EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Domain engineering for customer experience management

Citation for published version (APA):

Benzarti, I., Mili, H., Medeiros de Carvalho, R., & Leshob, A. (2022). Domain engineering for customer
experience management. Innovations in Systems and Software Engineering, 18(1), 171-191.
https://doi.org/10.1007/s11334-021-00426-2

Document license:
TAVERNE

DOI:
10.1007/s11334-021-00426-2

Document status and date:
Published: 01/03/2022

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://doi.org/10.1007/s11334-021-00426-2
https://doi.org/10.1007/s11334-021-00426-2
https://research.tue.nl/en/publications/7343d557-1827-422d-87cd-51525efaf1ca

Innovations in Systems and Software Engineering (2022) 18:171-191
https://doi.org/10.1007/s11334-021-00426-2

S.I. : SOFTWARE AND SYSTEMS REUSE l‘)

Check for
updates

Domain engineering for customer experience management

Imen Benzarti'® - Hafedh Mili' - Renata Medeiros de Carvalho? - Abderrahmane Leshob3

Received: 21 April 2021 / Accepted: 30 October 2021 / Published online: 20 January 2022
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract

Customer experience management (CXM) denotes a set of practices, processes, and tools, that aim at personalizing a customer’s
interactions with a company around the customer’s needs and desires (Walker in The emergence of customer experience
management solutions, 2011). The past few years have seen the emergence of a new generation of context-aware CXM
applications that exploit the 10T, Al, and cloud computing to provide rich and personalized customer experiences. Such
applications are usually developed in an ad-hoc fashion, typically as technology showcases, often with little validation in the
field. Indeed, there is no methodology to elicit and specify the requirements for such applications, nor domain level reusable
components that can be leveraged to implement such applications with the context of e-commerce solutions. An e-commerce
software vendor asked us to do just that, in adomain with a fragmented scientific literature, and with no portfolio of applications
to draw upon. In this paper, we describe our domain engineering strategy, present the main elements of the technical approach,
and discuss the main difficulties we faced in this domain engineering effort. Our approach is intended for marketing analysts
and customer experience designers. It offers to them a methodology and tools to design customer experiences and generate
building blocks of CXM functionalities to be integrated in e-commerce suites of their customers—the retailers.

Keywords Domain engineering - Customer experience management - Cognitive modeling - Ontologies - Metamodeling -
Metaprogramming

1 Introduction

Jane walks into her favorite grocery. As she drops items in
her shopping cart, the food labels are displayed on her phone
or a head-up display. As she drops a box of crackers, she is
warned of the sodium level, given her blood pressure. Walk-
ing through the produce section, she gets notices about the

B Imen Benzarti
benzarti.imen @courrier.ugam.ca
http://www.latece.uqam.ca

Hafedh Mili
mili.hafedh@uqgam.ca

Renata Medeiros de Carvalho
R.Medeiros.de.Carvalho @tue.nl

Abderrahmane Leshob
leshob.abderrahmane @uqam.ca

1" LATECE Lab, Université du Québec & Montréal, Montreal,
Canada

Eindhoven University of Technology, Eindhoven, The
Netherlands

3 ESG-UQAM, Université du Québec 2 Montréal, Montreal,
Canada

latest arrivals of fair trade certified products, being an active
member of an environmental advocacy organization. Walk-
ing into the meat section, an MMS mentions a special on
lamb chops that her significant other enjoys. As she drops a
rack into her cart, she receives two thumbs up for a Syrah
wine from northern Rhone, and one thumb up for a Merlot.
While getting toothpaste, she gets an SMS about the special
on size 4 diapers, since she has been buying size 3 diapers
for the past six months!

Six years ago, the CEO of an e-commerce software
vendor presented us with this scenario and asked “what
software frameworks do I need to include with my prod-
uct so that my customers [retailers] can design [i.e. specify]
and integrate [develop and integrate] such experiences into
their implementations of our solution”. Customer Experience
Management (CXM) denotes a set of practices, processes,
and tools that aim at personalizing customer’s interactions
with acompany around the customer’s needs and desires [30].
This personalization depends on the type of service or prod-
uct, the type of customers, and how much a company knows
about them. Effective personalization depends on commu-
nicating the right information (what), in the right format

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11334-021-00426-2&domain=pdf
http://orcid.org/0000-0003-0658-9605

172

|. Benzarti et al.

(how), at the appropriate time (when); otherwise, customer
experience becomes customer harassment. In software engi-
neering terms, we were tasked to develop a domain-specific
framework to help retailers instrument existing purchas-
ing processes as they are managed by their e-commerce
solutions. This instrumentation may involve enhancing the
information communicated to the customer—the food label
display, and the various warnings in the scenario above. It
could also augment the process, by adding extra steps not
typically covered by the e-commerce solution—e.g. the lamb
chops and diaper suggestions in the scenario above.

To solve this problem, we need to perform four tasks, in
sequence. First, we need to understand the purchasing pro-
cess (or customer journey), modulo variabilities that account
for the different types of products; for example a detergent
versus a car. This understanding needs to be captured in
a model that is independent of an IT implementation, i.e.
some sort of a Computation Independent Model of purchas-
ing. Second, based on this understanding, we need to identify
when it is possible and appropriate to ‘enhance’ this process,
and how, based on business requirements (more ‘purchases’,
healthier purchases, brand loyalty, etc.). Then (third), we can
start specifying the user and functional requirements for such
enhancements, and finally (fourth), develop reusable artifacts
that enable us to implement such enhancements.

The technology for implementing such scenarios is avail-
able: the IoT, for context-awareness, machine learning
libraries, for various analytical capabilities, and cloud com-
puting, for a distributed virtual computing infrastructure.
Software engineering work on context-aware IoT-enabled
applications does address some of the computational and
architectural issues that underlie such applications, includ-
ing event loops, integration, middleware, cloud - edge load
distribution, etc. [1,14,25,26]. Such work addresses some of
the issues in the last two tasks above, but provides little help
with the first two. Accordingly, we turned to the market-
ing literature, the social psychology of consumer behavior
(e.g. [4,5]), and the service design literature (e.g. [13,33]), to
help fill-in some of the gaps. Then, we faced the challenge
of translating this understanding into software requirements,
and, eventually, reusable software artifacts [23].

Section 2 presents the principles underlying our approach.
We start by presenting a cognitive model of the purchasing
process (Sect. 2.2), before we show steps to operationalize
this model in software requirements for a CXM applica-
tion (Sects. 2.3-2.5). The resulting software framework is
summarized in Sect. 3, and the different pieces presented in
Sects. 4, 5, and 6. The first tool in the chain is a requirements
elicitation tool destined to marketing analysts to help them
specify the user requirements for a purchase scenario. It is
presented in Sect. 4, and consists of two components, one
for eliciting the process/control aspects of a purchase sce-
nario (Sect. 4.1), and one for eliciting the data aspects (Sect.

@ Springer

4.2). The next tool in the chain, described in Sect. 5, takes
the requirements produced by the first tool and generates
technology-independent software specifications (platform
independent model, or PIM). The final tool, described in
Sect. 6, generates CXM code in a target technology (a
platform-specific model, or PSM), which is Java in our case.
We discuss the challenges raised by this domain engineering
effort in Sect.7, and conclude in Sect. 8.

This paper is a significantly extended version of [8], in
terms of new contributions and length. We revised signif-
icantly the representational metaphor for purchasing pro-
cesses, which is central to both the conceptual framework
(Sect. 2) and the software framework (Sects. 4, 5, and 6).
Indeed, we used in [8] a process-driven (BPMN) metaphor
to represent consumer journeys through what is essentially
a cognitive process of a human actor reacting rationally
and emotionally to new pieces of information as they arrive.
That representation leads to processes of unmanageable com-
plexity, because of the many potential execution paths. For
this paper, we revised the representation metaphor from a
process-driven to a case-driven, and used the Case Man-
agement Modeling Notation (CMMN) to describe customer
journeys. This simplified both the underlying concepts (Sect.
refsec:conceptualspsframeworkspsCXM), and the software
implementation (Sects. 3—-6), and enabled us to make sig-
nificant progress in the tool implementation. It also led to a
new set of issues, discussed in Sect. 7, thanks to the progress
made since [8].

2 A conceptual framework for CXM
2.1 Overview

Customer experience (CX) is the set of cognitive, affec-
tive, and sensorial responses customers have to any direct
or indirect contact with a company during all stages of
the purchase process including pre-purchase, purchase, con-
sumption, and post-purchase [22]. Customer experience
management (CXM) denotes a set of practices, processes,
and tools, that aim at personalizing a customer’s experience
with a company around the customer’s needs and desires
[30]. The majority of e-commerce sites today include some
CXM functionalities. When you add a book to your shopping
cart on Amazon, it suggests books that other people bought
along with yours (collaborative filtering); when you book
a flight on Expedia, you are offered a discount on accom-
modation (cross-selling). But these ‘experience-enhancing’
prompts are not always opportune and are of uneven qual-
ity, both in terms of modality and content. Further, they do
not come “out of the box” of e-commerce software which
offer, at best, machine learning libraries. Going back to the
research mandate given to us by our industrial partner: to

Domain engineering for customer experience management

173

develop an add-on framework to his e-commerce suite to
help build effective CXM functionalities in a systematic and
cost-effective way.

The first step in building reusable software artifacts for
CXM (domain engineering) is to identify the requirements
for such artifacts, before we can translate them into soft-
ware specifications, designs and code. In essence, consumers
are dynamic systems whose processes (stay alive, pursue
happiness, etc.) require a number of resources (e.g. food)
or states (e.g. fitness), triggering consumption processes to
replenish the resources (“we are out of milk”) or to attain
those states (“I need to exercise””). Commercial enterprises
are also dynamic systems that build products to sell to con-
sumers. The ‘customer experience’ is where the consumer’s
purchasing process meets the enterprise’s selling process.
CXM aims to manage the interactions between a consumer
and a provider, each executing its own processes and pursu-
ing its own objectives. To properly manage this experience,
an enterprise needs to first, answer the following questions:

e (] what are the steps of the customer purchasing pro-
cess? In particular: (1) what are the decision points in
this process, and (2) which factors influence those deci-
sions? Example decision points include the very decision
to initiate the purchasing process for a particular prod-
uct; I could use the latest iPhone, a bigger car, and more
RAM for my laptop, but I decided to go for the RAM.
Other decisions include the product specs, the retailer,
etc.,

e Q2 which of these steps requires or lends itself to interac-
tions between the consumer and the enterprise? Indeed,
customization can only happen at touch-points between
the two processes: the consumer’s and the seller’s,

e (03 how to customize such interactions to ‘enhance’ the
overall experience?

