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A B S T R A C T

Hysteretic system behavior is ubiquitous in science and engineering fields including measurement systems and
applications. In this paper, we put forth a nonlinear state–space system identification method that combines
the state–space equations to capture the system dynamics with a compact and exact artificial neural network
(ANN) representation of the classical Prandtl–Ishlinskii (PI) hysteresis. These ANN representations called PI
hysteresis operator neurons employ recurrent ANNs with classical activation functions, and thus can be trained
with classical neural network learning algorithms. The structured nonlinear state–space model class proposed
in this paper, for the first time, offers a flexible interconnection of PI hysteresis operators with a linear state–
space model through a linear fractional representation. This results in a comprehensive and flexible model
structure. The performance is validated both on numerical simulation and on measurement data.
. Introduction

Hysteretic system behavior appears in diversified areas of sci-
nce such as electromagnetism, solid mechanics, aerodynamics, and
any others [1–3]. In measurement applications, there are studies

owards quantifying the hysteresis effects in terms of both taking
easurements [4,5] and studying caused errors [6–8]. While under-

tanding the cause and extent of hysteresis in measurement systems
e.g., [9]) is important, modeling hysteresis (e.g., [8]), exploiting
ysteresis (e.g., [10]), and compensating for hysteresis (e.g., [11])
re also important. Various models with descriptive switching rules to
imulate and characterize different hysteretic phenomena have been
roposed in the literature. However, there is no universal model that
an describe all hysteresis effects. Refer to, for example, [12,13] for an
verview of hysteresis models.

As in the literature (e.g., [14,12]), hysteresis models are usually
lassified into two main types: physics-based models and phenomeno-
ogical models. Physics-based models are derived based on the first
rinciples of physics effects, while phenomenological models are de-
ived based on the appearance and the shape of the observed hysteresis
oops. In general, the underlying physics of hysteretic system behavior
s usually very complicated so that it is difficult to derive physics-based
odels. Moreover, a physics-based model of one hysteretic system can
sually not be applied to another system. Phenomenological models
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M. Schoukens).

on the other hand can describe behaviors similar to those of physical
models without the need for detailed physical insight into the model-
ing problem [13]. Hence these types of models are considered much
more flexible in terms of hysteresis modeling. Such models include
the Preisach model, Prandtl–Ishlinskii model, Bouc–Wen model, Duhem
model, Maxwell-Slip model, Krasnoselskii–Pokrovskii model, and many
others. This study contributes to phenomenological hysteresis models.

The identification of a hysteretic system is challenging due to its
complex dynamic nonlinear behavior. Furthermore, the hysteretic be-
havior is often associated with other dynamic behavior, e.g. by inter-
connected mass–spring–damper systems. Most of the hysteretic system
identification literature is limited to isolated hysteresis behavior [15–
17], or to the slightly more general Hammerstein nonlinear model
structure [18–21]. Black-box nonlinear state–space identification ap-
proaches have been demonstrated to be able to capture hysteretic
system behavior together with system dynamics [22], and the nonlinear
state–space model structure is also known to be able to model more
complex system structures [23].

One of the main challenges when using a nonlinear state–space
model structure for identification is to keep the complexity of the
nonlinearity under control for an increasing state dimension. One ap-
proach to achieve this is to reduce the nonlinearity dimension and
decouple the nonlinearity in the model using tensor decomposition
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approaches [24,25]. Another approach is to impose this reduced non-
linearity dimensionality from the start, for instance, using a nonlinear
LFR (linear fractional representation) model structure [26–28]. On the
other hand, the nonlinear LFR model structure can also be interpreted
as a generalization of the more limited Hammerstein and Wiener block-
oriented model structures [29], which are often used in conjunction
with PI hysteresis models to capture the system dynamics.

In this paper, we present a compact and exact ANN representation
of the classical Prandtl–Ishlinskii (PI) hysteresis operator, named PI
hysteresis operator neuron throughout the paper, that is subsequently
used for the identification of structured nonlinear hysteretic state–space
models. The PI hysteresis operator neurons are represented by recurrent
ANNs using classical activation functions and can be trained with
classical neural network learning algorithms. The three PI operators
that are considered in this study are the stop, play, and generalized
play operators. One of the benefits of the PI hysteresis operator neuron
is the flexibility it offers to be combined with each other to form a layer
for hysteresis components and with various other comprehensive model
structures. This paper introduces a structured nonlinear state–space
identification approach, using the so-called PI-LFR model class. The PI-
LFR model class is obtained by replacing the static nonlinearity of the
nonlinear LFR model structure with the aforementioned PI hysteresis
operator neurons to obtain a dedicated hysteretic nonlinearity, as de-
picted in Fig. 1. The proposed model structure enhances the versatility
of the LFR model class to model a wide variety of hysteretic systems
and its performance is validated both on numerical simulation and on
measurement data. This results in the following main contributions:

1. The derived exact representations of the stop, play, and gener-
alized play PI operators with each using a simple and small re-
current ANN employing widely used activation functions (ReLU,
SSLU)

2. The Integration of these recurrent ANNs as substructures with
the LFR framework, being able to treat the hysteresis just like
other dynamic components. This allows for the simultaneous
identification of hysteresis and linear system dynamics using a
structured nonlinear state–space model.

3. The use of ‘‘rich’’ input signals such as multisine experiments al-
lows to simultaneously capture the broadband system dynamics
and hysteretic effects, similar to [22]

To the authors’ knowledge, there are no other identification approaches
available that can jointly identify system dynamics and the PI hysteresis
containing similar complex interactions as discussed in this paper. The
current state of the art for structured dynamic hysteresis models is
largely limited to the well-known Hammerstein and Wiener case [18–
21,30]. This highlights the significance of the intended contributions.
Comparative exercises in this study using Masing hysteresis vividly
demonstrate the approximation efficiency of the intended contribution
No. 1.

The remainder of the paper is organized as follows: Section 2 re-
views the Prandtl–Ishlinskii model and its classical hysteresis operators.
In Section 3, the hysteresis operator neurons are formulated for three
classical Prandtl–Ishlinskii hysteresis operators. The PI-LFR model that
is considered for the identification of hysteretic systems is introduced in
Section 4, while Section 5 presents the proposed identification method.
In Sections 6 and 7, the proposed approaches are respectively nu-
merically and experimentally validated using real-world measurement
data.

2. The Prandtl–Ishlinskii (PI) hysteresis model

The Prandtl model is a well-known phenomenological operator-
based model for characterizing hysteresis behavior. In the Prandtl
2

Fig. 1. The proposed PI-LFR structure obtained by interconnecting a MIMO LTI state–
space representation with an ANN layer, which is given as a weighted sum over a finite
number 𝑁 of PI hysteresis neurons 𝑟.

