
 

Fitting signal processing into CNNs with applications to CT
denoising
Citation for published version (APA):
Zavala Mondragon, L. A. (2023). Fitting signal processing into CNNs with applications to CT denoising. [Phd
Thesis 1 (Research TU/e / Graduation TU/e), Electrical Engineering]. Eindhoven University of Technology.

Document status and date:
Published: 21/12/2023

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/53a531f4-78a6-4949-a26c-ad50fdd63f98


Fitting signal processing into CNNs with
applications to CT denoising

Luis Albert Zavala Mondragón





Fitting signal processing into CNNs with
applications to CT denoising

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven,
op gezag van de rector magnificus, prof.dr. S.K. Lenaerts, voor

een commissie aangewezen door het College voor Promoties, in het
openbaar te verdedigen op donderdag 21 december 2023 om 16:00 uur

door

Luis Albert Zavala Mondragón

geboren te Naucalpan de Juárez, México



Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

voorzitter: prof.dr.ir. M. Mischi
1e promotor: prof.dr.ir. P.H.N. de With
copromotor: dr.ir. F. van der Sommen
leden: prof.dr. I. Išgum (Universiteit van Amsterdam, AMC)

prof.dr. K.J. Batenburg (Universiteit van Leiden)
prof.dr.ir. F.M.J. Willems
prof.dr.ir. C.H. Slump (Universiteit Twente)

adviseur: dr. K.J. Engel (Philips)

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd in
overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.



To Marjolein, who listens to all my complaints



Fitting signal processing into CNNs with applications to CT denoising

Luis Albert Zavala Mondragón

Cover photo: Brain CT image extracted from the low dose CT image and projection dataset
from the Cancer Imaging Archive (Subject no. N079).

Cover design: Karen Zavala Mondragón.

Printed by: ADC Nederland.

ISBN 978-90-386-5918-3
NUR-code 984

Copyright © 2023 by L.A. Zavala Mondragón

All rights reserved. No part of this material may be reproduced or transmitted in any form or
by any means, electronic, mechanical, including photocopying, recording or by any information
storage and retrieval system, without the prior permission of the copyright owners.



Summary
Fitting signal processing into CNNs with applications to CT denoising

Deep neural networks (DNNs) have faced an exponential increase in data analysis
applications and modelling performance. Among other factors, the success of these
models is driven by the large availability of data and computing power. The perform-
ance growth of these models as well as new striking applications have enabled that
DNNs and deep learning (DL) go beyond academic and industrial environments and
have now a widespread adoption by the general public in specific daily life applica-
tions. Besides the mainstream DL applications provided by text and image generation,
DNNs have been applied to other fields such surveillance, autonomous driving and
(most relevant for this thesis) medical imaging. With the advent of deep learning,
conventional signal/image processing algorithms have been often outperformed and
replaced by encoding-decoding (ED) CNNs in tasks such as image denoising.

As with all deep learning applications, significant research efforts have been made
to enhance the architectures of CNNs. In many cases, these innovations are based
on heuristics that offer restricted understanding of the internal operation of these
models. In critical applications, such as computed tomography (CT) imaging, it is
very important to use well-understood and reliable systems. These requirements have
sparked new developments and theoretical insights that explain CNNs from a signal
processing perspective, which opens up new exciting opportunities for understanding
and improving CNNs.

In order to further advance the understanding in the signal processing behavior
of ED CNNs, this thesis builds upon the theoretical insights of the theory of deep
convolutional framelets to further strengthen the connections between the conven-
tional signal processing principles and ED CNNs. Furthermore, this thesis applies
the developed modelling insights to the noise reduction CNNs for improving the
visualization of CT images as an exemplary application.

The start of this thesis research in Chapter 3, discusses and uses signal processing
concepts such as framelets, singular value decomposition and the theory of deep
convolutional framelets. Based on these elements, Chapter 3 presents an extensive
analysis of the encoder-decoder architecture and extends the theory of deep convo-
lutional framelets, by complementing it with concepts such as statistical estimators
and Wiener filtering. The explored concepts are used to understand and analyze the
signal propagation of CNNs. These analyses results in approaches to modify CNNs
such that they become suited for (almost) lossless signal representations, while the
non-linear part of the model suppresses the noise. These findings form the basis for
modelling contributions in the following chapters.

Chapter 4 builds upon the findings from Chapter 3 to design noise reduction
CNNs that are used to enhance low-dose CT images. Specifically, two CNN models,
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referred to as the dual-Haar shrinkage networks 1 and 2 (addressed as DHSN1 and
DHSN2, respectively) are presented. These models employ (non-trainable) tight
framelets to decompose and reconstruct the signal at multiple scales. To this end, a new
framelet transformation based on the Haar basis and on the dual-tree complex wavelet
transform is proposed. The developed framelet is referred to as the overcomplete Haar
wavelet transform (OHWT) and it has compact and directional filters. Afterwards, this
framelet is employed as encoding-decoding structure in two CNN models. Specifically,
the OHWT performs a multi-scale decomposition of the input signal. At each of
these scales, a Neigh-Shrink-inspired CNN is employed (a strategy to discriminate
noise from signal based on the energy of neighbouring pixels) to eliminate the noise
contained in the signal. It should be noted that the use of a tight framelet basis
circumvents the trainable convolution filters in conventional CNNs, while the Neigh-
Shrink-inspired CNN is only able to suppress samples in the detail bands. This
clearly contributes to the understanding of the model operation, which contrasts with
conventional CNNs such as the filtered back-projection network (FBPConvNet) and
the residual encoder-decoder (RED) CNN where the internal operation is unknown.

