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ABSTRACT: Contrary to continuous phase transitions, where renormalization group
theory provides a general framework, for discontinuous phase transitions such a framework
seems to be absent. Although the thermodynamics of the latter type of transitions is well-
known and requires input from two phases, for melting a variety of one-phase theories and
models based on solids has been proposed, as a generally accepted theory for liquids is (yet)
missing. Each theory or model deals with a specific mechanism using typically one of the
various defects (vacancies, interstitials, dislocations, interstitialcies) present in solids.
Furthermore, recognizing that surfaces are often present, one distinguishes between
mechanical or bulk melting and thermodynamic or surface-mediated melting. After providing the necessary preliminaries, we discuss
both types of melting in relation to the various defects. Thereafter we deal with the effect of pressure on the melting process,
followed by a discussion along the line of type of materials. Subsequently, some other aspects and approaches are dealt with. An
attempt to put melting in perspective concludes this review.

CONTENTS

1. Introduction 13714
2. Some General Considerations 13714
3. Discontinuous Transitions 13715
4. Melting 13716
5. Mechanical or Bulk Melting 13718

5.1. Vibrational Instability 13718
5.2. Other Rationalizations Using Vibrational

Instability 13721
5.3. Lattice Instability 13724
5.4. Vacancies 13726
5.5. Interstitials 13727
5.6. Dislocations 13729
5.7. Interstitialcies 13730
5.8. Simulations 13732
5.8.1. General Aspects 13732
5.8.2. Specific Systems 13733

5.9. Models and Correlations 13735
6. Thermodynamic or Surface Mediated Melting 13737

6.1. Melting of Nanoparticles 13738
6.2. Vacancies Revisited 13742
6.3. Dislocations Revisited 13742
6.4. Simulations Revisited 13744
6.5. Surface Transitions 13745

7. The Influence of Pressure 13747
7.1. Thermodynamic Approach 13748
7.2. Lindemann-Based and Related Approaches 13751

8. Molecular, Inorganic, Metallic, and Polymeric
Solids 13753
8.1. Molecular Solids 13753
8.2. Inorganic Solids 13756
8.3. Metallic Solids 13759

8.3.1. Equation of State Models 13759
8.3.2. Theoretical Models and Simulations 13761

8.4. Polymeric Solids 13762
9. Other Aspects 13764

9.1. History-Dependent Melting 13764
9.2. The Odd−Even Effect 13764
9.3. Ultrafast Experimental Methods 13765

10. Other Approaches 13768
10.1. Other One-Phase Approaches 13768
10.1.1. Lattice Dynamics Models 13768
10.1.2. Energy Balance Models 13768
10.1.3. Scaling 13769
10.1.4. Density Functional Theory 13770
10.1.5. Various Other Models 13771

10.2. Two-Phase Approaches 13772
10.3. Colloidal Systems 13774
10.3.1. Melting in 3D 13775
10.3.2. Melting in 2D 13777

11. Melting in Perspective 13778
Author Information 13779

Corresponding Author 13779
Notes 13779
Biography 13779

Acknowledgments 13779
Abbreviations 13779

Received: July 11, 2023
Revised: October 11, 2023
Accepted: October 12, 2023
Published: November 14, 2023

Reviewpubs.acs.org/CR

© 2023 The Author. Published by
American Chemical Society

13713
https://doi.org/10.1021/acs.chemrev.3c00489

Chem. Rev. 2023, 123, 13713−13795

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

T
U

 E
IN

D
H

O
V

E
N

 o
n 

D
ec

em
be

r 
19

, 2
02

3 
at

 1
0:

36
:2

2 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Gijsbertus+de+With"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.chemrev.3c00489&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00489?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00489?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00489?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00489?fig=agr1&ref=pdf
https://pubs.acs.org/toc/chreay/123/23?ref=pdf
https://pubs.acs.org/toc/chreay/123/23?ref=pdf
https://pubs.acs.org/toc/chreay/123/23?ref=pdf
https://pubs.acs.org/toc/chreay/123/23?ref=pdf
pubs.acs.org/CR?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.chemrev.3c00489?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/CR?ref=pdf
https://pubs.acs.org/CR?ref=pdf
https://acsopenscience.org/open-access/licensing-options/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Symbols 13780
References 13780

1. INTRODUCTION
Phase transitions are important in many fields of science and
technology. One typically distinguishes between first-order or
discontinuous and second-order or continuous transitions. An
important example of continuous phase transitions is the
transition over the critical point. To describe such transitions, a
generally accepted framework, renormalization group theory, is
available. It seems that for discontinuous transitions such a
general framework is absent. An important example of the
latter type of transition is melting. The thermodynamics of
melting is relatively simple and well-described by the
Clapeyron−Clausius equation. It has been stated by Grimvall
and Sjödin1 that for most practical purposes it is best to use the
melting temperature Tmel as a correlation parameter for several
properties, including the Debye temperature θD. As will
become clear from the following sections, various mechanisms
have been advocated to determine Tmel which are hardly
related, as each emphasizes the role of one of the defects
existing in solids. In brief, although melting is ubiquitous,
understanding of the “why”, “how”, and “what”, i.e.,
mechanistic understanding, has not been established com-
pletely, as has been emphasized through time, see, e.g.,
Mansoori,2 Vorob’ev,3 and Pedersen et al.4

Even brief browsing makes clear that the literature on
melting is massive and contains many, sometimes diverging,
views. Moreover, although generality often is claimed, some of
the approaches are clearly dependent on the type of material.
In the following sections we first discuss some preliminaries.
Second, we deal with mechanical (or bulk) melting and
thermodynamic (or surface-mediated) melting in relation to
the various defects in solids, such as vacancies, interstitials,
dislocations, and interstitialcies. Third, we discuss the effect of
pressure on the melting point. These parts form the core of
this review. Thereafter we change gears by discussing melting
along the line of individual materials of which the individual
sections typically do not contain general theory. This is
followed by a discussion on three other aspects, namely history
dependence, odd−even effect, and ultrafast heating, and some
other one-phase and two-phase approaches. We conclude with
an overall perspective on melting. Although the effect of
impurities is important, e.g., for metals5 and geomaterials,6 the
focus is largely on (general) mechanisms for pure three-
dimensional crystalline solids, thereby avoiding details on
experimental conditions, but in the sections on the various
materials we highlight specifics including pressure effects for
the individual materials. We generally provide details so that
the reader does not need to retrieve a reference right away to
check for herself or himself, but as this is fairly impossible for
all references, generally one or two representative approaches
are discussed in some detail, while others are more limitedly
discussed or enumerated.
For a broad early overview we refer to the book by

Ubbelohde,7 which in spite of its age, is still worth reading.
Further, in modeling the Debye model and its consequences
are often used, which are well in described by Grimvall,8 while
an introduction can be found Slater’s book9 and Poirier10

provided some illuminating remarks. Also simulations are
frequently referred to, the principles and details of which can

be found in the treatises by Frenkel and Smit11 and by
Berendsen.12

Before continuing it may be useful to indicate some previous
and related reviews. The thermodynamics of melting was
reviewed by Stishov,13 while Poirier10,14 discussed inorganic
materials without taking interfaces into account and a review
by Nabarro15 dealt with dislocation mechanisms only.
Bilgram16 focused on dynamics at the solid−liquid transition,
Löwen17 dealt with superheating, dynamics, and a comparison
with colloids, while Haymet18 reviewed melting from the DFT
point of view. Kofman et al.19 emphasized results on metal
particles by using high sensitivity reflectance and electron
microscopy measurements, while Stishov20 focused on the role
of entropy. Finally, Mei and Lu21 primarily paid attention to
surface effects and superheating of nanosized particles and thin
films and Ram22 discussed equilibrium theory of molecular
fluids in relation to freezing. Apart from the papers by Mei and
Lu21 and Ram,22 they are all several decades old.

2. SOME GENERAL CONSIDERATIONS
By changing the conditions�such as pressure P or temper-
ature T�for many materials, a transition from one phase to
another can be induced and, under certain conditions, two
phases of the same material coexist. Since each of the two
phases has its own Gibbs energy expression,23 under these
conditions the chemical potentials of these phases are equal.
The Gibbs energy G itself is always continuous over the
transition, but the partial derivatives ∂G/∂T and ∂G/∂P may be
discontinuous (Figure 1). In that case, the phase transition is

denoted as discontinuous (or f irst order), while for the situation
where the first derivative is continuous, but the higher
derivatives are either zero or infinite, one speaks of a continuous
(or second order) phase transition. In the past, the transitions
were often labeled as first and second order according to the
discontinuity of their first- or second-order derivatives of the
Gibbs energy. However, the second-order “class” appeared to
be more complex than anticipated, and therefore these
transitions are nowadays often labeled as continuous, due to
the fact that in all cases a continuous transition from a one-
phase state to a two-phase state occurs with a continuous
change in order parameter (Δρ for fluids) over the transition.
Although the label “first order” stuck, for consistency, we refer
to this transition as discontinuous, the more so since the

Figure 1. Schematic of the behavior of the Gibbs energy G for two
phases around (a) a continuous phase transition and (b) a
discontinuous phase transition. In both cases the stable states below
the transition temperature have a Gibbs energy G1, while above the
transition temperature the Gibbs energy is G2. The continuous
transition occurs at the critical temperature Tcri with a continuous
change in G; that is, ∂ΔG/∂T = 0, where ΔG = G2 − G1. The dotted
line indicates the metastable continuation of the high-temperature G
below Tcri. The discontinuous transition occurs at a certain transition
temperature Ttra with a discontinuous change in G (∂ΔG/∂T ≠ 0).
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density behavior for fluids, apart from one-component plasmas,
is discontinuous over the transition.
The angle of intersection of the G1 and G2 curves for phases

1 and 2, respectively, determines the entropy and volume
change associated with the phase transitions and, hence, the
type of phase transition. Experimentally, it appears that, by
moving along the liquid−vapor (L−V) coexistence line over
the critical point (CP), the differences in properties, in
particular the density, between the liquid and gas phases vanish
in a continuous way and the transition is continuous (Figure
2). Moving across the L−V curve from one phase to the other
leads to a discontinuous transition.
Following the coexistence (vapor pressure) line between

liquid and vapor in the P−T diagram, starting at the triple
point Ttri and passing the normal boiling point Tn, we end at
the critical point with temperature Tcri. In this process the
density of the liquid ρL decreases, while the density of the
vapor ρV increases. At Tcri, ρV = ρL. Moreover, for T < Tcri a
meniscus�that is, a sharp transition region between liquid and
vapor�is present except for temperatures close to Tcri (say,
within 1 degree), where this meniscus widens and suddenly
disappears at Tcri. The first use of the term “critical point” was
by Andrews in 1869.24

3. DISCONTINUOUS TRANSITIONS
For equilibrium between phases the values of their chemical
potential μ should be equal; otherwise transfer of matter occurs
until dG = (μ2 − μ1) dn = 0, where n is the number of moles, is
fulfilled. If we consider that each phase has its own Gibbs
energy function G, the crossover temperatures between solid
and liquid and liquid and vapor determine the melting and
boiling temperatures, respectively. The effect of pressure P is

illustrated in Figure 3, showing that, upon increasing P, the
melting point rises if the molar volume of the solid Vm(S) is
less than the molar volume of the liquid Vm(L), while the
melting point decreases if Vm(S) > Vm(L).
The coexistence curves for two phases, say, L and V, in the

P−T plane (Figure 2a) can be obtained from the Clapeyron−
Clausius equation (as first given by Clapeyron in his paper in
1834, reprinted in 1843, the latter which made Carnot’s work
known25). This equation, resulting from ΔG = ΔH − TΔS = 0
with enthalpy H and entropy S, or equivalently μL − μV = 0, in
combination with Maxwell’s relation dP/dT = dS/dV, is given
by

= =P
T

S
V

H

T V
d
d

vap

(1)

When liquid and vapor are both present in equilibrium, we
have ΔG = GV − GL = 0. Hence, we have (Figure 2b), since G
= F + PV with F the Helmholtz energy, the relation Fa − Fe =
−P(Va − Ve). But the work required to go from vapor to liquid
is also Fa − Fe = −∫ eaP dV. We conclude that the (gray) area
(Figure 2b) described by the curve abc must equal the (gray)
area described by the curve cde. Hence, phase equilibrium is
determined by the horizontal line for which these two areas are
equal. Note, though, that in practice doing reversible work
along the curve bcd is impossible. This is Maxwell’s equal area
rule. Metastable states can occur for the ranges ab (super-
saturation) and de (superheating), while the range bcd
represents unstable states. The Clapeyron−Clausius equation
evidently can be applied to solid−solid and solid−liquid
transitions as well. Note that frequently the Clapeyron−
Clausius equation is simplified by neglecting the liquid volume
and approximating the equation of state (EoS) for the vapor

Figure 2. (a) Schematic of the phase equilibrium between the solid (S), liquid (L), and vapor (V) phases in the P−T plane, showing the triple
point (TP) and critical point (CP). These are natural reference points since the melting temperature Tmel and the boiling temperature Tn depend
on the environment, in particular the pressure P. For water, for example, Pcri = 218.3 atm, Tcri = 374.15 °C, ρcri = 320 kg/m3, and Ttri = 0.01 °C.
While the transition across a coexistence line relates to a discontinuous phase transition, the transition over the critical point along the coexistence
line relates to a continuous phase transition. (b) Schematic of the phase equilibrium in the P−V plane. The horizontal line indicates the equal area
Maxwell construction. Above the CP only gases (G) can exist. The binodal line indicates the demarcation of global stability, while the spinodal line
indicates the limits of local stability.

Figure 3. Effect of pressure on melting point. (a) Vm(S) < Vm(L) leading to melting point rising (T2 > T1); (b) Vm(S) > Vm(L) leading to melting
point lowering (T2 < T1).
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phase by the perfect gas law. However, as has been noted,26

this may lead to significant errors.
From the above it will be clear that for a proper treatment of

melting both phases should be considered. Nevertheless, many
attempts deal only with the solid phase. Hoover and Ross27

have advanced general arguments of why such an approach
might still work and to which we come in section 4. Some in
principle straightforward attempts using the Gibbs energy for
both phases have been put forward, usually employing
relatively drastic approximations and the Maxwell construction
to keep the models tractable. So far, the only model that yields
flat pressure versus density isotherms in the coexistence region
as well as distinct binodal and spinodal curves without
invoking separately the Maxwell construction is hierarchical
reference theory (HRT), to which we come in section 10.2,
although also for HRT still an expression for the Helmholtz
energy of the solid phase has to be provided.

4. MELTING
Upon melting a solid, the most eye-catching change is that the
solid becomes a fluid, implying a tremendous change in
viscosity and loss of shear modulus.29 Other macroscopic
properties change far less dramatically, although some
microscopic properties change to a large extent as well. We
first discuss a few phenomenological changes. We note upfront
that a significant effort has been paid to metals and less to
other materials, so that more examples from metals are used as
might be expected.
To illustrate the molar volume increase upon melting, Table

1 provides some typical data. Typically, ΔV/VS ≅ 10% for
molecular liquids, while for metals and ionic compounds (one-
component plasmas excluded) ΔV/VS ≅ 4 and 20%,
respectively. A simple argument30 indicates the reason why
such an increase generally occurs. Consider an arbitrary plane
in the liquid. For such a plane the arrangement of molecules

must be such as to allow them to pass to another plane while
still being in contact with (a number of) neighbors. If we take,
for example, a close-packed configuration for this plane in
which the molecule is 6-fold coordinated, the molecular area is
oL = (1/2)31/2σ2, where σ is the diameter of the molecule. It is
then not unreasonable to suppose that the volume available to
the molecule in the liquid is vL = oL3/2 = 2−3/233/4σ3. If we
compare vL with the volume available in the BCC lattice, vBCC
= 223−3/2σ3, we obtain vL/vBCC = 1.05, in good correspondence
with the value for, e.g., CCl4 (Table 1). Similarly, for the FCC
structure vFCC = 2−1/2σ3 and we obtain vL/vFCC = 1.14, in good
correspondence with the value for the inert gases (indeed
crystallizing in the FCC or HCP structure). This estimate
indicates clearly the general trend, but as many other factors
play a role, it should not be taken too seriously.
The ratio of the enthalpies of fusion ΔmelH and vaporization
ΔvapH for molecular liquids typically has a value of 0.1−0.2,
while for metals this ratio is 0.03−0.04. Molecular compounds,
however, are in the solid state well-packed but in the liquid
state they may rotate, which requires some extra space, and this
leads to an increased average distance between the molecules.
The structure of such a liquid is more open, much less ordered
than the corresponding solid, and the work necessary to pull
the molecules apart results in a higher value for ΔmelH.
Possibly the simplest fluid−solid transition occurs in hard

sphere systems, and we follow the description as given by
Lekkerkerker and Tuinier.31 On the one hand, we know that
the fluid state EoS can be described accurately by the
Carnahan−Starling EoS:32

= + +
= [ ]

P/ (1 )/(1 )

with 4 ( /2) /3

2 3 3

3 (2)

The chemical potential is given by

= + +

= +

ln( ) (8 9 3 ) /(1 )

or, equivalently, by

ln( ) (3 )/(1 ) 3

3 2 3

3 3 (3)

where the thermal wavelength Λ = (h2/2πmkT)1/2 with mass
m, Boltzmann constant k and Planck constant h.
On the other hand, we know that the solid state EoS can be

reasonably well described by the Lennard-Jones−Devonshire
(LJD) model.33 For this model the Helmholtz energy F = −kT
ln Z, using as free volume vf = 8(v1/3 − v*1/3)3 with v* = 4π(σ/
2)3/3, is given by

= { [ ]}F NkT vln(27 /8 ) 3 ln ( / ) 13
f CP (4)

so that the pressure becomes

= [ ]P/ 1 ( / ) 3 /(1 / )CP
1/3 1

CP (5)

where ηCP = ρπσ3/6 = π/3√2 ≅ 0.741 for a close-packed
crystal. The chemical potential is then

= * + +

+

vln( / ) 27/8 3 ln /(1 / )

3/(1 / )

3
CP

3
CP

CP (6)

The coexistence criteria PF(ηF) = PS(ηS) and μF(ηF) =
μS(ηS) yield ηF = 0.491 (0.494) and ηS = 0.541 (0.545) at a
pressure of βPv* = 6.01 (6.12) with in parentheses the Monte
Carlo (MC) results of Hoover and Ree.34 A very good
agreement is thus observed. For a comparable discussion, see

Table 1. Volumes (cm3 mol−1) and Enthalpies (kcal mol−1)
at the Melting Point Tmel (K)a

liquid Tmel VS VL ΔV/VS ΔmelH

Ne 24.6 14.03 16.18 15.3 0.080
Ar 83.8 24.61 28.14 14.4 0.281
Kr 116.0 29.65 34.13 15.2 0.391
Xe 161.4 37.09 42.69 15.1 0.549
H2O 273.1 19.82 18.18 −8.3 1.436
CH4 90.7 30.94 33.63 8.6 0.226
CD4 89.8 29.2 31.7 8.6 −
CCl4 250.4 87.9 91.87 4.5 0.577
C2H4 104.0 39.06 43.63 11.7 0.801
C6H6 278.5 77.28 88.28 11.4 2.348
C10H8 353.2 112.2 130.9 11.7 4.550
NaF 1265 16.4 21.5 31.1 7.81
NaCl 1073 29.6 37.7 27.4 7.22
KF 1133 23.4 30.4 29.8 6.28
KCl 1043 40.5 48.8 20.5 6.41
KBr 611 45.0 56.0 24.4 2.84
Bi 544 21.6 20.8 −4.8 2.51
Cd 594 13.5 14.1 4.7 1.46
Hg 234 14.1 14.7 3.6 0.58
Sn 505 16.5 17.0 2.8 1.72
Pb 601 18.5 19.4 4.8 1.22

aData at ambient pressure from refs 9 and 28.
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the somewhat old, but still highly relevant, discussion on
disordered materials by Ziman.35 Note, however, that for
liquids, generally, vf = 4π(v1/3 − v*1/3)3/3 is used, rendering a
difference in vf of about 50%. The thermodynamic stability is
governed by maximum entropy, and the equilibrium
configuration of a hard sphere system is the one that
maximizes the entropy. At low density the disordered state
(fluid) corresponds to maximum entropy, while at higher
density crystalline arrangements are optimum. It is satisfying to
observe that this transition is not only observed “in silico”, but
that, with the proper precaution to realize a hard sphere
system, the transition is also observed experimentally, as
reported by Pusey and van Meegen;36 see also ref 31.
Such a two-phase approach has been given before by

Vorob’ev3 using for the Helmholtz energy F for the solid state
(S) the Debye approximation for the thermal contribution plus
a potential energy contribution and for the liquid state (L) the
Debye approximation plus a potential energy plus an entropy
term related to melting, with the parameters for both phases
somewhat different. The author starts a clear discussion on the
crossing of Helmholtz energy F(V) for both phases by noting
that both curves show a downward curvature and cross at some
point. The crossing point is always in the middle of the range
of two points, V1 and V2, on these curves where the tangents
are identical, i.e., P = P(V1) = P(V2) (Figure 4a, the points V1,
V, and V2 corresponding to the points a, c, and e in Figure 2b).
At the crossing point it holds that PL(V) > PS(V) and for their
derivatives PL′(V) > PS′(V) > 0. This describes “normal”
melting where VL > VS. For some parameter values the
situation as depicted in Figure 4b arises and, when that is the
case, P = PS(V) = PL(V) and V = VS = VL but with the
derivatives P′ and P″ nonzero. If the crossing path changes
from that of Figure 4a via that of Figure 4b to that of Figure 4c,
VL < VS for some region of the parameter values and melting is
“anomalous”. Because for the relative density differences it
holds that (V − VS)/V ≪ 1 and (VL − V)/V ≪ 1, the
functions FS(VS), FL(VL), PS(VS), and PL(VL) can be
represented as a power series around V. Keeping only first-
order terms, the result is (VL − VS)/V = (ζ − 1)/ζ (1 + VPS″/
PS′) with ζ = PL′/PS′. The dominant contributions to P′ and
P″ are due to the repulsive part of the potential energy and, if
described by a power function, (VL − VS)/V → const. if ζ →
const. For normal melting ζ is slightly larger than unity for the
initial part of the melting curve and thereafter drops, tending to
a constant larger than unity. This implies that ζ varies but little
along the melting curve. For anomalous melting ζ is initially
also slightly larger than unity and thereafter drops, passing
zero, and tending to a constant smaller than unity.

All these considerations are general, but Vorob’ev took two
other steps. The first step was to estimate ζ from the model
indicated, which led to ξ = (kθ0/ℏ)2m(mV0/2)2/3(V0/
V)2γ−(2/3)(m/kT) or, approximately, m(mV)2/3θD2/γkT =
const., where m is the mass, γ is the Grüneisen parameter,
and θD is the Debye temperature. Because γ is near constant,
the latter relation represents the Lindemann rule (section 5.1).
The second step was calculating the melting curves for Ne, Ar,
Kr, and Xe as well as Na and Cs, which was done using ζ′ and
L′ as parameters because, he argued, several assumptions and
simplifications were used in the derivation. While for the noble
gases, showing normal melting, the fitted value ζ = 1.18 was
conform that of full calculations, the fitted value parameter L′
= 19 deviated considerably from the calculated value of 27.3.
For Na, also showing normal melting, and Cs, showing
anomalous melting, the results are satisfactory in view of the
approximate nature of the theory. The main point is probably
that an analytical two-phase calculation is feasible, but because,
in general, an accepted liquid state model is absent and many
data are required and, in this case, the model is limited to first-
order expansions, the numerical results are rather approximate.
Having introduced “anomalous melting”, where the melting

line shows a temperature maximum with P at constant T, it
may be useful to point out that for this type of melting the
solid coexists with a denser liquid, as is well-known for ice and
liquid water. Usually, anomalous melting is associated with
other anomalous features, such as polymorphism in the liquid
and solid phases, as well as a number of thermodynamic,
dynamic, and structural anomalies that include the density
anomaly (the decrease in density upon cooling), the diffusion
anomaly (the increase of diffusivity upon pressurizing), and the
structural anomaly (the decrease of structural order for
increasing pressure).37,38

According to Dash,39,40 the question of how a solid melts
can be addressed using three approaches. The first states
simply that melting is a discontinuous transition, in which solid
and liquid can coexist at a certain pressure for each
temperature, and that the process has no intermediate states.
The second approach assumes that melting is a nearly
continuous transition, as suggested by the small increase in
volume, small enthalpy of fusion, and small change in specific
heat. According to this approach, if studied with sufficient
resolution, it should be possible to discern intermediate stages.
The third approach acknowledges that continuous melting is
typical for almost all crystals but accepts that interfaces play an
important role. Limiting ourselves to the second and third
approaches, the second is often addressed as mechanical or
bulk melting while the third is often denoted as thermody-
namic or surface-mediated melting.

Figure 4. Behavior of the Helmholtz energy F(V) for solid (S) and liquid (L) around the melting temperature Tmel. V is the volume for the crossing
point, while the tangents determine the equilibrium pressures, and volumes VS and VL. Indicated are the situations where (a) VL > VS, (b) V = VS =
VL, and (c) VS > VL. Redrawn after ref 3.
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Clearly, in principle any treatment dealing with melting
should consider both the solid phase and the liquid phase.
Hoover and Ross27 considered that for purely inverse power
law (pair) potentials ϕ(r) = ε(σ/r)n, all properties can be
scaled with the characteristic length (V/N)1/3 and the relative
importance of any configuration in scaled space is always the
same at fixed ρ(ε/kT)3/n. This applies to both solids and
liquids. In reality attractive interactions are present, and this
scaling is not obeyed. However, over a limited temperature−
density interval and considering that repulsive interactions
dominate, this scaling might still be approximately valid,
thereby explaining why one-phase approaches might still yield
reasonable results.

5. MECHANICAL OR BULK MELTING
Because melting is an almost universal phenomenon, many
one-phase attempts have been made to rationalize and predict
melting temperatures. They were initially based on the most
important aspects to consider, that is, the vibrational and
lattice instabilities, often using only one of the two. Other
terms contributing are (i) an electronic term, mostly for
metals; (ii) an orientational term, mostly for polar molecules;
(iii) a configuration term due to the distortion in shape of the
molecules, mostly for nonspherical flexible molecules; and (iv)
an association term due to the local microstructure of the melt,
mostly for polyatomic anions. The sometimes observed
melting over a certain temperature interval has been advanced
to support the continuous melting hypothesis. However,
impurities and polycrystallinity are often present, and both
broaden the melting transition. Nevertheless, one should
realize that disorder is present in solids, either intrinsically
(point defects) or as a result of processing or thermal
excitations (point defects, dislocations, orientational disorder).
The characteristic energy associated with each of these defects
governs their increase in number with temperature, and this
increase may accelerate the approach to the melting point,
although the structure remains crystalline until the transition
itself. In fact, most types of these defects have been proposed
as being responsible for melting. From this list of aspects, it is
probably clear that a thorough discussion of all these aspects
requires a book by itself. Hence, we limit ourselves to more
general considerations. Since the melting curve is thermody-
namically defined as the locus of the PVT points where the
Gibbs energies (G) of the solid (S) and the liquid (L) are
equal, and since the differences in the GL and GS are typically
small, rather accurate and consistent approximations are
required. This has limited so far the applicability of first-
principle approaches to only relatively simple solids. Attempts
to model more complex solids thus require other approaches
and have resulted in a substantial number of mechanisms
proposed.
5.1. Vibrational Instability

Probably the most well-known vibrational instability approach
is based on a paper by Lindemann,41 although Lindemann
himself nowhere suggested that his approach could be used to
estimate the melting point, Tmel. Actually, he attempted to
estimate the Einstein frequency of solids ωE�Einstein
published his theory just three years earlier�by assuming
that at melting, due to their thermal motion, the molecules
would just make contact.42 Writing for the hard sphere atom
diameter σ = d(1 − δ), where d is the atom−atom distance and
δ is the gap between the atoms expressed as a fraction of d,

each atom has to be displaced on average by σδ/2 for contact
with another atom. Equating the kinetic energy at Tmel,
estimated as Ukin = ∫ 0σδ/2ax dx = aσ2δ2/8 = (1/2)mωE

2u2 (a =
force constant, ωE = (a/m)1/2), with the high-temperature limit
of the Einstein (harmonic oscillator) function ε(ω;Tmel) =
ℏωE{[exp(βℏωE) − 1]−1 + 1/2} ≅ kTmel, he obtained θE =
ℏωE/k = (ℏ/k)(8Tmel/mδ2σ2)1/2. Here ℏ = h/2π, where h is
Planck’s constant, k is Boltzmann’s constant, β = 1/kT, m is the
mass of the molecule, and θE is the Einstein temperature. For
CaF2 Lindemann estimated δ ≅ 0.05 from the dielectric
permittivity by using the Clausius−Mossotti theory. Using νE =
ωE/2π = c(Tmel/MVm

2/3)1/2, with c ≅ 2.06 × 1012 an empirical
proportionality constant in cgs units, M the molar mass and Vm
the molar volume, he further obtained a not unreasonable
agreement with the experimental “Reststrahlen” frequencies,
that is, the optic lattice frequencies at wave vector q = 0, for
several metals and salts. Later the argument was reversed by
others to estimate from Tmel from θE (or the Debye
temperature θD for that matter). Actually, in 1890 Sutherland43
explicitly introduced the idea that Tmel is related to the
displacements of the atoms, but it seems that Lindemann was
not aware of this paper.
“The concept of direct contact of neighboring atoms at

fusion is factitious”, as Gilvarry44,45 called it, and he was, it
seems, the first to assume that the root-mean square
displacement ⟨u2⟩1/2 of an atom from its equilibrium position
reaches a critical fraction ξ of the nearest-neighbor distance r0
= (Vm/NA)1/3 ≡ Ω1/3 of atoms at fusion, that is, ⟨u2⟩ = ξ2r02,
with ξ the (Lindemann−)Gilvarry ratio. The mean square
displacement of atoms packed in a primitive cubic lattice reads
⟨u2⟩ = (3mN)−1∫ 0

ωmaxε(ω;T)ω−2g(ω)dω, and using the Debye
approximation for the vibrational DoS g(ω) = 9Nω2/ωD

3 and
the high-temperature limit of ε(ω;T) ≅ kT, one obtains ⟨u2⟩ =
3kT/mωD

2 = 3ℏ2T/mkθD2, where ωD and θD are the Debye
frequency and temperature, respectively. Hence, Tmel = ξ2(k/
3ℏ2)mθD2r02, which in the literature is often called the
Lindemann relation (or rule or, even, law). The values for ξ
as obtained for 10 metals are indeed approximately constant
and are given by ξFCC ≅ 0.11, ξBCC ≅ 0.13, and ξHCP ≅ 0.09.
Cho46 refined these values by considering 54 metals, leading to
ξFCC ≅ 0.096, ξBCC ≅ 0.121, and ξHCP ≅ 0.069.
Before we continue it is appropriate to note that a direct

comparison for various treatments for ξ is complicated by the
use of ⟨u2⟩ or ⟨uuT⟩ and Ω = v0 = r03 or v* = v0/γ with γ a
lattice structure dependent constant. The difference between
⟨u2⟩ in a particular direction or one component of u (as usually
obtained from diffraction data) differs from the spherically
averaged ⟨uuT⟩, while the difference between Ω and v* speaks
for itself.
Recently Vopson et al.47 suggested that a ξ-value per group

of the periodic systems is more appropriate for metals (groups
16−18 were not included). They noticed that, upon the
general increase of Tmel with the atomic mass m, peaks were
visible, which upon further analysis appeared to be correlated
with the group number, except for groups 3, 13, and 14. All 12
remaining groups contained three elements, except groups 1
and 2, containing five elements, and group 7, containing two
elements. For the remaining groups the ξ-values were
estimated by the least-squares fit of Tmel/θD2a versus m with
a the nearest-neighbor distance. The overall correlation can be
described by Tmel,calc = cTmel,exp with slope c = 0.972 and
correlation coefficient R2 = 0.991. The resulting ξ-values are
shown in Table 2. Estimating the uncertainty in a as 5% and
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that of θD as 10%, the overall uncertainty becomes 22% and,
indeed, for five elements the deviation of Tmel,calc from Tmel,exp
is larger than 20%.
Long before that Gupta48 suggested that ξ is not only

structure dependent but also interaction dependent. This
resulted from his average ξ ≅ 0.118 for the set Ne (ξ = 0.145),
Ar (ξ = 0.115), Kr (ξ = 0.113), and Ne (ξ = 0.099) and the
average ξ ≅ 0.071 for the set Al, Cu, Au, Pb, and Ni, all
individual values for the metals as calculated by Shapiro49 close
to the average value. He calculated these values using quasi-
harmonic lattice dynamics with a Buckingham potential
including interactions up to the 12th neighbors and a zero-
point contribution by the Debye model. The deviations for Ne
and Xe are attributed to the large anharmonic contribution for
the zero-point energy for Ne and a small contribution for Xe,
respectively 30 and 3.2% of the cohesive energy.50 In view of
the “Lindemann” assumptions, such deviations are not a
surprise at all.
Much closer values of ξ for the set Ar, Ne, Ar, Kr, and Xe

were obtained by Mohazzabi and Behroozi51 using the Einstein
model in combination with an LJ potential with parameters
derived from the Debye temperature θD and the depth of the
potential from various sources. The values calculated as well as
the results of several other early calculations are shown in
Table 3. We also note that for a one-component plasma in
three dimensions (with a Yukawa interaction) ξ is about 20%
larger.

The reformulation of the Lindemann rule by Gilvarry
employs only harmonic terms in the potential energy (while
anharmonic terms and, more importantly, bond breaking are
involved). It also neglects the possible effect of lattice defects
near the melting point and, in the usual treatment, restricts the
discussion to monatomic solids. Moreover, melting is linked to
individual atomic properties (while it is a cooperative process)
and the solid alone (while it should be linked to both liquid
and solid).
In an attempt to put Lindemann’s rule on a firm statistical-

mechanical basis, Ross58 and Kuramoto59 argued that, when
the melting transition is viewed at an atomistic level, we would
always see the same picture when properly scaled, as clarified
by Hoover and Ross.27 Postulating that for all points along the
melting curve the solid always occupies the same fraction of
configuration space, that is, scaling the configurational partition

function Q by using the reduced coordinates x = r/V1/3 with V
the volume of the system and r the coordinates of the N
molecules so that Q = VNQ*, we will have Q*(Tmel,Vmel) =
const. As a general theory of liquids was (is) lacking, the LJD
model was used, in which Q = vfN exp[−βΦ(0)] with free
volume vf = ∫ exp(−βΔΦ)dr, ΔΦ = Φ(r) − Φ(0), and β = 1/
kT, leading to vf*(Tmel,Vmel) = const. Using for Φ(r) the LJ
potential, good agreement with thermodynamic data is shown
for Ar. Reducing ΔΦ to a harmonic oscillator potential, ΔΦ =
1/2ar2 = 1/2aV2/3x2 = 1/2mω2V2/3x2, the requirement vf* =
const. leads right away to βΔΦ = const. or at melting to Tmel ∼
mω2Vmel

2/3/k, which is Lindemann’s rule. Obviously, this
approach still does not incorporate the two-phase consid-
erations and anharmonicity. However, arguments have been
given as why such an approach might still work (section 4).
Chakravarty et al.60 discussed Lindemann-type measures to

assess the S−L transition in a 343 particle LJ system. For this
they used the inherent structures,61,62 i.e., the minima of U(x)
corresponding to mechanically stable particle packings with the
global minimum of U(x) being the perfectly ordered crystal
lattice, where U(x) is the multidimensional potential energy
function U(x) of the N-particle system with x the 3N-
dimensional position vector. Any instantaneous configuration
sampled from a suitable ensemble can be quenched to the
corresponding inherent structure using a local steepest descent
(SD) minimization. The set of instantaneous structures
connected by SD mappings to the same minimum constitute
the basin of the corresponding inherent structure. If the atomic
positions in an instantaneous configuration and the corre-
sponding inherent structure are denoted by the 3N-dimen-
sional vectors x ≡ (x1, ..., xN) and q ≡ (q1, ..., qN), respectively,
then the configurational return distance Δ of a particular
configuration in the ensemble is given by Δ2 = (1/N)(x − q)2.
If the deviation in the position of an atom j from its position in
the corresponding inherent structure is denoted by the vector
δj = xj − qj, then the normalized single-particle return distance
squared distribution is defined by∏(δ2) using the δj

2 values of
all atoms from a sampled set of M configurations. The means
of the squared single-particle distribution ⟨δ2⟩ and configura-
tional return distance distribution ⟨Δ2⟩ will coincide, i.e., ⟨δ2⟩
= ⟨Δ2⟩. To assess melting, the authors studied an N = 256
particle system with MC simulations using constant (N,P,T)
conditions with periodic boundary conditions and employing a
reduced and smoothed LJ potential ϕSLJ.

63

To measure the extent of local order, local bond orienta-
tional order parameters were used. The orientation of a bond
vector r joining an atom with a neighbor lying within a cutoff
distance Rc, relative to a space-fixed reference frame, is denoted
by the spherical polar angles θ(r) and ϕ(r). With each bond
surrounding a given atom, a spherical harmonic Ylm[θ(r),ϕ(r)]
is associated, and by summing over all the bonds connecting a
given atom with its Nb nearest neighbors within a sphere of
radius Rc = 1.25req with req the equilibrium pair separation, the
quantity qlm = Nb

−1∑jYlm[θ(rj),ϕ(rj)] can be defined. A
rotationally invariant local order parameter ql = {[4π/(2l +
1)]∑m|qlm|2}1/2 with −l ≤ m ≤ l can then be constructed. It has
been shown that q6 is large when particles sit in an icosahedral,
FCC, or HCP environment.64 The authors showed that there
is a strong negative correlation between δ2 and q6 in the solid
phase; i.e., atoms with large deviations from lattice positions
will also tend to be in locally disordered environments with
low q6 values, while in the liquid phase there is no correlation
between the single-particle return distance and the local order,

Table 2. Lindemann Ratios at Tmel for Various Groups of
the Periodic Table47

group 1 2 4 5 6 7
ξ-value 0.139 0.113 0.119 0.136 0.109 0.12
group 8 9 10 11 12 15
ξ-value 0.084 0.07 0.111 0.108 0.08 0.095

Table 3. Lindemann Ratios at Tmel for Ne, Ar, Kr, and Xea

material ref 51 ref 52 ref 53 ref 54 ref 55 ref 56 ref 57

Ne 0.148 0.099 0.127 0.109 − 0.14 0.121
Ar 0.122 0.107 0.113 0.101 − 0.14 0.113
Kr 0.110 0.108 0.115 0.10 0.11 0.14 0.114
Xe 0.106 0.108 0.114 0.099 − 0.14 0.109

aReference 51, Einstein model; ref 52, LJ potential for one-
dimensional chain; ref 53, entropy data; ref 54, lattice dynamics; ref
55, MD simulations; ref 56, MC simulations; ref 57, Wallis formula.
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the value of q6 essentially being constant at about 0.46. Taking
this value as characteristic for the liquids, at a reduced
temperature T* = 0.5 essentially none of the atoms can be
regarded as being in a local environment that is sufficiently
disordered to be classified as liquid-like. On the other hand, at
T* = 0.76, which is approximately 10% greater than the
melting temperature Tmel* = 0.67, there is a significant fraction
of atoms with q6 values less than 0.46. For solids with q6 ≅
0.46, δ2 ≅ 0.06 or δ ≅ 0.24, which is considerably larger than
⟨δ2⟩1/2 = 0.16 at the reduced temperature T* = 0.76 used.
Thus, a q6 value of 0.46 or a δ value of 0.24 can be taken as the
threshold for local disorder for an atom in a solid and atoms
with δ > 0.24 can be classified as liquid-like. We note, though,
that a proper description of solids often needs q6 as well as q4.
In a follow-up, Chakraborty et al.65 discussed the use of a

Landau-type Helmholtz energy expansion in combination with
MC calculations and related the results to classical nucleation
theory. As in regular sampling in simulations the transition
state region is too infrequently sampled, umbrella sampling was
applied. Moreover, rhombic dodecahedral boundary con-
ditions were used since the near spherical shape of that cell
reduces the artificial stabilization of the solid due to (regular)
periodic boundary conditions. The simulations were done for
reduced relative temperatures of T*/Tmel* = 1.00, 1.05, 1.10,
1.17, and 1.20 at P = 0.67 bar for which Tmel* = 0.780, using
again 343 particles. For all temperatures the so-obtained
Helmholtz curves were smooth. At T*/Tmel* = 1.20 the
Helmholtz energy barrier disappeared, indicating the limit of
superheating and agreeing well with other results. As ΔmH
varies only 3.5% over this range, the classical approximation for
the chemical potential Δμ = ΔmH(T − Tmel)/Tmel is quite
reasonable. To be able to use nucleation theory, also the
interface energy is required, which was estimated using the
estimate of Davidchak and Laird,66,67 reading γSL = 0.617kT/
σeff with σeff the Barker−Henderson estimate for the LJ system
and σeff ≅ σ for the temperatures used. The critical nuclei
varied from 20.7σ for T*/Tmel* = 1.05 to 6.5σ (about 900
particles) for T*/Tmel* = 1.20. The results suggested that the
bond orientational coordinate q6 is an important internal
coordinate driving the phase transition process. If it would be
the only relevant parameter, one expects that q6 for liquid and
solid has the same value at the same value of the committor
function; i.e., the function associated with the q6 coordinate
describing the probability that trajectories initiated from an q6
constrained simulation will terminate in the liquid phase. This,
however, turned out not to be the case, but only for a q6 value
larger than about 0.22. This suggests that some configurational
properties other than the overall degree of crystalline order
must play a critical role in determining the mechanism of
melting. Finally, they note that the approximate size of critical
nuclei predicted by classical nucleation theory are of the
correct order of magnitude for the crystallization process but
are comparable to or larger than the simulation cell size used in
Landau approaches to study melting. This suggests that a
classical nucleation theory pathway is unlikely to be important
for melting, at least close to solid−liquid coexistence.
In an approach akin to that of Lindemann, Dunne et al.68

estimated the harmonic force constants kf from the LJ
potential, resulting in kf = 72ε/re2 with ε the well depth and
re the equilibrium distance. Equating (1/2)kT with the
harmonic potential so obtained yields, using the Lindemann
assumption, kTmel = kfre2ξ2 or Tmel = 72εξ2/k. This resulted in
a good correlation for Ne, Ar, Kr, Xe, N2, O2, CH4, and CF4 of

Tmel with ε, and they sought to explain why this correlation
worked well. From thermodynamics Tmel is given by Tmel =
ΔmH/ΔmS = (ΔmU + PΔV)/ΔmS ≅ ΔmU/ΔmS, where ΔmH,
ΔmU, ΔmS, and ΔmV refer to enthalpy, energy, entropy, and
volume changes at pressure P, and the last step can be made as
ΔV during melting is relatively small. In a simple nearest-
neighbor model ΔmU = (1/2)zε(1 − ρ) = (1/2)zεΔV/V, with
z the coordination number and ρ the relative density of the
liquid with respect to the solid, and the last step can be made
as ΔV is small. This leads to

=
=

T z V V S

V V S k

(1/2) / and

( / )/( / )
mel m

2
m (7)

where the last step is made by combining with Tmel = 72εξ2/k.
Taking data for Ne, Ar, Kr, Xe, and N2 resulted in an average
value ξ = 0.084, which is close to the value ξ = 0.089 obtained
from the fit of Tmel versus ε.
As a next step these authors employed a one-dimensional

model with periodic boundary conditions, where it is supposed
that there are three types of species, namely (1) vacancies, (2)
ordered cluster of m atoms using r sites, and (3) vibrationally
disordered clusters, also containing m atoms but occupying r +
1 sites. The constant pressure partition function Ω(N,T,P) was
employed to calculate the difference in Helmholtz energy ΔF =
ΔU − TΔS between the two types of clusters of atoms. They
assume that ΔF becoming negative, corresponding to when the
disordered clusters dominate over the ordered clusters,
indicates melting as a 2D or 3D model along these lines
would be prohibitively difficult. The value r = 6 was chosen, a
value being representative for the volume change upon melting
of rare gas solids, while the partition function was evaluated
using the maximum term method. This led to the equilibrium
value V = −kT ∂Ω/∂P. Further using the parameter values ΔU
= 0.18 eV and ΔS = 25.72k reproduces the melting line for Ar
below about 5000 bar quite well, and r ≅ 15−20 leads to
values for ΔU and ΔS roughly matching the data for Ne, Ar,
Kr, Xe, and N2. Finally estimating an interaction energy for
atoms as −0.11 eV led to a P−V curve with a clear step in
volume at relative volume Vrel = 1 and Tmel = 84 K at 1 bar.
Although the model is one-dimensional and cannot reproduce
the true discontinuity characteristic of a 3D solid, it mimics
experimental P−V curves with a volume change roughly
corresponding to values obtained for ξ.
Batsanov69 also used an approach akin to the Lindemann

approach. To have consistent data, the author first calculated ξ
conventionally for 48 metals and the five noble gases He, Ne,
Ar, Kr, and Xe from ξθ = c1(Tmel/m)1/2/θDr with θD the Debye
temperature at Tmel, m and r the atomic mass and radius, and c1
= 12.06 if r is in angstroms and Tmel in kelvin. The mean values
quoted were for the metals ξθ = 0.137 ± 0.037 and for the
noble gases ξθ = 0.108 ± 0.008, where “±” indicates the sample
standard deviation.70 Thereafter it was argued that, because of
the use of different definitions for the various parameters, it
appears natural to calculate ξ from thermodynamic data. To
that purpose Hm = ΔHT + ΔmH ≡ [H(Tmel) − H(0)] + ΔmH,
where ΔHT is the enthalpy to heat the material from 0 to Tmel
and ΔmH is the melting enthalpy, was used and equated to the
energy of an harmonic oscillator as given by E = 1/2fm(ξrm)2
with fm the force constant at Tmel. The latter quantity was
estimated from the previously derived expression for the force
constant at 0 K given by f 0 = 0.009K0V0/zr02

71,72 with z the
coordination number and K0 the bulk modulus at T = 0, and
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the “obvious” translation to fm = f 0Kmrm/K0r0, where the
subscripts indicate the temperature. This resulted in ξH = (Hm/
fm)1/2/C2r with Hm in kJ mol−1, r in Å, fm in mdyn Å−1, and C2
= 54.87, a constant. The resulting average values are ξH = 0.150
± 0.02370 for 35 metals and ξH = 0.127 ± 0.008 for the noble
gases. Clearly, the values so obtained are slightly larger than
those conventionally calculated. For both types of calculations
reported, the author did not observe the previously reported
anomalously high value for He, for which reasons were given,
and concluded that the Lindemann rule cannot be used to
explain the special features of He solidification.
In an approach taking both solid and liquid states as well as

anharmonicity into account, Lawson,73 examining 74 distinct
elements,74 also rationalized the Lindemann rule. The starting
point is the entropy difference ΔS = SL − SS between liquid
(L) and solid (S). For the liquid with molecules with mass m, a
Sackur−Tetrode-like expression SST as derived from F = −kT
ln Z with Z = zN instead of Z = zN/N! and the volume taken as
the atomic volume Ω = Vm/NA, was used together with a
correlation term Scor (for the perfect gas Scor = −k ln(1/N!).
Hence, the entropy SL per molecule in the liquid phase is given
by

= + = +S S S k S

h mkT

ln(e / ) with

( /2 )
L ST cor

3
cor

2 1/2 (8)

For the solid the Wallace expression75,76 S = 3k ln(eT/θ0)
with θ0 the characteristic entropy temperature8 was used. The
parameter θ0 corresponds with the zeroth moment or,
equivalently, the geometric mean of the phonon frequencies,
kθ0 = ℏϖ. Since θ0 values are hard to get, Lawson inserted,
based on Debye theory and backed up by a strong correlation,
the expression θ0 = e−1/3θD with θD the Debye temperature as
obtained from either low-temperature heat capacity or elastic
behavior data.8 For convenience of getting data, an empirical
relation, namely 1.3kθD = kθela = ℏ(KTΩ/m)1/2(6π2/Ω)1/3 with
θela the Debye temperature as derived from room temperature
elastic data, was introduced. Note that, using the bulk modulus
KT, the expression for θela ignores the shear modes. They are
left out since data for these modes are more difficult to obtain,
particularly at high temperature (for the same reason, the
temperature dependence of KT and Ω was neglected). Hence,
the entropy per molecule for the solid is given by

=S k T
3 ln

e
/1.3S

4/3

ela (9)

Finally, introducing the effect of anharmonicity via the
thermodynamic relation CP − CV = α2KTΩT, the correspond-
ing high temperature entropy term 9γ2k2T/KTΩ was added
with γ = αKTΩ/CV the thermodynamic Grüneisen parameter
and α the (volume) thermal expansivity. Taken together this
leads, via ΔS − Scor = SST − SS − Sanh, to

=S S k k T k T
K

ln
e

3 ln
e

/1.3
9

T
cor 3

4/3

ela

2 2

(10)

Lawson divided the structures examined in FCC, BCC,
HCP, and more complex, “open” structures. Fitting −Scor = SST
− SS − Sanh − ΔS by −Scor = a + bγ, given the experimental
data for ΔS, shows that a strong correlation between (ΔS −
Scor) and γ is obtained. As also a strong correlation between ΔS
and γ is observed, Scor can be estimated. Using these fits, Tmel
can be calculated from eq 10. Figure 5a shows the comparison
with the experimental data, indicating good agreement in view
of the approximations made. As for many elements Sanh≪ Scor,
generally Tmel is determined by a balance between SS, the
Debye entropy for the solid, and Scor, the correlation entropy of
the liquid. The dimensionless ratio kTmel/KTΩ plotted versus γ
also shows a good correlation (Figure 5b).
The Gilvarry ratio ξ was calculated as ξ = ⟨u2⟩1/2/2r* (note

the “2”) with ⟨u2⟩ = 3ℏ2Tmel/mkθela2 and r* = (3Ω/4π)1/3,
leading to ξ = (0.513kTmel/KTΩ)1/2. Inserting numbers, one
obtains approximately ξ/2r* ≅ 0.1−0.04γ or ξ/2r* ≅ 0.08
using γ ≅ 2, typical for FCC, BCC, and HCP structures.
However, this estimate seems to fail for the open structures. As
the considerations are essentially based on Debye’s model, this
might have been expected. We also note that, as atomic size
measure r, the cube root of the atomic volume Ω was used,
although for transition metals with a variation in structures the
translation from Ω1/3 to r codepends on the structure. In
conclusion, Lawson rationalized Lindemann’s rule and showed
that it is well obeyed for simple structures but much less well
for less symmetric structures.
5.2. Other Rationalizations Using Vibrational Instability
Although the basic idea of Lindemann’s rule is the critical value
for the displacement, it can be rationalized in other ways, and

Figure 5. Melting characteristics for elements. (a) Melting temperature Tmel calculated versus Tmel observed. (b) The ratio kTmel/KTΩ versus
Grüneisen parameter γ. Actually, Lawson divided the open structures into two categories. Hence, the panel labeled “open” shows two correlations.
Reproduced with permission from ref 73. Copyright 2009 Taylor & Francis.
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one such approach is due to Enderby and March.77 For closed-
packed metals the authors showed that from the correlation for
the vacancy energy Evac = c1ZEF (with c1 ≅ 1/6, Z is the
valency, and EF = 1/2melevF2 is the Fermi energy) and the
velocity of sound vs = (meleZ/3mion)1/2vF (with mele the
electron mass, mion the ion mass, and vF the Fermi velocity),
combined with the Debye temperature expression θD = (h/
k)(3/4πΩ)1/3vs (with Ω the atomic volume), the relation θD =
(h/k)(3/4πΩ)1/3(2Evac/3c1mion)1/2 follows. Further, they con-
sidered that if the energy U, required to take an atom from an
ordered to a disordered site, is similarly like the vacancy
formation energy Evac assumed to be proportional to ZEF, using
the Bragg−Williams solution for the order−disorder problem
to estimate the melting point leads to kTmel ≅ (1/4)U0 =
c2ZEF. Here U is approximated by U = U0η with η the degree
of order, defined as the ratio of the number of atoms on lattice
sites to the total number of atoms, and U0 an energy
characteristic of a perfectly ordered crystal. Combining these
expressions, the result is the Lindemann expression θD =
c(Tmel/mionVm