Fig. 2. Hysteresis operators: (a) stop operator (b) play operator (c) generalized play
operator for arbitrary envelope functions.

model formulation as presented in [14], the output signal 𝑦(𝑡) is de-
termined through a linear superposition of an infinite set of hysteresis
operators applied to the input signal 𝑢(𝑡) and is expressed as:

𝑦(𝑡) = ∫

∞

0
𝑤(𝑟)𝑟[𝑢(𝑡)]𝑑𝑟, (1)

where 𝑡 denotes the time, 𝑤(𝑟) > 0 is the density function that
determines the hysteresis loop shape, 𝑟 ≥ 0 is a single threshold variable
that parameterizes the hysteresis operator 𝑟[⋅]. The hysteresis operator
in the Prandtl model can either be the stop, the play, or the generalized
play operator as illustrated in Fig. 2. The discrete form of the Prandtl
model is known as the Prandtl–Ishilinskii (PI) model which is expressed
as a weighted sum over a finite number of hysteresis operators:

𝑦(𝑘) =
𝑁
∑

𝑖=1
𝑤𝑖𝑟𝑖 [𝑢(𝑘)], (2)

where 𝑘 is the sample index, 𝑁 is the total number of hysteresis
operators, 𝑤𝑖 is a scalar gain of the 𝑖th operator satisfying 𝑤𝑖 ≥ 0
∀𝑖 ∈ [1, 𝑁]. 𝑟𝑖 [⋅] is the 𝑖th discrete hysteresis operator given by a stop,
play, or generalized play operator.

2.1. The stop operator

𝑦𝑖(𝑘) = 𝑟𝑖 [𝑢(𝑘)],

= min{𝑟𝑖,max{−𝑟𝑖, 𝑢(𝑘) − 𝑢(𝑘 − 1) + 𝑦𝑖(𝑘 − 1)}},
(3)

with the initial condition given by:

𝑦𝑖(0) = max{𝑟𝑖,max{−𝑟𝑖, 𝑢(0) − 𝑢(−1) + 𝑦𝑖0}}, (4)

where usually, but not necessarily, zero initial conditions are used for
the values 𝑢(−1) and 𝑦𝑖0. The input–output map of a stop operator is
depicted in Fig. 2(a).
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2.2. The play operator

The play operator is parameterized by a threshold variable 𝑟𝑖 ≥ 0. Its
discrete-time (DT) output 𝑦𝑖(𝑘), given an input signal 𝑢(𝑘), is provided
by [14]:

𝑦𝑖(𝑘) = 𝑟𝑖 [𝑢(𝑘)],

= max{𝑢(𝑘) − 𝑟𝑖,min{𝑢(𝑘) + 𝑟𝑖, 𝑦𝑖(𝑘 − 1)}},
(5)

with the initial condition given by:

𝑦𝑖(0) = max{𝑢(0) − 𝑟𝑖,min{𝑢(0) + 𝑟𝑖, 𝑦𝑖0}}, (6)

where usually, but not necessarily, zero initial conditions are used for
𝑦𝑖0. The input–output map of a play operator parameterized by its
threshold variable 𝑟 is depicted in Fig. 2(b).

2.3. The generalized play operator

The classical play operator is extended towards the generalized play
operator by using two auxiliary functions 𝛾𝑟 and 𝛾𝑙. An increase in
input 𝑢(𝑘) causes the output 𝑦𝑖(𝑘) to increase along the curve 𝛾𝑟, while
a decrease in input 𝑢(𝑘) causes the output 𝑦𝑖(𝑘) to decrease along the
curve 𝛾𝑙. This results in the following equations [14,31]:

𝑦𝑖(𝑘) = 𝑟𝑖 [𝑢(𝑘) ∣ 𝛾𝑙(⋅), 𝛾𝑟(⋅)]

= max{𝛾𝑙(𝑢(𝑘)) − 𝑟𝑖,min{𝛾𝑟(𝑢(𝑘)) + 𝑟𝑖, 𝑦(𝑘 − 1)}}
(7)

where the envelope functions 𝛾𝑙(⋅) ≥ 𝛾𝑟(⋅) are both continuous and
non-decreasing functions [14,31]. The generalized play operator results
in asymmetric hysteresis loops when different envelope functions are
used. The input–output map of a generalized play operator for arbitrary
envelope functions is depicted in Fig. 2(c).

2.4. Properties

The play and stop operators are linked by the complementary
property:

𝑟𝑖 [𝑢(𝑘)] + 𝑟𝑖 [𝑢(𝑘)] = 𝑢(𝑘) (8)

The proof of this property is provided in [14]. Furthermore, the dif-
ferent operators are Lipschitz continuous and stable operators [32],
complying with both Madelung’s and Masing’s rules [14]. Hence, the
PI model inherits the continuity and stability properties by linear
superposition.

3. Neural hysteretic operators

Hysteresis models based on ANNs have been developed to model
hysteresis behavior in several applications. In [33], an ANN-based PI
model that utilized stop operators, different from the ANN-based PI
model introduced in this paper, was developed to model the hysteresis
behavior in nonlinear inelastic frames and trusses. Due to the difficult
computation of the operators’ gradients, the ANN-based PI model was
trained with a genetic algorithm (GA). This technical difficulty is also
present in other works [34–36] where the PI hysteresis operators
are either not trained at all during optimization or the entire ANN
model is trained with a GA. Some researchers have also proposed their
own hysteresis operators neurons [37,36] which were inspired by the
classical hysteresis modeling tools.

In this section, we formulate the classical play, stop, and generalized
play hysteresis operators as recurrent ANNs. Note that these ANN
formulations are simply obtained by rewriting the original hystere-
sis operators, no approximation is taking place in the process (see
Appendix) as an example. They are constructed with classical acti-
vation functions, thus can be realized as hysteresis operator neurons
in any ANN model structure, and can be trained with a wide set
of machine/deep learning tools in a computationally efficient way.
3

By interconnecting these hysteresis operator neurons in parallel into
a larger layer, ANN hysteresis models are realized. These hysteretic
ANN layers can be easily integrated into other (deep) neural network
architectures, as illustrated in Section 4, allowing for a wide range of
possible model structures that can capture hysteretic system behavior
at virtually no extra expense during the model structure design and
parameter estimation phase.

3.1. Stop operator

The stop operator given in Eq. (3) is represented in this study by
the following recurrent ANN:

𝑦(𝑘) = 𝑟𝑓
(

𝑢(𝑘) − 𝑢(𝑘 − 1) + 𝑦(𝑘 − 1)
𝑟

)

(9)

where 𝑢(𝑘), and 𝑦(𝑘) are the input and output signal of a stop operator
parameterized by the threshold variable 𝑟 respectively. The symmetric
saturated linear unit (SSLU) activation function 𝑓 (⋅) in the hidden layer
realizes the stop operator:

𝑓 (𝑥) =

⎧

⎪

⎨

⎪

⎩

1, if 𝑥 ≥ 1

−1, if 𝑥 ≤ −1

𝑥, if − 1 < 𝑥 < 1

(10)

Note that the neural stop operator is not defined for 𝑟 = 0, while
the classical stop operator is defined for all positive threshold values
including zero. However, the response of the classical stop operator for
𝑟 = 0 is 0. Hence, this does not pose any issue in the representation
above. A schematic of the stop hysteresis operator neuron is depicted
in Fig. 4, and its resulting behavior is depicted in Fig. 3.

3.2. Play operator

The play operator given in Eq. (5) is represented using the following
recurrent ANN:
𝑦(𝑘) = 𝑢(𝑘) +

[

−1 1
]

𝑠(𝑘) + 𝑟

𝑠(𝑘) = 𝑔
([

1 −1
1 −1

] [

𝑢(𝑘)
𝑦(𝑘 − 1)

]

+
[

𝑟
−𝑟

]) (11)

where 𝑢(𝑘), 𝑦(𝑘) are the input and output signal of a play operator
parameterized by the threshold variable 𝑟 respectively. The commonly-
used rectified linear unit (ReLU) activation function 𝑔(⋅) in the hidden
layer realizes the play operator:

𝑔(𝑥) = max(𝑥, 0) (12)

Note that the activation function 𝑔(𝑥) is applied element-wise, and
that threshold value 𝑟 which is the only variable that parameterizes
a classical play operator is directly associated with the bias terms of
the proposed neural play operator. A schematic of the play hysteresis
operator neuron is depicted in Fig. 5, and its resulting behavior is
depicted in Fig. 3.

