P∗2k,0

∪P∗0,1) = V (F )\NF [{u0,v0}]; it exists by the definition of an asteroid. Note

thatQ is induced and anticomplete to {u0,v0}, and exactly one of the verticesu1,v1 and exactly one
of the vertices uk+1,vk+1 belong to Q . Let Q∗ := V (Q )\{u1,v1,uk+1,vk+1} and note that Q∗ must
be non-empty, because {u1,v1} is anticomplete to {uk+1,vk+1}. Again, we will identifyQ∗ with the
subpath of Q induced by Q∗. For a vertex v ∈ Q , let Qv be the shortest v-uk+1-walk, which uses
only vertices of Q ∪ {uk+1}.

If x has no neighbors in Q∗, we can define our gadget to be the tuple (v0,x ,v1,d,vk+1), where
d is the first vertex of Q∗ if v1 ∈ Q or d = u1 if u1 ∈ Q . As {v0,v1,vk+1} is a special triple, each of
these vertices has a private neighbor. The private neighbor of x is v0, and the private neighbor of
d is its successor on Q . We define walks A := v0,u0, C := v1,u1, and E := vk+1,uk+1. Moreover,
we define D := Qd and B := x ,v0,u0, . . . ,u0, so that they are of equal length.

So, we can assume that x has a neighbor in Q∗. Denote by y the last neighbor of x in Q∗ and
by q the successor of y on Q ; it exists, because Q terminates at one of uk+1,vk+1 and y � vk+1.
Clearly, q � NF (v0), because it belongs to Q that is anticomplete to {u0,v0}; also q � NF (v1) by
the choice of Q : otherwise, we would have chosen a shorter path starting with v1 and then using
the consecutive elements of Qq . Note that q might be equal to uk+1. We now branch on two cases,
depending on the size of Q∗.
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Case 1: |Q∗ | ≥ 2. If y � NF (u1), we define our gadget to be the tuple (v0,x ,y,q,v1). The private
neighbors of v0, v1, and y are u0, u1, and q, respectively. The private neighbor of x is v0. The
private neighbor of q is its successor on Q (if q ∈ Q∗), or vk+1 if q = uk+1.

We define walks A := v0,u0, . . . ,u0 and C := Qy and E := v1,u1, . . . ,u1, so that they have
equal lengths. Similarly, we define B := x ,v0,u0, . . . ,v0,u0 and D = Qq ◦uk+1,vk+1,uk+1, so that
they have equal lengths. We appended uk+1,vk+1,uk+1 at the end of D, so that we do not need to
treat the case that q = uk+1 separately.

So, assume that y ∈ NF (u1), so it is the first vertex of Q∗. Note that in this case q ∈ Q∗, so,
in particular, q � {uk+1,vk+1}. Therefore, q has a successor q′ in Q . Then, we take the tuple
(v0,x ,y,q,vk+1) with corresponding private neighborsu0, v0, u1, q

′, anduk+1. We define walks as
follows: A := v0,u0, C := y,u1, and E := vk+1,uk+1. Furthermore, we define B := x ,v0,u0, . . . ,u0

and D := Qq . Note that in the currently considered case the length of D is at least two.
Case 2: |Q∗ | = 1. So we are left with the case that Q∗ consists only of a vertex y, which is

adjacent to both x and uk+1. Recall that Q ⊆ P1,2 ∪ . . . ∪ Pk,k+1 ∪ Pk+1,k+2 . . . P2k−1,2k , which

means that there is non-empty I ⊆ [2k − 1], such that y ∈ ⋂
i ∈I P i,i+1.

First suppose that there is some i ∈ I\{k }. This means that there exists � = i + k + 1 � 0 such

that {u�,v�,u0,v0} is anticomplete to P i,i+1. Furthermore, since P i,i+1 is connected and contains at

least two vertices, y ∈ P i,i+1 has a neighbor r in P i,i+1. We define the extended P4 gadget as the
tuple (v0,x ,y,uk+1,v� ). The corresponding private neighbors are u0, v0, r , vk+1, and u� . Recall
that x ∈ P0,1, so it must be non-adjacent to vk+1.

