
 

From predictions to recommendations

Citation for published version (APA):
Verdaasdonk, M. J. A., & de Carvalho, R. M. (2022). From predictions to recommendations: Tackling bottlenecks
and overstaying in the Emergency Room through a sequence of Random Forests. Healthcare Analytics, 2,
Article 100040. https://doi.org/10.1016/j.health.2022.100040

Document license:
CC BY

DOI:
10.1016/j.health.2022.100040

Document status and date:
Published: 01/11/2022

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://doi.org/10.1016/j.health.2022.100040
https://doi.org/10.1016/j.health.2022.100040
https://research.tue.nl/en/publications/1319cef2-e2c8-4023-9a72-ded7f90e89e6


Healthcare Analytics 2 (2022) 100040

F
i
M
D

A

K
P
B
I
R
H

1

R
d
o
t
w
a
a
T
c
b
t
a
t

e
a
t
a
L
n
F
p
m

h
R

2
(

Contents lists available at ScienceDirect

Healthcare Analytics

journal homepage: www.elsevier.com/locate/health

rom predictions to recommendations: Tackling bottlenecks and overstaying
n the Emergency Room through a sequence of Random Forests
ike J.A. Verdaasdonk, Renata M. de Carvalho ∗

epartment of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands

R T I C L E I N F O

eywords:
rocess-aware recommendations
ottlenecks identification
nter-case features
andom Forest
ealthcare

A B S T R A C T

One of the goals to improve the quality of care in hospitals is to set a maximum of four hours for patients to be
diagnosed and/or receive acute care in the Emergency Room (ER). Unfortunately, this is not always true and
some patients overstay. The aim of this work is threefold: (1) to identify which patients will overstay during
their admission to the ER; (2) to identify which (pair of) activities might heavily influence the time spent
in the ER; and (3) to recommend actions to reduce such time. For that, a sequence of insightful supervised
prediction models for generating recommendations is proposed. The method provided makes it possible to
generate useful/actionable recommendations for problematic patients based on activities. State of the art
techniques did not manage to generate recommendations at the arrival of the patient and/or did not take
the interplay between patients into account.
. Introduction

Every year, there are about 2 million visits to the Emergency
oom (ER) in the Netherlands [1]. During an ER visit, patients are
iagnosed and might receive acute care. In order to improve the quality
f care, it is expected for patients to not spend more than 4 h in
he ER [2]. Patients that need to receive more attention and/or that
ould need to spend time for a treatment should be transferred to
specialized department. Although this 4-hour rule is applied, there

re still situations were patients stay longer than 4 h in the ER.
his phenomena is called overstaying and therefore these patients are
alled overstaying patients. Overstaying can be a result of potential
ottlenecks in hospital settings [3]. Such bottlenecks might happen due
o limited capacity, knowledge and facilities for caring for patients,
nd/or because it is extremely difficult to predict and plan activities
hat should take place [3].

Process Mining [4] is a technique that tries to combine the knowl-
dge of Business Process Management with Data Science. It has been
pplied to healthcare to analyze and solve different problems within
his domain. Senderovich et al. [5,6] proposed a method to take into
ccount inter-case features for predicting patients throughput time. de
eoni et al. [7] explored a similar approach with the goal to recommend
ext activities for patient to get the lowest throughput time possible.
or this approach, an initial set of activities for a specific patient (a
artial trace) should be known before the recommendation can be
ade.

∗ Corresponding author.
E-mail addresses: m.j.a.verdaasdonk@student.tue.nl (M.J.A. Verdaasdonk), r.carvalho@tue.nl (R. M. de Carvalho).

Notwithstanding, to advance in a solution for the overstaying pa-
tients, this paper proposes a method that will consider both inter-case
features as bottleneck activities. In short, we would like to answer
the following research question: ‘‘Which method can be used for for-
mulating effective recommendations for patients whose are likely to
overstay?’’. As inter-case features, for each arriving patient, we consider
both the whole set of patients present in ER at that moment, and
the patients present in the ER that are of the same specialism. For
detecting bottlenecks, we make an analysis on the data to identify them.
Furthermore, we also consider the input from the domain knowledge,
through interview with the ER staff. As said, the goal is not only
to identify (or predict) the overstaying patients, but also to make
recommendations that would reduce their ER-time. For that, we focus
our recommendations on activities/aspects that can be influenced by
the hospital staff.

In this research, we used a dataset from a Dutch hospital containing
information about patients that visited the ER from January 2019 until
September 2020. The dataset contains personal anonymized informa-
tion, as well as events that occur throughout the whole stay of the
patient in the ER. We consider that patients leave the ER when they are
either sent back home or when they are moved to another department.