As a complement to the previous design, the research of Chapter 5 develops a
CNN where the encoding and decoding paths are learned for improved flexibility.
However, this model distinguishes from other CNNs because it has linear encoding-
decoding (ED) paths, while non-linearities are placed on the skip-connection. This
means that the proposed design mimics existing wavelet-based denoising algorithms.
The simple structure of this system allows to study its linear and non-linear behavior
independently, which yields to detailed understanding of its internal operation. Fur-
thermore, the analysis of the linear part of the network proves that the ED path of this
model decomposes and reconstructs the signal almost perfectly, while its non-linear
part suppresses the noise. Finally, it is worth mentioning that the LWFSN model
presented in Chapter 5 employs only a fraction of the training parameters of con-
ventional CNNs (< 1%) and it has a very short inference time (more than 7 times
faster than the reference tight-frame U-Net). Despite these simplifications, the LWFSN
performs similar to state-of-the-art alternatives, such as the tight frame (TF) U-Net
and FBPConvNet for denoising low-dose CT images.

Chapter 6 is more application-oriented and employs the concepts from preceding
chapters, by incorporating a framelet-based CNN into a model that decomposes
dual-energy (DE) cone-beam (CB) CT into material-specific images. The proposed
model is referred to as regularized conjugate gradient network (rCGN) and incorporates
framelet-based regularization, CNNs and conjugate gradient least squares (CGLS)
optimization. It can be observed that the proposed approach is closer to conventional
iterative soft thresholding algorithms (ISTAs) than alternative model-based solutions
such as FISTA-Net. This means that the proposed rCGN is more interpretable, since
ISTA-like algorithms are the result of concrete assumptions about the signal-generation
process. In Chapter 6, the rCGN and FISTA-Net are trained with simulated DE CBCT
scans and evaluated in both, synthetic and clinically-acquired images. The results in
this chapter show that the proposed rCGN uses only 66% of the execution time of
FISTA-Net, while achieving comparable peak signal-to-noise ratio and mean structural
similarity index when evaluated with synthetic scans. However, the proposed rCGN
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generalizes better when evaluated with clinically-acquired scans.
In conclusion, this thesis presents an approach to understand CNNs that can be

applied to design new CNNs where the internal operation is more interpretable and
can be optimized. In addition, the work analyzes the reconstruction characteristics of
CNN models, while considering the implications of their linear and non-linear parts.
Consequently, it is shown that such analyses reveal internal conditions that the models
should comply with in order to preserve the signal. Moreover, this dissertation is
among the first in exploring the signal reconstruction behavior of trained ED CNN
models and confirm it by a theoretical analysis.





Samenvatting
Fitting signal processing into CNNs with applications to CT denoising

De toepassingen en prestaties van diepe neurale netwerken (DNN’s) zijn exponentieel
toegenomen voor onder andere het analyseren van gegevens en het modelleren van
beelddata. Deze modellen hebben hun succes onder andere te danken aan de grote
beschikbaarheid van beelddata en toegenomen rekenkracht. De prestatiegroei van
deze modellen alsmede de nieuwe interessante toepassingen, hebben ervoor gezorgd
dat DNN’s en diep leren (deep learning) (DL) ook buiten de academische en industriële
omgevingen optreden en nu op brede schaal door het grote publiek worden gebruikt
voor toepassingen in het dagelijks leven. Naast de hoofdtoepassingen voor DL, zoals
het genereren van tekst en afbeeldingen, zijn DNN’s ook toegepast op andere gebieden,
zoals surveillance, autonoom rijden en (het meest relevant voor dit proefschrift) medis-
che beeldvorming. Met de komst van DL worden de conventionele algoritmes voor
signaal- en beeldverwerking vaak overtroffen en vervangen door encoding-decoding
(ED) Convolutionele NN’s (CNN’s) bij bekende taken zoals ruisonderdrukking in
beelden.

Zoals bij alle DL-toepassingen is er veelvuldig onderzoek gedaan om de architec-
turen van CNN’s te verbeteren. In veel gevallen zijn deze innovaties gebaseerd op
heuristische aanpakken die slechts een beperkt begrip bieden van de interne werking
van deze modellen. In kritieke toepassingen, zoals computertomografie (CT), is het
erg belangrijk om betrouwbare systemen te gebruiken, waarvan de werking goed
begrepen wordt. Dit inzicht heeft geleid tot nieuwe ontwikkelingen en theoretische
inzichten die CNN’s verklaren vanuit een signaalverwerkingsperspectief, wat zorgt
voor nieuwe interessante mogelijkheden om CNN’s te begrijpen en te verbeteren.

Om meer inzicht te krijgen in het signaalverwerkingsgedrag van ED CNN’s, bouwt
dit proefschrift voort op de theoretische inzichten op het gebied van deep convolutional
framelets, een raamwerk om inverse problemen bij (perfecte) beeldreconstructie beter
op te lossen. Deze aanpak blijkt in staat om de verbanden tussen de conventionele
signaalverwerkingsprincipes en ED CNN’s verder te versterken. Verder worden in dit
proefschrift, als voorbeeld van een mogelijke toepassing, de ontwikkelde modeller-
ingsinzichten toegepast op de ruisonderdrukkende CNN’s voor het verbeteren van de
visualisatie van CT-beelden.

In hoofdstuk 3 worden concepten van signaalverwerking zoals framelets, decom-
positie van singuliere waarden en de theorie van deep convolutional framelets uitgelegd.
Op basis van deze elementen presenteert hoofdstuk 3 een uitgebreide analyse van de
ED-architectuur en breidt de theorie uit van deep convolutional framelets door deze aan
te vullen met concepten als statistische schatters en Wiener-filtering. De onderzochte
concepten worden gebruikt om de signaalpropagatie in CNN’s te begrijpen en te
analyseren. Deze analyses resulteren in benaderingen om CNNs zodanig aan te
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passen dat ze geschikt worden voor bijna verliesvrije signaalrepresentaties, terwijl het
niet-lineaire deel van het model de ruis onderdrukt. Deze bevindingen vormen de
basis voor diverse modelleringsbijdragen in de volgende hoofdstukken.

