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A B S T R A C T

Data-driven predictive control (DPC) has gained an increased interest as an alternative to model predictive
control in recent years, since it requires less system knowledge for implementation and reliable data is
commonly available in smart engineering systems. Several data-driven predictive control algorithms have
been developed recently, which largely follow similar approaches, but with specific formulations and tuning
parameters. This review aims to provide a structured and accessible guide on linear data-driven predictive
control methods and practices for people in both academia and the industry seeking to approach and explore
this field. To do so, we first discuss standard methods, such as subspace predictive control (SPC), and data-
enabled predictive control (DeePC), but we also include newer hybrid approaches to DPC, such as 𝛾–data-driven
predictive control and generalized data-driven predictive control. For all presented data-driven predictive
controllers we provide a detailed analysis regarding the underlying theory, implementation details and design
guidelines, including an overview of methods to guarantee closed-loop stability and promising extensions
towards handling nonlinear systems. The performance of the reviewed DPC approaches is compared via
simulations on two benchmark examples from the literature, allowing us to provide a comprehensive overview
of the different techniques in the presence of noisy data.
. Introduction

Model predictive control (MPC) (Camacho & Bordons, 2007; Ma-
iejowski, 2002; Rawlings et al., 2017) has become the go-for advanced
ontrol method in many application domains, including (but not lim-
ted to) mechatronics, robotics, power electronics, automotive systems,
nd smart infrastructures. The reasons for its popularity are several,
omprehending its capability of handling constraints, devising antici-
ating control actions and delivering optimal performance. At the same
ime, one of the main issues in designing MPC lies in its inherent de-
endence on a prediction model, which might be cumbersome to derive
rom first principles, especially when complex systems have to be con-
rolled. Since obtaining and maintaining accurate first-principles-based
odels often takes the lion’s share of design time and effort, while

eliable data are becoming increasingly and readily available in mod-
rn, smart engineering systems (see, e.g., Hou and Wang (2013) and
amnabhi-Lagarrigue et al. (2017) and references therein), data-driven
ethods have hence recently gained an increased interest.

Roughly speaking, these approaches can be distinguished into two
amilies, based on how data are leveraged. On the one hand, data can be
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1 This is not true in control-oriented identification. The reader is referred to Formentin and Chiuso (2021) and the references therein for an overview of
ontrol-oriented identification techniques.

exploited to learn a model for the plant to be controlled by employing
system identification tools, e.g., Ljung (1999). The learned model can
then be embedded into the MPC problem and used to determine the
optimal control action, following a standard (model-based) rationale.
Although benefiting from model-based guarantees, this approach is of-
ten prone and sensitive to modeling errors, hence requiring the designer
to focus more on the system identification phase (e.g., on selecting the
right model structure), rather than on the actual control design (Gevers,
2005). Moreover, system identification techniques generally aim at
attaining the best possible predictor, while often disregarding its final
use.1 On the other hand, we are recently experiencing the renaissance
of Data-driven Predictive Controllers (DPC). This class of approaches
directly relies on raw (or slightly pre-processed) data to predict the
future response of the controlled system, without requiring any explicit
identification of a model prior to control design. Hence, DPC methods
directly exploit the available data to fulfill the control objective, while
(allegedly) reducing the engineering effort required for control design.
Indeed, DPC schemes eliminate the need for a state observer and any
explicit identification phase, but they still require the designer to make
vailable online 9 November 2023
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several choices on a set of critical hyper-parameters. Moreover, where
system identification often emphasizes on one-step-ahead prediction,
DPC seeks to minimize the predicted tracking errors and control efforts
over the entire prediction horizon (Köhler et al., 2022).

According to the rationale introduced in Hou and Wang (2013), DPC
approaches can be further classified into indirect and direct methods.
Indirect strategies, like Subspace Predictive Control (SPC) (Favoreel
et al., 1999), rely on the identification of prediction matrices directly
from data, which are then used to construct the controller. This inter-
mediate (modeling) stage makes these approaches suited to be used
in combination with large data-sets, which can thus be leveraged
to reduce the predictor’s bias without hampering the computational
complexity of the design problem. Instead, in direct DPC approaches
(such as Data-EnablEd Predictive Control (DeePC) Coulson et al., 2019)
future outputs are predicted directly from structured data by relying on
behavioral system theory and Willems’ fundamental lemma (Willems
et al., 2005). In turn, this allows for the employed predictor to be
“control-oriented”(i.e., emphasizing on delivering predictions for con-
trol), while providing the degrees of freedom to have a direct, tunable
trade-off between the bias and variance of the employed predictor.
However, direct DPC approaches often scale with the dimension of
the available data-set, so that only small sets of data can be used to
efficiently solve these problems in real-time. Note that, in the context of
DPC the notion of direct control is slightly different compared to other
data-driven methods (e.g., the VRFT approach Campi et al., 2002), in
that DPC techniques still rely on a predictor and they are direct for as
far ‘‘direct’’ one can go in predictive control.

Within a deterministic (a.k.a., noise-free) scenario, Berberich et al.
(2021b) and Coulson et al. (2019) prove that DeePC is equivalent to
MPC, thus connecting the established, model-based predictive control
rationale with the data-driven one. Moreover, despite the aforemen-
tioned classification, in this deterministic scenario, indirect and direct
approaches result to be equivalent, as established in Fiedler and Lucia
(2021) for SPC and DeePC. Also in light of these equivalences, a
new wave of hybrid methods have also recently emerged (see Breschi,
Chiuso and Formentin (2023), Dörfler et al. (2022) and Lazar and
Verheijen (2023)). These intermediate approaches seek to combine
the low dimensional efficiency of indirect methods with the tunable
bias/variance trade-off characterizing direct strategies.

The actual differences between direct, indirect and hybrid ap-
proaches come into play when noisy data are used. While standard
SPC solely relies on the asymptotic (for data-sets of infinite length)
unbiasedness of the predictor to cope with noisy data, van Wingerden
et al. (2022) introduces an instrumental variable (IV) scheme for noise
handling in DeePC, and shows its equivalence with an SPC approach
that also employs IVs to counteract noise. Instead, direct and hybrid
approaches generally cope with noisy data by introducing a set of
slack variables and by augmenting the control cost with regularization
terms, whose penalties have then to be tuned to possibly reduce the
impact of noise on the controller performance. In particular, Fiedler
and Lucia (2021) introduces a set of slack variables to cope with the
noise affecting the closed-loop inputs and outputs used to initialize the
DeePC scheme at each time step. These slack variables are then regu-
larized to contain their values, ultimately requiring the user to select
two (sufficiently large) regularization penalties. By also introducing a
slack on the closed-loop outputs used for DeePC initialization, Coulson
et al. (2019) further copes with noise via a lasso regularization on
the predictor’s parameters. Alternative regularization strategies are
further introduced in Dörfler et al. (2022), where it also shows that
tuning the associated penalties is far from trivial, with sloppy choices
of these hyper-parameters potentially resulting in poor closed-loop
responses. Meanwhile, Dörfler et al. (2022) also proposes a subspace-
driven regularization that recovers the predictions characteristics to
SPC for high tuning weights, thus providing some insights on the effect
of different choices of the regularization penalty. However, due to the
2

nature of the employed predictor, all the schemes introduced in Dörfler
et al. (2022) can only be employed in combination with small data-sets,
while it is well known that the use of large data-sets is preferable when
handling noisy data to attain reliable predictions, see, e.g., Berberich
et al. (2021b), Dörfler et al. (2022) and Lazar and Verheijen (2022).
In an effort to reduce the ability to leverage large data-sets, Lazar and
Verheijen (2023) embeds SPC predictions generated by using a large
set of data with a DeePC scheme of manageable size, to guarantee a
tunable bias/variance trade-off. Instead, via LQ-decomposition, Breschi,
Chiuso and Formentin (2023) derives a DPC method directly conceived
within a stochastic setting (differently from the others) that essentially
introduces a tunable bias/variance into SPC while minimizing the on-
line computational load. On this line, a.k.a., by pre-manipulating the
data matrices, Zhang et al. (2022) proposes to perform a singular
value decomposition on the original Hankel data matrix. DeePC is then
designed based on the resulting reduced Hankel matrix. Therein, it was
shown that this approach can significantly reduce the computational
complexity of DeePC, while improving the accuracy of predictions for
noisy data. By solely focusing on a reduction of computational complex-
ity, Baros et al. (2022) introduces an efficient numerical method that
exploits the structure of Hankel matrices to efficiently solve quadratic
programs (QPs) specific to DeePC.

Analyzing closed-loop stability of DPC algorithms is also a very ac-
tive research subject, with stability guarantees for DeePC first reported
in Berberich et al. (2021b) by means of terminal equality constraints
and input–output-to-state stability Lyapunov functions. A relaxation
to terminal set conditions for DeePC is further provided in Berberich
et al. (2021c). An alternative, dissipativity-based, approach is proposed
in Lazar (2021) and Lazar and Verheijen (2023), where terminal in-
equality constraints and dissipation inequalities involving storage and
supply functions are used.

Aside from methodological developments, DPC techniques have also
been already successfully tested on a broad range of real-world control
problems. Examples span from the application of SPC for the control
of nuclear reactors (Vajpayee et al., 2018) and cooling data-centers (Li
et al., 2023), to those of DeePC for building temperature regulation (Di
Natale et al., 2022), battery charging management (Zhang et al., 2023),
quadcopter control (Elokda et al., 2021), or for the regulation of
synchronous motor drives (Carlet et al., 2022). Still on the application
side, Markovsky et al. (2023) discusses in detail the implementation
aspects of DeePC when used for power electronics and power sys-
tems control. Readers interested in these applications are referred
to Markovsky et al. (2023) and the references therein for additional
information.

The remainder of this paper is structured as follows. Section 2
presents the standard notation used in MPC, setting the basis for
the introduction of the DPC approaches summarized in Section 3. In
Section 4 we then introduce and compare the tuning guidelines of dif-
ferent approaches for noisy data, providing an overview of conditions
for guaranteeing closed-loop stability, and pinpointing the reader to
some extensions of DPC beyond linear systems. Section 5 subsequently
presents a comparison of the closed-loop performance attained with
each of the reviewed methods, focusing on two benchmark systems
from the literature. The paper ends with some concluding remarks and
directions for future work in Section 6.

Notation. Throughout the paper, the sets of natural and real numbers
are respectively denoted as N and R, while we indicate the set of
real vectors of dimension 𝑛 × 1 as R𝑛. Let N≥1 denote the set of
natural numbers excluding zero. For any finite collection of 𝑞 ∈ N≥1
vectors {𝜉1,… , 𝜉𝑞} ∈ R𝑛1 × ⋯ × R𝑛𝑞 we will make use of the operator
col(𝜉1,… , 𝜉𝑞) ∶= [𝜉⊤1 ,… , 𝜉⊤𝑞 ]

⊤ to indicate the vector stacking them in
a column. Given a matrix 𝐴 ∈ R𝑛×𝑚, we indicate its Frobenius norm
as ‖𝐴‖Fro and its generalized pseudo-inverse as 𝐴†. A Hankel matrix

constructed using an arbitrary dataset 𝑧, with depth 𝑁 , length 𝑇 and
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starting index 𝑖 is denoted as:

H 𝑖
[𝑁,𝑇 ](𝑧) ∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝑧(𝑖) 𝑧(𝑖 + 1) … 𝑧(𝑖 + 𝑇 − 1)
𝑧(𝑖 + 1) 𝑧(𝑖 + 2) … 𝑧(𝑖 + 𝑇 )

⋮ ⋮ ⋮
𝑧(𝑖 +𝑁 − 1) 𝑧(𝑖 +𝑁) … 𝑧(𝑖 + 𝑇 +𝑁 − 2)

⎤

⎥

⎥

⎥

⎥

⎦

(1)

where the samples in 𝑧 can comprise information incoming from multi-
ple channels (e.g., multiple inputs or outputs), i.e., 𝑧(𝑖) =
𝑧0(𝑖) 𝑧1(𝑖) … 𝑧𝑟(𝑖)

]𝑇 .

. Preliminaries on MPC for linear systems

Consider the discrete-time, stochastic linear dynamical system in
nnovation form
(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) +𝐾𝑒(𝑘), 𝑘 ∈ N,

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝑒(𝑘),
(2)

here 𝑥(𝑘) ∈ R𝑛 and 𝑢(𝑘) ∈ R𝑛𝑢 are the system’s state and control
nput at time 𝑘, respectively, 𝑒(𝑘) ∈ R𝑛𝑦 is the innovation at the same
ime instant, here assumed to be the realization of a zero-mean, white
tochastic process, 𝑦(𝑘) ∈ R𝑛𝑦 is the corresponding measured output,
nd (𝐴,𝐵,𝐾, 𝐶) are real matrices of suitable dimensions. Let us assume
hat (𝐴,𝐵) is controllable, (𝐴,𝐶) is observable, and the matrix 𝐴 −𝐾𝐶

is strictly stable, i.e., all its eigenvalues lie inside the unit circle.
Given a prediction horizon 𝑁 ∈ N≥1, one of the most streamlined

versions of deterministic MPC searches for the optimal input to the
system by solving:

minimize
𝐮(𝑘),𝐲(𝑘)

𝑙𝑁 (𝑦(𝑁|𝑘)) +
𝑁−1
∑

𝑖=0
𝑙(𝑦(𝑖|𝑘), 𝑢(𝑖|𝑘)) (3a)

subject to 𝐲(𝑘) = 𝛷𝑥(𝑘) + 𝛤𝐮(𝑘), (3b)

(𝐲(𝑘),𝐮(𝑘)) ∈ Y𝑁 × U𝑁 , (3c)

where

𝐮(𝑘) ∶= col(𝑢(0|𝑘),… , 𝑢(𝑁 − 1|𝑘)), 𝐲(𝑘) ∶= col(𝑦(1|𝑘),… , 𝑦(𝑁|𝑘)),

denote the 𝑁-step-ahead input trajectory computed at time 𝑘 and
the vector of corresponding output predictions 𝑦(𝑖|𝑘) at future time
𝑘 + 𝑖, for 𝑖 = 1,… , 𝑁 , respectively. By iterating system (2) and
omitting the noise-dependent components, the latter is expressed in
(3b) as a function of the future inputs 𝐮(𝑘) and the current state 𝑥(𝑘),
namely (Maciejowski, 2002)

𝐲(𝑘) = 𝛷𝑥(𝑘) + 𝛤𝐮(𝑘), where 𝛷 ∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝐶𝐴
𝐶𝐴2

⋮
𝐶𝐴𝑁

⎤

⎥

⎥

⎥

⎥

⎦

,

𝛤 ∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝐶𝐵 0 ⋯ 0
𝐶𝐴𝐵 𝐶𝐵 ⋯ 0
⋮ ⋮ ⋱ ⋮

𝐶𝐴𝑁−1𝐵 𝐶𝐴𝑁−2𝐵 ⋯ 𝐶𝐵

⎤

⎥

⎥

⎥

⎥

⎦

.