We define walks B := x ,v0,u0 and D := uk+1,vk+1,uk+1. The definition of the remaining three
walks is more intricate. Let R be the shortest y-ui -walk using consecutive vertices of Pi−1,i . For
j ∈ [2k], let Pj, j+1 be the shortest uj -uj+1-walk using vertices of Pj, j+1. By Pj+1, j , we denote the
walk Pj, j+1 in the reversed order.

If i ∈ [k − 1], we set

A :=v0, u0, v0, . . . , u0 ◦ u0, v0, . . . , u0 ◦ u0, v0, . . . , u0 ◦ . . . ◦ u0, v0, . . . , u0 ◦ u0, v0, . . . , u0 ◦ u0, v0, . . . , u0,

C :=R ◦ ui , vi , . . . , ui ◦ Pi,i−1 ◦ . . . ◦ u2, v2, . . . , u2 ◦ P2,1 ◦ u1, v1, . . . , u1,

E :=v�, u�, v�, . . . , u� ◦ P�, �−1 ◦ u�−1, v�−1, . . . , u�−1 ◦ . . . ◦ Pk+3,k+2 ◦ uk+2, vk+2, . . . , uk+2 ◦ Pk+2,k+1,

where the lengths of particular segments are adjusted, so that the subwalks in the same columns
have the same length. By the definition of an edge asteroid, for each j the set {uj ,vj } is anticomplete
to Pj+k, j+k+1. Furthermore, as C and E do not use the vertices from NF [{u0,v0}], each two ofA, C,
and E avoid each other.

If i ∈ [2k − 1]\[k], we set

A :=v0,u0,v0, . . . ,u0 ◦ u0,v0, . . . ,u0 ◦ u0,v0, . . . ,u0 ◦ . . . ◦ u0,v0, . . . ,u0 ◦ u0,v0, . . . ,u0,
C :=R ◦ ui ,vi , . . . ,ui ◦ Pi,i−1 ◦ . . . ◦ uk+2,vk+2, . . . ,uk+2 ◦ Pk+2,k+1,

E :=v� ,u� ,v� , . . . ,u� ◦ P�,�−1 ◦ u�−1,v�−1, . . . ,u�−1 ◦ . . . ◦ P2,1 ◦ u1,v1, . . . ,u1.

The argument that these walks avoid each other is analogous to the previous case.

So, finally, we assume that I = {k }, i.e., y ∈ Pk,k+1 and y � P j, j+1 for every j � k . Note that this,

in particular, means that y � vj for any j ∈ {0, . . . , 2k }, as each vj belongs to P j−1, j ∪ P j, j+1. So,
y ∈ P∗

k,k+1
.

Let us define K := P1,2 ∪ . . .∪Pk−1,k and K ′ := Pk+1,k+2 ∪ . . .∪P2k−1,2k . Note that each of them
induces a connected subgraph of F and each of them is anticomplete to {u0,v0}. We claim that K is
anticomplete to K ′. Indeed, note that otherwise there is a uk -uk+1 path P ′

k,k+1
in F [K ∪K ′], which

does not use y and is anticomplete to {u0,v0}. This implies (U ,V ) is an asteroid in F −y, where the
path between uk and uk+1 is P

′
k,k+1

. This contradicts the definition of F .
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Fig. 4. Left: The structure in the last case in the proof of Lemma 4.9. Dashed edges might exist, but do not
have to. Right: A smaller asteroid exists if xvk ∈ E (H ) and x ′vk+1 ∈ E (H ).

Recall that our argument can be repeated for the reversed asteroid, as we did when defining
x ′. So, let y ′ be an analogue of y, i.e., the last neighbor of x ′ on the shortest {u2k ,v2k }-{uk ,vk }-
path contained inV (F )\NF [{u0,v0}]. Observe that for the reversed asteroid, the bipartition classes
might be switched, i.e., it is possible that x ′ is adjacent to u0 and u2k , and y

′ is adjacent to v2k and
vk . Furthermore, the sets {x ,y} and {x ′,y ′} might overlap. However, we know that y,y ′ ∈ P∗

k,k+1
.