Hoofdstuk 4 bouwt voort op de bevindingen van hoofdstuk 3 om ruisonder-
drukkende CNN’s te ontwerpen die worden gebruikt om CT-beelden te verbeteren,
die met lage stralingsdosis opgenomen zijn. Specifiek worden twee CNN-modellen
gepresenteerd, die de Dual-Haar Shrinkage Networks 1 en 2 worden genoemd (re-
spectievelijk DHSN1 en DHSN2). Deze modellen maken gebruik van (niet-trainbare)
compacte framelets om het signaal op verschillende schaalgroottes te ontleden en
te reconstrueren. Hiertoe wordt een nieuwe framelet-transformatie voorgesteld die
gebaseerd is op de Haar-basis en op de dual-tree complexe wavelet-transformatie. De
ontwikkelde framelet wordt de Overcomplete Haar Wavelet Transformatie (OHWT)
genoemd en heeft compacte en directionele filters. Daarna wordt deze framelet gebruikt
als ED-structuur in twee CNN-modellen. De OHWT voert een decompositie uit op
meerdere schaalgroottes van het ingangssignaal. Op elk van deze schaalfactoren
wordt een op Neigh-Shrink-geïnspireerde CNN gebruikt (een strategie om ruis van
het signaal te onderscheiden op basis van de energie van naburige pixels) om de
ruis in het signaal te elimineren. Opgemerkt moet worden dat het gebruik van een
compacte frameletbasis de trainbare convolutiefilters in conventionele CNN’s omzeilt,
-terwijl de op Neigh-Shrink-geïnspireerde CNN alleen signalen in de detailbanden kan
onderdrukken. Dit aspect draagt duidelijk bij aan het begrijpen van de werking van
het model, in tegenstelling tot conventionele CNN’s, zoals het filtered back-projection
network (FBPConvNet) en de residual encoder-decoder (RED) CNN, waarvan de interne
werking onbekend is.

Als aanvulling op het vorige ontwerp, ontwikkelt het onderzoek van hoofdstuk 5
een CNN waarbij de coderings- en decoderingspaden worden aangeleerd voor verbe-
terde flexibiliteit. Dit model onderscheidt zich echter van andere CNN’s doordat het
lineaire coderings- en decoderingspaden (ED) heeft, terwijl niet-lineariteiten worden
geplaatst op de skip-connecties in het netwerk. Dit betekent dat het voorgestelde
ontwerp reeds bestaande, op wavelet-gebaseerde ruisonderdrukkingsalgoritmen na-
bootst. De eenvoudige structuur van dit systeem maakt het mogelijk om het lineaire
en niet-lineaire gedrag onafhankelijk van elkaar te bestuderen, wat leidt tot een gede-
tailleerd begrip van de interne werking. Bovendien bewijst de analyse van het lineaire
deel van het netwerk dat het ED-pad van dit model het signaal bijna perfect ontleedt
en reconstrueert, terwijl het niet-lineaire deel de ruis onderdrukt. Tot slot is het zin-
vol om te vermelden dat het LWFSN-model uit hoofdstuk 5 slechts een fractie van
de trainingsparameters van conventionele CNN’s gebruikt (< 1%) en dat het een
zeer korte executietijd heeft (meer dan 7 keer sneller dan de referentie-tight-frame
U-Net). Ondanks deze vereenvoudigingen presteert het LWFSN vergelijkbaar met
alternatieven uit de literatuur, zoals het tight-frame (TF) U-Net en FBPConvNet voor
de ruisonderdrukking van CT-beelden met een lage stralingsdosis.

Hoofdstuk 6 is meer toepassingsgericht en maakt gebruik van de concepten uit
voorgaande hoofdstukken door een framelet-gebaseerde CNN op te nemen in een
model dat dual-energy (DE) cone-beam (CB) CT ontleedt in materiaal-specifieke beelden.
Het voorgestelde model wordt aangeduid als geregulariseerd geconjugeerd gradiënt-
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netwerk (rCGN) en bevat op framelet-gebaseerde regularisatie, CNN’s en geconjugeerde-
gradiënt met kleinste-kwadraten (CGLS) optimalisatie. Er kan worden opgemerkt dat
de voorgestelde aanpak dichter bij conventionele iteratieve soft-thresholding algoritmen
(ISTA’s) ligt dan alternatieve modelgebaseerde oplossingen zoals FISTA-Net. Dit
betekent dat de voorgestelde rCGN beter interpreteerbaar is, aangezien ISTA-achtige
algoritmen het resultaat zijn van concrete aannames over het signaalgeneratiepro-
ces. In hoofdstuk 6 worden de rCGN en FISTA-Net getraind met gesimuleerde
duale-energie CBCT-scans en geëvalueerd met zowel synthetische als klinisch verkre-
gen beelden. De resultaten in dit hoofdstuk laten zien dat het voorgestelde rCGN
slechts 66% van de executietijd van FISTA-Net gebruikt, terwijl het een vergelijk-
bare pieksignaal-ruisverhouding en gemiddelde structurele overeenstemmingsindex
(SSIM) bereikt voor synthetische scans. De voorgestelde rCGN generaliseert echter
beter wanneer deze wordt geëvalueerd met klinisch verkregen beeldopnamen.