3.3. Generalized play operator

The generalized play operator, starting from Eq. (7) [14,31], is
represented in this paper by the following recurrent ANN:

𝑦(𝑘) = 𝛾𝑙(𝑢(𝑘)) − 𝑟 + 𝑔(−𝛾𝑙(𝑢(𝑘)) + 𝑟 + 𝑠(𝑘))

𝑠(𝑘) = 𝛾𝑟(𝑢(𝑘)) + 𝑟 − 𝑔(𝛾𝑟(𝑢(𝑘)) + 𝑟 − 𝑦(𝑘 − 1))
(13)

where 𝑢(𝑘) is the input, 𝑦(𝑘) is the output, and 𝑠(𝑘) is an internal state of
the generalized play operator parameterized by the threshold variable
𝑟, using the ReLU activation function as before. Additionally, both
envelope functions 𝛾𝑙(⋅) and 𝛾𝑟(⋅) can be approximated with arbitrary
precision using universal approximators such as sigmoidal [38] or
ReLU [39] networks, i.e.:

𝛾𝑙(𝑢(𝑘)) ≅  𝑙(𝑢(𝑘)|𝜃𝑙) (14)

𝛾𝑟(𝑢(𝑘)) ≅  𝑟(𝑢(𝑘)|𝜃𝑟)
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Fig. 3. The stop, play, and generalized play operator as obtained by Eqs. (9), (11), and (13) respectively for 𝑟 = 1, starting from zero initial conditions. The generalized play
operator uses the functions 𝛾𝑙(𝑥) =

𝑥
2
+ ( 𝑥

4
)3 and 𝛾𝑟(𝑥) =

𝑥
2
+ ( 𝑥

4
)3 − 0.1.
Fig. 4. Schematic of the stop hysteresis operator neuron represented in terms of
the input–output signals, the SSLU activation function and the trainable weights
parameterized by the threshold value 𝑟.

Fig. 5. Schematic of the play hysteresis operator neuron represented in terms of the
input–output signals, the ReLU activation function, the non-trainable weights and the
threshold value 𝑟.

where 𝜃𝑙 and 𝜃𝑟 are the parameter vectors that contain the weights and
biases of the parameterized networks  𝑙 and  𝑟. Its resulting
behavior is depicted in Fig. 3.

3.4. Complementary operator

The complementary property presented in Eq. (8) allows to rep-
resent both the play and stop operators with SSLU and ReLU layers
respectively and vice versa. Both activation functions are almost identi-
cal in terms of performance and convergence speed [40]. However, the
ReLU representation offers an easier parametrization of the hysteresis
operator since it provides a direct mapping between the threshold value
𝑟 and the bias term of the hysteresis neuron.

4. Hysteretic LFR model structure

The previously introduced ANN hysteresis operators are combined
with the LFR model structure in this section. This results in a nonlinear
state–space model that can simultaneously capture complex system dy-
namics and nonlinear hysteresis. The LFR structure can be understood
as a structured nonlinear state–space representation [28] or can be
interpreted as a generalization of the more limited Hammerstein and
Wiener block-oriented model structures [29].
4

4.1. Model structure

The proposed DT nonlinear model structure consists of a PI hys-
teresis nonlinearity interconnected with the linear fractional represen-
tation, as shown in Fig. 1. The linear dynamics are represented using
a state–space representation describing the dynamic relation between
the LFR inputs 𝑢(𝑘) ∈ R𝑛𝑢×1, 𝑤(𝑘) ∈ R1×1 and the outputs 𝑦(𝑘) ∈ R𝑛𝑦×1,
𝑧(𝑘) ∈ R1×1. The PI hysteresis nonlinearity is represented using an ANN
layer consisting of 𝑁 PI hysteresis operator neurons. This results in the
following model equations:

⎡

⎢

⎢

⎣

𝑥(𝑘 + 1)
𝑦0(𝑘)
𝑧(𝑘)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐴 𝐵𝑢 𝐵𝑤
𝐶𝑦 𝐷𝑦𝑢 𝐷𝑦𝑤
𝐶𝑧 𝐷𝑧𝑢 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑥(𝑘)
𝑢(𝑘)
𝑤(𝑘)

⎤

⎥

⎥

⎦

(15)

and

𝑤(𝑘) =
𝑁
∑

𝑖=1
𝑤𝑖𝑟𝑖 [𝑧(𝑘)] (16)

where 𝑁 is the total number of hysteresis operators, 𝑤𝑖 ∀𝑖 ∈ [1, 𝑁]
are scalar weights and 𝑟𝑖 [⋅] is a user-specified hysteresis operator
which can be the stop operator presented in Eq. (9), the play operator
presented in Eq. (11) or even the generalized play operator presented
in Eq. (13), i.e.:

𝑟𝑖 [𝑧(𝑘)] =

⎧

⎪

⎨

⎪

⎩

𝑟𝑖 [𝑧(𝑘)]
𝑟𝑖 [𝑧(𝑘)]
𝑟𝑖 [𝑧(𝑘) ∣  𝑙(⋅|𝜃𝑙),  𝑟(⋅|𝜃𝑟)]

(17)

The states are represented by 𝑥(𝑘) ∈ R𝑛𝑥×1 and the matrices 𝐴 ∈ R𝑛𝑥×𝑛𝑥 ,
𝐵𝑢 ∈ R𝑛𝑥×𝑛𝑢 , 𝐵𝑤 ∈ R𝑛𝑥×1, 𝐶𝑦 ∈ R𝑛𝑦×𝑛𝑥 , 𝐶𝑧 ∈ R1×𝑛𝑥 , 𝐷𝑧𝑢 ∈ R1×1,
𝐷𝑦𝑢 ∈ R𝑛𝑦×𝑛𝑢 , 𝐷𝑦𝑤 ∈ R𝑛𝑦×1 correspond to the parameters to be
estimated together with the parameters of the hysteresis model in
Eq. (16). The term 𝐷𝑧𝑤 is not present in the considered state–space
formulation as this prevents the presence of algebraic loops in the
model expression. Additionally, a zero-mean, additive noise source 𝑣(𝑘)
is assumed to present at the output 𝑦(𝑘) only. The problem of selecting
the number of states 𝑛𝑥, the number of hysteresis operators 𝑁 , and the
type of the hysteresis operator is a classical model complexity selection
problem. Typical solutions to this problem include the use of prior
expert knowledge provided by the user and grid search approaches.

Observe that the PI-LFR model given by Eqs. (15) and (16) and
depicted in Fig. 1 can be interpreted both as a highly flexible block-
oriented model [29], it is a superset of the popular PI-Hammerstein
and PI-Wiener model structures, or as a highly structured nonlinear
state–space representation [28].