If |P∗
k,k+1

| ≥ 2, then Pk,k+1 must be an induced path on at least six vertices. If vi+1 ∈ Pk,k+1,

we denote by z,a,b, c,vk+1 the last five consecutive vertices of Pk,k+1, and define the gadget as
(a,b, c,vk+1,u0). The corresponding private neighbors are z, a, vk+1, uk+1, and v0.

Denote by R the shortest a-uk -walk using only the vertices of Pk,k+1. Let K be any uk -u1-walk
contained in K ; recall that K is anticomplete to {uk+1,vk+1,u0,v0}. Then, we define, respectively,
A := R ◦ K , C := c,vk+1,uk+1, . . . ,uk+1, and E := u0,v0, . . . ,u0, so that they have equal lengths.
Similarly, we define B := b,a ◦ R ◦ K and D := vk+1,uk+1, . . . ,uk+1, so that they have equal
lengths.

If vi+1 � Pk,k+1, the gadget is (a,b, c,uk+1,v0), where a,b, c,uk+1 are last four vertices of Pk,k+1.
The remaining argument is analogous.

So, we are left with the case |P∗
k,k+1

| = 1, and since y,y ′ ∈ P∗
k,k+1

, we must have that y = y ′.

This also implies that x ′ is adjacent to v0 and v2k .
Observe that if x = x ′, then x is also non-adjacent to vk and we define the extended P4

to be (uk+1,y,x ,v0,uk ), where the corresponding private neighbors are vk+1,uk+1,v0,u0,vk . De-
fine walks B := y,uk+1,vk+1, . . . ,uk+1, and D := v0,u0, . . . ,u0 of equal length. For K being
any uk -u1-walk contained in K , we define E := K and walks A := uk+1,vk+1, . . . ,uk+1 and
C := x ,v0,u0, . . . ,u0 of same length as E.

This means that we can assume that x � x ′, and thus F contains the structure depicted in
Figure 4 (left).

Now observe that if xvk ∈ E (H ) and x ′vk+1 ∈ E (H ), then the proper subgraph of F induced by
{u0,v0,x ,vk ,uk ,y,uk+1,vk+1,x

′} contains an asteroid ({u0,uk ,uk+1}, {v0,vk ,vk+1}), which contra-
dicts the minimality of F (see Figure 4 (right)).

So, suppose that at least one of these edges, say x ′vk+1, does not exist (the other case is symmet-
ric). Theminimality of F implies that the edge x ′v1 also does not exist: otherwise, F−x still contains
the asteroid (U ,V ), where the path between u0 andvi is u0,x

′,v1. In such a case, we take the tuple
(uk+1,y,x

′,v0,u1), where their corresponding private neighbors arevk+1, uk+1, v0, u0, andv1. The
walks are A := uk+1,vk+1,uk+1, B := y,uk+1, C := x ′,v0,u0, D := v0,u0, and E := u1,v1,u1. This
completes the proof of the lemma. �

Now we proceed to the proof of Lemma 4.7.
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Fig. 5. A List H -Coloring instance (G {x0,x2,x4 },L) satisfying the statement of Lemma 4.7 in the case that H
contains an inducedC6 (left) or an inducedC8 (right). Vertices γ1,γ2 are marked in gray, and L(γ1) = L(γ2) =
{x0,x2,x4}.

Proof of Lemma 4.7. If H contains an induced cycle with consecutive vertices
x0,x1, . . . ,xk−1,x0 for k ∈ {6, 8}, we define an extended P4 gadget to be the tuple (x0,x1,x2,x3,x4).
Clearly, for every pair of distinct i, j ∈ {0, . . . ,k }, we have NH (xi ) � NH (x j ), as they belong to an
induced cycle of length more than four. Then, the appropriate instances (G {x0,x2,x4 },L) are shown
in Figure 5.

As the cycles are symmetric, we can obtain the instance (G {x1,x3 },L) forC6 andC8 by taking the
same graph as G {x0,x2,x4 } , removing x4 from the lists of γ1,γ2, and replacing xi by xi+1 (modulo k)
for every element of every list.