(4)

In this review, we focus on the MPC formulation with the typical
quadratic stage cost function, i.e.,

𝑙(𝑦, 𝑢) ∶= (𝑦 − 𝑟𝑦)⊤𝑄(𝑦 − 𝑟𝑦) + (𝑢 − 𝑟𝑢)⊤𝑅(𝑢 − 𝑟𝑢), (5)

for some positive definite 𝑄,𝑅 matrices and user-defined references
𝑟𝑦 ∈ R𝑛𝑦 and 𝑟𝑢 ∈ R𝑛𝑢 , that can be either constant or time-varying.
The objective function in (3a) additionally features the terminal cost
𝑙𝑁 (𝑦(𝑁|𝑘)), allowing one to weight the last output prediction 𝑦(𝑁|𝑘)
ifferently from the others. If the output is equal to the state, this termi-
al cost is typically computed using an LQR local control law (Rawlings
t al., 2017) to guarantee closed-loop stability. However, in practice
his is typically not the case, a common choice for the terminal cost is a
caled version of the output stage cost, i.e., 𝑙𝑁 (𝑦) ∶= 𝛼𝑙(𝑦, 0), with 𝛼 ≥ 1.
he feasible sets Y and U are here supposed to be convex compact sets
3

that contain the desired references in their interior; most often these
sets are polytopes.

Once (3) is solved and, thus, the optimal control sequence 𝐮∗(𝑘)
is obtained, only 𝑢∗(0|𝑘) is retained and used to feed the system
(i.e., 𝑢(𝑘) = 𝑢∗(0|𝑘)), while the remaining predicted inputs are dis-
carded. By working in a receding-horizon fashion, this procedure is
repeated again at the next time step, with Problem (3) solved again
based on the updated initial state 𝑥(𝑘 + 1).

By looking at (3), it is clear that one is bound to have access to the
state 𝑥(𝑘) (or its estimate) at each time instant to solve the predictive
control problem. However, the state might not be directly measurable
in practice, ultimately making it necessary to design a state estimator
(like a Kalman filter) and, thus, increasing the complexity of the design
procedure. At the same time, a model of system (2) is also clearly
needed to construct the problem in (3) at the core of MPC. Such a model
is commonly obtained either using first principles (i.e., by hand) or
exploiting data in combination with system identification techniques.
However, both these approaches have well-known drawbacks. Indeed,
first principles modeling becomes cumbersome when the complexity of
the system increases, while identification often takes much of the de-
sign time and identification techniques generally disregard the ultimate
use of the model.

In the next section, we introduce four different data-driven pre-
dictive control strategies, that aim at coping with the aforementioned
limitations by directly using input–output data instead of an explicit
model of the system and a state estimator.

3. Data-driven predictive control

To overcome the first limitation of MPC mentioned in the previous
section, the dependence of problem (3) on the (possibly inaccessible)
state 𝑥(𝑘) has to be replaced with that on the measured inputs and out-
puts. To this end, along with the “future horizon” 𝑁 already featured in
(3), let us consider the “past horizon” 𝑇ini ∈ N≥1. According to this new
horizon, we construct the following sequences of past inputs/outputs

𝐮ini(𝑘) ∶= col(𝑢(𝑘−𝑇ini),… , 𝑢(𝑘−1)), 𝐲ini(𝑘) ∶= col(𝑦(𝑘−𝑇ini+1),… , 𝑦(𝑘)),

that we will then use to characterize the initial condition of the system
at time 𝑘. It is worth pointing out that 𝑇𝑖𝑛𝑖 is inherently linked to the
order of the system. In particular, it should be selected so that 𝑇𝑖𝑛𝑖 ≥ 𝑛,
as discussed in more detail in the next section.

Meanwhile, to shift from the model-based predictor in (3b) to its
data-driven counterpart, we suppose to have access to an informative
set of input/output pairs {�̄�, �̄�} of length 𝑇 , where informativity is here
guaranteed by the fact that the available input sequence is persistently
exciting of order 𝑇ini +𝑁 + 𝑛 according to the following definition.

Definition 3.1 (Persistence of Excitation). The input data sequence �̄� is
called persistently exciting of order 𝐿 if the rank of the Hankel matrix
satisfies

rank
(

H 0
[𝐿,𝑇 ](�̄�)

)

= 𝐿𝑛𝑢. (6)

In turn, this definition implies that 𝑇 is sufficiently long, i.e.,

𝑇 ≥ 𝑛𝑢(𝑇ini +𝑁 + 𝑛). (7)

hese data are used to construct the following Hankel matrices:

𝐔𝑝 ∶= H 0
[𝑇ini ,𝑇 ]

(�̄�), 𝐘𝑝 ∶= H 1
[𝑇ini ,𝑇 ]

(�̄�),

𝑓 ∶= H 𝑇ini
[𝑁,𝑇 ](�̄�), 𝐘𝑓 ∶= H 𝑇ini+1

[𝑁,𝑇 ] (�̄�).
(8)

hese matrices are at the core of the four data-driven predictive control
pproaches reviewed in this section, namely SPC (Favoreel et al., 1999),
eePC (Coulson et al., 2019), 𝛾-DDPC (Breschi, Fabris et al., 2023)
nd GDPC (Lazar & Verheijen, 2023). Apart from reviewing their main
eatures, for each data-driven control strategy, we include a table
ummarizing numbers and properties to facilitate their comparison by
he interested user.
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Remark 3.2 (Handguide to Construct the Hankel Matrices). Let us con-
sider the generic input/output time series denoted as:

𝑈 ∶=
[

�̄�(0) … �̄�(𝑇 + 𝑇ini +𝑁)
]

, 𝑌 ∶=
[

�̄�(0) … �̄�(𝑇 + 𝑇ini +𝑁)
]

In MATLAB, the corresponding Hankel matrices (8) can be constructed
with the following code-snippet:

1 Up = zeros(Tini*nu, T); Uf = zeros(N*nu, T);

2 Yp = zeros(Tini*ny, T); Yf = zeros(N*ny, T);

3

4 for i = 1:Tini

5 Up((i-1)*nu+1:i*nu, :) = U(:, i :i+T-1);

6 Yp((i-1)*ny+1:i*ny, :) = Y(:, i+1:i+T);

7 end

8 for i = 1:N

9 Uf((i-1)*nu+1:i*nu, :) = U(:, ...

i+Tini:i+Tini+T-1);

10 Yf((i-1)*ny+1:i*ny, :) = Y(:, ...

i+Tini+1:i+Tini+T);

11 end

3.1. Subspace predictive control

Subspace Predictive Control (SPC) (Favoreel et al., 1999) can be
seen as the precursor of recently developed data-driven predictive
control techniques, being one of the first attempts to directly incorpo-
rate results from subspace identification (van Overschee & De Moor,
1996) into the MPC design problem. SPC is an indirect data-driven
approach, that revolves around the estimation of prediction matrices
from input/output data rooted in the following relationship:

𝐲(𝑘) =
[

𝑃1 𝑃2 𝛤
]

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
∶=𝛩

⎡

⎢

⎢

⎣

𝐮ini(𝑘)
𝐲ini(𝑘)
𝐮(𝑘)

⎤

⎥

⎥

⎦

, (9)

according to which future outputs can be described as a linear combina-
tion of previous inputs/outputs and future inputs, with 𝛤 defined as in
(4). By relying on this relation, the estimation of the unknown matrix
𝛩 can be carried out by solving the least-squares problem (Favoreel
et al., 1999; Verheijen et al., 2021):

min
𝛩

‖

‖

‖

‖

‖

‖

‖

𝐘𝑓 − 𝛩
⎡

⎢

⎢

⎣

𝐔𝑝
𝐘𝑝
𝐔𝑓

⎤

⎥

⎥

⎦

‖

‖

‖

‖

‖

‖

‖

2

Fro

, with solution 𝛩∗ =
[

𝑃1 𝑃2 𝛤
]

= 𝐘𝑓
⎡

⎢

⎢

⎣

𝐔𝑝
𝐘𝑝
𝐔𝑓

⎤

⎥

⎥

⎦

†

,

(10)

where 𝛤 is the data-driven estimation of 𝛤 . Note that, in a noise-
free setting, 𝑃1𝐮ini(𝑘) + 𝑃2𝐲ini(𝑘) = 𝛷𝑥(𝑘) and 𝛤 = 𝛤 (see Verheijen
et al. (2021)), hence allowing to establish the equivalence between
MPC and SPC. In a deterministic case, the prediction matrices 𝑃1 and
2 can be derived from the state-space system with the following
efinitions (Verheijen et al., 2021):

𝐗𝑝 ∶=
[

𝑥(0) … 𝑥(𝑇 )
]

, 𝐗𝑓 ∶=
[

𝑥(𝑇ini) … 𝑥(𝑇 + 𝑇ini)
]

,

ini =
[

𝐴𝑇ini−1𝐵 … 𝐴𝐵 𝐵
]

,
(11)

and
𝐘𝑝 = 𝛷ini𝐗𝑝 + 𝛤ini𝐔𝑝,
𝐘𝑓 = 𝛷𝐗𝑓 + 𝛤𝐔𝑓 ,
𝐗𝑓 = 𝐴𝑇ini𝐗𝑝 + Cini𝐔𝑝.

(12)

Under the assumptions that system (2) is observable and 𝑇ini ≥ 𝑛, then
there exists an 𝑀 such that 𝐴𝑇ini+𝑀𝛷ini = 0 and the following relations
hold:
𝐘𝑓 = 𝛷𝐴𝑇ini𝐗𝑝 +𝛷Cini𝐔𝑝 + 𝛤𝐔𝑓 ,

( ) (13)
4

= 𝛷 Cini +𝑀𝛤ini 𝐔𝑝 −𝛷𝑀𝐘𝑝 + 𝛤𝐔𝑓 .
Algorithm 1 SPC algorithm
Input: 𝐔𝑝,𝐘𝑝,𝐔𝑓 ,𝐘𝑓 , (𝑁, 𝑇ini, 𝑄,𝑅, 𝑟𝑦, 𝑟𝑢)
Before closing the control loop:
1: Obtain 𝛩∗ from (10) and extract 𝑃1, 𝑃2 and 𝛤 .
2: Construct controller as in (14).
During the control loop:
1: Measure 𝑦(𝑘) and construct 𝐮ini(𝑘) and 𝐲ini(𝑘).
2: Solve control law (14) and obtain 𝐮∗(𝑘).
3: Apply 𝑢(𝑘) = 𝑢∗(0|𝑘) to the system.

Table 1
SPC in a nutshell.

SPC

Problem size 𝑁(𝑛𝑢 + 𝑛𝑦)
Memory requirement (𝑁𝑛𝑦) × (𝑇ini(𝑛𝑢 + 𝑛𝑦) +𝑁𝑛𝑢)
Tunable bias–variance trade-off No
Suitable for large data-sets Yes
Additional tuning weights –

Meanwhile, if the (more realistic) scenario in which the available
data are noisy is considered, the predictor in (10) is known to asymp-
totically (i.e., for 𝑇 → ∞) result in an unbiased estimate of the true
system matrices.

The SPC control problem is thus similar to (3), yet replacing (3b)
with (9), namely

minimize
𝐮(𝑘),𝐲(𝑘)

𝑙𝑁 (𝑦(𝑁|𝑘)) +
𝑁−1
∑

𝑖=0
𝑙(𝑦(𝑖|𝑘), 𝑢(𝑖|𝑘)) (14a)

ubject to 𝐲(𝑘) = 𝑃1𝐮ini(𝑘) + 𝑃2𝐲ini(𝑘) + 𝛤𝐮(𝑘), (14b)

(𝐲(𝑘),𝐮(𝑘)) ∈ Y𝑁 × U𝑁 . (14c)

or implementation details for this type of controllers, the interested
eader is referred to Algorithm 1, while an overview of numbers and
roperties of SPC is provided in Table 1.

emark 3.3 (Reducing Computational Time with SPC). As for MPC,
he control problem in (14) can be easily rewritten in a condensed
orm, reducing the optimization variables to 𝐮(𝑘). This manipulation
s generally not as trivial for the forthcoming data-driven predictive
ontrol schemes.