Furthermore, due to the presence of the direct feedthrough term
𝐷𝑦𝑢 in the PI-LFR model and due to the complementary property
of the classical PI operators, a PI-LFR model with play operators is
mathematically equivalent to a PI-LFR model with stop operators and
vice versa.
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Finally, note that the linear state–space model is a linear recurrent
neural network. Here we implement the complete PI-LFR model as a
structured recurrent neural network. Hence, the model can be identified
using the effective optimization tools available for neural network
training.

5. Identification method

5.1. Excitation signal

The considered excitation signal for the identification and test is a
random phase multisine signal. A multisine is a periodic signal with
random phases and a user-defined amplitude spectrum [41]. Although
the proposed identification approach is not limited to this type of input
signal, compared to other signals such as random Gaussian inputs, it has
a random appearance in the time domain due to the random phases
while it retains a deterministic, user-specified, amplitude spectrum in
the frequency domain. One period of the signal is defined for 0 ≤ 𝑘 ≤
(𝑁𝑠 −1)∕𝑓𝑠 where 𝑓𝑠 is the sampling frequency and 𝑁𝑠 the numbers of
samples of the signal:

𝑢(𝑘) = 1
√

𝑁𝑠

𝑛max
∑

𝑛=1
𝐴𝑛 sin

(

2𝜋𝑘
𝑓𝑠
𝑁𝑠

𝑛 + 𝜙𝑛

)

, (18)

ith

max = round
(

𝑓max
𝑓𝑠

𝑁𝑠

)

(19)

here 𝑓𝑚𝑎𝑥 is a user specified maximum frequency, 𝐴𝑛 is a user
pecified amplitude spectrum and the phases, 𝜙𝑛 ∈ [0, 2𝜋) are drawn

randomly from a uniform distribution. Note that the proposed method
is not limited to multisine excitation signals. Any other type of exci-
tation signal that sufficiently excites the system dynamics, e.g. random
noise, sinesweep, or pseudorandom binary sequence (PRBS) signals, can
be used.

5.2. Parameter estimation

The mean squared simulation error is considered as the cost function
to minimize:

𝜃𝑜 = argmin
𝜃

1
𝑀

𝑀
∑

𝑘=1
(𝑦(𝑘) − �̂�(𝑘|𝜃))2 (20)

where 𝑜 stands for optimized, 𝑀 is the total number of samples over
which the cost function is computed, 𝑦(𝑘) is the measured output and
�̂�(𝑘|𝜃) is the output simulated by the PI-LFR model given the parameter
vector 𝜃. This vector includes the vectorized state–space matrices of the
LTI subblock as well as the scalar weights 𝑤𝑖 and threshold values 𝑟𝑖 of
the PI ANN layer. In the case of a PI ANN layer with generalized play
operator neurons, the parameter vector 𝜃 contains also all the weights
and biases of the envelope function approximators.

The considered cost function is nonlinear in the parameters and
non-convex. It is minimized using gradient-based or Gauss-Newton-like
algorithms. In this paper, the Levenberg–Marquardt algorithm [42,43]
is used since it combines both minimization methods and is used in
recurrent neural network design [44].

5.3. Parameter initialization

A ‘good’ initial guess of the parameter values is required to initiate
the optimization algorithm as it will only converge to the ‘closest’ local
minimum of the cost function. LTI approximations of the nonlinear
system under consideration have proven effective on multiple occasions
to initialize nonlinear identification algorithms [29,45]. In this paper,
the best linear approximation (BLA) framework is used. The BLA of
5

a nonlinear system is an LTI model 𝐺𝑏𝑙𝑎(𝑞−1) that approximates the
system output best in least square sense [41] i.e.:

𝐺𝑏𝑙𝑎(𝑞−1) = argmin
𝐺(𝑞−1)

𝐸𝑢,𝑣

{

|

|

|

�̃�(𝑘) − 𝐺(𝑞−1)�̃�(𝑘)||
|

2
}

�̃�(𝑘) = 𝑢(𝑘) − 𝐸𝑢{𝑢(𝑘)}

�̃�(𝑘) = 𝑦(𝑘) − 𝐸𝑢,𝑣{𝑦(𝑘)}

(21)

where 𝐸𝑢,𝑣 denotes the expected value operator taken with respect to
the random variations due to the input 𝑢(𝑘) and the output noise 𝑣(𝑘),
𝑞−1 denotes the backward shift operator. As can be observed in Eq. (21),
the BLA of a nonlinear system is dependent on the properties of the
considered input signal class. The BLA state–space matrices (𝐴𝐵𝐿𝐴,
𝐵𝐵𝐿𝐴, 𝐶𝐵𝐿𝐴, 𝐷𝐵𝐿𝐴) are estimated using a subspace algorithm [46], are
then transformed such that each of the states has a unit variance [28]
resulting in the transformed state–space matrices (�̃�𝐵𝐿𝐴, �̃�𝐵𝐿𝐴, �̃�𝐵𝐿𝐴,
�̃�𝐵𝐿𝐴). Also note that starting from the BLA estimate allows the user to
perform the state order (𝑛𝑥) selection problem in an LTI setting, which
greatly simplifies the problem [30].

To start the parameter identification for PI-LFR, these transformed
matrices are finally embedded into the PI-LFR model:

𝐴 = �̃�𝐵𝐿𝐴 𝐵𝑢 = �̃�𝐵𝐿𝐴
𝐶𝑦 = �̃�𝐵𝐿𝐴 𝐷𝑦𝑢 = �̃�𝐵𝐿𝐴

(22)

while the rest of the LFR parameters are initialized as:

𝐵𝑤 = 0 𝐷𝑦𝑤 = 0
𝐶𝑧 =  (−1, 1) 𝐷𝑧𝑢 =  (−1, 1)

(23)

here  (𝑎, 𝑏) denotes a uniform distribution set with minimum value 𝑎
nd maximum 𝑏. The hysteresis model is initialized slightly differently.
he PI model satisfies: 𝑤𝑖, 𝑟𝑖 ≥ 0 ∀𝑖 ∈ [1, 𝑁]. Hence, the weights 𝑤𝑖
nd the threshold values 𝑟𝑖 are all initialized as:

𝑤𝑖 ∈  (0, 𝐶), 𝑟𝑖 ∈  (0, 𝑅) ∀𝑖 ∈ [1, 𝑁] (24)

The maximum values 𝐶 > 0 and 𝑅 > 0 are user-specified upper bounds
of the sets. In this paper, the value 𝐶 is often chosen as 𝐶 = 1∕𝑁 ,
such that the signal 𝑤(𝑘) has a comparable magnitude with that of the
signal 𝑧(𝑘) while 𝑅 is set to 0.1 by default. 𝑁 will be discussed later.
With this approach, it is ensured that the hysteresis operators are active
at the beginning of the optimization.

In the case of generalized play operator neurons, the weights and
biases that correspond to the envelope function approximators  𝑙,
 𝑟 are initialized with random values that are all drawn uniformly
in  (−1, 1) and zeros respectively.

6. Numerical validation

In this section, the proposed model structure and identification
method are numerically validated on a hysteretic system following
the Masing hysteresis rules. Examples of Masing hysteresis include
the polarization process of piezoelectric materials [47], in hysteretic
friction [17], or hysteretic effects in systems under earthquake excita-
tions [48] and many others.