2/3)1/2 with Vm the molar volume and c = (h/
k)(3/4π)1/3(2k/3c2)1/2NA

5/6 with NA Avogadro’s constant. The
proportionality constant c2 = (1/4)c1 was also estimated from
kTmel/ZEF extrapolated to Z = 0, resulting in c2 ≅ 1/30 and c ≅
100 cm g1/2 K−1/2, to be compared with the quoted
experimental value of ∼120 cm g1/2 K−1/2, while the actual
range is more like 130−160 cm g1/2 K−1/2.
Another approach is by Stacey and Irvine,78 who argued that

the Lindemann approach can be derived from the well-known
empirical relation αTmel ≅ const., where α is the thermal
expansion coefficient. They refer to the Lindemann relation in
its differential form as Tmel

−1(dTmel/dP) = 2(γ − 1/3)/K with
the thermal Grüneisen parameter γ = αK/ρC. Here K is the
(adiabatic or isothermal) bulk modulus, ρ is the density and C
is the heat capacity (at constant volume or constant pressure).
Their approach starts with the expression (∂P/dT)V = αK =
γρCV, which in its integrated form ΔP = ∫ γρCV dT ≅ γρΔE is
the Mie−Grüneisen EoS. Here ΔE is the thermal energy
applied to a mass m at constant ρ which causes the increase in
pressure ΔP. Invoking the equipartition theorem in the form
ΔE = ΔEkin + ΔEpot = 2Epot, where ΔEkin is the kinetic energy
part and ΔEpot is the potential energy part, ΔP = 2γρΔEpot/m
results. Making a similar assumption as Lindemann, the
thermal energy mL for mass m, where L is the melting enthalpy
per unit mass, appears fully as potential energy at the melting
temperature for melting at constant volume, which yields ΔP =
2γρL. Using ΔP = K(ΔV/V) = ρKΔV, the final result is

= =T T P V L K(d /d ) / 2 /mel
1

mel (11)

which resembles closely the differential Lindemann relation.
The relation was made more precise by considering a closed
cycle connecting liquidus and solidus, from which detailed
expressions for L, ΔP, and K along the melting curve and Tmel
in terms of γ and CV were derived. The authors emphasize (1)
the role of anharmonicity as expressed by γ for regular thermal
expansion, (2) that Lindemann’s relation is restricted to
materials that do not undergo major changes in coordination
on melting (as otherwise the regular bond length changes are
not represented by γ), and (3) that the starting relation ΔP ≅
γρΔE is essentially exact for a temperature not low with
respect to θD; apart from that γ is taken to be temperature
independent.
Still another rationalization was given by Stillinger and

Weber79 based on simulations for the Gaussian core model. In

its simplest form this model contains only exponential
repulsion resulting in that the stable crystal form at T = 0
for the reduced density ρ* < 0.179407 is FCC, while for ρ* >
0.179767 it is BCC. To place the Gaussian core model in
context, it was deemed useful to interpret the Gaussian
potential at a given distance r in terms of an effective inverse
power potential. By matching the logarithmic derivatives for
the two functions, it appears that the exponent of the inverse-
power form must be n*(r) = 2r2, which for the nearest-
neighbor distance for the BCC crystal at density ρ* results in
n*(a) = 6(4ρ*)2/3 or 6.96 at ρ* = 0.2. As this represents a
much softer potential than usually assumed for pair potentials,
the authors suggest that the model might be useful for studying
matter under compression. Indeed, an approximate corre-
spondence can be established between the thermodynamic
states of the Gaussian core model and those of Ar for which ρ*
= 0.2 corresponds to about 5.5 Mbar. For MD simulations
containing 432 particles, using periodic boundary conditions
and starting with the BCC structure, melting (and freezing)
was monitored by the pressure, mean potential energy, pair-
correlation function, and self-diffusion constant using averages
over about 4000 time steps. As hysteresis for such a system is
inevitable, Tmel was estimated as the center of the hysteresis
loop, resulting for ρ* = 0.2 in Tmel* = 8.1 × 10−3 and entropy
change ΔS/Nk = 0.847. Mean square displacements were
calculated for the last half of simulation runs up to t* = 200.
Because the positions of any given particle at widely separated
times are uncorrelated, ⟨(Δr)2⟩ = 2⟨(u)2⟩, with u the
displacement from the stable lattice position, which led to
the ratio f = ⟨(u)2⟩1/2/a = 0.160 ± 0.005, substantially above
the value f = 0.113 given by Shapiro49 for BCC alkali metals
from lattice dynamics calculations. The latter value is to be
compared with f = 0.071 calculated for the FCC metals Al, Cu,
Ag, and Au and reasonably well agrees with the results for Al
and Cu determined by Martin and O’Connor80 by Bragg
diffraction of Mössbauer X-rays. The Lindemann−Gilvarry
ratio is thus structure dependent, an in the meantime well-
established conclusion.
In an attempt to create a dynamical image, Lubchenko81

derived a dynamical Lindemann criterion. The author
considered that a proper criterion, “presumably”, should
compare some property of both phases and should proceed
with reference to processes at the liquid/solid interface. The
interface is considered as an “interphase” with a density
changing from the solid to the liquid density, but also having a
heterogeneity in relaxation times, i.e., the lifetimes of long-
living local structures, interpolating between those in the liquid
and the solid. The distinction between liquid and solid was
made, as usual, via symmetry, and the focus was specifically on
the time scale on which the symmetry is broken/restored: For
a crystal one can label the molecules based solely on each one
being located within a particular, well-defined cell, while for a
fluid such labeling is impossible. For the liquid the
corresponding translation symmetry is maintained by material
transport with τ0, the time it takes a molecule to diffuse a
distance defining the volumetric density of the liquid. For a
compact specific cell in space, whose volume is equal to the
volume per molecule in the liquid, the time τ0 is significantly
longer than the time scale of density fluctuations. A second
identical molecule will have visited the chosen cell within time
τ0 upon the exit of the first molecule, thereby eliminating the
possibility to label a molecule by its spatial location. If 1/a3 ≡ n
is the molecular concentration in the fluid, where a is the
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average volumetric molecular spacing, the typical collisional or
autocorrelation time defining the density fluctuation time scale
is τauto = m/ζ, where ζ = 6πaη is the friction coefficient, η is the
viscosity and m is mass of the molecule. Because the time τ0 it
takes to diffuse a distance a is approximately a2/6D with D the
diffusion constant, and ζ is given by the Einstein relation D =
kT/ζ, the result is

= a kT/ 6 /0 auto
2 2

(12)

where ρ is the density of the liquid. The author calculated for
this ratio for Co and Na values of 1.3 × 103 and 2.1 × 103,
respectively, indicating that it takes about 1000 molecular
collisions per molecular volume to establish local thermal
equilibrium in a liquid. If, for a region of space occupied by a
solid and its melt, at some temperature T just above the lowest
temperature Tsm where surface melting is possible, a molecule
in that region fails to move a distance a in the time τ0, it must
be regarded as part of the solid. The boundary of any spatially
closed set of such molecules is therefore defined as the solid−
liquid interface. The inability of a molecule to move the
distance a in time τ0 is equivalent to residing the molecule in a
metastable Helmholtz energy minimum; or in other words, a
molecule is part of the solid if its escape time τesc from its
current neighborhood exceeds τ0. In quasi-equilibrium τesc = τ0,
and this expression can be considered as the dynamical
definition of a solid−liquid interface. The escape time τesc can
be estimated from standard transition state theory. Because of
the frequent collisions, the escape mode is strongly over-
damped, so the mean free path lmfp is much smaller than the
size of the transition state region lTS (Figure 6). Hence, the

escape rate τesc−1 is corrected by a transmission factor κ ≅
2lmfp/lTS = 2τautovth/lTS as appropriate in the overdamped
Kramers limit. Therefore
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the “size” of the metastable well. Further, vth = (3kT/m)1/2 is
the thermal velocity, the factor (2π)−1/2 was added so that d =
⟨(Δx)2⟩1/2 if the potential is strictly harmonic at the minimum

xm, while xm in the integration limit indicates integration over
the size of well. The quantity ⟨|v|⟩ = vth/(2/3π)1/2 is the
thermally averaged particle speed that enters the expression for
the molecular flux at the barrier top and V‡ ≡ V(x‡) − V(xm) is
the barrier height. Because an escape event will have occurred
if the displacement of a particle just exceeds the typical thermal
vibrational amplitude at the interface, V‡ = kT. Finally, dTS was
defined as dTS = 8−1/2lTD, where the numerical factor is chosen
so that if the barrier is parabolic at the top, then dTS =
⟨(Δx)2⟩1/2 in the inverted potential at the saddle point (Figure
6). Using (1/2)m(ω*lTS)2 = kT with ω* the underbarrier
frequency and recalling that τ0 = a2/6D = a2m/6kTτauto = a2/
2vth2τauto, the final result from τesc = τ0 is

=d d a d a/ 1/4 6 e 0.01 or / 0.1TS
2

L (14)

The last step is made by using for the amplitude of the
reversible motion in the molecular metastable minimum at the
liquid−solid interface dL ≅ d ≅ dTS, because of the
approximate character of the analysis. The author further
discussed several aspects of surface melting consistent with his
model and the need for “structural” reconfigurations, by
entropy arguments ruling out vacancies. The main point is here
that a purely kinematic criterion of melting in terms of the
ratio of length scales characterizing molecular motions in the
interface region, akin to the Lindemann criterion, is obtained.
As indicated at the start of this section, Lindemann’s concept

(Tmel proportional to some characteristic frequency) and
Gilvarry’s concept (Tmel occurs at a certain value of ξ) are
generally taken together when referring to Lindemann’s rule.
Luo et al.82 clearly distinguished between the two and used
MD simulations with an LJ potential at constant N, P, and T to
differentiate between the two. These authors used the density
of (vibrational) states (DoS) to assess various definitions for
the mean frequency and showed that the Lindemann
assumption is well obeyed if for the characteristic frequency
⟨ω−2⟩−1/2 is chosen, while the Gilvarry assumption is not of
sufficient accuracy for the LJ system. The Gilvarry ratio ξ
shows a non-negligible pressure dependence, so caution should
be exerted in applying Lindemann’s rule to predict high-
pressure data. Moreover, they indicated that discussions on the
comparison between various results is clouded with using
different definitions for ξ by different authors, as already
indicated before, namely for one component, labeled here as
ξ1, or the average spherical average, here labeled by ξ. They
quote as examples the uses of ξ by Hansen,56 Stillinger and
Weber,79 and Hoover et al.83 and ξ1 by Gilvarry44 and Martin
and O’Connor.80

To detect local differences experimentally, one obviously
requires a technique that probes locally. X-ray absorption fine
structure (XAFS) is such a technique, probing essentially only
the first coordination shell as represented by the first peak in
the pair correlation function g(r). Using an improved
background correction procedure for XAFS experiments,
Stern et al.84 were able to determine for Pb the moments of
the first peak in g(r) accurately. Upon melting the second
moment did not change much, while the first moment,
essentially the coordination number, decreases and the third
moment increases upon melting, thereby indicating an increase
in asymmetry. The behavior could be described by a one-
dimensional anharmonic oscillator with potential (1/2)αx2 +
βx3 + γx4 with x representing the displacement about the
equilibrium position and which for Pb yielded α = 0.87 ± 0.1
eV Å2, β = −0.28 ± 0.09 eV Å3, and γ = 0.15 ± 0.1 eV Å4. To

Figure 6. Generic schematic of an escape Helmholtz energy profile,
where the size of the transition state lTS delineates the vicinity of the
saddle point within the thermal energy from the top and d and dTS are
defined in the text. Reproduced from ref 81. Copyright 2006
American Chemical Society.
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lowest order, the second moment is linear in T, from which a
fit to the experimental data gave the Einstein temperature θE =
66 K, identical or close to the value calculated from θE = 3/
4θD28,85 using θD = 88 K9,28 or θD = 96 K.10 The decrease in
(apparent) coordination number was proportional to the
fraction of the time the atom is diffusing and is pertinent to the
interpretation of premelting phenomena around impurities. It
was observed for Hg impurities (concentration not given) that
above 400 K, well below Tmel = 601 K, the apparent
coordination number starts decreasing already significantly
while the second moment saturates, consistent with a
microscopic liquid region forming around the impurities.
The authors conclude that it is striking that the data are
consistent with the probability distribution as calculated from a
simple one-dimensional anharmonic oscillator with small
anharmonicity, but also that this anharmonic potential could
be determined because of the use of a new method of
background subtraction in the XAFS spectra which allowed the
determination of the signal in regions within the edge of the
pair correlation peak which were traditionally thought to be
inaccessible.
More generally, since all versions of Lindemann’s rule

contains many approximations, one can hope at best only for
approximate agreement with experiment, and this has been
amply shown by various authors. Nevertheless, using materials
with similar structures, a reasonably constant ξ value has been
shown to exist. The use of the Lindemann rule (and some
other criteria) has been further tested by Saija et al.,86 who
conclude, using the melting line in phase diagrams resulting
from exp-6, inverse-power-law, and Gaussian potentials, that
one-phase criteria give, on the whole, reliable estimates of
freezing/melting points, with agreement ordinarily being better
for an FCC solid than for a BCC crystal. Note, however, that
some authors state “good” agreement for complex solids87

when appropriate parameters are taken, while others88 deny
such agreement. Obviously, considering the Lindemann rule as
a scaling rule (or as an example of a principle of corresponding
states89), this depends on which of the aspects not dealt with
remain constant over a series of compounds considered.
Hoffmann90 goes as far as saying that estimating Tmel from
mθD2a3/2, or from θD only for that matter,91 is not convincing
and for practical purposes it is insignificant, although
estimating θD from Tmel is not so bad. The reason is clear:
while estimating θD from Tmel requires the square root of Tmel,
thereby damping differences, estimating Tmel from θD requires
the square of θD, thereby enhancing differences. Nevertheless,
in the absence of any experimental melting information,
Lindemann’s rule may be the best bet.
5.3. Lattice Instability

Another approach, now largely abandoned, is based on the
(in)stability of solids, as originally proposed by Herzfeld and
Goeppert-Mayer.92 Increasing the temperature of a solid will
reduce the elastic constants, and it was postulated by Born93,94

that at melting the shear elastic constant μ = C44 would vanish.
He calculated an explicit expression for the Gibbs energy of a
BCC crystal using (approximate) quasi-harmonic lattice
dynamics and determined the variation of the elastic moduli
with T/θD. Moreover, he derived the stability conditions for
cubic crystals at zero pressure. By adding external loading,95 in
the hydrostatic case by adding −PI with P the pressure and I
the unit tensor, the stability conditions are

+ + > >
>

C C P C C P

C P

2 0, 2 0,

0
11 12 11 12

44 (15)

With P = 0 Born’s theory also leads to a Lindemann-like
expression νD ≅ c(Tmel/MVm

2/3)1/2 with c ≅ 1.62 × 1012 in cgs
units. An obvious drawback is that the theory is a single-phase
theory which contains no distinct description of the melt, while
both phases must be involved, and thus fails to account for the
discontinuous, first-order character of melting. Because it is an
essentially homogeneous theory, it does not explain the
occurrence of superheating, the metastability of the melt, and
the heterogeneous nucleation and growth features of the
melting process. Observations show that none of the shear
moduli is zero or near zero in the solid state at the melting
point.96

However, Ida97 considered that a lattice instability may also
be caused by the combined effect of vibrational and
anharmonic bond length expansion a − a0, with a the bond
length at temperature T and a0 its value at T = 0. He argued
that for longitudinal phonons there is no bond length
expansion but that for transverse phonons bond lengths may
be equal to or longer, but never shorter, than the equilibrium
distance along the propagation direction at any time. This
contribution he called the vibrational contribution Q. Using
the Debye model for monatomic crystals, he calculated Q =
kT(c1−2 + c2−2)/15m, where c1 and c2 are the longitudinal and
transverse wave velocities, respectively, and m is the mass of
the atoms. For the anharmonic contribution he expanded the
logarithms of the velocities to first order in the lattice
expansion, resulting in ln cj = ln cj0 − b[(a − a0)/a0 + Q] or,
equivalently, cj = cj0 exp{−b[[(a − a0)/a0 + Q]}, and obtained
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The function Q exp(−2bQ) has a maximum 1/2eb at Q = 1/
2b, so eq 16 can only be satisfied below a critical temperature
Tcri corresponding with that maximum, which is interpreted as
the melting temperature Tmel. To obtain Tmel, an explicit
expression for a − a0 is required, which is obtained from the
Helmholtz energy in the harmonic approximation F = U0 +
∑jεj = U0 + ∑jℏωj/[exp(βℏωj) − 1] ≡ U0 + Fth, where U0 is
the internal energy at T = 0, εj and ωj are the energy and
frequency of mode j, respectively, and β = 1/kT. From F, the
Mie−Grüneisen EoS can be derived given by
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where the mode Grüneisen parameter γj = −∂lnωj/∂lnV in the
Debye approximation is independent of the mode j and given
by γ = (1/3)ba[1 + a0(∂Q/∂a)T/a0. This results in
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by approximating a by a0. Substituting ∂U0/∂a = 9NKT(a −
a0), with N the number of atoms, and γ in eq 17 results in
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where in the last step the high-temperature approximation εj =
kT is used. Combining eqs 16 and 19 and using the
abbreviations q = 2bQ and τ = 2kb2T/3a03KT results in q
exp[−τ/(1 − q) − q] = zτ with z = a03KT[1/c102 + 4/c202]/
5mb. This all results after some algebra in

= = [ ]T
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M z M z f z f z

3
2

( ) with ( ) 1 ( ) / ( )T
m

0
3

2
1 1

(20)

where f(q) = [q2/(1 − q)3] exp[−q−1(1 − q)2 − q] with q =
2bQ. Numerical values for the function M(z) have been given
by Ida.97 Furthermore, introducing the usual expressions for c1
and c2

9 results in another expression for z given by z = (1 +
ν)(9 − 10ν)/15b(1 − ν)(1 − 2ν) where ν is Poisson’s ratio.
Finally, from eq 19 he obtained α = V−1(∂V/∂T)P = kb/a03KT
so that αTmel = 3M(z)/2b. Ida calculated the melting points for
10 metals, which resulted for a linear fit (not given in the
paper) Tmel,calc = cTmel,exp with correlation coefficient R2 =
0.884 and slope c = 1.744 and as the largest deviation the value
for Mo, indicating a serious overestimate of the melting
temperatures. The correlation coefficient increased to R2 =
0.966 with c = 1.069 upon deleting the two most deviating
values of Mo and Ta, still an overestimate. Similarly, for 13
binary salts the fit resulted in R2 = 0.984 with c = 1.159. The
author called the results fairly good in view of the
approximations made.
More recently, Digilov and Abramovich98 used a rather

similar but more detailed approach, however, without referring
to Ida. They considered the temperature variation of the bulk
modulus KT = −V(∂P/∂V)T and its volume derivative the
Anderson−Grüneisen parameter δ = −(∂lnKT/∂lnV)P, thereby
also predicting a thermoelastic instability. Assuming that δ =
δ0V/V0, where δ0 and V0 are the Anderson−Grüneisen
parameter and the molar volume at T = 0, respectively, results
after integration in V = V0 − (V0/δ0) ln(KT/K0) or KT = K0
exp[(V − V0)δ0/V0. From V = (∂G/∂P)T and G(P,T) = G0(P)
+ kT∑j ln[1 − exp(−βhνj)], where G0(P) is the part of Gibbs
energy G at T = 0 and νj is the frequency of mode j, they
obtained

= +V V P
h P

h
( )

( / )

exp( ) 1j

j T

j
0

(21)

with, as usual, β = 1/kT. Writing (∂νj/∂P)T = (∂νj/∂V)T(∂V/
∂P)T = γjνj/KT, with as before γj the mode Grüneisen
parameter and εj the mode energy, the result is

= + +V V P
K

V P
E
K

( ) ( )
j j

T T
0 0

th

(22)

where the averaging over all modes γ ≡ ∑jγjεj/∑jεj is used.
This leads to KT/K0 = exp[−γδEth/VKT] or, using the Lambert
function W, given by x = W(x) exp[W(x)], to KT/K0 =
−γδEth/VK0/W(−γδEth/VK0) = exp[W(−γδEth/VK0)]. As
γFth/V = Pth, this can also be written as

= [ ]K K W P Kexp ( / )T 0 th 0 (23)

Because W(x) has no real roots for x < −e−1, the constraint
Pth ≤ K0/eδ follows. This implies that, at the temperature
where this condition is met, a thermoelastic instability occurs,
which is identified as Tmel. The thermal part Fth is given in
Debye theory by Fth = 3RθDD(θD/T), where R is the gas
constant, θD is the Debye temperature, and D(θD/T) is the

Debye function for the energy. The latter can be approximated
for T > θD by
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Inserting eq 24 into eq 23, carrying out the differentiation,
and taking the instability into account, the expression for Tmel
becomes
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The results of calculations for 24 metals and 2 salts leads for
the linear fit Tmel,calc = cTmel,exp to R2 = 0.991 and slope c =
1.058 with as the largest relative difference 15.8% for Li.
Although still an overestimate, this constitutes a serious
improvement over the results of Ida.97

The most important results of the above study are probably
the predictions for KT and ∂KT/∂T for T → 0 and for T →
Tmel. For the former case the results indicate that KT→ K0 and
that ∂KT/∂T approaches 0 for T→ 0, as expected conform the
third law. For the latter case KT → K0/e, while ∂KT/∂T
approaches −∞. Hence, the thermoelastic instability occurs for
a finite value of KT.
The above result gives support to the attempt to remedy the

situation by Tallon,99−101 who used the observation that the
shear moduli of a solid seem to extrapolate to 0 at VL. Hence, it
was proposed that melting occurs when the solid can transform
isothermally to a state of zero shear modulus. Obviously,
although this interpretation introduces the required discontin-
uous nature, it does not apply to crystals with ΔVmel < 0. Wang
et al.102 have shown with MD simulations using LJ potentials
for Au that indeed the elastic constants vanish upon increasing
the volume, but that it is the constant μ′ = C11 − C12 that
becomes 0 first. Wautelet and Legrand103 indicate that such an
instability can be triggered by defect−phonon interactions.
An attempt to reconcile the Born instability approach with

the Lindemann relation using a J1 − J2 lattice model in
combination with a vibrational Hamilton function for an
surface-free FCC crystal was given by Zhou and Jin.104 Their
model invokes interstitials, and in order to do so, they use the
NaCl lattice for which at T = 0 only one type of site is
occupied so that the FCC lattice with octahedral holes is
generated. For T > 0, the configurations of the atoms over all
lattice sites and all octahedral holes were taken, with as nearest-
neighbor (NN) interaction J1 for an atom at a regular lattice
site with an atom at a hole site and next-nearest-neighbor
(NNN) interaction J2 for an atom on a regular lattice site with
an atom on a nearest regular site or an atom at a hole site with
another atom at a nearest hole site. To that the high-
temperature vibrational Helmholtz energy 3NkT ln(βℏϖ) was
added with ϖ the geometric mean frequency of the vibrations
of the N atoms. Here h = 2πℏ is Planck’s constant, k is
Boltzmann’s constant, and β = 1/kT. The equations were
solved using a variational approach in the mean-field
approximation with periodic boundary conditions and resulted
in a discontinuous transition. The authors argue that the
configurational entropy is insensitive with respect to sign flip,
reminiscent of the lattice gas model where the NNN attraction
describes the liquid phase irrespective of the NN repulsions.
Their results led to cooperative clusters, or spherical domains
of instability, with a size L ≠ 0 for T → 0 while L = 0 for T >
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Tmel, in which atoms behave isotropically. Hence, the
difference C44 − 1/2(C11 − C12), where Cij are the elastic
constants, vanishes. Moreover, the average displacement of
these atoms exceeds a certain fraction ξ of the interatomic
distance a, leading for T → Tmel to 3kTmel = ⟨ω2⟩ma2ξ2 with
⟨ω2⟩ the average square frequency. Hence, both the Born and
the Lindemann criteria are fulfilled, albeit in a particular way,
because as long as the material remains solid, Born’s criterion
is only fulfilled within the instability domains. The authors
conclude that the most influential factor determining the
Lindemann criterion is what they call the profile of the
interaction and not the precise details. However, although
there is a “universal” value for ξ for van der Waals crystals,
there is no guarantee there is a “universal” value for all FCC
crystals. With the exception of Gupta’s result,48 we have seen
from various other results that a “universal” value for ξ for van
der Waals crystals (rare gas solids) is reasonable, while for
FCC metals another “universal” value is more closely observed.
Finally, we refer to an extensive discussion of instability

theory, as known before 1985, provided by Boyer.105

5.4. Vacancies
The first attempts to give a description of liquids with the free-
volume concept (i.e., introducing sufficient vacancies (holes)
in a solid) were made by Eyring106 and Eyring and
Hirschfelder.107 The (semi)quantitative development by
Cernuschi and Eyring108 included melting but was criticized
by Kirkwood109 for neglecting thermal motion. Within that
simple picture, Cernuschi and Segre110 tried to remedy this
defect by introducing vibrations using the Einstein model,
which led to qualitatively correct behavior. Frenkel111 also
recognized that, for the S−L transition to occur, crystals must
lose their long-range order and therefore must contain
thermally accessible defects. The only thermally accessible
defects are vacancies, interstitials, and interstitialcies (Figure
7). From an exposition on fusion,9,111 it became clear though

that the normal increase of the amount of vacancies in a crystal
with temperature cannot account for the volume increase upon
melting. If we have N atoms and Nα holes with α ≪ 1 on a
lattice with N(1 + α) sites, the number of possible
configurations is

= [ + ]! ! !
= [ + ]+

W N N N

W

(1 ) / ( ) or

(1 ) / N1 (26)

using Stirling’s approximation N! = (N/e)N. Hence, for the
entropy we have

= = [ + + ]S k W Nkln (1 ) ln(1 ) ln (27)

The ratio ΔmelH/ΔvapH for metals is typically 0.04, and this
suggests that α ≈ 0.04 so that S ≈ 0.17Nk = 0.33 cal K−1
mol−1. A typical experimental value for entropy of fusion is Smel
≈ 2 cal K−1 mol−1, so a vacancy fraction α ≈ 0.04 cannot
account for this. To account for such a value of Smel, a value of
α ≈ 1 would be required, leading to a liquid metal density of
about half that of solid metal. Similarly, for molecular
compounds, ΔmelH/ΔvapH ≈ 0.1 and hence α ≈ 0.1, with
the corresponding Smel ≈ 0.34Nk = 0.66 cal K−1 mol−1, while
experimentally Smel ≈ 5 cal K−1 mol−1 is observed. This leads
again to a rather large density change. Since these changes are
not observed, other effects, to which we come later, must come
into play. Possibly more fundamental is the fact that the
concept of vacancies in a lattice as a model for a liquid imply
long-range order in a liquid, which is, however, not observed.
Smirnov112 also showed that a vacancy model to describe

melting of rare gas solids is not applicable and proposed as an
alternative an approach using the interaction between
icosahedral and FCC structures.
Nevertheless the vacancy theory was elaborated by

Gorecki,113−115 who, focusing on metals and ignoring the
entropy argument, assumed that the mechanism of melting is
connected to the introduction of vacancies in the solid phase.
It was shown that for a range of FCC, HCP and BCC metals
the vacancy concentration c, defined by c = Nα/(N + Nα), is
given by

= [ ]c S k E kTexp ( / ) ( / )vac vac (28)

where Svac/k = 4.1 and Evac/Tmel = 80.4 J K−1 are the
empirically determined entropy and enthalpy (energy) of
vacancy formation, respectively. Hence, one easily calculates
that cvac(Tmel) = 0.0037, in good agreement with experimental
data for all the metals studied. Such a low bulk concentration
of vacancies will not lead to lattice instability. A further
correlation of the enthalpy of melting ΔmelH with Evac yielded
ΔmelH/Evac = 0.127, sufficient for a vacancy concentration
increase of Δc = 0.13 upon melting. A similar correlation using
the electrical resistivity yielded Δc = 0.07. Experimentally it
appears that the volume increases upon melting are ΔV/VS ≅
0.05 for FCC and HCP metals and ΔV/VS ≅ 0.025 for BCC
metals. As it is also known that for FFC and HCP metals the
mean atomic volume for a defect lattice Ωvac ≅ (1/2)Ω,116,117
the model implies Δc ≅ 2ΔV/Vs ≅ 0.10. Overall, Δc thus
appears to be Δc ≅ 0.10.
Using a factor ζ due to lattice relaxation around a vacancy ,
Ωvac = Ω + ζcΩ. Considering that Ω = 4πr3/3 and Ωvac = 4π(r
− Δr)3/3, one obtains c = ζ−1[(Ωvac/Ω) − 1] = ζ−1{[(r −
Δr)/r]3 − 1}. Furthermore, the empirical correlation x ≡ Δr/r
= 3.0Evac/EVm with E Young’s modulus, and xFCC = 0.24, xHCP
= 0.21, and xBCC = 0.37, is used. Hence, Ωvac = (1 − 3x + 3x2 −
x3)Ω, which leads to ζFCC = −0.56, ζHCP = −0.51, and ζBCC =
−0.75, for FCC and HCP consistent with the experimental
estimate ΔV/VS ≅ 0.05. Interpreting for the liquid r − Δr as
the radius of the first coordination shell leads to, using the
available experimental data, Δc ≅ 0.09, in good agreement with
the aforementioned estimates. Note that, although one might
expect upon melting an increase in the radius of the first
coordination sphere, actually a small decrease occurs. The
model was further used to calculate dTmel/dP, with results also

Figure 7. Schematic of various point defects. (I) Vacancy, (II)
interstitial, (III) substitutional impurity, and (IV) interstitial impurity.
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in fair agreement with experiment. In conclusion, the approach
is quite successful describing melting of metals, but the reason
why Δc ≅ 0.1 has not been made clear.
Other authors118−120 have also dealt with vacancy theory for

melting. Generally, they all take the same general form but
differ in detail. An early review on defect-mediated melting by
MC studies based on gauge theory is given by Janke.121 A
somewhat different approach is by Karasevskii et al.122 using
the Gibbs−Bogoliubov functional for the Gibbs energy in the
high-temperature approximation of rare gas solids, dependent,
next to P and T, on two internal variables, the quasi-elastic
bond parameter and one for lattice expansion. A Morse
potential was used to describe the pairwise interaction of
neighboring atoms, while for the van der Waals attraction for
non-nearest neighbors ϕNN = −4ε(σ/r)6 was employed. The
effect of the creation of vacancies upon the local configuration
as well as the associated energy changes was taken into account
up to the fourth coordination sphere. Comparison with the
results for a quasi-harmonic crystal showed that the cubic
vibrational anharmonicity is responsible for a dramatic
decrease of the vacancy formation energy near Tmel. Thus, at
lower temperature divacancies are preferred, while at higher
temperature single vacancies dominate. The reason is that the
number of bonds to be broken per vacancy in the case of a
divacancy is less than that for two single vacancies. However, at
higher temperatures, the major gain in the formation energy of
structural defects is due to the redistribution of atomic
displacements around the vacancy. Creation of a divacancy
results in an overlap of relaxed areas, thus reducing the total
gain in the defect energy. As a result, at temperatures about 7%
below Tmel the energy of a divacancy becomes greater than the
sum of the energies for two single vacancies; i.e., there is some
effective repulsion between the vacancies at a high concen-
tration. For the melting point the authors argue that using a
two-phase theory is difficult and resort to a previous paper123

where it was shown that the effective phonon-mediated
interaction between vacancies results in a first-order phase
transition in the subsystem of the vacancies. This first-order
transition occurs when the Gibbs energy of vacancy formation
Gv reaches Gv = 5.25kT and is accompanied by a discontinuous
and large increase in the number of vacancies. Hence it was
identified as the melting transition. Summarizing, the
incorporation of the cubic anharmonicity of atomic vibrations
can be considered as an attraction between the phonons. The
magnitude of this attraction and the equilibrium phonon
concentration increase with T. As the system approaches the
critical temperature, where the rate of vacancy creation
approaches −∞, the phonon concentration increases at an
infinite rate. However, before this critical temperature is
reached, the energy for the creation of structural defects drops
sharply, resulting in a first-order phase transition to a phase
saturated with defects, which is identified as the liquid phase.
In a condensed presentation Tovbin124 discussed what he

called the “fundamentals of the theory of melting” in the lattice
gas approximation using the method of quasi-averages,
introduced by Bogoliubov125 (for a brief introduction, see ref
126). Using an LJ potential, allowing for vibrations in the solid
state and vibrations and translations in the liquid state, a
general scheme was described, to be solved in the quasi-
chemical approximation. Unfortunately, no concrete results
from any calculation were presented.
Finally, we note that attempts have been made to use two

types of defects to explain melting. For example, Liu and

Chen127 discuss the combined effect of dislocation pairs and
point defects. The model led to a discontinuous transition
whereby melting occurs due to a discontinuous growth of
point defects into dislocation pairs. For five alkali metals the
agreement with the calculated transition point and experiment
is fair. The enthalpy derived is related to the core parameter
and energy of the dislocation, and by adjustment of the core
parameter the enthalpy obeys Richard’s rule.
5.5. Interstitials

Essentially the vacancy model by Cernuschi and Eyring108 is a
special form of the order−disorder problem.128 The idea of
melting being an order−disorder problem was also addressed
by Wannier,129 who concluded (again) that melting is due to
the breakdown of crystalline long distance order, but also that
his “method used is not likely to be of value for quantitative
purposes”. Another early, but detailed attempt,33 essentially
employing the interstitial holes in a lattice, uses in its simplest
form for both the liquid and the solid state the LJD
theory.130−132 In that theory the FCC lattice was used for
the liquid using the Einstein approximation for the vibrations
and the approximate partition function Z reading, using β = 1/
kT and Λ = (h2/2πmkT)1/2, is given by

= [ ]

= [ ]

Z f v N

v r r r

exp( / ) with

exp ( ) 4 d

N N3
f

f
2
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Here f is the single particle partition function, Φ = (1/2)
Nzϕ0 with ϕ0 the potential at the center r = 0 of the cell, z the
coordination number, Δϕ(r) = ϕ(r) − ϕ0 the potential at
position r within the cell with respect to its center, and vf the
free volume. Further, recall that the FCC lattice contains an
equal number of lattice sites (here labeled as α-sites) and
interstitial, or hole, sites (here labeled as β-sites), the latter also
being arranged in an FCC manner. It is now assumed that in
the solid state the molecules occupy the α-sites only, while
during melting the β-sites become available. For the fusion
process we then have an order−disorder description at hand,
for which we can use the conventional zeroth or first
approximation. As the zeroth approximation yields essentially
the same results as the first and the zeroth is much simpler, the
zeroth approximation is used here.
If the relative occupancy of α-sites is given by X = Nα/N, X =

1 represents the ordered state, while X = 1/2 denotes complete
disorder. In the zeroth approximation in a disordered state,
there will be XN molecules on α-sites and the α−α interaction
becomes (1/2)Xzϕ0·XN (instead of (1/2)zϕ0·N for the
ordered, i.e., solid, state). Since the α- and β-lattices are
similar, the β−β interaction becomes 1/2(1 − X)zϕ0·(1 − X)
N while for the α−β interaction the result is (1 − X)zχ0·XN
with χ0 the difference in energy between α- and β-sites. The
total energy therefore becomes, using ψ = χ0 − ϕ0

+ +

+
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Next, the number of ways γ(X) of choosing Nα molecules
over the α-sites and Nβ molecules over the β-sites is needed,
which is given by
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Finally, it is assumed that the motion of a molecule on an α-
site is the same as that on a β-site. In that case the partition
function becomes

= [ ]Z f X zN X X( ) exp (1 )N (32)

Minimizing the Helmholtz energy F = −kT ln Z with respect to
X, one obtains, after some calculation

=X z X2 1 tanh
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This equation is always satisfied when Xm = 1/2, but when
βzψ/4 > 1 there is another root larger than 1/2, which in that
case minimizes F. For βzψ/4 ≫ 1, Xm ≅ 1 and the order is
nearly perfect (in fact, it describes the solid with a few
interstitials). When βzψ/4 decreases, the disorder increases,
and when βzψ/4 < 1, Xm = 1/2 and there is complete disorder.
Substituting the value of Xm in the partition function, one
obtains

= · · [ ]Z Z Z f X zN X X( ) exp (1 )N
1 2 m m (34)

so that the Helmholtz energy becomes F = F1 + F2, where F1 is
the Helmholtz energy for the ordered state and F2 is the
additional Helmholtz energy due to disorder (Figure 8b).
Hence for the pressure P = −∂F/∂V = P1 + P2 with

=
=

P NkT f V

P zNX X V

( ln / ) and

(1 )( / )
1

2 m m (35)

If one further assumes that ψ = ψ0(r0/r)12 = ψ0(V0/V)4, that
is, we assume that only repulsion contributes, P can be
calculated as a function of T, since for a given volume V, Φ,

and ψ are known, while Xm can be calculated from eq 33. This
results in a curve as shown in Figure 8a (the sharp peak K is
due to the use of the zeroth approximation). The pressure P is
zero for three values of V/V0. The smallest one corresponds to
the volume of the solid at melting, while the largest
corresponds to the volume of the liquid. With the use of the
Maxwell equal-area rule, ψ0 can be determined in such a way
that the melting pressure for a particular compound is zero.
This has been done for Ar (Tmel = 83.8 K) and leads to ΔV =
VL − VS = 1.214V0 − 1.078V0 = 0.136V0. For the entropy the
result is S = 1.70k and both values are in reasonable agreement
with experiment. It was found that for these volumes kT/ε ≅
0.7, where ε is the depth of the LJ potential used. The melting
point Tmel is thus Tmel ≅ 0.7ε/k. With the use of this rule,
reasonably good agreement for Tmel was obtained for Ne, N2,
CO, CH4, and H2. With the use of a slightly different
formulation including interactions up to the third coordination
shell,133 agreement between theory and experiment for the
melting curves is very good for the rare gases and fair for NH3,
N2, CO2, and CH4.
Since molecules generally have not only translational

(positional) but also orientational degrees of freedom, any
theory of melting of molecular crystals should take them into
account, as done by Pople and Karasz134 in the framework of
the interstitial approach discussed here. These authors
restricted their discussion to two orientations, but Amzel and
Becka135 extended the model to n > 2 orientations. Such
crystals are sometimes called, somewhat confusingly, “plastic”
crystals. Using the notation of Ubbelohde,7 Tozzini et al.136

described the n = 2 model by
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where Q represents the site fraction and S represents the
orientation fraction. The parameter L = (1/2)βzε characterizes

Figure 8. LJD fusion model for Ar. (a) The pressure P as a function of volume, where the lower curve represents the pressure for the ordered state
and the upper curve represents the total pressure. (b) The Helmholtz energy F for the ordered state (I), the disorder contribution (III), and the
total (II). The points A, B, and C correspond to the same points as in (a). Reproduced with permission from ref 132. Copyright 1939 The Royal
Society.
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the barrier for translation, while the parameter y = z′ε′/zε
represents the ratio of the barriers for orientation and
translation. The model thus deals with the melting temperature
Tmel or tmel = 2kTmel/zε, which decreases with increasing y, and
an orientational disordering temperature Tcri or tcri = 2kTcri/zε,
which increases with y, until they meet at tmel = tcri ≅ 0.35 for y
≅ 0.595. Once the temperature is scaled via L, both Tmel and
Tcri are functions of y and tmel/tcri is a “universal” function of 1/
tcri, for 5 < 1/tcri < 20 approximately represented (not given)
by tmel/tcri = 0.50/tcri − 0.25. The authors indicated that
“plastic” crystal phase studies of, e.g., a light halogen, could
provide an experimental test.
Bhattacharya et al.137 revived the model by using the

embedded atom method for the potential for the solid,138 a
corrected rigid sphere model (CRIS139−141) for the liquid, and
adding a correction for correlated atomic motion and
anharmonicity.142 Calculations were done for Ar, from which
the need for a correlation correction became clear, and as a
function of pressure for Al (3 Mbar), Cu (3.5 Mbar), Ni (3
Mbar), and Pt (2 Mbar). It appeared that to obtain agreement
with experiment it was necessary to include an empirical
correction of the form A + BT, where A corrects for the
difference in binding energies of the solid and liquid phases
and B accounts for the neglect of correlation in the single
particle cell model. These constants can be determined from
the zero pressure melting temperature.
The original interstitial approach takes properly into account

that both solid and liquid should be involved and results in
quite reasonable values for the various properties. Moreover,
the model also provides an explanation for Lindemann’s rule.
However, it predicts a critical point for the solid−liquid
transition, similar as for the liquid−vapor transition, which has
never been observed experimentally, but using a compressible
lattice model this can be avoided, as shown from
thermodynamics143 and statistical mechanics of the Ising
model.144,145 The isobars S(T) display a monotonic rise
instead of being S-shaped, as required for melting being a
discontinuous transition. Finally, as well-known, the liquid
state is poorly described as insufficient disorder is introduced.
5.6. Dislocations

Several melting theories are based on dislocations, for which
the basic idea is that a solid becomes a liquid when the solid is
saturated with dislocations. Such dislocation theories of
melting (DTMs)146,147 have appealing aspects. First, although
dislocations have an excess energy over the ideal lattice, the
Gibbs energy of a solid containing a dense network of
dislocations and that of a liquid remain comparable. This leads
to a low enthalpy of fusion, comparable with the core energy of
dislocations. Second, the fluidity can be ascribed to the
mobility of a dense network of dislocations.148 Pairs of
opposite sign dislocations (loops) can be created thermally
and, most importantly, the presence of dislocations reduces the
formation energy of additional dislocations, so a cooperative
effect creating an avalanche of dislocations can be envisaged to
occur. When the Gibbs energy difference ΔG = GL − GS = 0, a
discontinuous transition occurs. As both GL and GS are
involved, one can consider DTMs as two-phase theories. There
is some evidence for dislocation-like structures in liquids.149

The birth of DTMs can be considered to be a paper by
Mott,150 rapidly followed by others.146,151−153 Here we
consider mainly a variant originated by Ninomiya154 and in
slightly modified form applied by Poirier.155−157 In this model

the energy U of a lattice with dislocations contains essentially
three terms. The first term is the energy of the core of the
dislocations ΔUcor. This is usually considered to be a constant
per unit dislocation length for which the enthalpy of melting
appears to be a rather good estimate.158 Measured in units
μb2/4π with μ the shear modulus and b the Burgers vector
length, the core energy per unit length can be expressed as ucor
= cμb2/4π with c ≅ 1. The total core energy ΔUcor is thus
ρVmucor with the dislocation density ρ = L/V, where L is the
length of dislocations per unit volume V of crystal and Vm is
the molar volume.
The second term is the elastic energy of the dislocations
ΔUela. Here we use the logarithmic energy expression uela =
(αμb2/4π) ln(R/r0) for the energy unit length, as we need an
explicit dependence on ρ. The constant α = 1 for screw
dislocations and α = 1/(1 − ν) for edge dislocations; ν is
Poisson’s ratio, r0 is the core radius, and R is the average
distance between dislocations. The latter is estimated using the
average stressed cross section along a dislocation ρ−1. As the
core is considered to be circular with area πr02, and uela should
become zero when R = r0, the proper estimate is R = (πρ)−1/2.
The total elastic energy is thus ΔUela = ρVmuela. However, the
introduction of dislocations leads to a volume strain ε(ρ), so V
= V0(1 + ε), thereby reducing μ and increasing b. Using d ln μ/
d ln V = −(2γ + 1/3) as given by Slater,9 μ = μ0[1 − (2γ + 1/
3)ε], where γ is the Grüneisen parameter, while b = b0(1 +
ε)1/3.
The third term is the energy due to the expansion of the

material as a whole given by ΔUexp = (1/2)NAΩKε2, where K
is the bulk modulus and Ω = Vm/NA is the atomic volume. The
total energy change is thus ΔU = ΔUcor + ΔUela + ΔUexp or

= +

+

U V c b V b r

K

(4 ) (4 ) ln( / )

(1/2)
m

1 2
m

1 2 1/2 1/2
0

2 (37)

The value of εdis corresponding to the dislocation density ρ
is obtained by minimizing ΔU with respect to ε. The result is,
taking care of the strain dependence of V, b, and μ and
neglecting small terms,159,160

c b K b K( 1/3) /2 ( 1/3)/6dis dis 0 0
2

0 0
3

(38)

where cdis = c + α ln(ρ−1/2/π1/2r0). The last step can be made
as saturation of dislocations is given by the condition π1/2r0 ≅
ρ−1/2 and c ≅ 1, so cdis ≅ 1, while the maximum dislocation
density is estimated as ρmax ≅ b/3Ω.161 The factor b03/Ω
depends only on the lattice type and is√2, 3√3/4, and 4/√3
for FCC, BCC, and (ideal) HCP lattices, respectively. The
volume change upon melting becomes ΔV = NAΩεdis = Vmεdis,
while the internal energy change ΔU, obtained by substituting
eq 38 into eq 37, reads

=U V K V K/2( 1/3) (1/2)m dis m dis
2

(39)

The entropy of the dislocations ΔS contains configurational
and vibrational contributions. The first is generally negli-
gible,161 while the vibrational entropy contains a term due to
the decrease in lattice frequencies brought about by the
dilatation εdis and a term due to the vibration of the dislocation
lines. When a crystal with average (or Einstein) vibration
frequency ω contains dislocations, the vibrations associated
with the dislocations change frequency to ω′. Hence, in the
high-temperature approximation to vibrations, we have, using f
= Ωρ/b
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= +
= +

S kN f kNf

Nk Nkf

(3 ) ln ln

3 ln ln
vib

(40)

where λ = ω′/ω, estimated by Ninomiya154 to be ≅ 0.13, so
that ln λ ≅ −2.0. Moreover, due to the dilatation, the lattice
frequency itself changes and using the Grüneisen relation, d ln
ω/d ln V = −γ with γ the Grüneisen parameter, one obtains ω
= ω0(1 − γε). From the Helmholtz energy ΔF = ΔU − TΔS,
the total dilatation is given by ∂ΔF/∂ε = 0, and this results in ε
= (3kγ/KΩ)T + εdis. Inserting ε in the expression for ΔF, the
entropy ΔS = −∂ΔF/∂T becomes

= = +S N k f N k f(3 ln ) (3 2 )A dis max A dis max (41)

The melting temperature Tmel is obtained by setting ρ = ρmax
and taking the Helmholtz energy ΔF = ΔU − TΔS = 0 (Figure
9a). The final expression becomes

=
[ ]

+
T

K
k f2

1 ( 1/3)
( 1/3)(3 2 )mel

max max

max max (42)

From the Clausius−Clapeyron equation dT/dP = ΔV/ΔS,
one also has

= =
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Equation 43 differs from the differential Lindemann expression
d ln Tmel/dP = 2(γ − 1/3)/K only by the factor [1 − εmax(γ −
1/3)]−1, which is somewhat larger than 1 for γ > 1/3. The
latter condition is always true, and thus the DTM also provides
some justification for Lindemann’s rule. Estimates for c, ρmax,
and λ already being made, one needs only estimates for the
material properties μ, K, and γ, and knowing the crystal
structure, Tmel can be calculated, as illustrated in Figure 9a. For
Fe Poirier155 obtained Tmel = 1786 K, while experimentally
Tmel = 1808 K is obtained. A good agreement with experiment
is thus observed.
It appeared, however, that the agreement for Fe was a

somewhat lucky shot as the results for other metals differ
significantly from the experimental data, but taking the
experimental values for ΔV and ΔS, Poirier156 obtained
reasonable agreement for 14 metals studied (Figure 9b). A
recent revival of the DTM by Burakovsky et al.,160,162,163 using
a slightly different approach, the melting temperatures and
latent heats are estimated for about 70 elements with an
accuracy of about 20%.
5.7. Interstitialcies

A relatively recent “defect” approach is based on the
interstitialcy (or a dumbbell interstitial, that is, two atoms
trying to occupy the same lattice site), as studied primarily for
FCC metals, in particular Cu, by Granato.164,165 It is argued
that dislocations have a too high energy per atomic length to
be generated thermally. As indicated in section 5.4, thermal
accessibility of defects involved in melting is considered to be
necessary. While vacancies are thermally accessible, they result

Figure 9. DTM illustrated. (a) Helmholtz energy F as a function of dislocation concentration c as used in refs 154−156. (b) Correlation between
calculated and experimental Tmel drawn after data from ref 156.

Figure 10. Interstitialcy theory illustrated. (a) Interstitialcy configuration in a [100] direction for an FCC lattice. Arrows indicate displacements of
atoms along a close-packed [110] direction on a {100} plane for an applied shear stress and the so-called Eg resonance mode. (b) Normalized
Gibbs energy as a function of normalized interstitialcy concentration. Reproduced with permission from ref 166. Copyright 2006 Elsevier.
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in a too low value for the melting entropy Smel. Interstitialcies
are also thermally accessible but have a strong coupling to
external shear stress, low-frequency resonance modes, and an
extended linear string-like character (Figure 10a), leading to
large entropy effects. Based on these considerations, a liquid
was considered to be a crystal containing a certain percentage
of interstitialcies in thermal equilibrium, for which an
interstitialcy concentration dependent Gibbs energy expression
was derived.
It is supposed that the volume V0, the bulk modulus K0,

shear modulus μ0, evaluated for the static lattice, and their
pressure derivatives K′ and μ′ are given, and that the
Helmholtz energy F0(V,ε) with ε the shear strain can be
expressed in terms of these parameters. Accepting the Einstein
model for vibrations at high temperature with frequency ωE,
the Helmholtz energy F at finite temperature for N atoms is
given by F = F0 + 3NkT ln(βℏωE), where k, β, ℏ, and and ωE
have the usual meaning. Introducing n defects, we must add
the work for creating these defects ΔFfor, the change in
vibrational behavior ΔFvib, and a configurational term ΔFcon.
The first contribution is assumed to be df for ≡ dFfor/N =

(αμμΩ + αKKΩ) dc with Ω the atomic volume and c = n/N the
concentration of interstitialcies, or, equivalently, f for = ∫ (αμμΩ
+ αKKΩ) dc. It is expected, based on simulations, that for the
constants αμ and αK we have αK/αμ ≪ 1, so the work of
formation is mainly due to shear deformation (a fit for Cu
yields αμ ≅ 0.9 and αK ≅ 0.03). The second contribution is due
to the five low-frequency resonance modes with frequency ωR
and the six high-frequency local modes with frequency ωL for
each interstitialcy, as described by Dederichs et al.167 This
leads to df vib = −kTc[5 ln(ωE/ωR) + 6 ln(ωE/ωL)]. The third
contribution reads −TScon = −kTc[1 + ln(z/c)] with the
degeneracy factor z as an interstitialcy that can be oriented
along any of z directions (z = 3 for FCC lattices).
The dependence of K on shear strain ε is neglected, and μ is

described by μ(V,ε,c) = μ0(V,ε) + αμ∫ (∂2μ/∂ε2)(Ω/Ω0) dc or,
equivalently, by ∂μ/∂c = αμ(∂2μ/∂ε2)(Ω/Ω0).