The remainder of this paper is structured as follows. Section 2
describes the required preliminaries to understand the report. Section 3
compares the related work. Section 4 introduces the method. Sections 5
and 6 introduce the two different aspects implemented in the used
ttps://doi.org/10.1016/j.health.2022.100040
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method while Section 7 evaluates this method. Section 8 concludes the
paper.

2. Background

In this section, the required preliminaries are provided. We will
provide the definitions of inter-case features and bottlenecks, shortly
introduce the prediction model Random Forest, and present the Response
constraint over activities, from the Declare modeling language [8].

2.1. Inter-case features

In process mining, a case defines the perspective to which we look
at the process. Each event is linked to a case and all the events of a
case are ordered in time to form a trace, denoted by ⟨𝑎, 𝑏, 𝑐⟩ to indicate
that three activities (𝑎, 𝑏 and 𝑐) happened to this case in this order.
To be useful, a prediction model needs information about a case. This
information can be delivered as a number of variables (a.k.a. features).
There are two types of features, namely intra-case and inter-case. Intra-
case features [9] only focus on the case (e.g. patients) itself, e.g., the
features age and diagnosis. Inter-case features [10] focus on the context
of cases running at the same moment, e.g., a feature defining the
number of other cases of the same type at some moment in time. Thus
intra-case features describe the case in an isolated setting, where inter-
case features describe the context of other cases, which may influence
the case in question.

2.2. Bottlenecks

Bottlenecks are related to the time of specific components of a
case [4]. Bottlenecks might be caused by machines, people or activities.
This paper focuses only on bottlenecks caused by activities. Activities
which deviate a lot in execution time and therefore can cause a too long
throughput time for different cases are seen as bottleneck activities.
Furthermore, activities that take most of the time of a case can be seen
as bottleneck activities [4].

2.3. Decision tree and Random Forest

A decision tree [11] is a machine learning technique that can be
used for both classification and regression. A decision tree consists of a
tree with decisions in order to reach a specific result. Such decisions are
based on features/attributes and conditions from the data. The decision
tree algorithm is easy to understand and interpret. However, a single
tree might not be sufficient to produce effective results for a complex
problem.

Random Forest [12] is a tree-based supervised learning model that
can be used for prediction. This prediction model tend to find the
feature with the best split of groups recursively. These groups are based
on the resulting value of the supervised learning method, e.g., resulting
time in the process of a patient. Furthermore, Random Forest is based
on a combination of decision trees and it looks for a majority vote to
find the best feature per split. Another characteristic of the Random
Forest is the de-correlation of the trees, where at each split the tree
only looks at a random sample of features instead of the total number
of features. These two characteristics results in reduction of variance
of the final prediction model. In this paper, we use Random Forest as
predictor model due to the easy understandability and interpretability
of the final decision tree.

2.4. Response constraint

The response constraint, from the Declare modeling language [13],

restricts the occurrence of two activities in a timely manner. For
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every case, a response constraint can be satisfied or not. The response
constraint is satisfied if, for two chosen activities, one chosen activity is
always eventually followed by the second chosen activity. For instance,
consider the response constraint response(a,b) (formalized in Linear
Temporal Logic as □(𝑎 → ⋄𝑏)). For every occurrence of 𝑎, it is expected
that a 𝑏 will eventually follows. The traces ⟨𝑎, 𝑐, 𝑏⟩ and ⟨𝑏, 𝑎, 𝑐, 𝑏⟩ would
satisfy the response constraint, as for each 𝑎 in the trace, there is
eventually a 𝑏 after it. In contrast, the cases ⟨𝑎, 𝑐⟩ and ⟨𝑎, 𝑐, 𝑏, 𝑎⟩ would
not satisfy the response constraint. Therefore, the response constraint
will be used as a reference to bottlenecks that relate two activities.

3. Related work

The emergency department overcrowding is a patient safety issue
across countries and a major contribution to such issue is the long
waiting times for inpatient hospital admission or discharge. Long wait-
ing times can also affect patient satisfaction and quality of care. In
this context, several researches [14–16] try to predict the waiting
time of patients in the emergency department as a way to reduce the
negative impact on operational efficiency, patient safety and quality
of care. Such researches rely on the fact that patients satisfaction is
improved with patients receiving accurate information about waiting
times, and/or on actions from the staff to mitigate the problem (e.g.,
increasing medical resources, improving hospital bed access).

Predicting hospital admission at the time of triage [17–20] is also
considered a way to reduce the time spent in the emergency depart-
ment, as the hospitalization process can be initialized in parallel to
the process within the emergency department. It can also be used
to prioritize patients that should receive care [21] or as a way to
indicate which patients have a clear outcome and could quickly be
either discharged or sent to another specialized department [22].