6.1. System description

Consider the CT 2-DOF mass–spring–damper (MSD) system as
shown in Fig. 6 which is governed by the following equations of motion:

𝑚1�̈�1 + 𝑑2(�̇�1 − �̇�2) + 𝑘2(𝑥1 − 𝑥2) + 𝑑1�̇�1 + 𝑘1𝑥1 + 𝑘 (𝑥1) = 0

𝑚2�̈�2 + 𝑑2(�̇�2 − �̇�1) + 𝑘2(𝑥2 − 𝑥1) = 𝑢,
(25)

where 𝑢 is the input force acting on the system, 𝑥2, which is considered
as the system output, is the measured displacement of mass 2 and 𝑘
denotes a hysteretic spring response that affects the displacement of
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Fig. 6. Schematic of the hysteretic 2-DOF mass–spring–damper system where the
hysteretic spring element is represented by 𝑘 . The force 𝑢 is the system input, 𝑥2
is the measured system output.

Table 1
Parameters of the hysteretic mass–spring–damper system.
𝑚1 𝑚2 𝑘1 𝑑1 𝑘2 𝑑2 𝐾 𝑟𝑢 𝑛
[kg] [kg] [N∕m] [Ns∕m] [N∕m] [Ns∕m] [N∕m] [N]

2.27 2.86 1100 15 1.1 ⋅ 104 19.9 3000 0.8 1

mass 1 which obeys the extended Masing rules of hysteresis. Follow-
ing [49] on the extended Masing models (EMM), we use this specific
model:

�̇� (𝑥1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐾
[

1 −
|

|

|

|

𝑘
𝑟𝑢

|

|

|

|

𝑛]

�̇�1, initial loading

𝐾
[

1 −
|

|

|

|

𝑘−𝑟∗

2𝑟𝑢

|

|

|

|

𝑛]

�̇�1, other branches
, (26)

where 𝐾 and 𝑟𝑢 are system properties for initial stiffness and ultimate
strength, respectively, while 𝑛 controls the transition rate from fully
elastic to fully plastic behavior. The restoring force value 𝑟∗ needs to
be updated ‘‘on the fly’’ following the appropriate load reversal points
after implementing the EMM switching rules in a numerical simulation.
The system’s parameters are shown in Table 1.

Following [49], the rule-based computation of the EMM is numeri-
cally realized in this study using a hybrid dynamical system approach
for the extensively involved nonlocal memory. This 2-DOF system is
solved by using the state event location algorithm under MATLAB
routine ode45 [50]. The hysteretic spring response in terms of the
(unmeasured) displacement 𝑥1 is visualized in Fig. 7. Overall, it can
be observed that the hysteresis nonlinearity is almost insignificant at
high frequencies while it is dominant at low frequencies. Additionally,
the hysteresis width is the greatest at approximately 3 Hz, which is the
first system resonance. Finally, the measured output 𝑥2 is affected by
zero-mean white Gaussian noise with a signal-to-noise ratio of 50 dB.
The objective is to find a dynamic relationship between the input force
𝑢(𝑘) and the measured displacement 𝑥2(𝑘).

6.2. The data

Three datasets were considered for the nonlinear identification
problem. The training dataset was used for the estimation of an LTI
model as well as for training the PI-LFR model structure. The remaining
two test datasets were used to evaluate the performance of the trained
model on unseen data.

6.2.1. Training data
The training dataset was obtained under multisine excitation of the

MSD system. The input signal consists of 3 signal realizations using
Eq. (18) with 𝑁𝑠 = 1024, 𝑓𝑚𝑎𝑥 = 30 Hz, 𝑓𝑠 = 120 Hz and normalized with
respect to their standard deviation. Each signal realization consists of
two half periods that are shaped by a Tukey window function and one
full steady-state period in between. The implemented Tukey window
function ensures that the transition between each signal realization is
smooth and thus avoiding any potential numerical issues during the
simulation of the system.
6

Fig. 7. Mapping between the hysteretic spring response 𝑘 (𝑥1) and the unmeasured
state variable 𝑥1 of the mass–spring–damper system for various frequencies of the input
signal 𝑢. The hysteretic loops were generated using a unit amplitude sine sweep signal
that covers the frequency band from 0.1 Hz to 30 Hz at a sweep rate of 1.17 Hz/s.

Fig. 8. Linear analysis of the 2-DOF mass–spring–damper system. The BLA estimate is
shown in blue, the magnitude response of the 5th order LTI model is shown in red,
the error between them is shown in yellow and the total variance 𝜎2

𝑡 (variance due to
noise + stochastic nonlinear distortion) of the BLA estimate is shown in purple.

6.2.2. Test data
Two test datasets are considered to evaluate the performance of the

trained nonlinear model and are obtained by simulating the system
under multisine and sinesweep excitations:

• The multisine test data was obtained using a multisine input
signal that has the same properties as the one used for training
(same frequency range but with different random phases).

• The sinesweep test data was obtained using a unit amplitude
sinesweep input signal that covers the frequency band from
0.1 Hz to 30 Hz at a sweep rate of 1.17 Hz/s.

6.3. Linear analysis results

A linear model of the hysteretic 2-DOF mass–spring–damper system
was obtained using the robust approach of the BLA framework [41].
The BLA was estimated using only the three steady-state periods and
is shown in Fig. 8. A parametric LTI model was identified starting
from the BLA estimate and its magnitude response is also shown in
Fig. 8. The order of the LTI model was set to 5 during the identification
in order to capture any dynamical effect presented by the hysteresis
nonlinearity. With this additional state, the identified parametric LTI
model resulted in lower error especially at low frequencies compared
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Fig. 9. Time-domain (left) and frequency-domain (right) test results of the trained PI-LFR model structure using multisine signals. The true system output is shown in blue, the
residuals obtained with a 5th-order LTI model (the one used to initialize the PI-LFR model) are shown in red and the residuals obtained with the PI-LFR model are shown in
yellow.
to a 4th-order LTI model. The error between the BLA estimate and the
5th-order LTI model can be seen matching the total distortion level.
This indicates that the identified LTI model sufficiently captures all
the linear dynamics of the system. This linear model is used for the
initialization of the PI-LFR model structure.

6.4. Nonlinear model identification results

Two PI-LFR models, one with 𝑁 = 10 and a second with 𝑁 = 20
play operator neurons were trained using the training dataset. The
proposed PI-LFR approach is compared to more classical (non)linear
system identification approaches:

• A 5th-order LTI state–space model identified using the ‘ssest’
Matlab command [51],

• A general purpose nonlinear state–space model similar to the one
used in [22] to identify a Bouc–Wen hysteretic system. How-
ever, this time with a 1-hidden layer neural network with 𝑛𝑛
neurons representing the nonlinear state-transition and output
functions [52] instead of a polynomial. 4 cases are considered
covering 𝑛𝑥 ∈ [5, 10] and 𝑛𝑛 ∈ [10, 20]. These models are denoted
as state–space neural networks (SS-NN),

• A Hammerstein model using a PI hysteretic nonlinearity (PI-
Hamm) with 𝑁 PI element, where 𝑁 ∈ [10, 20], and a 5th-order
state–space LTI block [53]. This model is trained in the same way
as the PI-LFR model. Actually, the PI Hammerstein model is a
special case of the PI-LFR model class.