Here, ‘enhance’ can mean make faster, make more pleas-
ant, provide more relevant information, or spend more at
the cash register. In turn, Q3 leads to three sub-questions.
First (Q3.1), what kind of customizations to offer? The sce-
nario showed several examples, including different flavors
of recommendation, based on purchase history (lamb chops,
diapers) and product associations (Syrah wine), and dissua-
sion, based on medical history (crackers). Second (Q3.2),
what data is needed to support those customizations? As we
just saw, purchase history, product assortment, and medical
history are helpful, but can knowledge of consumers’ men-
tal states and the factors influencing their decisions be used?
Third (Q3.3), how to obtain that data, in an ethical and priva-
cy-preserving way?

In the remainder of this section, we will present our strat-
egy for answering the three questions.

2.2 A cognitive modeling of the purchasing process

To answer these questions, we relied, in part, on a cogni-
tive modeling of the purchasing process. Consumer behavior
has been studied thoroughly by social psychologists trying
to understand its mechanics (see e.g. [4-6]). The different
theories recognize that purchasing decisions are determined
by a combination of objective and rational factors - such
as the ability of a product to fulfill a biological need - and
subjective or irrational factors such as self-image (e.g. being
fashionable), and personal values (e.g. being eco-friendly).
Bagozzi [5] proposed a model that integrates all of the influ-
ences that have been identified by researchers. The model
takes ‘consumption’ in a broad sense, to account for both the
acquisition of a product or service, such as buying a computer
or subscribing to a video streaming service, and adopting a
behavior, such as dieting or exercising. The model identifies
the different steps and the factors that are known to influence
the decisions at those steps [5].

Figure 1 recapitulates the elements of Bagozzi’s model.
To facilitate the understanding of the model, we represent it
within the context of a Business Process Management Nota-
tion (BPMN)-like view of the purchase process, consisting of
ordered steps, along with the factors that influence them. We
later see in Sect. 4.1.2 that the Case Management Modeling
Notation (CMMN) is more appropriate to represent customer
journeys.

In the goal desire step, the consumer may desire to acquire
various products—e.g. purchasing a van to carry the kids to
soccer practice or buying a Harley Davidson motorcycle to go
cruising during the week-end. Figure 1 shows that the onset
of such desires is influenced by Goal feasibility, anticipated
positive emotions from acquiring the product, anticipated
negative emotions from failing to acquire the product, the
probability of succeeding in acquiring the product (outcome
expectancies), how the customer views herself/himself, e.g.
as a family man or soccer mom, versus an adventurous rebel
(social identity), and how often did the consumer buy a van
or motorcycle in the past (frequency of past behavior).

The goal intention step corresponds to the stage when
the consumer settles on one of the desires (buying a van
OR buying a motorcycle) that then becomes a goal. In the
implementation intention step, s/he makes a plan to achieve
the goal, identifying the steps needed to reach it—e.g. look
for adealer and find a financing plan. Once s/he starts the plan,
s/he moves to the step of trying—e.g. visit a dealer on site.
Trying involves monitoring progress towards the goal, and
adjusting the plan. The Goal-directed behavior step refers to
the ‘final act’ in the process: acquiring (purchase) or using
the product. In goal attainment/failure the consumer assesses
whether s/he has reached the goal. Based on this assessment,
the consumer can adjust any of the choices or actions made

@ Springer

174

|. Benzarti et al.

Goal
easibility/ ~~~~__

Goal

Anticipated = H Goal
positive - desire intention
emotions iy /’:\ IN
— 7 7 | N Second-order
Aﬁg;;}t)fvt: e “Social \:?__ moral values and
t . identity \ self-evaluative
emotions / : N standards

—3 S€qUENCE

----------> Influence

\

7
7 \ \
\ \ A R
Outcome \ T - intention
expectancies \(frequencyol
- \ past behavior o
=~ A\
S~a \ / N
= \ /

== \
\
Attitudes N
\

- Perceived

Implementation

Behavioural beliefs behavioural control Normative beliefs
and evaluations And self-efficacy and motivation to
comply

.) 3 Goal-directed >
Trying behavior]_

Recency of
past behavior

Goal attainement/
failure

Feedback

Fig.1 A generic purchasing process with the salient influence factors [5]

in the ‘purchasing process’, including the choice of goals to
pursue in the feedback step [5,23].

There are different paths through this process, depend-
ing on the complexity of the consumption decisions [5,23].
The literature has identified three families of purchasing pro-
cesses [29]. Extended processes, qualified as problematic
since the customer faces many obstacles (financial, temporal
and spatial) [6], include all the steps shown in Fig. 1; these
include processes such as purchasing a car or a house. In
routinized processes, purchasing decisions are made auto-
matically without conscious control. For example, having
the habit of buying coffee on the way to work. By develop-
ing this repetitive behavior, the customer minimizes the time
and energy spentin the purchasing process. Therefore, desire,
implementation and trying steps can be removed from the
process. Limited processes do not involve significant obsta-
cles, but require minimal cognitive effort; for such processes,
the implementation step can be removed as explained in Sect.
4.1.3.

2.3 Operationalizing the cognitive model to design
customer experiences

Bagozzi’s model answers Q1 and parts of Q2, but does not
tell us when or whether it is appropriate to interact with the
consumer (Q2), and how to customize the interaction (Q3).
Further, a retailer typically does not know the customer, or
which stage of the purchasing process they are at, until they
initiate an interaction with the retailer. We address both prob-
lems using metaphors or patterns, explained below.

@ Springer

The first metaphor is embodied in the pattern shown in
Fig. 2. It recognizes customer experience (CX) as an inter-
action between two processes—one of buying and one of
selling—around a number of potential touch-points, and cus-
tomer experience management (CXM) aims at customizing
such interactions in a way that helps the parties achieve their
objectives. Basically, a consumer has a number of ‘ongo-
ing processes’ (living, raising kids, pursuing happiness) that
generate a number of needs that, in turn, trigger consump-
tion processes. Consumption processes involve a number of
steps (see above), some of which are internal (Step i in Fig.
2), i.e. in the ‘consumer’s head’, while others require or lend
themselves (“would you like to try out this nicer model?”)
to interactions between the consumer and the retailer (Steps
i — 1 and i + 1); these interactions can be initiated by the
consumer (“do you have these in size 10.5?”) or the retailer
(“would you consider this nicer model?””). The steps (i — 1
and i + 1) may involve decision making that is influenced
by immutable factors (“RO (Read-Only) influence factor” in
Fig. 2), e.g. shoe size, income, or social identity; or mutable
factors (RW (Read-Write) influence factor), including the
desirability of a product (“they look really good on you!”,
or anticipated positive emotions [5]) or its affordability (“we
offer financing”, i.e. Goal feasibility [5]). Thus, a critical
aspect in operationalizing Bagozzi’s cognitive model is to
recognize the influence factors as data points about the con-
sumer that the retailer can leverage to customize its product
offering, answering parts of question Q3.2; how to obtain
them (question Q3.3) is a separate issue (see Sect. 4). This is
embodied in the CXM ontologies described in Sect. 2.5

Domain engineering for customer experience management

175

Fig.2 A pattern for -
o . Enterprise Consumer
operationalizing touchpoints
and influence factors for CXM read RO Influence
factor
$ Explicit interaction 4} Stepi-1 l
triggers
<«
Step i l E 1 %
Read/write RW Influence fulfills {0
factor \ e
_ Explicit interaction ~ . Internal &
< >| Stepi l lifecycle
Consumption process
Legend « Mnc - yhfluence: the enterprise relies on (reads) and may try to affect

(write) the influence factor to its advantage
<-———> Interaction: an actual point of contact between the enterprise

This pattern tells only half of the story. As mentioned
above, knowing that a step in the cognitive process lends
itself to an interaction, does not tell us:

1. How to find out whether the consumer is at that par-
ticular step at a given moment, especially that different
consumers may follow different journeys through the pur-
chasing process;

2. Whether it is appropriate to initiate an interaction at this
point. Indeed, the fact that a process stage lends itself
to an interaction does not mean that the retailer should
initiate one; we need to ensure that ‘customer experience’
does not become ‘customer harassment’;

3. What should the purpose of that interaction be? We can’t
simply “push” products as the introductory scenario sug-
gests.

A strategy for designing such interactions is presented next.

2.4 Principles for adding CXM interactions

CXM can be thought of as a way to decorate the purchas-
ing process in a way that enhances the customer experience.
Thus, a convenient way of thinking of CXM functionalities
for now, is as add-on functionalities to a no frills e-commerce
site that supports straight product catalogue browsing and
search, shopping cart management and straight check-out
and payment; we will extend this later to a multi/omnichannel
context (Sect. 4). An add-on CXM interaction can be as sim-
ple as the display of an additional piece of information, an
alternate scenario in a use case involving several user - sys-

tem interactions and that rejoins the main flow (e.g. adding
a site-suggested book to the shopping cart) or a different use
case altogether.

To figure out which interactions to add to a vanilla flavor
e-commerce site, we rely on principles gathered from the
literature in two fields: (1) psychology, exploring how indi-
viduals interpret sequences of events and their perception of
emotionally intense moments, and (2) service design, explor-
ing how to design interactions with customers to enhance
their service experience. These principles can be summarized
as follows:

2.4.1 Interact with customers based on their shopping
behavior (Pq)

Recall that a major challenge in designing customer experi-
ences, is to figure out where in the purchasing process the
customer is at some point. In [21], the authors identified two
behaviors in an e-commerce website, browsing for informa-
tion, and browsing for pleasure, and argued that companies
should adjust their interactions accordingly'. In the first case,
a company should wait until the customer initiates an inter-
action. Indeed, customers have a precise goal and a particular
product to buy, and they choose how get information, which
allows them to adapt the information obtained according to
their need and the level of knowledge [2]. By contrast, if
customers are browsing for pleasure, the company should
initiate two way communication with them and join them

! Experienced salespeople in a brick-and-mortar store are very good at
that.

@ Springer

176

|. Benzarti et al.

in their hedonic experience (e.g. initiate a discussion with a
chatbot).