Observe that every induced cycle in H on at least 10 vertices, whose consecutive vertices are
x0,x1, . . . ,xk−1,x0, contains an asteroid ({x0,x4,x6}, {x1,x3,x7}): the paths P0,1 := x0,x1,x2,x3,x4,
P1,2 := x4,x5,x6, and P2,0 := x6,x7, . . . ,xk−1,x0 satisfy Definition 4.4. So, now it is sufficient to
consider the case thatH contains an asteroid. By Lemma 4.9, we know that in such a case there exist

(a) a special triple T ,
(b) an extended P4 gadget (a,b, c,d, e ),
(c) an injective function σ : {a, c, e} → T ,
(d) an injective function π : {b,d } → T ,
(e) walks A, C, and E, starting, respectively, in a, c , and e , and terminating, respectively, in

σ (a),σ (c ),σ (e ), such that each two of A, C, and E avoid each other, and
(f) walks B,D, starting, respectively, in b and d , and terminating, respectively, in π (b),π (d ),

such that B and D avoid each other.

Let us show how to construct (G {a,c,e },L); the construction of (G {b,d },L) is analogous; we just
need to use walks B and D instead of A,C,E.

Recall thatA, C, and E are of equal length, say �, i.e., each of them has �+1 vertices. We define
the instance C (A,C,E) := (G,L) of List H -Coloring, such that G is a path with consecutive
vertices y1,y2, . . . ,y�+1, and the list L(yi ) contains the i-th vertex of A, the i-th vertex of C, and
the i-th vertex of E. Note that since walksA,C,E avoid each other, for every i ∈ [� + 1] we have
|L(yi ) | = 3, and, in particular, L(y1) = {a, c, e} and L(y�+1) = T .

Furthermore, each list homomorphism h from C (A,C,E) to H coincides with one of A, C, E.
More formally, we have the following:

(1) for every x ∈ {a, c, e}, there is a list homomorphism hx : C ({A,C,E}) → H , such that
hx (y1) = x and hx (y�+1) = σ (x ), and

(2) for any list homomorphism h : C ({A,C,E}) → H there is x ∈ {a, c, e}, such that h(y1) = x
and h(y�+1) = σ (x ).

Recall that T = {u0,u1,uk+1} for some asteroid ({u0,u1, . . . ,u2k }, ({v0,v1, . . . ,v2k }) in H . We
need one more tool from the construction of Feder et al. [15, Figure 3], which we call an unequal
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Fig. 6. The construction of (G {a,c,e },L) as a composition of two copies of C (A,C,E) and a copy of F . We
have L(γ1) = L(γ2) = {a, c, e} and L(δ1) = L(δ2) = T = {σ (a),σ (b),σ (c )}. Blue lines denote which mappings
of γ1,δ1,δ2,γ2 to the vertices on their lists can be extended to a list homomorphism of particular gadgets.

gadget. The unequal gadget is an instance (F ,L) of List H -Coloring with two distinguished
vertices δ1,δ2, such L(δ1) = L(δ2) = T and any function f : {δ1,δ2} → T can be extended to a
proper list H -coloring of (F ,L) if and only if f (δ1) � f (δ2).

Now to create an instance (G {a,c,e },L) satisfying the statement of our lemma, we first introduce
a copy F of the unequal gadget with distinguished vertices δ1 and δ2. Then, we introduce two

copies C (1),C (2) of C ({A,C,E}). For i ∈ {1, 2}, we denote by y (i )
1 ,y

(i )
�+1

the endvertices of C (i ) .

Then, we identify vertices y (i )
�+1

and δi , as L(δi ) := L(y (i )
�+1

) = T , and put γi := y (i )
1 (see Figure 6).

This completes the construction of (G {a,c,e },L). Clearly, L(γ1) = L(γ2) = {a, c, e}.
To see that (G {a,c,e },L) satisfies the statement of the lemma, let us assume that we have

a homomorphism h : (G {a,c,e },L) → H , such that h(γ1) = h(γ2). Then, by the properties
of C ({A,C,E}), we must have h(δ1) = h(δ2). But δ1,δ2 are distinguished vertices of an
unequal gadget, so we have a contradiction. On the other hand, if we take some mapping
h′ : {γ1,γ2} → {a, c, e} with h′(γ1) � h′(γ2), we can always find h1 and h2, which are list homomor-

phisms from C (1) and C (2) to H , with the property that h1 (δ1) = σ (h′(γ1)) � σ (h′(γ2)) = h2 (δ2).
Since σ (h′(γ1)) � σ (h′(γ2)), we can find a list homomorphism f from F to H , such that
f (δ1) = σ (h′(γ1)) and f (δ2) = σ (h′(γ2)). Since homomorphisms h1, h2, and f agree on common
vertices, we can define h to be the union of these three mappings. This completes the proof. �

From the gadgets of Lemma 4.7, we can also make efficient larger gadgets to enforce that in a
large group of vertices, at least one vertex is not colored c . The construction is an adaptation of a
gadget due to Jaffke and Jansen [26].