• A NARX models with 𝑛𝑏 = 𝑛𝑎 ∈ [5, 10] delayed inputs and outputs
and a 1-hidden layer neural network with 𝑛𝑛 ∈ [5, 10] neurons to
model the nonlinearity [54].

he optimization of the PI-LFR, the SS-NN, and the NARX model is
erformed using the Neural Network Toolbox of Matlab. The PI-LFR
nd the SS-NN model training use a Levenberg–Marquardt optimizer
ith a maximum of 1000 epochs. However, all identification runs

onverged before the maximum epoch was reached. Beyond varying
he classical hyperparameters, such as the number of input and output
ags and the number of neurons in the neural network, the NARX model
raining uses the standard narxnet settings of Matlab.

As a measure of model quality, the normalized RMS error (nor-
alized with respect to the standard deviation of the output signal)

s reported for the three datasets:

𝑟𝑚𝑠 =

√

√

√

√

√

1
𝑀

𝑀
∑

𝑘=1

(

𝑦(𝑘) − 𝑦(𝑘|𝜃𝑜)
𝜎𝑦

)

2

, (27)
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where 𝜎𝑦 represents the standard deviation of the output signal. o
The time domain and frequency domain test results of the PI-LFR
(𝑁 = 20) under multisine and sinesweep excitations are shown in
Figs. 9 and 10 respectively. It is observed that the trained PI-LFR model
significantly outperforms the LTI model.

Furthermore, a Monte-Carlo simulation of 100 independent runs has
been carried out to study the variability of the final identified models
due to the random initialization of the model parameters. The results,
shown in Fig. 11, indicate significant variability in the quality of the
model. However, for an increasing number of PI elements, it becomes
more likely to obtain high-quality models (i.e. the 25th percentile
is dropping significantly, and less high outliers are observed). When
compared to the PI-LFR model with fewer hysteresis operator neurons,
the reported PI-LFR 𝑁 = 20 model achieves better performance for the
multisine cases while it performs slightly worse for the sinesweep case
(see also Table 2). The estimated standard deviation of the noise �̂�𝑛 =
0.0033 is close to the RMS errors obtained by the PI-LFR models. Hence,
it is reasonable to expect that by running the identification procedure
5–10 times, a high-quality estimate will be obtained. Note that a
single run of the identification algorithm on the considered simulation
problem takes approximately 2 minutes on an average laptop (Intel
Core i7-10750H CPU 2.60 GHz, 16 GB RAM, Windows 10).

Table 2 shows a comparison of the results obtained using the con-
sidered model structures for various model orders. The results reported
for the PI-LFR model correspond to the 25th percentile of the boxplots
shown in Fig. 11. It can be observed that the reported PI-LFR model
outperforms all the other approaches obtaining a model error that is
approximately 10× smaller than the closest other result.

The black-box identification approaches using the SS-NN and the
NARX model structure have difficulty obtaining high-quality results due
to the challenging dynamic nature of the Masing hysteretic nonlinearity
present in the data-generating system which increases the order of the
dynamics drastically.1 Such a nonlinearity requires a large state space
(SS-NN), or a large number of delayed inputs and outputs (NARX) to
capture the hysteresis dynamics. Due to this, it can be observed that
the SS-NN models are quickly overfitting when increasing the numbers
of states from 𝑛𝑥 = 5 to 𝑛𝑥 = 10, and even can become unstable
on the test set, using the given training dataset. The PI-LFR model
adds the hysteretic dynamics by increasing the number of PI hysteresis
neurons in the model, each neuron contains one state. Finally, the PI-
Hammerstein model is not even outperforming the LTI model. This is
mainly due to the mismatch between the model structure and the true
system structure. A Hammerstein model assumes that the hysteretic
nonlinearity is present at the input of the system, while this is not the

1 This is in contrast with, for instance, Bouc–Wen hysteretic systems, that
nly add one extra state in the state–space equations, see for instance [22]
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Fig. 10. Time-domain (left) and frequency-domain (right) test results of the trained PI-LFR model structure using the sinesweep test data. The true system output is shown in blue,
the residuals obtained with a 5th-order LTI model (the one used to initialize the PI-LFR model) are shown in red and the residuals obtained with the PI-LFR model are shown in
yellow.
Fig. 11. Monte-Carlo simulation results for the LFR-PI identification using varying numbers of PI operators (N). The boxplots indicate the median (horizontal red line) and the
25th and 75th percentile interval (blue box). The red crosses indicate data points that are considered to be outliers.
.

Table 2
Normalized RMS simulation error of the identified models of the hysteretic MSD system

Multisine training Multisine test Sinesweep test

LTI (5th order) 0.3026 0.2910 0.4799
PI-LFR𝑁=5 0.0275 0.0441 0.0331
PI-LFR𝑁=10 0.0090 0.0153 0.0154
PI-LFR𝑁=15 0.0078 0.0143 0.0144
PI-LFR𝑁=20 0.0073 0.0134 0.0153
SS-NN𝑛𝑥=5, 𝑛𝑛=5 0.0595 0.1410 0.3982
SS-NN𝑛𝑥=5, 𝑛𝑛=10 0.0380 0.1278 1.2101
SS-NN𝑛𝑥=10, 𝑛𝑛=5 0.0441 Unstable 0.2172
SS-NN𝑛𝑥=10, 𝑛𝑛=10 0.0357 0.2727 2.0248
PI-Hamm𝑁=10, 𝑛𝑥=5 0.2826 0.3240 0.5096
PI-Hamm𝑁=20, 𝑛𝑥=5 0.2809 0.3120 0.4930
NARX𝑛𝑎=𝑛𝑏=5, 𝑛𝑛=5 0.2411 0.2289 0.1611
NARX𝑛𝑎=𝑛𝑏=5, 𝑛𝑛=10 0.2341 0.2285 0.1606
NARX𝑛𝑎=𝑛𝑏=10, 𝑛𝑛=5 0.1479 0.1592 0.1800
NARX𝑛𝑎=𝑛𝑏=10, 𝑛𝑛=10 0.1600 0.2257 0.1716

case in this example. Hence, the Hammerstein model cannot capture
the hysteretic behavior of the system.

7. Experimental validation

In this section, the proposed model structure and identification
method are experimentally validated on a practical measurement ap-
plication.
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7.1. System description

In order to assess the performance of the proposed model, real
physical piezo-driven motion platform measurement results have been
utilized, obtained from the experimental setup depicted in Fig. 12.
It consists of a piezoelectric actuator that is placed between a mass
and a pillar which is mounted to a frame. The piezoelectric actuator
is a lead zirconate-titanate Pb(ZrTi)O3, commonly called PZT. Pre-
loading springs are used to pull the mass on top of the actuator.
Capacitive sensors are located on both sides of the mass which measure
its displacement. The considered experimental setup can be roughly
represented as a classical mass–spring–damper (MSD) system where the
input restoring force is generated by the piezoelectric actuator. The
main objective is to find a dynamic relation between the input signal
which is the voltage that drives the piezo and the output displacement
of the mass.

7.2. Linear analysis

Before the nonlinear model identification starts, a linear model of
the system is estimated over a broad frequency range (0–3000 Hz) using
10 multisine realizations with 5 steady-state periods of 8192 samples
each as an input signal. A nonparametric linear model is obtained using
the robust approach of the BLA framework and afterwords a parametric
model is identified using the frequency domain subspace identification
method [46].