Concluderend presenteert deze dissertatie een invalshoek om CNN’s beter te
begrijpen, die kan worden toegepast om nieuwe CNN’s te ontwerpen waarbij de
interne werking veel beter interpreteerbaar is en kan worden geoptimaliseerd. Boven-
dien analyseert het werk de reconstructiekenmerken van CNN-modellen, waarbij
de implicaties van hun lineaire en niet-lineaire delen afzonderlijk in overweging
worden genomen. Er wordt aangetoond dat dergelijke analyses interne voorwaarden
laten zien waaraan de modellen moeten voldoen om de signaalkwaliteit te behouden.
Bovendien is het werk uit dir proefschrift een van de eerste onderzoeken waarin het
signaalreconstructiegedrag van getrainde ED-CNN-modellen wordt onderzocht en
bevestigd door een theoretische analyse.
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CHAPTER1
Introduction

1.1 Current context of deep learning

Fueled by the development of deep learning (DL), deep neural networks (DNNs) have
faced an exponential increase in applications and performance. Among other factors,
the success of these models is driven by the large availability of data and computing
power. The performance growth of these models as well as new striking applications
have enabled that DNNs and DL go beyond academic and industrial environments
and have now a widespread adoption by the general public. For example, large
language models (LLMs) such as ChatGPT [1], Dall-E2 [2], Imagen [3] or the segment-
anything model (SAM) [4] are all popular models that are employed by millions of users
worldwide.

Besides the mainstream DL applications provided by text and image generation
with LLMs, DNNs have been applied to other fields such surveillance, autonomous
driving and (most relevant for this thesis) medical imaging. It should be noted that
for all these applications, many lower-level vision tasks are used. Examples of these
tasks are image recognition/classification [5], object detection [6], [7], image segment-
ation [8], image compression and image denoising [9]. Prior to DL, many computer
vision and image processing tasks were performed with conventional machine learn-
ing, e.g. Support Vector Machines [10], Random Forests [11], Haar cascades [12], as
well as image/signal processing-based solutions, such as total-variation minimiza-
tion [13], wavelet-based algorithms [14], sparse coding [15], etc. It can be observed
that the previously mentioned techniques perform assumptions/modeling about the
signal nature.

As an insightful example of the above mentioned modeling. The famous Viola-
Jones [12] algorithm for face and object detection integrates conventional signal pro-
cessing and machine learning processes for the task of face/object detection. That is,
the Viola-Jones algorithm uses a set of Haar-like filters which are correlated with face
attributes. These filters, are efficiently convolved with the image pixels with the use of
integral images. Finally, the resulting feature maps are supplied as input to a machine
learning classifier [16] to generate object/face candidates. Finally, In order to remove
spurious detections, the so-called attention cascade, is employed.

With the advent of deep learning, the use of conventional signal/image processing
and machine learning algorithms have been outperformed and replaced by DNNs.
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Consequently, the explicit signal modeling of well-understood algorithms has been
exchanged by general-purpose DNNs that are re-trained for specific tasks. For ex-
ample, the multiple stages of the Viola-Jones algorithm (feature extraction, classifica-
tion/detection, elimination of spurious detections) can be replaced by a single DNN
model, such as the popular object detection model YOLO [7], which performs all the
aforementioned tasks of Viola-Jones algorithm in a single end-to-end solution.

Despite of the high-performance and simplicity of training DNNs, their training
and deployment have disadvantages that should be considered. For example, DNNs
have high model complexity [17], they can be easily misled by adversarial attacks [18],
they are prone to overfitting and their internal operation is often unknown [19]. In
addition, it has been found that producing marginal gains in performance comes at the
cost of an exponential increase in computational complexity [20]. Finally, it should be
noted DNNs require specialized, expensive and power-hungry hardware for training
purposes. This presents a challenge for low-power systems which are embedded in
daily-life appliances [21], as well as computation-constrained devices. This discussion
even raises environmental concerns due to the required power consumption which
incurs a high-carbon footprint, which is directly linked to train and deploy these
models. For example, the training of the GPT-3 model (one of the core elements of the
well-known ChatGPT) consumes more than 1000 MWh of electricity. Producing this
amount of electricity releases approximately the same amount of CO2 as 500 round
flights from New York to Paris [22], [23]. In addition, it should be considered that the
ever-growing computational demands of DNNs require the continuous renovation of
computer hardware, which translates into more electronic waste and more demand
for raw materials.

As closing argument for this section, it should be noted that further challenges
can be associated to DNNs employed in critical applications such as medical imaging.
For example, in this thesis DNNs are employed to improve the quality of computed
tomography (CT) images. For this application, the DNN should preserve the informa-
tion contained in the image. Furthermore, for such medical applications, additional
properties such as robustness or explainability may be desirable. It should be noted
that for these aspects, the black-box nature of common DNNs presents a challenge,
since it is difficult to provide any of the described properties with current DNN models.
The following section addresses in more detail the formation and meaning of CT scans
and the challenges of DNNs within this context.

1.2 Computed tomography imaging

X-ray-based computed tomography (CT) is an imaging modality, where the generated
images display the X-ray attenuation coefficients of the scanned tissues. The volu-
metric data retrieved by a CT scanner is often grouped into slices. The attenuation
values occurring in CT images are related to the material composition of the scanned
body part. This means that for brain images, gray/white matter, blood, bone other
and other tissues have all specific intensities. For example, intracranial hemorrhages
display increased brightness because the liquid blood is more attenuating for X-rays
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Hemorrhage Ischemic stroke

Figure 1.1. Axial slices of head CT scans of a patient without (left) and with brain lesions
(center, right). Note that the center image has an hemorrhage, which is displayed as a bright
blob on the image, wile the right image showcases a stroke, that is displayed as a decreased
the attenuation in the brain parenchima. Cases courtesy of Dr. David Cuete and of Assoc. Prof.
Frank Gaillard, Radiopaedia.org, rIDs: 23768, 2764, 35427, respectively.

than gray or white matter (see Fig. 1.1). On the contrary, acute brain infarcts decrease
the X-ray attenuation in the brain parenchima and reduce the differentiation between
gray and white matter. It should be noted that in CT imaging, the contrast between the
diverse tissues in the brain parenchima is small (typically represented by changes of a
few Hounsfield units). Consequently, images aiming for diagnostic purposes require
low noise levels, since the noise presence can easily hide lesions within the image, as
shown in Fig. 1.2.