164,165 As μ must
be periodic in displacement x with lattice distance b for lattice
planes separated by a distance d, the simplest periodic even
function, μ = μ(V,c) cos(2πdε/b) with ε = x/d, is chosen.
Hence, ∂2μ/∂c2 = −ξμ with ξ = 4π2d2/b2, with leads to, since
Ω/Ω0 ≅ 1, μ = μ0(V,ε) exp(−αμξc). For αμ ≅ 1 and d ≅ b, ξ ≅
4π2 ≅ 40, so a concentration of, say, 3%, should reduce μ to ≅
0.3 of its original value. For Cu the dependency of μ on c is
known and indeed shows a rapid decrease of the elastic
constant C44 with d ln C44/dc ≅ 31.
For the Gibbs energy G = F + PV, one has to add a term

3NkT ln[ωE(V)/ωE(V0)]. Also, we might expect that ωR is
reduced under constant pressure conditions. As a precise
analysis is complex, the behavior is approximated by ωR =
ωR0(1 + λαμξc), where one expects λ < 1. Using r = (ωE/ωR)/
(1 + λξc), ln ωE/ωR = 0.87r − 1.05 is a good approximation
according to Granato. With V = ∂G/∂P and ωE(V)/ωE(V0) =
(V/V0)γ, the (normalized) Gibbs energy change y can be
obtained as a function of the (normalized) defect concen-
tration x and (normalized) temperature t (after some
manipulation) as
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+
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Here y = [ΔG(1 − q)ξ]/NG0V0, x = αμξc, t = kT/ηGΩ, trel =
T/Tmel, ημV = αμμV + αKKV, 1 − q = αμ/η, a = λ/η(1 − q),
and b = zη(1 − q)ξ(ωE/ωL)6. Moreover, μ′ = (2γ + 1/3)μ/K
where the Grüneisen parameter γ9 is used. We show here the
full expression for ΔG just to indicate that an analytical theory
is obtained. ωL/ωE = 1.73 was taken from theory.168 The other
parameters have been fitted on data for Cu169 imposing ωE/ωR
> 1, which allows taking α = 1, and, using 2μ = C44 + (C11 −
C12)/2, yields αμ0Ω0 = 3.94 eV, in agreement with experiment.
As for ξ < 30 no solution could be obtained, ξ = 35 was fixed.
Using Smel = 1.15k at Tmel with ωE/ωR = 5.3 ± 7% led to λ =
0.206 ± 10%, q = 0.075 ± 22%, and x = 3.0 ± 17%, so c(Tmel)
= 0.093 ± 17%.
For this choice of parameters Figure 10b, displaying the

behavior of y (∼ΔG) versus x (∼c), shows overall behavior
very similar to that of DTM. The shallow minimum (shown in
the inset) at low c is due to the fact that interstitialcies are
thermally accessible. Figure 10b also shows that undercooling
to t ≅ 0.85 is possible. For t > 1, that is, a temperature above
Tmel, there are three solutions of which the one with the
highest x is interpreted as equilibrium melting. Melting actually
occurs for y = dy/dx = 0, providing the relation hfor = ημ0Ω0 ≅
ξkTmel between Tmel and the enthalpy of formation of an
isolated interstitialcy hfor. Assuming η = 1, the data for Cu yield
ξ = 33.7. Using the Grüneisen relation cV = αKΩ/γ with α the
thermal expansivity and γ Grüneisen’s parameter together with
the Dulong and Petit high-temperature value cV ≅ 3k, results in
αTmel ≅ γμ/ξK. From Poisson’s ratio ν = (3K − 2μ)/2(3K +
μ), one obtains μ/K = 3(1 − 2ν)/2(1 + ν) ≅ const., so αTmel ≅
C with C a constant. For Cu, with ν = 0.35 and γ = 3.0, Ccal ≅
0.030, to be compared with Cexp ≅ 0.024. This approach thus
interprets melting as reaching an interstitialcy-driven shear
instability with no relation to a critical vibration amplitude.
Because Lindemann’s rule ⟨u2⟩1/2 = aC with a the lattice
constant can be approximated by Δa = aC, the correlation (1/
a)(Δa/Tmel)Tmel ≅ αTmel = C results, and therefore his rule
can be rationalized by the interstitialcy theory but, as said,
without invoking a critical vibration amplitude.
The relation Tmel = μ0Ω0/kξ can be tested independently

and yields with μ0 = 48 GPa and Ω0 = 1.26 × 10−29 m3 for Cu
Tmel = 1303 K, to be compared with the experimental value of
1358 K, and equivalent to dTmel/d(μ0Ω0) = 386 K eV−1. A fit
on 62 elements led to dTmel/d(μ0Ω0) = 228 K eV−1, and
Granato et al.168 suggested that the actual data points represent
approximate formation enthalpies of the interstitialcies. In the
absence of adequate data, this correlation can easily be off by a
factor of 1.5−2.0, though. As ξ is substance-dependent and
several metals show a phase transformation below Tmel, thereby
changing their values for μ, K, ν, and γ, a strict linear
relationship αTmel ≅ const. is not expected anyway.
Furthermore, as an aside, we mention the intriguing

question of how the specific heat CP about liquids behaves.
169

Typically, CP decreases with T near Tmel (before increasing
again near Tcri due to the continuous transition at Tcri). From
CV = −T ∂2f/∂T2 with f = f for + TS(c) one obtains, using ∂f/∂c
= 0 which is equivalent to T ∂S/∂c = ∂f for/∂c, ΔCV = (∂f for/
∂c)(∂c/∂T). For the crystalline state ∂f for/∂c is the formation
energy of a single defect and ∂c/∂T increases exponentially
with T. For the liquid state ∂f for/∂c = αμμ(c)Ω + αKKΩ and
∂c/∂T is approximately constant, and CV follows the c- and T-
dependence of μ. It appears that, at Tmel, μ(Tmel)/μ0 ≅
exp(−αμξc) ≅ exp(−3) ≅ 0.05, so the two factors in ΔCV are
comparable near Tmel. With increasing T, c increases, μ
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decreases, and, hence, CV decreases. Upon undercooling, CV
increases until no further defects are formed and then returns
to the classical value 3Nk. The prediction CP = CV(1 + αγT)
describes the experimental data for several metals well.
MD simulations on 13 500 Ni atoms using constant (N,P,T)

conditions, a modified EAM potential, and periodic boundary
condition by Zhang et al.170 confirmed that a small
concentration of interstitial defects exert a powerful effect on
the crystal stability through their initiation of collective particle
motions that ultimately lead to a breakdown of lattice order.
The authors showed that the crystal integrity remains
preserved for permutational atomic motions in the form of
rings exchanges, but at higher temperatures a topological
transition in these exchange motions into linear catenations of
particle exchange events occurs. To describe the extent of
dynamic heterogeneity, they used the van Hove correlation
function G(r,t) = N−1⟨∑iδ(ri(Δt) − ri(0) − r)⟩. Further,
mobile atoms i and j were considered to be within a collective
atom displacement “string” (Figure 11) if they remain in each

other’s neighborhood, specified by the proximity relationship
min[|ri(Δt) − rj(0)|, |ri(0) − rj(Δt)|] < 0.43r0, where r0 is the
interatomic distance. For these strings the mean “string length”
was defined as n̅(Δt) = ∑nnP(n,Δt), where P(n,Δt) is the
probability of finding a string of length n in time interval Δt.
String properties were defined at the characteristic decorrela-
tion time Δt = t* at which the mean string length for G(r,t) has
a maximum. The distribution of string lengths appeared to be
given by P(n) ∼ exp(−n/n̅) to an excellent approximation for
all temperatures investigated. Study of the topological
transition between strings having an open linear chain and a
closed ring showed that both distributions show a weak
maximum at the temperature where the average string length
exhibits a maximum. For higher temperature, the number of
rings remains approximately constant while the number of
linear strings strongly increases. As the simulations did not
show any obvious evidence of aging effects under the
conditions investigated, the authors indicated that this peculiar
nonmonotonic variation of the string length with temperature
is most likely not an artifact. In the absence of experimental
data related to melting, they discussed its relation to the
behavior of superionic crystals. By and large these simulations
support Granato’s model.
Finally, we note that Konchakov et al.,171 using MD

simulations for 4000 Al atoms, demonstrated a significant
increase in the vibrational entropy of formation of
interstitialcies ΔfS near the melting point Tmel, namely from
from ΔfS/k ≅ 3.5 at T/Tmel = 0.65 to about ΔfS/k ≅ 7 near
Tmel. The concentration of such defects in the melt, as

estimated by three independent methods, turned out to be c ≅
0.08, close to the Granato estimate, from which the
configurational component of the entropy of the system with
defects was determined. It was found that about 70% of the
total entropy of melting, and thus of the melting enthalpy,
observed in experiments can be attributed to the generation of
interstitialcies at Tmel, and therefore such defects play a
significant role in the melting process.
5.8. Simulations

Nowadays molecular dynamics (MD) simulation is an
illuminating tool resulting in detail that otherwise is hard to
obtain. In classical MD simulations Newton’s equations of
motion are solved numerically as a function of T and V or of T
and P. Both equilibrium and nonequilibrium data can be
obtained, the latter often by applying a (slowly) varying
outside “driving force”. Another simulation method is the
Monte Carlo (MC) technique, which essentially probes the
configuration space in an efficient statistical way. In its
standard form it does not yield the dynamics but was (is)
often somewhat more efficient for obtaining equilibrium data.
In simulations for bulk materials without surfaces, for both
methods generally full periodic boundary conditions are used.
Both methods are described in detail in refs 11 and 12.
Simulation methods use an interparticle interaction as a

function of distance r, often described by the Mie potential ϕ =
ε[n/(n − m)](n/m)m/(n−m)[(σ/r)n − (σ/r)m], more in
particular by the Lennard-Jones (LJ) potential ϕ(r) = 4ε[(σ/
r)12 − (σ/r)6]. Here m and n > m are constants, while ε
represents the well depth and σ is the diameter of the particle
at ϕ(σ) = 0. For simulations often scaled quantities are used,
where T* = kT/ε is the scaled temperature, P* = Pσ3/ε is the
scaled pressure, ρ* = ρσ3 is the scaled density, E* = E/ε is the
scaled energy, and τ* = τ(ε/mσ2)1/2 is the scaled time. More
limitedly the Morse potential ϕ = ε{exp[α − r/re)] − 1}2 − ε
is used, with again ε the well depth, re the equilibrium distance,
and α a dimensionless parameter describing the curvature of
the potential near the equilibrium distance. The higher the
value of α, the shorter the range of the potential and the
steeper the curvature (2εα/re2)1/2. In the following we first
discuss some general aspects and thereafter a number of
studies in some detail.
5.8.1. General Aspects. Clearly the nature of the

interaction potential is of influence. The effect of the softness
of the interaction potential was discussed by Chakraborty et
al.172 using MC simulations, Morse potentials, and the LJ
potential for benchmarking size effects, following up other
studies on Morse solids.173 For the Morse potential the
parameter α was varied between 4, 5, 6, and 7 to mimic various
types of materials, with α = 4 representing long-range and α =
5−7 intermediate-range systems, using 343 particles, a number
based on the results for the LJ system. Umbrella sampling11,12

was used to determine Tmel via constructing Landau free
energy curves from simulations at constant (N,P,T) conditions.
The melting temperature and strength of the discontinuous
transition were shown to increase only mildly as the range and
softness of the potential decrease, but the change in number
density Δρ/ρS on melting for the solid density ρS and the
entropy of melting ΔmS increase by factors of about 3 and 2,
respectively, by increasing α from 4 to 7. The values of Δρ/ρS
and ΔmS for α = 6 are very similar to those for the LJ system,
but Tmel* = 0.780 (at P* = 0.947ε/re3) of the latter is much
higher than those for any of the Morse systems. Because the

Figure 11. Schematic of a typical string of 15 atoms at T = 1840 K,
where the arrows indicate the jumps from atom 15 to atom 1.
Reproduced with permission from ref 170. Copyright 2013 AIP
Publishing.
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exponential decrease of the Morse potential is quicker with
distance than the power law decrease of the LJ system, the
authors concluded that the transition is largely determined by
the behavior of the pair interaction near equilibrium
separation. Finally, they also showed that the barrier height
B separating the phases as determined from the Landau
expression increases quite sharply with increasing value of α.
The value of B is expected to correlate with the interfacial
energy γ, for which Turnbull’s estimate γ = 0.3ΔmHρS2/3 (ref
174, see also ref 175) was used, where ΔmH is the enthalpy of
melting per particle. A fit B = cγ with c a constant for the Morse
and LJ systems (not given) yielded c = 1.048 and R2 = 0.995,
showing the good correlation.
Efficiency and accuracy for calculating Tmel were studied

using MD simulations by Zou et al.176 for five different
methods, namely the hysteresis, the two-phase coexistence, the
interface pinning, the thermodynamic integration, and the
modified void methods. Calculations were done for Cu (FCC
structure) and Ni−Zr (B2 structure) using embedded atom
potentials with full periodic boundary conditions at constant
(N,P,T) conditions. Typically, the number of particles was
between 1 × 103 and 15 × 103. In the hysteresis method Tmel is
given by Tmel = T+ + T−(T+T−)1/2, where T+ and T− are the
temperatures where the volume of the system is discontinuous
in a heating cycle and a cooling cycle, respectively. It appeared
that the results of the hysteresis method strongly depend on
the heating/cooling rates used and was deemed by the authors
as not suitable for binary systems. In the two-phase system the
atoms in half of the simulation box at a certain temperature Tes
and normal pressure Pn are fixed, while the other half is heated,
thereafter cooled to Tes, and relaxed at constant Pn and at
constant enthalpy. For small systems the two-phase method
may result in an anisotropic pressure tensor, while the interface
pinning method may result in strong interfacial fluctuations
and should be used with care for binary systems. The
thermodynamic integration method directly employs the
difference in Helmholtz energy ΔF between the two phases
as calculated from ΔF = ∫ ⟨∂H/∂λ⟩dλ with H the Hamilton
function, λ the integration parameter, and the integral running
from λ = 0 to λ = 1. Together with the Gibbs−Helmholtz
equation G(P,T)/T − Gj(P,Tj)/Tj = −∫ ⟨H⟩NPT/T2)dT with H
the enthalpy for constant (N,P,T) conditions and the relation
for the Gibbs energy G = F + PV, the melting temperature can
be calculated. In this case a somewhat involved estimate for ΔF
was used, for which we refer to the original paper.176 The
method appeared to be suitable for the monatomic and binary
systems used. What the authors called the void method is just
monitoring the temperature of a perfect lattice system at
constant (N,P,T) conditions where the volume of the system
increases suddenly and associating that temperature with Tmel.
In their modified void method, an initial perfect lattice in
equilibrium is used in which a void is created and thereafter
equilibrated at constant (N,P,H) conditions. This will result in
a fully solid phase, a fully liquid phase, or, with the proper
choice of the enthalpy H, solid−liquid coexistence. This
modified void method was highly efficient for the monatomic
systems but needed more simulation time to reach equilibrium
for the binary system. Although the authors did not state the
conclusion clearly, and, by the way, the paper is overall difficult
to read, it seems that both the thermodynamic integration and
the modified void method worked the best.
Further efficiency can be obtained by using the shock

melting method,177 based on the multiscale shock techni-

que,178 in which shock loading is done to drive the simulated
system to the final Hugoniot end state. Shocking a sample with
the shock velocity U, the multiscale shock technique keeps it
on both the Rayleigh line P − P0 = U2[1 − (ρ0/ρ)]/ρ0 and the
shock Hugoniot state U − U0 = 1/2(P + P0)(V0 − V) by
applying a uniaxial strain to the computational cell. In such a
simulation, with conservation of mass, momentum, and energy,
the Hugoniot end state of the simulated system is achieved by
adjusting V and T iteratively, and this end state was shown to
be consistent with results of nonequilibrium MD simula-
tions.177,178 A comparative study using the shock method and
the two-phase method for Au using an embedded atom
potential179 illustrated that, while obtaining comparable results,
the number of atoms to be used in the shock method can be
considerably smaller than that used for the two-phase method
(as long as one is not interested in the details of the shock
wave process itself). For example, in this calculation the two-
phase method used 20 736 atoms, while the shock method
employed only 640 atoms, nevertheless obtaining virtually the
same result. The latter can be judged by comparing the
parameters a and b fitted to the Simon−Glatzel equation
(section 7), written as Tmel = Tmel,0(P/a + 1)b, and yielding a =
28.35 (1.25) and 22.97 (1.41) and b = 0.59 (0.01) and 0.55
(0.01) for the two-phase and shock methods, respectively, with
the uncertainties as given by the authors in parentheses.
Finally, we note that, for a method based on two phases, the

vibrational density of states of in particular the solid phase
must be estimated accurately to obtain the melting entropy.180

Problems associated with constant (N,E,V) conditions are
discussed in ref 181. The effect of polydispersity for LJ systems
was studied by Sarkar et al.,182 who showed that a crystalline
system cannot be realized above a certain dispersity in size, the
critical value of which is temperature and density dependent.
This critical value saturates to a value of about 0.11 for all
temperatures, in good agreement with the experimental value
of 0.12. Further, it was shown that the Lindemann rule breaks
down for polydisperse systems,183 as the increased root-mean-
square amplitude of the smaller particles plays a role in the
segregation of them prior to melting, although melting itself
remain discontinuous.
5.8.2. Specific Systems. Now we turn to various, more

specific simulation views, for which in section 4 we already
referred to the MC hard sphere (HS) simulations by Hoover
and Ree.34 Another early MC result includes the effect of
dislocations and disclinations in three-dimensional simple
cubic crystals using a lattice with 123 and 203 sites and a
partition function based on gauge theory that can represent a
dislocation-mediated melting mechanism.184 Because of the
long-range nature of dislocation interactions, direct numerical
analysis are cumbersome, but a dual model yielded a local
expression that can be handled with standard MC methods. In
this formulation the parameters x = (C1111 − C1122)/2C1212 and
β = μa3/(2π)2T were used with μ = C1212, λ = C1122, a3 the
volume per site, and the various Cijkl the elastic constants. The
influence of λ seemed to be minor, and all simulations were
done for λ = 0. It appeared that β at melting can be described
well by βm(x) = (1/2)(2/x)α with α = 0.597 ± 0.002, while the
Lindemann rule would give βm(x) ∼ x−0.5. The transition
entropy appeared also to be nearly independent of λ. For
isotropic crystals (x = 1) the transition occurs at βm = 0.76
with an entropy change of about 1.4k per site, approximately in
agreement with experimental values for a number of metals.185

The Lindemann parameter was in approximate agreement with
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the experimental data,7 taken with data from ref 186 as was the
specific heat. In a later development187 the authors claimed
that their lowest-order theory has an average deviation of about
12% for Tmel, which is better by a factor 2 than the 22% of the
numbers derived from Lindemann’s rule for 18 metals.
In a fairly detailed study Ahmed and Sadus188 used

combined equilibrium-nonequilibrium MD simulations and
discussed the LJ (n,6) system with n = 7, 8, 9, 10, 11, and 12
by presenting their phase diagrams and analytical expression
for the coincidence pressure, and liquid and solid densities as a
function of temperature. A system size of 2048 LJ particles was
used for five sets of simulations at various temperatures with a
cutoff distance of 2.5σ, all using as initial configuration the
FCC lattice (so that a free surface is absent). Conventional
long-range corrections were used to recover the properties of
the full Lennard-Jones fluid. While for the coexistence pressure
and densities for the various n-values polynomials in β = 1/kT
were used, for which the authors provide the relevant
coefficients, the triple point (melting temperature) is well
represented by Ttri(n)* = 2.10/n + 0.482 and the triple point
pressure is represented by Ptri(n)* = 0.1104/n − 0.0073. For
the (12,6) potential Ttri* = 0.661, a value rather similar to
other estimates. It also suggests that, for the Sutherland
potential with hard sphere repulsion and r−6 attraction or the
(∞,6) potential, Ttri* = 0.482, to be compared with other
estimates of 0.572189,190 and 0.607.191 Similarly, Ptri(∞)* =
−0.0073 suggested that Ptri(∞)* = 0 as Ptri cannot be negative,
and is to be compared with another estimate, Ptri(∞)* =
0.079.189

The simulation data were also used to obtain parameters for
the Raveche,́ Mountain, and Streett (RMS) and Lindemann
melting rules. The Lindemann ratios obtained, estimated as ξ =
(⟨⟨r2⟩ − ⟨r⟩2⟩)1/2/a with a the nearest-neighbor distance at T*
= 1, were ξ = 0.157 for n = 12 and an average value ξ = 0.183
for n = 11 to 7 with all individual values rather close to the
average. The Raveche,́ Mountain, and Streett (RMS)192,193

criterion uses the ratio I = g(rmin)/g(rmax) and states that at
freezing I ≅ 0.2. Here rmin is the position of the first minimum
and rmax is the position of the first maximum of the pair
correlation function g(r). At T* = 1, the I-values obtained were
0.14 for n = 12 and 11 and 0.13 for n = 10, 9, 8, and 7. Clearly,
I is largely constant but low as compared to the experimental
value I ≅ 0.2,193 and the authors suggest that the difference
may partially reflect the inability of the LJ potential to fully
reflect the properties of real liquids. Another criterion used is
the Hansen−Verlet freezing rule.194 This rule is a general-
ization of the long wavelength limit for the structure factor S(q
= 0) = ρkTκT, with density ρ, Boltzmann’s constant k, and
compressibility κT, as obtained from fluctuation theory to any
wave vector q. Upon freezing the height of the principal peak
S(qm) increases and the criterion states that a liquid will freeze
when the quasi-universal value S(qm) = 2.85 is reached,
approximately corresponding to the balance between the gain
in Helmholtz energy F due to volume contraction and the loss
in F due to the change from a uniform density for the liquid to
a periodic density for the crystal. However, from the calculated
structure factors for the various n-values it appeared that the
maximum is n-dependent. Therefore, this study showed that
the Lindemann rule and RMS rule are obeyed by the (n,6)
potential, but the Hansen−Verlet criterion is not.
Another fairly detailed paper dealing with the LJ system,

authored by Klumov,195 uses the conventional MD method for
4000, 2048, and 1372 LJ particles at constant (N,V,T)

conditions with periodic boundary conditions. The author
describes a range of indicators for melting, such as the RDF,
the RMS characteristic I or I−1, and various invariants of
various distribution functions. A sharp rearrangement of the
radial distribution function (RDF) with a loss of long-range
order occurs at the transition temperature, for ρ* = 1 given by
T* ≅ 1.65. Possibly the clearest indicator given is the angular
distribution for the 12 nearest neighbors in the (ϕ,θ) plane
with ϕ and θ the polar and azimuthal angles, just below the
transition (T* ≅ 1.65) and just above the transition (T* ≅
1.66). While the distribution for the solid-like phase at T* ≅
1.65 clearly shows a regular arrangement corresponding to the
FCC lattice, for T* = 1.66 the distribution is close to uniform,
representing the melt. The parameter I−1 also shows a strong
decrease, in this case at about T* ≅ 1.62−1.63. Another rather
clear indicator, advocated by the author, is w6* = w6/w6

FCC,
where w6 is the third-order rotational invariant of the angular
distribution qlm(i) = NNN

−1∑jYlm(θj,ϕj) with Ylm(θj,ϕj) the
spherical harmonics and the sum over j runs over the number
of nearest neighbors NNN of particle i (NNN = 12 for FCC).
The value w6* rises strongly from about 1 for the solid state to
about 3 for the liquid state at T* ≅ 1.62−1.63. The author
does not comment on the (small) differences in T* obtained
for various indicators but does point out that the value for w6*
can be obtained from just a few snapshots, while the root-
mean-square displacement, as used by the Lindemann rule,
typically requires more data.
Costigliola et al.196 indicated the invariance of several

properties of the LJ system along the melting and freezing lines
can be interpreted in terms of isomorph theory, as introduced
in ref 197 and elaborated in ref 198. That theory considers
what were originally called “strongly correlating liquids” but
now “Roskilde simple” liquids, i.e., liquids where the virial

= PV nkT and potential energy Φ in simulations for N
particles at density ρ and temperature T have a correlation
coefficient =R T U U( , ) /( )2 2 1/2 > 0.9 for
the thermal equilibrium fluctuations ⟨···⟩ in pressure P and
internal energy U at constant (N,V,T) conditions. According to
this theory structure and dynamics are invariant to a good
approximation along constant excess entropy curves. Such
curves were designated as “isomorphs” and offer the possibility
to explain some but not all melting/freezing invariants without
reference to the actual mechanisms at melting/freezing process
itself. The theory revived the idea by Hoover,27 Ross,58 and
Kuramoto59 that a configuration R1 and a configuration R2,
where R denotes the collective of all coordinates, obey P(R1) =
P(R2) when ρ11/3R1 = ρ21/3R2. Here P(R) is the Boltzmann
probability of configuration R of what was called an
“isomorph”. As indicated, such a condition can be exactly
valid only for Euler homogeneous potential energy functions,
like the inverse power laws, but is approximately true for
systems dominated by repulsive interactions for which it may
be assumed that power law density scaling reflects an
underlying effective power law potential.
For such an isomorph the excess entropy S and the isochoric

specific heat CV are invariants. Briefly, the reason is that S is
determined by the canonical probabilities, which are identical
for scaled microconfigurations of two isomorphic state points.
From Einstein’s formula CV = ⟨ΔU2⟩/kT2 the isomorph
invariance of CV follows by taking the logarithm of the
Boltzmann probability and using the isomorph invariance of
scaled microconfiguration probabilities. Since S and CV are
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invariant along the same curves in the phase diagram, CV =
φ(S). Thus, T(∂S/∂T)V = φ(S) or at constant volume dS/φ(S)
= dT/T. Integrating this leads to an expression of the form
ψ(S) = ln(T) + k(V), which implies T = exp[ψ(S)]
exp[−k(V)], or generically using s ≡ S/N, T = f(s) h(ρ),
indicating a separation between s and ρ. For inverse power law
interactions, the entropy S = K(ργ/T) is a function of ργ/T
where γ = n/3. Applying the inverse of the function K shows
that these perfectly correlating systems obey T = f(s)h(ρ) with
h(ρ) = ργ, so γ = d ln h/d ln ρ. An isomorph starting from a
reference state (ρ0,T0) to another state (ρ,T) can be
constructed using h(ρ)/T = h(ρ0)/T0. For inverse power
laws one can obtain h(ρ) =∑nαn(ρ/ρ0)n/3, where n represents
the various exponents, so for the LJ potential h(ρ) = (1/2γ0 −
1)(ρ/ρ0)4 − (1/2γ0 − 2)(ρ/ρ0)2 results. Here γ0 is the density-
scaling exponent which can be obtained from γ0(ρ0,T0) =
⟨ΔVΔU⟩/⟨ΔU2⟩|(ρd0,Td0). From the internal energy U0 = ∑nUn,0

at ρ0, one obtains at a new density ρ = (ρ/ρ0)−1/3, U(ρ) =
∑nUn,0*(ρ/ρ0)n/3. This U−U0 plot for a range of densities ρ
yields a linear plot for an isomorph with slope γ0.
For the freezing simulations the authors used 1000 particles

with a shifted LJ potential having a cutoff at 2.5σ. The
simulations using the starting point (ρ*,T*) = (1.132,1.0)
yielded γ = 4.9079 and R = 0.9955, leading to the correlation
Tmel(ρ*)* = Aρ*4 − Bρ*2 with A = 2.27 and B = 0.80. In
scaled units the radial distribution functions as calculated along
the freezing line mapped on a single master curve. This implies
that also the structure factor is invariant and that the Hansen−
Verlet criterion for freezing is fulfilled.
Limiting the further discussion to melting, the authors

performed MD simulations on FCC solids using 4000 particles
with a shifted LJ potential having a cutoff at 2.5σ. The
simulations yielded γ = 4.8877 and R = 0.9985, leading to the
correlation Tmel(ρ*)* = Aρ*4 − Bρ*2 with A = 1.76 and B =
0.69. In these simulations to calculate the melting isomorph,
the starting point was (ρ*,T*) = (1.132, 2.0) and the interface
pinning method was used to determine Tmel*. The Tmel*−ρ*
curve is thus well-described but underestimates Tmel* at low
density and overestimates Tmel* at high density somewhat.
Further, it appeared that the mean square displacement is
constant and for Tmel* > 1.8 becomes density independent.
Hence, also the Lindemann rule is obeyed.
Focusing on bulk melting and using the energy landscape for

Cu and Al, Samanta et al.199 employed an embedded atom
method (EAM) potential and simulations using a sample size
of 32 000 atoms (20 × 20 × 20 cells) and 256 000 atoms (40 ×
40 × 40 cells). The results showed that in these cases melting
occurs via multiple, competing pathways involving the
formation and migration of point defects and dislocations.
Each path is characterized by multiple barrier crossings arising
from multiple metastable states for the solid. At temperatures
approaching superheating, melting becomes a single-barrier
process, while at the limit of superheating, the melting
mechanism is driven by a vibrational instability. Comparing
their results with nucleation theory, the authors suggest that
classical nucleation theory for melting should be revised.
A detailed analysis of homogeneous melting in crystalline

materials modeled by empirical interatomic potentials for MD
simulations at constant (N,P,T) conditions and using the
theory of inherent structures was presented by Nieves and
Sinno.200 The authors showed that homogeneous melting of a
perfect, infinite crystalline material can be inferred directly

from the growth exponent of the inherent structure density-of-
states distribution, expressed as a function of formation
enthalpy. The presence of only a very few homogeneously
nucleated point defects in the form of Frenkel pairs was
established to be required and supports that homogeneous
melting can be appropriately defined in terms of a one-phase
theory. The effect of an applied hydrostatic compression P on
homogeneous melting showed that the inherent structure
analysis used was able to capture the correct pressure
dependence for crystalline Si and Al, whereby the coupling
between Tmel and P arises through the distribution of
formation volumes for the various inherent structures.
Other papers dealing with individual metals and aspects are,

e.g., on Si201 emphasizing the effect of premelting, on U202

using classical and quantum MD methods, and on W203

dealing with the effect of applied stress anisotropy.
While most papers focus on relatively simple models and

monatomic systems, some papers deal with more complex
constituents. Zheng et al.204 discussed the melting of
nitromethane for 240 nitromethane molecules (1680 atoms)
at constant (N,P,T) conditions using a potential that contained
a Morse bonding term, an harmonic term for angle bending, a
dihedral term for internal rotation, an exp-6 term for
nonbonding interactions, and an electrostatic term. The
potential was cut off at 10 Å for the van der Waals interaction,
while the electrostatic interaction was calculated using Ewald
summation. Using the hysteresis method, they obtained Tmel =
251 K, in excellent agreement with Tmel = 255 K by Agrawal et
al.205 and the experimental Tmel = 245 K. In the melting
process, the nitromethane molecules begin to rotate about
their lattice positions in the crystal, followed by translational
freedom of the molecules. The critical values of the Lindemann
parameter for the C and N atoms immediately prior to melting
were found to be around 0.155 at 1 atm. The intramolecular
motions and molecular structure of nitromethane undergo no
abrupt changes upon melting, indicating that the intra-
molecular degrees of freedom have little effect on the melting.
Finally, it is probably fair to say that the main concern of

simulation studies is often of a rather general character dealing
with energy and entropy. There are, however, exceptions
analyzing the results also in terms of mechanisms. To do so,
one of the main problems is to use a characteristic that
properly discriminates between the configuration relevant for a
certain mechanism and other configurations.
5.9. Models and Correlations

Apart from simulations other approaches exist which we
mention here. They comprise solid and liquid state modeling,
both simple and more complex using a limited number of
parameters, and correlations. We discuss them in sequence.
As lattice models play(ed) a significant role in solid−liquid

modeling, we start with these. In conventional lattice models
the lattice is incompressible, but in an approach by Mori et
al.206 the lattice is taken compressible, and with an
approximate method of taking into account the correlation
between the intracellular configurations of molecules, it was
found that the hard sphere transition and the triple point of
argon could be reproduced fairly well. Despite the fair results
obtained, the authors note that their lattice model does not
describe the molecular structure of the liquid properly, so the
theory is not satisfactory in this respect. Moreover, in the
lattice approach long-wavelength fluctuations, which do play a
role in the S−L transition, are difficult to take into account.
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In a simple approach Kozlovskiy207 revived and refined an
about a century old idea by Boguslawski, essentially describing
melting with an anharmonic oscillator, considered to represent
noncoupled, anharmonic oscillations for atoms. With the use
of the equations of motion, the mean position and displace-
ment were calculated and used in the Gibbs energy developed
in a power series up to the fourth degree. As possibly expected,
the results show that at a certain temperature the atom escapes
from the well, which is associated with melting. The influence
of pressure and the model dimension were discussed. The
model predicts that at the beginning of melting about a tenth
of the atoms escape from their regular positions.
In a more sophisticated approach by Stroud and Ashcroft,208

the Gibbs energy G for both the solid and liquid states was
calculated. For the solid state they considered G to be
composed of the internal energy E of the static lattice plus the
additional Gibbs energy associated with the excitation of
phonons at finite temperatures. The internal energy E was
considered to be the sum of (a) the kinetic, exchange, and
correlation energies of the electron gas Eeg; (b) the Madelung
energy arising from the Coulomb interaction between the ions
EM; and (c) an additional reduction in energy arising from the
redistribution of the electron gas in the presence of the
attractive electron−ion interaction or the band-structure
energy EBS. In the relevant expressions for the Madelung and
reduction energies a Debye−Waller type of exponential was
added to describe the thermal influence on the lattice potential.
The vibrational contribution was calculated using self-
consistent phonon theory (SCPT) in which the vibrational
density of states was approximated by a Debye distribution.
This implies that all effects at given T and V are included in
Debye temperature. For the liquid state the same terms are
used, but as the summations run over the atomic positions,
they cannot be made without knowing the pair correlation
function g(r) or its Fourier transform, the structure factor S(k).
For S(k) the hard sphere structure factor was taken as
calculated in the Percus−Yevick approximation. The liquid
Gibbs energy is thus the electron gas terms, as in the solid, plus
the potential energy terms, calculated using the hard sphere
S(k), plus the kinetic energy of the ions, plus the entropy term,
taken as the entropy of the hard sphere gas in the Percus−
Yevick approximation.
The approach yielded a volume- and temperature-dependent

effective Debye temperature for the solid and an effective
volume- and temperature-dependent hard sphere packing
fraction for the liquid. Thermodynamic quantities were
computed for both phases and along the melting curves
appeared to be in good agreement with available experiment.
Lindemann’s law is fairly well obeyed in the solid phase,
although not perfectly, and its analogue (i.e., constant hard
sphere packing fraction along the melting curve) holds in the
liquid.
Matsuura et al.209 indicated that the Stroud−Ashcroft

calculation is suitable only for other alkali metals since free
electron properties were fully taken into account. They
constructed a melting model based on vanishing of the
velocity of the transverse phonons in a self-consistent
harmonic approximation (SCPT) using the nearly free electron
model for the conduction electrons. Despite the general doubt
on the applicability of the (shear) lattice instability (section
5.3), the authors offer no argument for this. Their calculations
resulted in Tmel = 0.145ℏ2nc/km*Rd

2, where m* and nc are the
effective mass and number of conduction electrons per site, for

which the authors indicate that this result is on the order of the
Fermi temperature ℏ2/km*Rd

2 ∼ ℏ2kF2/2km* with Fermi
momentum ℏkF and that it does not include the ionic mass.
The melting temperatures agree approximately with exper-
imental values for alkali and noble metals with Tmel,calc =
cTmel,exp with c = 1.025 and R2 = 0.953 (not given), while the
Lindemann parameter was estimated as 0.183 and 0.172 for
BCC and FCC lattices, respectively.
Next to models, empirical correlations are still useful and,

obviously, easy to use. Reynolds et al.210 noted a quite good
correlation between the surface energy γ (in mJ m2), melting
temperature Tmel (in K), and interatomic distance r0 (in Å) for
metals given by γ = 760 + 4.77Tmel/r02, based on Gorecki’s
correlation for Evac/Tmel (ref 113, section 5.4) and Couchman’s
correlation for Evac/γ,211 although there is no explanation for
the presence of the intercept.
Li and Wu212 based an empirical relationship on the

“universal” bonding curve213 and the Debye model for binary
intermetallics with the CsCl structure. The universal bonding
model describes the bonding curve by E(rWS) = εE*[(rWS −
rWS0/l] where rWS and rWS0 are the momentary Wigner−Seitz
radius and Wigner−Seitz radius at equilibrium, respectively,
and l is a scaling constant given by l = (ε/12πrWS0K)1/2 with K
the bulk modulus. Supposing that in the Debye model for high
temperature the longitudinal speed of sound is given by (K/
ρ)1/2, the root-mean-square displacement is ⟨Δu2⟩1/2 =
(0.8278kT/rWS0K)1/2, where ρ is the mass density. Further
supposing that ⟨Δu2⟩1/2 = const. at Tmel, the relation Tmel =
0.032ε/k was obtained214 for pure metals. This rule worked
moderately well for the 78 pure metals examined, as testified
by the correlation Tmel = cε/k with c = 0.0332 and R2 = 0.948
(not given). For the 14 BCC pure metals Tmel = 0.0355ε/k
with R2 = 0.970 was obtained. For intermetallics AxBx−1,
however, the availability of the experimental cohesive energy
data was (is) limited and was estimated by ε = xεA + (1 − x)εB
+ ΔforH, where ΔforH is the enthalpy of formation. For 27
congruently melting intermetallics the correlation Tmel =
0.030ε/k with R2 = 0.876 resulted. However, for (binary as
well as ternary) compounds with unknown ΔforH’s an estimate
must be used, for which Miedema’s model215 can be used to
advantage. The authors pointed out that a five-parameter
cellular model of artificial neural networks216,217 essentially
provides the same correlation, but using five parameters
instead of one. The correlation was expanded in ref 218 to 143
binary Laves phases with Tmel = 0.0302ε/k and R2 = 0.899, for
which an average predicted error of 14.5% resulted, but
reduced to 8% (Tmel = 0.0326ε/k with R2 = 0.935) if only the
C15 crystal structure compounds with congruent melting are
considered. The Miedema model was used here as well and
was shown to be rather accurate for 13 compounds where
experimental values of ΔforH were available.
The effect of orientation for metals was assessed by

Chatterjee219 on the basis of the work function for the
(110), (100), and (111) planes for Cu and Ni and the (100)
and (111) planes for Pt. Combining the relation γ1/2/ϕ = const.
between surface energy γ and work function ϕ, the relation
γ(hkl) = f [m1/2,θD,sur(hkl)]220,221 with m the atomic weight and
θD,sur(hkl) the surface Debye temperature for hkl planes, and
the relation θD,sur(hkl)2 = f [Tmel(hkl),m−1,Ω−2/3] with Ω the
atomic volume, one obtains ϕ(hkl) = f [Tmel(hkl)1/4,Ω−1/6].
Taking logarithms the relation ln[ϕ(hkl)] = ln-
[Tmel(hkl)1/4,Ω−1/6] − X with X a constant is obtained,
resulting in X = 2.97 ± 0.04. Estimating ϕ for Ag(111) and
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Pb(111) resulted in 468 and 327 kJ mol−1, respectively, while
ϕ for Ag(11) and Pb(110) yielded 458 and 315 kJ mol−1,
respectively, comparing closely with the experimental results.
With the use of modern solid-state calculations new

correlations have been proposed. Using the earlier proposed
concept of condensing potential,222 Ye et al.223 applied VASP
calculations224 for a series of metals to the (orientation
dependent) escaping potential P [eV], defined as the potential
for an atom to leave a surface vertically. They showed that a
fair correlation for the melting temperature Tmel is given by

= = ± [ ]T cPD cwith 1632 30 K Å eVmel
2 2

(45)

and D [Å−2] the surface density of atoms. Whether such a
correlation can be obtained for other types of materials has not
been investigated.
For organic compounds, group contribution methods to

estimate properties have a long history. For the melting points
of organic compounds, Yalkowsky and Alantary225 provided a
group contribution approach based on estimating separately
the enthalpy change ΔmH and the entropy change ΔmS to
obtain Tmel = ΔmH/ΔmS. While ΔmH is taken to be an additive
constitutive property, ΔmS is not entirely group additive. The
latter is primarily dependent on molecular geometry, including
parameters which reflect the degree of restriction of molecular
motion in the crystal to that of the liquid, and on symmetry,
eccentricity, chirality, flexibility, and hydrogen bonding. The
authors characterize their approach as a reasonably accurate
means of predicting the melting points of 2044 compounds
with their melting points ranging from 85 to 698 K and having
an average absolute error of prediction of 38.6 K with R2 =
0.81.

6. THERMODYNAMIC OR SURFACE MEDIATED
MELTING

In 1935 Peierls226 discussed disorder introduced in 1D and 3D
lattices by thermal vibrations, followed by discussions on 2D
lattices by others.227,228 It appears that 1D lattices can have
only long-range positional order at T = 0 K and that in the
thermodynamic limit at any temperature above absolute zero
long-range order is destroyed by thermal vibrations. In 3D
models, long-range order persists at any temperature, as long as
the material is solid. In 2D, possibly expected, long-range order
is destroyed by thermal motion at a finite temperature and the
mean square displacement grows logarithmically with distance
between the molecules, although in view of the weak
divergence quasi-long-range order remains. This prompted
extensive modeling research on phase transitions in surface
films,229 which in its turn stimulated both experimental tests
and simulations. From this research a 3D melting picture
emerged in which surfaces play an important role, as shown,
e.g., clearly by van der Veen.230−232

The importance of surfaces, already indicated by Tam-
mann233 and Stranski234 as well as by Frenkel,111 is discussed
in several reviews.235,236 As summarized by Dash,39 surface
melting is a consequence of wetting of a solid by its melt,
occurring when the surface energy of the combined solid−
liquid−vapor system is lower than that of the “dry” solid, that
is, when γSV > γSL + γLV. Although this is usually the case, there
are also liquids that do not wet their own crystals, for example,
Ga, Hg, p-methylaniline, and phenyl salicylate.237 The
(possibly local) reduction of the surface energy by the liquid
renders premelting of the solid energetically favorable. As

premelting proceeds, the short-range order of the interface
gradually evolves from crystalline order to liquid-like disorder.
Approaching the melting temperature Tmel, the disordered or
quasi-liquid layer grows to a thick film which in its upper layers
is indistinguishable from the liquid but retains some solid-like
order over a few molecular distances of the solid interface.
Premelting does not occur for all surfaces though. For example,
for FCC crystals generally the relatively open {110} surfaces
do show complete premelting (i.e., δ diverges), while the close-
packed {111} surfaces do not show premelting. The {100}
surfaces with intermediate packing density show incomplete
premelting with a finite thickness (i.e., δ remains finite when T
→ Tmel).
Melting being a discontinuous transition, one expects

hysteresis in Tmel upon heating cooling, i.e., the presence of
superheating for the solid and supercooling for the liquid.
While the latter effect does occur, the former is absent for most
solids. Premelting is instrumental to explaining this absence of
superheating as well as the absence of “effective” bulk
precursor effects for most solids (see, e.g., ref 7). To explain
this absence, Pietronero and Tosatti238 used a simple Einstein
model for a cubic lattice with a surface in a self-consistent
harmonic approximation (SCPT) for shear displacements
parallel to the surface. If at T = 0 the force constants K0’s
between nearest-neighbor atoms n and n′ are taken all the
same, at nonzero temperature they become exponentially
dependent on the mean square amplitudes of the atoms, K =
K0 exp[−λ(⟨un

2⟩ + ⟨un′
2⟩)], where λ can be calculated from

microscopic considerations. Hence, the effective force
constants are no longer the same because they depend on
the mean square displacements of the atoms that are affected
by the surface. Scaling the displacements as y(n) = λ⟨un

2⟩ and
the temperature as τ = kTλ/K0, instability for the bulk (n =
∞), calculated analytically, occurs at y(∞) = τB exp[y(∞)],
corresponding to yB(∞) = 1, τB = e−1 = 0.368, and KB(∞) =
K0e−1. In the presence of a surface, numerical calculations
showed that the surface temperature (for the outermost layer)
τS = 0.272, considerably lower than the bulk value. For the next
layer a value for the force constant is required, but it is
certainly smaller than the value for two layers that are still both
solid at τS. Assuming that layer 1 is liquid and layer 2 is solid, τ2
was determined numerically as τ2 = 0.357, still smaller than the
bulk value. Melting is therefore related to the instability of the
wet surface. The model explains (1) that surface atoms can
have mean square deviations much larger than the value that
corresponds to the bulk instability, (2) the possibility of
superheating inside the crystal, and (3) the existence of well-
defined face-dependent surface precursor effects.
The maximum superheating/supercooling at fixed pressure

and overpressurization/overdepressurization at fixed temper-
ature was studied by Luo et al.239 with MD simulations using a
truncated, smoothed LJ potential for 864 particles, while larger
systems were being used for checking the absence of size
effects. For a range of (σ,ε) values the maximum superheating/
supercooling was quantified and shown to be weakly pressure
dependent. The equilibrium value of Tmel was estimated using
the hysteresis method and shown to be a reliable technique in
comparison with the much more time-consuming techniques
based on solid−liquid coexistence and thermodynamic
integration. While the solid−liquid interfacial energy increases
with pressure, the Lindemann parameter, here defined as ξ =
21/2⟨u2⟩1/2/(4Ω)1/3 with u the positional fluctuation in the
FCC lattice and Ω the atomic volume, was predicted to remain
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constant at about 0.14 at high pressures for the solid at the
equilibrium melting temperature.
An early MD simulation by Valkealahti and Nieminen240

using the LJ potential with a cutoff distance of 3σ calculated
total energies, trajectory plots, mean square displacement
functions, diffusion coefficients, vacancy concentrations, and
two-dimensional order parameters to analyze premelting. The
authors indicate that the (111) surface starts to disorder by
vacancy formation, which leads to the premelting of the surface
layer far below the bulk melting temperature, and that melting
proceeds via a layer-by-layer mechanism, when temperature is
further increased, in consonance with the Pietronero−Tosatti
model.238

Another early paper by Pontikis and Sindzingre241 reviewed
experimental and computer simulation results on surface
roughening and surface initiated melting. From their survey the
authors reported that theoretical approaches, MD simulations,
and experiments converge to the conclusion that bulk melting
is propagated into the solid starting from surfaces, thus
preventing superheating effects. They also report that
theoretical predictions, based on phenomenological models,
indicate the thickness of the liquid layer to be very small (one
to five atomic layers) until the temperature reaches values very
close to Tmel. Moreover, they conclude that, due to the high
(relative) temperatures involved, studies of surface melting are
beyond the range of applicability of lattice dynamics.
Trayanov and Tosatti242 used a discrete reference lattice, as

well as drastic simplifications such as mean-field and free-
volume approximations, and developed a lattice theory of
surface melting based on minimization of the free energy with
respect to two spatially varying order parameters�density and
“crystallinity”�for (100) and (110) Lennard-Jones crystal
surfaces. It was shown that on the coexistence line a quasi-
liquid layer forms on the crystal−gas interface with a triple-
point temperature Ttm. When the temperature exceeds Ttm, the
crystal melts and there is no crystal−gas interface, but rather a
liquid−gas interface, so that Ttm can be interpreted as Tmel.
The thickness of the quasi-liquid layer grows asymptotically as
(Ttm − T)1/3, in agreement with experiments on Ar films. A
change from long- to short-range interparticle attraction
reduces the growth behavior to logarithmic, while a switch of
the potential tail from attractive to repulsive can block
altogether the growth of the quasi-liquid layer. It is further
shown that, in cases where no in-plane disorder can arise, no
surface melting occurs. Within the model, surface melting is
found to be continuous without any singularities below Ttm in
the surface energy, which was explicitly calculated. The decay
of the “crystallinity” order parameter at the quasi-liquid−gas
interface is predicted to be a “stretched exponential” in the
long-range case and a power law in the short-range case.
Finally, we note that premelting in small sodium clusters was

dealt with by Hock et al.,243 premelting in ionic crystals was
dealt with by Matsunaga,244−246 superheating in molecular
crystals was dealt with by Cubeta et al.,247 surface melting
within DFT for 2D LJ-like systems was dealt with by
Ohnesorge et al.248 (see section 10.1, DFT), and premelting
dynamics was reviewed by Wettlaufer and Worster.249

6.1. Melting of Nanoparticles

Surface melting can be explained in a thermodynamic way as
follows. For a crystal with melting enthalpy per unit volume L
and surface area A and containing N atoms (state 1), the Gibbs
energy is given by G1 = NμS + AγSV. For a crystal covered with

a quasi-liquid layer containing N′ atoms (state 2), G2 = (N −
N′)μS + N′μL + AΓ, where Γ depends on the thickness δ of the
liquid layer. For δ = 0, Γ = γSV while for δ = ∞, Γ = γSL + γLV,
and Γ should take an intermediate value accounting for
interactions between the two interfaces for a thin layer. Using
the spreading coef f icient S = γSV − γSL − γLV, one can write Γ =
γSL + γLV + S exp(−δ/ξ). Thus, with Δμ = μL − μS

= = [ ]G G G N AS

N ASf

1 exp( / )

( )
2 1

(46)

Here f(δ) = 1 − exp(−δ/ξ) is chosen for short-range
interactions (as in metals) with ξ the correlation length.
Minimizing ΔG with respect to N′, meanwhile using N′ =
AρLδ, yields δ = −ξ ln t/λsho with t = (Tmel − T)/Tmel ≡ ΔT/
Tmel and λsho = −S/ξρTmelΔμ. Here ρL = ρS = ρ is assumed.
For ΔT small, Δμ ≅ −(∂Δμ/∂T)ΔT. Moreover in equilibrium
Δμ = L − Tmel(−∂Δμ/∂T) = 0, so Δμ = Lt and λsho = S/ξρL.
One can also write δ = −ξ ln[Tsur − Tmel/(T − Tmel)], where
Tsur/Tmel ≅ 1 − (S/ξρL) signals the onset of surface melting at
δ(Tsur) = 0. Therefore, surface melting only occurs when S > 0
and the solid is stable without a liquid layer below Tsur. When
Tmel > T > Tsur, a liquid surface layer forms with thickness δ,
which when T → Tmel, diverges; that is, δ → ∞. The
logarithmic divergence is consistent with data for metals with ξ
≅ 1.5 monolayer distance, ≅5−6 Å for metals like Al and
Pb.231 For materials with long-range interaction, such as van
der Waals (vdW) crystals, the approximation f(δ) = 1 − (ξ/δ)2
is more appropriate250 and leads similarly to δ = λlon/t1/3 with
λlon3 = 2ξ2S/Tmelρ(∂Δμ/∂T) ≅ 2ξ2S/ρL.251
A clear indication for the importance of surface melting is

the decrease in Tmel with particle size, predicted by Pawlow in
1909252 and first observed by Takagi in 1954,253 and for which
the example of Au is shown in Figure 12.254,255 An extension of

the model described above provides a size-dependent Tmel.
256

The system is supposed to change from a homogeneous solid
sphere of radius r containing N atoms (state 1) to a solid
particle of radius r′ covered with a surface molten layer with
thickness δ containing N′ atoms (state 2), so r′ = r − δ. The
Gibbs energy for state 1 reads G1 = NμS + 4πr2γSV, while for
state 2 we now have G2 = (N − N′)μS + N′μL + 4πr2[γSL(r′/r)2
+ γLV + S′ exp(−δ/ξ)] with S′ = γSV − [γLV + γSL(r′/r)2]. With
ΔG = G2 − G1, the result is

= =

[ ]

G N r S f N

r S

4 ( ) ( )

4 1 exp( / )

2
L S

2 (47)

Figure 12. Size dependence of the melting point. (a) Tmel for Au as a
function of the diameter of particles 2r. Reproduced with permission
from ref 254. Copyright 1976 American Physical Society. (b)
Schematic of a solid particle covered with a liquid shell.
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This expression generally shows a maximum and minimum,
which are interpreted as corresponding to a critical liquid layer
thickness δcri and equilibrium liquid layer thickness δequ,
respectively. With increasing T, δequ increases and δcri
decreases, until complete melting occurs when δequ = δcri.
Calculating the minimum of ΔG, assuming L constant, leads to

= [ ]

+

T T Lr

S r L r

/ (2 / ) 1 exp( / )

( / ) exp( / )

mel SL L
2

L
2

(48)

For a very small particle size, ΔG does not show a minimum,
but shows only a maximum which disappears at a certain
temperature T0, suggesting that a solid particle at T < T0
becomes for T > T0 entirely liquid as the barrier height is zero.
In other words, the particle above T0 is liquid always. From this
theory, one can estimate an upper bound using δ → 0 (onset
instability) as Tmel

(upp)/Tmel = 1 − (2γSL/ρLrL) as well as a
lower bound using ΔG→ 0 (no driving force) as Tmel

(low)/Tmel
= [1 − (3/ρSrL)][γSV − γLV(ρS/ρL)2/3].257,258 It appears that
experimental data are limited by these bounds (data not
shown). For Pb particles, using ξ ≅ 20 Å, as compared to ξ ≅ 6
Å for a flat Pb surface, the model describes the data well.
Because crystalline nanoparticles inevitably cannot be

spheres, the effect of edge and corner atoms was assessed by
Shidpour et al.259 As expected, their effect is to decrease Tmel
below that of spherical particles that contain only surface
atoms. This reduction becomes significant for sizes below 10
nm and is supported by experiments on Au, Sn and Pb.
One might expect that L varies with particle size.19

Assuming again the two-state model as described above, the
volume fraction of molten material is given by x = (4π/3)[r3 −
(r − δ)3] ≅ 3δ/r for δ≪ r. For a particle with radius r, L = (1
− x)LS + xLL = LS + (3δ/r)(LL − LS), where LL and LS are the
melting enthalpies of the solid and quasi-liquid, respectively. It
follows that there is a critical size rcri = 3δ(1 − LL/LS) for
which L vanishes. Calorimetric measurements by Sheng et
al.258 show that (for particles embedded in a matrix) the
intercept of a plot of L/LS versus 1/r is ≅1 (as it should be).
From the slope (assuming a fixed value δ ≅ 1 nm) the value for
LL can be estimated. The negative values obtained for LL
indicate that LL cannot be interpreted right away as the pure
liquid enthalpy, but that other (structural) effects play a role.
Finally, L varies not only with r but also with T. To assess this
dependency, an estimate for dL/dT is needed, but a combined
analysis seems not to be available, while the required data are
likely unknown. The assumption ρL = ρS = ρ is easy to avoid,
but ρL for the quasi-liquid is also typically unknown.
An attempt to describe the size dependence of the cohesive

energy was made by Li et al.260 using a bond counting model
including a correction for relaxation. They based their model
on the correlation Tmel,0 = 0.032E0/k given by Guinea et al.,

214

where Tmel,0 and E0 = Btotεvol are the melting temperature and
cohesive energy for bulk material. Here Btot indicates the total
number of bonds and εvol is the average bond energy for bulk
material. Although there is no clear reason why the same
constant should apply, the authors assumed the same relation
for a nanoparticle, so the dependence of Tmel(D) on the
diameter D becomes Tmel(D)/Tmel = E(D)/E0 = Bparεpar/
Btotεvol. Without relaxation εpar = εvol, resulting in

= =E D E T D T B B( )/ ( )/ /0 mel mel par tot (49)

They further considered that the energy of a nanoparticle is
E(D) = δ(E0 + γ) + (1 − δ)E0 = E0(1 + δ γ) with the surface/
volume atom ratio δ = Nsur/N, where Nsur and N are the
numbers of surface atoms and total atoms, respectively. The
surface energy γ was calculated according to γ = −E0[1 − (zsur/
zvol)1/2] with zsur and zvol the coordination numbers for surface
atoms and volume atoms, respectively.261 Hence, assuming
zvol,par = zvol,bulk ≡ zvol

= [ ]E D E z z z z( )/ 1 1 ( / ) ( / )0 sur,par vol
1/2

sur,par vol
1/2

(50)

where the last step can be made for δ → 1. Further, with the
number of surface atoms Nsur = δN and the number of volume
atoms Nvol = N − Nsur = (1 − δ)N, the ratio Bpar/Btot =
(Nsur,parzsur,par + Nvol,parzvol)/Nzvol becomes

= [ ]B B z z z z/ 1 1 ( / ) /par tot sur,par vol sur,par vol (51)

with the last step again for δ → 1. Therefore, identifying for a
nanoparticle with δ → 1, the ratio Bpar/Btot with zsur,par/zvol
results in

E D E B B( )/ ( / )0 par tot
1/2

(52)

So far, relaxation was neglected, and the authors suggested
that an approximate way to take this into account is using the
average of eqs 49 and 52.