2.4.2 Assess customers’ psychological distance to their
Goals (P,)

Psychological distance measures the distance separating the
customer from her goal of acquiring the product [17]. This
distance should decrease as the customer progresses in the
purchasing process, so that the customer becomes motivated
to pursue the goal. Holmgqvist identified four types of dis-
tances [17]: spatial, temporal, social and hypothetical. This
can influence the level of detail of product data to be trans-
mitted to the customer as s/he progress through the process.

2.4.3 Design peaks of intensity level during sequences (P3)

Peaks, as well as improving trends, enhance the perception
of the customer towards the experience; when placed at the
end of a sequence, they become more salient and memorable
in the long term [2]. In a surprise peak, the company presents
the customer with an unexpected offer (e.g. a gift, a purchase
coupon, etc.).

2.4.4 Partition extended purchasing processes to a set of
sequences on strategic moments (P4)

Extended experiences are usually interrupted—e.g. a cus-
tomer paused his research of a new car until the end of
relocation. With each interruption, customers reset their per-
ception of the experience, and begin a new experience [3].
Indeed, the overall evaluation of the experience is the average
of the evaluations of the customer of each of the sequences
[2]. Thus, for extended problem solving, we partitioned
the process into three sequences. The first sequence con-
tains desire, intention, and implementation steps; the second
contains rrying and purchasing; and the third consists of feed-
back.

2.5 CXM ontologies

In this section, we formalize our knowledge about con-
sumers and products in a way that supports the customization
of customers’ interactions with product/service providers.
This knowledge is embodied in onfologies in the knowl-
edge representation sense, i.e. as a specification of a set
of representational primitives used to represent a domain of
knowledge [15]; and in sense of reflecting a shared concep-
tualization of a domain—in this case, consumer behavior.

@ Springer

2.5.1 Consumer data

Knowing the consumer is key to a successful CXM. An enter-
prise may use information about customers to: (1) anticipate
their needs, before they even engage in a purchasing process,
(2) identify those among its products that best address those
needs, consistent with customers’ known attitudes, biases,
emotions, and values, and (3) present those products in a
way that appeals to them. Figure 3 shows excerpts from the
consumer ontology. We will comment on the main pieces;
full discussion can be found in [23]. The upper half of Fig.
3 shows that Consumer’s (individuals, such as Jane) belong
to Category’ies (e.g. Yuppies, or Young Urban Profession-
als). Both have Property’ies, such as income or age, and
values for those properties, represented by class Property-
Value for individuals (Jane has a single age value), and class
ValueRange for categories (yuppies have an age range from
25 to 40). Both individual’s membership to categories, and
property values, are qualified with a confidence level, reflect-
ing probability or strength [8]. The lower half of the customer
ontology embodies the life-cycle theory in marketing [13],
where individuals go through different stages in life, each
having different consumption behavior in terms of needs,
attitudes, etc. Life-cycle stages are represented by the class
State (e.g. married with children), with their own properties
and property value ranges. StateTransitions are triggered by
events (EventType), which can be property change events
(PropertyChangeEventType), as in getting married, or timer
events (TimerEventType), when a state expires after a given
time period—the diapers example in the introductory sce-
nario.

2.5.2 Product data

To take full advantage of our knowledge about the consumer,
we need a commensurately rich representation of the prod-
ucts and services sold by the company. Previous work focused
on modeling products to configure them and manage their
manufacturing life-cycle [11,20]. Product modeling is com-
monly multilayer, where we distinguish the category of the
product, model of product and the physical item. Space lim-
itations does not allow us to go into the details. Suffice it to
say that our product ontology supports: (1) different levels of
instantiation—the multi-layer idea, (2) product assortments
(lamb with red wine), (3) includes information about physical
attributes (e.g. dimensions), functional attributes (what they
are for), (4) packaging (presentation, aesthetics, etc), and (5)
manufacturing process, to include the kinds of properties that
can be matched to consumers’ attitudes and second-order
moral values [5,23].

Domain engineering for customer experience management

Fig.3 Excerpts from the
customer ontology metamodel

CustomerCategory

hasCustomerCategoryProperty

PropertyChangeEventType

TimerEventType

177
) describes _ In-state
Cmtomer
hasCustomelPropert
g destmatlon source
describedBy w
) triggeredBy

hasCustomerProperty

2.5.3 Other data

The full spectrum of CXM functionalities require a wide
range of data, including products reviews, product compar-
isons, advertising material, etc. We proposed in [23] a rich
representation of advertising material to illustrate the kind of
representation we need, and how it could be used.

3 A software framework for CXM

Section 2 laid the conceptual groundwork needed to develop
a software framework for CXM applications. It showed the
wide conceptual gap between the concepts emanating from
(a fragmented) CXM theory, and the operationalization of
those concepts in domain software artifacts. Model-Driven
Engineering (MDE) provides a useful guide to decompose
the functionalities of our software framework, shown in Fig.
4.

Asmentioned in Sect. 2.1, the purchasing process depends
heavily on the type of product or service being sold, e.g. a car-
ton of milk versus an appliance, computer or a car. Section 2.5
showed representational primitives needed to support CXM
functionalities, but we still need to specify relevant data mod-
els for a specific product type. Both need to be specified by a
marketing analyst, who typically is neither a social psychol-
ogy researcher, or a modeling guru!

Accordingly, the first tool in our framework is one for
specifying purchase scenarios, to be used by marketing ana-
lysts that produces a domain-level, computation-independent
model (CIM) of the purchase scenario. This tool, described
in Sect. 4, relies on: (1) an encoding of Bagozzi’s model, and
(2) a library of interactions, from which the analyst can pick
ones that are relevant to the process at hand. The contents
and format of these interactions, which embody the state of
the art in service design, will be described in Sect. 4.

The next tool in our MDE chain (Domain/Scenario-
Specific Generator) takes the specifications produced by
the first tool, and the generic CXM ontology, to produce a
platform independent model (PIM) consisting of a scenario-

specific ontology that represents the data, and an abstract
description of the process. The current implementation does
not generate the process component, but generates the spe-
cific ontology. The generator is described in Sect. 5.

Finally, the Java Code Generator takes the output of the
Scenario-Specific Generator, and a library of CXM function
templates, and generates Java code that implements the data
layer of the purchase scenario at hand, and the CXM cus-
tomization functions (e.g. recommendation) tailored to that
data (see Sect. 6).

4 A tool for specifying purchase scenarios

The first tool in our tool chain (see Fig. 4) is a requirements
elicitation tool destined for marketing analysts that elicits the
customer experience management (CXM) requirements for
the purchase scenario at hand. We saw in Sects. 2.2 and 2.3
that there are different paths through Bagozzi’s model (Fig.
reffig:bagozzispsbasic) depending on the complexity of the
purchase/product. Thus, a purchase scenario is characterized
by the specific subset of the generic Bagozzi process that
applies to a given product family, and the corresponding data
model needed to support CXM for that process. This raises
the issue of what is the appropriate scope for a purchase
scenario; see Sect. 7.4 for a discussion.

The (purchase) scenario specification tool produces a
domain level model of the CXM application that is used as
an input to our MDE tool chain. This model, which cor-
responds to a Computation Independent Model (CIM) of
the CXM application, includes an abstract description of
the scenario-specific purchase process, along with its CXM
enhancements, and an abstract description of the data for the
scenario. We discuss the two functionalities in turn.

@ Springer

178

|. Benzarti et al.

Fig.4 Software framework for
CXM

Scenario
spec (CIM)

Process

Data

scenario
specification
tool

Generic
Purchasing
Process

Interaction
Library

Model

4.1 Specifying the purchase scenario process
4.1.1 Purchase processes: the case for case management

The purchasing process, as represented in Fig. 1, shows a
linear sequence of steps, going from the very onset of the
desire to acquire a product, to its purchase and use. For all
but the most routine purchases, the purchasing process is sel-
dom linear. One of the authors responded once to an ad to
buy a spare helmet for his motorcycle, and ended up buying
the seller’s motorcycle and two helmets. Many purchasing
processes start with the intent to purchase product A (Goal
Intention) end up with the purchase of another product B
(e.g. apricier version of A, or up-selling), or A and B (“while
you are here, would you like to try my motorcycle?’—cross-
selling), or abandoned, or interrupted to be started over again.
All of this happens because in the course of this essentially
cognitive process, new information comes to light that can
change—or skip altogether—any step, be it the (Goal) inten-
tion, the planning (implementation intention), or the plan
execution (Trying).

Processes that involve mostly human cognitive tasks, that
are flexible, and data-driven, are best represented as cases
[24]. Contrary to business process management (BPM),
which is process-driven, embodies routine work, and fol-
lows a predefined workflow, case management is data-driven,
knowledge-worker based, and non-deterministic: the case
flow is determined at run-time by the actions of the knowl-
edge worker [28].

For the purposes of our scenario specification tool, we
will use the Case Management Model and Notation (CMMN)
language, which supports the case management requirements
[19] and incorporates expertise on case management from
many software vendors like Oracle and SAP [27].

In CMMN, the concept of a process corresponds to a case
handling, and thus, we talk about a case. Graphically, a case

@ Springer

Developed artifacts:
Generated Artifacts Code et schemas (ad-hoc, Java, OWL, SQL)

Scenario Specific
Software Spec
(PIM)

Scenario

specific

process
model

Scenario-specific
CXM Java code (PSM)
[S):el::lr’i: (Java) code

Generator [Code

Specific
specific data ORM trzps
model
(ontology)

Generic
CXM
Ontology

CXM
Function
templates

/ Placing an order \

Payment Delivery

occur]

Inventol : [occur]

veriﬁcatiZn Cusfomer -l pproved Order)= ‘ Item delivery
proceed to Y
payment :

Fig.5 A CMMN model example: place an order process

Successful
payment

model is enclosed in the picture of a folder, as shown in
Fig. 5. At a basic level the “handling” of a case involves
performing tasks, and so a case model may include differ-
ent tasks, represented graphically by rectangles with rounded
corners (Inventory verification and Item delivery in Fig. 5).
In CMMN, a standalone task is, by default, enabled, i.e. it
can execute. To make its execution conditional, we add an
entry sentry, which is represented graphically by a hollow
diamond on the left of the task. In CMMN, we use stages
to group together tasks that are activated/enabled together.
Sentries apply to stages as well. Graphically, stages are repre-
sented by rectangles with cut corners (Payment and Delivery
in Fig. 5). Case models and stages may include user events,
which correspond to actions undertaken by human actors.
Fig. 5 shows Proceed to payment as a user event taking place
with the Payment stage.