In Process Mining, Senderovich et al. [5,6] illustrated the impor-
tance of inter-case features for predicting patient duration in a hospital
setting. They make use of distances based on time and the order of
activities to define an inter-case feature per patient. Where the inter-
case features used in this paper, are related to the total number of
patients and the number of patients with the same specialism when
a patient arrives. Specialism are defined when patients arrives at the
Emergency room. Both papers take the order of activities into account
for predicting patient duration, although there is no explicit focus on
activities which can be seen as bottlenecks in [5] and [6]. This article
has a focus on bottleneck activities.

de Leoni et al. [7] used, same as in this paper, a complete process-
aware system for predictive and prescriptive analytics. They make use
of techniques to predict and recommend potential best next activities to
be taken based on previous activities and key performance indicators
scores. de Leoni et al. [7] applied their technique on running cases,
where in this paper the prediction and recommendations can be made
at the arrival of the patient. Furthermore, they make use of a complex
transition system, which make it hard to illustrate which activities can
be seen as problematic. Therefore it is hard to find the activities to
focus on, for improving the process of problematic cases. Where in this
paper the prediction model Random Forest is used to get insights in the
importance of features.1 de Leoni et al. [7] predicted the next activities
based on only intra-case features, where this article takes into account
both intra- as inter-case features for prediction.

4. Overview of the approach

As briefly mentioned in the introduction, we aim at making a predic-
tion of overstaying for patients at the start of the process, i.e., without
any activity performed in the Emergency department except from triage
color determination, which is done at the start of the process. Table 1
summarizes the features used in this paper (referred as ‘‘patient data’’
throughout this paper).

1 Note that activities are presented as features in this paper.
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Table 1
Features present in patient data.

Type of features Features

Identification AdmissionCode, PatientCode
Patient demographics Age, Gender, BMI
Registration RegistrationDate, RegistrationTime, ArrivalDate, ArrivalTime,

TriageDate, TriageTime
Arrival ComingFrom (e.g., GP referral, accident site), TransportationMode
Triage TriageColor, Specialism, Complaints, PulseRate, RespiratoryRate,

OxygenLevel, BloodPressure, Temperature
Fig. 1. Method illustrated.
In addition, we also have data about the activities that happened
to each patient while in the emergency department (e.g., treatments
that were started, lab tests that were required/performed, medications
prescribed). This event data is first analyzed to determine potential bot-
tleneck activities, i.e., activities which cause bottlenecks in throughput
time. These analyses are done in Disco2 and discussed with hospital
personnel. The domain knowledge is used in this initial phase to val-
idate the bottlenecks identified while analyzing the event data. Then,
for each of these identified bottleneck activities and other influences
of the throughput time of patients, such as hospitalization, a different
Random Forest model is trained with patient data as the only input
in order to predict if the activity in question will happen to a certain
patient.

Then, these predictions are combined with the patient data. This
‘‘extended’’ data is used to train a new Random Forest model for
predicting overstaying of patients. These steps are illustrated in Fig. 1.
Note that, in this figure only two bottleneck activities predictions
are made, however this method is applicable for less or more pre-
dictions. Finally, recommendations are made for patients which are
predicted as overstaying patients. These recommendations are based on
the activities which are predicted to be performed on a patient during
his/her stay in the Emergency department. Note that, we assume that
recommendations that focus on activities performed by the hospital will
decrease the running time of that activity.

4.1. Prediction method used

This paper makes use of Random Forests to get insights in which
features and/or activities are important for predicting activities and
overstaying. Note that, prediction models like Neural Networks could
give better results, however they are black box models, which makes
it hard to gather useful insights on input features and therefore useless
for making recommendations in our method. Moreover, Random Forest

2 https://fluxicon.com/disco/
3

is used because of its characteristic of low bias and its characteristic of
de-correlation, which results in lowering the variance.

All Random Forests in this paper make use of balanced weight,
because of the difference in number of patients per output variable
group, e.g., there are 8688 patients with activity consult SEH in their
execution trace (the trace of all activities performed from the admission
of the patient until his/her discharge) and 41395 patients without this
activity.

4.2. Feature selection

For the selection of features used for the prediction model, we
make use of an analysis and domain knowledge. First, a Random Forest
with patient features (e.g., age) as input and binary output feature
overstaying is trained to check which variables are most important
for such prediction. For this, we used feature importance to check
which variables (features) have influence on overstaying. Second, these
variables are discussed with the hospital for validation to inject domain
knowledge in the feature selection step. Note that domain knowledge is
mostly used for taking into account extra features and less on removing
features. Pointing out unimportant features for prediction is a hard task
for domain experts.