.2. Data-enabled predictive control

Instead of relying on an estimate of the prediction matrices as
n SPC, Data-EnablEd Predictive Control (DeePC) is a direct data-
riven control method that predicts future output sequence 𝐲(𝑘) directly
rom Hankel matrix data. This is possible thanks to the following
eterministic result.

emma 3.4 (Willems’ Fundamental Lemma van Waarde, De Persis et al.,
020; Willems et al., 2005). Consider system (2) for 𝑒(𝑘) = 0, ∀𝑘 ∈ N,
nd let 𝐗𝑝 ∶=

[

𝑥(0) … 𝑥(𝑇 )
]

. If the measured input sequence �̄� is
ersistently exciting of order 𝑇𝑖𝑛𝑖 + 𝑁 + 𝑛, then the following statements
old.

(i) The matrix
[

𝐗𝑇𝑝 𝐔𝑇𝑝 𝐔𝑇𝑓
]𝑇

has full row rank, i.e.,

rank
⎛

⎜

⎜

⎡

⎢

⎢

𝐗𝑝
𝐔𝑝

⎤

⎥

⎥

⎞

⎟

⎟

= 𝑛 + 𝑛𝑢(𝑇𝑖𝑛𝑖 +𝑁), (15)

⎝⎣𝐔𝑓 ⎦⎠
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in turn, implying that

rank
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

𝐔𝑝
𝐔𝑓
𝐘𝑓

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

= rank
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

0 𝐼 0
0 0 𝐼

𝛷𝐴𝑇𝑖𝑛𝑖 𝛷Cini 𝛤

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐗𝑝
𝐔𝑝
𝐔𝑓

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

= 𝑛+ 𝑛𝑢(𝑇𝑖𝑛𝑖 +𝑁),

(16)

and, through the relations in (12), resulting in

rank
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

𝐘𝑝
𝐔𝑝
𝐔𝑓

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

= rank
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

𝛷ini 𝛤ini 0
0 𝐼 0
0 0 𝐼

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐗𝑝
𝐔𝑝
𝐔𝑓

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

= 𝑛+𝑛𝑢(𝑇𝑖𝑛𝑖+𝑁), (17)

where Cini =
[

𝐴𝑇ini−1𝐵 … 𝐴𝐵 𝐵
]

.
(ii) Every input/output trajectory {𝐮ini(𝑘), 𝐲ini(𝑘),𝐮(𝑘), 𝐲(𝑘)} is a trajec-

tory of system (2) if and only if

⎡

⎢

⎢

⎢

⎢

⎣

𝐔𝑝
𝐘𝑝
𝐔𝑓
𝐘𝑓

⎤

⎥

⎥

⎥

⎥

⎦

𝐠(𝑘) =

⎡

⎢

⎢

⎢

⎢

⎣

𝐮ini(𝑘)
𝐲ini(𝑘)
𝐮(𝑘)
𝐲(𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

. (18)

for some real vector 𝐠(𝑘) ∈ R𝑇 .

Proof sketch.

(i) Define:

𝐗𝑝 ∶= 𝐴𝑛𝐗𝑝−𝑛 + C𝑛𝐔𝑝−𝑛, (19)

as the relation between 𝐗𝑝 and its delayed version by 𝑛 (the
system order), considering the controllability matrix C𝑛 ∶=
[

𝐴𝑛−1𝐵 … 𝐴𝐵 𝐵
]

. Assuming that the system is control-
lable, i.e., rank(C𝑛) = 𝑛, and additionally supposing that 𝐔𝑝−𝑛 has

full row rank, and that the rank of
[

𝐔𝑇𝑝−𝑛 𝐔𝑇𝑝 𝐔𝑇𝑓
]𝑇

is equal
to 𝑛𝑢(𝑇ini +𝑁 + 𝑛), then, it holds that:

rank
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

𝐗𝑝
𝐔𝑝
𝐔𝑓

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

= rank

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎣

𝐴𝑛 C𝑛 0 0
0 0 𝐼 0
0 0 0 𝐼

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐗𝑝−𝑛
𝐔𝑝−𝑛
𝐔𝑝
𝐔𝑓

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= rank

⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎣

C𝑛 0 0
0 𝐼 0
0 0 𝐼

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝐔𝑝−𝑛
𝐔𝑝
𝐔𝑓

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

. (20)

Following Definition 3.1, the rank condition on
[

𝐔𝑇𝑝−𝑛 𝐔𝑇𝑝 𝐔𝑇𝑓
]𝑇

is equivalent to stating that the input must
be persistently exciting of order 𝑇ini +𝑁 + 𝑛. Also, 𝐴𝑛𝐗𝑝−𝑛 does
not add any necessary information to attain full rank in (20).
Furthermore, it also cannot invalidate the rank condition, which
is proven in, for example, van Waarde, De Persis et al. (2020,
Theorem 1) and Berberich et al. (2023, Section III).

(ii) Any input/output pair {�̂�, �̂�} is a trajectory of the system if there
exists a �̂�0 such that:

�̂� = 𝛷�̂�0 + 𝛤 �̂�. (21)

Since
[

𝐗𝑇𝑝 𝐔𝑇𝑝 𝐔𝑇𝑓
]𝑇

has full row rank, we know that there
exists a 𝐠(𝑘) such that

⎡

⎢

⎢

⎣

𝐗𝑝
𝐔𝑝
𝐔𝑓

⎤

⎥

⎥

⎦

𝐠(𝑘) =
⎡

⎢

⎢

⎣

𝑥(𝑘 − 𝑇ini)
𝐮ini(𝑘)
𝐮(𝑘)

⎤

⎥

⎥

⎦

, (22)

for any pair of inputs and states (De Persis & Tesi, 2020).
Therefore:
⎡

⎢

⎢

⎢

⎢

𝐔𝑝

𝐘𝑝

𝐔𝑓

⎤

⎥

⎥

⎥

⎥

𝐠(𝑘) =

⎡

⎢

⎢

⎢

⎢

0 𝐼 0
𝛷ini 𝛤ini 0
0 0 𝐼
𝑇

⎤

⎥

⎥

⎥

⎥

⎡

⎢

⎢

⎢

⎣

𝐗𝑝

𝐔𝑝

𝐔𝑓

⎤

⎥

⎥

⎥

⎦

𝐠(𝑘) =
5

⎣
𝐘𝑓 ⎦ ⎣

𝛷𝐴 ini 𝛷Cini 𝛤
⎦

d

=

⎡

⎢

⎢

⎢

⎢

⎣

0 𝐼 0
𝛷ini 𝛤ini 0
0 0 𝐼

𝛷𝐴𝑇ini 𝛷Cini 𝛤

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝑥(𝑘 − 𝑇ini)
𝐮ini(𝑘)
𝐮(𝑘)

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐮ini(𝑘)
𝐲ini(𝑘)
𝐮(𝑘)
𝐲(𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

. (23)

Furthermore, through the rank condition, we know that if
{𝐮ini(𝑘), 𝐲ini(𝑘)} is a trajectory of the system, 𝑥(𝑘 − 𝑇ini) is
determined. Then, for any 𝐮(𝑘), a unique 𝐲(𝑘) exists in the
behavior of the system. □

emark 3.5. Through the lens of the proof, the first condition of the
emma is not ‘‘if and only if’’, since the matrix can be full rank for lower
rder of excitation if

ank(C𝑚) = 𝑛, with 𝑚 < 𝑛, (e.g. rank(𝐵) = 𝑛)

or the initial state 𝑥(0) adds linearly independent information through
𝐴𝑛𝐗𝑝−𝑛 (e.g. the initial state is not an equilibrium). However, in a
data-driven setting, neither of these are assumed to be known in
general.

Despite being a deterministic result, Willems’ Lemma establishes the
minimum requirement for the input data sequence to be persistently
exciting for the unknown system one aims at controlling, ultimately
providing a first guideline on how to design the data collection experi-
ment. At the same time, it provides a strategy to predict future outputs
directly from data through (18), on which DeePC relies. However,
because of its deterministic nature, Willems’ Lemma is not sufficient
on its own when the available data are noisy. Indeed, as soon as the
available data are corrupted by noise, the property in (16) ceases to
hold, and the matrix

[

𝐔𝑇𝑝 𝐔𝑇𝑓 𝐘𝑇𝑓
]𝑇

becoming full row rank. In
urn, this implies that any arbitrary pair of input/output data can be
‘‘trajectory of the system’’, likely leading to inaccurate predictions.

To circumvent that problem, DeePC features a regularization term
teering towards 𝐠(𝑘) to be small, leading to the following optimization
roblem:

minimize
𝐮(𝑘),𝐲(𝑘),𝐠(𝑘),𝜎𝑦(𝑘)

𝑙𝑁 (𝑦(𝑁|𝑘)) +
𝑁−1
∑

𝑖=0
𝑙(𝑦(𝑖|𝑘), 𝑢(𝑖|𝑘)) + 𝜆𝑔𝑙𝑔(𝐠(𝑘))

+ 𝜆𝑦‖𝜎𝑦(𝑘)‖22 (24a)

subject to

⎡

⎢

⎢

⎢

⎢

⎣

𝐔𝑝
𝐘𝑝
𝐔𝑓
𝐘𝑓

⎤

⎥

⎥

⎥

⎥

⎦

𝐠(𝑘) =

⎡

⎢

⎢

⎢

⎢

⎣

𝐮ini(𝑘)
𝐲ini(𝑘) + 𝜎𝑦(𝑘)

𝐮(𝑘)
𝐲(𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

, (24b)

(𝐲(𝑘),𝐮(𝑘)) ∈ Y𝑁 × U𝑁 . (24c)

here 𝑙𝑔(𝐠(𝑘)) is an user-defined regularization function over 𝐠(𝑘).
his regularizer is commonly chosen as ‖𝐠(𝑘)‖22, so often that we will
rom now on refer to the scheme with this regularization as ‘‘DeePC’’.
dditionally, 𝜎𝑦(𝑘) is an auxiliary variable introduced to prevent the
roblem from turning infeasible if {𝐮ini(𝑘), 𝐲ini(𝑘)} is not in the be-
avioral set (e.g., in the presence of a disturbance). Note that, this
dditional variable introduces an additional degree of freedom in the
ptimization problem and, thus, 𝜆𝑦 is often chosen very large not to
ive the estimator too much freedom. At the same time, 𝜎𝑦(𝑘) becomes
nnecessary when 𝑇𝑖𝑛𝑖 and 𝑇 are properly chosen (see Breschi, Chiuso
nd Formentin (2023, Lemma 4)), even in the presence of noise.

emark 3.6 (Practical Note on the System Order in a Data-Driven Frame-
ork). Without knowledge of the system, accurately estimating the

tate order 𝑛 is not trivial. Instead, we advise generating an input signal
uch that

ank
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

𝐔𝑝
𝐘𝑝
𝐔𝑓

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

= 𝑛𝑢(𝑇ini +𝑁) + 𝑇ini𝑛𝑦

nd 𝑇 ≥ 𝑇ini(𝑛𝑦+𝑛𝑢)+𝑁𝑛𝑢, while choosing 𝑇ini large enough, i.e., 𝑇ini ≫
. See Section 4.1 for more information about generating informative

ata.
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Remark 3.7 (𝛱–Regularization). Although minimizing 𝐠(𝑘) in the cost
function is essential to get accurate predictions, considering a Tikhonov
regularization 𝑙𝑔(𝐠(𝑘)) = ‖𝐠(𝑘)‖𝑝 does not result in an unbiased pre-
dictor (Dörfler et al., 2022). To circumvent this issue, the following
alternative is proposed in Dörfler et al. (2022):

𝑙𝑔 ∶= ‖(𝐼 −𝛱)𝐠(𝑘)‖22, where 𝛱 ∶=
⎡

⎢

⎢

⎣

𝐔𝑝
𝐘𝑝
𝐔𝑓

⎤

⎥

⎥

⎦

†
⎡

⎢

⎢

⎣

𝐔𝑝
𝐘𝑝
𝐔𝑓

⎤

⎥

⎥

⎦

, (25)

that can be used when 𝑇 > 𝑇ini(𝑛𝑦 + 𝑛𝑢) + 𝑁𝑛𝑢, in turn ensuring that

the right-kernel of
[

𝐔𝑇𝑝 𝐘𝑇𝑝 𝐔𝑇𝑓
]𝑇

exists even under noisy conditions
(and preventing 𝛱 = 𝐼). For increasing values of 𝜆𝑔 , this regularization
choice steers 𝐠(𝑘) towards the SPC (unbiased) predictor. However, its
characteristic weights make the regularization term completely dense
and, thus, the corresponding quadratic program much more time-
consuming to solve with respect to other data-driven predictive control
approaches.

Remark 3.8 (On the Precursors of DeePC). Although the first complete
rendition of the DeePC algorithm is provided in Coulson et al. (2019)
and Yang and Li (2015) already introduced a control algorithm leverag-
ing the behavioral framework from Willems et al. (2005). Nonetheless,
differently from DeePC, the control scheme proposed in Yang and Li
(2015) relies on the splitting of 𝐠(𝑘) into a component over the past
window and one over the future window, i.e.,
[

𝐮(𝑘)
𝐲(𝑘)

]

=
[

𝐔𝑓
𝐘𝑓

]

(𝛥𝐠(𝑘) + 𝐠0(𝑘)), where 𝐠0(𝑘) =
[

𝐔𝑝
𝐘𝑝

]† [𝐮ini(𝑘)
𝐲ini(𝑘)

]

. (26)

However, this formulation does not include a constraint forcing 𝛥𝐠(𝑘)
to belong to the null space of

[

𝐔𝑇𝑝 𝐘𝑇𝑝
]𝑇

, hence it does not result in
trajectories that are consistent with the considered initial conditions
(𝐮ini(𝑘), 𝐲ini(𝑘)).