Absent an explicit sequence of tasks through which a
case progresses, we use milestones to indicate such progress,
represented graphically by oblong shapes. Figure 5 shows
Approved Order as a milestone, which is connected to the
entry sentry for the Delivery stage. This means that once we
reach that milestone, we enable the Delivery stage, hence
activating all the tasks within.

In CMMN, a case model with two tasks 77 and 7> and
nothing else means that we can perform 77 or 7>, any num-
ber of times, in any order, including none at all: whatever

Domain engineering for customer experience management

we add to a model constrains the set of possible executions
of the model. Therefore, CMMN is declarative/descriptive.
This is different from BPMN where the only possible execu-
tions are through the specified paths. Even escalation events,
which were introduced in BPMN 2.0 to handle ad-hoc user
events, should trigger an event sub-process for each customer
event, in our case, this will make purchasing process steps
overlapping. BPMN is an imperative/prescriptive modelling
language, what is not explicitly authorized/specified is for-
bidden whereas in CMMN, what is not explicitly forbidden
is possible. This difference has important implications on the
relation between specific executions of a case model, and the
case model itself: “case workers” choose their own execution
paths, among those allowed despite the constraints placed in
the case model.

4.1.2 Arepresentation of Bagozzi's process and of the CXM
interactions

Our tool embodies a CMMN-based representation of the
generic purchasing process, consisting of Bagozzi’s cog-
nitive model, shown in Fig. 1, augmented/decorated with
interactions designed using the principles outlined in Sect.
2.4. The marketing analyst chooses those among the steps
and interactions that are relevant to her/his purchase sce-
nario, as explained in Sect. 4.1.3; in this section, we show
the CMMN representation of the generic process.

Using CMMN, process steps in Bagozzi’s model (see
Fig. 1) are mapped to CMMN stages, to which we add the
stage Unknown (Fig. 6), explained below. Stages are con-
tainers used to decompose a complex case into ‘episodes’,
to reduce the complexity of the case. The Unknown stage
represents the stage in the process, from the point of view of
the retailer, when the retailer does not know how far along in
the purchasing process the customer is. It is the initial stage
of a customer experience; as soon as the customer initiates an
interaction with the retailer, the retailer can make inferences
to guess where the customer is, and moves the process to a
different stage.

When a stage is reached, all the items contained in it are
activated. Per CMMN’s semantics, stages are independent.
Thus, a marketing analyst can remove stages that are irrele-
vant to her/his purchase scenario in the configuration phase
(Sect. 4.1.3). At run-time, an actual customer can start the
“process” at any stage whose entry conditions—if any—are
satisfied, or dropout out of any stage.

Figure 7 shows how interactions connect stages. We dis-
tinguish between two types of interactions: (1) tasks, which
represent interactions initiated by the retailer in the current
stage to implement a particular marketing strategy (see Sect.
2.4); and (2) user events, which represent interactions initi-
ated by the user. Many interactions lead to a milestone, which
marks the end of a stage and the beginning of another (Fig. 7).

179
Generic purchasing process
[complete]
Unknown Intention Implementation = Feedback
Desire Trying Purchase

Fig.6 High level view of purchasing process with CMMN stages rep-
resenting the process steps

There are two distinct phases: one during design time and
other during run time. In design time, the marketing analyst
should specify: (1) every possible interaction that might take
place with the customer (fasks); (2) under which conditions
each interaction should happen (constraints using sentries,
which might be activated by the triggering of events); (3)
in which context is each interaction (stage); and (4) how
to evaluate the progress of the case (achievable milestones).
In run time, the customer is the ‘“knowledge worker” and
decides to which interactions he/she will (re)act. Depending
on how the customer experiences the progress of the case,
he/she determines how the case proceeds.

Figure 8 shows the complete process. This process is
generic and independent from the data of the purchasing
scenario. It can be customized for a particular purchasing
scenario by removing non-necessary steps or interactions
and by personalizing interaction properties with scenario data
like the communication channel or the exchanged customer
and product properties during the interactions. We recall that
this generic process is designed according to the principles
described in Sect. 2.4, particularly, the assignment of inter-
actions to the process stages. We briefly discuss the process’
stages and some of the salient interactions.

Unknown As mentioned above, this is the initial stage of a
customer experience (CX), where the retailer does not know
where the customer is in her/his process. Most of the user
interactions initiated in this stage provide enough insight
for the retailer to infer the actual stage of the customer in
their current purchase process. Thus, many user interactions
occurring in the Unknown stage lead out of the Unknown
stage and info the other stages. In particular, the model shows
two user events that occur in the Unknown stage that embody
the P principle, described in Sect. 2.4: distinguish between
customer’s browsing patterns, be it for information or for
pleasure.

Desire This is the stage where the consumer does not yet
known what s/he wants, and it can be inferred from “watch-
ing” the consumer’s browsing behavior. Hence, one of the
interactions leading into this stage is the determination that
a consumer, in Unknown stage, is browsing for pleasure. A

@ Springer

180

|. Benzarti et al.

Fig.7 Modelling interactions

/ Generic purchasing process \

using CMMN

Current Step

=

<Strategy> <Strategy>

Company | ((8))_ W Company

Interaction Interaction
(id) Customer action (id)

Next Step

(id)

consumer whose behavior changes by showing interest in a
specific product (e.g. s/he does a product search on the web-
site, or asks a question about a product to a chat-bot) moves
to the intention stage (Fig. 8).

Intention In this step, we distinguish between identified
(e.g. authenticated) customers and unidentified/unknown
ones. Identified customers have a recorded profile that
includes data such as preferences and previous purchases,
in which case the retailer is able to propose a personalised
recommendation based on that profile (see Table 1). If the
customer is unidentified, the company can settle for recom-
mending similar products. A customer who responds to these
recommendations, for example by opening an email that con-
tains a personalized hyperlink to further information about
the recommended product and selecting that link, moves to
a next stage of the process (see Fig. 8).

Implementation (intention) Recall that implementation
intention is the planning stage. For complex purchases, mak-
ing a purchase plan may be long and difficult, especially for
a customer experiencing the purchase of a product for the
first time; this is due to an important psychological distance,
such as the lack of information about the product or finan-
cial resources. As per principle Py, the retailer can propose
a pause in the process at this juncture, e.g. by proposing a
channel switch (task T7, see Fig. 8 and Table 1). As per prin-
ciple P53 (design peaks at the end of a sequence), the retailer
can ensure that this sequence (desire — intention — imple-
mentation) concludes with a positive note, e.g. by offering
a discount coupon (task T6 in Fig. 8 and Table 1). Figure 8
shows that the tasks that represent these interactions can be
activated after a time delay configurable by the analyst (timer
event listener in CMMN).

Trying If a customer is blocked in this stage, it means that
the psychological distance that separates them from their goal
prevents them from taking the action of Purchase. Per princi-
ple P>, interactions in this stage aim to decrease this distance,
either by recommending a restricted set of products to guide
the customer in his choice; or by communicating with them

@ Springer

through expert advisors. Such communication may be initi-
ated by the customer (see Fig. 8 and Table 1).

Purchase For a long purchasing process (e.g. for a car),
this is the end of the second sequence (see principle Ps). Per
principle Ps, aretailer can propose a peak interaction such as
discount coupons and free samples to enhance the customer’s
affective response (T11 and T12, see Fig. 8 and Table 1). Per
P, if the product requires delivery, and the retailer anticipates
potential delivery delays, it may act proactively by tracking
delivery (T16) and notifying the customer (T15)—which has
been shown to decrease the perceived duration of delay [10].

Feedback The interactions proposed by the retailer in this
stage depend on the customer review (see Fig. 8). Positive
reviews may create an opening for cross-selling (T21), up-
selling (T17), and repeat purchases after some time elapse
(T19), whereas a negative review should compel the retailer
to follow-up with the customer (T20). And so forth—see
Fig. 8 and Table 1.

In the next section, we show how a marketing analyst
can personalise this generic process for a specific purchasing
scenario.

4.1.3 Configuring a purchase scenario’s process and CXM
functionalities

We developed a tool that enables marketing analysts to
specify the purchasing process, decorated with CXM func-
tionalities/interactions, for the purchase scenario at hand. The
final process, with its CXM functionalities (interactions) for
a specific scenario, will be a subset of the generic process
presented in the previous Section (see Fig. 8). To facilitate
the specification of such scenarios, we provide the analyst
with customisable process templates that they can edit, by
adding or removing stages, system tasks (see Table 1), or
user events (see Fig. 8). For the purposes of the prototypes,
we provide three such preconfigured processes correspond-
ing to a complex process (the generic process in full), limited
processes, and routinized processes, e.g. for buying a carton
of milk or diapers.

Domain engineering for customer experience management

181

(Generic Purchasing scenario \

Unknown \

[oceur]

- Desire oo —

Customer |
browsing for
pleasure (E1) L

Inviration to
subscribe (T1)

Y Intention
<Push>
[occur] Customer Recommand
c <Pull> interested in | similar products
ommunicate recommended (T3)
customer targets with the products (E5) <Push>

a particular
product (E4)

customer (T2)

Personnalised
Recommend.

T4)

<Up-selling>

! [occur] U

Customer .
browsing for |
information (E2) .