4.3. Prediction method measures

For measuring the quality of the prediction model, i.e., Random
Forest, two different measures were used. For predicting activities,
pairs of activities, and if a patient will be hospitalized the accuracy
is measured. Accuracy is used to measure the percentage of correct
predictions. This measure is chosen above others because there is no
difference in impact of false positives and negatives. For predicting
overstaying, we make use of the measure Negative prediction value
(NPV), which measures the percentage of true negatives against the
total number of predicted negatives. This measurement is used because
false negatives are more problematic than false positives; false positives

result in focusing on patients who eventually are not overstaying, where

https://fluxicon.com/disco/
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false negatives results in not focusing on patients, who eventually
overstay and therefore who are not in line with the research problem.
The negative predictive value illustrates how well we can predict if a
patient is not going to be overstaying.

5. Identifying bottleneck activities

Overstaying can be a result of different aspects. Fabrizio et al. [3]
said that potential bottlenecks in hospital setting can be from a limited
capacity of beds and medical personnel, planning and activities. This
paper focuses on activities which cause bottlenecks.

5.1. Method

This section focuses on the activities that can influence the overstay-
ing of patients. These activities are used for prediction of overstaying
and therefore, pointing out the patients who are likely to stay longer
than 4 h in the Emergency department. To find these type of activ-
ities, we made use of analyzing techniques combined with domain
knowledge. First, the process of patients that stayed longer than 4 h
is compared with the process of patients who stayed less than 4 h in
the emergency department. This is done using the tool Disco. This tool
makes it possible to get visible insights in the process steps and duration
of specific activities or pair of activities. Second, the findings are
discussed and validated with the hospital to inject domain knowledge
to potential bottlenecks activities or pair of activities. We focus on
finding activities which influence the possibility of overstaying.

5.2. Bottleneck activity selection

The selection of bottlenecks starts with analyzing the aggregated
process of both the group of patients staying above and below 4 h.
During the analysis, the focus is to find activities which have a dif-
ference in occurrence and/or duration between both different groups.
Those activities can be seen as bottleneck activities [4]. The comparison
between duration is focused on the median of activity duration, because
this measure is better prevented against outliers than the mean.

5.3. Pairs of activities as bottlenecks

As mentioned, we also discussed the findings about bottlenecks with
domain experts. From them, we understood that some pairs of activities
might also cause bottlenecks. Analyzing them further, we say that a
pair of activities (e.g., A, B) is a bottleneck when the response(A,B)
constraint from Declare is satisfied and the time difference between A
and B is significantly higher for overstaying patients. In this approach,
the pair of activities 𝐴 and 𝐵 satisfies to the response constraint if and
only if activity 𝐴 is eventually followed by activity 𝐵.

For a very few number of patients, we noted that activity 𝐴 needed
o be executed again (after 𝐵), but with no need to re-execute 𝐵. For
hese cases, although they do not satisfy the constraint response(A,B),
e still considered them as ‘‘satisfying’’ and we considered the time
etween the first execution of 𝐴 and the execution of 𝐵. For example,
f we have trace 𝜎: ⟨𝑎, 𝑏, 𝑐, 𝑎⟩, the response constraint □(𝑎 → ⋄𝑏) would

be violated for trace 𝜎, because the second 𝑎 is not followed by a 𝑏.
However, according to our domain experts, we considered the second
𝑎 as a way to correct mistakes in the first 𝑎, rather than another
different execution. According to this rationale, these cases would still
be considered as satisfying the response constraint.

Each bottleneck (pairs of) activities will be predicted by a different
Random Forest model, receiving the patient data as input. This is

depicted as ‘‘STEP 1’’ in Fig. 1.

4

6. Considering inter-case features

State of the art techniques for prediction of process-related out-
comes, e.g., running time of a patient, usually only make use of features
related to the case itself, e.g., the feature age [5]. These features are
called intra-case features. However, these prediction methods are miss-
ing the interplay between cases in many situations [5]. For example,
if the limited capacity of beds in a hospital is exceeded because of the
number of patients in a hospital, it is likely that a new patient has to
wait longer for being allocated to an available bed. Where in the same
situation with less patients, it is more likely that the same patient is
being allocated to an available bed faster. When a patient is allocated
to a bed faster and follows the same process, the throughput time of
that patient is shorter. Same holds when there is no doctor available
because of the large number of patients in the hospital.