The normalized BLA estimate is shown in Fig. 13. At first glance, it
can be seen that the FRF of the BLA estimate is much more complicated
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Fig. 12. Foto and schematic side view of the considered experimental piezo-driven motion setup [55].
Fig. 13. Linear analysis of the system using periodic multisine signals. The estimated
BLA is shown in blue, the total variance of the BLA estimate is shown in purple, the
variance of the BLA estimate due to noise errors is shown in green, the identified LTI
parametric BLA is shown in red and the error between non-parametric and parametric
models is shown in yellow.

if compared to the FRF of a classical MSD system. There are multiple
resonance peaks present, both at low and high frequencies. The dom-
inant resonance peaks are located at approximately 1.7 KHz and are
35 dB higher than the DC level of the system. The total variance of
the BLA estimate which is due to the nonlinearities and noise errors
is also shown in Fig. 13, which is higher than the noise variance at
low frequencies. This indicates the presence of nonlinear distortions at
that frequency range. The nonlinear distortion level is the largest in the
dominant resonance peaks of the system.

A parametric 15th order LTI model was identified starting from the
non-parametric BLA estimate. The magnitude response of the paramet-
ric model as well as the error between parametric and non-parametric
models are shown in Fig. 13. By comparing the total variance with the
error, it can be observed that the linear model manages to capture all
the linear dynamics since the error is matching the total distortion level.
This linear model is used as an initial estimate for the LTI block in the
nonlinear model structure.

7.3. Nonlinear model identification

A nonlinear model for the piezo-actuated system was identified by
exciting the piezo-actuated motion system over the bandwidth that
is of interest during system operation (0–800 Hz). 9 multisine input
9

signal realizations (Eq. (18)) with 𝑓𝑚𝑎𝑥 = 800 Hz, 𝑓𝑠 = 10 kHz, 𝑁𝑠 =
8192 number of samples are considered for training. 1 multisine input
realization is considered for testing. 5 steady-state periods of the system
response were measured for each multisine realization.

The same model classes are considered during the identification of
the piezo-actuated system as in Section 6:

• A state–space LTI model with 𝑛𝑥 = 8 states (obtained using all 10
multisine realizations).2

• Nonlinear Output Error (NOE) models with 𝑛𝑏, 𝑛𝑎 delayed inputs
and outputs, where 𝑛𝑏 = 𝑛𝑎 ∈ [5, 10] delayed inputs and outputs
and a 1-hidden layer neural network with 𝑛𝑛 ∈ [10, 20] neurons
to model the nonlinearity. NOE models are known as closed-loop
NARX networks in the Matlab Neural Network toolbox [54].

• SS-NN models with 𝑛𝑥 states, 𝑛𝑥 ∈ [8, 15], and 𝑛𝑛 neurons, 𝑛𝑛 ∈
[10, 20] to represent the nonlinearities present in the model.

• PI-LFR models with 𝑛𝑥 states with 𝑛𝑥 ∈ [8, 15] states and with 𝑁
play operator neuron elements, where 𝑁 ∈ [10, 20].

• A Hammerstein model using a PI hysteretic nonlinearity (PI-
Hamm) with 𝑛𝑥 states with 𝑛𝑥 ∈ [8, 15] states and with 𝑁 play
operator neuron elements, where 𝑁 ∈ [10, 20] [53].

• An estimate of the noise floor obtained by averaging over the
measured steady-state periods is also provided as a reference.

The NOE model structure is used instead of the NARX structure as the
NARX models failed to generalize well towards the simulation setting.
NOE models are known to generalize better in simulation tasks [56].
Furthermore, early stopping is applied while training the NOE models
to avoid strong overfitting.

The time-domain and frequency-domain test results of the estimated
PI-LFR model are shown in Fig. 14. It can be observed that the esti-
mated PI-LFR model, as expected, outperforms the LTI model and that
it achieves a model error that is for most frequencies close to the noise
level of the output after averaging over the periods.

As a measure of model quality, the normalized RMSE given in
Eq. (27) is reported. Table 3 shows a comparison of the results obtained
using the considered model classes. It can be observed that the PI-LFR
model is over two times more accurate compared to the LTI model,
about 10% better than the best SS-NN result. Both the PI-LFR𝑛𝑥=15, 𝑁=10
and PI-LFR𝑛𝑥=15, 𝑁=20 models obtain high-quality results. While the 𝑁 =
10 case has the lowest training result, the 𝑁 = 20 result performs better

2 Observe that a lower model order is used to obtain this linear estimate
compared to Section 7.2 as the dataset considered in this section only ranges
from 0 to 800 Hz, while the dataset in Section 7.2 ranged up to 3000 Hz.
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Fig. 14. Time-domain (left) and frequency-domain (right) test of the identified nonlinear model. The true system output is shown in blue, the residuals obtained with an LTI
model are shown in red and the residuals obtained with the nonlinear PI-LFR model are shown in yellow. An estimate of the noise level in the frequency domain is shown in
purple.
.

Fig. 15. Identified hysteretic mapping between the PI-LFR model input of the PI
submodel (𝑧(𝑘)) and output of the PI submodel (𝑤(𝑘)).

in test. These differences can be partially explained by the variability
present in the data, and by the nonlinear-in-the-parameters cost that
requires minimization. On top of this, the PI-LFR model uses a much
more structured representation than the SS-NN model. This allows for
easier analysis and a better explainability of the obtained model. For
example, the identified hysteretic nonlinearity can easily be extracted,
see Fig. 15 and visualized by using the 𝑤 and 𝑧 signals in the PI-
LFR model. The PI-Hamm results indicate that the underlying system
structure almost has a Hammerstein structure as the PI-LFR results are
only 3% better than the best PI-Hamm result. Finally, observe that
the normalized RMS error for the estimated PI-LFR model is not far
away from the estimated noise floor after averaging over the periods,
confirming the results observed in Fig. 14. The dominant remaining
error is present in the system resonance peaks around 0.4 and 1.6 kHz.
This error is probably caused by additional nonlinearities present in the
system.

8. Conclusion

This paper has introduced a structured nonlinear state–space model
identification approach for hysteretic systems by using a flexible in-
terconnection of PI artificial neural network hysteresis operators with
a linear state–space model through a linear fractional representation.
Firstly, we have demonstrated how Prandtl–Ishlinskii hysteretic op-
erators can be represented as compact recurrent networks called PI
hysteresis operator neurons using ReLU and SSLU activation functions.
Such PI hysteresis operator neurons, connected in parallel into an
ANN layer, have the flexibility to be combined with classical recurrent
neural networks or other dynamical system representations. Hence, it
is able to model complex hysteretic systems using widely available
and effective ANN optimization tools. Secondly, we introduced an
efficient initialization of the PI-LFR model parameters. The proposed
10
Table 3
Normalized RMS errors for the multisine training and test dataset reported for LTI,
SS-NN, NOE, and PI-LFR model estimates. An estimate of the noise floor is also reported