[ + ]E D E B B B B( )/ (1/2) / ( / )0 par tot par tot
1/2

(53)

so that if Bpar/Btot is known, E(D) and therefore Tmel(D) can
be estimated. Clearly, although not unreasonable, eq 53 is an
arbitrary assumption. Further, they argue that a suitable
estimate for the shape of a nanoparticle is the cuboctahedron,
for which Bpar/Btot was determined by Mirjalili and Vahdati-
Khaki262 as

= + +
+ + +

B

B
n n n

n n n
2 (5 3 1)

10 15 11 3
par

tot

2

3 2 (54)

where n is the number of shells around the central particle,
related to the diameter D = h(1 + 2n) with h the interatomic
distance. For other polyhedra, such as the icosahedron, this
ratio was also calculated, but their numerical values do not
differ greatly. As indicated by the authors, their model, being
based on the results of Guinea et al.,214 is a one-phase model,
while the effect of defects (vacancies) is not considered.
With the use of bulk values for h, reasonably good

agreement with the experimental data for Al and simulation
data for Ar was obtained, but the agreement decreases for Au
and even further for Pb. For Al the authors also compared their
results with results calculated from a model of Attarian Shandiz
et al.,263 showing considerable disagreement. Both papers
mentioned also discuss Tmel based on bond counting but with
different models. Attarian Shandiz et al.263 use a model based
on the average coordination number, while Sun et al.264

employ a cohesive plus vibration energy equilibrium model.
For Al Sun et al.264 themselves show in their paper good
agreement with experimental results, the discrepancy with the
Li et al. results260 being due to using different experimental
data sets.
Other types of models for discussing melting behavior of

nanoparticles exist. A Landau-type model was presented by
Chernyshev,265 Xue et al.266 provided a model based on
pressure differences for curved surfaces, and Liu et al.267
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discussed Tmel based on model using the Lindemann rule and a
thermal phonon contribution.
Clearly, simulation studies on individual nanoparticles also

have been conducted. These studies resulted in papers using a
generic LJ potential, e.g., refs 268−270; and papers on metal
clusters, e.g., Na,271 Co,272 and Cu;273 on alloys, e.g., Li−Cu274
and Au−Ag;275 on inorganics, e.g., GaN;276 and on organics,
e.g., benzene, chlorobenzene, heptane, and naphthalene.277

The studies mentioned above all use conventional
equilibration procedures. Hou278 considered that a “real”
atmosphere, such as gases at low pressure in which heat
transfer is different from the usually assumed energy and
volume exchange mechanisms by Nose ́ and Andersen, is
relevant and used a simplified Langevin model yielding dTato/
dt = α(Tato − Tele). In here Tato is the atomic temperature, Tele
is the electronic temperature assumed constant, and α is a
constant that within the Sommerfeld theory of metals is given
by α = θDTeleLne2kZ/2meleκEF with θD the Debye temperature,
L the Lorenz number, n the electron density, mele the electron
mass, Z the valency, κ the thermal conductivity, and EF the
Fermi energy. With this heat transfer mechanism, the author
studied the melting and solidification of metallic nanoparticles
of Co, Ni, Pd, Pt, Cu, Ag and Al with an FCC structure in their
solid states by MD simulations for 512−12 934 atoms using an
embedded atom potential. Caloric curves were constructed
starting with low-temperature truncated octahedral particles
and applying a heating and cooling cycle. The profiles of these
curves were similar for the metals studied and showed two
structures, associated with melting in the heating branch and
solidification in the cooling branch, taking place at temper-
atures differing by up to several hundred kelvin. Melting was
found to occur via nucleation at the surface for which a state
could be identified, suggested to be metastable, having a liquid
shell coexisting with an inner crystalline region. Consistently,
the melting temperature scales with the surface-to-volume
ratio. Solidification was found to occur via nucleation close to
the center of a particle and propagating toward the surface.
The mechanism is not the reverse of the melting mechanism as
several solid seeds may emerge simultaneously at any location
in the particle, including the surface, and grow according to a
pattern of spinodal decomposition. Depending upon their
relative orientations, these seeds coalesce or form coherent
interfaces, which were stable over the MD simulation time and
resulted in a polycrystalline particle. It appeared that the time
needed for the liquid−solid transition to occur was size-
independent, which is consistent with a discontinuous
transition. It also appeared that solidification was accompanied
by a large, sudden configurational energy release. For isolated
particles this energy results in a large increase in temperature.
Solidification is therefore to occur when the temperature
reached is lower than the temperature at which melting is
triggered, allowing establishment of a simple relationship
between the melting and solidification temperatures that
involves the latent heat of fusion and the heat capacity of
the liquid. When the configurational energy is released in the
usual way to a thermal bath, the solidification temperature is
not significantly different, indicating that the activation energy
for spinodal decomposition is not sensitive to the presence of a
thermal bath, consistent with the scenario that assumes
undercooling is mainly determined by the latent heat of fusion.
The possible impact of machine learning and data-driven

simulation and characterization on such simulations was shown
Zeni et al.279 These authors provided transferable machine

learning force fields for Au nanoparticles based on data
gathered from DFT calculations. These force fields were used
in MD simulations to investigate the thermodynamic stability
of 1−6 nm Au nanoparticles containing up to 6266 atoms with
the solid−liquid phase change in mind, showing melting
temperatures in good agreement with available experimental
data. The solid−liquid phase change mechanism was
characterized employing an unsupervised learning scheme to
categorize local atomic environments, thereby providing a
data-driven definition of liquid atomic arrangements in the
inner and surface regions of a nanoparticle, showing that
melting initiates at the outer layers. Another aspect is that, as
for bulk solids, the melting of nanoparticles is influenced by
impurities. Mottet et al.280 showed by MD simulations that a
single Ni or Cu impurity in Ag icosahedral clusters
considerably increases Tmel even for sizes of more than 100
atoms. The authors consider that such a small central impurity
causes a better relaxation of the strained icosahedral structure,
which becomes more stable against thermal disordering.
Related to simulation studies are the discussions given by

Berry281−284 on the structure of small clusters and the relation
to freezing and melting. Also related to simulations is the
perspective on freezing and melting by Oxtoby,285 emphasizing
that small changes in the potential can change the symmetry of
the crystal, quoting as an example the crystallization of LJ
particles to the FCC structure, but failing to show the FCC−
HCP transformation at low temperature. Further, the
transition of a homogeneous fluid to a crystal for atomic
systems was discussed in DFT terms (see section 10.1, for
reviews, see refs 286−288). Results using a truncated
expansion of the Helmholtz energy F in the local density to
second order, the “perturbation” approximation, and one
version of the “weighted density” approximation,289 with a
nonlocal density functional reproducing the direct correlation
function, were dealt with. The former approximation predicts
the phase line between solid and liquid fairly well for LJ
systems as compared to MD simulations, in spite of the large
local density at a lattice site as compared with the density in a
homogeneous fluid. The same is true for the latter
approximation, which also yields a nearly constant Lindemann
parameter of ≅0.12−0.13 along the whole S−L coexistence
line. For the L−G transition the density difference between
both phases for the former approximation is too large, but the
latter approximation deals with that also quite nicely.290

To conclude this section, we note and illustrate a few general
aspects, the first being the variability of Tmel for really small
particles. As for clusters and nanoparticles there is inevitably a
size distribution, for their melting transition does not occur at a
sharp temperature but in a certain temperature range of solid−
liquid coexistence. For example, for ionized Na clusters
containing 70−200 atoms, the melting points are on average
33% (120 K) lower than for the bulk material. Furthermore,
variations in Tmel as large as 630 K were observed with
changing cluster size, rather than any gradual trend.291 Another
study on Na clusters containing about 50−360 particles shows
maxima in energy and entropy change upon melting, and
modulation of the photoelectron spectra, that were interpreted
as being due to geometrical shell closings.292 The entropy
change of melting, calculated from a simple hard sphere model
that assumes that atoms in incomplete outer layers are mobile
at least down to 20−30 K below Tmel, was in good agreement
with the experimental data. The authors concluded that Na
clusters do show magic numbers of electronic origin in general,
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but that the thermodynamic properties near Tmel seem to be
governed by geometric shell closings, thus showing two
completely different kinds of magic numbers, depending on
the property studied. Still another example is that for 2−5 nm
Au particles supported on carbon films direct TEM evidence of
a core−shell structure293 was given, while the particles show
evidence of size-dependent melting point suppression. The
core melting temperatures are significantly greater than
predicted by existing models for free clusters. Large-scale ab
initio simulations to investigate the influence of the support
were done, showing good agreement with experiment. A
similar result was obtained earlier by van Hoof and Hou.294

Hence, one should distinguish clearly between a scalable
regime, where melting is described by power law expressions
such as Pawlow’s law, and a small-size nonscalable regime,
where melting temperatures vary irregularly and very strongly
with size and composition, as discussed above.
The second general aspect is that there is a variety of

possible premelting phenomena, from isomerization to surface
melting, to two-stage melting and freezing in unary as well as
binary systems. For example, tin cluster ions with 10−30 atoms
remain solid at about 50 K above the melting point of bulk
tin,295 possibly related to the fact that the structure of the
clusters is completely different from that of the bulk element.
Also Huang and Balbuena296 showed a two-stage process for
bimetallic Cu−Ni 343- and 1000-atom nanoclusters of
compositions Cu0.25Ni0.75 and Cu0.5Ni0.5 by MD simulations
using the Sutton−Chen many-body potential. A similar two-
step mechanism was shown by Nelli et al.297 for the
solidification of AgCo, AgNi, and AgCu nanodroplets in the
size range of 2−8 nm by MD simulations. Another important
phenomenon is that for supported nanoparticles the melting
temperature strongly depends on its wetting angle, hence the
substrate.298 Moreover, the interpretations of experimental
results obtained for clusters or nanoparticles given by different
authors do not always agree; see, e.g., ref 299 and the follow-up
discussion.300

Finally, it appears that for small clusters of a few hundred
atoms, in experiments as well as simulations, melting does not
occur, as is often assumed, by a surface-mediated mechanism,
but rather show a dynamical and changing coexistence between
different phases. A few examples will suffice to illustrate this.
For Ar such a type of mechanism was suggested by Smirnov.112

Matsuoka et al.301 showed for 79 atom Ar clusters studied by
MD simulations that the cluster exhibits a “dynamical
coexistence” of solid and liquid states over an intermediate
range of total energy, in which the cluster fluctuates between
solid and liquid states. The authors proposed that, for medium-
sized clusters, the existence of low-energy solid and high-
energy liquid structures leads to this dynamical coexistence,
which they considered as a finite-size effect of a bulk melting
transition. A somewhat similar, but differing in details, scenario
was given by Cleveland et al.302 for Au75, Au146, and Au459
clusters, also using MD simulations. Experimentally, the
dynamical behavior for 5 nm Pb particles embedded in silica
has been observed by high resolution electron microscopy by
Ben-David et al.303 Spontaneous structural fluctuations
between various orientations, with preferred angular changes
as measured by the angle change between succeeding
configurations of the ⟨111⟩ atomic planes, were observed.
Clear transitions involving the vanishing and appearance of
twins were detected and twin related transformations, in which
the particles rotate by a few degrees, gave a good fit to the

observed angular correlation, which excludes complete particle
melting during the transition between successive configura-
tions. The authors attribute the instability phenomenon of
small metallic particles to the existence of two time scales in
the system: a long one, during which the structure is crystalline
and stable, and a short one, during which the structure
undergoes a fast transition. Moreover, the observed memory
effect after transition of the original crystalline orientation is
not compatible with complete melting of the cluster. Further
examples are the 0.1−10 nm thick discontinuous In films
formed by evaporation on amorphous silicon nitride, as
investigated by an ultrasensitive thin-film scanning calorimetry
technique by Zhang et al.304

Similar effects were shown for binary systems. Kuntova ́ et
al.305 predicted by MD simulations using a many-body tight-
binding potential that core−shell Ag−Ni and Ag−Co nano-
clusters having the anti-Mackay icosahedron structure are
especially stable for those compositions at which the external
shell is completely made of Ag, while the inner core is either
made of Ni or Co. The simulations clearly show that the
external one-layer thick Ag shell melts first, while the inner
core is still solid, whereafter the whole cluster melts at a
temperature that can be considerably higher than the Tmel of
the external shell, with the width of the temperature interval in
which the shell is melted while the core is still solid strongly
depends on the system. Pavan et al.306 showed by combination
of CALPHAD calculations and MD simulation for CuPt
nanoparticles containing up to 1000 atoms (or about 3 nm)
that the morphology adopted by the nanoparticles causes the
icosahedral CuPt particles to melt at temperatures 100 K
below that of the other morphologies if the Pt concentration is
less than 30%. Settem et al.307,308 studied, by parallel
tempering MD simulations complemented by harmonic
superposition approximation calculations and global optimiza-
tion searches, for Au90, Au147, and Au201 clusters the
equilibrium structures in the whole temperature range from
0 K to Tmel. The results reveal several temperature-dependent
structural motifs in these Au clusters. The most important
conclusion is possibly that the equilibrium structures at finite
temperature cannot be predicted on the basis of the global
minimum alone, even below room temperature.
To conclude, we note that, as for bulk solids, homogeneous

melting can be initiated from the interior with high heating
rates. Chen et al.309 showed for Au nanoparticles that melting
can start from the surface with the formation of a usual
premelting layer under conditions of a suitable particle size and
a sufficiently fast heating rate, but that the premelting layer
does not extend to the interior under certain conditions.
Instead, liquid nucleation occurs in the core of the nano-
particle. This unexpected interior melting is connected to the
slower melting kinetics related to heat transfer near the
premelted surface.
Nevertheless, despite all the differences, the trend and

overall agreement with experiments as predicted with various
models are quite good, considering all the experimental
difficulties. The above discussion, however, indicates that
care must be exercised when either comparing different results
or using a model-based estimate. Krishna Goswami and
Nanda310 reviewed thermodynamic models for size-dependent
melting of nanoparticles, as did Hasa et al.,311 while Ganguli312

provided a brief, narrative summary of the effect of surfaces
and size on melting. The effect of size and temperature on
vacancy concentration in nanomaterials was discussed by
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Goyal and Goyal313 based on what they call the “Jiang”
model,314,315 which is actually due to Shi.316 Karasevskii and
Lubashenko also discussed the melting of rare gas crystals317

and nanocrystals318 based on their self-consistent statistical
method.319 Discussions on other aspects of nanoparticles, such
as superheating, either when embedded in a matrix or covered
with an (insoluble) layer, and the effects of shape, size
distribution, and applied stress are available.21,320 The
thermodynamics of nanoalloys have been reviewed by
Calvo321 as well as by Guisbiers.322

6.2. Vacancies Revisited

A relatively simple, but attractive model by Mei and Lu320 for
thermodynamic melting (of metals) assumes that vacancies are
the most probable defects responsible for melting, uses the
correlations as given by Gorecki,113 and tries to clarify why
there is a critical vacancy concentration ccri ≅ 0.1, why and how
the lattice becomes unstable at ccri, and how surface
(pre)melting is related to vacancy concentration and
migration.
Recalling from section 5.4 that the vacancy concentration in

the bulk of the lattice clat is given by clat = exp(4.1 − Elat/kT),
and assuming a similar relation for the vacancy concentration
at the surface of the lattice csur, estimates for Elat and Esur are
needed. Note that we denote the vacancy energy (Evac in
section 5.4) here by Elat as we need values for the energy of
vacancy formation in the bulk Elat and at the surface Esur. To
estimate Esur, one considers that the vacancy formation energy
is related to the bonding energy of the atoms. While for FCC
and HCP metals one has 12 nearest neighbors in the bulk, at
the surface there are only eight. Hence, it is reasonable to
estimate that Esur = 2Elat/3. One might expect for FCC(111)
nine nearest neighbors in the surface leading to a factor 3/4,
but Gorecki used eight (possibly with FCC(100) in mind),
and this was taken over by the authors of ref 320. The estimate
3/4 instead of 2/3 will decrease the correlation somewhat. It is
known already that Elat/Tmel = 80.4 J K−1. Therefore, taking Al
(Tmel = 1235 K) as an example, at Tmel one has clat ≅ 0.0033
and csur ≅ 0.086. In fact, it appears that csur ≅ 0.1 considering
all metals for which reliable data are available. The doubt about
the “universal” value of the bulk concentration clat ≅ 0.0037
(section 5.4) being too small to induce a lattice instability may
thus be answered by considering the surface concentration csur
≅ 0.1, comparable to the concentration increase Δc upon
melting. Defining T0.1 as the temperature at which csur reaches
the critical value c* = 0.1, it appears empirically that T0.1 =
Tmel, valid for the FCC, HCP, and BCC metals considered.
Hence, close to Tmel, although the bulk is still a crystal, the
surface is already molten. The authors320 state that the vacancy
formation energy at the solid−liquid interface and solid−air
interface are similar, but this is arguable in view of the similar
solid and liquid densities. Nevertheless, assuming that the
vacancy formation energy at the solid−liquid interface is
comparable to Esur, once surface melting has occurred,
additional vacancies will be formed at the interface until the
whole crystal is molten. This answers the question as to how
and why c increases from c ≅ 0.0037 in the solid state to c ≅
0.1 in the liquid state.
To understand why the lattice becomes unstable at c ≅ 0.1,

note that the crystal can be viewed as an aggregation of clusters
of atoms, each of which has about 10 nearest neighbors around
a vacancy (Figure 13a). However, such a configuration of
clusters is unstable because local disordering can take place if

sufficiently high mobility exists (leading to a configuration akin
to an interstitialcy), as first suggested by soap bubble raft
simulations.323 This local disorder will eventually lead to the
collapse of the whole crystal. It was found that the local
disordering around a single vacancy can occur when the
concentration of migrating atoms cmig reaches a critical value
cmig* ≅ 0.17 for FCC and HCP lattices. As cmig* ≅ 2c*, this
indicates that one needs at least two mobile atoms
simultaneously. Considering the mobility of atoms, the
concentration of mobile atoms at the surface is estimated as
cmig = exp(4.1 − Emig/kT), where the migration energy of a
vacancy Emig at the surface is taken, similarly as for their
formation, by 2/3 of the experimental bulk values.320 Using the
Al example again, one calculates that, at Tmel, cmig ≅ 0.34, so
restructuring indeed can take place. It is also easy to calculate
that, at T = 820 K, cmig ≅ cmig* ≅ 0.17 and csur ≅ 0.04, which
implies that at this temperature surface disordering (rough-
ening) occurs. This disordered layer becomes a liquid when csur
≅ 0.1 at Tmel. In fact, considering several metals, this prediction
appeared to be in good agreement with experiment (Figure
13b).
In summary, vacancies are more easily formed at the surface

than in the bulk and the mobility of atoms at the surface is
much larger than in the bulk. Premelting (roughening) of the
surface occurs if the concentration of mobile atoms cmig reaches
a critical value, estimated as cmig* ≅ 0.17. If the concentration
of surface vacancies c reaches a critical value, estimated as c* ≅
0.10, the lattice becomes locally unstable and restructures
around a vacancy. This disordered domain acts as a liquid
nucleus. Once both these critical values are reached, disorder-
ing proceeds through the whole crystal, eventually leading to a
molten crystal. A similar analysis using a defective lattice and
employing equality of lattice and liquid entropies as the
melting criterion has been given by Fecht324 and led to c* ≅
0.08.
6.3. Dislocations Revisited
The DTMs, as discussed in section 5.6, refrained from
incorporating surfaces. In a somewhat different form of
DTM, Kristensen et al.325 took the liquid−solid interface
into account. They estimated the rate of dislocation formation
as c+̇ = Aexp[−β(Efor + Emig)] with A a constant, Efor and Emig
the formation and migration energies of a dislocation segment,
and β = 1/kT, as usual. For the annihilation rate of

Figure 13. (a) Schematic of a lattice with about 10% vacancies,
showing the original lattice (upper part) and the restructured lattice
(lower part). (b) Correlation of T0.1 with Tmel. Reproduced with
permission from ref 320. Copyright 2008 Taylor & Francis.
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dislocations, similarly c−̇ = Bexp(−βEmig)ρa, with B another
constant, ρ the dislocation density, and a a constant that would
be 2 if segments can be considered as small compared to their
distance. The energy of a dislocation segment of unit length
may be expressed, similarly as before but more condensed, as
U = (αμb2/4π)ln(ζR/b), where ζ = (b/r0)exp(4πUcor/αμb2)
with Ucor and r0 the core energy and radius, respectively.
Introducing the dimensionless dislocation density c = ρb2, the
excess energy of the crystal with volume V may be expressed as
UV = (αμVc/4π)ln(ζ/2c1/2). Here ρ−1/2 = 2r0 was used instead
of ρ−1/2 = π1/2r0 as used before, but the effect of this difference
is negligible. Ignoring lattice relaxations, the formation energy
Ufor(c) as a function of density c may thus be estimated as
Ufor(c) = (αμVdis/4π)ln(ζ/2c1/2) with Vdis = Lb2, where L is the
dislocation length. It is assumed that this elastic energy
expression is valid up to the maximum concentration of
dislocations c0 = ζ 2/4e at which Ufor will attain its maximum.
In equilibrium c+̇= c−̇, and this leads to

=c A B c( / ) ( /2 )a V a1/ 1/2 /4dis (55)

This expression has the form z = Zzη, with as solutions z = 0
and z = Z1/(1−η). Hence

= = [ ]c c A B0 and (2/ )( / ) V V a V4 / 2 /(8 )dis dis dis

(56)

and the latter expression has a singularity for the temperature
Tsin = αμVdis/8πka. The behavior of eq 55 is shown in Figure
14a. For T < Tsin, the inevitably present fluctuations will lead
ultimately to the first solution, describing the solid without any
dislocations. For T > Tsin, they will lead to the second solution,
describing the solid saturated with dislocations. Hence, this
temperature is interpreted as an instability temperature, that is,
the melting temperature in the absence of an interface.
The presence of an interface will affect the balance between

creation and annihilation of dislocations as it can act as a sink
or source of dislocations. Assuming a planar interface at x = 0
with the liquid phase being described by a dislocation density
c0, for local equilibrium to exist one must have

[ ] = + + =+c x t x c x c x j x j x xd ( )/d d d d ( ) ( d ) 00 0 0
(57)

where j(x) is the flux at x, assumed to be given Fick’s first law j
= −Ddc/dx with D = D0exp(−βEmig) the diffusion constant for
dislocations. Hence, it follows that

+ =A D E Bc D c x/ exp( ) / d /d 0a
0 for 0

2 2
(58)

or, using Efor(c) = (αμVdis/4π)ln(ζ/2c1/2) and Tsin = αμVdis/
8πka, that

+c x k c k cd /d (4 / )B
a

A
a2 2 2 (59)

where kA = A/D0, kB = B/D0, and τ = Tsin/T. This expression
may be integrated to
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The integration constant C must be chosen as C = 0 to
ensure that dc/dx = 0 for c = 0, while the negative root must be
chosen to avoid a physically unacceptable negative dislocation
concentration. Some analysis of these expressions shows that
equilibrium at the interface can be only attained if, for the
relative temperature τ = τ0
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and consequently τ0 is interpreted to represent the melting
temperature via τ0 = Tsin/Tmel. Estimating values for A, B, a,
and ζ, meanwhile using c0 = ζ2/4e, yields an implicit expression
for τ0. It appeared that, for diamond-type (D) lattices with ζ ≅
4, aτ0 is close to 3.8, while for FCC, HCP, and BCC lattices
with ζ ≅ 2, aτ0 ranges from 4.9 to 6.1, so the average 5.5 was
used. To estimate Vdis, the details of the dislocation formation
process should be considered. The energetically most favorable
process is the formation of a dislocation dipole,326 and
assuming this process occurs with a Burgers vector length of
the nearest-neighbor distance dnn and a dislocation line length
of ≅2dnn, we have Vdis = 2dnn.

3 Hence, the expression for Tmel
becomes

Figure 14. DTM according to ref 325. (a) The left-hand side (L) and right-hand side (R) for T < Tsin and T > Tsin of eq 56 with Tsin = αGVd/8πka
showing that for T > Tsin melting occurs for c > cint; redrawn after ref 325. (b) The correlation between calculated and experimental Tmel. The solid
line represents equal temperatures, while the dotted line represents the fit. Redrawn using data from ref 325.
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=T d f k/ (1 )mel nn
3 (63)

with f = 22.0 for FCC, HCP and BCC and f = 15.2 for D
structures. Figure 14b shows that a fair correlation between
experimental and calculated values of Tmel is obtained for 19
metals. Apart from that, the above approach takes into account
the interface, thereby differentiating between the instability
and melting temperature.
Finally, we note that also an approach that employs both

dislocations and point defects to explain melting has been
proposed.127 The treatment of dislocations is 3D, while the
treatment of the vacancies is 2D. Using the grand potential Ω,
the transition between Ωdis and Ωvac is taken as Tmel, which for
the series Li, Na, K, Rb, and Cs shows good agreement with
experiment.
6.4. Simulations Revisited

As stated in section 5.8, MD and other simulation techniques
are illuminating tools resulting in detail that otherwise is hard
to obtain. In simulations for bulk materials without a surface,
generally full periodic boundary conditions are used. In order
to be able to do simulations in the presence of a surface, the
simulation box is usually filled with a liquid layer surrounded
by vapor and only either the vapor or liquid layer is
periodically connected. Here we describe a few of these
calculations.
Using such MD simulations with a LJ potential for Ar,

Han328 clearly showed the difference between bulk and
thermodynamical melting (Figure 15). The author mainly
analyzed the volume and energy per atom, both in the bulk and
at the surface, from which this difference is clearly visible.

In a recent study Fan et al.329 showed, using MD simulations
with an embedded atom potential for Ta, that the details of a
melting process are for more complex than the Lindemann rule
can catch. They used three different characteristics, namely (1)
the reduced kurtosis (RK) α = 3⟨Δr4⟩/5⟨Δr2⟩2 − 1, where
⟨Δr2⟩ and ⟨Δr4⟩ are the averages of the second and fourth
moments of the atomic displacement distribution Δr; (2) the
structure factor (SF) Si(k) = ⟨N−2∑j exp(ik·rij⟩, with k the
wave vector along the 110 directions in the BCC structure; and
(3) the bond orientational order (BOO) Qn(i) = ⟨N−1∑j exp-
(inθ(ij)⟩, where θ(ij) is the bond angle formed between the
nearest-neighbor distances ri and rj. They also calculated the
parameter ξ for the whole sample as well as for slices with
thickness of 1.6 Å cut parallel from the surface.
For the 100 BCC Ta surface it appeared that a steep increase

in α, Si(k), and Qn(ij) occurs at T = 1641 K, while the
simulated bulk melting temperature is Tmel,calc = 3094 K, to be
compared with the experimental Tmel,exp = 3290 K and the
simulated bulk temperature without surface Tmel,calc = 3430 K.
The parameter α increases up to about 1911 K, whereafter it
decreases to become zero at Tmel, while ξ for the bulk
continuously increases from T = 1641 K onward until Tmel at
3094 K.
The sudden decrease of the SF at Tmel, the steep decrease of

α, and the steep rise of ξ are taken together as indicating a
discontinuous transition. Differentiating between various
layers, it appears that ξ increases much more strongly at the
surface than in the bulk, although the two-dimensional surface
pair correlation function shows the cubic symmetry until Tmel
is reached (Figure 16). For the other surfaces ⟨110⟩ and ⟨111⟩

Figure 15. MD simulations for Ar. (a) Energy per Ar atom for a simulation box with and without surface. (b) Volume per Ar atom for a simulation
box with and without surface. Reproduced with permission from ref 327. Copyright 2007 The Korean Ceramic Society.

Figure 16. (a) The parameter ξ (labeled in the figure as δL) versus T for Ta(100) for the surface atoms, bulk atoms and their (weighted) mean. (b)
The ξ-profile as a function of depth in the surface and solid for Ta(100). The dashed line shows the predicted value of ξ = 0.19 for the bulk.
Reproduced with permission from ref 329. Copyright 2020 Elsevier.
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a similar analysis was done. The bulk melting temperatures for
the (111), (100), and (111) surfaces occur at Tmel = 3082,
3094, and 3115 K, respectively, in consonance with expected
(111) > (100) > (111) order based on the surface packing
densities 1.4/a2, 1/a2, and 0.58/a2 with lattice constant a =
3.306 Å (although the difference between (111) and (100)
seems small as compared to the difference in packing density).
The RK, SF, and ξ all showed similar behaviors as for (100). It
also appeared that, although ⟨Δr2⟩ increases steadily above
1641 K, the mean position remains at the lattice sites even in
the surface layers until bulk melting occurs, as illustrated by the
two-dimensional pair correlation function and the fact that the
SF remains well in the crystalline region. The authors indicated
that the increasing disorder above 1611 K is due to correlated
atomic contributions to ⟨Δr2⟩ due to chains and loops.330,331

Moreover, they conclude that the premelting is a disordering
process that does not lead to complete melting until the bulk
melting temperature is reached, so that the surface melting
appears in synchronization with bulk melting as a discontin-
uous transition.332 The conclusion is that the Lindemann rule
using bulk values for ⟨Δr2⟩, although reasonably capable of
catching the bulk melting temperatures, cannot be related to
the surface and its associated ⟨Δr2⟩, although (pre)melting
starts at the surfaces. Remarkably, though, the authors do not
even mention anharmonicity, although non-Gaussian behavior
for ⟨Δr2⟩ is clearly related to that, besides being related to
disordering.
We end with mentioning four other approaches. First,

Holian142 used the LJD model as an ingredient in a hybrid
approach. The LJD model, in either the angular or smeared
form and when corrected by the classical harmonic correla-
tional entropy, gives a satisfactory model of a classical solid.
The Helmholtz energy of the fluid was obtained from the
Hansen−Ree analytic fit to MC EoS calculations for the LJ
potential.333,334 It appeared that at high densities along the
melting curve, the anharmonic correction to the correlational
Helmholtz energy approaches a small constant compared to
the harmonic contribution and the resulting predictions of the
solid−fluid coexistence curves are in excellent agreement with
computer experiments. This hybrid model demonstrates that
both anharmonicity and long-wavelength-correlated motion
must be properly incorporated.
Second, a comparable route was followed by Bhattacharya et

al.137 using the cell model and employing embedded atom
method (EAM) potentials to account for many body
interaction effects. The Helmholtz energy obtained was used
to determine melting curves of FCC metals. For this purpose,
the liquid phase Helmholtz energy was calculated using the
corrected rigid spheres model of Kerley.139 In this modified
perturbation theory, the energy of a fluid molecule is defined
by a function which depends upon the local configuration of its
neighbors which does not need explicit knowledge of the
interaction potential. For Al, Cu, Ni and Pt, the results match
well with the available experimental/theoretical data.
Third, we recall the rather different quantum cluster

equilibrium (QCE) simulation approach of Weinhold,335,336

based on weakly interacting clusters of molecules that do
interact strongly within a cluster. While the intracluster
interactions are calculated using sophisticated quantum
chemistry software, the intercluster interactions are taken
into account as perturbations. The model focuses on water and
predicts the phase diagram quite well.337

Fourth and finally, an interesting result about melting and
superheating was given by Belonoshko et al.338 Using MD
simulations under constant (N,V,T) conditions for 4 × 103 and
32 × 103 particles employing a LJ potential with ε/k = 119.8 K
and σ = 3.41 Å representing Ar, the authors calculated three
isochores for unit cells with lattice constant a = 4.2 Å, a = 4.4
Å, and a = 5.37 Å, verifying that their results are size-
independent and not volume specific. As indicated in section
5.8, in simulations a solid can be substantially overheated up to
a temperature TLS, where above which one cannot heat a solid
without transforming it into a liquid. The authors noticed that,
for all volumes used, when T approaches TLS, a very small
increase in the initial kinetic energy leads to melting and that,
unexpectedly, the temperature T to which the system evolves
drops down to Tmel. A similar drop was noticed for an EAM
potential for Cu.339 Because of the constant (N,V,T)
conditions, the energy US(V,TLS) of the solid (S) at T = TLS
equals UL(V,Tmel) of the liquids (L) at T = Tmel. After reaching
TLS the temperature decreases because of ΔmH. The
interpretation is that homogeneous melting occurs when the
internal energy of the atoms in the solid state is sufficient to
explore the potential energy landscape of the liquid state. To
demonstrate that the absence of the states with high entropy is
the reason for superheating, the authors performed two-phase
MD simulations where the LJ parameters for the liquid were
chosen quite differently from those for the solid. In these two-
phase MD simulations, the solid melted without superheating,
confirming that the heterogeneity itself, i.e., the solid−liquid
interface, is sufficient to ensure equilibrium melting of the
solid. The authors also explained the increase of TLS by about
20−30% above Tmel by considering that the effect of pressure
P. As the melting curves of simple solids are rather pressure-
independent because of the small difference between VL and VS
due to the high pressure, one can write

[ ] [ ]

= [ ] [ ]

U T V P U T V P

U T V P U T V P

, ( ) , ( )

, ( ) , ( )
2 LS 2 1 mel 1

3 mel 3 1 mel 1 (64)

where Uj is the internal energy for the pressures and
temperatures indicated. Assuming that CV ≅ 3k, the standard
Dulong−Petit high-temperature estimate, and that ΔmS ≅ Tmel
ln 2, which is the asymptotic value of ΔmS,

13 one can write

=
= + +

k T T kT

T T

3 ( ) ln 2 or

/ 1 (1/3) ln 2 1 0.231
LS mel mel

LS mel (65)

thereby nicely explaining the order of magnitude increase and
confirmed by experiment by Luo et al. for Al.340

6.5. Surface Transitions

Related to surface melting is surface roughening, which
describes the deviations from the ideal or bulk-like surface,
the structure of which is like that of the corresponding lattice
plane in the bulk. Although such ideal surfaces do occur,
primarily in metals, generally, low index solid surfaces (for
crystals often called facets) are only nominally planar and have
steps or ledges. In the steps, kinks (Figure 17) are present
representing a deviation from the overall step direction. The
planar area between the steps is called a terrace. On both
terraces and ledges atoms can absorb (adatoms) and vacancies
can arise. Together these features represent the terrace−
ledge−kink (TLK) model. Moreover, to lower their surface
energy, atoms in the surface region exhibit in general a
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relaxation from the ideal lattice positions, leading in several
cases to reconstruction. For a relaxed surface the overall
structure is still like an ideal surface, while for a reconstructed
surface a clear symmetry break occurs.
Solid surfaces often show a roughening transformation at a

certain TR, below which they remain nominally smooth but
above which they become rough. To model this phenomenon,
both continuum and atomistic models have been used.
The continuum model for solids uses capillary wave theory

with stabilization provided by a periodic lattice potential V(z)
= V[1 − cos(2πz/a)], preferentially locating the surface on
planes z = na above the nominal surface, with a the lattice
constant and n an integer. Assuming periodic boundary
conditions in the x−y plane with position vector r and a
square area of linear size L = A1/2, one has

= · =

= ± ±

r q r q n

n

z a L( ) exp(i ) with (2 / ) and

0, 1, 2, ...

q
q

(66)

where q is a 2D wave vector. The Fourier transform of the
energy becomes

= + + = +

+

E a A E V a A A

a V aq

( ) ( ) (1/2)

( )

q q q

q
q q

0 0 0

2 2

(67)

where γ0 is the surface internal energy for the flat surface and
ΔEq is the roughening contribution. The lattice potential leads
to a coupling between the modes, complicating the calculation
of the partition function Z = ∫ exp(−βΔE(aq)daq. To calculate
Z, one normally applies a renormalization procedure in real

space. In brief, by defining a new cutoff qcut, one divides the
variables into a group having a large wave vector qlrg (qcut < qlrg
< qmax = π/L) and one having a small wave vector qsml (qmin =
π/ξ < qsml < qcut). Integration of Z over the variables with qlrg
yields Z = ∫ exp(−βΔE(alrg,asml)daq ≡ exp[−βE(1)(asml), where
E(1)(asml) is the effective energy for the small wave vector
components. By expanding V(aq) to second order, one can
show that ΔE(1)(asml) has the same form as ΔE(aq) but with
renormalized variables γ(1)(acut) and E(1)(acut). This procedure
is iterated by defining a new cutoff qcut + dqcut and calculating
γ(2)(acut + dacut) and E(2)(acut + dacut) until convergence with
solutions γ* and V* is reached. In terms of the dimensionless
variables λ = ln(qmin/qcut), x = 2βγ(λ)a/π, and y = 4πβV(λ)/
qcut2, one obtains after some algebra in the continuum limit

= =y y x x x A x y xd /d 2 ( 1)/ and d /d (2/ ) /22

(68)

with A(2/x) a slowly varying function.341 These equations
define the Kosterlitz−Thouless class342,343 of phase transitions,
the solutions of which (Figure 18a) show two types of
behavior, dependent on whether T < TR or T > TR. For T < TR
there is always a qcut above which the renormalized potential
V* goes to infinity, fluctuations are pinned, and the surface
remains smooth. For T > TR, V* always vanishes on a large
scale and the surface becomes rough. Hence, TR = 2γ*a2/πk is
identified as the critical temperature given by the fixed point at
x = 1 and y = 0. Assuming an isotropic surface (which {100}
SC is not, but {111} FCC is), the height correlation function
becomes

= [ + ] = ·r d r q dG d H H h( ) ( ) ( ) 2 (1 cos )
q

2 2

(69)

= [ ]G d kT q J qd q kT

d

( ) ( / ) 1 ( ) d ( / )

ln( / )

q

q
1

0
min

cut

(70)

The last step is made by approximating the zero-order Bessel
function J0 with a Heaviside step function at qr = 1 and is only
valid for large r, as we must have G(0) = 0. The extrinsic width
is given by ⟨h2⟩ = (kT/πγ∞*) ln(L/ξ) with γ∞* = γ*(λ=∞).
As an expansion of V is used, V must be small and fails for T <
TR when V* → ∞. Although this renormalization procedure
clearly shows the universal nature of the roughening transition,
atomistic models are evidently needed.

Figure 17. TLK model showing three terraces and two ledges with
kinks having ledge vacancies and ledge adatoms and terraces with
adatoms and surface vacancies.

Figure 18. Kosterlitz−Thouless transition. (a) Trajectories as a function of x, where all starting points for iteration lie on the straight line y = x
corresponding γ0 and V. Reproduced with permission from ref 344. Copyright 1994 Elsevier. (b) The height correlation function G(d) as a function
of d/a (�) fitted to MC simulation results at various temperatures, where TR corresponds to T = 1.24u/k. Reproduced with permission from ref
345. Copyright 1978 American Physical Society.
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The classic atomistic model is by Burton, Cabrera, and
Frank346 using for this order−disorder problem the quasi-
chemical solution as well as the exact Onsager solution for a
three-level nearest-neighbor bond model with bond energy u
which includes surface atoms, surface adatoms, and surface
vacancies. The latter for a square lattice yields TR = u/k ln(1 +
21/2) ≅ 1.13u/k, but even that is still a poor estimate: when a
large cluster is formed, another cluster can easily build on top
of its surface.
Hence, the three-level model is insufficient, but the three-

level approximation can be avoided by using the solid on solid
(SoS) model. Considering a SC lattice with forbidden
overhangs, the model contains columns of height z relative
to the flat surface at T = 0 K, or zj = z(xj,yj) where (xj,yj) are
the coordinates of the column. The excess energy U(zj) is
related to the number of free vertical faces of the cubes in the
column and given by U(zj) = (1/2)u∑j,δ f(zj − zj−δ), where δ
runs over the neighboring columns. Using the bond model, the
function f(zj − zj−δ) = |hj − hj−δ |. This defines the absolute
SoS (ASoS) model,345 from which we recover the three-level
model if we restrict zj to −1, 0, and 1. This model must be
solved numerically, which can be done by the MC method in
the (μ,T,V) ensemble using as probability exp[−β(ΔU − μ)].
From the results one can obtain for a distance d between
columns, the height correlation function =G d z z( ) ( )i j

2 .
The results of such an ASoS calculation for the SC lattice
(Figure 19b) shows that, for T < TR, G(d) tends to a constant
value for a large value of d, while for T > TR G(d) diverges
weakly. The height correlation function can be described by
G(d) = (kT/πγ0*)(ln d + c), where c is a constant. By fitting
the G(d) curves with this expression, it was found that TR ≅
1.24u/k. Images from MC simulations on (20,1,0) SC surfaces
at various temperatures348 show that considerable roughness is
already present below TR. A body centered SoS (BCSoS)
model349 describing the {100} and {111} FCC surfaces can be
solved analytically and the condition that hi − hj = 0 or ±1/2,
resulting in TR = u/k ln 2 ≅ 1.44u/k.
We note that the SoS roughening transitions belong to the

Kosterlitz−Thouless class.342,343 The nonsingular part of the
Helmholtz energy as a function of T when approaching TR
follows F ∼ exp[−c′/(|T − TR|1/2)] with c′ another constant
and vanishes at and above TR. All thermodynamic quantities
and their derivatives are continuous to any order, thereby

explaining why the roughening transition is rather smooth as
compared to the order−disorder continuous transition model.
The disappearance of crystal facets is a characteristic of
roughening and has been observed experimentally. For
example, for Pb below 323 K the bounding facets are (111),
(110), (100), and (112). For 323 K < T < 393 K the (112)
facets are absent, while above 393 K up to Tmel the only
remaining facets are (111) and (110). The latter planes are the
most close-packed, and for them TR > Tmel.
For the melting transition in 2D crystals Kosterlitz and

Thouless342 suggested that it is a continuous process mediated
by the dissociation of dislocation pairs. The resulting phase of
this continuous transition was shown by Nelson and
Halperin350−352 not to be an isotropic phase because it still
has a quasi-long-range orientational order. Young353 pointed
out that a second transition, which is induced by the formation
of disclinations, would drive this so-called hexatic phase into a
liquid. This theory is now known as the Kosterlitz−Thouless−
Halperin−Nelson−Young (KTHNY) theory and thus pro-
poses that a 2D solid first shows a transition to a hexatic phase
with a quasi-long-range orientational order and thereafter
another transition from the hexatic phase to a liquid.
A large number of experiments and simulations has been

performed to verify KTHNY theory; see, e.g., refs 354−356.
The results for simulations remain somewhat controversial,
which may be caused by the size effect because long-
wavelength fluctuations play an important role in KTHNY
theory, while they are cut off in finite-sized simulations. Large-
scale simulations of LJ systems do seem to provide evidence
for the existence of the hexatic phase,357 although it was argued
that this transition might depend on the specific properties,
such as the interparticle potential of the studied systems.358,359

However, a series of experiments was performed to calculate
the elastic moduli and the dislocation interactions in 2D
colloidal crystals,360−363 from which the renormalized Young’s
modulus KR of the crystals was found to be consistent with
KTHNY theory, while the dissociation of dislocations was
observed experimentally.

7. THE INFLUENCE OF PRESSURE
Melting is influenced by pressure, as indicated by the
Clapeyron−Clausius equation. For example, for water at 0
°C, ΔmelH = 80 cal g−1, VL = 1 cm3 g−1, and VV = 1.09 cm3 g−1,

Figure 19. (a) Surface roughness R for {100} SC surfaces as a function of 1/βu for a three-layer model according to an approximate solution by
Mullins347 (�, not discussed) and the exact solution by Burton et al.346 (−−). Reproduced with permission from ref 347. Copyright 1959
Elsevier. (b) Perspective images of representative (20,1,0) surface configurations at various values of 2kT/u with 2kTR/u ≅ 0.64. Reproduced with
permission from ref 348. Copyright 1974 Elsevier.
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resulting in dTmel/dP = −0.0074 K atm−1, to be compared with
the experimental value of −0.0075 K atm−1. Consequently, the
triple point is Ttri = 0.0075 °C. In this section we discuss the
influence of pressure. First, we deal with the thermodynamics
and thereafter with some Lindemann-based and related
approaches. We limit the discussion here to papers related to
model approaches for high-pressure experiments, while in
section 8 we deal with individual compounds. For a review of
experimental studies on molecular materials, see ref 364, while
first-principles modeling of Earth and planetary materials is
dealt with in ref 365. Many aspects of EoSs for solids at high
pressures and temperatures have been presented by Zharkov
and Kalinin.366

7.1. Thermodynamic Approach
The effect of pressure on the melting point over a wider
pressure range is almost universally described by the empirical
Simon−Glatzel equation367 ΔP/a = (T/T0)b − 1, where a and b
are parameters; ΔP = P − P0 with P0 and T0 a reference
pressure and temperature, often taken as the triple point. In
many cases P0 is also neglected, as normally P0 ≪ P.
Equivalently, in differential form, we can write d[dP/d(ln
Tmel)]/dP = b. The Simon−Glatzel expression fits exper-
imental fusion curves reasonably well by a proper choice of the
two parameters a and b for molecular solids but overestimates
Tmel for metals and ionic compounds.368 A few examples for
molecular compounds are given in Table 4. From the data sets
given for Ar, it will be clear that the precise values depend on
the pressure range used. The results depend also on the
experimental techniques used, as high-pressure experiments are
loaded with pitfalls. For a discussion of these problems, we
refer to the literature, e.g., ref 369. The data for cyclohexane
indicate that a small amount of impurity can lead to
significantly different parameters. Many data, mainly for
molecular compounds, have been collected by Babb.370

However, the Simon−Glatzel equation can only describe
increasing melting points with increasing pressure (normal
melting), while experimentally decreasing melting points with
increasing pressure (anomalous melting) do occur.