6.1. Inter-case features used

In this paper intra- and inter-case features are taken into account
to ensure the interplay between cases in the hospital. Two different
inter-case features are used in this approach. The first inter-case feature
is defined as the total number of patients in the hospital when a new
patient arrives. For this feature, we check the arriving time of the new
patient and check how many other patients have arrived and are still
in the ER. The second inter-case feature is defined as the number of
patients with the same specialism in the ER. Same as the previous
feature, we check the arriving time of the new patient and check how
many other patients have arrived and are still in the ER. However,
the predefined specialism (which is registered at the arrival of the
patient) is also taken into account. Therefore, only patients with the
same specialism as our new patient are added to this inter-case feature.

7. Evaluation

In this paper, we aim at answering the research question: ‘‘Which
method can be used for formulating effective recommendations for
patients who are likely to overstay?’’. We will check if this question
is successfully tackled with the use of the Negative Prediction Value
(NPV) score, which is related to the quality of prevention for missing
overstaying patients. Furthermore, we will test the effectiveness of
possible recommendations by checking how many patients (out of the
test set) will be successfully transformed from an overstaying patient
to a non-overstaying patient when recommendation would be applied.
This is done by comparing the means of (pair of) activities for overstay-
ing and non-overstaying groups. Then, these differences will be used
for decreasing the throughput time of predicted overstaying patients
for the activities which are true positives (i.e., activity is eventually
performed and was predicted to be performed). Finally, the resulting
throughput time (after decreasing) of all overstaying patients will be
checked against the threshold of 4 h.

7.1. Data explanation and pre-processing

The data used in this paper come from the a Dutch hospital and
consists of patient data and activities performed on patients in the
Emergency department from January 2019 until September 2020.

The used patient data consists of the features presented in Table 1.
The timestamps are processed as yyyy-mm-dd hh:mm, e.g., 2020-09-
30 14:33. Furthermore, the arrival time of a patient is transformed
into an integer and is called presentation time, e.g., arrival time 8:30
is transformed into the integer 3, which is [07:12:00–09:36:00]. Note
that the date is not relevant for transforming the arrival time into an
integer. Fig. 2 shows the categories we created in the 𝑥-axis and the
number of patients in each category in the 𝑦-axis.

The activities are process-related events to the patient treatment in
the ER, e.g., Consult op de SEH, which means that a consult is made
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Table 2
All scores of (sequence of) Random Forest(s).

Baseline(Base) Base + IC Base + pred.act. Base + IC + pred.act. Base + IC + perf.act.

NPV 0.80 0.80 0.80 0.80 0.85
Accuracy 0.62 0.62 0.59 0.61 0.68
Execution Time (in sec) 330 373 1693 1994 390
(
s
i

Fig. 2. Arrival pattern of patients over time.

or a patient. All these activities are provided with a starting time,
lso processed as yyyy-mm-dd hh:mm. All activities with corresponding

timestamps and registrations ID of the patient are used for a different
analyses.

Our dataset has 68184 cases and 1048012 events. In discussion
with the hospital, only patients with the age of 18 years and older are
elected for this approach. Furthermore, the original datasets consist of
imestamps in two different columns, i.e., Date (yyyy-mm-dd 00:00:00)
nd Time (hh:mm). Therefore, we have to pre-process these columns
nto one column (yyyy-mm-dd hh:mm).

.2. Setup

All Random Forests shown in Table 2 are tuned on minimal number
f samples required to split an internal node. Each Random Forest
hooses the number of samples which gave the best corresponding
easure of that model. Furthermore, the dataset is split into 30 percent

est data and 70 percent training data. All different prediction models
hown in Table 2 are performed on a computer with 8 GB of RAM.3

.3. Results

The scores for the Negative Prediction Value (NPV) and its cor-
esponding accuracy of all combinations of (sequence of) Random
orest(s) for predicting overstaying are shown in Table 2. The baseline
odel considers only patient data (no events related to patients) to
ake the predictions. We use ‘‘+ IC’’ to denote that the inter-case

eatures described in Section 6 were added to the model; and ‘‘+
red.act.’’ to denote that the predicted values for the bottlenecks, as
iscussed in Section 5 were added. The last column of Table 2 shows
he measures for our approach when the real values for the performed
or not) bottlenecks were used (rather than the predicted ones). Note
hat, this last column shows the ability of the model if the previous
ottlenecks prediction would have been perfect.

Although the results in Table 2 do not show improvement for the
odel trained with the predicted bottleneck activities, we will later
iscuss (c.f. Section 7.3.3) how this model can help on providing
ctionable recommendations that might reduce the time spent in the
mergency room.