....... looou] . _ | _. i codoeeun
=3

(T5)

[occur] -

Implementation

Customer joins
social media
group (E3)

customer visits

i . [oceu,

I i [Tdentiied Tdentified
. customer customer

<peak> —_———— -
iscount coupon
(T6)

[oi;cur] the store (E6) |
f . [oceur]
: N\ | <Communicate>, [
! <|n;9""”P“°"> si fIPUSh:) ! with an advisor . e
. ropose imilar prducts .) D
| [°.° cu_r] . Switching with features | ™) c?mmuplcateEf%r
foccur] : channel comparison : informations (E8)
_____ i an am) |1
! : = i <Push>
Customer adds . | Recommend.
products to basket | e [oCeUrl .t e — CustomeF goes to oriented
(€9) : ’ checkolt (E7) features (T10)
| [occur] |
[occur] f~4—=€) T¥ing e —m Q B E
. [occur] t
Custonsemarks L | 0 mermem e i i i e
some products as N ‘ Purchase
favorite (E10) | Cf{”f] " . . To intention
: Purchase -, ~ Positive review Neutral review milestone
[occur] | i <Peak> <Peak> : : :
""" Discount coupon Free Samples H
Customer (T11) (T12) Feedback :
activates a) :
coupon (E11)
[occur] <Push>
-------- —)=-- _aolli <up-selling> Personnalized
! o <Cros(§|_?;)|hng> (T17) recom(r?_?g;iation
: ustomer gives
= | feedback (E12) L D,
! Negati ()
i [oceur] Ask for Ee?/?:vdve . <Communicate> <Push>
: L., fee1r_i1b4ack ;g:gg:g’s Start-over :
! (T (T19) (T20) :
| < —_)—
. <Anticipatt .-
| Pr:b:elras: :f‘:l;‘]‘:r%ast: [Positive e [c:ccur]
i Nfgtr'z cg:ts?'r;eer Delivery feview i, 1. ¢ NsCross-selling> _ Customer
p Tracking (T16) (T21) interested to
delay (T15)) recommended
products (E13)

........................ <> =

Fig.8 CMMN model of the generic process based on Bagozzi’s model (Fig. 1)

Figure 9 shows a screenshot of the current interface of
the tool. It contains an editor pane (center) and a palette (left
side) with three segments for, (1) process templates (top-left),
(2) various kinds of system tasks/interactions (middle-left),
and (3) user actions (bottom-left). The marketing analyst can
drag and drop elements from the palette to the editor pane.
The editor pane offers contextual menus for each element to
specify other properties like the channel, conditions (entry
sentries in CMMN) and exchanged data. The tool is being
developed using mxGraph, a fully client-side JavaScript dia-
gramming library that uses SVG and HTML for rendering?,

2 https://github.com/jgraph/mxgraph.

and that serializes the diagrams in an XML format. The tool
uses a simplified diagramming notation, appropriate for a
marketing analyst who may not be (probably is not) versed
in CMMN.

The editor pane in Fig. 9 shows the specification of baby
diapers purchasing process. This is a simple, routinized and
periodic purchase. The process template for routinized pro-
cesses omits the stages Desire, Implementation (intention)
(planning) and Trying (executing the plan). Here, we go
from Intention (we are out of diapers) to Purchase. In the
Unknown stage, customers visiting the website for informa-
tion are invited to log-in or sign-up to get their historical
data if applicable; from there they move to the Infention

@ Springer

https://github.com/jgraph/mxgraph

182

|. Benzarti et al.

stage. In the Intention stage, the company can recommend
similar products. If the customer goes to check-out, the pro-
cess moves to Purchase stage. The reader can check that the
tasks and user actions proposed in the Purchase and Feed-
back stages are a subset of those included in the full generic
process (Fig. 8).

Note that the model produced by the process editor (Fig. 9)
is serialized in an XML format that is specific to the mxGraph
library; it represents a graph where edges and vertices can
have an arbitrary number of metadata. At this stage of the
specification process, this model is sufficient because: (1) the
datamodel is yet to be specified (see next) and thus we cannot
be more precise about the data contents of the various tasks
and interactions, (2) it has the right level of formality for the
average marketing analysts. The next tool in the MDE chain
(see Sect. 5) will pull the two pieces of information together.

4.2 Specifying data model

The specification of the data model involves: (1) specify-
ing the product/service being offered, i.e. product categories
and models, and their properties (see Fig. 10), (2) specifying
the customer and customer categories, by selecting among
a set of prototypical properties for both, and 3) specifying
properties to be added to both customer and product mod-
els to properly handle the relevant influence factors for the
purchase scenario at hand. We discuss the three aspects in
turn.

With regard to products, we use three levels of abstraction:
(1) product categories, (2) product models, and (3) product
items. For a car, product categories include things such as
SUVs, Japanese cars, Mazda cars, or Ford SUVs. Product
categories can be nested. For example, MazdaSUV is a sub-
category of MazdaCar and SUV. A product model (e.g. the
Ford Explorer XLT 2020) belongs to a category. A product
itemis an instance of amodel, e.g. Jane’s Ford Explorer. Each
one of these levels has its own properties. Category nesting
leads to restrictions on properties. For example, whereas the
manufacturer of a JapaneseCar is the PropertyValueRange
{Honda, Mazda, Mitsubishi,... }, the manufacturer of a Maz-
daCar is the singleton {Mazda}. Figure 10 shows the data
specification GUI.

The specification of customer profiles is slightly differ-
ent: analysts are provided with a predefined list of attributes
that are typically used in customer profiles to choose from.
Analysts have the option to specify customer categories
with property value ranges, to encode preexisting market-
ing knowledge about consumer behavior. This was a feature
requested by our industrial partner, to allow his customers
(retailers) to bootstrap the system with “manual customer
categories until they gather enough consumer data to create
their own”, but derided by marketing academics ‘socio-
demographics are dead; long live big data’.

@ Springer

Table 1 Details about some interactions initiated by company

Data

Goal

Current stage

Interaction

General information about products and brand

Convey information

Desire

Communicate with the customer (T2)

Similar products with more/less features

Decrease psychological distance

Intention

Recommend similar products (T3)

Up-selling (T5)

Higher end products

Increase customer value

Intention/feedback

Intention

Recommendation according to traces of customer’s research

Decrease psychological distance

Personalized Recommendation (T3)

Similar products Features comparison

Decrease psychological distance

Implement.

Recommend similar products with features comparison (T8)

Nearest store Web site address

Enhance customer response

Implement.

Propose switching channel (store to online/online to store) (T7)

Discount amount Validity period

Enhance customer response

Implement./purchase

Discount coupon(T6)

Customer’s preferred features. Small set of products

Decrease psychological distance

Trying

Recommendation oriented features (T10)

Customer’s preferred features

Decrease psychological distance

Trying

Communicate with advisor (T9)

Cross-selling (T13)

Related products

Increase customer value

Purchase/feedback

Purchase

A new delivery date

Enhance customer response

Notify customers for possible delivery delays (T15)

Domain engineering for customer experience management

183

Purchase process templates Unknown

= Intention

CXM General .p

I

- Push Interactions

Browses

Information

Invitation to
for Login/signup

Recommend
Similar Products

Goes to
checkout

BHEEIEe

~ Pull Interactions

Peak Interactions

" &8

{—)

= Purchase

Goes to
checkout

Other Interactions

Customer Action Listeners

.......

55 geen i
Evaluates
E Product
Rz
Timer Ask for Feedback
= Feedback
b
ﬁ\ Cross-sell E Q Start over
Timer

Fig.9 The GUI for specifying a purchasing process: the example of a diapers purchasing process

Finally, the analyst is prompted for the properties that are
needed, for both products and consumers, to account for the
influence factors. Take the example of goal feasibility: we
know from marketing theory that goal feasibility influences
the desirability of a goal (Goal Desire), and its likelihood to
be retained/selected (Goal Intention) as the object of the pur-
chasing process (see Fig. 1). The challenge is to identify those
characteristics of the product that are potential obstacles to
its acquisition, and to record the corresponding characteristic
of customer that can help assess their capacity to overcome
those obstacles.

Take the example of price. If price can be an issue for this
type of purchase, it helps to record the customer’s income.
Price is not the only obstacle: yuppies may be able to afford
a fancy treadmill, but space might be an obstacle if they live
in a condo. Thus, we need to make sure that: 1) the product
dimensions are recorded, and 2) the “living space” of the
consumer is recorded, somehow.

We have encoded ‘proof of concept’ questions for the goal
feasibility influence factor in the current implementation of
the tool. But as the above example shows, we must carefully
analyze each influence factor to figure out: (1) what it could
mean in the context of a particular product type, and (2) how
to guide the analyst to add the required properties to both
product and customer.

5 Generating scenario-specific software
specifications

Recall from Fig. 4 that the scenario-specific generator takes
the specification produced by the scenario specification tool
(Sect. 4), and the generic CXM ontology to produce a plat-
form independent model (PIM). That model (PIM) consists
of a scenario-specific ontology and CMMN description of the
process. The specification produced by the scenario specifi-
cation tool (Sect. 4) consists of two XML files representing:
(1) the data schema, as elicited by the tool for specifying the
data model (Sect. 4.2), and (2) the serialized format of the
purchase process specified by the process editor described in
Sect. 4.1.3. For all practical purposes, the scenario-specific
generator (Fig. 11) can be thought of as consisting of two
subsystems, one for generating the scenario specific ontol-
ogy, described next (Sect. 5.1), and one for generating the
CMMN model for the purchase scenario process, described
in Sect. 5.2. At the time of this writing, the CMMN model
generator is not yet complete, and hence, its output (scenario
specific CMMN model in Fig. 11) is greyed out.

@ Springer

184

|. Benzarti et al.

Product Categories

Add product categories and subcategories Select the category to

Category to edit: hybrid
Sub category of: bicycle

product category nat Add Category

function
- bicycle
road
mountain
- hybrid
urban comfort
Submit
wheelsDiam

Fig. 10 The GUI for specifying product categories

Scenario Specific

Scenario specific Software Spec (PIM)

Scenario spec generator

(CIM)

CMMN Model
generator

Process

Ontology
generator

Scenario-
specific
ontology

Ontology

Fig. 11 The CIM to PIM scenario specific generator

5.1 Scenario-specific ontology generator

First, note that the generic CXM ontology, excerpted in Fig.
3 (the customer metamodel part), was implemented in OWL
using the Protege tool (see [7]). Further, the data specifica-
tion produced by the Scenario Specification Tool (Sect. 4)
contains: (1) the product category hierarchy (see Fig. 10),
along with the definition of the category properties, (2) prod-
uct models, along their properties and associated categories,
and (3) consumer categories, with their properties, and (4)
the consumer profile, with its properties. This information is
provided in JSon format, through a REST API of the scenario
specification tool.

The scenario-specific generator takes the scenario data
specification file, parses it, and generates OWL API code
to create, programmatically, the corresponding OWL enti-
ties, using the representation primitives of the generic CXM

@ Springer

configure

Property configuration

Literal = sport ©
transport

Enumeration w high, med -

Numeric = 700

ontology. The generation of the scenario-specific ontology
relies on the following rules:

e Each product (customer) category is mapped to an
instance of the generic CXM ontology concept Pro-
ductCategory (CustomerCategory)

e Each product (customer) category property is mapped to
an instance of the generic CXM ontology concept Pro-
ductProperty (CustomerProperty)

e If a property P4 of a category A is defined by the ana-
lyst as a restriction of a property Pp of a super category
B, then P, is defined as a subconcept of Pp, and the
restriction is enforced at the range (value type) level.