The approach to rationalize the Lindemann rule, as
described in section 5.1, can also be used to rationalize the
Simon−Glatzel equation. As at high pressure repulsion is
dominant, using a potential with repulsion only, ϕ = ε(r0/r)n
with ε and n constants, for a lattice with coordination number
z may suffice. Neglecting thermal energy, the reduced potential
in the harmonic approximation using x = r/V1/3 becomes

= *ax v v c x( / )n
n

2 /3 2 (71)

with v* = r03/γ (γ = 21/2 for FCC), cn a number dependent on
the crystal structure, and n the repulsion exponent. Hence,
here the force constant a is specified in terms of volume. Again
assuming vf* = const. leads via βϕ = const at melting to (zε/
kTmel)(v*/vmel)n/3cn = const. Writing Vmel = V0 − ΔV with ΔV =
V0 − Vmel and V0 a reference volume at reference temperature
T0, the result is
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Using eq 71 and the reduced Helmholtz expression F = (1/
2)NΦ(0) − NkT(lnVvf*), one obtains P(T,V) = P(0,V) +
3γkT/V with γ = (n/6 + 1/3) the Grüneisen parameter for this
model. Substituting eq 41 in the pressure expression leads to
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with a = 3γkT0/V and b = 1 + 3/n, in which the Simon−
Glatzel equation can be recognized. Referring to his
calculations on Ar, Ross58 indicated that neither P(0,Vmel)
nor γ is really a constant, with as conclusion that the Simon−

Table 4. Simon−Glatzel Parameters for Various Materials

molecule P- and T-ranges Δa (K) T0 (K) P0 (kPa) a (MPa) b

Ar FCC365 1.3−6.3 GPa − 82.9b − 210 1.556
296−740 K

Ar FCC369 0−6.3 GPa 2%c 83.80 68.90 224.5 (3.2) 1.5354 (0.0044)
83−840 K

Ar FCC371 1.3−4.2 GPa 21d 83.80 69 244 1.476
294−495 K

CH4
372 2.4−3.2 GPa 20d 90.69 117 208 1.698

410−558 K
benzene 99.8%372 1.3−174 MPa 0.044e 278.24 − 347.9 2.7111

280−323 K
cyclohexane 99.5%373 0.1−85 MPa 0.040e 278.88 − 289.8 1.7838

280−323 K
cyclohexane 99.95%373 0.1−85 MPa 0.040e 279.55 − 280 1.8262

280−323 K
water (ice VII)373 2−13 GPa 50d 354.8f 2170f 1253 3.0

350−750 K
methanol 99.5% (water 0.01%)369 9.1−265 MPa 0.12e 175.17 − 358.6 3.2443

176−208 K
ethanol 99.7% (water 0.2%)374 8.5−199 MPa 0.12e 158.37 − 436.9 2.6432

160−183 K
aDeviation. bCalculated from data given. cAverage deviation. dThe rms deviation. eMaximum deviation. fTriple point ice VI−ice VII−liquid.
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Glatzel equation cannot be extrapolated with any confidence,
contrary to the opinion of Stishov.375

The rationalization given above improves on the one given
by Salter376 in which the Lindemann rule and the Grüneisen
EoS were used to derive the Simon−Glatzel expression. The
Simon−Glatzel relation can also be justified377 by the Lennard-
Jones−Devonshire theory.33 Neglecting second- and higher-
order terms in eq 72 leads to the so-called Kraut−Kennedy
relation. This equation is not without dispute,368,378,379 as it has
been defended as a nonapproximated equation, although the
various data and rationalizations, such as the one in section 5.1,
show otherwise.
One of the reasons that the Simon−Glatzel curve should not

be used as an extrapolation equation is that repulsion, as
described by ϕLJ = ε(r0/r)n, is too steep for small distances, i.e.,
at high pressure, and is, possibly, better described by ϕM = A
exp(−αr).369 As for power-law repulsion n = −(r d ln ϕLJ/dr),
using the same expression for ϕM leads to an effective n-value
reading n = αr. Approximating the lattice energy by U = zϕM =
(1/2)zA exp(−αr1) with z the coordination number and r1 the
nearest-neighbor distance, the pressure P = −∂U/∂V for a
close-packed configuration becomes

= [ ]P z A r r(2 /3) (1/2) / exp( )1/2
1

2
1 (74)

As shown above, power-law repulsion leads to P = aT1+3/n,
so dP/P = (1 + 3/n) dT/T = (1 + 3/αr1) dT/T. Integrating we
obtain

= + + +T r r Cln ln( 3)1 1 (75)

The latter two equations together describe the melting curve
parametrically as a function of r1. For P → ∞, r1 → 0 and the
exponential repulsion predicts a limiting maximum temper-
ature T = exp(ln 3 + C), whereas the power-law repulsion leads
to a divergence. Hence, the results deviate, to a degree
depending on the pressure range used. However, this can only
be part of the story, as ln T does not decrease for P → ∞.
The Simon−Glatzel equation can be derived from the

Clapeyron equation dT/dP = ΔV/ΔS, as has been shown by
Boguslavskii.380 Taking the first order changes
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rewriting the nominator by ΔV[P,T(P)] = ΔV0/[1 −
ΔV0

−1(dΔV/dP)P0(P − P0)] and integrating the expression for
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under the condition that for T = T0, P = P0 leads to the
Simon−Glatzel equation
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This expression is valid for the pressure range P0 < P < T0/X.
Data for the alkali metals and H2 were fitted within this range,
which led to a0 and c0 values differing by 1 to 12% from
previous results.370 This was attributed to the fact that these
values were obtained by the least-squares method including
data outside the pressure validity range.
Kechin381−384 also showed that the Simon−Glatzel equation

can be derived from the Clausius−Clapeyron equation, written
as d(lnTmel)/dP = ΔV/L with ΔV the volume change and L
the enthalpy for melting, using a first-order Taylor series in ΔP.
Later he extended the Simon−Glatzel equation by developing
d(lnTmel)/dP in a Taylor series to second order. This leads to

+ + +T P y y y P y Pd(ln )/d (1/2) ( ) ...mel 0 0 0
2

(79)

Figure 20. Melting curves for various compounds with (○) experimental data points, (△) the high-pressure triple point, and (�) the fit to the
Kechin equation. Reproduced with permission from ref 384. Copyright 1995 IOP Publishing.
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where the single and double primes indicate the first- and
second-order derivatives, respectively. However, in numerical
analysis it is well-known that a truncated power series of a
function is an unsatisfactory approximation. A more
sophisticated method is the use of Pade ́ approximants385
which represent the function by a ratio of polynomials. The
coefficients are found by expanding the ratio and requiring the
coefficients to represent the first k Taylor coefficients correctly.
For example, f(x) ≅ c0 + c1x + ... + ckxk is approximated by the
[n,m] approximant f(x) ≅ (a0 + a1x + ... + anxn)/(1 + b1x + ...
+ bmxm). Obviously, n + m + 1 should equal k + 1. A matrix
recipe is given by Ree et al.386 For a second-order Taylor
expansion f(x) = c0 + c1x + c2x2, the (1,1) Pade ́ approximant
reads f(x) = {c0 + [c1 − (c0c2/c1)x]}/[1 + (c0/c1)x]. In this case
the result can be written as

= +T P P Pd(ln )/d (1 )/ ( )mel (80)

with the parameters σ, α, and β given by
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This expression can be integrated to

= +T T P a c P(1 / ) exp( )b
mel 0 (82)

with a = α, b = (1 + αβ)/σ, and c = β/σ = −y0′α − y0, which
can all be given an interpretation in terms of thermodynamic
quantities. If c = 0, the Kechin equation, eq 82, reduces to the
Simon−Glatzel equation with 1/σ equal to b. As y0′ < 0, the
parameter b > 0, and ΔP = 1/β corresponds to a maximum in
the melting curve. The hypothesis that all materials show
maximums in their melting curves was first suggested by
Tammann387 and refined by Kawai and Inokuti388,389 by
postulating that the maximum could occur at positive as well as
negative pressure. The latter case corresponds to a decreasing-
with-pressure melting curve. As for the Kechin curve, the
maximum corresponds to a negative pressure if β < 0; the
equation can represent both increasing-with-pressure and
decreasing-with-pressure melting curves (Figure 20).
It may be useful to explain the occurrence of a maximum in

the melting curve by a simple model,390 in which it is supposed
that the short-range structure in the liquid is similar to that of
the solid near the melting line. If a second structure appears in
the solid as a high-pressure phase, in the liquid phase a second
structure with a short-range order similar to that of the high-
pressure solid phase may also appear, though at lower pressure.
Because of the disorder, the transition to the higher density
phase occurs continuously in the liquid, while it can only occur
with a jump in the solid phase. The liquid may thus become
denser than the solid in a certain P−T range and the melting
curve will show a maximum. Similar remarks were made by
Stishov.375

The relationship between anomalous (reentrant) melting
and the features of the repulsive part of the intermolecular
potential were studied in detail for one-component systems
with radially symmetric interactions by Malescio and Saija.391

By making use of the LJD cell model, the authors derived a
single-phase criterion for the occurrence of a temperature
maximum in the melting line using analysis of the (repulsive)
potential in combination with MC simulations. For the analysis
they used a Lindemann fraction defined by ξ =
d−1⟨N−1∑j(Δrj)2⟩1/2, where d is the nearest-neighbor distance,

N is the number of particles, and the brackets denote the
average over the dynamic trajectories of the particles. To
evaluate ξ they employed the LJD cell model with the
displacements calculated in the harmonic approximation U(r)
= U(r0) + (1/2)κΔR2, where Δr = r − r0 is the displacement of
the atom from its static equilibrium position r0 and κ is the
reduced force constant:392
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where the pair potential was written as u(r) = εϕ(r/σ). As
usual, ϕ′(r) = dϕ(r)/dr and ϕ″(r) = d2ϕ(r)/dr2, while v = V/
σ3N is the reduced volume, zj is the coordination number of
the crystal lattice, rj = cj(v/c)1/3, and cj and c are constant
depending on the geometry of that crystal lattice that, for the
chosen interaction model, corresponds to the most stable solid
phase.
If κ/t ≪ 1, where t = kT/ε is the reduced temperature, one

can write ξ ≅ (3t/κ)1/2 or t ≅ (1/3)ξ2κ, and a melting curve
maximum will occur if κ has a maximum as a function of
volume. Accordingly, for the volume vmax corresponding to the
maximum melting temperature, the condition ∂κ/∂v|v=vdmax

= 0
should hold, which leads to
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Because both bj and rj−2 are always positive, F(r) should
change sign over its definition domain in order for the sum in
the above equation to be able to become zero. This provides a
simple criterion, called the n-criterion, that expresses a
necessary condition for the occurrence of anomalous melting.
For inverse-power potentials with n > 1, F(r) is everywhere
negative and thus the criterion is not satisfied. Hence, a
modified inverse power (MIP) potential was used, given by
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= { [ }
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n r n b r

( ) ( / ) with

( ) 1 exp (1 / )

n r

c

( )

(85)

Here α is a real number with 0 < α < 1, b is a positive real
number, and c is an even positive integer. The parameter α
controls repulsion softening: the larger the value of α, the more
significant the softening effect. The parameter b controls the
width of the interval where n(r) is significantly smaller than n:
the larger the value of b, the smaller this interval. The exponent
n(r) attains its smallest value nmin = n(1 − α) for r = σ. For the
various values, n = 12, c = 2, and b = 5 were chosen. As α
approaches 1, u(r) develops in a certain range of r a downward
concavity, a feature that is typical of core softening potentials.
In the region where for the interparticle potential u(r) the
derivative u″(r) ≤ 0, the strength of the two-body force f(r) =
−u′(r) reduces or at most remains constant as two particles
approach each other. For hard-core repulsion at small distances
going to zero sufficiently fast at large distances, such behavior
gives rise to two distinct regions where the repulsive force
increases as r gets smaller. Hence, two distinct repulsive length
scales emerge: a smaller one (“hard” radius), dominant at the
higher pressures, and a larger one (“soft” radius), effective at
low pressure. In the range of pressures where the two length
scales compete, the system behaves as a “two-state” fluid. The
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conditions for core softening, as given by Debenedetti et al.,393

require that, in some interval r1 < r < r2, Δ[rf(r)] < 0 for Δr <
0, together with u″(r) > 0 for r < r1 and r > r2, which are
satisfied if, in the interval (r1,r2), the product rf(r) reduces with
decreasing interparticle separation. This requirement is less
rigorous than the condition u″(r) ≤ 0, and can be met by a
strictly convex potential, provided that in a range of
interparticle distances the increasing rate of f(r) is sufficiently
small with respect to the adjacent regions.394 For the MIP
potential used, a downward concavity is present for α ≥ 0.72
and the Debenedetti condition is satisfied for α ≥ 0.68, while
according to the n-criterion anomalous melting is possible for
α ≥ 0.47.
For the MIP potential, MC simulations using constant

(N,P,T) conditions, the Metropolis algorithm with periodic
boundary conditions and nearest image convention were done.
The simulations were done with N = 686 for a BCC crystal and
N = 864 for a FCC crystal, for which finite-size effects
appeared to be negligible. From the results obtained, it
appeared that, as α increases starting from α = 0, the MIP
potential goes gradually from an inverse power 1/r12 form to a
typical core-softened form for α > 0.72. Around α = 0.55, i.e.,
for a softening much weaker than that leading to a region with
downward concavity, a reentrant portion appears in the
melting line. The consequent ordering−disordering transition
upon pressure increasing at constant temperature is reflected in
the behavior of the peaks of pair correlation function g(r) that,
however, shows yet no hint of the existence of two distinct
length scales. Thermodynamic, dynamic, and structural
anomalies are absent or are restricted to an extremely reduced
portion of the PT plane. Only at higher α, where the core-
softening condition is satisfied, the two-scale behavior typical
of core-softened systems is shown by g(r) and these anomalies
fully develop. Other potentials used were the Yoshida−
Kamakura potential395,396 and the repulsive-step potential,
consisting in a hard core plus a finite square shoulder at a
larger radius, the latter smoothed by a tanh function.397 For
these potentials comparable results were obtained. These
results show that the class of isotropic systems that can result
in anomalous behavior is much wider than commonly
assumed.
While such approaches are reasonably successful from a

practical point of view for not-too-high pressures, Stacey398,399

indicated that most Tmel(P) expressions proposed do not
satisfy the thermodynamic constraints for really high pressures,
as occur in the Earth’s interior. Emphasizing the role of the
higher order derivatives K′ ≡ dK/dP and K″ ≡ d2K/dP2 of K =
dP/d ln ρ, Stacey and Davis400 derived the identity

= =K P K K P( / ) (d ln /d ln ) 1 (86)

that all Tmel(P) expressions must satisfy. Here and in the
following the subscripts “0” and “∞” indicate zero and
“infinite” pressure, respectively. At really high pressure, K′ is
closer to K∞′ than to K0′. It was pointed out that there are
thermodynamic bounds K∞′ > 5/3401 and γ∞ > 2/3,398 that
many of the 34 expressions examined398 failed this test, and
that there is no corresponding test for K0′.399 Stacey and
Hodgkinson402 introduced a constraint using the thermody-
namic Grüneisen parameter γ reading
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Stacey399 indicated that the difference between the
isothermal bulk modulus KT and adiabatic bulk modulus KS
can be neglected. While true for geological materials, for
molecular solids this is not so. Further, f is a parameter that
depends on the details of the thermal vibrations and is not
necessarily constant. Using f = 0 results in the Slater expression
γ = (1/2)K′ − 1/6,9,403 while f = 1 yields the Dugdale−
MacDonald expression.404 Barton and Stacey,405 based on
FCC MD simulations with various potentials, obtained f ≅
2.31. Assuming random, uncorrelated thermal vibrations, f =
2,406 as first derived by Vashchenko and Zubarev407 in another
way, but this assumption is not valid.405 Keeping f general, it
follows from eqs 86 and 87 that

= K /2 1/6 (88)

and is thus, not containing f, generally valid. Another identity,
namely

= [ ] +KK K P K K K/(1 / ) / (89)

can be derived402,408,409 for which the nominator remains finite
negative although both KK″ and (1 − K′P/K) vanish for P →
∞. The infinite pressure asymptotes of derivatives of K can all
be represented in terms of the two constants K∞′ and λ∞ and
suggest a Taylor expansion of K′ as a function of P/K,
evaluated at P = ∞. However, although all coefficients can be
expressed in terms of K∞′ and λ∞, they are all also found to be
indeterminate except the first. The latter can be written, as
using eq 86, as

[ ] =K P K Kd(1/ )/d( / ) 1 / (90)

Because λ∞ < K∞′, this derivative must be positive, which
provides another constraint. Finally, Stacey and Hodgkinson402

noted that both K∞′ and λ∞ depend on the type of material,
suggesting that a “universal” EoS does not exist, in contrast to
some other claims.410,411

After a detailed discussion Stacey concludes in the indicated
papers398,399 that only three expressions have built in the
freedom to choose K∞′ and thus are particularly relevant to
high-pressure work. These three are the generalized Rydberg
equation, the Roy and Roy equation, and his own reciprocal K′
equation. He further argues that progress is limited by having
insufficient data for, say, P > 30 GPa. Clearly, all these
thermodynamic discussions are relevant to situations with
really high pressure as occurring in the Earth’s interior, but
they seem to be not well-recognized in the materials science
community.
7.2. Lindemann-Based and Related Approaches
Several other approaches, either based on the Lindemann
concept or based on thermodynamic arguments, exist and will
be discussed in this section.
In an approach by Arafin et al.,412 the Lindemann relation

Tmel = ξ2(k/3ℏ2)mθD2r02 is augmented by the use of the
Grüneisen relation γ = ∂lnθ/∂lnΩ, in combination with the
bulk modulus KT, leading to d(ln Tmel)/dP = 2(γ − 1/3)/KT.
Expanding both γ and KT to second order in the pressure P
evaluated at P = 0, and integrating, an explicit expression for
Tmel was obtained (see also refs 413−415). Experimentally for
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Li, K, Rb, and Cs, a maximum in Tmel as a function of P is
observed, and calculating results for Li, K, and Rb, good
agreement was found with the available experimental data,
using both the first-order and second-order expansions.416 For
Cs only the second-order expansion can describe the
experimental data well, which may be not so surprising as Cs
is a most compressible metal. Experimentally, the Tmel−P
curves for these metals show an inflection point above the
maximum, which is often interpreted as a sign of a structural
transformation. Synchrotron diffraction experiments for Na
resulted in a maximum Tmel ≅ 1000 K at P ≅ 31 GPa and
indeed suggest a transformation from BCC to FCC.417 For Na
the same model418 yielded Tmel ≅ 961 K at P ≅ 31 GPa in
reasonably good agreement with the experimental data.
However, as noted by Shanker,419 the second-order

expression for γ and K′ leads to negative values at really high
(infinite) pressure which is unphysical. The value γ = 1/2 is the
minimum value for that pressure,420,421 a result based on
Thomas−Fermi theory.422 The authors conclude that the
second-order expansion in pressure cannot be used, and that in
this way the Lindemann criterion cannot explain the maxima in
the melting curves Tmel(P). While the second conclusion is
most likely correct in principle (see later), the first is not. As
discussed in section 7.1, a second-order Taylor expansion
evaluated at P = 0 can be used for a limited range only and a
truncated power series of a function is an unsatisfactory
approximation for extrapolation, in this case to infinite
pressure, while a Pade ́ approximant would be a much better
choice. The maximum for Na can be explained using
Lindemann’s law from θD as calculated from the phonon
spectrum by ab initio density-functional perturbation theory
via mapping on the Debye spectrum.423 Alternatively, the
elastic constants can be used. It appeared that C44 shows a
maximum at 43 GPa and thereafter decreases. Although the
other shear characteristic (1/2)(C11 − C12) increases, it cannot
compensate for the decrease in C44, so overall, the shear
modulus first increases, shows a maximum, and thereafter
decreases. This leads to the same behavior for θD in the same
pressure range and an effective negative Grüneisen parameter
above the maximum if θD is taken constant. This explains the
results of Arafin et al.412 The melting curve, as derived from
the elastic constant data, can be described well by the Kechin
expression with the maximum at about 25 GPa. The maximum
was thus not attributed to a BCC−FCC phase transformation,
which occurred at 63 GPa.
This criticism was iterated by Ashwini et al.424 These

authors offered another approach based on that, in the limit P
→ ∞, the ratio (P/K)∞ = 1/K∞′ with K′ = ∂K/∂P remaining
finite. Using the expression for 1/K′ = 1/K0′ + [1 − (K∞′/
K0′)], as first used by Stacey,401 and 1/γ = A + BP/K with A =
1/γ0 and B = K∞′(1/γ0 − 1/γ∞), as proposed by Shanker et
al.,425 the authors eventually arrived after integration at
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The parameter K∞′ was estimated using K∞′ = 3K0′/5,398,426
while for the γ∞ estimate γ∞ = (1/2)K∞′ − 1/6398,400 was
used. From this expression using the Euler finite difference
method the Tmel(P) curves for 10 metals were determined,
which are in reasonable agreement with experiment, with Al
and Ag yielding the largest differences. Comparable results
were obtained using the alternative expression
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with T0 a reference temperature as given by Kholiya and
Chandra427 using the same parameters. The authors suggested
that the discrepancies are possible due to the inadequacy of the
Lindemann rule for some metals.419 Stacey obtained from
thermodynamic considerations d ln Tmel/d ln V = 2γ,398 which
leads to Tmel

−1(dTmel/dP) = 2/(AK + BP). Solving this
expression in the same way, the results for Cu, Mg, Zn, Au, and
Ag agree to a large extent with experimental and ab initio data,
while for Al the agreement is better than the results of both
Ashini et al. and Kholiya and Chandra.
Clearly, the Grüneisen parameter γ plays an important role

in pressure-dependent melting. In particular for transition
metals, a proper estimate of the pressure dependence of γ is
required. For example, the expression γ = γ∞ + γ1(V/V0)1/3 +
γ2(V/V0)n, where γ1, γ2, and n > 1 are constants, was used by
both Errandonea428 for Mo, Ta, and W and Burakovsky and
Preston420 for 20 metals. Kushwah et al.429 used the only
common metal, Mo, in these sets to calculate Tmel from the
differential Lindemann relation dTmel/d ln V = −2(γ − 1/3)
after inserting this expression for γ and integrating for both
parameter sets. Comparing the calculated result with the
experimental result430 shows that that Burakovsky−Preston
estimate is far too high, while the Errandonea estimate fits the
experimental data better (but see ref 431).
Proposing a four-parameter EoS, Li et al.432 indicated (but

not showed) that their EoS is capable of describing the Tmel(P)
curve with fairly satisfying results. Using x = (V/V0)1/3 this EoS
is given by

= +P K x x a a a3 (1 ) (1 3 ) exp( )0
2 2 (93)

and associated energy

= + +E E a a a(1 ) exp( )C
2

(94)

In these relations the dimensionless parameters
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are used, where, as before K = −V(∂P/∂V)T and K0′ = (∂K/
∂P)T. The expression for P and E reduces to that of Rose et
al.213 if one takes δ = 0.05 and to that of Vinet et al.410 if one
takes δ = 0. The latter two equations were derived from the so-
called universal potential that was originally obtained from the
scaled E(r) curve of several metals as obtained from ab initio
calculations. This potential is given by E(a*) = εϕ(a*), where
ε is the well depth and a* = (rWS − rWSE)/l = u/l with rWS the
Wigner−Seitz radius, rWSE the Wigner−Seitz radius at P = 0,
and l = [ε/E″(a)0]1/2 = (ε/12πrWSEK0)1/2, and where it
appeared that ϕ(a*) can be described by ϕ(a*) = −(1 + a* +
0.05a*3)exp(−a*).213 Li et al. showed for Lu a good
agreement with the ab initio DFT E(V) curve and that ε, V0,
K0, and K0′ all showed a rather constant value as a function of
density, contrary to the values as obtained from the Rose or
Vinet equation. The average δ-value (not given) for the 38
metals indicated is 0.021 (0.014) ± 0.080 (0.069) where “±”
denotes the sample standard deviation and the numbers in
parentheses refer to the same set without In as that metal has a
substantially larger value, δ = 0.28. They also (only) indicated
that a calculation for Tmel using the Guinea criterion for
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melting resulted in a good agreement with the experimental
data. In a subsequent paper Li et al.,433 in which incidentally
the authors surprisingly did not refer to their previous paper
and which uses the same data and parameters, elaborated a bit.
In this paper they show good agreement for the EoS and for ε,
V0, K0, and K0′ with the ab initio data for Sr and Eu as well as
for Lu. The melting criterion proposed by Guinea et al.214

states that melting occurs when the mean square displacement
⟨u2⟩1/2 exceeds the inflection point of the E(r) curve, i.e., at
E″(r) = d2E(rWS)/drWS

2 = 0. This leads to δã3 − 6δa2̃ + 6δã +
ã − 1 = 0, which the authors approximated by ã ≅ 1 − δ −
3.3δ2. Inserting this in the Debye expression for ⟨u2⟩1/28 leads
to the approximation Tmel ≅ 372(1−2δ)ε, where ε is in eV/
atom. The agreement between calculated and experimental
Tmel-values is called “very satisfying”. A linear fit of Tmel,calc =
cTmel,exp (not given but calculated from their digitized picture)
yields c = 0.933 with R2 = 0.983, very much in range with other
correlations.
An important area of research where high-pressure melting

studies are relevant is earth science, as experimentally only a
fraction of the thickness of the Earth’s crust can be probed,
while the lower lying shells, such as the mantle and core,
cannot be probed, except with ultrasonic (seismic) waves. It
seems that the solid inner core is crystallized from the liquid
outer core, which is largely composed of Fe and Fe-rich alloys.
Hence, for the core studies on Fe and its sulfur and oxygen
compounds, as done, e.g., by Boehler434,435 and Sinmyo et
al.,436 are particularly relevant, but for the mantle also studies
on Mg−Si perovskite and magnesiowüstite are important.435

For further information on this interesting topic, we refer to
the reviews by Stacey398,400 and the books by Anderson,437

Poirier,10 and Stacey.438

8. MOLECULAR, INORGANIC, METALLIC, AND
POLYMERIC SOLIDS

After having discussed melting along the line of mechanisms
and the effect of pressure, we now take another brief look along
the line of materials, including papers on experimental and
calculational information for materials at high pressure
without, however, providing a full review of this aspect.
8.1. Molecular Solids

Molecular solids comprise small molecules (atoms) that
interact mainly via van der Waals interactions. The prototype
of molecular solids are the rare gas crystals for which many
papers have been published.
An early MD simulation study by Stillinger and Weber439

used 128 particles and periodic boundary conditions starting
from a BCC configuration with as pair potential ϕ = A(r−6 − r)
exp[(r − a)−1] for r < a and ϕ = 0 for r ≥ a with A =
3.809745436 and a = 2.0. This generic potential has a depth
−1 and is zero at r = 1. For the BCC structure the minimum
lattice energy Φ/N = −6.578015 at reduced density ρ* =
0.73051 for which melting occurs at Tmel* ≅ 0.43. At low
temperature the system is at one of the permutation-equivalent
absolute minima, as expected, while at high temperature a
rapidly changing sequence of positions results that predom-
inantly correspond to amorphous random packings. From the
results the elementary structural excitation out of the
crystalline absolute minimum that leads to melting appeared
to be the creation of a vacancy, split-interstitial defect pair. The
system exhibits a defect-softening phenomenon, or mean
attraction between defects, which influences the spectrum of

normal-mode frequencies at the local minima and led to defect
softening that was considered as basic to the fact that the
solid−liquid phase transition is discontinuous.
Smirnov112 preferred a Morse potential above an LJ

potential and, based on calculations for clusters of atoms
with short-range interaction and closed shells, i.e. Ar13, Ar55,
and Ar147, rejected the vacancy model.440 He proposed an
alternative that describes melting as the interaction of
structures. By limiting the discussion to FCC and icosahedral
structures, he argued that the icosahedral structure is not
favored at T = 0 because the nearest-neighbor distances differ
from the optimal by about 2.5%. With increasing temperature,
the vibrational amplitude increases, and when this increase
approaches 2.5%, both structures can exist, and their
“interaction” (I presume that coexistence is meant) leads to
a local phase transition. Based on bond energy considerations
for the aforementioned clusters without relaxation and taking
into account nearest-neighbor interactions, he predicted the
(scaled) melting temperatures of the rare gas solids in quite
good (general) agreement with the simulation data in spite of
the simplicity of the model. He argued that the change from an
FCC cluster to an icosahedral cluster can lead to vacancies in
view of the small differences in structure, but these were not
further considered because relaxation was not considered.
Transition between these structures, in his view, therefore,
cause nonlinearity of the corresponding vibrations at relatively
small energies of excitation and the creation of vacancies. He
indicated that such a mechanism does not contradict (is
consistent with) the results for Ar cluster simulations441,442

that indicate the phase transition of the clusters is not the
softening of the surface layer but the collective motion of most
surface atoms accompanied by the creation of vacancies in the
surface layer. Finally, he made clear that additional evidence
would be required, but no follow-up seems to have been
published.
Using the interstitial defect approach, Robinson et al.133

discussed the rare gas solids, N2, CO2, CH4, and NH3, and
some other compounds like halogens F2, Cl2, Br2, and I2, HCl
and HI, and methanol. Using LJ potentials with parameters as
given by Hirschfelder et al.,443 these authors used the
modification of the interstitial approach given by Wentorf et
al.444 which includes interactions to the third coordination
shell and the approximation ψ = ψ0(r0/r)12 = ψ0(V0/V)4.
Rewriting eq 33 as Cu = tanh u with u = (1/4)βzψy(2X − 1)
with C = 4kT/zψ, this transcendental equation was solved
graphically. The authors noted first that, for the compounds
mentioned, but excluding HCl, CO2, CH3OH, and NH3, and
which they considered as near perfect LJ gases, ψ0/k =
1.408Tmel at atmospheric pressure. The predicted P(Tmel)
curves for the rare gas solids are in excellent agreement with
the experimental data available in the range of 8 kbar (Xe) to
25 kbar (Ar), and the principle of corresponding states was
well obeyed. For N2 and CH4 the calculated Pcalc data
underestimate the experimental data by about 50 and 30%,
respectively, at Pexp = 20 kbar, while for CO2 the curves cross at
about 9 kbar. For N2 the authors advanced that the potential
parameters may be different in the solid and gas states, that a
“smeared” potential may not be warranted, and that polar-
izability was neglected. More generally, for the deviations from
the corresponding states principle they argue that anisotropic
molecules must be freely rotating in the solid state, that
intermolecular forces must be weak, that the potential energy
must be a function of distance only, and that the potential
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must be expressible as a conformal potential, i.e., ϕ = εf(r/σ),
where ε and σ are scaling parameters for energy and distance,
respectively. Overall, the authors commented that the
interstitial model (1) contains long-range order for the liquid
state and (2) neglects short-range correlation of neighboring
molecules, in combination not providing an adequate picture.
Finally, they suggested, as the proper LJ parameters may be
different in the solid and gaseous states, that the ε-value should
be taken as the value that yields the correct Tmel at atmospheric
pressure, while the σ-value should be scaled by the value that
represents the density of the liquid properly, both at
atmospheric pressure.
Diamond anvil cell (DAC) experiments on the melting curve

of Xe reported a clear flattening of the melting curve above 25
GPa.445,446 However, density functional calculations (DFT)
show a steady increase of the melting curve of Xe with
pressure. Shulenberger et al.447 attempted to resolve this
discrepancy. They indicated that the cause of the discrepancy
for conventional DFT calculations using (local) functionals,
such as the local density approximation (LDA), might be due
their overestimate of van der Waals interactions due to self-
interaction of the electrons at low density, while more modern
generalized gradient approximations (GGA) remove this self-
interaction but lead to no binding energy at all. Hence, they
argue that these significant theoretical challenges necessitate
the application of a complementary technique whose
approximations are not tied to the local behavior of electrons
and considered diffusion quantum MC (DMC)448,449 a
promising candidate. The method was benchmarked by
calculating Tmel of Al at 120 GPa, as for this material at the
chosen condition shock compression experiments, diamond
anvil cell experiments, and DFT calculations all agree as to the
melting temperature.450 Below 25 GPa their calculations on Xe
showed agreement with experimental and calculational data,
but above 25 GPa a steady increase resulted, in line with other
theoretical calculations. They concluded that the shock
compression high-pressure curve is well described by
Lindemann behavior up to 80 GPa, in contrast to the diamond
anvil results. However, the phase transformation between the
FCC and HCP structures was not considered, in spite of
previous suggestions.445

As already alluded to, DAC experiments are experimentally
complex. Wiebke et al.451 indicate that difficulties with the
extrapolation from DAC experiments are very well exemplified
by substantial discrepancies in the melting curve of Fe above
100 GPa as relevant for the Earth core and lower mantle,452

but also that the situation is similar even for most simple
substances such as Ar. Freezing to an FCC crystal at 83.8 K
and ambient pressure, the melting curve of Ar has been
established to follow a Simon law up to a few gigapascals (see,
e,g., refs 369 and 445). Beyond, however, lies a regime where
data sets and extrapolated curves diverge.453 These authors
used ab initio MC simulations under constant (N,P,T)
conditions with periodic boundary conditions of the solid
and liquid phases of 256 Ar atoms employing an accurate
analytic many-body potential derived from rigorous relativistic
electronic structure calculations. This implies that the solid
superheats to a temperature T > Tmel before structural collapse
occurs at the “critical superheating temperature” T+ well above
Tmel. This critical superheating temperature T+ was converted
to Tmel via limP→∞(T+/Tmel) = 1 + 2 ln 21/3 ≅ 1.231, as derived
by Belonoshko et al.338 From simulations up to 100 GPa they
derived the Kechin expression

= [ + ] ×T P P P( ) 80.4 ( /0.201) 1 exp( 6.34 10 )mel
1/1.152 7

(96)

(with P in GPa, estimated uncertainty of ±2.6% in Tmel). At
normal pressure the bulk Tmel = 80.4 ± 2.1 K is only slightly
smaller than the NIST-recommended value of 83.8 ± 0.3 K.454

The small Kechin exponent of only 6.34 × 10−7 GPa−1
effectively renders their melting curve a Simon−Glatzel law
essentially up to 100 GPa, thus obeying the PoCS. In fact, the
deviations from corresponding-state behavior as observed by
Boehler et al.445 have been suggested to be an experimental
artifact.455−457 Quantitative agreement with an analysis of
many experimental data by Ferreira and Lobo458 exists, for
which as example the authors quote Tmel = 4409 ± 132 K at
100 GPa, to be compared with the extrapolated Tmel range of
4357−4451 K from the Ferreira−Lobo data.
Gal and Friedlander459 assumed that solid rare gases are

quasi-harmonic Debye solids, for which in combination with
the Lindemann−Gilvarry rule the melting temperature is given
by Tmel = CV2/3θD2 with C a material dependent constant.
Using the Grüneisen parameter γ = −∂lnθD/∂lnV and V0/V =
ρ/ρ0, where V0 and ρ0 are a reference volume and density,
respectively, integration leads to

=T T( ) exp (2 2/3) dmel mel,0
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where Tmel,0 is the melting temperature at the reference
density. The assumption γ = γ0(ρ0/ρ)q, with q = 1 and γ0 the γ-
value at ambient conditions, leads to

= [ [ ]T T( ) ( / ) exp 2 1 ( / )mel mel,0 0
2/3

0 0 (98)

This expression states that if ρ(P), Tmel,0, and γ0 are known,
the melting curve Tmel(P) can be determined assuming that the
relation between P and ρ is known. For this relation the
authors used what they called the “well accepted” expression:

= + [ + ]

+

P V T P T T E C

C T

( , ) ( / )
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0 ele ,ele 0
1/2 2

(99)

where Pcold is the cold pressure, CV,lat is the lattice specific heat
above the ambient temperature T0, CV,ele is the electronic
specific heat, Elat is the lattice energy at T0, and γlat and γele are
the lattice and electronic Grüneisen parameters, respectively.
Here Pcold is the pressure applied at room temperature, while
the other terms represent the thermal pressure to reach Tmel.
For ρ(Pcold), one uses, e.g., the Murnaghan, Birch−Murnaghan,
or Vinet equation from which values for the bulk modulus K0
and its pressure derivative K0′ at room temperature can be
obtained. However, the fitted values are nonunique and
depend on the EoS used, thereby explaining the often rather
widely varying results by different authors.
Using this approach and demanding that bulk modulus

parameters will simultaneously fit the equations of state and
the melting curves of solid rare gases, the authors obtained for
He, Ne, Ar, Xe, and Kr values for K0 typically a factor of 3
higher and values for K0′ generally a factor of 2 lower than the
literature data. Unfortunately, the best fit obtained depends on
the EoS used, which varies with the type of compound. While
for Ne and Kr the Murnaghan expression provided the best fit,
for Ar it was the Birch−Murnaghan expression, and for Xe it
was the Vinet expression.
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Further, these authors discussed the solid-state phase
transformation for the rare gas solids. With increasing pressure,
He, Ar, Xe, and Kr exhibit a discontinuous crystallographic
phase transformation from FCC to HCP structures at about
10, 20, 25, and 20 GPa, respectively, with Ne being an
exception maintaining the FCC phase up to 208 GPa. For Ar,
Kr, and Xe the explanation for this transformation relates to
the difference in electronic structure from that of Ne, as the
energy band gap of the latter between the filled 2p-valence
states and the 3d-conduction state is large. This difference is
also probably the cause why the principle of corresponding
states (PoCS) based on data for Ne is not obeyed for Kr and
Xe for pressures above about 30 and 20 GPa, respectively.
Such an explanation was also already advanced by Boehler et
al.,445 but they include Ar as well for P > 40 GPa. In the latter
case different experimental data were included, however. For
He the melting curve shows unexpected linear behavior up to
at least ∼100 GPa, which could be explained by van der Waals
attraction in balance with the Coulomb repulsion. However,
such an argument neglects the 1s2 electrons, which partially
penetrate the nucleus and are affected by the increasing
pressure. The authors suggest that this is perhaps the reason
why solid He under extreme pressures will not exhibit the
insulator-to-metal transition.
The effect of pressure on the atomic mean square

displacement, extended X-ray absorption fine structure
(EXAFS) Debye−Waller factor, and Tmel of solid krypton
were investigated in within the statistical moment method
scheme in quantum statistical mechanics. The statistical
moment technique essentially expands the potential in terms
of the displacements uj to fourth order which in combination
with force balance results in a differential equation for the first
moment of the displacement y(T) = ⟨uj⟩p,460−462 which reads
γθ2 d2y/dp2 + 3γθy dy/dp + αy + γθ(X − 1)/α − p = 0. Here θ
= kT, x = ℏω/2θ, and X = x coth x; p is a supplementary force
acting on the zeroth central atom in the lattice due to the
thermal lattice vibration effects, α is the harmonic, and γ is the
anharmonic force constant. The solution of this differential
equation provides the average atomic displacement y(T) =
y0(T) + A1p + A2p2, where the functions y0, A1, and A2 are
somewhat long expressions given in detail by the authors,
which take into account the anharmonicity effects of thermal
lattice vibrations at temperature T.463,464 The average nearest-
neighbor distance between two atoms at temperature T can be
calculated from r(T) = r0 + y0(T), where r0 is the value of the
nearest-neighbor distance at 0 K. In combination with a
modified Lindemann rule,465 this approach yields a relatively
simple method for qualitatively calculating the high-pressure
melting temperature. By assuming that the interaction between
the Kr atoms can be described by the Buckingham potential,
numerical calculations for Kr up to pressure 120 GPa were
done. The calculations show that the atomic mean square
displacement and EXAFS Debye−Waller factor of Kr crystal
depend strongly on pressure and the results are in reasonable
agreements with available experimental data.
For molecular compounds two calculational papers follow

the interstitial approach, as commented on by Tozzini et al.136

(section 5.5). First, some further calculational results on
NaNO3 were given by Akdeniz and Tosi,

466,467 indicating that
increasing n lowers both transition temperatures. For NaNO3
the number of orientations n = 4, and taking Tcri/Tmel ≅ 0.95
from experiment, they obtained z′ε′/zε ≅ 0.55. At such values
of the reorientation energy barrier, the two disordering

transitions are very close to each other, and the authors
expected that orientational disordering strongly influences the
melting process.
Second, Matthai et al.468 attempted to explain the melting

behavior of AX4 compounds like GeI4, SnI4, and CCl4. Their
model is based on experiments that indicate that structural
disorder in GeI4 sets in at about 12 GPa, accompanied by a
molecular association process,469 on experiments that show for
SnI4 that a crystal to amorphous transition takes place at about
8 GPa470 accompanied by a drastic reduction in its resistivity
and (for both GeI4 and SnI4) suggesting metallization under
high pressure with the SnI4 molecules forming dimers.

471 Both
the Simon−Glatzel and Kechin equations (section 7.1) can
describe this transition well up to about 2.5 GPa. For pressures
above this critical pressure, the data are not well described by
either of these equations. A significant finding was the
existence of two liquid states with the transition between the
two characterized by a change in the density.470 In the
structural model for the AX4 molecular solids under pressure
proposed, there is a breakdown of the structural order with
increasing pressure, as observed by Fujii et al.470 and consistent
with data on CCl4.

472 As the pressure is increased further, the
X−X bonds between adjacent AX4 molecules become stronger
and the amorphous structure comprises disordered AX4
molecules in equilibrium with polymer chains. As the pressure
is increased still further, the ratio of polymer chains to the free
molecules increases until all the isolated molecules become
polymerized. The solid−liquid transition on increasing
temperature results in two liquid phases differentiated by
density. At low pressures well below the amorphous transition
pressure, melting is from a crystalline phase, as described by
the Simon−Glatzel or Kechin equation. At higher pressures,
the solid becomes a polymeric solid which transforms to liquid
at roughly the same temperature, independent of pressure, and
Tmel is determined solely by the energy required to break the
interpolymer bonds. As this energy is independent of P, it
results in a flattening of the melting curve. The polymerized
liquid state is of higher density than the monomeric liquid
state, while the polymerization results in increased electrical
conductivity.
The behavior of SnI4 was examined experimentally by

Fuchizaki473 as well, showing that the low-pressure crystalline
phase of SnI4 has a rising melting curve that breaks abruptly
around 1.5 GPa, beyond which it becomes almost flat, with a
slight maximum at about 3 GPa. The Kraut−Kennedy
relationship,378 stating on an empirical basis that Tmel of a
substance is proportional to Δ0V/V0 at room temperature,
where Δ0V = V0 − V with V measured along the room
temperature isotherm, appears to be valid in the low-pressure
region where the melting curve is rising. Similarly, the
Magalinskii−Zubov relationship474 appears to be valid in the
low-pressure region where the melting curve is rising. This
criterion states that V of a substance along a solidus is
proportional to ln(Tmel) and is derived from a generalized
melting law using constant excess entropy along the melting
line and assuming that the excess internal energy of the solid is
constant along the solidus. Their breakdown at larger pressures
suggests, according to the author, a qualitative change in the
intermolecular interaction upon compression, thereby making
the melting behavior unusual.
In relation to “Lindemann−Gilvarry−Grüneisen-type” mod-

els, it may be useful to refer to a possible redefinition of the
mode Grüneisen parameter for polyatomic substances by
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Hofmeister and Mao.475 The authors pointed out that the
thermally average mode Grüneisen parameter ⟨γj⟩ = −⟨∂lnνj/
∂lnV⟩ = (KT/νj)(∂νj/∂V) is up to 25% lower that the
thermodynamic parameter γth = αKTV/CV. For example, for
γ-Mg2SiO4, the IR modes give ⟨γj⟩ = 0.96,476 which is
substantially lower than γth = 1.25 as calculated from
thermodynamic data.477 The longitudinal acoustic (LA) and
transverse acoustic (TA) modes have associated Grüneisen
parameters given by

= = + +
+

= = +
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K G
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(100)

and the average γac = (γLA + 2γTA)/3 can be defined. In a
rigorous determination, the average should include both
acoustic and optic modes and be averaged over the complete
Brillouin zone, but the acoustic modes do not contribute to the
zone center sum. Because of the limited availability of
dispersion data for more complex solids, the Grüneisen
parameters of the acoustic modes, which can be calculated
using the Debye model, have been postulated to represent the
thermodynamic average.478 In the Debye model the acoustic
modes are used to represent all vibrational energy. The mode
Grüneisen parameters of longitudinal acoustic modes for many
solids resemble γth, whereas the Grüneisen parameters of the
transverse acoustic modes do much less so. This departure of
γac from γth was attributed to failure of the Debye model for
some classes of solids.478 In the literature the failure of the
Debye model for γ-Mg2SiO4 has further been attributed to
discrepancies between the averages of γj and γth,477 which,
however, cannot be true because the calculation for the optic
modes is unrelated to the Debye model. Instead, in its simplest
form the optic modes are represented by an Einstein-type
dispersion-free model, that, at least for γ-Mg2SiO4, appeared to
be insensitive to slightly different weighing. The authors
realized that discrepancies arose because −∂lnvj/∂lnV does not
account for differential compression in structures with
functional groups. Consequently, they redefined −∂lnvj/∂lnV
by −∂lnvj/∂lnVa, = (KX/νj)(∂νj/∂Va), where where KX is the
bulk modulus associated with the volume vibrating Va. For
monatomic solids and many structures with two types of
atoms, KX = KT, but for many of the optic modes in polyatomic
structures, KX will be a polyhedral bulk modulus: Va/[dVa/
dP].479 From an extensive survey of minerals, the authors
showed that ⟨γj⟩ ≅ γth and concluded that the volume of the
vibrating unit is relevant to the mode Grüneisen parameter,
and not the volume of the whole crystal, as also supported by
approximate rough agreement with γLA. Close correspondence
is not expected anyway because the Debye model is not
rigorous.
For somewhat larger molecules various nonintrinsic factors

usually influence the melting behavior significantly. For
example, sugar crystals480 show melting that often occurs at
low temperatures with time- and temperature-dependent
characteristics, which can be accounted for by the presence
of impurities and defects. Sugar crystals also contain non-
crystalline regions that may undergo decomposition and
subsequent dissolution at the decomposition interface and
acceleration of decomposition reactions. Such processes with
melting establish a supersaturated condition for the remaining
crystals, leading to a time-dependent melting point depression

and subsequent melting of the remaining crystals. Decom-
position of sugars as well as dissolution and melting of sugar
crystals are separate phenomena, although they are commonly
found to coincide. Decomposition of sugars requires the
presence and mobility of molecules for reactions outside the
crystal lattice, i.e., the molecular mobility of amorphous or
molten regions is a prerequisite for decomposition, whereas
melting of sugar crystals occurs as a separate thermodynamic
process with no chemical change of the molecules.
8.2. Inorganic Solids
For melting of inorganic solids the use of empirical pair
potentials has been pursued for over a century.481 Frequently
the Born−Lande ́ potential ϕ = A/r + B(r0/r)n or the Born−
Mayer potential ϕ = A/r + B exp[−(r − r0)/ρ] is used, often
extended with van der Waals terms C/r6 and D/r8 (Born−
Mayer−Huggins) and sometimes with three-body interactions.
As this is a one-phase approach, it must be augmented with a
melting criterion. As mentioned already, often the Ross
criterion assumes a constant configuration along the binodal,
or equivalently, assumes a constant scaled excess Helmholtz
energy F. This is expressed by

= [ ]

= * =

f T V F T V F T V U V RT

f const

( , ) ( , ) ( , ) ( ) /sca S S ide S 0 S

sca (101)

where Fide is the perfect gas Helmholtz energy and U0 is the
potential energy of the static lattice. Another criterion is a
constant configurational entropy S along the melting curve, as
assumed by Stishov13 and Magalinskii and Zubov,474 and
expressed by

= [ ]
= = * =

s T V S T V S T V R

F F R T s const
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sca S S ide S

ide sca (102)

Such constancy was proposed by Stishov482 and discussed
by Tallon.483 Still another criterion is assuming a constant
potential energy U given by

= [ ] = * =u T V U T V U V RT u const( , ) ( , ) ( ) /sca S S 0 S sca
(103)

Clearly, the relation fsca = ssca + usca holds.
An elaborate attempt along these lines was made by

Soulayman484,485 for several halides using the formalism by
Zubov486 for describing strong anharmonic monatomic
crystals, each ion of a crystal being described by its one-
particle probability density, distinct from those of the other
atoms. In thermodynamic equilibrium, the spatial parts of the
one-particle functions obey a set of nonlinear integral
equations487 that must be solved numerically. Born−Mayer−
Huggins potentials with parameters as given in the literature,
and extended by three-body interactions,488,489 were used. The
contributions to the Helmholtz energy F were taken to be a
harmonic term F0, a perturbation theory based anharmonic
term F1, and a first-order quantum correction term FQ.
Alkali halides (KCl, KBr, KI, RbCl, RbBr, Rbl, and CsCl)

have two crystalline modifications: a low-pressure structure
(NaCl structure) and a high-pressure one (CsCl structure).
Some alkali halides change their structures at relatively low
pressures, for example, KCl at about 20 kbar. Others, like NaCl
and CsCl, do not show a transformation up to 100 kbar. To
assess the configuration, entropy, and energy criteria, the
equilibrium nearest-neighbor distance a for the crystalline
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phase versus the experimental (Tmel)exp at the experimental
melting pressure (Pmel)exp was obtained numerically by solving
the pressure equation P = −(a/3V)(∂F/∂a)T along the
experimental melting curve in relation to the volume V of
the crystalline phase. The equation for P has two real roots:
a1(Tmel,Pmel) < a2(Tmel,Pmel). The lower root represents the
stable thermodynamic solution, (∂V1/∂P)T < 0, while the
upper root represents the unstable one, (∂V2/∂P)T > 0. To
obtain these roots, the equations for the chemical potentials
μ1(T,P) = μ2(T,P) and pressures P1 = −(a1/3V1)(∂F1/∂a1)T
and P2 = −(a2/3V2)(∂F2/∂a2)T were solved numerically at T =
298 K, taking the stability criteria (∂2F1/∂a12)T > 0 and (∂2F2/
∂a22)T > 0 into account. The V(P) curves calculated up to 100
kbar showed excellent agreement with the experimental data,
available up to about 45 kbar, including the phase trans-
formation for KCl at about 20 kbar, in agreement with
experimental data. For both NaCl and CsCl no phase
transformation resulted. As Wallat and Holder490 concluded
that the experimental data on phase transitions demand larger
values of the potentials than the traditional sets and Shanker
and Agrawal491 indicated the significant role of van der Waals
potentials in studying the structural phase transitions of ionic
crystals, the van der Waals interactions were included using the
London−Margenau formulation.492 The Pmel(Tmel) melting
curves, which were calculated without three-body interaction
for CsCl using the energy criterion, showed excellent
agreement with the experimental data, while the configuration
and entropy criteria agreed much less. Accordingly, for NaCl,
NaBr, NaI, and KCl the melting curves were calculated with
the energy criterion, which all showed excellent agreement
with the experimental data.
Another approach is using the EoS, as done by Shanker et

al.493 Expanding the lattice potential U to third order in the
volume expansion x = V − V0 with V0 the volume at the
reference temperature T0 = 300 K, and using the pressure
equation P = −dU/dV + ΔPthe with ΔPthe the vibrational
energy, the thermal EoS

= [ +
+
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V
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1 1 (2/ )( 1)
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was derived. Here K0 and K0′ are the bulk modulus KT and its
pressure derivative dKT/dP at T = T0 and P = 0. This
expression shows good agreement with experimental data for
some minerals494 and alkali halides.495 For ΔPthe > K0/2(K0′ +
1), eq 104 yields imaginary values and the corresponding
temperature is interpreted as the melting temperature Tm0 at P
= 0. Anderson478 has shown that above the Debye temperature
θD the approximation ΔPthe = C(T − T0) with C = αKT holds
good. Moreover, it was shown that for higher pressures ΔPthe
in eq 104 should be replaced by ΔPthe − P,495 leading to ΔPthe
= P + K0/2(K0′ + 1). Alternatively, it was assumed that V/V0
can be calculated from KP = KT(P,T0) and KP′ = dKT(P,T0)/dP
instead of K0 and K0′. Combining these results, one obtains,
respectively
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The values for C for NaCl, KCl, MgO and CaO appeared to
agree with the experimental data given by Anderson.478 While
eq 105-1 predicts a much faster increase than experimental
data indicate, eq 105-2 yields satisfactory results. In particular
for NaCl for which the linear dependence on pressure is quite
small, Tmel = 1329 K at ΔV/V0 = 0.04 and Tmel = 1983 K at
ΔV/V0 = 0.12, to be compared with the experimental values
extracted from the data by Anderson, 1300 and 1950 K,
respectively. Finally, for NaCl the ratio ΔV/V0 ≅ 15% at Tmel,
consistent with results from simulation studies and empirical
potentials.
Using the relation between temperature and thermal

pressure, Wang et al.496 developed a simple model to estimate
Tmel. The pressure P(V,T) can be divided in a static part,
P(V,0), and a thermal part, Pthe, and assuming that αKT =
const., the increase in thermal pressure ΔPthe can be calculated
from

= =P P P T K V T T( ) ( , ) d
T

T

Tthe the the 0
0 (106)

or, assuming that Pthe is independent of V, as made plausible by
Anderson,478 that ΔPthe = αKT(T − T0), where the overbar
denotes the average over the range, and, hence, Tmel = ΔPthe/
αKT + T. For ΔPthe the expression, as given by Anderson,478

was used.
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Because LiF remains in the B1 (NaCl) structure up to at
least 100 GPa, this material provides a nice test over a wide
pressure range without a phase transformation interfering. The
calculated result for Tmel shows excellent agreement with the
experimental data (Figure 21a). Also shown is the Lindemann
extrapolation based on low-pressure data, Slater’s Grüneisen
parameter, and the assumption γ0ρ0 = γρ, showing that only
below about 25 GPa the experimental data are reasonably
described, albeit with a curvature less than that for the
experimental data. Results for FeO and CaMg2Si2O6 were also
calculated, but these compounds show a phase transformation
at, respectively, 20 and 18 GPa. Below these pressures, Tmel is
predicted correctly as well.
Based on lattice potential calculations using the Born−

Lande ́ and Born−Mayer potentials with parameters derived by
Smith and Cain500 using Hildebrand’s EoS P = −dΦ/dV +
αTKT and ultrasonic data for thermoelastic properties,
Chauhan and Singh501 calculated values for the interionic
distances rmel at the melting temperature Tmel for 16 alkali
halides. This distance is given by rmel = (rinf + rinf′)/2, where rinf
is the distance for the inflection point of the potential curve ϕ
and rinf′ is the distance corresponding to ϕ(rinf′) = ϕ(rinf). For
the Born−Lande ́ and Born−Mayer potential the values for rinf
are given by
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respectively, with M = 1.7476 the Madelung constant for
NaCl- or B1-type crystals and e the unit charge, while the
values for rinf′ are obtained from solving ϕ(rinf′) = ϕ(rinf).
Another way to determine rmel was the use of the Anderson
expression α = α0[1 − α0δT(T − T0)]−1,

478 valid for T > θD.
Assuming that αKT = const. leads to (α/α0) = (V/V0)δT = (r/
r0)3δT, so that the interionic separation is

= [ ]r T r T T( ) 1 ( )T0 0 0
1/3 T (109)

which was shown to hold good for alkali halides502 close to
Tmel. The correspondence between these two estimates is
excellent. For the Born−Lande ́ potential rmel,A = cBLrmel,BL with
cBL = 1.0033 and R2 = 0.999977, while for the Born−Mayer
potential cBM = 1.0006 and R2 = 0.999978 (calculated from the
data). The largest deviation occurs for LiF, for which θD = 751
K is much higher than room temperature and therefore the
assumptions used do not hold well. With the Hildebrand EoS,
written for P = 0 as dΦ/dV = 6r2αTKT, the Born−Lande ́ and
Born−Mayer potentials at T = Tmel with r = rmel are
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respectively. The assumption αKT = const. appeared to be
fulfilled reasonably well with (αKT)BL = cBL(αKT)RT, where cBL
= 1.1563 and R2 = 0.9898 for the Born−Lande ́ potential and
cBM = 1.1428 and R2 = 0.9887 for the Born−Mayer potential
(calculated from the data).
Chauhan et al.503 compared the derivative Tmel

−1(dTmel/dP)
as calculated from the differential Lindemann−Gilvarry model
and Stacey−Davis model, given by
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respectively, where the symbols have their usual meaning, for
the same 16 alkali halides minus LiI and LiBr. This led to a
poor correlation for both: [Tmel

−1(dTmel/dP)]LG =
cLG[Tmel

−1(dTmel/dP)]exp with cLG = 1.4277 and R2 = 0.9253
for the Lindemann−Gilvarry model and cSD = 0.9726 and R2 =
0.9439 for the Stacey−Davis model (calculated from the data).
Using q = (∂lnγ/∂lnV)T, Nie504 used q = q0ηn, where η = V/

V0,, and obtained γ = γ0 exp[q0(ηn − 1)/n]. From data for
NaCl at 300 K (up to 3 GPa), 550 K (up to 1 GPa), and 800 K
(up to 1 GPa), he obtained n = 1, but as indicated in
parentheses for relatively low P. Kumar et al.505 pointed out
that the expression for γ does not satisfy the boundary
condition for P → ∞. They modified the γ expression by
inserting the high-pressure limit γ∞ = γ0 exp(−q0/n) with the
γ∞ estimate γ∞ = (1/2)K∞′ − 1/6,398,400 where K∞′ = (∂KT/
∂P)T = 5/3 is used with as result that γ∞ = 3/2. This replaces
q0/n by ln(γ0/γ∞), and this expression described the
experimental volume dependence of γ down to η = 0.64 for
NaCl well (as well as for Fe down η = 0.60).
Sheelendra and Vijay506 also studied the EoS, thermoelastic

properties, and melting behavior of NaCl at high temperatures
and high pressures, but used somewhat more acceptable
expressions for γ. From the Lindemann−Gilvarry differential
rule, d ln Tmel/d ln V = −2(γmel − 1/3), in combination with

= + ( ) n
0 (112-1)
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due to refs 507 and 508, respectively, and where η = V/V0, the
authors obtained by integration
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Here n is a constant (n = 2.47 for eq 112-1 and n = 2.0 for
eq 112-2 in the case of NaCl), the subscripts “0” and “∞”
represent the values at zero pressure and in the limit of infinite
pressure, respectively, and λ∞ = (K∞′)−1[KK′/(1 − (K′P/
K)]∞ + K∞′. The latter parameter follows from Stacey’s
reciprocal K′ EoS.401 The calculated results for both equations
are close, but they underestimate Tmel for P ≲ 11 GPa and
overestimate Tmel for P ≳ 11 GPa.