A CT acquisition is achieved by back-projecting a number of 2D X-ray projections
onto a 3D volume. At a high level of discussion, an X-ray projection is acquired as
follows.

First, an X-ray source generates photons that propagate through the medium (e.g.
air, patient and other objects). During the travel of the photons towards the detector,
the X-ray photons may collide with atoms of diverse materials (e.g. bone, water, brain),
which can result in a change of trajectory and a loss of energy (Compton effect), or
in the absorption of the photon by the atom resulting in the release of electrons by
the atom (photoelectric effect). The photoelectric effect is more likely to happen for
dense materials. Consequently, the detector will receive more energy in the paths
where low-density materials are present (e.g. air, soft tissue). Finally, the energy of
the photons that reach the detector during the projection is integrated and the final
readout is retrieved.

Second, it should be noticed that the interactions between the photons and the
material in the medium are statistical interactions, which means that the photon flux
is subject to random variations of the measured intensity (noise). Furthermore, the
electronic circuitry of the system also introduces noise in the acquired projections.
In X-ray medical imaging, the noise can modeled as a Poisson-distributed random
variable, where the variance is the expected number of photons.

Third, after the acquisition of multiple X-ray projections a reconstruction algorithm
maps the projections into a volumetric CT image. It is important to consider that
the noise contained in the X-ray projections will also affect the reconstructed images,
which will present signal-dependent noise, that is also non-stationary and has spatial
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Noiseless Simulated full-dose CT

Simulated half-dose CT Simulated quarter-dose CT

gray
matter

white
matter

Figure 1.2. Simulated noiseless full-, half- and quarter-dose CT slices. Note that as the noise
increases, the radiation dose decreases and it is no longer possible to differentiate the gray and
white matter.

correlations. These properties result from the filtering stages that are applied in the
reconstruction algorithms.

Because of the inherent noise properties of the detected signal, the handling and
treatment of noisy signals requires careful attention. Specifically, higher-quality images
with low noise levels are obtained with high-radiation doses. However, it is desirable
to reduce the exposure to X-rays because there are direct health risks for the patient
and medical personnel [24]. This directly explains why the radiation doses applied
in X-ray systems have continuously decreased over the past decades [25], [26]. Other
factors that may lead to images with higher noise content are the generation of high-
resolution scans [27] and the use of spectral detectors [28]. These factors highlight
the relevance of using noise-removal algorithms, while preserving the underlying
anatomical structures. Common approaches for noise reduction in CT are total-
variation minimization [29], framelet-based methods [30], sparse coding [31], low-rank
approximation [32], [33], collaborative filtering [34], [35] and more recently, data-
driven methods such deep neural networks [36]–[38].

From the previous discussion, it can be deduced that if noise reduction in CT
is achieved with DNNs, the DNN models should not alter any signs of pathology,
morphological information, small structures and/or the intensity levels of the picture,
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since this could alter the medical diagnosis, quantitative measurements and/or sub-
sequent processing. In addition, given the potential patient risks, it is desirable that the
models provide some degree of interpretability to clinicians. This last point is critical,
because it allows the clinicians to evaluate the capabilities, limitations and possible
risks associated to such models. Among the DNN architectures employed in medical
imaging, a common solution is the so-called encoding-decoding (ED) convolutional
neural network (CNN) architecture. This model is suitable for pixel-level tasks such
as image denoising, since it has as input and output images with the same resolution.
Such an ED CNN model is described in more detail in the following section.

1.3 Encoding-decoding (ED) CNNs

The so-called encoding-decoding CNNs are models which consist of the following
elements. First, the encoder that maps the input to a multi-channel signal representation.
Second, the decoder that maps the encoded signal back to the original domain using
a multi-layer approach, which results in an image of the same dimensionality as the
original input. The third and final element of ED CNNs are the sparsifying non-
linearities that are embedded within the encoder and decoder sections and suppress
parts of the signal. It should be noted that this last operation is one of the main
contributors to the noise reduction behavior of the model.

The potential of encoding-decoding CNNs as an approach for obtaining more
interpretable DL-based noise reduction can be related to the fact that the mathem-
atical formulation of ED CNNs has strong similarity to well-established signal pro-
cessing techniques for noise reduction. For this thesis, it is particularly important to
develop the connection to shrinkage-based algorithms in the wavelet domain [39],
low-rank [40] approximation and sparse coding [41]. It should be noted that the
mathematical formulations of the three aforementioned techniques are a consequence
of explicit assumptions about the data and noise model. The choice for this three
techniques us further motivated in the following section and will be come gradually
clear.