Remark 3.9 (On the Notion of Informativity). As of this point, we have
only considered that our data is the trajectory of a single system, the
true one. However, any system that contains the data/trajectory in its
behavioral representation is a valid candidate for the ‘‘true’’ system.
Compared to SPC, which provides the optimal linear unbiased estimator
that fits the data-set, DeePC optimizes over a set of predicted trajec-
tories spanned by a linear system of equations defined by the Hankel
matrix data. If there is no noise, these trajectories collapse to a unique
trajectory. In the presence of noisy data, DeePC allows for optimizing
the bias/variance trade-off as it optimizes over a set of trajectories
close to the true system trajectory. The regularization penalty in the
cost function hence prevents the optimal trajectory from deviating too
much from the unbiased estimated system trajectory (note that we do
consider noise to be Gaussian, and thus, unbounded). This is different
than other informativity-based data-driven control frameworks (van
Waarde, Eising et al., 2020), which aim to design a robust controller
that stabilizes all possible systems that are compatible with the data.
However, such frameworks assume that the noise is bounded.

The reader is referred to Algorithm 2 for a sketch of the main steps
to be carried out in DeePC, while its main features are listed in Table 2.
This summary clearly highlights one of the main limitations of DeePC
with respect to its practical application, i.e., the fact that the complexity
of the DeePC quadratic program scales with the amount of data used to
describe the system’s behavior. DeePC thus requires the designer to un-
dertake an important trade-off between online computational efficiency
and prediction accuracy. Indeed, the length of the Hankel matrices 𝑇
must be larger than both 𝑇ini and 𝑁 , and 𝑇𝑖𝑛𝑖 should be chosen as large
as possible to enhance prediction accuracy. At the same time, the larger
the data-set used, the more complex (24) becomes, especially when the
𝛱-regularization in (25) is used.
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Algorithm 2 DeePC algorithm
Input: 𝐔𝑝,𝐘𝑝,𝐔𝑓 ,𝐘𝑓 , (𝑁, 𝑇ini, 𝑄,𝑅, 𝑟𝑦, 𝑟𝑢, 𝜆𝑔 , 𝜆𝑦)
Before closing the control loop:
1: (Optionally) Construct 𝛱 as in (25).
2: Build controller as in (24).
3: Tune 𝜆𝑔 .
During the control loop:
1: Measure 𝑦(𝑘) and construct 𝐮ini(𝑘) and 𝐲ini(𝑘).
2: Solve control law (24) and obtain 𝐮∗(𝑘).
3: Apply 𝑢(𝑘) = 𝑢∗(0|𝑘) to the system.

3.3. 𝛾–Data driven predictive control

The first hybrid method bridging between SPC and DeePC we
introduce in this review is 𝛾-DDPC (Breschi, Chiuso and Formentin,
2023; Breschi, Fabris et al., 2023). By rooting its derivation from
a stochastic perspective on the predictive control problem, 𝛾-DDPC
relies on an a-priori operation on the Hankel matrices to enhance
prediction accuracy, whilst not requiring an estimate of the prediction
matrices and, thus, leveraging the degrees of freedom that characterize
DeePC.

To review this alternative data-driven control technique, let us first
define

𝐙𝑝 ∶=
[

𝐔𝑝
𝐘𝑝

]

, 𝐳ini(𝑘) ∶=
[

𝐮ini(𝑘)
𝐲ini(𝑘)

]

,

respectively grouping the ‘‘past’’ data and the initial condition char-
acterizing (18). Moreover, let us further introduce the following LQ
decomposition of the Hankel matrices featured in the predictor of
DeePC2:

⎡

⎢

⎢

⎣

𝐙𝑝
𝐔𝑓
𝐘𝑓

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐿11 0 0
𝐿21 𝐿22 0
𝐿31 𝐿32 𝐿33

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑄1
𝑄2
𝑄3

⎤

⎥

⎥

⎦

. (27)

where the matrices {𝐿𝑖𝑖}3𝑖=1 are all non-singular (under the stochastic
onditions of persistence of excitation stated in Breschi, Chiuso and For-
entin (2023, Lemma 3)), and 𝑄𝑖 have orthonormal rows, i.e., 𝑄𝑖𝑄⊤𝑖 =
, for 𝑖 = 1,… , 3, 𝑄𝑖𝑄⊤𝑗 = 0, 𝑖 ≠ 𝑗.

This last decomposition represents the key step of the 𝛾-DDPC
cheme. Indeed, right-multiplying both sides of (27) by 𝐠(𝑘) yields

⎡

⎢

⎢

⎣

𝐳ini(𝑘)
𝐮(𝑘)
𝐲(𝑘)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐙𝑝
𝐔𝑓
𝐘𝑓

⎤

⎥

⎥

⎦

𝐠(𝑘) =
⎡

⎢

⎢

⎣

𝐿11 0 0
𝐿21 𝐿22 0
𝐿31 𝐿32 𝐿33

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝛾1(𝑘)
𝛾2(𝑘)
𝛾3(𝑘)

⎤

⎥

⎥

⎦

, (28)

llowing one to replace the predictor exploited in DeePC (see (24b))
ith a new one in the new variables 𝛾𝑖(𝑘) = 𝑄𝑖𝐠(𝑘), for 𝑖 = 1, 2, 3.
ote that, unlike DeePC, the dimensions of these new optimization
ariables do not depend on 𝑇 anymore, making the control prob-
em computationally tractable even when large data-sets are used.
he number of optimization variables can be further reduced by pre-
omputing 𝛾1(𝑘). Indeed, since 𝐳ini(𝑘) is fixed, 𝛾1(𝑘) can be set to

∗
1 (𝑘) = 𝐿†

11𝐳ini(𝑘). (29)

2 This decomposition can be directly obtained using the MATLAB command
L,Q] = qr([Up; Yp; Uf; Yf]’,0); L=L’; Q=Q’;. For MATLAB
ersions R2022a and higher, the second argument of qr.m can be replaced
ith "econ".
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𝛾

Table 2
DeePC in a nutshell.
DeePC

Without 𝛱 regularization With 𝛱 regularization

Problem size 𝑁(𝑛𝑢 + 𝑛𝑦) + 𝑇 + 𝑇ini𝑛𝑦 𝑁(𝑛𝑢 + 𝑛𝑦) + 𝑇 + 𝑇ini𝑛𝑦
Memory requirement (𝑇ini +𝑁)(𝑛𝑢 + 𝑛𝑦) × 𝑇 (𝑇ini +𝑁)(𝑛𝑢 + 𝑛𝑦) × 𝑇 + 𝑇 × 𝑇
Tunable bias–variance trade-off Yes Yes
Suitable for large data-sets No No
Additional tuning weights 𝜆𝑔 , 𝜆𝑦 𝜆𝑔 , 𝜆𝑦
Algorithm 3 𝛾-DDPC control algorithm
Input: 𝐔𝑝,𝐘𝑝,𝐔𝑓 ,𝐘𝑓 , (𝑁,𝑄,𝑅, 𝑟𝑦, 𝑟𝑢, 𝑇ini, 𝛽2, 𝛽3)
Before closing the control loop:
1: Compute and extract 𝐿11, 𝐿21, 𝐿22, 𝐿31, 𝐿32, 𝐿33 from
LQ-decomposition, see (27).

2: Pre-compute
[

𝐿21
𝐿31

]

𝐿†
11.

2: Build controller as in (30).
3: Tune 𝛽2, 𝛽3.
During the control loop:
1: Measure 𝑦(𝑘) and construct 𝐮ini(𝑘) and 𝐲ini(𝑘) to get 𝐳ini(𝑘).
2: Solve control law (30) and obtain 𝐮∗(𝑘).
3: Apply 𝑢(𝑘) = 𝑢∗(0|𝑘) to the system.

Table 3
𝛾-DDPC in a nutshell.
𝛾-DDPC

Problem size 2𝑁(𝑛𝑢 + 𝑛𝑦)
Memory requirement 𝑁(𝑛𝑢 + 𝑛𝑦) × (𝑁 + 𝑇ini)(𝑛𝑢 + 𝑛𝑦)
Tunable bias–variance trade-off Yes
Suitable for large data-sets Yes
Additional tuning weights 𝛽2 , 𝛽3

Based on both the LQ-decomposition and the pre-computation of
1(𝑘), the 𝛾-DDPC problem thus reduces to

minimize
𝐮(𝑘),𝐲(𝑘),𝛾2(𝑘),𝛾3(𝑘)

𝑙𝑁 (𝑦(𝑁|𝑘)) +
𝑁−1
∑

𝑖=0
𝑙(𝑦(𝑖|𝑘), 𝑢(𝑖|𝑘)) + 𝑙𝛾 (𝛾2(𝑘), 𝛾3(𝑘), 𝛽)

(30a)

subject to
[

𝐮(𝑘)
𝐲(𝑘)

]

=
[

𝐿22 0
𝐿32 𝐿33

] [

𝛾2(𝑘)
𝛾3(𝑘)

]

+
[

𝐿21
𝐿31

]

𝐿†
11𝐳ini(𝑘), (30b)

(𝐲(𝑘),𝐮(𝑘)) ∈ Y𝑁 × U𝑁 . (30c)

where 𝑙𝛾 (𝛾2(𝑘), 𝛾3(𝑘), 𝛽) = 𝛽2‖𝛾2(𝑘)‖2 + 𝛽3‖𝛾3(𝑘)‖2, with 𝛽 =
[

𝛽2 𝛽3
]𝑇 ,

is a regularization term that can be used to trade-off between bias and
variance as in DeePC. The reader is referred to Algorithm 3 for a sketch
of the main steps to be carried out in 𝛾-DDPC, while its main features
are listed in Table 3.

Remark 3.10 (Linking 𝛾-DDPC and SPC). By setting 𝛾3 = 0 (a.k.a.,
𝛽3 → ∞) and 𝛽2 = 0, 𝛾-DDPC can be related with SPC based on the
following relation (Favoreel et al., 1999):

[

𝑃1 𝑃2 𝛤
]

=
[

𝐿31 𝐿32
]

[

𝐿11 0
𝐿21 𝐿22

]†

. (31)

This equality holds also when 𝐿33 = 0, which is true in a noise-free
setting.

3.4. Generalized data-driven predictive control

The last (hybrid) approach that we review in this survey explicitly
merges SPC and DeePC, towards benefiting from the positive aspects
of the two methods, i.e., the possibility of leveraging large data-sets
7

and the advantages of using an unbiased predictor as in SPC, and the
possibility to tune the bias–variance trade-off guaranteed by DeePC.

To this end, Generalized Data-Driven Predictive Control (GDPC)
(Lazar & Verheijen, 2023) parametrizes the input sequence as the sum
of two terms, namely a free, fixed input sequence 𝐮𝑏(𝑘), and a forced
one, that is actually optimized by solving a quadratic program on-line.

The free input is used to construct the corresponding output predic-
tions 𝐲𝑏(𝑘) according to the SPC rationale, i.e., via (9). Therefore, GDPC
initially requires one to use the (potentially large) data-set of length 𝑇
to estimate the prediction matrices

[

𝑃1 𝑃2 𝛤
]

and to construct 𝐲𝑏(𝑘)
accordingly as

𝐲𝑏(𝑘) = 𝑃1𝐮ini(𝑘) + 𝑃2𝐲ini(𝑘) + 𝛤𝐮𝑏(𝑘) (32)

Then, by considering a reduced length 𝑛𝑢(𝑁 + 𝑇ini + 𝑛) ≤ 𝑇𝑔 ≤ 𝑇 , one
can construct the GDPC Hankel matrices
�̄�𝑝 ∶=

[

�̄�(0, 𝑇ini) … �̄�(𝑇𝑔 − 1, 𝑇ini)
]

,

�̄�𝑝 ∶=
[

�̄�(1, 𝑇ini) … �̄�(𝑇𝑔 , 𝑇ini)
]

,

�̄�𝑓 ∶=
[

�̄�(𝑇ini, 𝑁) … �̄�(𝑇ini + 𝑇𝑔 − 1, 𝑁)
]

,

�̄�𝑓 ∶=
[

�̄�(𝑇ini + 1, 𝑁) … �̄�(𝑇ini + 𝑇𝑔 , 𝑁)
]

,

(33)

where

�̄�(𝑘, 𝑗) ∶= col(�̄�(𝑘),… , �̄�(𝑘 + 𝑗 − 1)),

�̄�(𝑘, 𝑗) ∶= col(�̄�(𝑘),… , �̄�(𝑘 + 𝑗 − 1)),

then formulating the GDPC problem

minimize
𝐮(𝑘),𝐲(𝑘),𝐠(𝐾),𝜎𝑦(𝑘)

𝑙𝑁 (𝑦(𝑁|𝑘)) +
𝑁−1
∑

𝑖=0
𝑙(𝑦(𝑖|𝑘), 𝑢(𝑖|𝑘)) + 𝜆𝑔𝑙𝑔(𝐠(𝑘))

+ 𝜆𝑦‖𝜎𝑦(𝑘)‖ (34a)

subject to

⎡

⎢

⎢

⎢

⎢

⎣

�̄�𝑝
�̄�𝑝
�̄�𝑓
�̄�𝑓

⎤

⎥

⎥

⎥

⎥

⎦

𝐠(𝑘) =

⎡

⎢

⎢

⎢

⎢

⎣

0
𝜎𝑦(𝑘)

𝐮(𝑘) − 𝐮𝑏(𝑘)
𝐲(𝑘) − 𝐲𝑏(𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

(34b)

(𝐲(𝑘),𝐮(𝑘)) ∈ Y𝑁 × U𝑁 , (34c)

where 𝑙𝑔(𝐠(𝑘)) can be chosen similarly to the methods used in DeePC.
However, since we already steer the estimate towards 𝐮𝑏(𝑘), 𝐲𝑏(𝑘), the
selection of 𝑙𝑔(𝐠(𝑘)) = ‖𝐠(𝑘)‖22 is the most computationally efficient
choice. Based on the results of van Waarde, De Persis et al. (2020),
we stress that the Hankel matrices �̄�𝑝, �̄�𝑓 , �̄�𝑝, �̄�𝑓 in (33) do not have
to be necessarily constructed from 𝐔𝑝,𝐘𝑝, 𝐔𝑓 ,𝐘𝑓 . Moreover, although
𝐮𝑏(𝑘) can in principle be freely chosen by the user, the closer it is to
the optimal input 𝐮∗(𝑘), the more accurate the prediction of 𝐲(𝑘) is.
The approach suggested in Lazar and Verheijen (2023) to comply with
this is to select 𝐮𝑏(𝑘) as the unconstrained solution to the SPC problem,
namely