Figure 21. (a) The melting curve of LiF according to Wang et al.496

(dotted line) in comparison with experimental results of Boehler et
al.497 (◇) and Jackson498 (■), as well as the prediction by the
Lindemann rule. Reproduced with permission from ref 496.
Copyright 2001 Elsevier. (b) The melting curve of LiF according to
Nghia et al.499 (eq 8), the Lindemann extrapolation (eq 4), and two
experimental and two calculational results. Reproduced with
permission from ref 499. Copyright 2020 Elsevier.
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Similarly, Nghia et al.499 studied LiF using also the
Lindemann−Gilvarry formulation, but in combination with γ
= −(1/2)(d ln μ/d ln V) − 1/6, as given by Burakowsky et
al.,509 and γ/γ0 = ηn, with again η = V/V0 and n > 0 a
parameter. Integration leads to

= [ ]T T n/ exp 2 (1 )/n
mel mel,0

2/3
0 (114)

Using n = 0.842 as obtained by Liu et al.510 by fitting
experimental shock wave data, this expression underestimated
Tmel,exp (Figure 21b). The experimental data are quite well
described by the Simon−Glatzel equation in the form Tmel =
Tmel,0[1 − (P/a)]b, with a = 1.2306 and b = 0.2384, in the
available range of 0−100 GPa. For LiF, ab initio path integral
MC and DFT MD calculations by Driver and Militzer511

yielded a more close agreement with experiment but still
underestimate Tmel typically by some 50−100 K. Comparing
Figure 21a with Figure 21b, one notices a rather different
prediction based on the same premises (Lindemann rule +
Slater’s γ + γ/γ0 relation). For binary oxides calculations similar
to those by Nghia et al.499 have been done, e.g., for MgO,512

combining d ln Tmel/d ln V = 2(1/3 − γ) with eq 112-2,
resulting in good agreement of Tmel(P) up to 50 GPa with
experimental data using n = 2.2.
For binary oxides also simulation studies for high pressures

have been done, such as for MgO513 using density DFT
calculations in the LDA in combination with thermodynamic
integration, for CaO514 using shell-model MD calculations
with Born−Mayer−Huggins potentials employing thermal
instability analysis. Also, for more complex oxides studies
have been made, e.g., for pyrope (Mg3Al2Si3O12)

515 using the
Hartmann EoS,516,517 as often used for polymers.

8.3. Metallic Solids
As for most materials, various approaches have been used for
metals. Most of the studies on individual metals deal with
pressure dependence. In Table 5 studies for several metals are
enumerated, briefly indicating the method used, just to show
the variety of methods used, while Parisiades518 reviewed the
melting curves of transition metals at high pressure using static
compression techniques. Hence, we limit the discussion to
papers that illustrate the different approaches followed. We first
discuss equation of state models and thereafter theoretical
models and simulations.
8.3.1. Equation of State Models. An early somewhat

general discussion on alkali metals was given by Makarenko et
al.519 The authors emphasized the similarities between rare gas
solids and the alkali metals, although for the metals the “rule”
ΔS ≅ const. for P→∞ is approximately obeyed but the “rule”
ΔV/VS = const. for P → ∞ is not, while for the rare gas solids
both are approximately fulfilled.
For Na, Hieu520 presented an analysis for volume and

pressure effects on thermodynamic quantities including the
Grüneisen parameter and Tmel of up to 65 GPa. Combining the
result of Burakovsky et al.,521 γ = 1/2 + γ1η2/3 + γ2ηq with γ1, γ2,
and q constants and q > 1, and the differential Lindemann−
Gilvarry criterion d ln Tmel/d ln V = 2(1/3 − γ) leads upon
integration to

= [ + ]T T q/ exp 6 (1 ) 2 (1 )/q
mel 0

1/3
1

1/3
2

(115)

where η = V/V0 and T0 (V0) is the ambient temperature
(volume). The constants γ1, γ2, and q were fitted to the Tmel(η)
data by Boehler543 up to 3 GPa, which led to γ1 = 0.4801, γ2 =
0.2291, and q = 13.7253. For transforming the pressure data,
Vinet’s EoS P = 3K0η−2/3(1 − η) exp[3(K0′ − 1)(1 − η1/3)/2]
(ref 410, section 7.2) with K0 the bulk modulus and K0′ = dK0/

Table 5. Some Studies on Metalsa

metal method P-range (GPa) ref

Al L + Debye + αKT = const. 77 522
Al, Cu, Ni DFT + quasi-harm. lattice dynamics ∼100 523
Al, Ni, Pt simple model + thermal pressure eq. 120 524
Au laser-heated DAC + synchrotron XRD 110 525
Cd DAC + in situ XRD 10 526
Cd, In, Sn, Th, U L + γ(P) + third-order Birch−Murnaghan EoS 140
Co, Cr, Mo, Ni, Ta, Ti, V laser-heated DAC 100 527
Cu EAM potential MD 200 339
Cu L + γ(P) 100 528
Cu, Mn, Ni, Pd, Pt L + statistical moment method 140 465
Cu, Fe, Ni theoretical using other data 529
Cu, Ni, Pd, Pt DAC (Cu, Ni) 60, (Pd, Pt) 30 530
Cu, Ni, Pd, Pt L + γ(V) 70 531
Cu, Ni laser-heated DAC Cu 96, Ni 60 532
Fe L + γ(P) 350 528
Fe L + moment exp of anharm. Helmholtz energy 350 533
Fe statistical moment method 360 534
Fe in situ XRD + nuclear reson. inelastic X-ray scatter. 171 535
Na L + γ(P) 65 536
Na ab initio MD 120 537
Mo laser-heated DAC + synchrotron radiat. ∼100 538
Mo, Ta theoretical using other exptl data 100 539
Nb, Ta, V ab initio electronic calc. 100 540
Ni, Pd, Pt L + statistical moment method + defects 100 541, 542

aL = Lindemann; DAC = diamond anvil cell.
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dP was used employing K0 = 5.35 GPa and K0′ = 5.0 as taken
from the literature. Up to 30 GPa the final expression matches
the experimental data well but is incapable of showing the
maximum in Tmel at about 35 GPa and its decrease with
increasing pressure thereafter. The experimental data for Na
were fitted by Arafin and Singh418 yielding Tmel(P) = 417.6186
+ 33.5913P − 0.5883P2 + 0.002511P3, which exhibits a
maximum Tmel ≅ 976 K at P ≅ 38 GPa. Hieu and Ha544 also
studied Ag, Au, and Cu along the same line as for Na with also
reasonable agreement as a result.
Sheelendra and Vijay531 used in their study on Cu, Ni, Pd,

and Pt the same approach as in their study on NaCl,506 based
on the differential Lindemann−Gilvarry differential expression
dlnTmel/dlnV = −2(γmel − 1/3) in combination with eqs 112-1
and 112-2, from which for q they calculated
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while for λ they calculated
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At P = P0, q0 = 1 and V = V0 and eq 116-1 yields n = γ0/(γ0
− γ∞). For this condition q = n(1 − γ∞γ−1). This expression
predicts correctly that q∞ → 0 for γ → γ∞ when P → ∞. For
the same conditions eq 117-1 results in λγ = λ∞γ∞ = const., so
that λ increases with P since γ decreases with P. This is,
however, in contradiction with thermodynamic constraints
(section 7.1) and the authors conclude that eq 112-1 is not
physically acceptable. Similarly, eq 116-2 predicts for P = P0
that n = γ∞/(γ0 − γ∞) and q = n(γγ∞−1 − 1), consistent with
q∞ → 0 for γ → γ∞. Equation 117-2 results in λ/γ = λ∞/γ∞ =
const., which is acceptable. From eqs 112-1 and 112-2, eqs 113-
1 and 113-2 follow.545 Both eqs 113-1 and 113-2 were used to

predict Tmel. As for NaCl, these two equations yielded very
similar results. While for Ni the calculation overestimates the
melting curve, for Cu, Pd, and Pt it underestimates it as
compared with the experimental data from Errandonea.530,546

Cu, Mn, Ni, Pd, and Pt were also studied by Hieu et al.465 by
the statistical moment technique (see section 8.1) in
combination with the Lindemann rule, the latter three metals
also with defect-containing structures.541,542 Like for Kr, the
results for the metals mentioned up to 100 GPa are in
reasonable agreement with available experimental data.
Ross et al.529 used for Ni, Cu, and Fe a model based on the

inverse power law ϕ = B/rn. This allows the excess Helmholtz
energy FE and all the thermodynamic properties to be
expressed as a function of the scaled inverse temperature Γ
= βBan, where β = 1/RT, n0 is the atom number density, and a
is the Wigner−Seitz radius as calculated from 4πa3n0/3 = 1.
The Helmholtz energy FE contains the lattice energy E and the
thermal contribution FX for both the solid (X = S) and liquid
(X = L), given for the inverse power law in ref 547. The value n
= 9 was chosen for all three metals. According to the authors,
the rather large difference in the Cu and Ni melting curves
observed can be thought of as a consequence of “withdrawing”
an electron from the filled Cu d shell, to “create” Ni, which
now has a partially filled d shell with the capacity to form
locally preferred structures in the liquid. They further remark
that the presence of low melting slopes has been proposed to
be due to the presence of local structures in the melt (refs 548
and 549 based on ref 550; see also ref 375). An icosahedron,
made up of four-atom tetrahedra, has a lower energy per atom
and is denser packed than BCC or FCC and HCP structures
for clusters of up to several hundred atoms. Although it is
impossible to create a crystal with icosahedral symmetry,
randomly packed clusters with icosahedral short-range order
(CISRO), or polytetrahedra of varying sizes, may evolve
continuously and be interconnected throughout the liquid.
Since icosahedral structures in a liquid are well matched to the
5-fold symmetry of d-electron bonding and they are in effect
impurities in the liquid, they are very likely to influence
transition metal melting. While for Cu the effect of clusters is
limited, for Ni it appeared to be considerable (Figure 22a).
Their model including clusters described the experimental data
well, while simulations did not. The reason for the failure of
the EAM simulations to agree with the Ni diamond anvil cell
(DAC) measurements is that the EAM potential does not

Figure 22. (a) The melting curve of Ni according to Ross et al.529 (dotted line) in comparison with simulation results (Model w) as well as their
prediction without clusters (Model wo). Reproduced with permission from ref 529. Copyright 2007 American Physical Society. (b) The melting
curve of Ni according to Wang et al.524 (eq 8), the Lindemann extrapolation (eq 4), and two experimental and two calculational results.
Reproduced with permission from ref 524. Copyright 2001 Elsevier.
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include the strong directional bonding arising from an
incomplete d-electron valence band and, thereby, lacks the
capacity to form chemically preferred structures.
Wang et al.524 also studied Ni using their thermal pressure

model as used for inorganics.496 Ni was chosen for the same
reason as LiF, namely that it has a stable FCC lattice up to at
least 100 GPa without interference of a phase transformation
(ref 551, but easier, ref 552). The calculated results agree
excellently with the experimental data (Figure 22b). Estimates
based on the Lindemann rule in combination with Slater’s
expression for γ and the assumption γ0ρ0 = γρ are unable to
describe the data, except below 10 GPa, even if the expression
γ/γ0 = (V/V0)n with n > 0 a parameter is used.
As a last example of an EoS approach, we refer to the model

of Goyal and Gupta.553,554 Their EoS is given by

= +P V T K K K( , ) ( 1) (1/2) ( 1)( 1)0 0
1

0 0
1 2

(118)

where η = V/V0, K0 = −V(∂P/∂V)T, and K0′ = ∂(K0/∂P)T and
the subscript “0” indicates that the values are calculated at P =
0, while T0 denotes room temperature. This equation can be
easily inverted555 and yields imaginary values for η above a
certain temperature, which is identified as Tmel. Further,
P(V,T0) can be replaced by P(V,T) − Pthe, where the thermal
pressure Pthe is calculated from Pthe = ∫ Td0

T αK dT with as usual α
the thermal expansivity. Assuming constant αK values, Pthe =
αK(T − T0) so that for P = 0 the result is Pthe = α0K0(T − T0).
Combining this leads to Tmel,0 − T0 = K0/2α0K0(K0′ − 1), but
to obtain Tmel at pressure P, K0 and K0′ must be replaced by K
and K′ and thus Tmel,P − T0 = K/2αK(K′ − 1). The relation
between Tmel,P and Tmel,0 consequently becomes
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after using the relation αKV = α0K0V0 which follows from the
constancy of αK.556 The basic EoS uses only K0, K0′, and Tmel,0
as input and results in K∞′ = 2. It thus satisfies Stacey’s
criterion of K∞′ > 5/3. Data for Cu, Au, Ag, Zn, Cd, In, and Pb
were calculated and compared with experimental data up to
∼12 GPa, mainly from Errandonea.557 The calculated values
for Cu overestimate Tmel as compared with experimental data
above ∼4 GPa558,559, those for Au, Ag, and Cd overestimate
Tmel over the whole range, and those for Pb overestimate Tmel
above ∼8 GPa. While the data for Zn agree with experiment
over the whole range, for In Tmel is underestimated over the
whole range. The agreement with results of other calculations
is variable.
8.3.2. Theoretical Models and Simulations. Sushko et

al.560 attempted to reconcile the often-observed discrepancies
between the results of MD calculations using EAM potentials
and experimental data. They indicated that the long-range
interaction notably influences the melting behavior, and a
modification of the force field to weaken these interactions
beyond the equilibrium distance was proposed. Using a
modified potential, MD calculations were done for Ti, Mg,
Au, and Pt for clusters of 300−80 000 atoms without periodic
boundary conditions. The authors claim that their modified
potential has a general nature that can be applied to other
metals as well.

The melting curve as calculated with density functional
theory using generalized gradient corrections was discussed by
Alfe ̀ et al.561 for Al in the pressure range 0−150 GPa and for Fe
in the pressure range 50−350 GPa. The melting curve agreed
quite well with the shock wave data of Brown and McQueen562

and the point obtained from the measurements of Nguyen and
Holmes.563 It also agreed with the low-pressure DAC
experiments of Shen et al.,564 but a considerable discrepancy
with the DAC data reported by Boehler565 existed.
Binary FCC and BCC alloys were treated using lattice

dynamics in combination with the Lindemann rule by Hung et
al.,566 content-wise reproduced in ref 567. The lattice
dynamical expression for the Debye−Waller factor W for a
binary alloy with s atoms of type 1 (mass m1) and p − s atoms
of type 2 (mass m2) in the high-temperature approximation T
≫ θD, given for the reciprocal lattice vector q by eq 120 was
used.
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Combining the mean square displacement ∑q|u̅q|2 = p−2[s +
(p − s)m]2|u̅1q|2, where u2q = mu1q and m = m1/m2, with the
mean thermal energy ⟨E⟩ = ∑n,k,qmkωk

2|Unkq|2, where ωk is the
circular frequency and Unkq is the amplitude of the modes k, q
for cell n of the N cells in total, results for a nearest-neighbor
distance d in the relative mean amplitude
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Inverting, meanwhile using the abbreviation χ = Rm
2kθD2d2/ℏ2,

where Rm
2 = (Nd2)−1∑n|U2n|2, results in

= [ + ]T sm p s m pm( ) /9mel 2 1 (122)

If x represents the mass fraction of atom type 1, s = px/[sm1
+ (p − s)m2] and the average of the parameter m yields m̅ =
[s(m2/m1) + (p− s)(m1/m2)]/p. This equation can be solved
by iteration using the expression for s, which leads to first order
to
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and to be used in the expression for Tmel. For χ the average χ =
[sχ11/2 + (p − s)χ21/2]2/p2 was used with as boundary
conditions χ2 = 9Tmel2/m2 for s = 0 and χ1 = 9Tmel1/m1 for s =
p. From dTmel/dx = 0, the melting point was calculated for
Cs1−xRbx and Cu1−xAux and found to be in reasonable
agreement with experiment. Also, the eutectic composition
was in good agreement with the experimental one. The results
for the continuously increasing, respectively, decreasing
melting points of the systems Cu1−xNix and Cr1−xCsx are
well described. The approach was extended to HCP crystals by
Toan et al.,568 and results for Cd1−xZnx, Zn1−xTlx, Cd1−xTix,
and Co1−xZnx showed equally good agreement with experi-
ment. This is all probably not unexpected as the pure metal
melting points were used as calibration points and the change
of Tmel with composition is largely controlled by the mixing

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.3c00489
Chem. Rev. 2023, 123, 13713−13795

13761

pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.3c00489?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


process, usually reasonably well described by a simple mixing
rule.
Binary alloys have been dealt with in MD simulations as

well. A good example is the paper by Akbarzadeh and
Abbaspour569 where the effect of pressure P, size, and mole
fraction on the melting of (Ir−Pt)N clusters with N = 32, 108,
and 256 was studied. While for the Ir mole fraction xIr = 0, 0.1,
0.3, 0.5, 0.7, 0.9, and 1 was taken, the pressure was varied
between 0 and 90 kbar, for which the Lindemann ratio ξ,
enthalpy change ΔmH, volume change ΔmV, radial distribution
function (RDF), and self-diffusion coefficient D were assessed.
Apart from the expected effect that Tmel increases with P, Tmel
also increases with increasing xIr and size. The enthalpy change
of fusion ΔmH decreases with increasing P, while ΔmV
decreases with increasing P and ΔmV for the smaller cluster is
larger than for the larger cluster. The volume change ΔmV
decreases with increasing xIr, which was attributed to the
greater Ir−Ir interaction than the Rh−Rh interaction. Finally,
with increasing P and increasing xIr, the RDF peaks become
more pronounced, both probably expected.
Rather complex single crystal and polycrystalline (Nb, Mo,

Ta, W, V) high-entropy alloys have been discussed in the
framework of MD simulations using a second NN modified
EAM potential by Ju et al.570 For the single crystal, the density
profile displayed an abrupt drop from 11.25 to 11.00 g cm−3 at
T = 2910−2940 K, indicating all atoms show a significant local
structural rearrangement. For the polycrystalline material, a
two-stage melting process was found. In the first melting stage,
melting of the grain boundary regions occurs at a premelting
temperature lower than the corresponding system melting
point. At the premelting temperature, most grain boundary
atoms have sufficient kinetic energy to leave their equilibrium
positions and then gradually induce a rearrangement of grain
atoms close to the grain boundary. In the second melting stage
at Tmel, most grain atoms have enough kinetic energy to
rearrange, resulting in chemical short-range order changes of
all atom pairs.
An issue in general with melting simulations of clusters and

nanoparticles is the problem of correctly identifying the
equilibrium structure at the solid state. While in an infinite
crystal it is usually known what the equilibrium lattice is, in a
finite object this is not the case, since many different structures
are in competition and starting from a nonequilibrium
structure may cause artifacts. Moreover, it should be noted
that evidence for vacancies in simulations of nanoparticles and
clusters is meager (except for the very stable vacancies in the
central part of icosahedra), as it is for bulk simulations, which
is probably related to their relatively large activation energies.

Bulk simulations with a free surface can, dependent on the
surface, show in some cases no roughening or premelting,
while in other cases surface roughening or premelting does
occur. In both roughening and premelting vacancies are
involved. Anyway, this brief discussion and the data in Table 5
clearly illustrate the myriad of methods that have been applied
to deal with Tmel for metals.
8.4. Polymeric Solids

So far, we have largely discussed melting of small molecule or
monomeric compounds. Polymers generally do not completely
crystallize, and their melting behavior is more complicated
than that of low molar mass compounds. However, for
polymers single-chain single crystals do exist and such crystals
melt by simple consecutive detachment of chain segments
from the crystalline substrate and their diffusion into the melt.
Complications in the melting process occur for a semicrystal-
line polymer where chains are shared between different
crystals. The distribution of entanglements is highly heteroge-
neous as the entanglements are mostly confined to the
amorphous regions, whereas the crystalline regions are devoid
of them. This will influence the process of detachment from
the surface. Experimentally, a clear distinction in different
melting processes can be observed by considering the
differences in the activation energies required for the
consecutive detachment of chain segments or of segments
having topological constraints. The consecutive detachment of
free chain segments starts at the melting temperature predicted
from the Gibbs−Thomson equation, whereas higher temper-
ature or time is required if the chain has to overcome the
constraints.571 Usually, the heterogeneous distribution of
entanglements is lost on melting, and the entanglements are
uniformly distributed along the chain, characterized by the
molar mass between entanglements. With increasing molar
mass M, the number of entanglements increases, and the melt
viscosity follows the relationship η0 ∼ M3.4. However, for
polymers with a low number of entanglements per unit volume
the melting kinetics strongly influence the resulting melt
state.572 On slow heating a long-lived heterogeneous melt state
can be generated that shows a long-lasting low plateau
modulus, high crystallization rate, and enhanced solid-state
drawability. An early review on these aspects was given by
Baur,573 while the influence of an amorphous component on
the melting of semicrystalline polymers was discussed by
Pandey et al.574

As usual, the equilibrium melting temperature is determined
by the balance of enthalpy and entropy. For example, for
polyethylene ΔmelH = 4.142 kJ mol−1 and ΔmelS = 9.9 J K−1
mol−1, resulting in Tmel = 145.5 °C. Similarly, for poly(1,4-cis-

Figure 23. Polymer melting. (a) The Hoffman−Lauritzen model. (b) Melting temperature Tmel versus crystallization temperature Tcry for poly(DL-
propylene oxide) with the equilibrium melting temperature Tmel

∞. Reproduced with permission from ref 577. Copyright 2011 Taylor & Francis.
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isoprene) ΔmelH = 4.393 kJ mol−1, ΔmelS = 14.2 J K−1 mol−1,
and Tmel = 35.5 °C.575 Peculiar to polymers is that their
melting and crystallization temperatures are not the same. The
melting point Tmel observed is always larger than the
crystallization temperature Tcry and a plot of Tmel versus Tcry
is usually rather straight. However, generally a melting
trajectory is present, and the melting temperature depends
on the crystallization temperature used before and on the
heating rate q*. Nevertheless, the concept of equilibrium
temperature Tmel

∞ is introduced representing the melting
temperature of an infinite crystal.
Although devised for crystallization, the most often used

model is that of Hoffman and Lauritzen,576 which builds on
the nucleation model for small molecules. It covers several
aspects of melting, and therefore we discuss it briefly. An
embryo is supposed to have a cylinder-like shape, which grows
to a platelet shape with thickness d and to which monomers
with cross section ab add (Figure 23a). They are supposed to
do that with an area ad parallel to the lateral surface of the
platelet and fold sequentially over the lateral surface of the
platelet having a surface energy γlat. The surface energy of the
planar surface of the platelet, the fold plane, is γfold. The change
in surface Gibbs energy is then given by ΔsurGn = 2bdγlat +
2nabγfold, where n is the number of strands. The change in bulk
Gibbs energy is ΔcryGn = −nabdΔfusG, where ΔfusG is
estimated from ΔfusG = ΔfusH − Tmel

∞ΔfusS. If ΔfusS is not
very temperature dependent, ΔfusG = ΔfusH − TΔfusH/Tmel

∞,
and introducing the undercooling ΔT = Tmel

∞ − T, the result
is ΔfusG = ΔTΔfusH/Tmel

∞. At given n, the expression for ΔGn
= ΔcryGn + ΔsurGn shows that it is maximal when d is small and
decreases as d increases. The equilibrium value d° is obtained
at ΔGn = 0. Normally n is large, the term 2bdγlat in ΔsurGn can
be neglected, and combining ΔGn with ΔfusG yields d° ≅
2γfoldTmel

∞/ΔTΔfusH. This is, although a simplified model,
indeed the experimentally observed proportionality.
The intercept between the melting and crystallization curves

is taken as Tmel
∞ (Figure 23b). Upon forming a platelet with

width x and length y, the change in surface energy is ΔsurG =
2(x + y)dγlat + 2xyγfold, while the change in bulk energy is
ΔvolG = 2xydΔfusG and thus the overall change ΔG =
2xydΔfusG − 2(x + y)dγlat − 2xyγfold ≅ 2xydΔfusG − 2xyγfold.
In equilibrium ΔG = 0, therefore Tmel = Tmel

∞ − 2γfoldTmel
∞/

dΔfusH and the melting temperature of a finite size crystal is
always less that for an infinite crystal Tmel

∞. If the relation
between Tmel and d can be determined experimentally, a fit
provides Tmel

∞ and γfold if ΔfusH is known from, for example,
calorimetry. Upon annealing just below Tmel so that sufficient
mobility is present, the polymers relax due a decrease in ΔsurG,
resulting in an increase in thickness d and decrease in area xy.
Upon melting, solidification, and remelting, Tmel thus increases.
It also explains the dependence of Tmel on the heating rate q*
as q* codetermines the amount of relaxation that can take
place.
Various factors determine the Tmel of a polymer. Most

important is the chemical structure. We mention a few factors.
First is the stiffness of the chains. Groups such −O−, −O−
O−, and −CO−O− increase the flexibility and lead to a lower
Tmel, while phenyl groups in the main chain decrease the
flexibility and lead to a higher Tmel. Second, the presence of
polar groups such as amide groups −CONH− allows
intermolecular hydrogen bonding, thereby increasing Tmel.
The third factor is the presence of side groups. For example,
polypropylene, which can be considered as ethylene with

regular CH3 side groups, has a reduced chain flexibility as
compared to polyethylene and has a higher Tmel. Bulky side
groups will do the same, but long and flexible side groups
generally reduce Tmel. Also, the amount of branching is
important as more side chains and chain ends reduce the
packing density, thereby lowering Tmel. The melting point thus
can be manipulated significantly, but these changes also
influence the glass transition temperature, which in its turn
might influence crystallization.
Experimentally the melting behavior of polymers is often

studied by thermal methods. The insights that can obtained by
scanning calorimetry have been reviewed by Toda et al.578 and
Furushima et al.,579 while the combination with time-resolved
X-ray scattering has been discussed by Melnikov et al.580

The study of melting of the prototype polymer polyethylene
has a long history. An early report by Weeks581 discussed the
effect of time on the melting temperature and change of
lamellar thickness for bulk polyethylene. By interpreting the
melting points as characteristic of a given lamellar thickness, he
concluded that the thickness of crystals of appreciable age
increased linearly with the logarithm of their time of existence.
In blends this thickening is slowed down as shown, e.g., by
Barreiro et al.582 Another early report is by Fatou and
Mandelkern583 dealing with molecular weights ranging from 3
× 103 to 1.5 × 106. Above 5 × 103 the density decreases
monotonically, while the XRD patterns broaden and a halo
appears, which was interpreted in terms of the chain length
relative to the crystal size and the amorphous regions occurring
for larger molecular weight. The melting temperature showed
the asymptotic value of 138.5 °C, which was explained, over
the complete range, by assuming crystallite sizes in the chain
direction comparable to those of the nuclei from which they
are formed. In later reports Mandelkern et al.584,585 reported
on both the experimental and theoretical difficulties encoun-
tered when determining the equilibrium melting temperature
of a long chain molecule and indicated a higher asymptotic
value of about 146 °C, as analyzed using the theory of Flory
and Vrij.586 Derivatives of polyethylene have been studied in
detail as well, e.g., isotactic polypropylene by Yamada et
al.587,588 and syndiotactic polypropylene by De Rosa et al.589

For other polymers, even for relatively simple ones from a
chemical point of view, the equilibrium temperatures are
usually less clear due to dispersity and stereoirregularity. Such
studies often result in approximate equilibrium temperatures,
e.g., in the study by Okeda et al.590 for aliphatic polyesters such
as poly(dodecamethylene dodecanedioate) and poly-
(tetradecamethylene tetradecanedioate). An overview of the
thermodynamic factors that govern the melting behavior of
crystalline homopolymers has been given by Mandelkern and
Alamo.591 For polymers the size of the crystallites in relation to
the (extended) chain length is important as well, and a study
by Metatla et al.592 indicated that the surface energy of various
nanocrystals was widely different for various experimental
systems, thereby demonstrating the significance of the
environment on thermal properties of nanocrystals.
In all these studies the dispersity and stereoregularity of the

samples is crucial, and a somewhat extreme example showing
this clearly can be found in a study by Miao et al.593 These
authors studied the melting of high-density polyethylene
crystals deposited on ultra-high-molecular-weight polyethylene
fibers, which showed double melting peaks. By partial melting
experiments they ascribed this to the bilayer components
existing in the induced crystals, comprising an inner layer of
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more regularly folded chain crystals induced by the fibers and
an outer a layer formed in the inner one with a lower ordered
crystal structure.
An aspect for polymer melting that is not present for small

molecular mass molecules is the possible presence of a
mesomorphic phase, i.e., a state of matter intermediate
between solid and liquid. In particular Strobl advocated this
aspect for the understanding of crystallization, the detailed
arguments being provided in his reviews.594,595 If true, this
clearly implies varying melting temperatures, dependent on the
conditions used. It seems that not many attempts to use the
theory have been published, but for poly(ε-caprolactone)
Sheth596 did so. The lamellar crystal thickness as a function of
T was consistent with both the Hoffman−Lauritzen and Strobl
models. However, in contrast to the predictions of Strobl’s
model, the value of the mesomorph-to-crystal equilibrium
transition temperature was very close to the zero-growth
temperature. Moreover, the lateral block sizes (obtained from
wide-angle X-ray diffraction) and the lamellar thicknesses were
not found to be controlled by the mesomorph-to-crystal
equilibrium transition temperature. Hence, Sheth concluded
that the crystallization of poly(ε-caprolactone) is not mediated
by a mesophase.
Notwithstanding the extra difficulties encountered when

simulating long-chain molecules as compared to low molecular
weight materials, many simulation papers on polymers
appeared, often using a coarse-grained united atom model in
some sense. An example is the paper by Iyer,597 who used
Langevin dynamics simulations. They showed that melting of
single crystals occurs via a globular metastable state, followed
by an expansion to a more random coil-like state. Multichain
crystals, however, showed a two-step mechanism where a long-
living partially molten metastable state is formed followed by
the second step where chains are peeled off form the crystalline
core to a free state. Ramos et al.598 provided a review on
predicting experimental results including the melting point for
polyethylene by computer simulation.

9. OTHER ASPECTS
Some materials show deviations from the general behavior.
Here we discuss two such deviations: first, a puzzle for almost
130 years on two different melts from the same solid and,
second, the odd−even effect for chain molecules. Thereafter
we discuss ultrafast experimental methods. In section 10, a few
other approaches are indicated.

9.1. History-Dependent Melting

Although most small molecule compounds do show a clear-cut
melting point, there are exceptions. Acetaldehyde phenyl-
hydrazone (APH, C8H10N2), first prepared by Fischer in 1877,
seemed to have two distinct forms with melting points 56 and
98 °C. The low melting solid can be converted to the high
melting form by slurrying in weakly alkaline solution or by
allowing ammonia vapor to permeate the solid for a few
minutes. Conversely, the high melting solid can be converted
to the low melting solid by slurrying in a weakly acid solution
or by treatment with acidic vapors. Intrigued by the possible
structural differences and reasons for the sensitivity to trace
acid or base exposure, Bernades et al.599 investigated this
phenomenon with diffraction, IR, DSC, NMR, calorimetry,
microscopy, and simulations. All samples had identical IR and
solid-state NMR spectra and identical crystal structures, but
they exhibited sharp melting points varying from 56 to 101 °C.
NMR studies of the melts provided the key to understanding
this behavior: differently melting samples did so because they
initially melted to liquids with different proportions of the Z
and E isomers, although given enough time they all tended to
the same equilibrium proportion. It might be useful to recall
that E isomers have the substituents preferably on the opposite
sides of a double bond, while Z isomers have them preferably
on the same side. The letter E stems from “entgegen”
(German, meaning “opposite”) and the letter Z stems from
“zusammen” (German, meaning “together”). For relatively
simple compounds E means a trans isomer and Z means a cis
isomer, but for more complex compounds the E−Z
designation is more refined. Anyway, the thermodynamic
equilibrium state for the melt of APH is one with an isomer
ratio E/Z = 1.7, while that for the solid state corresponds to a
pure Z compound. For instantaneous isomerization in the
melt, the melting temperature should be found at the
thermodynamic melting temperature, but for a relatively slow
isomerization, it will result in a long(er) lifetime of the
metastable melt. This isomerization process is catalyzed by
traces of acid or base as usual. Therefore, in polymorphism
different structures melt to the same liquid, but in this case, the
same structure melts to different metastable liquids.
9.2. The Odd−Even Effect

Several molecules do show the odd−even effect, n-alkanes
(CnH2n+2) being a well-known example.

600 The melting points
of n-alkanes show a zigzag pattern rather than a monotonic
trend as a function of the number of carbon atoms (Figure

Figure 24. Odd−even effect. (a) Melting point and boiling of the first few alkanes. (b) Density and viscosity of the same first few alkanes.
Reproduced with permission from ref 604. Copyright 2016 John Wiley & Sons.
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24a). This odd−even effect also holds for most of the α- and
α,ω-substituents,601−603 with the latter showing a larger
effect.601 The effect becomes more significant for short chains:
the shorter the chain length, the larger the difference in melting
points between two n-alkanes differing in length by one carbon
atom. Other physical properties, such as sublimation enthalpy,
solubility, and modulus, display a similar odd−even
effect.601−603 Although the odd−even effect was discovered
about 150 years ago,600 its molecular origin was revealed only
relatively recently by Boese et al.603 by using controlled crystal
growth and single-crystal diffraction to solve the crystal
structures of several n-alkanes.
Kitaigorodskii605 considered the packing of such molecules

purely geometrically but indicated that the interaction
potential would play a role. From the study by Boese et al. it
appeared that the intermolecular distances between the CH3
end groups are responsible for the alternation in the densities
and melting points. The even-numbered n-alkanes have
optimal intermolecular contacts at both ends, whereas the
odd ones possess this optimum only at one end, while at the
other end their distances are larger. This leads to a less dense
packing for the odd n-alkanes, and their densities are lower
with relatively lower melting points as a result. The effect
diminishes with increasing chain length because the van der
Waals attraction becomes dominating.
Broadhurst606 also studied long alkanes (14 paraffins, n =

44−100) and showed that the melting point can be described
well by Tmel = Tmel°[(n + a)/(n + b)], where Tmel° = 141.1 °C,
a = −1.5, and b = 5.0. Associated thermodynamical data as well
as some refinements are available as well.607 Structure studies
on n-alkyl carboxylic acids (n = 6−16)608 showed that
molecules form hydrogen-bonded dimers arranged into
bilayers with a rectangular packing arrangement in the plane
perpendicular to the dimer long axes. In all structures the
carboxyl groups are identically disposed and the packing
density within bilayers is comparable so that the alternating
crystal density can be attributed solely to alternating packing
density between bilayers. The odd−even effect has also been
observed for adsorbed layers.609,610

In contrast, the boiling points of n-alkanes increase
monotonically as a function of the molecular weight (Figure
24a), thus suggesting that the odd−even effect does not exist
in the liquid state. Yang et al.604 showed, possibly somewhat
surprisingly, that the odd−even effect also exists in the liquid
state for the translational diffusivity. They used quasi-elastic
neutron scattering experiments to measure the relaxation
dynamics of the liquid n-alkanes. It appeared that odd-
numbered n-alkanes exhibit up to 30 times slower dynamics
than even-numbered n-alkanes near their respective melting
points. Hence, an odd−even effect does exist in the liquid state
(Figure 24b). The effect is more prominent in dynamic
quantities than in thermodynamic quantities, and the authors
suggest that mechanisms other than periodic packing should be
scrutinized to gain a more thorough understanding. Further,
they speculate that because the symmetries of odd and even n-
alkane molecules in an all-trans configuration are different,
although this is not the favorable configuration in the liquid
state, an extra CH3 group switches the structural symmetry of
neighboring n-alkanes and thus affects the local packing
structures of the n-alkane molecules. The effect should thus
diminish with increasing temperature.

9.3. Ultrafast Experimental Methods
Although this paper is focusing on models, we cannot avoid
discussing at least briefly some experimental results using
nonconventional methods. Usually, experimental studies of
melting comprise calorimetry and/or microscopy and physical
property measurements in some form. Such methods use
normal heating rates. Developments since about 2003 in
ultrafast heating using laser pulses combined with ultrafast
electron diffraction have led to some further insights in the
melting process, with experiments mostly done on thin films.
For conditions far from equilibrium (hot electrons and still
cold lattice), they offer a unique opportunity to get a better
understanding of the electron−ion interplay. For covalent
materials, electronically driven phase transitions were reported,
also referred to as nonthermal melting. This mechanism occurs
when the laser-induced electronic excitation rearranges the
positions of the ions in a liquid-like disordered configuration
before the lattice reaches the melting temperature, i.e., to
changes in the potential-energy landscape of the lattice by the
excited electrons.611 In metals, a thermal process, which results
from a rise of the lattice temperature above the material’s
melting point, is generally considered to be driven by the
progressive energy transfer from the electrons to the lattice.612

Typically, films with a thickness smaller than the range of the
ballistic energy transport by the excited electrons (e.g., ∼100
nm for Au) are used, so a uniform electron temperature
distribution throughout the film thickness is established before
any substantial lattice heating, rendering the interpretation of
the experimental observations more straightforward.
Possibly the first detailed investigation using these methods

is by Siwick et al.,613 providing full experimental details in ref
614. These authors used 600 fs laser pulses to study the
structural evolution for 20 ± 2 nm thick Al samples as they
were subjected to an excitation fluence of 70 mJ cm−2 by 120 fs
near-infrared (775 nm) laser pulses. As configured for these
experiments, the detector collected scattering vectors s up to a
magnitude of s = 2 sin(θ)/λ = 1.35 Å−1, encompassing the first
10 rings of the powder diffraction pattern of Al. The loss of
long-range order that was present in the FCC crystalline phase
and the emergence of the liquid structure where only short-
range atomic correlations are present with only a single broad
diffraction ring were complete within 3.5 ps. This time scale is
primarily determined by the magnitude of the electron−
phonon coupling constant in Al and makes electronically
driven disordering unlikely. Considering the fast electron
redistribution times in metals and the thermalization rate of
the hot electron energy redistribution into lattice phonons, the
Al lattice is expected to achieve the melting point temperature
Tmel = 933 K within 750 fs after excitation under the strongly
driven conditions of the experiment. This corresponds to a
heating rate of more than 800 K ps−1. By 1.5 ps, the projected
lattice temperature T1 is 1400 K (Tl/Tmel ≅ 1.5), which
suggests significant superheating during the phase transition.
The direct correlation function h(r) = g(r) − 1, describing the
deviation in atomic density from the average value as a
function of the radial distance r from an atomic origin, was
calculated at various time delays after the excitation pulse. The
positions of the first three coordination shells after 6 ps [r1 =
2.85 ± 0.05 Å, r2 = 4.9 ± 0.1 Å, and r3 = 7.6 ± 0.1 Å] are in
approximate agreement with values obtained from X-ray
diffraction studies of liquid Al (r1 = 2.9 ± 0.1 Å, r2 = 5.2 ±
0.1 Å, and r3 = 7.6 ± 0.1 Å).615 All peaks shift slightly to larger
distance between 6 and 50 ps, suggesting that the liquid
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structure has not fully equilibrated within 6 ps. The first
coordination number N1 just before the phase transition (−1
ps) appeared to be N1 = 12.2 ± 0.3, within error equal to the
expected number for an FCC lattice. The loss of lattice
structure and the subsequent atomic rearrangements reduce N1
to 10.0 ± 0.3 at 6 ps with no observable change on longer time
scales. The time development of h(r) is shown in Figure 25.
Overall, the authors conclude that the transformation is a
thermal process, contrary to an earlier conclusion that the
transformation is a nonthermal process, based on permittivity
measurements at 800 nm reaching the value for liquid Al after
500 fs.616

The former conclusion was confirmed by Kandyla et
al.,617,618 who measured the reflectivity of Al during the
laser-induced solid-to-liquid phase transition over the wave-
length range from 350 to 730 nm with a time resolution of 65
fs. These authors showed that, at all excitation intensities over
the entire range of wavelengths used, it took 1.5−2 ps for the
transition to be complete, so the phase transition in optically
excited Al is thermal and mediated by heat transferred from the
excited electronic population to the lattice through electron−
phonon interactions.
A more recent study by Meng et al.619 on Al films with a

thickness of 133.4 nm irradiated by the femtosecond laser with
200 fs duration and 150 J m−2 absorbed fluence showed that
the melting process goes through two stages: first, a rapid
melting stage dominated by homogeneous melting within the
first 2 ps, followed by a slow melting stage dominated by
heterogeneous melting within 20 ps. The molten aluminum
gradually develops an interface between the liquid zone and
the melting zone, after 20 ps a clear interface between the
liquid zone and the melting zone. Simulations with an
optimized embedded atom method (EAM) potential showed
that the size of the two melting zones can be controlled by the
electron−phonon coupling factor and electron thermal
conductivity.
The authors suggest that for the fast processes involved it

seems feasible to control the melting phenomenon by adjusting
the laser parameters and then changing the material properties,
which might help to improve the quality of additive
manufacturing, controllable surface modification processing,

and the control of the phase change process and morphology
under laser processing.
Apart from ultrafast electron diffraction, also other methods

have been used. Jourdain et al.620 used time-resolved XANES
experiments to study the phase transition dynamics in
femtosecond laser heated Cu with samples of 80 ± 5 nm
thickness deposited on 0.9 μm of Mylar. Exploiting features
associated with van Hove singularities in the electron structure,
the loss of the lattice periodicity was observed in the
picosecond or even subpicosecond time scale, in the range of
specific energy density from 1 to 5 MJ kg−1. The overall
observations were fairly well reproduced by a two-temperature
model�a model that employs a lattice temperature Tlat and an
electronic temperature Tele

621�provided that Tele-dependent
coefficients are considered622 and assuming that the melting
occurs when the ion temperature exceeds the melting
temperature.
Modeling on superheating has been done as well. Hwang

and Levitas623 used a multiphysics model that includes the
phase field model for surface melting, a dynamic equation of
motion, a mechanical model for stress and strain simulations,
interface and surface stresses, and a thermal conduction model
including thermoelastic and thermophase transformation
coupling as well as a transformation dissipation rate. As the
external surface of metallic particles is usually covered by a thin
and strong oxide shell, which significantly affects superheating
and melting of particles, the effects of geometrical parameters
and heating rate on the characteristic melting and superheating
temperatures and melting behavior of Al nanoparticles covered
by an oxide shell were studied. The results showed that, for
heating rates of <109 K s−1, the melting temperatures (surface
and bulk start and finish melting temperatures, and maximum
superheating temperature) are independent of the heating rate.
For a heating rate of >1012 K s−1, in comparison with a bare
particle, the pressure generated in a core due to the different
thermal expansivities of the core and shell and volumetric
expansion during melting increases Tmel with 60 K GPa−1,
leading to an increase of these melting temperatures and the
temperature for shell fracture. For such rates, heterogeneity in
the temperature distribution results as well as wave
propagation within the core, which causes oscillation in

Figure 25. (a) The FCC structure of Al where atoms in the structure have been color coded such that each color represents a given distance from
the central black atom. (b) The time-dependent pair correlation function h(r) where the correspondence between the peaks in h(r) and the
interatomic spacings present in the FCC Al lattice are shown for the first four peaks by labeling with the same color as in (a). The peak at r = 1.8 Å
is due to data termination at smax ≅ 1.4 Å−1. Reproduced with permission from ref 614. Copyright 2004 Elsevier.
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pressure and temperature due to thermoelastic coupling,
although the effect on the melting temperatures and the
maximum attainable temperature of Al at the interface attained
before the fracture of the oxide shell appears to be relatively
small for the heating rates used.
Experiments on Au films with a relatively weak electron−

phonon coupling were done by Arefev et al.624 This leads to an
increased time scale of lattice heating and a separation of
nonthermal effects defined by the electronic excitation from
thermally driven atomic dynamics and phase transformations.
The authors also discussed the effect of the amount of
superheating, as this affects the melting time significantly. The
threshold energy density for complete melting εmel can be
evaluated by integration of the temperature-dependent heat
capacity cP(T) from 300 K to Tmel and addition of the enthalpy
of melting ΔmH. Consequently, the superheating energy
density ε is often expressed in terms of εmel. The following
discussion is largely taken from the corresponding one by
Arefev et al.624

Measurements performed for 20 nm Au films irradiated by
200 fs laser pulses ε = 1.5εmel and ε = 1.7εmel revealed a melting
process that starts at about 7 ps and takes approximately 3 ps
to complete.625 These results are consistent with a melting
time of about 7 ps reported for 35 nm Au film irradiated by a
90 fs laser pulse at ε = 1.8εmel.626 The melting time further
shortens as the deposited energy density increases by more
than an order of magnitude above εmel,627 where the
interpretation of the results involves a consideration of
transient bond hardening in Au under conditions of strong
electronic excitation as predicted by ab initio calculations.628

The decrease of the energy density down to the values
approaching εmel, on the other hand, leads to a gradual increase
in the melting time, e.g., up to ∼15 ps for a 10 nm Au film
irradiated by a 90 fs laser pulse at ε = 1.1εmel.626,629 Such
observations are consistent with the physical picture of
homogeneous melting proceeding through massive nucleation
and growth of liquid regions in a crystal superheated up to the
limit of thermodynamic stability of the crystal lattice (e.g., refs
39 and 340). Classical nucleation theory suggests that the
phase transformation should occur within ∼10 ps when the
temperature reaches the level of T* = 1.25Tmel, although the
above sketched picture is unlikely to remain valid at
temperatures approaching T*. Another mechanism of melting
is the heterogeneous nucleation of liquid at free surfaces of the
irradiated film followed by the propagation of the melting
fronts toward the center of the film. However, a quantitative
analysis of the kinetics of melting and the results of two-
temperature MD simulations626,629 suggest that, in the case of
ultrashort pulse laser interaction with thin Au films, the melting
front propagation becomes dominant only below the threshold
for complete melting, which was estimated as 1.29Tmel and
thus (a little bit) higher than T*. Also, the distance the melting
fronts can propagate during the short time the electron−
phonon coupling heats the film from Tmel to T* is far below
the thickness of the films used in the experiments. The two-
temperature MD simulations performed for 20 nm Au films
suggest that the homogeneous nucleation of liquid regions and
heterogeneous propagation of melting fronts from the free
surfaces make a comparable contribution just above the
threshold for complete melting, at the deposited energy density
of 1.02εmel.630 The melting proceeding through the prop-
agation of melting fronts alone, without the contribution of the
homogeneous nucleation, is only observed in simulations of

partial (incomplete) melting, at 0.84εmel for 20 nm Au films
and at 0.97εmel for a 10 nm film.
Experiments performed for single-crystal 35 nm Au films

irradiated by 130 fs laser pulses,612 however, are in sharp
contrast to the above computational predictions. These
experiments suggest a large increase in the melting time as
the deposited energy density decreases below 1.9εmel, which is
interpreted as an indication of the transition to the regime of
heterogeneous melting. At an energy density of 1.7εmel, the
presence of the diffraction peaks corresponding to the
crystalline Au is reported to persist up to 800 ps, and the
melting time exceeding 2 ns is reported for 1.5εmel. The
apparent disagreement of the above results with the results of
the two-temperature MD simulations, where the melting time
remains below 100 ps as the deposited energy density
decreases down to εmel, has been attributed to the inaccuracies
of interatomic potentials and overestimation of the strength of
the electron−phonon coupling.612,631
The aim of Arefev et al.624 was to check the hypothesis that

the discrepancy between the time of complete melting
observed in the experiments and that predicted in earlier
simulations can be eliminated by using an improved
interatomic potential and assuming a lower strength of the
electron−phonon coupling. However, their calculations
indicate that the long melting times in the vicinity of the
melting threshold and the contribution of the heterogeneous
melting inferred from the experiments cannot be reconciled
with the atomistic simulations by any reasonable variation of
the electron−phonon coupling parameter. Thus, the authors
suggest further coordinated experimental and theoretical
efforts aimed at addressing the mechanisms and kinetics of
laser-induced melting.
The field is active at present, and many other papers

appeared, e.g., the experimental ones by Gelisio et al.632 on 100
nm thickness Pt films and by Shin et al.633 on 100 nm Au
nanospheres covered by a 30 nm thick SiO2 shell. Also, many
modeling papers appeared, e.g., by Xiang et al.634 on modeling
for polycrystalline effects, by Wang et al.635 on hard sphere
crystals, and by Zier et al.636 on ab initio MD simulations of Si.
Forsblom and Grimvall,637 using atomistic simulations relevant
for Al, focused on atomistic details to show that the thermal
fluctuation initiating melting is an aggregate typically with six
to seven interstitials and three to four vacancies, a mechanism
differing from those that have traditionally been proposed. An
extensive review on ultrafast electron diffraction methods has
been presented by Filippetto et al.638

Overall, from these studies it has become clear that for
ultrafast heating experiments bulk or mechanical melting
prevails if the energy density ε supplied is larger than the
threshold energy density for complete melting εmel. Otherwise,
surface-mediated or thermodynamic melting occurs. Clearly,
such fast homogeneous melting is only possible for relatively
thin films and the critical thickness for this is determined by
the range of the ballistic energy transport by the excited
electrons, ∼100 nm for Au.639 Still, the effect of surface of
interface atoms may be substantial. For example, metals
typically have an exponential decaying “interphase” thickness
exp(−z/ξ) with a characteristic distance ξ of ∼1.5 monolayers
(∼0.6 nm, section 6.1). If the “interphase” effect is less than
10%, we require exp(−2.5), corresponding to 1.5 nm. For a 20
nm thick film of Al (metallic radius 0.143 nm), we thus have
3/20 of all atoms within the “interphase”.
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10. OTHER APPROACHES
Apart from the various mechanisms discussed, there are a few
other ways of dealing with melting, which we discuss here. We
start with other one-phase approaches and deal thereafter with
two-phase approaches.
10.1. Other One-Phase Approaches

In this category we discuss models based on lattice dynamics,
energy balance, and scaling, followed by various other models.
10.1.1. Lattice Dynamics Models. Many discussions

within the framework of one-phase approaches on the
contribution of thermal motion to the energetics relevant for
melting employ the Debye model in some way or another.
Lattice dynamics is in principle a better alternative with as the
most frequently form used the self-consistent phonon theory
(SCPT640,641) with the vibrational frequencies still determined
by harmonic force constants which are, however, taken as T-
and V-dependent. The reason to believe that SCPT can be
applied near Tmel is that the displacements u near Tmel are still
generally small, although this is disputed by some.241 However,
the resulting equations cannot be solved explicitly, and
therefore still often the Debye approximation ω = c0q leading
to a frequency spectrum ∼q2 is made. Doing so and assuming
that all sound velocities are given by c (and making a few other
approximations), Fukuyama and Platzman642 showed that for
cubic crystals this leads to T = mc02t exp(−12t) with t = T/
12mc2. The right-hand side shows a maximum, and because c2
> 0, this expression will have no solution if T > Tmel = mc02/
12e = 0.031mc02. This describes the overall physics of the
situation well: with increasing temperature, u increases, and the
potential softens in an exponential way so that c decreases,
which on its turn influences the potential, until a temperature
is reached where the potential runs away and transverse waves
cannot longer exist.
A much more elaborate analysis of SCPT was given in a very

clear presentation by Rastelli and Cappelluti643 spanning the
whole phase diagram versus V and P. They used the Einstein
approximation for the frequency spectrum and a double
Gaussian potential, one term representing repulsion and the
other representing attraction, to keep the analysis as far as
possible analytical. The Helmholtz energy F(V,T) was
calculated from the resulting partition function, as was the
pressure P = −(∂F/∂V)T so that the Gibbs energy G(P,T) =
F[T,V(T,P)] + PV(T,P) could be assessed. Two different kinds
of mechanisms were identified: one mainly relevant at constant
V, associated with the vanishing of the SCPT solution, and one
related to the disappearing at the spinodal temperature of the
solid phase as a metastable energy minimum. The authors
showed how the first mechanism occurs at extremely high
temperatures and it is not reflected in any singular behavior of
the thermodynamic properties. In contrast, the second one
appears at physical temperatures which correlate well with the
melting temperature, and it is signalized by the divergence of
the thermal compressibility and of the lattice expansion
coefficient. The authors suggested that inclusion of higher
order anharmonic terms and the development of models
beyond the Einstein approximation might further reduce TS
toward the empirical range for overheating Tmax ∼ 1.5Tmel.