A simple visual example of the similarity between the wavelet transformation and
the encoding-decoding structure of a CNN is shown in Fig. 1.3, where it can be directly
observed that the implementation of a multi-level discrete wavelet transform with
a filter bank [42] is very similar to common ED CNNs, such as the U-Net [8]. This
similarity is described by the property that both approaches develop a tree-like struc-
ture, which is produced by convolving the incoming data with a convolution kernel.
This step can be repeated in order to process the information at multiple resolutions
and with more detailed decompositions. One important difference between the two
structures is the fact that the filters of wavelet transform are defined in advance so that
the information structures for filtering are known, whereas in the U-Net the filtering
structures are learned from the data to perform a specific task. It can be considered that
we are not the first in reporting such similarity, which has already been described in the
theoretical work by Ye et al. [40], [43] that is addressed in more detail in subsequent text.
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Figure 1.3. Comparison between the architecture of the U-Net and the discrete wavelet
transform. In the U-Net diagram, N is the number of feature maps, while fs is the spatial
sampling frequency/feature map resolution. Furthermore, in the diagram corresponding to the
wavelet transform, W and W̃ are the basis functions for the forward and inverse transform,
respectively. In the figure the up/down arrows correspond to up/down sampling operations, while
operator ⊛ is a tensor convolution.

Signal processing-based noise reduction. Prior to addressing some of the common-
alities between signal processing and ED CNNs, two common approaches for noise
reduction which are linked to the theoretical explanations of the operation of noise
reduction ED CNNs are addressed. The first approach is wavelet shrinkage-based
noise reduction [14], which employs the noise model and/or signal model, as well
as intra/inter-scale relationships in the wavelet-transformed domain for eliminating
noise [44]. The second signal processing-based approach addressed here is sparse
coding [15], employing data to generate a prior distribution of patches (referred to
as atoms), which are grouped into a dictionary. In order to produce an estimate, the
noisy signal is approximated by a sparse linear combination of the elements in the
dictionary, where the weights that are applied for the linear combination of atoms
are referred to as code in the sparse coding view, whereas in the the neural network
domain they are called hyper-parameters.

Differences between signal processing approaches and encoding-decoding CNNs. In con-
trast with the previously addressed signal processing denoising algorithms, encoding-
decoding CNNs are often presented as a solution without making explicit assumptions
on the signal and noise. For example, in supervised algorithms, an encoding-decoding
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CNN learns the optimal parameters to filter the signal from a set of paired examples
of noise/artifact-free images and images contaminated with noise/artifacts [9], [36],
[37]. This data-driven approach highly simplifies the solution of the noise-reduction
problems, since this circumvents the use of explicit modeling of the signal and noise.
Still, it should be noted that the added flexibility comes at the expense of lacking
the understanding of the internal operation, which is typically discussed in model-
centered designs [21].

The vision. It can be observed that the commonalities between ED CNNs and
sparse transforms such as the discrete wavelet transform present an opportunity to
introduce explainability in ED CNNs. For example, the noise is often considered to be
a random signal with high-frequency components, while most of the content in natural
images is often containing mostly low-frequency energy. Consequently, it could be
possible to leverage the space-frequency partitioning properties of discrete wavelet
transformations to provide a suitable representation, such that the high-frequency
information is separated from the low-frequency part and to apply a CNN that only
eliminates noise in the high-frequency segment of the signal. It can be observed that,
by constraining the operation of the CNN to a specific task, the model becomes by
definition less of a “black box". Furthermore, by constraining the CNN to operate in
the high-frequency bands, it is avoided that critical components in the low-frequency
band are processed. Alternatively, it is possible to explore how a CNN, where the
encoding-decoding path is learned, could be designed so that it behaves more akin to
conventional signal processing algorithms. Hence, by mimicking a known algorithm,
the model becomes more explainable as well.

The following section addresses in more detail the approaches and challenges
faced to achieve interpretable CNNs in the field of medical imaging. Furthermore,
Section 1.4 also addresses the existing theoretical frameworks which explain the
structure of ED CNNs from a signal processing perspective.

1.4 Challenges of CNNs for noise reduction in CT

Previous sections have addressed the relevance of achieving interpretable operations
of CNNs for critical applications such as medical imaging, as well as our vision of
increasing the interpretability of CNNs by integrating well-understood signal pro-
cessing and machine learning concepts. This section further details this discussion
and breaks it up in several view points for detailing advances in existing literature.

Hybrid deep learning for increased interpretability. A basic point to start with is the
combination of machine learning/deep learning and signal processing concepts as a
hybrid engine for designing explainable CNNs. For example, well-established models
such as decision trees have been explored as a tool to understand general CNNs [45],
[46]. Another important example of hybrid models is the recent work by Khozeimeh et
al. [47], who proposed a hybrid model which contains convolutional features as feature
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extractors and a decision tree as classifier. In the realm of image restoration, the integ-
ration of signal processing concepts have also resulted in new models that improve the
performance of existing CNNs. For example, the work by Han et al. [40] demonstrates
the limitations of the conventional pooling structure used in the U-Net [8] and instead
improves upon this shortcoming by using the wavelet transform to avoid the loss of
high-frequency information. On the other hand, the models of Mentl et al. [48] and
Fan et a. [39] introduce shrinkage-based networks in CNNs that are used for denoising
of CT scans. It can be noted that despite of the already impressive achievements of
these models, they also have some limitations. For example, none of these methods
explore the properties of the convolutional layers of the design, while the placement of
the non-linearities in the model is regularly not justified based on any signal properties
and/or assumptions.

Theoretical connections between encoding-decoding CNNs and signal processing. In the
specific context of signal processing tasks, in recent years, there have been significant
efforts to improve the understanding of the internal operation of CNNs, by comparing
the internal operation of ED CNNs with signal processing concepts. For example, the
theory of deep convolutional framelets (TDCF) [40] explores the behavior of ReLU
CNNs and establishes that the linear structure of CNNs is akin to a data-driven frame-
let decomposition. In addition, the TDCF also states that the denoising behavior is a
similar to low-rank approximation, which is achieved CNNs by suppressing feature
maps/signal bases with the ReLUs. An alternative approach is the sparse coding
interpretation [41], which describes the operation of CNNs from a convolutional
sparse-coding approach, where the output of a given neighborhood is a sparse com-
bination of learned basis functions. Finally, the spline modeling of CNNs, mentions
that the output of ReLU-based CNNs can be considered as first-order spine approxim-
ations of the noisy input [49] and even proposes new more general networks, where
activation functions can be learned from the data. In addition, analogies between
ReLU-based and shrinkage-based [50] models have also been used as an analogy to
explain the behavior of CNNs.