3 The code for the whole methodology and experiments can be found at:
ttps://github.com/MikeVerdaasdonk/SEQ-RF.
5

7.3.1. Activities
Table 3 shows the difference in percentage of overstaying patients

between different groups. Groups are based on activities or pairs of
activities which are performed or not. All activities (Consult-SEH and
Labaanvraag-SEH), pair of activities (RAD-TO-EXT ) and hospitalization
Opname) used as features for the sequence of Random Forests are
hown in Table 3. For instance, Opname=1 represents a patient which
s eventually hospitalized in another department, where Opname=0

represents a patients which is dismissed from the hospital or dismissed
to another hospital. Labaanvraag-SEH and Consult-SEH represent if the
activities Labaanvraag and Consult took place at the SEH (Spoedeisende
hulp (=Emergency department)), respectively. RAD-TO-EXT represents
that the activity ‘Radiologie’ is eventually followed by the activity ‘Ex-
terne verslaglegging’ and therefore satisfies the response constraint (see
Section 2) for a patient. Note that all these features have a significant
difference in percentage for overstaying patients.

Fig. 3 shows the correlation between activities, pair of activities,
hospitalization and overstaying. Note that in this figure all features
used for predicting overstaying have a correlation above 0,15 with
overstaying.

The accuracies of the Random Forests for predicting activities, pair
of activities and hospitalization, which are part of the sequence of
Random Forests of the method, are shown in Table 4.

Note that there is a significant difference in accuracy between the
Random Forest predictions and there is no perfect prediction in any
case, i.e., accuracy = 1.0.

Looking back at Table 2, the Negative Prediction Value (NPV) of
predicted activities, in columns ‘‘Base + pred.act.’’ and ‘‘Base + IC
+ pred.act.’’, does not seem to increase compared to the baseline in
column ‘‘Baseline (Base)’’. Note that the last column, where we use
the real value for performed activities instead of prediction, the NPV
improved by five percent and has a significant increase of the overall
prediction (accuracy). Although there is no increase, we will discuss
how the predictions are still useful.

7.3.2. Inter-case
The use of both inter-case features does not seem to significantly

increase the Negative Prediction Value as shown in columns ‘‘Base +
IC’’ and ‘‘Base + IC + pred.act.’’ in Table 2. Furthermore, Fig. 4 shows
the feature importance ranking, and there, both inter-case features are
not ranked very high in the feature ranking of the final Random Forest.
Note that, the higher the feature is ranked, the better it can divide
different groups based on the output variable (i.e., overstaying). For
instance, CHI is ranked higher than NEU in Fig. 4, therefore the spe-
cialism CHIrurgie has a more unequal distribution of overstaying and
non-overstaying patients for patients with specialism CHIrurgie and/or
patients without specialism CHIrurgie than the specialism NEUrologie.
Thus it is easier to predict overstaying patients with the specialism
CHIrurgie over the specialism NEUrologie.

7.3.3. Recommendations
We use the final Random Forest to make recommendations that

serve to reduce the time a patient spends in the ER. Although we
have seen in the previous two sections that the NPV value does not in-
crease when considering the predicted bottlenecks and/or the inter-case
features, they are used in this step to provide the recommendations.

Whenever a new patient arrives to the ER, the patient data during
admissions is considered. From this input, the inter-case features are
calculated and all possible bottlenecks are predicted for this patient

https://github.com/MikeVerdaasdonk/SEQ-RF


M.J.A. Verdaasdonk and R. M. de Carvalho Healthcare Analytics 2 (2022) 100040

i
b
t
e
i
r

g
g
i
c
n
n
a

Table 3
Comparison of means between groups.

Opname = 0 Opname = 1 z-test p-value

Perc. Overstaying 24% 40% −36,8 0

Consult_SEH = 0 Consult_SEH = 1 z-test p-value

Perc. Overstaying 26% 45% −31,7 0

RAD_TO_EXT = 0 RAD_TO_EXT = 1 z-test p-value

Perc. Overstaying 20% 45% −58,6 0

Labaanvraag_SEH = 0 Labaanvraag_SEH = 1 z-test p-value

Perc. Overstaying 12% 36% −65,8 0
Fig. 3. Correlation matrix.
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Table 4
Accuracy of predicting activities, hospitalization and pair of activities.

Activity Accuracy Random Forest

Lab aanvraag 0.81
Radiologie eventually followed by externe verslaglegging 0.68
Consult SEH 0.8
Opname 0.7

Fig. 4. Feature ranking of Random Forest for predicting overstaying.

n order to know whether this patient is likely to go through such
ottleneck or not. All this information is combined and used to navigate
he final Random Forest model. When navigating the final tree, for
ach bottleneck that this navigation goes through, a recommendation
s generated. Fig. 5 gives an example of three new patients and the
ecommendations generated for them.