𝐮∗𝑏 (𝑘) = argmin
𝐮𝑏(𝑘)

(𝐲𝑏(𝑘) − 𝐫𝑦(𝑘))𝑇𝛺(𝐲𝑏 − 𝐫𝑦(𝑘)) + (𝐮𝑏(𝑘) − 𝐫𝑢(𝑘))𝑇

× 𝛹 (𝐮𝑏(𝑘) − 𝐫𝑢(𝑘))

= argmin
𝐮𝑏(𝑘)

𝐮𝑏(𝑘)𝑇
(

𝛹 + 𝛤 𝑇𝛺𝛤
)

𝐮𝑏(𝑘) + 2𝐮𝑏(𝑘)𝑇

×
(

𝛤 𝑇𝛺
(

𝑃1𝐮ini(𝑘) + 𝑃2𝐲ini(𝑘) − 𝐫𝑦(𝑘)
)

− 𝛹𝐫𝑢(𝑘)
)

= −
(

𝛹 + 𝛤 𝑇𝛺𝛤
)−1 (

𝛤 𝑇𝛺
(

𝑃1𝐮ini(𝑘) + 𝑃2𝐲ini(𝑘) − 𝐫𝑦(𝑘)
)

− 𝛹𝐫𝑢(𝑘)
)

,

(35)
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Algorithm 4 GDPC control algorithm
Input: 𝐔𝑝,𝐘𝑝,𝐔𝑓 ,𝐘𝑓 , (𝑁, 𝑇ini, 𝑄,𝑅, 𝑟𝑦, 𝑟𝑢, 𝜆𝑔)
Before closing the control loop:
1: Obtain 𝛩 from (10) and extract 𝑃1, 𝑃2 and 𝛤 .
2: Pick a suitable 𝑇𝑔 and construct �̄�𝑝, �̄�𝑝, �̄�𝑓 , �̄�𝑓 , see (33).
3: Build controller as in (34).
4: Compute (𝛹 + 𝛤 𝑇𝛺𝛤 )−1.
5: Tune 𝜆𝑔 .
During the control loop:
1: Measure 𝑦(𝑘) and construct 𝐮ini(𝑘) and 𝐲ini(𝑘).
2: Compute 𝐮∗𝑏 (𝑘) from (35).
3: Obtain 𝐲𝑏(𝑘) = 𝑃1𝐮ini(𝑘) + 𝑃2𝐲ini(𝑘) + 𝛤𝐮𝑏(𝑘).
2: Solve control law (34) and obtain 𝐮∗(𝑘).
3: Apply 𝑢(𝑘) = 𝑢∗(0|𝑘) to the system.

where 𝛺 ∶= diag{𝑄,… , 𝑄, 𝛼𝑄}, 𝛹 ∶= diag{𝑅,… , 𝑅}, and 𝐫𝑦(𝑘), 𝐫𝑢(𝑘) are
he respective output and input set-point vectors. Since

(

𝛹 + 𝛤 𝑇𝛺𝛤
)−1

an be computed a-priori, the computational load online is negligible.

emark 3.11 (About Ill-Conditioned Problems). In contrast to DeePC,
𝐠(𝑘) must satisfy
[

�̄�𝑝
�̄�𝑝

]

𝐠(𝑘) =
[

0
0

]

.

Since {0, 0} this is a trajectory of every linear system, 𝜎𝑦(𝑘) should
be unnecessary for this problem. However, under noisy conditions,
small sizes of 𝑇𝑔 (i.e., 𝑇𝑔 ≤ 𝑁𝑛𝑢 + 𝑇ini(𝑛𝑢 + 𝑛𝑦)) can turn the problem
infeasible since the space of trajectories over which the solver can freely
optimize 𝐮(𝑘) over is smaller than the dimension of 𝐮(𝑘). Therefore, if
it is required to use a smaller size of 𝑇𝑔 , the slack 𝜎𝑦(𝑘) must be used
in GDPC. Also, in our experience, including 𝜎𝑦(𝑘) improves numerical
stability.

The main steps to be performed when using GDPC in combination
with (35) are finally summarized in Algorithm 4, while its main features
are delineated in Table 4.

4. Guidelines in design, implementation and tuning

Now that the algorithmic background on the surveyed data-driven
control techniques has been reviewed, it is important to provide prac-
titioners with a set of guidelines on how to actually make these data-
driven controllers work. In this section, we then introduce a set of
recommendations on how to use them and make some considerations
that can help improve your data-driven predictive controller.

4.1. Generating experiment data

Clearly, at the core of any data-driven control strategy lies the
availability of an “informative” set of input/output data, that have to
be gathered from the controlled plant. The design of the input used
in this data collection phase thus becomes crucial for the whole data-
driven design to succeed. In particular, these inputs must be persistently
exciting with an order of 𝑇ini +𝑁 + 𝑛 (see Lemma 3.4) or higher.

When experiments can be performed on the plant in open-loop,
input design can be carried out as it is commonly done in system
identification. Therefore, conventional choices for the inputs are Gaus-
sian white noises, Pseudo-Random Binary Signals (PRBS) and multi-
sines (Ljung, 1999). Although the asymptotic convergence of the pre-
dictor’s bias is guaranteed in open-loop for any persistently exciting
input, the input magnitude should strongly excite the system with
respect to the expected noise levels as it is practically impossible to
work with infinite size data-sets. We refer the reader to the results
8

of Coulson et al. (2023) for exact lower bounds on the input magnitude. t
Meanwhile, when no guarantees are available on the stability of the
system to be controlled, the data collection experiments should be
conducted in closed-loop, while still guaranteeing the required level of
excitation. In this case, one can consider the “direct method”, in which
the reference used to carry out the closed-loop experiments is strongly
persistently exciting (Van den Hof & Schrama, 1995). Alternatively,
one can add a persistently exciting input disturbance to the nominal
closed-loop input.

Remark 4.1 (The Limited Energy Case). When only limited energy is
transferred to the system, one can select inputs that have increased
spectral energy for specific frequency bands. While potentially im-
proving prediction accuracy at these frequencies, the choice of these
inputs sacrifices accuracy outside such bands. Therefore, it is a viable
experiment design option only when one seeks optimal performance
within a specific frequency band, while in all other cases, it is advisable
to excite all frequencies.

4.2. Design of the data matrices

The data-driven predictors featured in all the reviewed direct con-
trol strategies rely on the construction of a set of Hankel matrices
built from a single experiment. Nonetheless, these key elements of the
data-driven control problems can also be constructed in other ways.

Chinese page matrices
Instead of using Hankel matrices to store the data, they can also be

structured into a (Chinese) Page matrix, i.e.,

P𝑁 (𝑧) ∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝑧(0) 𝑧(𝑁) … 𝑧(𝐿)
𝑧(1) 𝑧(𝑁 + 1) … 𝑧(𝐿 + 1)
⋮ ⋮ ⋮

𝑧(𝑁 − 1) 𝑧(2𝑁 − 1) … 𝑧(𝐿 +𝑁 − 1)

⎤

⎥

⎥

⎥

⎥

⎦

.

ased on this alternative choice, every measured sample only appears
nce in the data matrices, in turn resulting in favorable stochastic
roperties (van den Hof, 1983). Moreover, the use of this alternative
tructure enables one to consider a larger set of behaviors, while still
llowing to contain the dimension of the control problem. Given the
ssues linked to its memory requirements, this is particularly desirable
n DeePC (see Table 2). For these reasons, DeePC has indeed been
ested with both Hankel and Page matrices of the same size, evidenc-
ng improved closed-loop performance when Page matrices have been
sed Coulson (2022, Section 3.2.1).

ultiple data-sets
Following the result of van Waarde, De Persis et al. (2020), the

ankel matrices do not necessarily have to be constructed with data
athered from one single experiment. Indeed, multiple Hankel matri-
es generated with diverse data-sets can be concatenated (i.e., 𝐔𝑝 =
𝐔1
𝑝 𝐔2

𝑝 … 𝐔𝑚𝑝
]

), provided that each sub-Hankel matrix 𝐔𝑖𝑝 is
constructed from one data-set only and that the concatenation still
satisfies the minimum conditions, i.e., persistency of excitation and the
minimum length of 𝑇 .

4.3. A note on the implementation of DPC on the actual system: the initial
window

All discussed data-driven predictive controllers estimate the free
response using a past window of input–output data, 𝐮ini(𝑘) and 𝐲ini(𝑘).
When the controller is implemented on the system, this data has not yet
been measured. Therefore, between 𝑡 = 0 and 𝑡 = 𝑇ini𝑇𝑠, it is advised
to let the system run in an open loop sequence (this includes using
𝑢 = 0) or using any previously applied control laws, and only activate
the data-driven controller once 𝐮ini(𝑘) and 𝐲ini(𝑘) are collected. Note

hat, for any run time less than 𝑡 = 𝑇ini𝑇𝑠, no converging statement can
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Table 4
GDPC in a nutshell.
GDPC

Problem size 𝑁(𝑛𝑢 + 𝑛𝑦) + 𝑇𝑔 + 𝑇ini𝑛𝑦
Memory requirement (𝑇ini +𝑁)(𝑛𝑢 + 𝑛𝑦) × 𝑇𝑔 +𝑁𝑛𝑢 ×𝑁𝑛𝑢 +𝑁𝑛𝑦 × (𝑇ini(𝑛𝑢 + 𝑛𝑦) +𝑁𝑛𝑢)
Tunable bias–variance trade-off Yes
Suitable for large data-sets Yes
Additional tuning weights 𝜆𝑔 , 𝑇𝑔 , 𝜆𝑦
M
p
c
p
l
d
c
a
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c

‖

be made about the estimate of the free response, regardless of the noise
variance.

4.4. Selection of 𝑇ini

Let us consider the following relationship (Knudsen, 2001):

𝑥(𝑘) = (𝐴 −𝐾𝐶)𝑇ini𝑥(𝑘 − 𝑇ini) +
𝑇ini−1
∑

𝑖=0

(

(𝐴 −𝐾𝐶)𝑖(𝐵𝑢(𝑘 − 𝑖 − 1)

+𝐾𝑦(𝑘 − 𝑖 − 1))
)

.

(36)

Since |eig(𝐴 −𝐾𝐶)| < 1, then

lim
𝑇ini→∞

𝑥(𝑘) =
𝑇ini−1
∑

𝑖=0

(

(𝐴 −𝐾𝐶)𝑖(𝐵𝑢(𝑘 − 𝑖 − 1) +𝐾𝑦(𝑘 − 𝑖 − 1))
)

, (37)

implying that the state of the system can be reconstructed exactly by
simply looking at a (long) past horizon of inputs and (noisy) outputs.
This relation shows that the choice of 𝑇𝑖𝑛𝑖 entails an engineering trade-
off. Indeed, one would aim for large 𝑇𝑖𝑛𝑖 in order to better reconstruct
the system’s state. On the other hand, increasing the past window
means that the initial time in which the controller has to run in
open-loop increases, along with the complexity of the data-driven
procedures.

Possible automated strategies to tune 𝑇ini while attaining the previ-
ous trade-off can be taken from system identification. As an example,
one can identify ARX models of increasing order with the available data
and, then, select the order leading to the model with minimum Akaike’s
Information Criterion (AIC) (Akaike, 1976). It is worth remarking that
the accuracy of these models is not relevant for the sake of control
design since they are solely used to select 𝑇ini. At the same time, for
reduced levels of noise, this strategy will lead to values of 𝑇ini that are
close to the true system order 𝑛, generally resulting in 𝑇ini ≫ 𝑛 when
the data become more noisy.

Remark 4.2 (𝑇ini and 𝑛). The vector
[

𝐮𝑇ini 𝐲𝑇ini
]𝑇 can be seen as a non-

minimal state realization for (2). Under this lens, in a deterministic
setting, the controllability of the corresponding non-minimal system is
guaranteed only when 𝑇ini = 𝑛. Nonetheless, this does not hold anymore
when the data are noisy.

4.5. Offset-free tracking by augmenting the controller with integral action

In classical MPC, offset-free tracking can be achieved by either (𝑖)
computing an input reference 𝐫𝑢 that corresponds to the desired output
set point 𝐫𝑦, or (𝑖𝑖) augmenting the system in an integral action. How-
ever, these approaches are both not straightforwardly implementable
in a data-driven setting, due to the lack of an explicit model for
the controlled system. Nonetheless, offset-free tracking can be still
attained in data-driven control through the result of Verheijen et al.
(2021, Thrm 1), which allows one to construct a rate-based, data-driven
controller following the steps summarized in Algorithm 5. Note that
this result is rooted in the augmentation of the system’s model with an
integrator, leading to its order increasing of 𝑛𝑦. Therefore, for the data-
driven control to be well-posed, �̄� must be persistently exciting with an
order of 𝑁 + 𝑇ini + 𝑛 + 𝑛𝑦.