340

10.1.2. Energy Balance Models. Another idea, namely
that melting is related to an energy balance without invoking
two phases as in thermodynamics, is essentially already
contained in the Lindemann approach. Vaidya119,644−646

postulated an energy balance principle, which claims that a

crystal is stable when a certain fraction f of the stability
interaction energy per atom Epot(T) is less than the vibrational
energy Evib(T), i.e., Evib(T) < f Epot(T). Here Epot(T) = (1/
2)∑l≠0⟨ϕ(r0 − rl)⟩ ≡ (1/2)∑l≠0⟨ϕl⟩ with ⟨ϕ(r)⟩ a thermally
averaged or effective pair potential over lattice sites l.
Therefore, although called energy, Epot(T) is essentially
Helmholtz energy. The fraction f is of the order of, but less
than, 1, as the transition is from the solid to the liquid state.
Clearly, as expected and explicitly shown by lattice calculations
in the self-consistent harmonic approximation (SCHA),640,641

⟨ϕ(r)⟩ decreases with increasing temperature. Calculations
were done for cubic monatomic lattices using for the
vibrational energy the high-temperature approximation
Evib(T) = 3kT to the Debye expression. The critical
temperature for the energy balance is thus TEB = f Epot(T)/
6k. This led to

= +T kT T( ) (0) 2.77(3 )(1 )
l

l l
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Ä
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ÅÅÅÅÅÅÅÅÅÅÅ
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with γ and α the Grüneisen parameter and thermal volumetric
expansivity. By taking the representative values αTmel ≅ 0.66 ×
10−2 and γ ≅ 1.6, the value 1/[2.77(1 + γαT)] = 0.326 was
obtained, while calculatiion of ∑l≠0⟨ϕl⟩ was done numerically
by taking the sum over all reciprocal lattice space, which led for
the rare gas solids to∑l≠0⟨ϕl(T)⟩/∑l≠0⟨ϕl(0)⟩ ≅ 0.6. Overall,
this means that 3kTmel = f·(1/2)∑l≠0⟨ϕ(Tmel)l⟩ with f ≅ 0.43.
Estimates using the LJ potentials, limited to second-nearest
neighbors only, yielded f Ne = 0.337, fAr = 0.429, f Kr = 0.430,
and f Xe = 0.321.
A comparable approach was presented by Doi and

Kamigaito647 for simple inorganic compounds. The authors
calculated the potential energy Φ by adding the ionic
(electrostatic) interaction, proportional to Cionr−1, and covalent
interaction, proportional to Ccovr−p, thereby neglecting the
repulsive interaction as that interaction is much smaller than
the other two. The exponent p was first considered as a
parameter that was fitted on the melting points of Si, Ge, and
C (taken at 1 GPa as diamond sublimes at normal pressure).
The resulting value p = 2.3 is consistent with the Phillips value
p = 2.5,648 obtained from grouping 80 AnB8−n compounds
rather accurately into 4-fold and 6-fold structure type
compounds by considering ionic and covalent contributions
to their average band gap energy. The latter value, considered
as being more “desirable”, was used further on. Thereafter the
melting points were calculated assuming that kTmel = ΔΦ,
where ΔΦ is the change in potential energy from T = 0 to T =
Tmel. Because the ionic positions at Tmel are generally
unknown, the values of Cion and Ccov were determined for a
series of similar compounds by fitting to the experimental Tmel
values. The fractions of the ionic and covalent contributions
were calculated with Pauling’s method649 as well as Sander-
son’s method650 for dealing with electronegativity. While both
the molecular and crystal parametrizations of Pauling yielded
(partially) negative and thus physically impossible Ccov values
for the alkali halides (minus the Li halides), Sanderson’s
parametrization resulted in reasonable values and were further
used. This resulted in an average absolute value |ΔTmel| = 20
°C for the alkali halides, if grouped according to their anions,
i.e., labeling them as fluorides, etc. When grouped according to
their cations, the calculations resulted in the comparable value
|ΔTmel| = 17 °C, but with larger Ccov values by a factor of about
5.7 and smaller Cion values by a factor of about 2.5, thereby
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suggesting that the nature of the anions is important in the
melting. Values for MO-type and M2O3-type oxides were
calculated as well but resulted generally in much larger |ΔTmel|
values, the reasons advanced being the presence of different
structures and nonstoichiometry.
Much later, Ma et al.651 presented a model based on what

they call the “force-heat equivalence energy density principle”,
for which they refer to a paper by Li et al.652 The latter authors
assumed, because breaking bonds between atoms of a material
involves either applying work or heat transfer, a kind of
equivalence between heat energy and strain energy to break
bonds with a constant maximum storage of energy that
includes both the strain and the corresponding equivalent heat
energy. It essentially states that the maximally stored energy
(i.e., the internal energy) E equals the sum of the strain energy
(i.e., the mechanical work supplied) Eσ and the “heat energy”
(i.e., the heat supplied) ET. Based upon this, a temperature-
dependent fracture strength model was developed for ultra-
high-temperature ceramics. This principle was claimed to be
used by Ma et al., but strangely they wrote En = αEKE + βEPE
with α and β called “equivalent” coefficients and n called an
“equivalent” index. Further, equipartition was assumed
resulting in WKE = WPE = 3/NAkT/2M with NA Avogadro’s
constant and M the molar mass. Identifying W with −∫ P dV
and inserting the Murnaghan equation P = (K0/K0′)[(v0/v) −
1], with K0, K0′, and v0 denoting the bulk modulus, its pressure
derivative, and the specific volume at P = 0, the sum α + β can
be determined. Finally inserting that result and the Murnaghan
equation in En = αEKE + βEPE results in an explicit expression
for Tmel, which upon fitting data for 10 metals as determined
by various other authors yielded n = 1/2. Using this fitted n-
value, one requires only K0 and K0′ to estimate the pressure
dependence of Tmel. For another 12 metals the calculated
results agree well with the experimental results. The statement
by the authors that the model does not include any adjustable
parameter is, however, misleading as introducing the n-value
was ad hoc, while its value was determined empirically.
After having briefly discussed the results of Ma et al.,651 we

note that the “force-heat equivalence energy density principle”
did not originate from Li et al.652 A rather similar approach in
connection with fracture was already used earlier by Ivanova
and Ragozin in 1965653,654 as well as by Cherepanov in
1979,655 the latter denoting it as the “method of thermal
transformation”, and applied since by others; see, e.g., ref 656.
Moreover, Vaidya644 postulated the energy balance principle in
1984.
Magomedov657 also used an energy based approach and

proposed a localization criterion for the S−L phase trans-
formation. Defining Edel as the energy of atom delocalization,
the transformation begins, according to this criterion, when the
Edel/kT ratio reaches a boundary value Edel(Tmel)/kTmel such
that a solid phase is present above it and a liquid phase is
present below it in a phase diagram. The author showed that
his criterion contains both the Lindemann criterion for melting
and the Löwen criterion658 for crystallization and can be
applied both to normally and anomalously melting solids.
10.1.3. Scaling. Another approach is based on scaling

considerations. Already indicated is the argument by Hoover
and Ross27,58 that, if repulsion dominates, a one-phase model
still might work, later described by Dyre659,660 as “hidden scale
invariance”. This approach was applied by Pedersen et al.4 in a
form for which properties of the coexisting crystal and liquid
phases at a single thermodynamic state point provide the basis

for calculating the ΔmelP(T), Δmel ρ(T), and Δmel S(T) along
the melting line using this scaling concept. The change of the
(reduced) Lindemann ratio (as well as the liquid’s diffusion
constant and viscosity) along the melting line could also be
calculated. The theory quantifies the deviations from predicted
hard sphere melting-line invariants and is validated by
simulations of the standard 12−6 LJ system. It is claimed
that the theory applies for the sizable class of systems
characterized by hidden scale invariance, but mechanisms are
not discussed.
In a related approach Khrapak et al.661 attempted to obtain a

universal melting curve by proper scaling for a wide range of
potentials. These authors used also as reference potential the
inverse power law U(r) = ε(σ/r)n with ε and σ as scaling
parameters for the energy and length, respectively, and n a
constant. From the work of Hoover et al.83 it is known that the
single parameter Γ = (T/ε)(Nσ3/V)n/3 for N particles in
volume V can describe inverse power liquids. However, the
authors used the parameter nΓ to characterize the force at the
mean interparticle distance Δ = (V/N)1/3. Further, for an
arbitrary potential U(r) they required that U″(r) = U′(r),
where U′ is the first derivative and U″ is the second derivative
with respect to distance r at r = Δ. This leads to a
(generalized) “softness parameter” s = [−1 − U″(Δ)Δ/
U′(Δ)]−1 and a (generalized) “interaction parameter” F =
−U′(Δ)Δ/T. Writing U(r) = εu(r/σ) and x = r/σ, the inverse
power law becomes u(r) = x−n. Similarly, they used the Yukawa
potential u(r) = x−1 exp(−x), the LJ potential u(r) = 4(x−12 −
x−6), the exp-6 potential, and the Gaussian form u(r) =
exp(−x2). It appeared that all data fall almost on a single curve,
labeled as the universal melting curve. Using FHS ≅ (ln 2/
s)(1.041)1/3s, describing the hard sphere limit, and FSS ≅
106s2/3, describing the soft sphere limit, the authors showed
that F = (FSS + FHS)1/ν as a function of s with ν = 8/5 can be
used as a reasonable interpolation formula over the whole
range of s (Figure 26). In the expression for F the hard sphere
diameter was approximated by exp[−εu(x)/T] with T the
temperature. In view of the “remarkably good job” done by this
expression, to quote the authors, they suggest that, although
this expression cannot replace a proper thermodynamic

Figure 26. Universal melting curve represented by F(s) with F the
interaction for softness parameter s. The symbols represent the
various numerical data, while the solid curve represents the fit.
Reproduced with permission from ref 661. Copyright 2011 AIP
Publishing.
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description, it can with little effort predict the melting
transitions for a wide range of conditions.
10.1.4. Density Functional Theory. The theoretical

approaches to bulk melting and freezing start from either the
liquid phase or the solid phase. Generally, if the liquid phase is
taken as a starting point, such an approach deals primarily with
freezing. Starting from the solid side, the focus is on melting or
freezing; see, e.g., refs 662 and 663. Combining aspects from
both the liquid and solid sides remains difficult.
A rather different way to discuss structures and dynamics of

liquids and solids is using DFT. Briefly, following the outline
by Löwen17 for simple systems, i.e., one-component systems
consisting of particles with mass m interacting via pairwise
forces derivable from a spherical symmetric potential V(r) and
where r denotes the mutual particle distance, the starting point
is a trial grand canonical energy functional Ωtri(T,μ,w) =
tr{w[H − μN + kT ln w]}. Here the trace “tr” indicates tr{·} =
(h3NN!)−1∫ (·) dr dp, dependent on the N coordinates r and
momenta p of the particles, μ is the chemical potential, and
w(r,p) is a distribution function. The Hamilton function
H(r,p) = Hkin + Hint + Hext =∑jpj

2/2m + (1/2)∑j≠lVint(rj − rl)
+ ∑jVext(rj) is representing the kinetic energy, the internal
interaction potential, and an external potential. In equilibrium
w is given by w0 = Ξ−1 exp[−β(H − μN)], where Ξ is the
grand canonical partition function. Gibbs−Bogoliubov can be
invoked to minimize via Ωtri(T,μ,w) − Ωtri(T,μ,w0) = kT tr(w
ln w) − tr(w ln w0) > 0.
For a fixed internal potential Vint(rj − rl), the distribution

function w0 is determined entirely by the external potential
Vext(r). One can show that Vext(r) is uniquely determined by
the equilibrium density ρ0(r). This implies that w0 is a
functional of ρ0(r), which we indicate by w0[ρ0]. It can be
proven that that any positive density ρ(r) can be viewed as an
equilibrium density for a system in a suitable external potential
Vext(r).

664 Consequently, the Helmholtz energy F(T,[ρ]) =
tr{w0[ρ](Hkin + Hint + kT ln w0[ρ])} is a well-defined
functional of ρ[r] so that one can construct another functional,
Ω(T,μ,[ρ]) = F(T,[ρ]) + ∫ ρVext(r)dr − μ∫ ρ(r)dr. If one takes
the latter at the equilibrium density, one obtains Ω(T,μ,
[ρ0(r)]) = Ω(T,μ). As the equilibrium density ρ0 minimizes
the functional Ω(T,μ,[ρ(r)]) to Ω(T,μ,[ρ0(r)]), one obtains
the functional derivative δΩ(T,μ,[ρ])/δρ|ρ=ρ d0

= 0. This
variational principle is used to optimize a density ρ having
some parameters and to estimate at the minimum Ω(T,μ,
[ρ(r)]). A full account of DFT is given in various papers by
Evans288,665,666 to which we refer for further details.
As for practical calculations, the functional is not known

exactly; one needs to use an approximate functional with an
educated guess for the density, which corresponds to an
experimentally realizable density. If two solutions with equal
grand canonical energy for a given T and μ result, this is
interpreted as the coexistence of the two realizable densities. In
this way, one obtains a mean-field-like solution which is useful
to study phase transitions, as one gets approximated Helmholtz
energies for the solid and liquid states that can be used to
construct the bulk phase diagram. Often used approximations
are the local density approximation (LDA), where the excess
energy over the ideal fluid result is taken to be local, and the
LDA plus a nonlocal mean field approximation where the
density is taken as quadratic. Such an approximation can be
used if the inhomogeneity is not too strong.

The first practical calculations were made by Ramakrishnan
and Yussouff,667 rapidly reformulated by Haymet and
Oxtoby.663 Thereafter better but more complicated functionals
were constructed in such a way that they reproduce the direct
correlation function for any density in the homogeneous limit.
In particular, a so-called weighted density approximation
(WDA) has been proposed by Tarazona668,669 and Curtin and
Ashcroft.289 The modified weighted density approximation is
computationally simpler than the original WDA but is not
applicable to interfacial situations. Thereafter many results
were obtained for HS, soft core, Yukawa, and LJ systems, early
reviews being refs 666 and 670. Application to the solid state
has been discussed by Lutsko and Schoonen.671

DFT was applied to interfacial systems as well. In relation to
interfaces the best procedure would be to calculate the density
profile and interfacial tension from a minimization of the
energy functional Ω(T,μ,[ρ]) using two coexisting phases.
However, this is still numerically challenging and therefore
approximations like the gradient expansion and (generalized)
Landau type models are used, forming a basis for the van der
Waals type models, which in the end are relatively simple.
Full interfacial DFT calculations can yield substantial

insights. For example, Ohnesorge et al.248 investigated by
WDA-DFT the equilibrium structure of planar crystal−fluid
interfaces in HS and LJ systems, the latter potential
approximated by two Yukawa potentials for numerical reasons.
The authors computed surface tensions as well as interfacial
density profiles and studied for various rare gas crystal
orientations the onset of surface melting. A comparison with
previous constrained variational calculations demonstrated that
unconstrained minimization of the energy functional is
indispensable to obtaining reliable values for the surface
tension.
In their work the interfaces between the fluid and the FCC

crystal for HSs were found to have a width of typically seven
hard sphere diameters, while for the surface tensions γ(100) =
0.35kT/σ2, γ(110) = 0.30kT/σ2, and γ(111) = 0.26kT/σ2
resulted, where σ is the diameter. For the interface between
a planar hard wall and the liquid or (111) solid, γcw(111) =
−2.80kT/σ2 and γfw = −2.50kT/σ2 were obtained, respectively
(for the negative sign, see ref 672), resulting in complete
wetting of the hard wall by the (111) surface.
For a LJ system the authors showed that the (111), (100),

and (110) FCC crystal−gas interface exhibited complete
surface melting near the triple point Ttri for different surface
orientations. The width of the interfacial quasi-liquid layer
depended significantly on temperature and surface orientation,
and lateral order in the (110) surface is strongly anisotropic. As
discussed, the melting process in thermal equilibrium starts
below Ttri by wetting the crystal−vapor interface with a quasi-
liquid film. A growth law upon approaching Ttri, as estimated
from the interfacial Helmholtz energy,673 is given for τ = 1 −
T/Ttri → 0 by l(τ) = C ln(τ0/τ), and is predicted to hold on a
scale determined by the decay length of the residual
crystallinity in the film. With increasing width, a crossover to
power law l(τ) ∼ τ−1/3 is expected because the vdW attraction
governs the interaction between the crystal−liquid and the
liquid−vapor interfaces of a thick film. From the results for
three τ-values the constant C was estimated to be 1.3 ± 0.2σBH
or about 2 layers, where σBH is the effective temperature
dependent diameter according to the Barker and Henderson
perturbation theory.674 At Ttri, γ(100) = 0.29ε/σBH2, γ(110) =
0.27ε/σBH2, and γ(111) = 0.23ε/σBH2, in reasonable agreement

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.3c00489
Chem. Rev. 2023, 123, 13713−13795

13770

pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.3c00489?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


with simulation data, while the liquid−gas surface tension was
γ = 0.40ε/σBH2. Clearly, the essentials of the melting process
for simple particles at planar interfaces are well-caught by DFT.
Although a great deal of progress has been made, it might be

good to keep in mind that Evans288 warned that for an
arbitrary proposed EoS it is easy to forget that the underlying
Hamilton function is probably unknown or does not exist. For
several attempts, see, e.g., the papers by Löwen.17,675 More
recent are the reviews by Lutsko676 on DFT theory, Emborsky
et al.677 on polymers and polyatomic molecules, and te Vrugt
et al.678,679 on dynamical DFT.
10.1.5. Various Other Models. An interesting attempt to

quickly estimate Tmel by Prestipino680 is based on the
Lindemann rule and a description of the solid as an elastic
medium. It is able to capture, with negligible computational
effort, the overall characteristics of the melting line of a system.
The author also describes in a compact way all the required
details of the relevant theory, including an account of linear
elasticity and the Mansoori−Canfield theory,2 which is as such
a useful result. Further, Khrapak and Saija681 examined various
phenomenological freezing and melting indicators for the exp-6
and Gaussian core potentials, while the application of cell
models to the melting and sublimation lines of the Lennard-
Jones and related potential systems in the light of lattice
models was investigated by Heyes et al.682

A somewhat deviating view is presented by Garai,683 who
describes melting as resonance between the energy of the
vibrating atoms in the surface layer and, if this “uniform”
energy is higher than the energy corresponding to a metastable
transition state, supposes that then all the surface atoms lose
their position stability.
In a rather different approach, largely based on the different

symmetry considerations for the solid and liquid state,
Yukalov684 presented a general theory taking into account
fluctuations in both the solid and liquid phases. The discussion
is of a general mathematical−physical nature, and the
theoretical results were not applied to concrete materials.
A somewhat esoteric approach is based on the observation

that high-temperature heat capacity data reported by different
authors can differ from each other more than reasonably can
be attributed to experimental errors. Köbler and Bodryakov685

showed for the metals V, Nb, Ta, Mo, and W that the
individual data sets could be described by a “critical” power
function ∼(Tmel − T)a which seems to hold for data above the
classical Dulong−Petit value of 3R. They argue that the large
validity range of the critical power function is not of atomistic
origin but must be attributed to a field of guiding bosons, the
nature of which is not specified. These postulated bosons are
supposed to be “evidently” excitations of the continuous solid
with energies much larger than the atomistic excitations, i.e.,
the phonons. While the value of Tmel is not predicted, the
variability of CP could be explained by a mean free path for the
bosons on the order of magnitude of the size of the sample.
However, the increase of CP above 3R can also be well
explained by the interstitialcy theory169 and the phonon theory
of liquids.686,687 A paper by Harrison688 can be considered as a
conceptual and qualitative precursor of these ideas.
Another somewhat esoteric approach is by Novikov689

showing that at sufficiently high temperature a crystal lattice is
unstable with respect to transition into a space with constant
negative curvature representing the melting of a crystal. This
curvature is proportional to the density of disclinations in real
physical space. The melting temperature was obtained as a

functional of the interatomic pair potential and to a good
approximation depending only on the second derivative of the
potential at its minimum, i.e., on the bulk elastic modulus. It
was shown that the Lindemann criterion is satisfied with the
mean square atom displacement at Tmel expressed in terms of
the first zero of the interatomic potential. For the LJ and
Morse potentials approximate values of ξ = 0.135 and 0.15,
respectively, resulted, while for various metallic glasses a range
of 0.14−0.17 followed. The disclination density and the size of
the regions in which the short-range crystalline order in the
melt is preserved were estimated as well.
A very different approach for the melting of elements was

given by Hoffmann.91 The author argued the molar specific
heat capacity CPS of the solid elements just below Tmel shows a
rather broad distribution ranging from about 3R to 7.5R, which
does not change significantly when CVS is calculated from CVS
= CPS − α2VKTT, and of which a major part of CVS exceeding
the value 3R is due to the contribution of the electrons to the
specific heat, as estimated from CVe ≅ γT. Both corrections
used room temperature data in the absence of the required
data near Tmel. Further, he argued that the conduction bands
with a strong influence of atomic wave functions with d or f
character are narrow and possess very large densities of states,
whereas bands made up of wave functions with s and p
characters are broad on the energy scale and possess a lower
density of electronic states per energy interval. Consequently,
the large molar heat capacity exceeding 3R near the melting
point is essentially attributed to contributions of the electrons
in bands built up of wave functions with d and f symmetries.
Roughly, the Fermi energy EF shifts with increasing temper-
ature to lower (higher) energy if the effective density of
unoccupied states above EF is larger (smaller) than the
effective density of occupied states at or below EF, and levels
occupied at lower temperature become depleted, and other
levels with larger energy will be occupied with increasing
temperature. The wave functions in both cases are different,
resulting in different probability distributions of the respective
electrons. In addition, wave functions of unoccupied states may
form hybrids with neighboring occupied states. Thus, the
surrounding electrical potential of the core ions is modified,
and the resulting potential gradients transfer a considerable
momentum to the core ions. If the forces are strong enough
and act long enough, the core ions will relax to new positions
with lower energy. This relaxation is favored if the agitation of
the core ions is large, and thus relaxation occurs preferentially
at higher temperatures. The distribution of the electrons over
the states, however, changes simultaneously with as a result the
core ions continuously relax to new positions. If the relaxation
is fast enough, i.e., if it occurs during the lifetime of a specific
distribution of the electrons at sufficient different locations in a
solid, the position of the core ions changes continuously with
time, which is a description of a fluid. In this view it seems
quite improbable that a core ion can surmount the energy
barrier to a new site if the electronic configuration and the
charge distribution remain approximately constant. Instead, it
will relax to its former position, since the unchanged charge
distribution favors a shift to its energetic minimum. Thus, the
large deviations from the previous charge distribution (which is
stable at low temperatures) will facilitate the transition to new
sites with lower energy, thereby providing an explanation of
melting.
Finally, we note that the so-called “set/liq” model for

melting was proposed by Galwey.690,691 The starting point is
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that the enthalpy and density changes that occur on melting
are relatively small, leading to the assumption that, at Tmel, no
significant changes in component sizes or shapes, intercompo-
nent bonding, constituent packing control, or other physical
properties (except viscosity) occur. In this model the liquid is
represented by dynamic equilibria between small domains
composed of particles packed in alternative lattice arrays that
rapidly and continually interconvert. These domains are
supposed to be small, say, a few nanometers, so that they
escape XRD detection. Each domain is bounded by less
ordered interfaces that maintain coherent contact with all
contiguous domains, analogous to a grain boundary, and
provides lubrication for ready relative movements of the
domains, thereby accounting for fluidity. The essential feature
is thus the continual rapid interconversion of small zones,
representing equilibrium between all possible, locally ordered
domains. The model resembles strongly the significant liquid
structures (SLS, see section 10.2) model and the “hole” model
of Frenkel,111 although no references were made. With respect
to SLS theory, the differences are that the ordered domains
contain all the various lattice types a crystal can have instead of
only the most stable one, and the interfacial zones are also
densely but randomly packed instead of being gas-like. The
“hole” model describes a liquid, in the words of Frenkel, as
particles “distributed in a non-uniform way forming more or
less compact ‘bunches’, separated from each other by
fluctuating cracks, or, to be more exact�a relatively compact
mass with a density but slightly below that of the
corresponding crystal by fluctuating fissures”. The only
difference with the “set/liq” model seems to be the presence
of only one type of ordered domain, based on the most stable
lattice type. With this qualitative model at hand, many aspects
of melting for various types of materials were discussed. Han
and Kim328 also proposed a similar model containing
rotationally free atomic clusters, however, referring neither to
Frenkel nor to Galwey.
10.2. Two-Phase Approaches

A two-phase approach by Vorob’ev,3 already indicated in
section 5.2, used tractable models for both phases. He used the
Debye model for the vibrational part of both the solid and
liquid states. Another option used is based on using significant
liquid structure (SLS) theory for the liquid phase. The SLS
theory692,693 is based the following considerations and
experimental facts: (a) For a normal phase transition from
solid to liquid, there is always an expansion in volume, water
(and a few other compounds) being considered an exception.
(b) At the triple point the vapor pressures of both solid and
liquid states are the same. (c) X-ray diffraction studies have
shown that the intermolecular spacing (time average) among
nearest neighbors in a liquid is similar to that found in the
solid. The long-range order in the solid, however, disappears in
the liquid, but there still is some short-range order remaining,
which, upon increasing the temperature, gradually disappears.
In fact, a quasi-lattice model for the liquid is accepted. The
basic idea of SLS theory is that only those structures which
make the major contribution to the thermodynamic properties
of the liquid are singled out and any others are ignored. Three
significant structures are considered: (a) The first is the solid-
like degrees of freedom possessed by molecules having only
other molecules as nearest neighbors. In its simplest form SLS
theory uses the Einstein model for these degrees of freedom.
(b) The second is the gas-like degrees of freedom possessed by

molecules having a vacancy or vacancies as nearest neighbors.
They will have three-dimensional translational degrees of
freedom by virtue of their ability to move into the neighboring
hole(s). (c) The third is the positional degeneracy of solid-like
molecules: because of the existence of molecular size holes, a
solid-like molecule will have a positional degeneracy other than
its most stable equilibrium lattice position. This positional
degeneracy is proportional to the number of neighboring holes
which exist and inversely proportional to the energy required
to preempt the neighboring hole from the competing
neighboring molecules.
For Ar, Tuerpe and Keeler,694 using SLS theory with the

Einstein model for the solid-like domains of the liquid state as
well as the Einstein model for the solid state, studied its high-
pressure melting transition. While at P = 0, the predicted
values for Tmel (calculated 80.0 K, experimental 83.9 K) and
Vm (calculated 27.8 cm3 mol−1, experimental 28.0 cm3 mol−1)
were reasonable, the pressure dependence deviates for P > 3
kbar substantially from the experimental curve. The authors
indicate as the main reason the use of the same model for the
solid state and the solid-like part for the fluid. With increasing
pressure, the fraction of solid-like molecules increases, possibly
rendering discrimination between an increase of solid-like
molecules and the formation of a second phase of solid
molecules impossible.
Using the Debye model for the solid state as well as the

solid-like part of the liquid phase but allowing for a different
value of θD and meanwhile using for both phases a slightly
different but constant Grüneisen parameter and a simple
expression for the potential energy, Kanno695 was able to
describe using SLS theory the pressure dependence for Ar
much better. He also derived several other thermodynamic
data, such as the change in melting entropy upon fusion and
the internal energy and entropy for both phases as a function
of P, also in good agreement with experiment, but clearly states
the approximate nature of his calculations.
Using a modified SLS theory, Levitt and Hsieh696 discussed

the melting of solids based on the assumption that the
coordination number changes upon melting. In the brief
description of this theory given above, the ΔV upon melting is
solely attributed to the introduction of extra holes, while the
coordination number remains the same. The authors now
assumed the coordination number does not remain the same
upon melting. They defined a “coordination” factor κ = 1 +
Δδ/VS with Δδ = δL − δS, so the product κVS represents the
molar volume of a newly coordinated liquid quasi-lattice with a
“dead” space δL, i.e., the interstitial space in the lattice
inaccessible to molecules, different from δS of the solid lattice.
In these considerations the volume as occupied by the
molecules is calculated from the molar refraction Rm = (n2 −
1)M/(n2 + 2)ρS. In the latter expression, n is the refractive
index, M is the molecular weight, and ρS is the density of the
solid, and because Rm represents the volume actually occupied
by the molecules, the relation Rm,S = Rm,L was used. In SLS
theory the mole fraction of holes is Vh/VS = (VL − VS)/VS and
the mole fraction of solid-like molecules is VS/VL, and if nh is
the number of equilibrium sites accessible to a solid-like
molecule in addition to its single most stable position, then nh
= z(VL − VS)/VL with z the number of nearest-neighbor sites,
or the coordination number, of the solid. But nh should also be
proportional to the mole fraction of holes, so nh = n(VL − VS)/
VS with n another proportionality constant. Eliminating nh
yields n = zVS/VL, which means that n is the number of
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nearest-neighboring sites occupied by molecules (not holes) in
the liquid and that nh + n = z.
Further they defined a “vacancy” factor χ = Next/N0, where

Next is the total number of “extra” new holes formed in the
liquid phase containing N0 molecules, assuming that ΔmH can
raise the solid temperature to T′ = Tmel + ΔmH/CP without
melting it, given by

= =N N N/ (1/2) (e e )T T
ext 0 0

/ 2 /mel mel (125)

This is also the number of holes in the liquid state at Tmel
because before melting the number of holes (vacancies) is
negligible. Accordingly, the number of holes being Vh = κVSχ =
VL − χVS, the relation κ = VL/VS(1 + χ) results.
Accepting the Lindemann rule, the characteristic (Einstein)

temperature was estimated as θE = c(Tmel/mV2/3)1/2 using the
value c = 135 but for the noble gases the value c = 163, as given
by Clusius.697 The authors could have reversed this procedure
using experimental θE values, thereby estimating Tmel, but with
Hoffmann’s remarks in mind (section 5.2) this would not have
been wise. From calculations for Ar, Kr, Xe, N2, H2O, and Hg,
it appeared that κ ≅ 0.68−0.9. This suggests that the packing
for the quasi-lattice of the solid-like molecules in the liquid is
denser than in the solid. Taking the quasi-lattice concept
literally, this is difficult to imagine for close-packed lattices like
FCC, but it should be noted that for the quasi-lattice concept
to be acceptable only a relatively dense packing, regular or
random, with a well-defined coordination number is required.
An independent check is given by a comparison of n as
calculated with the value as determined by XRD. For Ar, Kr,
Xe, and H2O, these values agree remarkably well (experimental
n-values for N2 and Hg were unavailable to Levitt and Hsieh).
Unfortunately, a promised follow-up never seems to have been
published.
A two-phase approach was also given by Mansoori and

Canfield698 based on their variational approach to liquids2

using a perturbation approach for hard spheres (HSs) with as
perturbation attractive interaction as described by a LJ
potential. Their variational expression is rather similar to one
derived from the Gibbs−Bogoliubov inequality, but apparently
derived independently. Because the HS pair correlation
function in the Percus−Yevick approximation is known
analytically in the Laplace domain,699 the authors were able
to express their results analytically.700 Their results for the
liquid−vapor phase diagram for LJ particles are in rather good
agreement with MC simulation data. To discuss the solid−
liquid transition, the authors used the LJD cell theory130,131 in
combination with the pair correlation expression.701 Both the
sharp change in the (only) variational parameter and the
equality of Gibbs energy for liquid and solid as a function of T
were used. While for the first method the densities of
coexisting liquid and solid phases versus T were in poor
agreement with the experimental data for Ar as given by
McDonald and Singer,702 the second method did show
reasonable agreement. McDonald and Singer’s MC simulation
data for LJ particles representing Ar did agree reasonably as
well with experiment.
Weeks and Broughton703 discussed a two-phase approach

based on the vdW equation, depending on whether a clear
separation of the intermolecular force into a short-ranged and
repulsive part operative at small separations and a longer-
ranged, more slowly varying attractive part operative at larger
separations cam be made. Using the Weeks−Chandler

separation of a LJ potential ϕLJ = 4ε[(σ/r)12 − (σ/r)6] in a
reference system with potential ϕ0 and a perturbation with
potential u, i.e., ϕLJ = ϕ0 + u (with ϕ0 = ϕLJ + ε for r ≤ r0, ϕ0 =
0 for r > r0, u = −ε for r ≤ r0, u = ϕLJ for r > r0, and r0 = 21/6σ),
the Helmholtz energy F can be written as

=F N F N/ / ( , )0 (126)

while the internal energy U, pressure P, and chemical potential
μ become
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Here N is the number of particles, ρ = N/V is the density, G
is the Gibbs energy, and β = 1/kT, while the subscript “0”
refers to the reference system. These equations are exact and
require knowledge of α(β,ρ). Weeks and Broughton703 now
argue rather plausibly that, at least for qualitative discussion,
α(β,ρ) can be considered as constant. Good agreement with
the full LJ pair correlation function g(r) for liquids and
reasonable agreement for g(r) for solids was obtained. If
α(β,ρ) = const. is assumed, attractive interactions have no
effect on the entropy of the system, i.e., S = S0. To determine
the coexisting densities ρL and ρS of the fluid and solid phases,
equality of P and μ is required. If it is further assumed that δρX
= ρX − ρX0 and defining KX = (∂βP/∂ρ)T as derived from the
thermodynamic identity (∂βμ/∂ρ)T = K/ρ where X denotes
either “L” or “S”, a first-order expansion of the relations PL = PS
and μL = μS leads after solving to

=

=

a K

a K

/ ( )/ and

/ ( )/ S

L 0L 0S 0L L

S 0S 0S 0L (130)

Near the fluid−solid transition the system is rather
incompressible so that K ≫ 1 (e.g., K > 50 for the LJ fluid)
and the assumption of a small δρX is reasonably accurate.
Equation 130 shows that the effect of attractions is to widen
the density change on melting, increasingly so as the
temperature is decreased. Although in principle a full
calculation could be done, such a calculation seems not to
be available.
A two-phase approach based on the Bogoliubov−Born−

Green−Kirkwood−Yvon (BBGKY) equation704 was advocated
by Jacobs.705 Although the BBGKY equation was devised for
liquids, it can be applied to solids as well, given that a proper
decoupling approximation and pair correlation function g(r)
can be obtained. Overall, the theory is involved but in detail
clearly explained, in particular in its extended form given by
Jacobs and Cheung,706 to which we refer for details. The latter
presentation takes into account a better decoupling approx-
imation and a better g(r). It also takes into account the
communal entropy correction by using the estimates from
Hoover and Ree,34 which, although small, is not negligible.
Moreover, for the volume change ΔV = VL − VS, needed for
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converting the Helmholtz energy F to Gibbs energy G = F − C,
it was assumed that λ = −(∂V/∂P)T is independent of V with
its value taken from the experimental EoS (although it could
be calculated in principle from the potential used). Given λ,
the energy correction C = −(1/2)(ΔV)2/λ was calculated
iteratively. Jacobs and Cheung706 dealt only with Ar as at that
time the EoSs for the other rare gas solids were unknown to
them. Using the LJ potential, they calculated Tmel, the melting
entropy ΔmS, the Lindemann ratio ξ, and the volume change
ΔV. Table 6 shows their results from the original calculation

and from its extended form. Clearly very good agreement with
experiment is obtained, although clearly for one solid only,
while the approach would be rather difficult to extend to more
complex compounds, so maybe it is no surprise that no follow-
up seems to exist.
Finally, we refer to the most sophisticated two-phase

approach, hierarchical reference theory (HRT), which was
introduced by Parola and Reatto as a new and accurate method
to evaluate the EoS of fluids.707 Because this theory is relatively
complex and two detailed reviews708,709 exist, we limit the
discussion to qualitative remarks. HRT was inspired by the
momentum-space renormalization group,710 and as this
method came from field theory, with HRT one adds for a
given temperature Fourier components (wave vectors) to the
Fourier transform of the perturbing interaction ϕpt until the
full interaction is obtained. Further the pair correlation
function is assumed to be of the Ornstein−Zernike (OZ)
form711 with a free parameter to be determined from a self-
consistent partial differential equation between the correspond-
ing expressions for the Helmholtz energy and compressibility.
From numerical work accurate results for the EoS of
continuum fluids resulted, where in particular the critical
region was well described with good results for the critical
exponents.708,709

Another accurate approach to obtain the equation of state is
the self-consistent Ornstein−Zernike approximation (SCOZA)
by Høye,712 where the OZ equation of fluid theory in
combination with the mean spherical approximation (MSA) is
used. In the MSA the direct correlation function outside hard
cores is assumed to be −βϕpt with, as usual, β = 1/kT. With
SCOZA, β is replaced by an effective inverse temperature as a
free parameter to be determined via thermodynamic self-
consistency between the internal energy and compressibility.
Again, very accurate results came out, also in the critical region,
and various generalizations have been dealt with.713

A unification of HRT and SCOZA was made by Høye and
Reiner714,715 and further analyzed in the critical region716

where the two free parameters were found to be essentially
determined by the sum of the HRT and SCOZA problems.
Since these two theories qualitatively have somewhat different
critical behaviors, the problem to reconcile them implied the
presence of subleading scaling terms. This was investigated by
analytic and numerical work717 by solving the HRT partial
differential equation. It was found that the HRT critical indices

were simple rational numbers. By direct investigation of the
HRT partial differential equation713 using both analytical and
numerical methods, the critical properties of HRT were also
determined by the solution of a transformed HRT partial
differential equation that was expanded in leading and
subleading scaling contributions that fulfill ordinary differential
equations. These contributions are connected via simple
powers of the cutoff parameter of renormalization, leading
again to simple rational numbers for the critical exponents.
However, the derivations are not fully valid near the fixed-point
solution due to some divergence problems, but it was expected
that this uncertainty is insignificant for the expansion in powers
of the cutoff parameter and thus for critical properties.
The application of HRT to melting seems so far to be

limited. Although providing flat isotherms in the two-phase
region, an expression for the Helmholtz energy still must be
provided. Parola et al.708 used for the solid the second-order
Barker−Henderson perturbation theory674,718 in which the
second-order term was estimated by the “macroscopic-
compressibility” approximation. Comparison with Monte
Carlo simulations on depletion potentials719 showed that,
although this second-order estimate deviates substantially from
the exact value, the sum of first- and second-order terms is
nevertheless generally quite close to the simulation results for
the full Helmholtz energy. In fact, the first-order approximation
has been shown to be more accurate in the solid than in the
fluid720 provided that the solid under study has the same lattice
structure as the reference. The Helmholtz energy was obtained
by integrating with respect to density the equation of state of
the HS solid.721 The fluid−solid phase boundary was
determined by equating P and chemical potential μ of the
solid to those of the fluid as given by smooth cutoff HRT using
the hard-core Yukawa potential ϕ = −ε exp[−z(r − σ)]/r with
inverse range z. The freezing line becomes wider with
increasing z, and if the freezing line is tangent to the fluid−
fluid coexistence curve at the critical point, the stable fluid−
fluid transition regime is separated from the metastable regime.
This occurs at z = 5.6, to be compared with z = 5.7 for SCOZA
and z = 6 for MC simulations. Similar calculations were done
earlier with sharp cutoff HRT using the hard-core Yukawa722

and a two-Yukawa potential with competing attractive and
repulsive interaction.723

HRT has been developed and used mainly by Parola and
Reatto and has found its application so far mainly in colloidal
systems; see, e.g., refs 720, 722, and 723. The existing theory is
limited to spherical potentials, so for molecular systems
essentially only atomic compounds can be handled. Overall,
the amount of work involved and the relative complexity of the
theory, which limit its general use, may not outweigh the
relatively easy use and wide availability of simulation methods.
The latter is associated with less (conceptual) complexity and
can incorporate (much) more realistic potentials, also for
nonatomic compounds.
10.3. Colloidal Systems

While hard spheres always played a prominent role in
modeling and simulations, nowadays hard sphere interactions
can be realized by colloidal particles.36 This implies that
colloidal systems can be used as models for atomic systems,
quite apart from their intrinsic interest. To mimic repulsion
both charge and steric stabilization can be used, but we limit
the discussion here mainly to steric stabilization. To realize
steric stabilization, the colloidal particles are coated with

Table 6. Various Data for Ar as calculated by Jacobs and
Cheung

Tmel (K) ΔmS/k 1/ξ ΔV (cm3 mol−1)

exp. 84 1.77 7 3.61
extended calc, 79 2.33 9.5 3.85
original calc, 63 4.0 13.6 −
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polymer brushes, which leads to an “entropic” repulsion if
polymer brushes of two neighboring particles overlap. Since
the length of a polymer chain typically is much smaller than the
colloidal diameter σ, one can describe this repulsive force by
the pairwise hard sphere potential. To suppress the ever-
present van der Waals interaction, one usually matches the
refractive index of the dispersing medium and that of the
colloidal particles, as the van der Waals interaction is directly
reflected in the refractive index. In this way the hard sphere
interaction dominates the interparticle forces. The prototype
materials for such colloidal particles are PMMA and PS, and
careful experiments on the structure and the phase diagram
reveal that the interaction between such particles can be well
described by excluded volume effects only. Similarly as for
atomic systems, the density ρ = N/V, the packing fraction η =
πρσ3/6, and the pair correlation function g(r) are the
characteristic parameters. The main determining characteristic
is the packing fraction, which can be varied from a few percent
to about 74%, the latter being the limit for close-packed
crystals of monosized particles. For colloidal hard sphere
systems, the temperature T is in principle only determining the
kinetics, as long as the stability is not ruined by temperature
effects.
Atomic and colloidal systems show similarities and

dissimilarities. The main similarity between atomic and
colloidal systems is that they both can be represented by
classical statistical mechanics using interactions that can be
described in terms of a pair potential. Another similarity is that
they pack in well-known lattice types, such as FCC and BCC.
One dissimilarity is that the interactions in colloidal systems
can be tuned, while for atomic systems they are fixed. Another
dissimilarity is the length scale involved, which is in the
angstrom range for atomic systems and in the nanometer range
for colloidal systems. The latter implies that diffraction effects
are in the optical range for colloidal systems while X-rays are
relevant for atomic systems. It also implies that the time scale is
rather different, typically 0.1 ps for atomic systems and several
thousand nanoseconds for colloidal systems. For colloidal
systems the matrix (solvent) also plays an important role as
hydrodynamics become important for more dense systems.
Finally, for colloidal systems obviously size dispersity must be
tightly controlled if they are to be used as a model for atomic
systems. A short introduction is given by Murray and Grier,724

while the book edited by Caruso725 discusses many aspects of
colloids and their assemblies. A detailed review of the design
and structure and hierarchy of colloidal systems, both 3D and
2D, has been given by Vogel et al.726 The field is large, and
below we address some typical results for both bulk melting
and melting of (near) monolayer systems.
10.3.1. Melting in 3D. Zahorchak et al.727 studied

colloidal suspensions in the presence of ions by MC
simulations at T = 298 K using constant (N,V,T) conditions,
periodic boundary conditions, a screened Coulomb (or
Yukawa) potential, and a perfect crystal initial configuration
(N = 250, BCC; N = 256, FCC). The pair correlation function
g(r), the total potential energy U, and the mean square
displacement ⟨u2⟩ were determined as a function of ion
concentration nj. The authors showed that the parameters gmax
(the maximum of the first peak in g(r), Smax (the maximum of
the first peak in the structure factor S(q) as calculated by
Fourier transforming g(r)), Δr (the half-width at half-
maximum of the first peak in g(r)), and U all show
discontinuous behavior at a certain concentration value nj

mel,

which was interpreted as melting. Slightly different values were
obtained for gmax for both the BCC and FCC simulations for
the liquid and solid phases. For the FCC crystal the value
obtained was gmax ≅ 2.85, but for the BCC crystal it was
somewhat lower with gmax ≅ 2.72. The Wendt−Abraham
parameter, Rg = gmin/gmax,

728 where gmin, the minimum value of
g(r) following the first peak of g(r), is somewhat more sensitive
and showed a linear behavior as a function of nj with a
discontinuity at nj

mel. For the BCC crystal the slope m of Rg
versus nj, m ≅ 0.76, is somewhat larger than m ≅ 0.61 for the
FCC crystal. The value of Smax at nj

mel in the crystalline state is
≅3.25 for the BCC crystal but decreases to ≅2.76 for the FCC
crystal. The corresponding Smax values in the liquid state are
≅2.52 for the BCC crystal and ≅2.39 for the FCC crystal.
Indeed, liquid metals which freeze into the BCC structure give
a larger value, Smax ≅ 3.1, than those that freeze into the FCC
structure, Smax = 2.8, the latter value being approximately
consistent with Hansen−Verlet criterion. The authors also
compared for a particle in the crystal phase ⟨u2⟩, as calculated
in the usual way by tracking particles, to the approximation
⟨u2⟩ ≅ 3(Δr)/2 ln 2. The Lindemann ratio, defined as ξ =
n−1/3(⟨u2⟩)1/2, where n is the particle concentration, appeared
to be ξ = 0.19 ± 0.01 for both the FCC and BCC lattices,
similar to other simulation values, but slightly higher than the
experimental value ξ = 0.16 obtained by optical ultra-
microscopy and image processing729 and much higher than
the often quoted bulk value ξ = 0.10.
Sulyanova et al.730 studied the structural evolution of

colloidal crystal films containing 40−50 monolayers of
polystyrene (PS) spherical particles, with a size dispersity as
measured by dynamic light scattering of 2.1%, from T = 293 K
to T = 381 K by XRD. The Bragg peak position, integrated
intensity, and radial and azimuthal widths were analyzed as a
function of temperature. A quantitative study of the colloidal
lattice distortions and mosaic spread as a function of
temperature was carried out using Williamson−Hall plots
based on the mosaic block model. A significant increase of
lattice distortion and domain misorientation parameters
occurred around the annealing temperature Ta = 355 K. The
temperature dependence of the diameter of polystyrene
particles was obtained from the analysis of Bragg peaks, and
the resulting thermal expansion coefficient was in good
agreement with literature data. The form factor contribution
was extracted from the diffraction patterns, which resulted in
four stages of structural evolution upon heating: steady state,
preannealing, shape transformation, and crystal melting. Both
the nanoscopic length scale (about the size of a colloidal
particle, here a few hundred nanometers) and the mesoscopic
length scale (the size of a coherently scattering domain, here a
few micrometers) need to be considered. On the nanoscopic
length scale, linear growth of the average lattice parameter for
T < Tg, with Tg = 373 K the glass transition temperature of PS,
was observed, which is directly related to thermal expansion of
the PS. For T > Tg, the PS particles softened and changed their
shape by flattening in the directions where they touched each
other, leading to a decrease of long-range order in the
crystalline film, observed as a decrease of intensity of higher-
order Bragg peaks with increasing temperature. Moreover, the
lattice parameter rapidly decreased, indicating a fast shrinkage
of the lattice until the crystalline structure completely
disappeared at Tmel = 381 K. On the mesoscopic length
scale, no particular changes were observed below the
preannealing temperature Tpa = 323 K, while for Tpa < T <
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Tg the structure of the colloidal film showed significant
changes. The authors suggested that, due to the presence of
cracks and other microscopic defects in the colloidal crystal
film, the orientational correlations of mosaic blocks increase for
T < Ta and that for T > Ta the crystal lattice becomes more
relaxed and a partial annealing process occurs, while for T > Tg
coalescence of the PS particles occurs, as evidenced by the
sharp decrease of the lattice parameter and integrated
intensities of Bragg peaks. This study clearly shows, apart
from the intrinsic aspect of such a colloidal system, that a
transfer of resulting models to atomic systems should be
handled with caution.
Wang et al.731 superheated and melted the interior of

thermal-sensitive N-isopropylacrylamide (NIPA) colloidal
single and few-grain crystals, and investigated their homoge-
neous melting by means of video microscopy at single-particle
resolution. By changing the temperature slightly, the volume
fraction of the particles, which have an approximate size of 0.76
μm at 26.4 °C to 0.67 μm at 30.6 °C, could be varied, thereby
enabling repetitive melting and solidification. The crystalline
structure and the good refractive-index matching between
particles and water enabled the authors to see through all the
about 150 layers of the crystal by means of bright-field
microscopy. Local particle-exchange loops surrounded by
particles with large displacement amplitudes rather than any
defects were observed as nucleation precursors. Under weak
superheating, the nucleation kinetics essentially followed
classical nucleation theory. Under strong superheating the
critical size, incubation time, and shape and size evolution of
the nuclei measured deviated from classical nucleation theory
predictions, mainly because of the coalescence of nuclei. In an
earlier stage Jin et al.732 showed via simulations that it seems
the Lindemann and Born criteria strongly correlate as melting
is initiated by local lattice instabilities governed by both, as put
in perspective by Cahn.733 In the experimental study by Wang
et al.731 the authors conclude that the superheating limit for
homogeneous melting indeed agrees with both criteria, and in
a short perspective paper Weeks734 highlighted their work on
how colloidal crystals melt “from the inside out”, i.e., by
thermodynamic melting.735

In a follow-up Wang et al.736 divided the nucleation process
of homogeneous melting into three stages: (1) an incubation
stage in which the superheated crystal remains metastable
without forming critical liquid nuclei, although nucleation
precursors such as defects637,737 or particle swapping
loops330,731 may form and trigger the formation of liquid
nuclei; (2) the formation of critical nuclei; and (3) the growth
stage of postcritical nuclei. In this paper the authors focused on
stage 3 using a similar experimental setup as described in ref
731 and studied the effects of nucleus size, shape, coalescence,
and surface tension on the nucleus growth rate from the
melting point to the superheating limit. For the latter the value
Δϕsuper = ϕmel − ϕ = 0.09 was used, where ϕmel = 0.545 is the
volume fraction at melting, conform their earlier paper.731 To
describe their results, they modified classical nucleation theory
according to Frenkel111 for the nucleus growth in crystal-
lization to the case of melting using Wilson’s results738 by
adding surface tension and the nonspherical shape effects. This
modified theory fitted the measured nucleus growth rates well
at weak superheating (Δϕ < 0.025). At stronger superheating,
effects not considered in classical nucleation theory were
observed. At intermediate superheating (0.025 < Δϕ < 0.05),
the growth rate was higher than predicted by the modified

Wilson−Frenkel theory. The nonspherical nuclei rotated due
to the anisotropy of the crystal surface tension and the shape
fluctuated, each contributing to a rate increase up to 10%, even
for small postcritical nuclei. At strong superheating (0.05 < Δϕ
< 0.06), coalescence of the nuclei through neck formation
further increased the growth of nuclei, while at very strong
superheating (0.06 < Δϕ < 0.09), the authors observed
multimer attachment to nuclei, which again promoted the
growth rate significantly. At the liquid−solid interface the
Lindemann ratio ξ, as determined from mean square
displacement measurements, was about ξ ≅ 0.18, while in
the bulk it varied somewhat from ξ ≅ 0.08 at ϕ = 0.528 via ξ ≅
0.06 at ϕmel = 0.545 to ξ ≅ 0.05 at ϕ = 0.555. From these
results the authors conclude that ξ ≅ 0.18 appears to be
physically significant for both heterogeneous (thermodynamic
or surface-mediated) melting and homogeneous (mechanical
or bulk) melting.
The kinetics of crystal growth and melting of body centered

cubic (BCC) and face centered cubic (FCC) crystals colloidal
crystals was studied experimentally by Hwang et al.739 Particle
motion was tracked, and by introducing a structural order
parameter, they measured the jump frequencies of particles to
and from the crystal and determined from these the Helmholtz
energy difference between the phases and the interface
mobility. The interface was observed to be rough for both
BCC and FCC crystals, while the jump frequencies correspond
to those expected for a random walk of the particles, which
translates to collision-limited growth in metallic systems. The
mobility of the BCC interface is greater than that of the FCC
interface. In addition, and contrary to the prediction of some
early computer simulations, they showed that there is no
significant asymmetry between the mobilities for crystallization
and melting.
Other effects have also been studied for colloidal systems.