Limitations of current theoretical signal processing interpretations of encoding-decoding
CNNs. Despite the insights that new theoretical works present to understand the
operation of CNNs, the above-described theories also have some limitations. For
example, the TDCF focuses mainly on explaining the operation of ReLU-based CNNs.
In the case of using sparse coding to understand CNNs, it can be noted that con-
ventional sparse coding behaves in a way that is slightly different than CNNs. For
example, sparse coding implementations attempt to find the closest basis functions
to the signal after which they produce an approximation of the signal based on those
basis functions. The task of finding the closest basis functions to the observed sig-
nals is often achieved by means of some optimization mechanism, which is not part
of the architecture of CNNs (e.g. k-means [51], the basis-pursuit algorithm [52], or
gradient-descent optimization [53]). Finally, in the case of spline functions, it can be
observed that the current insights are still limited to ReLU-based approximations and
to adaptive piece-wise linear and maxOut functions [49].
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Based on the current insights and limitations on the signal processing behavior of
ED CNNs, the following section defines the problem statement and research questions
for this thesis.

1.5 Problem statement and research questions

This section further details the challenges into a problem statement and specific
research questions for this thesis (Sections 1.5.1 and 1.5.2).

1.5.1 Problem statement

Regardless of the significant theoretical developments as well as practical examples
which combine signal processing techniques with encoding-decoding CNNs, to the
moment of writing this dissertation, most CNN designs do hardly exploit signal pro-
cessing concepts in their design and are mostly designed empirically. Furthermore,
the theory of deep-convolutional framelets and the geometry of encoding-decoding
CNNs focuses exclusively on explaining CNNs with ReLU activations. This leads to
the following problem statement.

This thesis aims at defining a complementary framework that explains ED CNNs by
explicitly connecting architectural elements of the model to existing signal processing functions.
The purpose of this explicit connection is to obtain not only a better understanding of CNNs,
but also to design new models that leverage the underlying signal processing concepts for
achieving a more interpretable operation.

1.5.2 Research questions

The above problem statement results in the following research questions.

RQ 1: Integrating conventional signal processing into CNNs
The theory of deep convolutional framelets acknowledges the convolution filters of the
encoder and decoder in noise reduction CNNs as mechanisms for decomposing and
reconstructing the input signal, while the sparsifying non-linearities are considered
the main noise reduction element. Based on this realization, this thesis proposes two
main paths for the design of noise reduction CNNs. The first option is to replace
the convolution filters in the encoder and decoder by non-trainable framelets, while
the noise reduction relies on CNN models that are applied to specific framelet bands.
Alternatively, the second option is to simplify the design of current CNN models to
bring them closer to conventional wavelet-based denoising algorithms. Based on the
proposed design paths, the following questions are formulated.

• RQ1a. What are the consequences of the integration of non-trainable framelets as ED
path in noise reduction CNNs?
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• RQ1b. Is it possible to realize a denoising CNN with a trainable ED path that offers
perfect reconstruction, without explicitly training for this property?

• RQ1c. Can the integration of signal processing knowledge improve CNNs in any aspect?

RQ 2: Impact of the activation functions in CNNs
The (non-linear) activation functions are one of the key components in the operation
of convolutional neural networks. It should be noted that common CNNs use ReLU
activations, while the models in this thesis often employ shrinkage activations, which
are used also in conventional wavelet-based noise reduction. This modification may
impact the behavior of the CNNs, which raises the following questions.

• RQ2a. Do shrinkage functions have any advantages when compared to ReLUs in terms
of CNN interpretability?

• RQ2b. How do shrinkage functions limit the operation of CNNs when compared to
ReLU activations?

RQ 3: Comparing characteristics of convolutional neural networks
In the current state of deep learning, it is not obvious how to choose a CNN for a
specific application because it is not clear how the deep learning models operate and
what limitations they may have. Consequently, it is important to specify a theoretical
description or a descriptive framework of the internal operation of a CNN that allows
to identify potential limitations. In this way, better-informed choices can be made
regarding the suitability of specific CNNs for a given task. By bearing these aspects in
mind, the following questions are formulated.

• RQ3a. Is it possible to define a common framework for the analysis of denoising CNNs
to identify their potential limitations?

• RQ3b. What are the limitations of such framework?

RQ 4: Expanding the applications of encoding-decoding CNNs
Model-based deep learning is a technique that at its core uses encoding-decoding
CNNs. The model-based deep learning is a solution direction that is applicable to
many problems, since it exploits knowledge of the physical process that relates to
the analyzed signal. It should be noted that model-based deep learning operates by
solving the problem of estimating a desired variable (or a set of variables or data
representation) by employing an iterative optimization approach in which a CNN
is employed as a regularization step. The concept behind this approach is that by
limiting the operation of the CNN to perform regularization, the overall process
becomes more explainable. Potentially, this approach is more generic and robust,
because model-based deep learning uses the signal model, rather than learning it. This
leads to the following questions.

• RQ4a. Which concepts and principles can be applied to improve the generalization of
model-based deep learning?

• RQ4b. Can the proposed concepts with ED CNNs also contribute to lower the complexity
and how does this compare with conventional CNN designs?
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1.6 Contributions

The scientific contributions of this dissertation are elaborated below.