It is worth remarking that the rate-based strategy summarized in
9

Algorithm 5 does not require the specification of any input reference,
Algorithm 5 Embed Integral action into any data-driven predictive
controller
Input: �̄�, �̄�
Before closing the control loop:
1: Construct 𝛥�̄� from �̄� as 𝛥�̄�(𝑖) = �̄�(𝑖) − �̄�(𝑖 − 1).
2: Build Hankel matrices 𝐘𝑝, 𝐘𝑓 from �̄� and 𝛥𝐔𝑝, 𝛥𝐔𝑓 from 𝛥�̄�.
3: Perform any steps of your preferred DPC rule using 𝛥𝐔𝑝 and 𝛥𝐔𝑓 ,
while considering a rate-based control law.
During the control loop:
1: Measure 𝑦(𝑘) and construct 𝛥𝐮ini(𝑘) and 𝐲ini(𝑘).
2: Solve the control law and obtain 𝛥𝐮∗(𝑘).
3: Apply 𝑢(𝑘) = 𝑢(𝑘 − 1) + 𝛥𝑢∗(0|𝑘) to the system.

while the approach inherits the capabilities of rejecting constant dis-
turbances typical of MPC schemes with integral action. At the same
time, it is important to highlight that noise has an increased influence
at low frequencies, as predictions are based on the linear combination
of the outputs and the differences of consecutive inputs. As a possible
countermeasure to reduce this effect, one could select an input used to
collect data that has higher energy at lower frequencies. Alternatively,
one could also think of designing 𝛥�̄� first, then performing the experi-
ments on the system with �̄�(𝑖) = �̄�(𝑖−1)+𝛥�̄�(𝑖). Nonetheless, even though
this choice resolves the aforementioned issue, it also implies that one
has to feed an integrating input to the open-loop system, which can be
undesirable.

4.6. Tuning guidelines

While it can be assumed that there is some engineering experience
in choosing the right 𝑄 and 𝑅 (as it is also required in tuning standard

PC), DeePC, 𝛾-DDPC and GDPC all require the choice of regularization
enalties (see Tables 2–4). However, these hyper-parameters are often
umbersome to tune in practice. Indeed, when no simulations can be
erformed on a black-box model of the system, tuning requires closed-
oop calibration experiments that can be unsafe (e.g., leading to plant
estabilization). Therefore, we now provide a set of analytical tools that
an be used by the user to pick these tuning variables, without requiring
dditional closed-loop experiments.

.6.1. Tuning guidelines for DeePC
As shown in Lazar and Verheijen (2022), the DeePC cost function

an be rewritten into a Tikhonov regularization problem as follows:

A𝐠(𝑘) − 𝐛‖22 + 𝜆𝑔‖𝐠(𝑘)‖
2
2, where A ∶= diag(𝛺

1
2 , 𝛹

1
2 )

[

𝐘𝑓
𝐔𝑓

]

,

𝐛 ∶= diag(𝛺
1
2 , 𝛹

1
2 )

[

𝐫𝑦
𝐫𝑢

]

,
(38)

with 𝛺 = diag(𝑄,… , 𝑄, 𝛼𝑄) and 𝛹 = diag(𝑅,𝑅,… , 𝑅) following the cost
function defined in (5). This enables practitioners to exploit existing
tuning strategies for the regularization penalty 𝜆𝑔 for this class of
problems, eventually avoiding lengthy and (potentially) unsafe trial-
and-error (closed-loop) procedures. In Lazar and Verheijen (2022), 𝜆𝑔
is tuned through the Hanke–Raus rule (Hanke & Raus, 1996), i.e., by
considering the following score function of 𝜆𝑔 :

2 𝑇 −3 1 (39)
𝜓(𝜆𝑔) ∶= ⟨𝐛, 𝜆𝑔(AA + 𝜆𝑔𝐼) 𝐛⟩ 2 ,
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Fig. 1. Score function 𝜓(𝜆𝑔 ) plotted against 𝜆𝑔 for the example in Section 5.1. The chosen values of 𝜆𝑔 are the circle displayed on top of the score function, with the one chosen
for DeePC corresponding to the value of 𝜆𝑔 selected for DeePC with 𝛱-regularization.
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and using its plot on a semi-logarithmic scale with respect to the
regularization penalty to select the latter. It is worth remarking that the
aforementioned tuning rationale can be employed when using the 𝛱-
regularization (see Remark 3.7) simply by imposing (Lazar & Verheijen,
2022):

A = A(𝐼 −𝛱). (40)

Next, we discuss how to interpret this plot in a practical case
to select 𝜆𝑔 . Let us specifically consider Fig. 1, which illustrates the
Hanke–Raus plots for all the reviewed DPC approaches for the case
study we will analyze in Section 5.1, and let us focus on Figs. 1(a)–
1(b). From Fig. 1(b), it is evident that 𝜓(𝜆𝑔) tends to zero when
𝜆𝑔 is approaching the two regularization extremes, i.e., 𝜆𝑔 = 0 and
𝑔 → ∞. Indeed, for 𝜆𝑔 = 0, the solution of (38) leads to over-fit
he available noisy data, while it tends to neglect the control objective
or 𝜆𝑔 → ∞, leading to undesired results in both cases (as summa-
ized in Table 5). Instead, the peak between these extremes displayed
n Fig. 1(b) represents a transitioning regime, where both objectives
re close to being equally treated and, thus, values 𝜆𝑔 proximal to
hose characterizing these peaks are preferable. At the same time, it
s generally desirable to select regularization penalties that favor 𝐠(𝑘)
uch that the system dynamics are respected, making higher values of
𝑔 preferable. From experimental experience, it appears that choosing
alues just after the peak shows to have satisfactory performance. This
an be a useful guideline in selecting an initial value for 𝜆𝑔 , which can
hen (if possible) be refined through experiments on the system until
he desired performance is achieved. While a similar tuning rationale
an be employed with 𝛾-DDPC and GDPC, since their Hanke–Raus plots
re more relatable to those of DeePC with 𝛱 regularization, the same
10
annot be said for standard DeePC. Indeed, as clear from Fig. 1(a),
he Hanke–Raus plot of standard DeePC presents multiple peaks, that
urther shift and change in number under different noise conditions.
ur experiments nonetheless indicate that using the 𝛱-regularized

Fig. 1(b)) Hanke–Raus plot to obtain a suitable value of 𝜆𝑔 for DeePC
an be a viable practical solution to circumvent this issue.

emark 4.3 (Limits in the Applicability of the Hanke–Raus Rule). If both
he input and output references are set to zero, then the Hanke–Raus
ule becomes undetermined, since 𝐠(𝑘) = 0 would minimize the cost-
unction, regardless of the weight in 𝜆𝑔 (note that in its current form,
itting 𝐠(𝑘) to the initial trajectory is not considered in the problem).
herefore, this approach is viable as long as 𝐫𝑦, 𝐫𝑢 in 𝐛 are not both
ero.

.6.2. Tuning guidelines for 𝛾-DDPC
Differently from DeePC, 𝛾-DDPC requires the user to tune two

arameters, 𝛽2 and 𝛽3 (see (30)). While these parameters can be ideally
et to 𝛽2 = 0 and 𝛽3 → ∞ when an infinite data-set is available (Breschi,
hiuso and Formentin, 2023), their choice might become critical when
limited number of data is available. Since the data at hand to design

he controller are finite in practice, we now summarize possible tuning
trategies for 𝛽2 and 𝛽3 to cope with this practical limitation.3

3 We now drop the dependence on 𝑘, as the tuning rationale we review
an be exploited for both off-line and on-line calibration of 𝛽2 and 𝛽3. Mind

that the dependence on 𝑘 should be reintroduced, whenever on-line tuning is
considered.
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Table 5
Tuning extremes in DeePC.
𝜆𝑔 → 0 𝜆𝑔 → ∞ 𝜆𝑔 (𝐼 −𝛱) → 0 𝜆𝑔 (𝐼 −𝛱) → ∞

𝐮∗(𝑘) = 𝐫𝑢 𝐮∗(𝑘) = 0 𝐮∗(𝑘) = 𝐫𝑢 𝐮∗(𝑘) = 𝐮∗SPC(𝑘)

Tuning 𝛽2. Let us consider 𝛽3 → ∞ and, accordingly, 𝛾3 = 0. In this
ase, the only hyper-parameter left to be tuned in (30) is the penalty
n the 2-norm of 𝛾2, namely 𝛽2.

As shown in Breschi, Chiuso, Fabris et al. (2023), the role of 𝛽2
epends on the features of the input data �̄� used to construct the output
redictor. Indeed, when such a sequence is white, the 2-norm regular-
zation on 𝛾2 in (30) is asymptotically (i.e., for 𝑇 → ∞) equivalent to

a penalization of the input. In this scenario, 𝛽2 (up to a scaling factor)
thus represents an additional penalty on the predicted input aside from
the weight already characterizing the stage cost. Therefore, choosing
𝛽2 = 0 could be a viable option not to change the importance ratio
between the two design objectives (with respect to the one dictated by
𝑄 and 𝑅 in (5)). Instead, the equivalence between regularization and
input penalization does not hold anymore when �̄� is not white, making
𝛽2 = 0 not an advisable choice when the data are finite, due to the
link between 𝛾2 and the output predictor variance discussed in Breschi,
Fabris et al. (2023).

With finite data, one can generally pick 𝛽2 to contain the variance of
the output predictor, in turn allowing the designer to avoid undesired
effects due to prediction errors. In particular, it is desirable for the
control sequence

𝐮 = 𝐿21𝐿
†
11𝐳ini + 𝐿22𝛾2, (41)

not to (wrongly) leverage prediction errors to make the predicted
tracking error small, i.e.,

𝜀 = 𝐲 − 𝐫𝑦 = 𝐿31𝐿
†
11𝐳ini + 𝐿32𝛾2 − 𝐫𝑦 ≃ 0. (42)

To this end, 𝛽2 can be selected either off-line or on-line for the following
relationship to hold as tightly as possible:

‖𝐿−1
33 𝜀‖

2
2 ≃

𝑁
𝑇

(

‖𝛾∗1 ‖
2
2 + ‖𝛾∗2 (𝛽2)‖

2
2
)

. (43)

where 𝑇 denotes the number of columns of the Hankel matrices.
Alternatively, one can exploit the Hanke–Raus rule already intro-

duced for the DeePC scheme in Section 4.6.1 to tune 𝛽2, by imposing:

𝜓(𝛽2) ∶= ⟨𝐛(𝛾∗1 ), 𝛽
2
2 (AA𝑇 + 𝛽2𝐼)−3𝐛(𝛾∗1 )⟩

1
2 , where

A ∶= diag(𝛺
1
2 , 𝛹

1
2 )

[

𝐿32
𝐿22

]

, 𝐛(𝛾∗1 ) ∶= diag(𝛺
1
2 , 𝛹

1
2 )

[

𝐫𝑦 − 𝐿31𝛾∗1
𝐫𝑢 − 𝐿21𝛾∗1

]

,

(44)

with 𝛾∗1 defined as in (29). Due to the dependence on 𝛾∗1 , the choice of
𝛽2 returned by the Hanke–Raus heuristics thus changes based on the
initial condition 𝐳ini, in line with the tuning rationale in (43).

Tuning 𝛽3. As discussed in Breschi, Fabris et al. (2023), 𝛾3 can be
seen as a slack accounting for the effect that future noise realizations
on the quality of the predicted output. Therefore, 𝛽3 can be used to
prevent that the input sequence 𝐮(𝑘) is designed by over-fitting noise.
Specifically, by following the same rationale previously exploited to
obtain (43) and imposing 𝛽2 = 0, 𝛽3 can be chosen to make the relation

‖𝛾∗3 (𝛽3)‖
2
2 ≃

𝑁
𝑇

(

‖𝛾∗1 ‖
2
2 + ‖𝛾∗2 (𝛽3)‖

2
2
)

, (45)

hold as closely as possible. Alternatively, also in this case one can
employ the Hanke–Raus rule by setting A and 𝐛 as follows:

𝜓(𝛽3) ∶= ⟨𝐛(𝛾∗1 , 𝛾2), 𝛽
2
3 (AA𝑇 + 𝛽3𝐼)−3𝐛(𝛾∗1 , 𝛾2)⟩

1
2 , where

1 ∗ 1 ( ∗ )

(46)
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A ∶= 𝛺 2 𝐿33, 𝐛(𝛾1 , 𝛾2) ∶= 𝛺 2 𝐫𝑦 − 𝐿31𝛾1 − 𝐿32𝛾2 . c
Table 6
Tuning extremes in 𝛾-DDPC for finite datasets.

𝛽2 → 0 𝛽2 → ∞

𝛽3 → 0 𝐮∗(𝑘) = 𝐫𝑢 𝐮∗(𝑘) = 0
𝛽3 → ∞ 𝐮∗(𝑘) = 𝐮∗SPC(𝑘) 𝐮∗(𝑘) = 0

Table 7
Tuning extremes in GDPC.
𝜆𝑔 → 0 𝜆𝑔 → ∞

𝐮∗(𝑘) = 𝐫𝑢 𝐮(𝑘) = 𝐮𝑏(𝑘), 𝐲(𝑘) = 𝐲𝑏(𝑘) whilst respecting constraints

Note that, 𝐛 depends on 𝛾∗1 , i.e., on 𝐳ini, and 𝛾2. Therefore, the Hanke–
Raus rule would return different values of 𝛽3 depending on the initial
conditions and the optimization variable 𝛾2, thus being aligned with the
tuning rationale in (45). It is further worth remarking that the choice
𝛽3 has similar effects to that of 𝜆𝑔 in the DeePC with 𝛱-regularization.
ndeed, for increasing values of 𝛽3, the predictor exploited in 𝛾-DDPC
ith 𝛽2 = 0 approaches the one used in SPC (see (18)). The same
appens when 𝜆𝑔 → ∞ in (24) + (25) (see Table 6).