Algorithm 1 gives an overview of how the recommendations are
enerated. We start with the final decision tree (line 1 in Algorithm 1)
enerated as outcome of the Random Forest that predicts if a patient
s overstaying or not (‘‘STEP 2’’ in Fig. 1). For each new patient that
omes to the ER, the patient data (in line 3) is retrieved and used to
avigate the tree. Lines 5 to 15 in Algorithm 1 shows the process of
avigating the decision tree. We start checking if the node is related to
bottleneck activity, when this is the case, we add it to the 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠
 d

6

ist (line 7) initialized as empty in line 4. Furthermore, to navigate
he tree, the decision in the node is evaluate and the process either
ontinues to the left side of the tree or to the right one. This is repeated
ntil we get to the leaf of the tree, which indicates the class of the
rediction (either ‘‘overstaying’’ or not). In case the patient is predicted
s overstaying, then the recommendation to this patient is generated
nd the bottleneck activities that appear when navigating the tree are
resented as activities to pay attention to.

Note that, it is not sufficient to predict the bottlenecks and generate
ecommendations for each of them, not all of them might be relevant.
here might still be cases where patients are predicted to go through a
ottleneck but this is not really relevant for the patient to overstay the
h at the ER.

Algorithm 1 Generating recommendations
1: 𝑓𝑖𝑛𝑎𝑙𝑇 𝑟𝑒𝑒 ← 𝐺𝑒𝑡𝐹 𝑖𝑛𝑎𝑙𝑇 𝑟𝑒𝑒𝐹 𝑟𝑜𝑚𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑟𝑒𝑠𝑡()
2: 𝑛𝑜𝑑𝑒 ← 𝐺𝑒𝑡𝑅𝑜𝑜𝑡𝑂𝑓𝑇 𝑟𝑒𝑒(𝑓𝑖𝑛𝑎𝑙𝑇 𝑟𝑒𝑒)
3: 𝑛𝑒𝑤𝑃𝑎𝑡𝑖𝑒𝑛𝑡 ← 𝐺𝑒𝑡𝑁𝑒𝑤𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝐼𝑛𝑓𝑜()
4: 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 ← empty list
5: while 𝑛𝑜𝑑𝑒 is not a leaf do
6: if 𝑛𝑜𝑑𝑒 is activity then
7: add 𝑛𝑜𝑑𝑒 to 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠
8: end if
9: 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ← 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑁𝑜𝑑𝑒𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑛𝑜𝑑𝑒, 𝑛𝑒𝑤𝑃𝑎𝑡𝑖𝑒𝑛𝑡)
0: if 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is go left then
1: 𝑛𝑜𝑑𝑒 ← 𝑙𝑒𝑓 𝑡𝑁𝑜𝑑𝑒
2: else
3: 𝑛𝑜𝑑𝑒 ← 𝑟𝑖𝑔ℎ𝑡𝑁𝑜𝑑𝑒
4: end if
5: end while
6: if 𝑛𝑜𝑑𝑒 is from class Overstaying then
7: 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛(𝑛𝑒𝑤𝑃𝑎𝑡𝑖𝑒𝑛𝑡, 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠)
8: end if

When recommendations would be applied, 3% (500 of 15000 pa-
tients) of all patients in the test set could be changed from an over-
staying patient (i.e., more than four hours in the hospital) to a non-
overstaying patient (i.e., less than four hours in the hospital). This
results in a decrease of about 10% (i.e., 3983−4440

4440 ) overstaying patients.
he boxplots representing all overstaying patients with and without
ecommendations are shown in Fig. 6. Note that, these boxplots are
ased on potential decrease of activities duration. Due to Covid-19, we
ere not able to apply the methodology in practice yet. Hence, these
otential decreases are based on a simulation. Whenever a recommen-
ation was generated for a predicted overstaying patient, we replaced
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Fig. 5. Predict new patient; input and output.
Fig. 6. Boxplot overstaying patients throughput time with and without recommenda-
tions.

the actual time it took for such activity(ies) to take place by the mean
duration of the same activity(ies) for non-overstaying patients.

Recommendations for all patients would be really time-intensive
and are not in line with the research question of this paper. There-
fore, use is only made of recommendations for predicted overstaying
patients.

7.4. Interpretation

As shown in Table 3 and Fig. 3 all chosen activities, pair of activities
and hospitalization used for the sequence of Random Forests have a
significant impact on predicting overstaying.