We mention only a few examples. Medina-Noyola and Ivlev740

calculated the explicit form of the colloidal particle interaction
in colloidal systems of highly charged particles in solution.
Based upon the exact interaction, the effect of buckling of the
monolayer of colloidal particles in the middle of an electrolyte
film was considered and the melting condition of colloidal
crystals was determined. The authors showed that thermal
fluctuations of inner degrees of freedom of edge dislocations
affect the condition of the dislocation-mediated melting.
A study by Peng et al.741 on confined particles between two

glass plates with tunable interactions for layers of varying
thickness revealed different behaviors for thick and thin films.
Thick films (>4 layers) melt from grain boundaries in the
polycrystalline solid films and from film−wall interfaces in
single-crystal films. A liquid−solid coexistence regime is
observed in thick films that vanishes at a critical thickness of
four layers. Thin solid films (two to four layers) melt into the
liquid phase in one step from both grain boundaries and from
within crystalline domains. Monolayers melt in two steps with
an hexatic phase in between, conform KTHNY theory.
Shear-induced melting and crystallization were investigated

with confocal microscopy in concentrated colloidal suspen-
sions of hard-sphere-like particles by Wu et al.742 The authors
used silica and PMMA suspensions and sheared those with a
constant rate in either a countertranslating parallel plate shear
cell or a counterrotating cone−plate shear cell, which made it
possible to track particles undergoing shear for longer times in
a plane of zero velocity. On large scales the flow profile was not
linear, but the crystal flowed in an aligned sliding layer
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structure at low shear rates. Higher shear rates caused the
crystal to shear melt, but the transition was not sudden.
Although the overall order decreased with shear rate, this
melting range was due to an increase in the nucleation of
localized domains that temporarily lost and regained their
ordered structure. Even at shear rates that were considered to
have melted the crystal as a whole, ordered regions kept
showing up at times, giving rise to very large fluctuations in 2D
bond orientational order parameters. Applying low shear rates
to initially disordered suspensions led to crystallization with
the order parameter increasing gradually in time without large
fluctuations, indicating that shear-induced crystallization of
hard spheres does not proceed via a nucleation and growth
mechanism. The authors concluded that the dynamics of
melting and crystallization under shear differ dramatically from
their counterparts in quiescent suspensions.
Colloidal systems have been reviewed several times. An early

review focusing mainly on simulations for 2D systems of LJ
particles is given by Abraham.743 A review by Li et al.,744 and
dealing assembly and phase transitions, notes (among many
other aspects) that (1) melting and freezing for HS colloidal
systems occur at different densities, as already predicted by the
simulation of Hoover and Ree34 in 1968; (2) defects do play a
role; and (3) expansion of the liquid nucleus leads to lattice
strain, so that under mild superheating there may be no kinetic
pathway for melting. Further, they note that, as in atomic
systems, melting only occurs in defect-free systems without
surfaces in the neighborhood of interest. Moreover, they note
that, although 2D systems have been extensively studied, the
kinetics of HS systems received limited attention, as did
attractive systems. Finally, the use of the KTHNY scenario
requires infinite, defect-free crystal systems, while in practice
both 2D and 3D are expected to premelt and melt from
surfaces. In another contribution Li et al.745 discussed surface
premelting in colloidal crystals composed of attractive particles,
while Alsayed et al.746 discussed premelting at defects within
bulk colloidal crystals. Wang et al.747 reviewed experiments and
simulations conducted on superheating, melting, and premelt-
ing of colloidal crystals.
In 2022 Bini et al.748 also reviewed the phase behavior of

colloidal systems in a rather detailed way. They indicate that a
common modeling strategy to study the phase behavior is to
represent nanoparticles as spheres interacting via effective
potentials implicitly accounting for solvation effects. They
consider nanoparticles as colloidal particles, albeit with more
complex interactions including both attraction and repulsion,
and review first studies exploring the phases of such systems
having only attractive or repulsive interactions, so the general
feature of the potentials can be in focus. Thereafter potentials
with competing short-range attractions and average-long-range
repulsions, better representing nanoparticles, are dealt with
enabling interpretation of the appearance of novel phases,
characterized by aggregates with different structural character-
istics. The behavior discussed is interesting as such, but of
more limited significance for atomic systems.
10.3.2. Melting in 2D. According to the Kosterlitz−

Thouless−Halperin−Nelson−Young (KTHNY) theory a 2D
crystal melts in thermal equilibrium by two continuous phase
transitions into an isotropic liquid state with an intermediate
phase, commonly known as the hexatic phase. The KTHNY
theory is a reoccurring feature in many 2D melting discussions.
Qi et al.749 studied the orientational order in the 2D melting

transition using Brownian dynamics simulations for particles

with a “soft” Yukawa potential. The authors reported a two-
stage transition and the existence of a hexatic phase, consistent
with the prediction of KTHNY theory. Based on their
extensive simulations, the authors suggested that the break-
down of local order is qualitatively only to occur on a fractional
part of the colloidal system for 2D melting, but that in 3D
melting breakdown takes place over the whole system at the
same time.
To study 2D systems Han et al.750 used N-isopropylacry-

lamide (NIPA) spheres, with the hydrodynamic diameter
varying linearly from 950 nm at 20 °C to 740 nm at 30 °C and
with a size dispersity of less than 3% as determined by dynamic
light scattering measurements. Confining these particles
between two glass plates, a dense monolayer of 800 nm
spheres formed with crystal domains of about 40 μm2,
corresponding to about 3000 particles, for which measure-
ments were done on a central area of about 20 μm2 away from
the grain boundaries as a function temperature to tune the
particle volume fraction. A two-step melting mechanism from
the crystal to a hexatic phase and from the hexatic to the liquid
phase as a function of the volume fraction was observed. The
authors considered a variety of sample properties during
melting, such as the correlation function g(r), the structure
factor S(q), topological defect densities, the dynamic
Lindemann parameter, translational and orientational order
parameters, and order parameter correlation functions in space
and time. From a fairly detailed analysis it appeared that the
order parameter susceptibility, i.e., the order parameter
fluctuations, is superior for finding phase transition points
compared to other analyses which typically suffer finite-size
and/or finite-time ambiguities, although the order of these two
phase transitions could not be unambiguously resolved due to
limited temperature resolution.
Brodin et al.751 used glycerol droplets at the free surface of a

nematic liquid crystalline layer of a 2D colloidal system. They
also conclude that melting occurs through an intermediate
hexatic phase, as predicted by KTHNY theory. However, the
temperature range of the intermediate phase was rather
narrow, less than about 1 °C, and the characteristic critical
power law decays of the correlation functions were not fully
developed. The authors concluded that the melting of these
2D systems qualitatively occurs according to KTHNY theory,
but that quantitative details of the transition may partly depend
on the details of interparticle interaction. The melting of quasi-
2D colloidal hard spheres in relation to the hexatic phase was
also studied by Thorneywork et al.752 by considering a tilted
monolayer of 2.79 μm diameter melamine formaldehyde
spheres in sedimentation−diffusion equilibrium. The authors
measured the equation of state from the density profiles and
used time-dependent and height-resolved correlation functions
to identify the liquid, hexatic, and crystal phases. While the
liquid−hexatic transition appeared to be discontinuous, the
hexatic−crystal transition was shown to be continuous. They
measured the width of the liquid−hexatic coexistence gap from
the fluctuations of the corresponding interface and thereby
experimentally established the full phase behavior of hard
disks.
Various models based on dynamical and structural proper-

ties to identify the crystal−hexatic and hexatic−isotropic liquid
phase transitions for 2D melting of colloidal systems have been
compared by Dillman et al.753 using superparamagnetic
spherical particles arranged in a 2D monolayer at a water−
air interface. These particles consisted of spherical polystyrene
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spheres, with diameter d = 4.5 μm, in which Fe2O3
nanoparticles were embedded, which were suspended in
water and sterically stabilized with sodium dodecyl sulfate.
As these particles have a density of ≅1.5 g cm−3, a droplet
containing the particles was fixed in a 6 mm hole of a top-
sealed glass plate by surface tension, thereby creating a particle
loaded water−air interface. The (repulsive) dipolar interaction
between the particles was controlled by a magnetic field
perpendicular to the water−air interface. The authors used a
monochrome CCD camera to observe the particles by video
microscopy with the field of view (1158 × 865 μm2) showing
≈9 × 103 particles for a system containing ≈2.5 × 105 particles
in total. During data acquisition the coordinates of the particles
in the field of view were determined in situ every ≅2 s over a
period of 25 min by digital image processing with an accuracy
of about 50 nm.
To identify the solid−hexatic−liquid transitions properly,

the authors used various models, as discussed below. Local
measures, like the local bond order (Larson−Grier) criterion
measuring how the neighbors of a particle fit locally on a
hexagonal lattice, and the shape factor of Voronoi cells defined
by 4C2/4πS, where C is the circumference and S us the area of
the Voronoi cell, appeared to change not significantly on
crossing the transition temperatures since the local order in 2D
systems is 6-fold in both the fluid and the solid phases, and
these criteria are rather insensitive to global symmetry changes.
For the Hansen−Verlet rule modified for 2D systems,
measuring the height of the first peak of the structure factor
S(q) at melting, values between S(q0) ≅ 4.4 and S(q0) ≅ 5.75
have been reported in simulations, while in this dipolar system
S(q0) ≅ 10 at Tmel, so this criterion with a quasi-universal
critical value should be used with care. The Löwen−Palberg−
Simon criterion, the ratio of the long-time and short-time
diffusion coefficients, states that crystallization in 3D systems
takes place at a critical ratio of 0.1. In 2D values between 0.072
and 0.099 were obtained by simulations, whereas in this system
a value of 0.03 resulted, the discrepancies possibly being due
the presence of grain boundaries in the simulations, and
therefore this criterion is also to be used with care. Minkowski
functionals (see, e.g., ref 754) as topological measures to
identify the transitions were also used. In brief, in nD one has n
+ 1 Minkowski measures for a structure. In 3D they are the
total volume, the total interfacial area, the mean curvature, and
the total curvature of the system. In 2D the Minkowski
measures are related to the surface area A, the circumference
U, and the Euler characteristic χ = Ncon − Nhole, the difference
between the number of connected surfaces Ncon and number of
holes Nhole. While these measures appeared to be sensitive to
locally heterogeneous distributions of particles in a binary
mixture, they appeared to be also rather insensitive to global
symmetry changes and phase transitions.
Overall, it seems that, for this system with long-range

repulsion, the bond order correlation function g6(r) ≡ g6(|rl −
rk|) = ⟨ψ6*(rl) ψ6(rk)⟩ between particles located at rl and rk and
where ψ6(rk) = nnn−1∑1

nnn exp(i6θkl) with θkl the angle between
the nnn nearest-neighbor particles l of particle k and its
associated bond order susceptibility, worked best to identify
the hexatic−isotropic liquid transition. A 2D dynamic
Lindemann parameter, given by γ = (Δuj − Δuj+1)2/2a2,
where Δuj = uj(t) − uj(0) with uj(t) the displacement of
particle j at time t with respect to its nearest neighbors j + 1
and normalized to the average interparticle distance a,

appeared to identify unambiguously the hexatic−crystalline
transition.
In his review on theoretical methods and experimental issues

for various 2D systems, melting in relation to an hexatic phase
was discussed by Murray,755 while Gasser et al.756 provide a
more general review on 2D melting of colloidal systems.
To conclude this section, it is fair to say that colloidal and

atomic systems show similarities as well dissimilarities. While
the former can help to elucidate issues for the atomic scale, as
time and size scales are more easily accessible, the latter
renders colloidal systems a topic in its own right, being able to
vary interactions, size, and size dispersity.

11. MELTING IN PERSPECTIVE
Now changing to a perspective view, from all we have said in
this review, a few specific and generic observations can be
made. We start with the specific ones.
• Despite its age, the Lindemann rule is still an important

player in the explanation of melting. However, the various
existing formulations neither always agree nor are always clear
about which Lindemann parameter is used. As noted, various
authors disagree on whether good, reasonable, or poor
predictions are made.
• The dislocation, vacancy, and interstitialcy models are

limited to metals. The first two have been used for many
metals, while the interstitialcy model has been mainly
substantiated by data on Cu. The first two types of models
have been applied both to mechanical (or bulk) melting and to
thermodynamic (or surface-mediated) melting.
• Many MD simulations studies discuss primarily energy

and entropy without paying too much attention to the
mechanisms. Although some attempts have been made to
define a proper characteristic for a particular mechanism, the
lack of attention to discern mechanisms is partially due to the
difficulty of defining such a characteristic and, once chosen,
such a characteristic generally does not catch other
mechanisms.
• For both normal and high-pressure conditions, rather

similar models can produce rather different results. Differences
between the various Debye temperatures and Grüneisen
parameters and their volume or pressure dependence that
can be defined8 are often not considered. Moreover,
experimental differences between shock wave and diamond
anvil cell results contribute further to the confusion.
• Atomic and colloidal systems can show substantial

similarities as well as significant dissimilarities.
More generic observations are the following:
• Despite the fact that melting is a familiar and well-defined

phenomenon, formulating a general theory of melting
appeared to be rather intractable and none of the proposed
models or explanations is generally accepted. This stands in
contrast to continuous transitions where renormalization group
theory has provided a general framework. Although Bruno and
Sak757 presented a modification of the renormalization group
for discontinuous transitions, this seems not to have been used
for melting, possibly, as pointed out by Yukalov,684 because
such methods do not take into account the fluctuations in both
phases. However, at least for clusters and nanoparticles, there
are several molecular dynamics studies explicitly dealing with
melting mechanisms, which are reliably singled out if the
starting structure is correct.
• It will be clear that a straightforward calculation of

enthalpy and entropy for both phases provides a scheme for a
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general theory. However, as a generally accepted liquid state
model has not materialized (yet), the focus is directed on one-
phase models, but a generally accepted one-phase theory has
not materialized either. The lack of such a more general one-
phase theory for various types of materials may also be due, at
least partially, to the fact that many melting studies focused on
a limited group of related compounds, thereby not paying
attention to aspects relevant to other material groups.
•The difference between mechanical (or bulk) melting and

thermodynamic (or surface-mediated) melting has become
abundantly clear. This has evident bearing on various
phenomena. In the presence of a relevant surface, thermody-
namic melting is normally observed, and proper understanding
of its size effect is required for such different applications as the
control of solubility for pharmaceuticals and the stability of
nanocomposites. However, bulk melting does occur in the
absence of relevant surfaces and is most important for some
other conditions, e.g., for shock wave experiments.
• While most models as discussed in sections 5 and 6 aim at

estimating Tmel, some models, as noted in section 10, are
providing only qualitative mechanistic arguments.
To become even more generic, we note that the challenges

associated with formulating a general mechanistic theory of
melting are linked to the following aspects:
• Melting is conventionally considered as a physical process.

Although many solids melt by redistributing relatively weak
vdW forces, many other solids melt by redistributing relatively
strong interactions, akin to chemical bonding.
• Although melting involves generally clear characteristics,

such as a precise melting point, loss, or long-range order and
reversibility, there are a large variety of interactions between
the constituents.
• As we have seen on several occasions before, the

(structural) information available for liquids is much less
than that for solids. This is reinforced by difficulties to obtain
quantitative information for the interface between a melting
solid and a liquid. Interfaces may or may not roughen, as
described by the continuum Kosterlitz−Thouless scenario or
the discrete solid on solid model.
• In many cases, small amounts of impurities may obscure

the nature of the melting process by exhibiting disproportional
effects, in particular for the onset of fusion.
Such a wide range of aspects might be rather difficult to

catch in one model.
Therefore, in conclusion, despite the ubiquitous presence of

melting, it is fair to say that although the thermodynamics are
well understood the mechanisms involved are much less so.
Nearly all types of defects have been proposed. Although in 3D
melting dislocations provide only one of the routes, in 2D
melting dislocations definitely do play an important role and an
extensive review has been provided by Jooś.237 Apart from the
general materials science problem that various types of
materials may be controlled by different mechanisms, even
for one type of material, several options exist to explain many
of the phenomena involved. Indeed, several theories can
describe the overall behavior of melting reasonably well, and
possibly because of that, some authors claim universal
applicability of their theory but usually illustrate it by using
data for one type of material only. Nevertheless, it is clear that
for normal melting surfaces are an important factor for all types
of materials. This is most clearly illustrated by the decrease in
melting temperature for nanosized particles. Alternative,
attractive simple views still surface regularly, so a final verdict

is hardly possible, although it may well be that a generally
applicable mechanistic theory, in view of the many aspects that
require attention, does not exist.
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ABBREVIATIONS
BCC body centered cubic
CP critical point
DFT density functional theory
DTM dislocation theory of melting
EAM embedded atom potential
EoS equation of state
FCC face centered cubic
G gas
GGA generalized gradient approximation
HCP hexagonal close packed
HRT hierarchical reference theory
L liquid
LDA local density approximation
LJ Lennard-Jones
LJD Lennard-Jones−Devonshire
MD molecular dynamics
MC Monte Carlo
NN nearest neighbor
NNN next nearest neighbor
OZ Ornstein−Zernike
PoCS principle of corresponding states
QCE quantum cluster equilibrium
S solid
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SC simple cubic
SCPT self-consistent phonon theory
TP triple point
V vapor
XRD X-ray diffraction
Symbols

CX heat capacity (at constant X = V or P)
E energy
F Helmholtz energy
G Gibbs energy
H enthalpy
KX bulk modulus (at constant X = T or S)
M molar mass
N number of molecules
NA Avogadro number
P pressure
Q configurational partition function
R gas constant
S entropy
T temperature
U internal energy
V volume
Z partition function
ℏ Planck constant h/2π
k Boltzmann constant
m mass
n number of moles, refractive index
u displacement
z coordination number, single particle partition function
Λ thermal length
Ω atomic volume
α thermal expansivity
β 1/kT
γ Grüneisen parameter, surface energy, parameter
ε characteristic energy
ϕ potential
θD Debye temperature
θE Einstein temperature
μ shear modulus, chemical potential
ν frequency, Poisson ratio
ω circular frequency
ξ Lindemann−Gilvarry parameter
ρ density
σ characteristic size
ω circular frequency
ωD Debye frequency
ωE Einstein frequency
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(234) Stranski, I. N. Über den Schmelzvorgang bei nichtpolaren
Kristallen. Naturwissenschaften 1942, 30, 425−433.
(235) Dash, J. G.; Fu, H.-Y.; Wettlaufer, J. S. The Premelting of Ice
and its Environmental Consequences. Rep. Prog. Phys. 1995, 58, 115−
167.
(236) Wettlaufer, J. S. Crystal Growth, Surface Phase Transitions
and Thermomolecular Pressure. In Ice Physics and the Natural
Environment; Wettlaufer, J. S., Dash, J. G., Untersteiner, N., Eds.;
NATO-ISI Series 1; Springer: Berlin, 1999; p 39.
(237) Joós, B. The Role of Dislocations in Melting. In Dislocations in

Solids; Nabarro, F. R. N., Duesbery, M. S., Eds.; Elsevier: Amsterdam,
1996; pp 505−594.
(238) Pietronero, L.; Tosatti, E. Surface Theory of Melting. Solid

State Commun. 1979, 32, 255−259.
(239) Luo, S.-N.; Strachan, A.; Swift, D. C. Nonequilibrium Melting
and Crystallization of a Model Lennard-Jones System. J. Chem. Phys.
2004, 120, 11640−11649.
(240) Valkealahti, S.; Nieminen, R. M. Molecular Dynamics
Investigation of the Premelting Effects of Lennard-Jones (111)
Surfaces. Phys. Scr. 1987, 36, 646−650.
(241) Pontikis, V.; Sindzingre, P. Surface Melting and Roughening
Transition. Phys. Scr. 1987, 1987 (T19B), 375−381.
(242) Trayanov, A.; Tosatti, E. Lattice Theory of Surface Melting.

Phys. rev. 1988, B38, 6961−6974.
(243) Hock, C.; Bartels, C.; Straßburg, S.; Schmidt, M.; Haberland,
H.; von Issendorff, B.; Aguado, A. Premelting and Postmelting in
Clusters. Phys. Rev. Lett. 2009, 102, No. 043401.
(244) Matsunaga, S.; Tamaki, S. Hetero-phase Fluctuations in the
Pre-melting Region in Ionic Crystals. Eur. Phys. J. 2008, B63, 417−
424.
(245) Matsunaga, S.; Tamaki, S. Premelting Phenomena in Ionic
Crystals. J. Phys.: Condens. Matter 2008, 20, 114116.
(246) Matsunaga, S. Premelting Phenomena in Pseudo-binary Ionic
Crystals. J. Phys.: Condens. Matter 2010, 22, 155104.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.3c00489
Chem. Rev. 2023, 123, 13713−13795

13784

https://doi.org/10.1039/C5CP06363A
https://doi.org/10.1039/C5CP06363A
https://doi.org/10.1063/1.3265957
https://doi.org/10.1063/1.3265957
https://doi.org/10.1103/PhysRevX.2.011011
https://doi.org/10.1103/PhysRevX.2.011011
https://doi.org/10.1126/science.1253810
https://doi.org/10.1126/science.1253810
https://doi.org/10.1063/1.3624656
https://doi.org/10.1063/1.3624656
https://doi.org/10.1016/j.physb.2011.04.005
https://doi.org/10.1016/j.physb.2011.04.005
https://doi.org/10.1134/S0018151X17050121
https://doi.org/10.1134/S0018151X17050121
https://doi.org/10.1134/S0018151X17050121
https://doi.org/10.1016/j.commatsci.2021.111139
https://doi.org/10.1016/j.commatsci.2021.111139
https://doi.org/10.1063/1.2174002
https://doi.org/10.1063/1.2174002
https://doi.org/10.1063/1.1612915
https://doi.org/10.1063/1.1612915
https://doi.org/10.1016/0031-8914(74)90238-9
https://doi.org/10.4236/wjcmp.2016.61007
https://doi.org/10.1103/PhysRevB.5.371
https://doi.org/10.1103/PhysRevB.5.371
https://doi.org/10.1143/JPSJ.79.053601
https://doi.org/10.1143/JPSJ.79.053601
https://doi.org/10.1080/14786437608223804
https://doi.org/10.1080/14786437608223804
https://doi.org/10.1080/14786437608223804
https://doi.org/10.1016/0375-9601(75)90271-6
https://doi.org/10.1016/0375-9601(75)90271-6
https://doi.org/10.1021/cm0201807?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cm0201807?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevB.29.2963
https://doi.org/10.1103/PhysRevB.29.2963
https://doi.org/10.1063/1.94549
https://doi.org/10.1063/1.94549
https://doi.org/10.1063/1.94549
https://doi.org/10.1016/0925-8388(95)01962-6
https://doi.org/10.1016/0925-8388(95)01962-6
https://doi.org/10.1016/0925-8388(95)01963-4
https://doi.org/10.1016/0925-8388(95)01963-4
https://doi.org/10.1016/S0022-3697(96)00083-2
https://doi.org/10.1016/S0022-3697(96)00083-2
https://doi.org/10.1016/S0022-3697(02)00267-6
https://doi.org/10.1016/S0022-3697(02)00267-6
https://doi.org/10.1016/0375-9601(79)90398-0
https://doi.org/10.1016/0375-9601(79)90398-0
https://doi.org/10.1103/PhysRevB.1.4555
https://doi.org/10.1103/PhysRevB.1.4555
https://doi.org/10.1103/PhysRevB.3.1215
https://doi.org/10.1103/PhysRevB.3.1215
https://doi.org/10.1063/1.3123042
https://doi.org/10.1063/1.3123042
https://doi.org/10.1209/0295-5075/91/46001
https://doi.org/10.1209/0295-5075/91/46001
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1016/j.xphs.2017.12.013
https://doi.org/10.1016/j.xphs.2017.12.013
https://doi.org/10.1103/PhysRevLett.19.20
https://doi.org/10.1103/PhysRevLett.19.20
https://doi.org/10.1007/BF00654848
https://doi.org/10.1007/BF00654848
https://doi.org/10.1080/000187398243564
https://doi.org/10.1080/000187398243564
https://doi.org/10.1016/S0039-6028(99)00084-9
https://doi.org/10.1103/PhysRevLett.54.134
https://doi.org/10.1103/PhysRevLett.54.134
https://doi.org/10.1515/zpch-1909-6819
https://doi.org/10.1007/BF01476465
https://doi.org/10.1007/BF01476465
https://doi.org/10.1088/0034-4885/58/1/003
https://doi.org/10.1088/0034-4885/58/1/003
https://doi.org/10.1016/0038-1098(79)90133-9
https://doi.org/10.1063/1.1755655
https://doi.org/10.1063/1.1755655
https://doi.org/10.1088/0031-8949/36/4/007
https://doi.org/10.1088/0031-8949/36/4/007
https://doi.org/10.1088/0031-8949/36/4/007
https://doi.org/10.1088/0031-8949/1987/T19B/009
https://doi.org/10.1088/0031-8949/1987/T19B/009
https://doi.org/10.1103/PhysRevB.38.6961
https://doi.org/10.1103/PhysRevLett.102.043401
https://doi.org/10.1103/PhysRevLett.102.043401
https://doi.org/10.1140/epjb/e2008-00245-3
https://doi.org/10.1140/epjb/e2008-00245-3
https://doi.org/10.1088/0953-8984/20/11/114116
https://doi.org/10.1088/0953-8984/20/11/114116
https://doi.org/10.1088/0953-8984/22/15/155104
https://doi.org/10.1088/0953-8984/22/15/155104
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.3c00489?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(247) Cubeta, U.; Bhattacharya, D.; Sadtchenko, V. Melting of
Superheated Molecular Crystals. J. Chem. Phys. 2017, 147,
No. 014505.
(248) Ohnesorge, R.; Löwen, H.; Wagner, H. Density Functional
Theory of Crystal-fluid Interfaces and Surface Melting. Phys. Rev. E
1994, 50, 4801−4809.
(249) Wettlaufer, J. S.; Worster, M. G. Premelting Dynamics. Annu.

Rev. Fluid Mech. 2006, 38, 427−452.
(250) Nenow, D.; Trayanov, A. Thermodynamics of Crystal Surfaces
with Quasi-liquid Layer. J. Cryst. Growth 1986, 79, 801−805 and
references therein..
(251) Baker, M. B.; Dash, J. G. Charge Transfer in Thunderstorms
and the Surface Melting of Ice. J. Cryst. Growth 1989, 97, 770−776.
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Grüneisen Parameter: Fundamentals and Applications to High
Pressure Physics and Geophysics. Phys. Earth Planet. Inter. 2019,
286, 42−68.
(403) An expression identical to the Slater expression appeared
already in the book by N. F. Mott and H. Jones (The Theory of the
Properties of Metals and Alloys; Clarendon Press: Oxford, 1936).
(404) Dugdale, J. S.; MacDonald, D. K. C. The Thermal Expansion
of Solids. Phys. Rev. 1953, 89, 832−834.
(405) Barton, M. A.; Stacey, F. D. The Grüneisen Parameter at High
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Models to the Melting and Sublimation Lines of the Lennard-Jones
and Related Potential Systems. Phys. Rev. E 2021, 104, No. 044119.
(683) Garai, J. Melting of Crystalline Solids. Sol. State Comm. 2010,

150, 1710−1714.
(684) Yukalov, V. I. Theory of Melting and Crystallization. Phys. Rev.

1985, B32, 436−446.
(685) Köbler, U.; Bodryakov, V. Y. On the Melting Process of Solids.

Int. J. Thermodyn. 2015, 18, 200−204.
(686) Trachenko, K. Heat Capacity of Liquids: An Approach from
the Solid Phase. Phys. Rev. B 2008, 78, 104201.
(687) Bolmatov, D.; Trachenko, K. Liquid Heat Capacity in the
Approach from the Solid state: Anharmonic Theory. Phys. Rev. B
2011, 84, No. 054106.
(688) Harrison, R. J. On the Solid-liquid Phase Transition. Int. J.

Quantum Chem. 1967, 1, 839−843.
(689) Novikov, V. N. Melting as a Phase Transition into a Space
with Constant Curvature. Sov. Phys. JETP 1984, 60, 618−623.
(690) Galwey, A. K. Aspects of the Melting of Metallic Elements. J.

Therm. Anal. Calorimetry 2005, 79, 219−233.
(691) Galwey, A. K. A View and a Review of Melting of Alkali Metal
Halide Crystals Part 3. Melting of Solids: Theories and Mechanisms
of Fusion. J. Therm. Anal. Calorimetry 2006, 86, 561−579.
(692) Jhon, M. S.; Eyring, H. In Physical Chemistry; Henderson, D.,
Ed.; Academic Press: New York, 1971; Vol. VIIIA.
(693) Jhon, M. S.; Eyring, H. The Significant Structure Theory of
Liquids. In Physical Chemistry; Henderson, D., Ed.; Academic Press:
New York, 1971; Vol. VIIIA, p 335.
(694) Tuerpe, D. R.; Keeler, R. N. Anomalous Melting Transition in
the Significant Structure Model of Liquids. J. Chem. Phys. 1967, 47,
4283−4285.
(695) Kanno, H. A New Theory of Melting at High Pressures. Bull.

Chem. Soc. Jpn. 1972, 45, 2687−2692.
(696) Levitt, L. S.; Hsieh, E. T. The Quasi-solid Liquid Lattice and
Volume Change on Melting of a Solid. A Modified Significant
Structure theory of Liquids. 1. J. Am. Chem. Soc. 1979, 101, 4664−
4668.
(697) Clusius, K. Atomwar̈men und Schmelzwar̈men von Neon,
Argon, und Krypton. Z. Phys. Chem. 1936, 31B, 459−474.
(698) Mansoori, G. A.; Canfield, F. B. Variational Approach to
Melting. II. J. Chem. Phys. 1969, 51, 4967−4972.
(699) Wertheim, M. S. Exact Solution of the Percus-Yevick Integral
Equation for Hard Spheres. Phys. Rev. Lett. 1963, 10, 321−323.
(700) The authors evaluated the required derivatives numerically
because the analytical expressions are very lengthy and cumbersome
(and symbolic algebra software like Maple or Mathematica was
unavailable at that time).

(701) Corner, J.; Lennard-Jones, J. E. Critical and Co-operative
Phenomena VI. The Neighbour Distribution Function in Monatomic
Liquids and Dense Gases. Proc. R. Soc. London A 1941, 178, 401−414.
(702) McDonald, I. R.; Singer, K. Calculation of Thermodynamic
Properties of Liquid Argon from Lennard-Jones Parameters by a
Monte Carlo Method. Discuss. Faraday Soc. 1967, 43, 40−49.
(703) Weeks, J. J.; Broughton, J. Q. Van der Waals Theory of
Melting in Two and Three Dimensions. J. Chem. Phys. 1983, 78,
4197−4205.
(704) Hill, T. L. Statistical Mechanics; McGraw-Hill: New York, 1956
(also Dover: 1987).
(705) Jacobs, R. L. A Mean-field Theory of Melting. J. Phys. C: Solid

State Phys. 1983, 16, 273−283.
(706) Jacobs, R. L.; Cheung, K. H. Effects of Correlations in the
Mean-field Theory of Melting. J. Phys. C: Solid State Phys. 1986, 19,
129−138.
(707) Parola, A.; Reatto, L. Hierarchical Reference Theory of Fluids
and the Critical Point. Phys. Rev. 1985, A31, 3309−3322.
(708) Parola, A.; Pini, D.; Reatto, L. The Smooth Cut-off
Hierarchical Reference Theory of Fluids. Mol. Phys. 2009, 107,
503−522.
(709) Parola, A.; Reatto, L. Recent Developments of the
Hierarchical Reference Theory of Fluids and its Relation to the
Renormalization Group. Mol. Phys. 2012, 110, 2859−2882.
(710) Wilson, K. G.; Kogut, J. The Renormalization Group and the ϵ
Expansion. Phys. Rep. 1974, 12, 75−199.
(711) Ornstein, L. S.; Zernike, F. Accidental Deviations of Density
and Opalescence at the Critical point of a Single Substance. Proc. R.
Acad. Sci. Amsterdam 1914, 17, 793−806.
(712) Høye, J. S.; Stell, G. Ornstein-Zernike Equation for a Two-
Yukawa c(r) with Core Condition. Mol. Phys. 1984, 52, 1071−1079
and references therein..
(713) Høye, J. S.; Lomba, E. Critical Properties of the Hierarchical
Reference Theory: Further Investigations. J. Mol. Liq. 2018, 270,
106−113 and references therein..
(714) Reiner, A.; Høye, J. S. Towards a Unification of the
Hierarchical Reference Theory and the Self-consistent Ornstein-
Zernike Approximation. Phys. Rev. E 2005, 72, No. 061112.
(715) Høye, J. S.; Reiner, A. Towards a Unification of Hierarchical
Reference Theory and Self-consistent Ornstein-Zernike Approxima-
tion: Analysis of Exactly Solvable Mean-spherical and Generalized
Mean-spherical Models. Phys. Rev. E 2007, 75, No. 041113.
(716) Høye, J. S. Unification of Hierarchical Reference Theory and
Self-consistent Ornstein-Zernike Approximation: Analysis of the
Critical Region for Fluids and Lattice gases. Phys. Rev. E 2009, 79,
No. 021114.
(717) Høye, J. S.; Lomba, E. Analysis of the Critical Region of the
Hierarchical Reference Theory. Mol. Phys. 2011, 109, 2773−2786.
(718) Barker, J. A.; Henderson, D. Perturbation Theory and
Equation of State for Fluids: The Square-Well Potential. J. Chem. Phys.
1967, 47, 2856−2861.
(719) Rotenberg, B.; Dzubiella, J.; Hansen, J. P.; Louis, A. A.
Thermodynamic Perturbation Theory of the Phase Behaviour of
Colloid/interacting Polymer Mixtures. Mol. Phys. 2004, 102, 1−11.
(720) Dijkstra, M.; Brader, J. M.; Evans, R. Phase Behaviour and
Structure of Model Colloid-polymer Mixtures. J. Phys.: Cond. Matter
1999, 11, 10079−10106.
(721) Hall, K. R. Another Hard-Sphere Equation of State. J. Chem.

Phys. 1972, 57, 2252−2254.
(722) Foffi, G.; McCullagh, G. D.; Lawlor, A.; Zaccarelli, E.;
Dawson, K. A.; Sciortino, F.; Tartaglia, P.; Pini, D.; Stell, G. Phase
Equilibria and Glass Transition in Colloidal Systems with Short-
ranged Attractive Interactions: Application to Protein Crystallization.
Phys. Rev. E 2002, 65 (3), No. 031407.
(723) Pini, D.; Parola, A.; Reatto, L. Freezing and Correlations in
Fluids with Competing Interactions. J. Phys.: Cond. Matter 2006, 18,
S2305.
(724) Murray, C. E.; Grier, D. G. Colloidal Crystals. Am. Sci. 1995,

83, 238−245.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.3c00489
Chem. Rev. 2023, 123, 13713−13795

13794

https://doi.org/10.1002/9780470564318.ch1
https://doi.org/10.1002/9780470564318.ch1
https://doi.org/10.1016/j.fluid.2011.02.007
https://doi.org/10.1016/j.fluid.2011.02.007
https://doi.org/10.1080/00018732.2020.1854965
https://doi.org/10.1080/00018732.2020.1854965
https://doi.org/10.1088/1361-648X/ac8633
https://doi.org/10.1088/1361-648X/ac8633
https://doi.org/10.1088/0953-8984/24/3/035102
https://doi.org/10.1088/0953-8984/24/3/035102
https://doi.org/10.1080/00268976.2011.616544
https://doi.org/10.1080/00268976.2011.616544
https://doi.org/10.1080/00268976.2011.616544
https://doi.org/10.1103/PhysRevE.104.044119
https://doi.org/10.1103/PhysRevE.104.044119
https://doi.org/10.1103/PhysRevE.104.044119
https://doi.org/10.1016/j.ssc.2010.06.017
https://doi.org/10.1103/PhysRevB.32.436
https://doi.org/10.5541/ijot.5000101941
https://doi.org/10.1103/PhysRevB.78.104201
https://doi.org/10.1103/PhysRevB.78.104201
https://doi.org/10.1103/PhysRevB.84.054106
https://doi.org/10.1103/PhysRevB.84.054106
https://doi.org/10.1002/qua.560010692
https://doi.org/10.1007/s10973-004-0587-0
https://doi.org/10.1007/s10973-005-7399-8
https://doi.org/10.1007/s10973-005-7399-8
https://doi.org/10.1007/s10973-005-7399-8
https://doi.org/10.1063/1.1701628
https://doi.org/10.1063/1.1701628
https://doi.org/10.1246/bcsj.45.2687
https://doi.org/10.1021/ja00510a036?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00510a036?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00510a036?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1515/zpch-1936-3134
https://doi.org/10.1515/zpch-1936-3134
https://doi.org/10.1063/1.1671890
https://doi.org/10.1063/1.1671890
https://doi.org/10.1103/PhysRevLett.10.321
https://doi.org/10.1103/PhysRevLett.10.321
https://doi.org/10.1098/rspa.1941.0063
https://doi.org/10.1098/rspa.1941.0063
https://doi.org/10.1098/rspa.1941.0063
https://doi.org/10.1039/df9674300040
https://doi.org/10.1039/df9674300040
https://doi.org/10.1039/df9674300040
https://doi.org/10.1063/1.445097
https://doi.org/10.1063/1.445097
https://doi.org/10.1088/0022-3719/16/2/011
https://doi.org/10.1088/0022-3719/19/2/009
https://doi.org/10.1088/0022-3719/19/2/009
https://doi.org/10.1103/PhysRevA.31.3309
https://doi.org/10.1103/PhysRevA.31.3309
https://doi.org/10.1080/00268970902873547
https://doi.org/10.1080/00268970902873547
https://doi.org/10.1080/00268976.2012.666573
https://doi.org/10.1080/00268976.2012.666573
https://doi.org/10.1080/00268976.2012.666573
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1080/00268978400101791
https://doi.org/10.1080/00268978400101791
https://doi.org/10.1016/j.molliq.2018.01.001
https://doi.org/10.1016/j.molliq.2018.01.001
https://doi.org/10.1103/PhysRevE.72.061112
https://doi.org/10.1103/PhysRevE.72.061112
https://doi.org/10.1103/PhysRevE.72.061112
https://doi.org/10.1103/PhysRevE.75.041113
https://doi.org/10.1103/PhysRevE.75.041113
https://doi.org/10.1103/PhysRevE.75.041113
https://doi.org/10.1103/PhysRevE.75.041113
https://doi.org/10.1103/PhysRevE.79.021114
https://doi.org/10.1103/PhysRevE.79.021114
https://doi.org/10.1103/PhysRevE.79.021114
https://doi.org/10.1080/00268976.2011.627384
https://doi.org/10.1080/00268976.2011.627384
https://doi.org/10.1063/1.1712308
https://doi.org/10.1063/1.1712308
https://doi.org/10.1080/0026897032000158315
https://doi.org/10.1080/0026897032000158315
https://doi.org/10.1088/0953-8984/11/50/304
https://doi.org/10.1088/0953-8984/11/50/304
https://doi.org/10.1063/1.1678576
https://doi.org/10.1103/PhysRevE.65.031407
https://doi.org/10.1103/PhysRevE.65.031407
https://doi.org/10.1103/PhysRevE.65.031407
https://doi.org/10.1088/0953-8984/18/36/S06
https://doi.org/10.1088/0953-8984/18/36/S06
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.3c00489?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(725) Colloids and Colloid Assemblies; Caruso, F., Ed.; Wiley-VCH
Verlag GmbH & Co. KgaA: Weinheim, 2004.
(726) Vogel, N.; Retsch, M.; Fustin, C.-A.; del Campo, A.; Jonas, U.
Advances in Colloidal Assembly: The Design of Structure and
Hierarchy in Two and Three Dimensions. Chem. Rev. 2015, 115,
6265−6311.
(727) Zahorchak, J. C.; Kesavamoorthy, R.; Coalson, R. D.; Asher, S.
A. Melting of Colloidal Crystals: A Monte Carlo Study. J. Chem. Phys.
1992, 96, 6873−6879.
(728) Wendt, H. R.; Abraham, F. F. Empirical Criterion for the
Glass Transition Region Based on Monte Carlo Simulations. Phys.
Rev. Lett. 1978, 41, 1244−1246.
(729) Ise, N. Ordering of Ionic Solutes in Dilute Solutions through
Attraction of Similarly Charged Solutes�A Change of Paradigm in
Colloid and Polymer Chemistry. Angew. Chem., Int. Ed. Engl. 1986, 25,
323−334.
(730) Sulyanova, E. A.; Shabalin, A.; Zozulya, A. V.; Meijer, J.-M.;
Dzhigaev, D.; Gorobtsov, O.; Kurta, R. P.; Lazarev, S.; Lorenz, U.;
Singer, A.; Yefanov, O.; Zaluzhnyy, I.; Besedin, I.; Sprung, M.;
Petukhov, A. V.; Vartanyants, I. A. Structural Evolution of Colloidal
Crystal Films in the Process of Melting Revealed by Bragg Peak
Analysis. Langmuir 2015, 31, 5274−5283.
(731) Wang, Z.; Wang, F.; Peng, Y.; Zheng, Z.; Han, Y. Imaging the
Homogeneous Nucleation During the Melting of Superheated
Colloidal Crystals. Science 2012, 338, 87−90.
(732) Jin, Z. H.; Gumbsch, P.; Lu, K.; Ma, E. Melting Mechanisms
at the Limit of Superheating. Phys. Rev. Lett. 2001, 87, No. 055703.
(733) Cahn, R. W. Melting from Within. Nature 2001, 413, 582−
583.
(734) Weeks, E. R. Melting Colloidal Crystals from the Inside Out.

Science 2012, 338, 55−56.
(735) In his opening sentence, the author states that “solid objects
almost always melt from their outer surface inward, and this scenario
is well understood by physicists.” I beg to differ with the last part of
this statement.
(736) Wang, Z.; Wang, F.; Peng, Y.; Han, Y. Direct Observation of
Liquid Nucleus Growth in Homogeneous Melting of Colloidal
Crystals. Nat. Commun. 2015, 6, 6942.
(737) Gómez, L.; Dobry, A.; Geuting, C.; Diep, H. T.; Burakovsky,
L. Dislocation Lines as the Precursor of the Melting of Crystalline
Solids Observed in Monte Carlo Simulations. Phys. Rev. Lett. 2003,
90, No. 095701.
(738) Wilson, H. W. On the Velocity of Solidification and Viscosity
of Super-cooled Liquids. London Edinb. Dublin Philos. Mag. J. Sci.
1900, 50, 238−250.
(739) Hwang, H.; Weitz, D. A.; Spaepen, F. Direct Observation of
Crystallization and Melting with Colloids. Proc. Nat. Acad. Sci. 2019,
116, 1180−1184.
(740) Medina-Noyola, M.; Ivlev, B. I. Interaction in Colloidal
Systems: Buckling and Melting. Phys. Rev. E 1995, 52, 6281−6288.
(741) Peng, Y.; Wang, Z.; Alsayed, A. M.; Yodh, A. G.; Han, Y.
Melting of Colloidal Crystal Films. Phys. Rev. Lett. 2010, 104, 205703.
(742) Wu, Y. L.; Derks, D.; van Blaaderen, A.; Imhof, A. Melting and
Crystallization of Colloidal Hard-sphere Ssuspensions under Shear.
Proc. Nat. Acad. Sci. 2009, 106, 10564−10569.
(743) Abraham, F. F. Computational Statistical Mechanics Method-
ology, Applications and Supercomputing. Adv. Phys. 1986, 35, 1−111.
(744) Li, B.; Zhou, D.; Han, Y. Assembly and Phase transitions of
Colloidal Crystals. Nat. Rev. Mater. 2016, 1, 15011.
(745) Li, B.; Wang, F.; Zhou, D.; Peng, Y.; Ni, R.; Han, Y. Modes of
Surface Premelting in Colloidal Crystals composed of Attractive
Particles. Nature 2016, 531, 485−488.
(746) Alsayed, A. M.; Islam, M. F.; Zhang, J.; Collings, P. J.; Yodh,
A. G. Premelting at Defects Within Bulk Colloidal Crystals. Science
2005, 309, 1207−1210.
(747) Wang, F.; Zhou, D.; Han, Y. Melting of Colloidal Crystals.

Adv. Funct. Mater. 2016, 26, 8903−8919.

(748) Bini, M.; Brancolini, G.; Tozzini, V. Aggregation Behavior of
Nanoparticles: Revisiting the Phase Diagram of Colloids. Front. Mol.
Biosci. 2022, 9, 986223.
(749) Qi, X.; Chen, Y.; Jin, Y.; Yang, Y.-H. Bond-Orientational
Order in Melting of Colloidal Crystals. J. Korean Phys. Soc. 2006, 49,
1682−1686.
(750) Han, Y.; Ha, N. Y.; Alsayed, A. M.; Yodh, A. G. Melting of
Two-dimensional Tunable-diameter Colloidal Ccrystals. Phys. Rev. E
2008, 77, No. 041406.
(751) Brodin, A.; Nych, A.; Ognysta, U.; Lev, B.; Nazarenko, V.;
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