Training Test

LTI𝑛𝑥=8 0.2104 0.2084
NOE𝑛𝑎=𝑛𝑏=8, 𝑛𝑛=10 0.1719 0.1713
NOE𝑛𝑎=𝑛𝑏=8, 𝑛𝑛=20 0.2229 0.2256
NOE𝑛𝑎=𝑛𝑏=15, 𝑛𝑛=10 0.1590 0.1612
NOE𝑛𝑎=𝑛𝑏=15, 𝑛𝑛=20 0.1610 0.1645
SS-NN𝑛𝑥=8, 𝑛𝑛=10 0.1891 0.1891
SS-NN𝑛𝑥=8, 𝑛𝑛=20 0.1905 0.1914
SS-NN𝑛𝑥=15, 𝑛𝑛=10 0.1148 0.1155
SS-NN𝑛𝑥=15, 𝑛𝑛=20 0.1181 0.1289
PI-Hamm𝑛𝑥=8, 𝑁=10 0.1820 0.1860
PI-Hamm𝑛𝑥=8, 𝑁=20 0.1827 0.1863
PI-Hamm𝑛𝑥=15, 𝑁=10 0.1060 0.1072
PI-Hamm𝑛𝑥=15, 𝑁=20 0.1073 0.1098
PI-LFR𝑛𝑥=8, 𝑁=10 0.1862 0.1871
PI-LFR𝑛𝑥=8, 𝑁=20 0.1856 0.1868
PI-LFR𝑛𝑥=15, 𝑁=10 0.1056 0.1052
PI-LFR𝑛𝑥=15, 𝑁=20 0.1057 0.1044

Noise level 0.0884

PI-LFR approach results in the simultaneous identification of both the
hysteretic and other system dynamics present. The effectiveness of the
proposed approach is validated using a 2-DOF mass–spring–damper
system with a Masing-type hysteretic spring simulation example and
on measured piezo-actuated motion platform data. These are two illus-
trative examples of how this study can benefit estimation techniques,
measurement data processing algorithms, and mathematical models for
measurement-oriented purposes.
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Appendix. Derivations

A.1. Neural play operator derivation

A detailed study of the neural play operator representation is given
below. The play operator defined in Eq. (5) can be visualized in
Fig. A.16 while the proposed recurrent neural network representation
is given in Eq. (11).

As the function 𝑔(⋅) is applied element-wise, Eq. (11) can be split
into the following:

𝑠1(𝑘) = 𝑔(𝑢(𝑘) − 𝑦(𝑘 − 1) + 𝑟)

𝑠2(𝑘) = 𝑔(𝑢(𝑘) − 𝑦(𝑘 − 2) − 𝑟)

𝑦(𝑘) = 𝑢(𝑘) + 𝑠2(𝑘) − 𝑠1(𝑘) + 𝑟

(A.1)

The activation function 𝑔(⋅) is given by the ReLu function. Hence, these
equations can be written as:

𝑠1(𝑘) =

{

𝑢(𝑘) − 𝑦(𝑘 − 1) + 𝑟 if 𝑦(𝑘 − 1) < 𝑢(𝑘) + 𝑟
0 if 𝑦(𝑘 − 1) ≥ 𝑢(𝑘) + 𝑟

(A.2)

𝑠2(𝑘) =

{

𝑢(𝑘) − 𝑦(𝑘 − 1) + 𝑟 if 𝑦(𝑘 − 1) < 𝑢(𝑘) − 𝑟
0 if 𝑦(𝑘 − 1) ≥ 𝑢(𝑘) − 𝑟

(A.3)

Since 𝑟 > 0 if it holds that 𝑦(𝑘 − 1) < 𝑢(𝑘) − 𝑟, it also holds that
𝑦(𝑘 − 1) < 𝑢(𝑘) + 𝑟. Hence we can distinguish three possible cases:

a. If 𝑦(𝑘 − 1) ≥ 𝑢(𝑘) − 𝑟 and 𝑦(𝑘 − 1) ≥ 𝑢(𝑘) + 𝑟, then

𝑦(𝑘) = 𝑢(𝑘) + 0 − 0 + 𝑟 = 𝑢(𝑘) + 𝑟 (A.4)

b. If 𝑦(𝑘 − 1) ≥ 𝑢(𝑘) − 𝑟 and 𝑦(𝑘 − 1) < 𝑢(𝑘) + 𝑟

𝑦(𝑘) = 𝑢(𝑘) + 0 − (𝑢(𝑘) − 𝑦(𝑘 − 1) + 𝑟) + 𝑟 = 𝑦(𝑘 − 1) (A.5)

c. If 𝑦(𝑘 − 1) < 𝑢(𝑘) − 𝑟 and 𝑦(𝑘 − 1) < 𝑢(𝑘) + 𝑟

𝑦(𝑘) = 𝑢(𝑘)+(𝑢(𝑘)−𝑦(𝑘−1)−𝑟)−(𝑢(𝑘)−𝑦(𝑘−1)+𝑟)+𝑟 = 𝑢(𝑘)−𝑟 (A.6)

These expressions match exactly the original Play Operator (Eq. (5))
and its visualization in Fig. A.16.

A.2. Generalized play operator derivation

A detailed study of the generalized play operator representation is
given below. The generalized play operator is obtained by introducing
the left and right bounding functions 𝛾𝑙 and 𝛾𝑟 as in Eq. (7), where
𝛾𝑙(𝑢) < 𝛾𝑟(𝑢) for all 𝑢 and 𝑟 > 0. This equation, similar to the standard
play operator, can be visualized in Fig. A.17

As 𝑔(⋅) is the ReLu activation function and it is applied element-wise,
we can again evaluate the different cases in a piece-wise manner:

𝑠(𝑘) =

{

𝑦(𝑘 − 1) if 𝑦(𝑘 − 1) < 𝛾𝑟(𝑢(𝑘)) + 𝑟
𝛾𝑟(𝑢(𝑘)) + 𝑟 if 𝑦(𝑘 − 1) ≥ 𝛾𝑟(𝑢(𝑘)) + 𝑟

(A.7)

𝑦(𝑘) =

{

𝛾𝑙(𝑢(𝑘)) − 𝑟 if 𝑠(𝑘) < 𝛾𝑙(𝑢(𝑘)) − 𝑟
𝑠(𝑘) if 𝑠(𝑘) ≥ 𝛾𝑙(𝑢(𝑘)) − 𝑟

(A.8)

Similarly, we can distinguish three possible cases:

a. If 𝑦(𝑘 − 1) ≥ 𝛾𝑟(𝑢(𝑘)) + 𝑟 and 𝑠(𝑘) = 𝛾𝑟(𝑢(𝑘)) + 𝑟, then as 𝛾𝑙(𝑢) < 𝛾𝑟(𝑢)
we have that 𝑠(𝑘) ≥ 𝛾𝑙(𝑢(𝑘)) − 𝑟. It follows that

𝑦(𝑘) = 𝑠(𝑘) = 𝛾𝑟(𝑢(𝑘)) + 𝑟 (A.9)

b. If 𝑦(𝑘 − 1) < 𝛾 (𝑢(𝑘)) + 𝑟, then 𝑠(𝑘) = 𝑦(𝑘 − 1)
11

𝑟

Fig. A.16. An alternative visual representation of the play operator as prescribed by
Eq. (5).

Fig. A.17. An alternative visual representation of the generalized play operator as
prescribed by Eq. (7).

i. If 𝑦(𝑘 − 1) < 𝛾𝑟(𝑢(𝑘)) − 𝑟, then we have that:

𝑦(𝑘) = 𝛾𝑟(𝑢(𝑘)) − 𝑟 (A.10)

ii. If 𝑦(𝑘 − 1) ≥ 𝛾𝑟(𝑢(𝑘)) − 𝑟, then we have that:

𝑦(𝑘) = 𝑠(𝑘) = 𝑦(𝑘 − 1) (A.11)

These expressions match exactly the generalized Play Operator equa-
tion (Eq. (7)), and its visualization in Fig. A.17.
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