Lemma 4.10. Let H be a bipartite graph that contains an induced cycle of at least six vertices or

an asteroid, and let (a,b, c,d, e ) be an extended P4 gadget in H as guaranteed by Lemma 4.7. For any

k ≥ 2 one can construct a consistent ListH -Coloring instance (G,L) in polynomial time containingk
distinguished verticesγ1, . . . ,γk such that |V (G ) | ∈ O (k ), and such that a mapping f : {γ1, . . . ,γk } →
{a, c, e} can be extended to a proper list H -coloring of (G,L) if and only if there exists an i ∈ [k]
with f (γi ) � c .

Proof. The construction is a small adaptation of a gadget due to Jaffke and Jansen [26], which
we present here for completeness.

Let T be the complete graph (triangle) on vertex set {1, 2, 3}. We first show how to construct
an instance (G ′,L′) of List T -Coloring with k distinguished vertices γ1, . . . ,γk , such that a
mapping f : {γ1, . . . ,γk } → {1, 2, 3} can be extended to a proper List T -Coloring if and only
if f (γi ) � 1 for some i ∈ [k]. Then, we will transform (G ′,L′) into an instance (G,L) of List H -
Coloring with the desired properties by replacing edges with the gadgets of Lemma 4.7, without
blowing up the number of vertices.
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The List T -Coloring instance (G ′,L′) is constructed as follows. Create a path on 3k ver-
tices x1,y1, z1,x2,y2, z2, . . . ,xk ,yk , zk . Add verticesγ1, . . . ,γk and insert the edgeγiyi for all i ∈ [k].
This defines graph G ′. The lists L′ are defined as follows:

— L′(γi ) = {1, 2, 3} for 1 ≤ i ≤ k .
— L′(xi ) = {1, 2} for 2 ≤ i ≤ k .
— L′(yi ) = {1, 2, 3} for 1 ≤ i ≤ k .
— L′(zi ) = {3, 1} for 1 ≤ i ≤ k − 1.
— Finally, L′(x1) = {2} and L′(zk ) = {3}.

For this instance (G ′,L′) of ListT -Coloring, we first argue that a partial coloring that assigns
color 1 to all of γ1, . . . ,γk cannot be extended to a proper list T -coloring. To see that, note that
due to the edges between γi and yi , the color 1 is blocked for all vertices yi . This means extending
the coloring is equivalent to finding a list coloring on the path x1,y1, z1, . . . ,xk ,yk , zk , where all x-
vertices have list {1, 2} (except x1, whichmust be colored 2), where ally-vertices have list {2, 3}, and
all z-vertices have list {3, 1} (except zk , which must be colored 3). But the path has no proper list
coloring under these conditions: Since the color of x1 is fixed to 2,y1 must be colored 3, implying z1
must be colored 1, which propagates throughout the path to imply thatyk must be colored 3, which
conflicts with the fact that L′(zk ) = {3}. Hence, a mapping that colors all γi with 1 cannot be
extended to a proper list T -coloring of (G ′,L′).