Although there seems to be no significant decrease or increase in
Table 2 for the NPV, the method of implementing (bottleneck) activities
still gives a good score. Furthermore, this method gives the possibility
to make recommendations based on activities for the hospital because
of the high feature importance of the bottleneck activities, as seen in
Fig. 4. Moreover, as shown in Table 2, when activities would be pre-
dicted better, there is a possibility to increase the NPV value against the
baseline and therefore implementing bottleneck activities for predicting
overstaying seems effective.

The non significant increase or decrease for using inter-case features
as shown in Table 2, may well be a result of the fairly good prediction
for the number of patients at the hospital which makes it possible to
7

improve the planning of hospital personnel and beds. Fig. 2 showed the
arrival pattern of patients over time on a daily basis. This figure shows
that there are possibilities for the hospital to make a good personnel
planning over time. The inter-case features could be more influential
to the score for hospitals if this existing prediction for the number of
patients over time is not well done.

8. Conclusion

This section gives a brief overview of the accomplished results
against the objectives presented earlier. The method described in this
paper is compared with state of the art methods. Furthermore, limita-
tions and possible future work are described.

8.1. Against state of the art

We accomplished to make it possible to generate a PAR (Process-
Aware Recommendation) system for generating useful recommenda-
tions for most of the overstaying patients at the start of the process or at
any moment in time. Table 2 showed that the method gives good results
for predicting overstaying patients at the beginning of the process.
Figs. 4 and 6 show that recommendations based on activities could
be useful because of the decrease in throughput time of overstaying
patients and the high feature ranking of activities.

Compared to state of the art techniques, this method prevents a
black box model to get useful insights from the process. Furthermore,
this method combines a PAR system with inter-case features to inject
the interplay between cases in the prediction models. The method also
makes it possible to make predictions and recommendations at the
beginning of the process (i.e., at the arrival of the patient).

Different from the other techniques in the literature, which rely
on actions from hospital staff when presented with the waiting time
of patients only, we are also able to present to them which activities
are supposed to take place and take longer than usual (for the usual
values, we use the median time of that activity for patients that do
not overstay). With our technique, the hospital staff are more guided
on what they should pay attention and/or try to reduce the time of it.
Moreover, our recommendation system only shows recommendations
for the patients predicted to overstay, which also reduces the amount
of information received by the hospital staff.
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8.2. Limitations and shortcomings

There are two limitations that are worthy to discuss: the validation
of our approach and the limitation in timestamps of the dataset.

As the first case of Covid-19 in the Netherlands appeared in Febru-
ary 27, 2020, and the first lockdown starting on March 12, 2020, it was
not possible for us to validate our approach in practice. To be able to
show the validity of our approach, we used the final months of our
dataset. For that, we simulated new patients arriving to the ER, we
checked when recommendations would be generated and we assumed
that the hospital staff would be able to reduce the time it actually took
for the recommended activities to become the median time for non-
overstaying patients. Although we use data until September 2020, we
still believe that this has no influence of Covid-19, because patients
inflow were still common in the hospital. Only after this period, we
could notice a drop in the inflow.

Finally, the dataset provided by the hospital only consists of starting
times of activities. The missing of ending times of activities made it
hard to measure and analyze activity duration. Note that, not register-
ing ending time results in missing the possibility to distinguish between
activity duration and waiting time until the next activity is performed.
Therefore, it might be possible that the used bottleneck activities would
have another difference in duration between different patient groups.
Furthermore, it might be possible that we were able to find activities
or pair of activities with larger waiting time between different patient
groups. This would make it possible to generate recommendation based
on these bottlenecks.

8.3. Future work

As possible improvements for the method, we can point to in-
creasing the negative prediction value, and a more precise analysis
of bottleneck activity or pair of activities duration. As described in
the previous section, a more precise analysis of the activities duration
would be possible if the ending times of activities are registered in
the dataset of the hospital. An improvement of the quality of the final
prediction model, i.e., NPV, is possible if we can better predict the
bottleneck activities, pair of activities and hospitalization as seen in
Table 4. Perfect predictions, i.e., accuracy is 1.0, results in a higher
NPV, as seen in the last column of Table 2. Furthermore, improvement
of the quality of the model would be possible if we analyze the specific
groups in the test set and try to find groups where it is hard for the
prediction model to have a good score for the NPV, e.g., patients with
specialism MDL and are transported by ambulance have a NPV of 0.67.
Based on a threshold formulated by the stakeholder, some groups can
be filtered out of the system, which improves the NPV for the rest of the
prediction model. We believe that these improvements would advance
the methodology described in this paper, being able to achieve even
better results.

In addition, we aim at investigating other effects that might influ-
ence the overstay of patients in the ER. For instance, researches [23–25]
have been done to show that readmissions are not only common in the
ER, but can also influence it.
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