Figure 12 illustrates the above rules. In this case, the
marketing analyst identified the category Bicycle, and its sub-
category MountainBicycle. Both are created as instances of
ProductCategory. Because the analyst stated that Mountain-
Bicycle ‘restricts’ the WheelDiameter property of Bicycle,
the generator created a separate property for Mountain-
Bicycle (MountainWheelDiameter) that is a subconcept of
WheelDiameter.

5.2 Scenario-specific purchase model generator

As mentioned in Sect. 4.1.3, we developed a tool that enables
marketing analysts to specify the purchasing process. The
tool is being developed using the library mxGraph. The
resulting diagram is serialized in an XML format specific
to mxGraph. The scenario-specific generator transforms the
XML diagram toa CMMN description of the process. Fig. 13
shows the CMMN model that would result from the process

Domain engineering for customer experience management 185
Fig.12 An illustration of the Generic CXM ProductCategory
: Ontology -hasProperty
optology gene.ratlon rules for the abshration el
bicycle scenario [7] N N
________________________ instanceOf______________________ o _________instanceOf______________.
Bicycle ‘WheelDiameter

Scenario-Spcecific
Ontology

Abstraction level
N+1

MountainBicycle

hasProperty———> X
type : numeric

MountainWheelDiameter

shown in the process editor of Fig. 9 using specification tool
to a CMMN process model.

A Diagram in mxGraph is expressed in the form of a graph
that consists of vertices (nodes), and edges connecting the
nodes. These elements of a graph are called cells. A cell
object is characterized by an id, a parent cell—e.g. an inter-
action has as parent the corresponding stage, a position (X,y)
and a User Object. A user object stores the business logic
associated with a visual cell. In our context, the business
logic is specified by the marketing analyst in the contextual
menu of each interaction, and consists on: the type of the cell
(step, company-initiated interaction, customer action, edge),
the cell label, customer interaction channel, conditions and
data imported from the data model specification.

Based on the business logic stored in the user objects,
the CMMN model is generated according to the following
transformation rules:

e Step cells are transformed to CMMN stages,

e Company-initiated interaction cells are transformed to
CMMN tasks,

e The customer actions are transformed to CMMN User
events,

e Cell labels constitute the labels of CMMN elements,

e Conditions are transformed to CMMN entry sentries,

e Channel and Data are transformed to case file that will
support the execution of CMMN task by the CMMN
engine.

In sum, PIM is an intermediate format of the scenario spec-
ification between the business specification by the marketing
analyst (CIM) and the low level code source generation at
the end of the tool channel (PSM). In the PIM specifica-
tion, we find the data model (scenario-specific ontology) of
the scenario and the process view of the specified customer
experience in a computational format. These elements need
to be transformed to a low-level source code (PSM): 1) to
transform the scenario-specific ontology to a data schema
and 2) implement the CMMN process tasks in the form of
CXM functionality and generated their source code, so that
the process can be executed.

hasProperty———>

type : [50, 76]

6 Generating technology-specific CXM code

Recall from Figure 4 that the Java code generator takes
two inputs: (1) an abstract software specification of the CX
scenario at hand (PIM), produced by the scenario-specific
generator (see Section 5), and (2) a library of CXM func-
tion templates. It produces as output executable code in the
target platform; in this case Java with a relational database
for object persistence. As mentioned earlier, the interaction
selection functionality (Sect. 4) is yet to be completed, and
hence all the downstream functionalities are yet to be imple-
mented. Thus, the scenario-specific software specification
(PIM) contains only the data model. This model is used for
two purposes. First, we use it to generate the Java classes and
corresponding databases tables that represent the entities of
the purchase scenario (products and consumers). Second, we
use it to ‘instantiate’/generate the customization functions for
the purchase scenario at hand. We explain them in turn.

First, using the scenario-specific OWL ontology as an
input, we used OWL API 5.1.0, a reference API for creating
and manipulating OWL ontologies?, and Hermit Reasoner
(1.3.8), to:

e generate database schemas and fill out the tables to store:
(1) product information, including the hierarchy of cat-
egories, models, and the corresponding property values,
and (2) customer categories, states, and individuals;

e generate the corresponding Java classes, with their
attributes and accessors, enforcing property-value restric-
tions expressed in OWL (see Sect. 5);

e generate the Object Relational Mapping between the Java
classes and the relational data store.

More details, including an example, are presented in [7]. With
regard to the customization functions, illustrated with various
types of recommendations in the introductory scenario, we
sought a way of encoding those functions in a way that does
notrefer explicitly to the data model athand. We will illustrate
the problem with an example.

3 http://owlapi.sourceforge.org.

@ Springer

http://owlapi.sourceforge.org

186

|. Benzarti et al.

/ Diapers Purchasing Scenario \

/ Unknown \

Inviration to
subscribe (T1)
[occur]

[occur]

Customer
browsing for
information (E2)

e e

Customer goes to
checkout (E7)

|
. Intention ==
& Purchase

Q)

.. — foceur] |

Intention

Recommend
similar products

(e-mail/
notification)
(T3)

=l

focu]
Discount coupon
(online/ store)
(T11)

Delivery tracking

(e-mail)
(T16)

7\

/ Feedback

+ [oceur]

Start-over

<Cross-selling>

AN =]

(email) (e-mail)
.. [ocic.u f:\:ggggk (T20) (T17)
Customer gives (e-mail)
feodbaok (E12) (T14) O = /
= /S -
....................... E’osmve review

/ i
°.°.°"_f1

Fig. 13 The specification of the diapers purchase scenario in CMMN

Assume that you want to buy a bicycle to ride in the city,
e.g. to commute to work. Thus, ‘ride in the city’ would be
the value of a bicycleUsage property of customers. Assume
now that we have three bicycle categories, MountainBicy-
cle, HybridBicycle, and RacingBicycle, each with a function
attribute, representing the potential usages of the category.
Our application should recommend a bicycle category bc, if
all the usages intended by the customer are supported by the
category, i.e. if:

(Vbce BC)
bicycleUsage(myCustomer) C function(bc) =>
recommend bc models to myCustomer

ey

This encoding refers explicitly to data elements of the
purchase scenario at hand. Further, the matched attributes
([Customer. JbicycleUsage and [BicycleCategory.] function)
do not even have the same name, though they have similar
semantics and the same range.

To handle this problem, we sought a codification of
CXM customization functions that abstracts away domain
specificity and focuses on the intentional and computational
aspects. This is like domain genericity where the domain
variable is semantically constrained. Thus, we developed
a template language that relies on a Java-like syntax, and
that refers to meta-level constraints on the scenario-specific
ontology to encode customization algorithms in a domain-
independent way (see Fig. 14).

Concretely, we used the Velocity templating engine. So
far, we encoded a handful of faceted concept matching func-
tions, including simple recommendation functions, as proofs

@ Springer

of concept. We are currently working on more complex pro-
cessing chains, of the kind we use in machine learning tasks.

7 Discussion

This domain engineering effort was challenging in many
respects. Some of these challenges were atypical. First
and foremost, customer experience management (CXM) is
a novel and immature application domain, which inval-
idates typical domain analysis techniques; this is dis-
cussed in Sect. 7.1. Second, we had an unusually broad
scope, where the domain is neither purely technical nor
vertical/industry-specific. This rendered traditional domain
design/implementation parameterization techniques difficult
to apply. In particular, Sect. 7.2 discusses the difficulties
we faced in applying inversion of control—the so-called
Hollywood Principle, which is key to reuse in application
frameworks—to implement CXM-wide functionalities. An
important special case of this problem arises for machine
learning functionalities, and is discussed separately (Sect.
7.3).

We also faced challenges that are typical of domain engi-
neering. We mentioned in the introduction to Sect. 4 the issue
of one versus several purchase scenarios for a given retailer;
we discuss this further in Sect. 7.4. Finally, validation is
notoriously difficult for method engineering research [18],
including that involving the development of domain applica-
tion frameworks. We discuss such issues as they pertain to
CxDev in Sect. 7.5.

Domain engineering for customer experience management

187

public class Recommendation {
#foreach($recommendation in $recommendations)
public boolean RecommendProduct(
${recommendation.getCustomerCategory()}
${recommendation.getCustomerCategory()},
${recommendation.getProductCategory()}
${recommendation.getProductCategory()}){

(${recommendation.getCustomerCategory()}.
get${match.getCustomerProperty()}Q).
equals(${recommendation.getProductCategory()}.
get${match.getProductProperty()}()))
#if($foreach.hasNext) && #end
#end);
return recommend;

boolean recommend = (#foreach($match in ${recommendation.getMatching()})

Specific ontology
T
\
v

IsAssociated (meta-relation)

Customer attribute Product attribute
Usage Function
Required comfort Comfort

Required efficiency Efficency

v

(Java) Code
generator

Velocity CXM Function
templates

public class Recommendation {
public boolean RecommendProduct(PerformancePlus PerformancePlus, road road) {

boolean recommend = (
(PerformancePlus.getComfortReq().
equals(road.getComfort()))
&% (PerformancePlus.getEfficiencyReq().
equals(road.getEfficiency()))
&& (PerformancePlus.getusage().
equals(road.getProductfunction()))
bH
return recommend;

}

Fig. 14 Generating CXM Customization Functions

7.1 Why was this hard? CXM: a to be-defined domain

This domain engineering effort was particularly hard. Indeed,
domain analysis or engineering is typically a maturation
process, where an organization that has been developing
applications within a stable domain, decides to leverage the
commonalities between the applications into a methodology
and set of software artifacts that facilitate the development
and maintenance of future applications. CXM does not fit the
bill, as explained below.

First, itis notamature domain, as the fragmented literature
shows (see Sect. 2), with abstractions coming from different
fields (marketing, social psychology, service design). Fur-
ther, there are no easy mappings from those abstractions to
IT. For example, in typical business domains, there is a rel-
atively simple mapping from domain concepts to software
concepts: real-world entities (customer, product, etc.) that
the system needs to track are mapped to similarly named
entities (objects, tables, etc.). Contrast that with the tortuous
path of influence factors and how we included them in the
consumer profile (see Sects. 2.1, 2.5.1, and 4.2).