.6.3. Tuning guidelines for GDPC
Designing a generalized data-driven predictive controller requires

he user to select two hyper-parameters, namely online Hankel matrix
ize 𝑇𝑔 and the regularization parameter 𝜆𝑔 , that are used to control the

bias/variance trade-off. Even though a systematic approach is not yet
available to tune them in the GDPC framework (see Lazar and Verheijen
(2023)), we can still provide some intuitive guidelines on the selection
of 𝑇𝑔 and 𝜆𝑔 .

The matrix size 𝑇𝑔 should satisfy the requirements for the data-
driven predictor to be meaningful, while it should be kept small enough
for the control action to be computed within the system’s sampling
period.

Meanwhile, 𝜆𝑔 should be tuned by considering the (undesired)
effects that the choice of one of its two extreme values has on the final
solution, which are summarized in Table 7. For this, consider the same
approach as for 𝛾–DDPC and DeePC, using the Tikhonov regularization,
with the following modification:

𝐲𝑏 = 𝛤𝐮𝑏, 𝐮𝑏 = (𝛹 + 𝛤 𝑇𝛺𝛤 )−1(𝛤 𝑇𝛺𝐫𝑦 + 𝛹𝐫𝑢)

A ∶= diag(𝛺
1
2 , 𝛹

1
2 )

[

�̄�𝑓
�̄�𝑓

]

, 𝐛 ∶= diag(𝛺
1
2 , 𝛹

1
2 )

[

𝐫𝑦 − 𝐲𝑏
𝐫𝑢 − 𝐮𝑏

]

,
(47)

where the result hereof can be seen in Fig. 1(d).

4.7. Stability criteria for DPC in the deterministic, noise-free case

As with any control law, guaranteeing stability is a crucial aspect
also in data-driven predictive control. However, with the lack of a
proper model of the system, many classical stability guarantees are not
trivial for DPC. Nonetheless, a few methods to guarantee closed-loop
stability exist, which we will discuss here.

Long prediction horizon
Due to the guarantee of optimality of the MPC control law, the

relation with an LQR controller bearing the same stage cost function,
and the equivalence relation between DPC algorithms and MPC ones
in the noise-free case, see, e.g., Lazar and Verheijen (2022), we have
that DPC controllers will be stabilizing if the prediction horizon 𝑁 is
hosen sufficiently large. The value of the prediction horizon is linked
o the approximation of the infinite horizon cost by the finite horizon
ost, which is typically related to the settling time for open-loop stable
ystems. Exact lower bounds for 𝑁 for model-based predictive control
an be found, for example, in Boccia et al. (2014).
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Trajectory based terminal criteria
To provide a representation-independent stability analysis for vari-

ous DPC algorithms, we adopt a common predictor description based on
truncated behavior (Coulson et al., 2019) B𝑁 (P |𝐮ini, 𝐲ini) that contains
all input and output sequences of length 𝑁 that are compatible with
initial conditions (𝐮ini, 𝐲ini) and the underlying system representation
(behavior). The symbol P refers to the set of elements specific to the
system representation, e.g., for SPC P = {(𝑃1, 𝑃2, 𝛤 )} and for DeePC
P = {(𝐔𝑝,𝐘𝑝,𝐔𝑓 ,𝐘𝑓 ), 𝐠}.

From the results of Berberich et al. (2021b) (which extends the
ork in Berberich et al. (2020)), stability can be enforced by pushing

he last 𝑛 inputs and outputs towards a stabilizing terminal trajectory.
ote that, this is a relaxation over setting the last 𝑛 inputs and outputs
qual to the reference, as terminal equality constraints are more likely
o generate infeasible problems. Consider the following modified cost
unction:

minimize
(𝑘),𝐲(𝑘),𝝃𝑛(𝑘)

𝑁−1
∑

𝑖=0
𝑙(𝑦(𝑖|𝑘), 𝑢(𝑖|𝑘)) + 𝑙𝑇 (𝝃𝑛(𝑘)) (48a)

subject to (𝐲(𝑘),𝐮(𝑘)) ∈ B(P |𝐮ini(𝑘), 𝐲ini(𝑘)) (48b)

(𝐲(𝑘),𝐮(𝑘)) ∈ Y𝑁 × U𝑁 , (48c)

𝝃𝑛(𝑘) ∈ 𝛯𝑛, 𝝃𝑛(𝑘) =
[

col (𝑢(𝑁 − 𝑛 − 1|𝑘),… , 𝑢(𝑁 − 𝑛|𝑘))
col (𝑦(𝑁 − 𝑛|𝑘),… , 𝑦(𝑁|𝑘))

]

,

(48d)

where (𝐲(𝑘),𝐮(𝑘)) ∈ B(P |𝐮ini(𝑘), 𝐲ini(𝑘)) denotes either (14b), (24b),
(30b) or (34b). Let 𝑙𝑇 (𝝃𝑛(𝑘)) = 𝝃𝑛(𝑘)𝑇 𝑃 𝝃𝑛(𝑘) for some 𝑃 ≻ 0 sat-
isfy a Lyapunov condition, with the set 𝛯𝑛 be an invariant and con-
straints admissible set. To design a 𝑃 , consider the following state-space
realization (Berberich et al., 2021c):

𝝃𝑛(𝑘 + 1) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 𝐼 0 ⋯ ⋯ 0
⋮ ⋱ ⋮ ⋮
0 𝐼 0 0
0 ⋯ ⋯ 0 0 ⋯ ⋯ 0
0 ⋯ ⋯ 0 0 𝐼
⋮ ⋮ ⋮ ⋱
0 ⋯ ⋯ 0 0 𝐼
𝑏𝑛 ⋯ ⋯ 𝑏1 𝑎𝑛 ⋯ ⋯ 𝑎1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝝃𝑛(𝑘) +

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
⋮
0
𝐼
0
⋮
0
𝑏0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑢(𝑘)

= �̃�𝝃𝑛(𝑘) + �̃�𝑢(𝑘).

(49)

Then it can be shown as in Proposition 10 of Berberich et al. (2021c),
that a matrix 𝑃 and gain �̃� that satisfy the condition

�̃� + �̃��̃�)𝑇 𝑃 (�̃� + �̃��̃�) − 𝑃 ⪯ −
[

0
𝛺

]

− �̃�𝑇𝛹�̃� (50)

ield a closed-stable data-driven predictive controller. Therein, it is
lso shown how 𝑃 and �̃� can be computed using only input–output
ata and solving a linear matrix inequality. Alternatively, the method
or computing stabilizing local controllers from input–output data is
resented in De Persis and Tesi (2020). A suboptimal but more practical
pproach is to design an arbitrary stabilizing �̃� such that |eig(�̃� +
̃�̃�)| ≤ 1 and then solve (50) which becomes a linear matrix inequality
. Then, the terminal set can be computed as a polyhedral invariant

et for �̃�+ �̃��̃� or the largest admissible level set {𝝃𝑛 ∶ 𝝃𝑇𝑛 𝑃 𝝃𝑛 ≤ 𝑐} for
ome 𝑐 > 0 can be used as a terminal set. However, the latter choice
ields a convex quadratically constrained QP problem instead of a QP
hat must be solved online.

This method has also the advantage that it guarantees recursive
easibility of the corresponding DPC optimization problem. In gen-
ral, to guarantee feasibility, especially in the presence of noisy data,
oft constraints should be used where appropriate, i.e., for output
onstraints and terminal constraints.
12
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Table 8
Flight control: parameters of the running cost and length of the initial condition.
𝑁 𝑇ini 𝑅 𝑄 𝐫𝑢
20 20 0.01𝐼2 10𝐼2 0

Dissipativity based stability guarantee
Following the results of Lazar (2021) and Lazar and Verheijen

(2023) dissipativity of the closed-loop response is implicitly guaranteed
for any model-based or data-driven predictive control closed-loop sys-
tem with the optimal cost as the storage function and a supply function
generated by the stage cost. Then, asymptotic stability can be enforced
by defining a constant 0 < 𝜌 < 1 and adding the following constraint to
the predictive control optimization problem:

𝑙(𝑦(𝑁|𝑘), 𝑢(𝑁 − 1|𝑘)) ≤ (1 − 𝜌)𝑙(𝑦(𝑘 − 𝑇ini), 𝑢(𝑘 − 𝑇ini)). (51)

he above condition yields that the DPC value function is a Lyapunov
unction, without utilizing a special terminal cost, as in the method
bove, and without requiring knowledge of a system model or of a
ocally stabilizing control law and corresponding Lyapunov function.
ue to the quadratic cost defined in 𝑙(𝑦, 𝑢), constraint (51) turns the
roblem into a convex quadratically constrained QP.

.8. Beyond linear data-driven predictive control

Although the scope of this handbook is to review DPC techniques
or LTI plants, most systems are to some extent not linear and/or time
nvariant. In this subsection, we discuss a few methods that compensate
or some nonlinear or time-varying dynamics, while retaining the linear
ontrol law.

tochastic and robust approaches to DPC. It can be of interest to guar-
ntee that the optimized control action satisfies constraints even if the
redicted response is uncertain. Some stochastic implementations to
onsider are chance-constrained DPC (Coulson et al., 2021), stochastic
PC (Pan et al., 2023) or tube-based stochastic DPC (Kerz et al., 2023).

daptive data-driven predictive control. In classical adaptive MPC, the
rediction model is updated every time instance to match the system
ynamics. Given that one way to update the prediction model is using
ecent input–output data (Bitmead et al., 1990), the extension towards
ata-driven predictors is not surprising. Adaptive DPC can be for in-
tance realized using recursive SPC (Verheijen et al., 2022), updating
ankel matrices online in DeePC (Berberich et al., 2021a) or updating

he LQ matrices using Givens rotation matrix (Mardi & Wang, 2009) (to
ive a brief overview). By defining the predictor based on recent data,
he resulting prediction is a linear estimate over the recent operating
oint. However, as the input data is now correlated with the output
oise, convergence of the prediction bias to zero is not guaranteed.
onsider the aforementioned references on how to tackle this issue.

inear parameter varying and feedback linearization. Alternative ap-
roaches to the above methods include using a linear-parameter-
arying (LPV) and feedback linearization description. In the LPV ap-
roach to data-driven predictive control (Verhoek et al., 2021), a
onlinear system is embedded into an LPV representation using a
arameter that substitutes nonlinear terms in the system representa-
ion. This results in LPV Hankel matrices within a DeePC algorithm.
onlinear systems can also be transformed into a linear representation
sing feedback linearization, which linearizes the system based on a
onlinear transformation mapping. A data-driven implementation of
his technique is considered in Alsalti et al. (2023). The research in
his area is very active and it is expected to generate more approaches
n the near future, see also Markovsky et al. (2023) for a more general
verview.
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Table 9
Flight control: regularization parameters and data-set lengths.

𝑇 𝑇𝑔 𝜆𝑔 𝜆𝑦 𝛽2 𝛽3
SPC 2500 – – – – –
DeePC 250 – 1000 108 – –
𝛾-DDPC 2500 – – – 0 7500
GDPC 2500 125 10 – – –

5. Numerical examples

We now consider two benchmark examples to compare the perfor-
mance of the reviewed data-driven predictive control schemes, which
we quantitatively compare via the following criteria:

ISE =
𝑡max
∑

𝑘=𝑇ini

‖𝑦(𝑘) − 𝑟(𝑘)‖22, IAE =
𝑡max
∑

𝑘=𝑇ini

‖𝑦(𝑘) − 𝑟(𝑘)‖1,

Input Energy =
𝑡max
∑

𝑘=𝑇ini

‖𝑢(𝑘)‖22, (52)

respectively evaluating the closed-loop tracking performance achieved
with each control scheme and the input effort required to attain them
over a closed-loop simulation of 𝑡𝑚𝑎𝑥 steps. Performance is assessed
in both examples by performing 30 Monte Carlo runs, each using
a different noise realization to generate the data set and the corre-
sponding closed-loop simulation, to assess the impact of different noise
realizations on the closed-loop behavior of the two benchmark systems.
Meanwhile, we empirically evaluate the computational complexity of
all the reviewed predictive control schemes by looking at the mean
CPU time required to compute the control action over each simulation
step, thus analyzing their suitability for embedded applications.4 In
both the considered case studies, the quadratic programs (QPs) in (14),
(24), (30) and (34) have been solved at each simulation step via OSQP.
Moreover, whenever regularization is employed, the Hanke–Raus rule
is used to calibrate the regularization parameters off-line. Note that,
in 𝛾-DDPC, 𝛽2 is always set to zero and the bias/variance trade-off for
the employed predictor is controlled by calibrating 𝛽3. The reader is
referred to Section 4 and, specifically, to Fig. 1 for additional details
on their choice. We wish to stress here that for the analysis performed
in both case studies to be comparable, we only consider DeePC with
the “standard” 2-norm regularization, rather than 𝛱-regularization.
Indeed, in the first benchmark example, we observed the time-to-solve
for DeePC with 𝛱-regularization exceeded the system’s sampling time.

To compare the considered DPC approaches against the standard
model-based strategy, for each example we further design an MPC
scheme by identifying a state-space model for the controlled system
using N4SID (van Overschee & De Moor, 1996), assuming the exact
knowledge of the system’s order. Since we assume not to have direct
access to the system’s state, in our comparisons we consider two
alternative state estimators. Specifically, we employ both a Luenberger
observer5 and a Kalman filter. The latter is designed by setting the
covariance of the measurement noise 𝑅kal to its estimate provided by
N4SID, the covariance of the process noise 𝑄kal as 𝑄kal = �̂�𝑅kal�̂�𝑇 ,
where �̂� is the disturbance model obtained with N4SID, while arbitrar-
ily initializing the state covariance as 𝑃kal = 103𝐼𝑛. Note that, these two
estimators have been chosen to mimic what a practitioner would do in
a first attempt to estimate the system’s state, since these approaches are

4 All simulations have been carried out on a laptop with Intel i7-9750H
PU, 16 GB of RAM, running MATLAB R2021a.

5 The Luenberger observer has been computed in Matlab through the
ommand K = dlqr(A’, C’, 𝑄 , 𝑅 )’;.
13

𝚘𝚋𝚜 𝚘𝚋𝚜
easy to deploy, they follow established rules-of-thumb and require low
engineering skills to attain reasonable performance.