Next, we argue that if f : {γ1, . . . ,γk } → {1, 2, 3} such that f (γi ) � 1 for some i ∈ [k],
then f can be extended to a proper list T -coloring of (G ′,L′). Consider such an f , and de-
fine i− := min{i | f (γi ) � 1} and i+ := max{i | f (γi ) � 1}, which are well defined. Let P be
the path (x1,y1, z1, . . . ,xk ,yk , zk ) in its natural ordering from x1 to zk , and extend f as follows:

— Set f (yi ) = 1 for all i ∈ [k] for which f (γi ) � 1.
— For all vertices before yi− on P , color the x-vertices 2, the y-vertices 3, and the z-vertices 1.
— For all vertices after yi+ on P , color the x-vertices 1, the y-vertices 2, and the z-vertices 3.
— Consider the vertices we have not assigned a color so far (if any). They form subpaths P ′ of P

of the form zj ,x j+1, . . . ,x j′ for j < j ′ with f (γj ), f (γj′ ) � 1, while f (γi ) = 1 for j < i < j ′.
Set f (zj ) = 3, set f (x j′ ) = 2, and for the remaining vertices of P ′ color the x-vertices 2, the
y-vertices 3, and the z-vertices 1.

Note that for all γi that are not colored 1, the corresponding yi gets color 1, while if f (γi ) = 1,
then f (yi ) ∈ {2, 3}. It is straightforward to verify that the resulting extension of f forms a proper
list T -coloring of G ′.

To construct the gadget for List H -Coloring promised by the lemma statement, we trans-
form (G ′,L′) into a ListH -Coloring instance (G,L) as follows. Let (a,b, c,d, e ) be an extended P4
gadget forH as guaranteed by Lemma 4.7, and let (Ga,c,e ,La,c,e ) with distinguished vertices γ ∗1 ,γ

∗
2 .

— Initialize (G,L) as a copy of (G ′,L′). Replace occurrences of color 1 by c , of color 2 by a, and
of color 3 by e .

— For each edge e of G ′, do the following. Let v1,v2 be the endpoints of e . Remove edge v1v2

fromG ′, insert a new copy of the graph (Ga,c,e ,La,c,e ) with lists as given by La,c,e . Let γ
∗
1 ,γ
∗
2

denote the distinguished vertices of the inserted copy. Identifying γ ∗1 with v1 and γ
∗
2 with v2.

Since G has O (k ) vertices and edges, the transformation to G ′ introduces O (k ) gadgets, each of
which has constant size. Hence, |V (G ′) | ∈ O (k ), as required. It is easy to perform the construction
in polynomial time. Since the gadget (Ga,c,e ,La,c,e ) for distinguished vertices γ ∗1 ,γ

∗
2 for List H -

Coloring has the same effect as an edge in List T -Coloring, while color 1 ∈ V (T ) was mapped
to color c ∈ V (H ), it follows that a mapping f : {γ1, . . . ,γk } → {a, c, e} can be extended to a proper
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list H -coloring of (G,L) if and only if f (γi ) � c for some c ∈ [k]. Since G is built by replacing all
edges ofG ′ by gadgets, which are consistent instances by Lemma 4.7, and since graphG ′ we start
from is a tree and therefore bipartite, it is easy to see that the instance (G,L) is consistent. This
concludes the proof. �

Using these gadgets in the two-step process described in the beginning of Section 4, we now
obtain the following.

Theorem 1.1. If H is an undirected graph that is not a bi-arc graph, possibly with loops, then List

H -Coloring parameterized by the number of vertices n admits no generalized kernel of size O (n2−ε )
for any ε > 0, unless NP ⊆ coNP/poly.

Proof. We start by showing that for any bipartite graph H that is not a bi-arc graph, List
H -Coloring allows no nontrivial sparsification. We use a linear-parameter transformation from
Annotated List P4-Coloring, such that the lower bound follows from Lemma 3.1.

Since H is bipartite and not a bi-arc graph, it is not the complement of a circular arc graph [16],
and it follows from Theorem 4.5 that H has an induced cycle of length at least six or an aster-
oid. It then follows from Lemma 4.7 that H has an extended P4 gadget on distinguished vertices
(a, b, c, d, e) of H . Furthermore, there exist two relevant gadgets as described by Lemma 4.7. We
call the gadget constructed for Q = {a, c, e} the a, c, e-NOT-gadget, and the one constructed for
Q = {b, d} the b, d-NOT-gadget.