A corollary of the lack of maturity of the CXM domain, is
the absence of existing CXM applications that we could draw
upon, for analysis, design, or implementations. First, while
the concept of CXM is not new, there are no methodical
industrial implementations. Most e-commerce tool vendors,
like our industrial partner, recognize the potential of CXM

functionalities. However, they do not offer CXM frameworks
beyond, perhaps, standalone machine learning or text mining
libraries. Industrial implementations such as Amazon’s Go
store are more like one-of-a-kind rechnology showcases.

7.2 Do not call us, we will call you

Typical application frameworks rely on what is called the
Hollywood Principle to: (1) maximize the scope of the shared
logic, and (2) minimize the dependencies between the user
code and the framework code. Typically, a framework would
define a number of hotspots (variation points) that correspond
to contracts (typically, interfaces) that user code has to imple-
ment to benefit from the services offered by the framework.
This way, user code does not need to invoke those services
explicitly (“do not call us”); however, by “registering with
the framework™ (instantiating its ‘hotspots’), the methods it
implemented to “fulfill its contractual obligations” will get
called (“we will call you”), thereby benefiting from the ser-
vices offered by the framework.

This metaphor, which works well with infrastructure ser-
vices, becomes a bit more tenuous with domain services,
where contracts need to be specified in domain-specific
terms. This is even more difficult with CXM functionali-
ties, where the problem goes beyond the issue of domain
vocabulary. We showed in Sect. 6 how we alleviated this
problem by encoding some of the CXM functionalities using

@ Springer

188

|. Benzarti et al.

a templating language where template variables are defined
intensionally. However, this does not address the bigger prob-
lem with CXM functionalities that involve machine learning,
discussed next.

7.3 The machine learning conundrum

Table 1 shows a number of interactions (CMMN tasks) that
can be initiated by the retailer at different stages of the pur-
chasing process. Task T'13 (cross-selling), initiated at the
check-out or feedback stage, recommends products that are
typically purchased along with the one being purchased or
evaluated. Task 7'4 talks about personalized recommenda-
tions that refer to the consumer profile. It would be convenient
if a CXM framework could include library functions such as:
Sorted<Product> findProductsPurchasedWith(Product p);
Sorted<Product> findPreferredProducts(Customer c,
ProductCategory pc);

Sorted<Product> findPreferredProducts (
CustomerCategory cc, ProductCategory pc);

as W N e

We saw in Sect. 6 difficulties inherent in coding such
functions in a domain-independent way, as discussed above
(Sect. 7.2). The solution that we proposed encodes these
functions in an intentional way, where we refer to data ele-
ments/attributes by their semantic role in the description of
an entity, as opposed to by name. The example shown in
Sect. 6 did a simple attribute value comparison. However,
the above three functions require using machine learning
algorithms on a vectorial encoding of the domain data. For
example, one can imagine the [function findProductsPur-
chasedWith(Product p) using some form of clustering or
association rule mining, on a vectorial or a set representation
of a historical database of purchase transactions. In the sim-
plest case, the implementation of this function requires two
major decisions: 1) choosing an algorithm appropriate for
the data (types of attributes, size, distribution, etc.) and task
at hand (association, classification, regression, etc.), and 2)
choosing an encoding of the input data appropriate for that
algorithm. Both decisions involve a combination of machine
learning expertise, domain insights, and trial and error, all
of which are challenging—but not impossible to encode for
reuse.

We have ongoing work to develop a machine learning
framework aimed at domain experts such as marketing ana-
lysts, that helps them:

1. Translate a domain problem, such as “find products often
bought together”, into a data analysis problem such as
“clustering” or “association rule mining”;

2. Adoptoradaptamachine learning solution process/workflow.

Indeed, typical machine learning problem solving often a
sequence of tasks starting with data preparation, followed
by the application of one or several machine learning

@ Springer

algorithms, followed by data presentation. Data prepara-
tion may involve data collection, data cleaning, filtering,
parameter estimation, dimensionality reduction, etc.;

3. Chose the appropriate algorithm for each step of the solu-
tion process/workflow;

4. Execute the solution on the actual data at hand;

5. Presenting or interpreting the output (data, models, etc.).

For the purposes of our CXM framework, we can focus on
the common problems that arise in constructing data ele-
ments (see Questions Q3.2 and Q3.3 in Sect. 2.1), and on
the interactions shown in Table 1, with the goal of arriving at
configurable versions of the three functions shown above®.

7.4 One purchase scenario versus many

The tool presented in Sect. 4 enables a marketing analyst
to specify the user requirements for a purchase scenario;
such requirements serve as the input to an MDE tool chain
that ultimately produces executable CXM code. Recall that
a purchase scenario consists of an experience-enhanced pur-
chasing process, and the data needed for the process. In turn,
the experience-enhanced purchasing process consists of a
subset of the Bagozzi’s purchasing process (Fig. 1) thatis rel-
evant to the type of purchase at hand, augmented/decorated
with experience-enhancing interactions designed following
the principles explained in Sect. 2.4. This raises the question
of what is the appropriate scope for a purchase scenario.

To the extent that one purchase scenario results in one
software application, with its own data model and persis-
tence layer, the idea of one purchase scenario per retailer is
appealing, due to its simplicity. This approach would proba-
bly make sense for a grocery chain, a pet food and supplies
chain, or a sports equipment chain (actual customers of our
industrial partner), i.e. retailers that focus on a single kind
of product. Using a single scenario does not mean that we
should trigger all of the interactions for every product in the
store. For example, a sports equipment chain would carry
products from a three-dollar tennis ball to a three-thousand
dollar high-performance or electrical bicycle. The interac-
tions shown in Table 1 can be conditioned on the price of
the product of interest. We could also add transitions (see
Figure 8) that skip stages based on the price of the article.

However, if we have a retailer that supports a wide variety
of product lines, from six-thousand dollar home entertain-
ment systems to tomatoes or socks (e.g. Walmart), then
several purchase scenarios need to be specified. This raises
two problems. The first is related to the multitude of data
models, each with its definition of customer and product

4 Interestingly, Shopify publishes one such configurable app for
the “find products often bought together”: https://apps.shopify.com/
frequently-bought-together.

https://apps.shopify.com/frequently-bought-together
https://apps.shopify.com/frequently-bought-together

Domain engineering for customer experience management

189

models and categories. The second is related to the multi-
ple processes that could or should be enacted.

The first problem is relatively easy to solve: we can treat
the data model specific to a scenario as a view on a central
model, and generate a single persistence layer for all the sce-
narios. This entails merging the data models specific to each
scenario, prior to invoking the code generator (see Fig. 4 in
Sect. 3). This requires some changes to the tool to define
purchase scenarios within an enterprise container, and sup-
port the definition of several scenarios per container; the final
tool in the tool chain (code generator) would then generate
the code for the scenarios within a container in a single batch.

The second problem is slightly more complex, and deals
with the issue of having several process models. Notice that
for the kind of immersive applications described in the intro-
duction (Sect. 1), this would not be a big problem. Indeed,
this is the very notion of context sensitivity, where a different
application takes over as a customer moves from the appli-
ances sector to the grocery sector. It is more complicated
within the context of multi-channel or omni-channel com-
merce, or even online shopping where one can switch back
and forth between two product lines with a single keystroke.
The context switching can be dizzying. We are working with
digital marketing specialists for insights as to the best strat-
egy to handle different, possibly overlapping, experiences.

7.5 Validation

In a nutshell, our work aims at developing a methodol-
ogy and a software development framework (CxDev), that
helps retailers develop effective add-on customer experi-
ence management (CXM) functionalities to their e-commerce
platforms. Our work is consistent with the design science
research (DSR) methodology [16], and the artefact(s) that
we are designing consists of a methodology and (embodied
in) a software development framework meant to achieve a
number of goals, set in italics in the previous statement. We
can identify three distinct but related goals:

G1 It helps develop CXM functionalities. We mentioned
throughout this paper that CXM is a novel software
application domain that challenges traditional software
development techniques, specifically the ones related to
requirements and specifications (see Sects. 1 and 2.1)

G, It pertains to CXM functionalities. This relates to the fact
that the knowledge embodied in the methodology and the
framework represents consensual, state of the art CXM
knowledge,

G3 The CXM functionalities that are developed using the
methodology and framework are effective.

Each one of these goals has a number of subgoals. For exam-
ple, goal G can be broken down into several subgoals,

corresponding to help at different stages of the development
lifecycle:

G1.1 Help business (marketing) analysts specify functional

requirements for a CXM application

G1.2 Help developers produce executable software from such

functional requirements in a target architecture and tech-
nology, with minimal effort

G 1.3 Help produce code that exhibits different intrinsic (e.g.

modularity) and run-time qualities (e.g. performance)

In turn, goal G3 can be broken down into two distinct sub-
goals relating to effectiveness from the point of view of the
consumer or the retailer:

G131 The developed functionalities enhance consumers’ expe-

riences in interacting with the retailer.

G132 The developed functionalities enable the retailer to attain

his business objectives.

G3.1 and G3 are distinct but related. A user might find that
an experience is ‘pleasant’ (G3 1), without buying anything.
When I walk into a store, [appreciate when a salesperson tells
me right away that they do not have what I am looking for
instead of trying to sell me something else. From the point of
view of the business, effectiveness (G3.2)may be measured in
terms of: (1) maximizing the probability or the value of each
transaction, or (2) developing or enhancing brand loyalty, or
(3) maximizing lifetime value, i.e. the number of purchases
that the consumer will make in the long run.

Given these goals, the Goal/Question/Metric (GQM)
framework [12] can then be used to derive, for each goal,
research questions; these questions would, in turn, lead to
metrics which would guide the design of experiments to col-
lect such metrics (see e.g. [18].

At this stage of the research, we are particularly interested
in goals G1.1, G12, G2, and G31. The quality of the code
generated by our MDE tool chain (see Sects. 3, 5, and 6) is
not an immediate concern (goal G1 3). We are not concerned
either, about the efficacy of the CXM functionalities with
regard to the business objectives of the retailers (goal G3 2,
e.g. maximizing shopping cart value versus lifetime value),
for both ethical and practical® reasons.

With regard to goal Gpj, we are currently working
with marketing researchers and practitioners to validate the
requirements elicitation tool (tool for specifying purchase
scenarios, see Sect. 4). We are facing two methodological
challenges, among others:

5 It is impractical to design a controlled experiment to check whether
the addition of CXM functionalities increases the frequency or average
value of transaction; see e.g. [18].

@ Springer

190

|. Benzarti et al.