Remark 5.1 (On the Aim of the Numerical Analysis). We wish to stress
that our goal with the subsequent numerical analysis is not to draw
any conclusion on which strategy has to be preferred over the others
(i.e., we do not aim to answer the question Which method is better?) but
to provide the practitioner with empirical evidence to select the method
that is most suited for the application at hand.

5.1. Data-driven predictive flight control

Let the discrete-time linear model system we aim at controlling
be featured by the following matrices (Camacho & Bordons, 2007,
Section 6.4):

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎣

0.9997 0.0038 −0.0001 −0.0322
−0.0056 0.9648 0.7446 0.0001
0.0020 −0.0097 0.9543 −0.0000
0.0001 −0.0005 0.0978 1.0000

⎤

⎥

⎥

⎥

⎥

⎦

,

𝐵 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0010 0.1000
−0.0615 0.0183
−0.1133 0.0586
−0.0057 0.0029

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐾 = 𝟎4×2,

𝐶 =
[

1.0000 0 0 0
0 −1.0000 0 7.7400

]

,

(53)

which are obtained by discretizing the dynamics characterizing the
longitudinal motion of a Boeing 747 with a zero-order-hold for a
sampling time 𝑇𝑠 = 0.1 [s]. The considered system has two inputs,
namely the throttle 𝑢1 and the angle of the elevator 𝑢2, and two outputs,
corresponding to the aircraft’s longitudinal velocity and climb rate.

The control goal we aim at achieving is to increase the longitudi-
nal velocity (𝑦1(𝑡)) to 10 ft/s from the initial (0 ft/s) velocity while
keeping the climb rate 𝑦2(𝑡) at zero (equivalently, 𝑟𝑦 =

[

10 0
]𝑇 ) and

constraining the inputs and outputs as follows:

U ∶=
{

𝑢 ∈ R2 ∶
[

−20
−20

]

≤ 𝑢 ≤
[

20
20

]}

Y ∶=
{

𝑦 ∈ R2 ∶
[

−25
−15

]

≤ 𝑦 ≤
[

25
15

]}

.

To achieve this, all the data-driven predictive control schemes with
running cost as in (5) are designed by using the parameters reported in
Table 8, equal to those reported in Lazar and Verheijen (2023), while
the regularization penalties obtained for each scheme are reported in
Table 9.

To construct the SPC, 𝛾-DDPC and GDPC controllers we employ
data-sets of lengths reported in Table 9, all generated by exciting the
system with two pseudo-random binary sequences (PRBS), one for each
of the system’s inputs, both with amplitude 3. Throughout the data
collection phase and when closing the loop, we assume that only the
outputs of the system are corrupted by noise (as evident in (53)), with
the measurement noise being zero-mean, white, Gaussian distributed,
with standard deviation 0.25𝐼2. Note that, this choice yields a signal-
to-noise ratio (SNR) of 39 [dB] when considering the data sequences
of length 𝑇 = 2500 used in SPC, 𝛾-DDPC and GDPC and 26 [dB] when
limiting 𝑇 to 250 (see Table 8). For implementation reasons, we exploit
a set of input/output data still generated as discussed above, but of
length 2540, to carry out the identification step needed to construct the
MPC scheme used to compare DPC approaches with their model-based
counterpart. Moreover, we set 𝑄obs = 𝐼4 and 𝑅obs = 0 when designing

the Luenberger observer.
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Fig. 2. Flight control: performance indexes over 30 Monte Carlo runs.
i
The results displayed in Fig. 2 suggest that all controllers handle
oise well, showing generally low dispersion and similar averages
f the performance indexes. The main differences can be observed
etween DeePC and all the other approaches, with DeePC resulting
n a higher variance of ISE and IAE with the lowest input energy.
uch differences can be related to the reduced dimension of the data-
et used to construct this DPC scheme and the consequent lower SNR
haracterizing the available data.

Such a reduction in the data length is however inevitable for DeePC,
s shown in Table 10. Indeed, despite our choice of 𝑇 , DeePC still
akes the longest time to be solved on average. Nonetheless, this result
oes not hamper the applicability of DeePC for this example, since
ll DPC problems can be solved within the required sampling period
𝑠 = 100 [ms]. At the same time, despite considering datasets of the
ame dimension in (24) and (34), GDPC results to be more efficient
han DeePC since it does not need the additional slack 𝜎𝑦 to cope with
oise. Among the available approaches, 𝛾-DDPC is instead the one with
n average computational time closer to MPC and SPC, highlighting
he possible advantages of pre-processing the data matrices prior to the
ontroller deployment.

By looking at Fig. 2 it is also clear that both GDPC and 𝛾-DDPC
isplay improved performance over SPC, thus illustrating the benefits of
aving a predictor with tunable bias/variance trade-off. This is evident
rom the trajectories shown in Fig. 3, which also clearly indicate that
oth the considered model-based controllers show a significant input
ariance compared to the data-driven methods, while the resulting
losed-loop output is not noticeably better.

.2. Data-driven predictive control of a four tank system

Consider now the matrices

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎣

0.921 0 0.041 0
0 0.918 0 0.033
0 0 0.924 0
0 0 0 0.937

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐵 =

⎡

⎢

⎢

⎢

⎢

⎣

0.017 0.001
0.001 0.023
0 0.061

0.072 0

⎤

⎥

⎥

⎥

⎥

⎦

,

= 𝟎4×2, 𝐶 =
[

1 0 0 0
0 1 0 0

]

,

(54)

haracterizing the linearized state-space model of a four tank sys-
em (Berberich et al., 2021b; Raff et al., 2006; Zhang et al., 2022). In
his case, our control objective is to steer the measured levels of water
14
n the tanks (𝑦1, 𝑦2) to 𝑟𝑦 =
[

0.65 0.77
]𝑇 , while satisfying

U ∶=
{

𝑢 ∈ R2 ∶
[

−2
−2

]

≤ 𝑢 ≤
[

2
2

]}

Y ∶=
{

𝑦 ∈ R2 ∶
[

−2
−2

]

≤ 𝑦 ≤
[

2
2

]}

.

To this end, we consider the parameters reported in Table 11,
where 𝑄, 𝑅 and 𝑇ini are equal to those used in Zhang et al. (2022),
however, we considered a longer prediction horizon to ensure closed-
loop stability. Indeed, as shown in Berberich et al. (2021b), this system
becomes closed-loop unstable for the MPC controller if short horizons
are selected. The hyper-parameters chosen for each DPC strategy are
instead reported in Table 12, while (differently from the previous
example) we design the Luenberger observer used in MPC by setting
the state cost to 𝑄obs = 𝐼4 and the output cost to 𝑅obs = 10 ⋅ 𝐼2.

The data used to construct the DPC controllers are generated by
feeding the system with a PRBS signal of amplitude of 1 on both input
channels, while the outputs are corrupted with zero-mean, Gaussian
distributed, white noise with standard deviation 0.02𝐼2, yielding a SNR
of 12 [dB] when 𝑇 = 2500 and of 10 [dB] for 𝑇 = 500 (see Table 12).
The models used in the MPC schemes are also constructed with data
generated as described above, but the number of data samples used for
identification grows to 2600 (note that this corresponds to the total
data needed to construct the Hankel matrices with length 𝑇 = 2500,
and thus shares the same SNR).

The performance indexes attained by closing the loop in this setting
are reported in Fig. 4, highlighting that the performance of all the
tested control schemes is comparable (indeed only small variations in
their indexes can be observed). This indicates that, when the hyper-
parameters are properly tuned, all controllers can perform just as one
another despite the presence of measurement noise corrupting the data.
This is further shown in Fig. 5, where the main differences can be
noticed in the slightly higher sensitivity to noise in the choice of the
input for MPC and the resulting output for the MPC scheme with
Kalman filter. Still, the trends in the mean and dispersion of the quality
indexes achieved in this case, along with the general features of the
closed-loop trajectories, are consistent with those characterizing the
flight control example (see Fig. 2), strengthening the conclusion drawn
with our two numerical examples. Last but not least, Table 13 once

more allows us to draw the same conclusion on the computational
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Fig. 3. Flight control: closed-loop mean (lines) input and output trajectories, with their standard deviation (shaded areas) over 30 Monte Carlo runs.
Fig. 4. Four tank system: performance indexes over 30 Monte Carlo runs.
Table 10
Flight control: average CPU time [ms] per sampling interval. Note that the system’s
sampling time is 𝑇𝑠 = 100 [ms].

MPC+Lobs MPC+Kal SPC DeePC 𝛾-DDPC GDPC

3.5 ms 3.5 ms 4.1 ms 17.6 ms 4.8 ms 14.8 ms

Table 11
Four tank system: parameters of the running cost and length of the initial condition.
𝑁 𝑇ini 𝑅 𝑄 𝐫𝑢
70 30 0.1𝐼2 15𝐼2 0𝐼2

complexity of the considered approaches, indicating again that DeePC
is the most time-consuming approach.
15
Table 12
Four tank system: regularization parameters and data-set lengths.

𝑇 𝑇𝑔 𝜆𝑔 𝜆𝑦 𝛽2 𝛽3
SPC 2500 – – – – –
DeePC 500 – 10 106 – –
𝛾-DDPC 2500 – – – 0 30
GDPC 2500 250 1 106 – –

Table 13
Four Tank system: average CPU time [ms] per sampling interval.

MPC+Lobs MPC+Kal SPC DeePC 𝛾-DDPC GDPC

6.1 ms 6.2 ms 9.7 ms 104.1 ms 21 ms 53.4 ms
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Fig. 5. Four tank system: closed-loop mean (lines) input and output trajectories, with their standard deviation (shaded areas) over 30 Monte Carlo runs.
5.3. Discussion and recommendations

The results that we obtained shed light on how identified model-
based state-space MPC in combination with an observer or Kalman filter
estimator compares with SPC and other data-driven predictive con-
trollers in the presence of noisy data. From the obtained results we now
see that identified model-based state-space MPC is not (necessarily)
providing the best achievable performance. Data-driven methods can
outperform the model-based controllers, even with appropriate tuning.

Even though SPC does not allow tuning the bias/variance trade-off,
its closed-loop performance is unbiased and robust while providing the
fastest CPU times. Hence, when an unbiased predictor is desired, SPC is
likely to be the choice one should settle on. On the other hand, DeePC
has the largest freedom to optimize the variance/bias trade-off, but its
performance highly depends on 𝜆𝑔 and it is fragile in the presence of
noisy data. DeePC can be robustified using the 𝛱 regularization, at
the cost of increased computational complexity because the Hessian of
the corresponding DeePC optimization problem is no longer sparse/di-
agonal. In general, the computational complexity of DeePC increases
with the data size. Hence DeePC can be the preferred designer’s choice
when there is little or no noise and the minimal data size can be used.
DeePC provides also the most direct approach to obtaining a predictive
controller from data.

𝛾-DDPC and GDPC offer a middle ground alternative between SPC
and DeePC, i.e., they allow some bias/variance trade-off, while still
partially relying on the unbiased predictor of SPC. As such, their
computational complexity is in between SPC and DeePC, with 𝛾-DDPC
being computationally more efficient than GDPC in general. On the
other hand, GDPC offers more flexibility, as it can be tuned such that it
recovers SPC or DeePC under appropriate settings. Hence, it enables a
triple trade-off among bias, variance and computational complexity. If a
bias/variance trade-off is desired with the least computational complex-
ity, 𝛾-DDPC offers a suitable solution. If one is interested in optimizing
the bias/variance/computational complexity trade-off, GDPC provides
a suitable framework.

6. Conclusions

In this review, we provided a bird’s-eye view of data-driven pre-
dictive control, by looking at it through the lens of a practitioner
approaching this class of techniques for the first time. By focusing on
four DPC techniques, namely subspace predictive control, data-enabled
16
predictive control, 𝛾-DDPC and generalized data-driven predictive con-
trol, by providing a thorough description of the core technicalities
needed by the potential designer for their implementation and usage.
This methodological review is paired with a comprehensive overview of
the main tuning knobs of these techniques and a summary of off-the-
shelf strategies that can be employed by practitioners to select them.
Two benchmark simulation examples were presented to highlight the
main features, similarities, strengths and weaknesses of each approach
in practice.

We conclude by distilling the guidelines presented into a set of
‘‘golden rules’’ of data-driven predictive control:

1. Use as much data as you can possibly collect (i.e., 𝑇 very large),
while minding its effect on the computational complexity of the
DPC algorithm of choice;

2. Pick 𝑇ini sufficiently large, 𝑇ini ≫ 𝑛 and, possibly, as large as you
can;

3. Generate input data with a large order of persistency of excita-
tion (PRBS, white noise, etc.) and compare
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with 𝑛𝑢(𝑇ini +𝑁)+𝑇ini𝑛𝑦 to validate the informativity/suitability
of the collected data for DPC;

4. Tune 𝑄 and 𝑅 first, then use the Hanke–Raus plots to pick a suit-
able 𝜆𝑔 , or use the rules tailored to 𝛾-DDPC (see Section 4.6.2)
when this method is employed;

5. Test the numerical stability and consistency of the DPC algo-
rithm of choice using multiple QP solvers (e.g., Matlab quad-
prog, OSQP);

6. If persistent disturbances are present/expected, use an off-set
free formulation of your DPC algorithm of choice using Algo-
rithm 5.

With these rules of thumb, the controller will perform optimally since
all the system properties that should be assumed are taken as suffi-

ciently large.
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