Let an instance (G,L,S, F ) of Annotated List P4-Coloring be given; we show how to create

an instance G̃ of ListH -Coloring. Initialize G̃ asG (ignoring the annotations), where every vertex

in G̃ receives the same list it had in G, where now a, b, c, d, e refer to the vertices of the extended
P4 gadget present in H . For any {u,v} ∈ F , if L(u) ⊆ {a, c, e} (implying also L(v ) ⊆ {a, c, e}), add
a new a, c, e-NOT-gadget to G̃. Otherwise, meaning that L(u) ⊆ {b, d} and L(v ) ⊆ {b, d}, we add a

new b, d-NOT-gadget to G̃. Identify vertex γ1 of the added gadget with u, and vertex γ2 with v .

For every S = {s1, . . . , sm } ∈ S, add a new gadget as described by Lemma 4.10 for k = m to G̃.
Note that such a gadget has O (m) vertices. Identify vertex γi of the gadget with vertex si for all
i ∈ [m].

It is easy to observe from the correctness of the added gadgets, that G̃ is list H -colorable if and
only if G had a coloring respecting the annotations.

We continue by bounding the number of vertices in G̃. Using that
∑

S ∈S |S | ≤ 3|V (G ) | and
|F | ≤ |V (G ) | by definition of Annotated List P4-Coloring, we get

|V (G̃ ) | = |V (G ) |︸�︷︷�︸
init

+ |V (G ) | · O (1)︸����������︷︷����������︸
NOT-gadgets

+O ( |V (G ) |)︸������︷︷������︸
Lemma 4.10

= O ( |V (G ) |),

which is properly bounded for a linear parameter transformation. By Lemma 3.1, Annotated
List P4-Coloring does not have a nontrivial sparsification; as we described in the preliminaries,
linear-parameter transformations transfer such lower bounds; so by Lemma 3.1 and this fact, there
is no non-trivial sparsification for bipartite graphs H that are not bi-arc graphs. Observe that the

constructed graph G̃ is consistent, such that the lower bound holds even for consistent instances
of List H -Coloring.

It remains to show the result for non-bipartite graphs H . Let H be an undirected graph that
is not a bi-arc graph, such that H is non-bipartite. Let H ∗ be the associated bipartite graph of H .
Since H is not a bi-arc graph, it follows that H ∗ is not the complement of a circular arc graph [16,
Proposition 3.1]. Since H ∗ is bipartite and irreflexive, it follows that H ∗ is not a bi-arc graph.

As proven above, it follows that List H ∗-Coloring does not have a generalized kernel of
size O (n2−ε ), unless NP ⊆ coNP/poly. Proposition 4.3 gives a straightforward linear-parameter
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transformation from ListH ∗-Coloring to ListH -Coloring, showing that the same lower bound
holds for List H -Coloring. �

5 CONCLUSION

A natural open question is whether analogous results can be obtained for the (non-list) H -
Coloring problem. Despite the obvious similarity of H -Coloring and List H -Coloring, they
appear to behave very differently when it comes to proving lower bounds. All hardness proofs for
List H -Coloring [14–17, 36], including the proofs in this article, are purely combinatorial and
focus on the local structure ofH . In all of them, we first identify some “hard” substructureH ′ inH ,
and then prove the lower bound forH ′. This can be done, as we can ignore vertices inV (H )\V (H ′)
by not including them in the lists. On the other hand, all proofs for H -Coloring use some alge-
braic tools [4, 23, 38, 41] that allow capturing the global structure ofH . We therefore expect similar
difficulties in the case of proving sparsification lower bounds for H -Coloring.

Insights on the sparsifiability of constraint satisfaction problems, of which List H -Coloring is
an example, have recently led to advances in related fields of inquiry. For example, Carbonnel [5]
investigates how the maximal number of non-redundant constraints in a constraint satisfaction
problem depends on the types of constraints allowed in the instance, as prescribed by the constraint

language Γ. The existence of nontrivial sparsification algorithms for some choices of Γ leads to
non-trivial upperbounds for the non-redundancy. It would be interesting to determine whether
the lower bounds developed in this work translate into lower bounds on the non-redundancy
of certain CSPs. In another regime, Bessiere et al. [2] investigate the complexity of learning a
constraint language by querying whether individual assignments satisfy a constraint or not. Also
in that regime, connections to the sparsifiability of the CSP appear, as both sparsification and
learnability are affected by the so-called chain length of the CSP. Do the lower bounds presented
here have applications to learnability of binary CSPs over a non-Boolean domain?
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