1. We have the intuition that the potential users of our CXM
specification tool would be marketing or digital market-
ing specialists, but we do not know what their job titles
would be, in part because such ‘jobs’ are emerging!

2. We have no basis for comparison. We know of no CXM
specification methodology or tool that we can compare
ours to.

We are working with our industrial partner (an e-commerce
tool vendor) to help us identify target users within its cus-
tomer base (various retailers). We are also working with mar-
keting researchers to design experiments to validate the CXM
contents embodied in our methodology and tools (goal G»).

With regard to goal G2, we evaluated some parts of an
earlier version of the MDE tool chain with a case study related
to sports equipment [7]. We were able to validate the feasi-
bility of the approach in general, and the code generation for
the data aspects of CXM applications. The data aspects, as
described in Sects. 4.2 and 5.1, have not evolved significantly
since 2017. The behavioral aspects of the CXM functional-
ities are new and ongoing and remain to be validated. We
should also note that, for the time being, the CXM function-
alities are generated standalone. We have not yet focused
on architectural integration of CXM functionalities into tra-
ditional e-commerce site functionalities. This depends, to a
large extent, on the architecture of the host platform.

With regard to goal G3 1, i.e. that the CXM functionali-
ties developed do indeed enhance consumers’ experiences,
we would need an actual implementation and deployment
of CXM functionalities into an operational e-commerce or
omni-channel commerce platform. Our tools are not yet
mature for integration into a production environment. Work-
ing with our industrial partner, we will identify a pilot site to
test our CXM functionalities. Note however, that we have per-
formed a partial validation of some of the CXM functionali-
ties developed within the context of this project. In particular,
we developed a generic recommendation algorithm that uses
veristic variables [31,32] to take into account the variable
semantics of concept properties in [9]. Indeed, a class of rec-
ommendation algorithms recommend products based on sim-
ilarities between consumer properties and product properties.
These properties have a multitude of semantics : monovalued
vs. multivalued, certain vs. uncertain and crisp vs. fuzzy. We
have shown empirically that taking into account these vari-
abilities improves the performance of the recommendation
algorithm when compared to baseline algorithms [9].

8 Conclusion

The IoT, Al and cloud computing enable us to develop
applications that provide rich and personalized customer

@ Springer

experiences around existing e-commerce platforms; if only
we knew what to develop, from a functional point of view,
and incidentally, how to develop it by leveraging reusable
components. That is the domain engineering mandate given
to us by our industrial partner, the vendor of an e-commerce
product suite.

Domain engineering is usually done as a logical step in
the maturation process of an organization that accrues a deep
expertise and a ‘large’ portfolio of applications within a rel-
atively limited domain. By contrast, we had to contend with
some fundamental questions about CXM, that a fragmented
literature only partially addressed; we also had no existing
application portfolio to start with, beyond the ‘fantasies’ of
marketing and IT visionaries. In this paper, we discussed the
main challenges, and described our strategy for addressing
them. Our work is still in the early stages, and there is a lot of
development work ahead of us, both in terms of methodolog-
ical content and tooling. However, we hope that our general
approach enables us and others to research these issues in a
methodical manner.

References

1. Alegre U, Augusto JC, Clark T (2016) Engineering context-aware
systems and applications: a survey. J Syst Softw 117:55
2. Ariely D, Carmon Z (2000) Gestalt characteristics of experiences:
the defining features of summarized events. J] Behav Decis Mak
13(2):191-201
3. Ariely D, Zauberman G (2003) Differential partitioning of
extended experiences. Organ Behav Hum Decis Process
91(2):128-139
4. Azjen I (1991) The theory of planned behavior. Organisational
Behav Human Dec Process 50:179
5. Bagozzi RP, Gurhan-Canliu Z, Priester JR (2007) The social psy-
chology of consumer behavior. Open University Press
6. Bagozzi RP, Warshaw PR (1990) Trying to consume. J Consum
Res 17:127-140
7. Benzarti I, Mili H (2017) A development framework for customer
experience management applications: principles and case study. In:
Proceedings—14th IEEE international conference on e-business
engineering, ICEBE 2017
8. Benzarti I, Mili H, Leshob A (2020) Cxdev: A case study in domain
engineering for customer experience management. In: Reuse in
emerging software engineering practices, pp. 100-116. Springer
International Publishing, Cham
9. Benzarti I, Mili H, Paillard A (2020) A content based e-commerce
recommendation approach under the veristic framework. In: Chao
KM, Jiang L, Hussain OK, Ma SP, Fei X (eds) Advances in E-
business engineering for ubiquitous computing. Springer, Cham,
pp 495-514
10. Bitran GR, Ferrer JC, Rocha e Oliveira P (2008) Om forum—
managing customer experiences: perspectives on the temporal
aspects of service encounters. Manuf Serv Oper Manag 10(1):61-
83
11. Bock C, Zha X, Hw Suh, Lee JH (2010) Ontological product mod-
eling for collaborative design. Elsevier, pp 510-524
12. Briand LC, Differding CM, Rombach HD (1996) Practical guide-
lines for measurement-based process improvement. Softw Process
Improv Pract 2(4):253-280

Domain engineering for customer experience management

191

15.
16.

17.

18.

19.

20.

21.

22.

23.

. Cook LS, Bowen DE, Chase RB, Dasu S, Stewart DM, Tansik DA

(2002) Human issues in service design. J] Oper Manag 20:159
Dey AK, Abowd GD, Salber D (2001) A conceptual framework
and a toolkit for supporting the rapid prototyping of context-aware
applications. Human Comput Interact 16:97

Gruber T (2007) Ontologies, web 2.0 and beyond

Hevner A, Chatterjee S (2010) Design science research in infor-
mation systems. In: Design research in information systems, pp.
9-22. Springer

HolmgqvistJ, Guest D, Gronroos C (2015) The role of psychological
distance in value creation. Manag Decis 53(7):1430-1451

Ba Kitchenham, Pfleeger SL, Pickard LM, Jones PW, Hoaglin
DC, El Emam K, Rosenberg J (2002) Preliminary guidelines for
empirical research in software engineering. IEEE Trans Softw Eng
28(8):721-734. https://doi.org/10.1109/TSE.2002.1027796

Kurz M, Schmidt W, Fleischmann A, Lederer M (2015) Lever-
aging cmmn for acm: examining the applicability of a new omg
standard for adaptive case management. In: Proceedings of the 7th
international conference on subject-oriented business process man-
agement, pp. 1-9

Lee JH, Fenves SJ, Bock C, Suh HW, Rachuri S, Fiorentini X,
Sriram RD (2011) A semantic product modeling framework and
its application to behavior evaluation. IEEE Trans Autom Sci Eng
9(1):110-123

Liu Y, Shrum LJ (2002) What is interactivity and is it always such
a good thing? Implications of definition, person, and situation for
the influence of interactivity on advertising effectiveness. J Advert
31(4):53-64

Meyer C, Schwager A et al (2007) Understanding customer expe-
rience. Harv Bus Rev 85(2):116

Mili H, Benzarti I, Meurs MJ, Obaid A, Gonzalez-Huerta J, Haj-
Salem N, Boubaker A (2016) Context aware customer experience
management: A development framework based on ontologies and
computational intelligence. In: Sentiment analysis and ontology
engineering, pp. 273-311. Springer

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

Motahari-Nezhad HR, Swenson KD (2013) Adaptive case man-
agement: overview and research challenges. In: 2013 IEEE 15th
conference on business informatics, pp. 264-269. IEEE

Perera C, Zaslavsky A, Christen P, Georgakopoulos D (2014) Con-
text aware computing for the internet of things: a survey. IEEE
Commun Surv Tutor 16:414

Preuveneers D, Novais P (2012) A survey of software engineering
best practices for the development of smart applications in ambient
intelligence. J Ambient Intell Smart Environ 4(3):149-162
Routis I, Nikolaidou M, Alexopoulou N, Anagnostopoulos D
(2018) Empowering knowledge workers with cmmn: the concept
of case learning. In: 2018 IEEE 22nd international enterprise dis-
tributed object computing workshop (EDOCW), pp. 33-36. IEEE
Routis I, Nikolaidou M, Anagnostopoulos D (2018) Using CMMN
to model social processes. In: Lecture notes in business information
processing 308(February): 335-347

Solomon MR, Dahl DW, White K, Zaichkowsky JL, Polegato R
(2014) Consumer behavior: buying, having, and being. Pearson
Toronto, Canada

Walker B (2011) The emergence of customer experience manage-
ment solutions. For eBusiness& Channel Strategy Professionals
Yager RR (2002) Querying databases containing multivalued
attributes using veristic variables. Fuzzy Sets Syst 129(2):163-185
Yager RR (2007) Veristic variables and approximate reasoning for
intelligent semantic web systems. In: Forging new frontiers: fuzzy
pioneers I, pp. 231-249. Springer

Zomerdijk LG, Voss CA (2010) Service design for experience-
centric services. J Serv Res 13(1):67-82

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

https://doi.org/10.1109/TSE.2002.1027796

	Domain engineering for customer experience management
	Abstract
	1 Introduction
	2 A conceptual framework for CXM
	2.1 Overview
	2.2 A cognitive modeling of the purchasing process
	2.3 Operationalizing the cognitive model to design customer experiences
	2.4 Principles for adding CXM interactions
	2.4.1 Interact with customers based on their shopping behavior (P1)
	2.4.2 Assess customers' psychological distance to their Goals (P2)
	2.4.3 Design peaks of intensity level during sequences (P3)
	2.4.4 Partition extended purchasing processes to a set of sequences on strategic moments (P4)

	2.5 CXM ontologies
	2.5.1 Consumer data
	2.5.2 Product data
	2.5.3 Other data

	3 A software framework for CXM
	4 A tool for specifying purchase scenarios
	4.1 Specifying the purchase scenario process
	4.1.1 Purchase processes: the case for case management
	4.1.2 A representation of Bagozzi's process and of the CXM interactions
	4.1.3 Configuring a purchase scenario's process and CXM functionalities

	4.2 Specifying data model

	5 Generating scenario-specific software specifications
	5.1 Scenario-specific ontology generator
	5.2 Scenario-specific purchase model generator

	6 Generating technology-specific CXM code
	7 Discussion
	7.1 Why was this hard? CXM: a to be-defined domain
	7.2 Do not call us, we will call you
	7.3 The machine learning conundrum
	7.4 One purchase scenario versus many
	7.5 Validation

	8 Conclusion
	References