Contributions to hybrid design of signal processing and CNN systems
The main contribution of this thesis is to present an approach in which signal pro-
cessing concepts can be integrated in CNNs. The motivation for such integration is to
improve the interpretability of the resulting models. In this dissertation, there are two
main design paths that are followed.

The first approach employs a framelet decomposition known as the overcomplete
Haar wavelet transform. This transformation decomposes the input signal in multiple
bands. Afterwards, in the high-pass framelet bands, a trainable CNN that is inspired
in NeighShrink [54] is employed to eliminate noise. The integration of these elements
results in two models referred to as dual-Haar shrinkage networks 1 and 2 (DHSN1 and
DHSN2, respectively). The conducted experiments show that the DHSN1 and DHSN2
models are competitive in terms of peak signal-to-noise ratio and mean structural
similarity index, when compared with other popular denoising CNNs employed in CT.
However, the DHSN1 and DHSN2 are more interpretable than common CNN models
because the decomposition and reconstruction of the signal is handled by a framelet
with known characteristics, while the employed CNNs are limited to eliminate noisy
components in the decomposed representation. Furthermore, additional experiments
demonstrate that the known sparsity property of the employed framelet can be used
for unsupervised noise reduction with the DHSN2.

The second approach for interpretability explores designs where the ED path
is learned, but where basic properties of signal preservation can still be observed.
Therefore, this approach provides more certainty on the internal operation of the
model. To this end, this thesis proposes the (residual) learned wavelet frame shrinkage
network (LWFSN), which mimics conventional wavelet-based noise reduction, by
employing a linear ED path and applying shrinkage non-linearities in the high-pass
bands/feature maps. This simplified design allows to study the operation of the model
in a better way, since non-linear shrinkage functions become the identity function when
the threshold for these activations is set to zero. This concept leverages to study the
linear part of the model with the impulse and frequency responses of the system. This
demonstrates that the ED path of the proposed LWFSN has the ability to propagate
signals almost without any loss, while the non-linearities handle the suppression of
noise components. It should be noted that to the best of our knowledge, this research
is the first in following this approach to explicitly characterize the behavior of the
linear part of the trained model.

Contributions to understanding the activation functions in CNN behavior
Another contribution of this thesis is to demonstrate that shrinkage activations can
reduce the model size/complexity of CNNs when compared with ReLU activations.
This consequently reduces the execution time when compared to conventional CNNs,
as shown in the experiments performed on the learned wavelet frame shrinkage network,
leading to a over 7 times faster execution, when compared to the tight-frame U-Net
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(TF U-Net) [36]. Furthermore, as discussed in the previous contribution, shrinkage
activations are beneficial for interpretability of the operation of trained models. In
addition, this thesis demonstrates that there are conditions in which ReLUs CNNs
and shrinkage functions can be considered equivalent. These conditions are that
the number of feature maps is large enough to represent shrinkage activations and
that the phase of the filters is suited to correctly propagate the positive and negative
parts of the signal. However, if these conditions are satisfied, the bonus is that the
use of shrinkage activations always lead to more compact models. For example, the
ReLU-based TF U-Net has over 500 times the amount trainable parameters of the
shrinkage-based LWFSN.

Contributions to the understanding of ED CNNs
This dissertation exhaustively studies ED CNNs for noise reduction and provides
complementary information to the theory of deep convolutional framelets (TDCF) [40].
Specifically, the TDCF explains ReLU CNNs from a low-rank approximation perspect-
ive and does not addresses other activations. In addition, an other limitation of this
theory is that it has been exploited to find constraints in the propagation of signals
in models like the popular U-Net [8]. However, the analysis of the U-Net performed
with the TDCF mainly focuses on the linear part of the model, while addressing
the ReLUs simply as a “switching" mechanism that reduces the rank of the signal.
This means that the implications of the non-linearities in terms of signal propaga-
tion/reconstruction has not been explored. In order to account for these limitations,
an analysis framework is proposed which considers the implications of the linear and
non-linear part of the model in terms of signal reconstruction for ReLU, shrinkage and
clipping-based models. Overall, the framework allows to describe networks in such a
way that the limitations of CNNs can be found. As an application of the developed
framework, this thesis describes the reconstruction and denoising structure of the
residual encoder-decoder CNN (RED) [37], the filtered backprojection network [50] (FBPCon-
vNet), the tight-frame U-Net [36] and the sparse coding network [48]. A comparison in
Chapter 3 shows the limitations of each of these networks. For example, the analysis
performed to the TF U-Net in Chapter 3 shows that the TF U-Net model can be reduced
considerably in terms of model complexity. These findings have been employed to
design the more compact and faster LWFSN described in Chapter 4, which not only
provides a more efficient choice, but also the power of the analysis framework.

Contributions to model-based deep learning
Model-based deep learning integrates regularized optimization with neural networks
for more interpretable operation. However, it can be observed that the CNN employed
as regularizer still is considered a “black box". The research of this thesis shows that
it is possible to incorporate a simpler and more interpretable model as regularizer.
Specifically, we employ a model where the encoder and decoder are framelets and in
which a simple CNN that eliminates noise is the only trainable part in the model. The
integration of the proposed regularizer within the model-based solution allows for
noise reduction performance that is close to more conventional model-based CNNs,
such as FISTA-Net. However, it should be noted that in terms of PSNR and MSSIM,
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Figure 1.4. Schematic layout of this thesis. Every yellow block in the diagram represents
a chapter of this dissertation, whereas the white blocks represent the main contents of the
corresponding chapter.

the simplified model is marginally outperformed by the FISTA-Net.
For improving the generalization of the model-based solution explored in Chapter 6,

the model-based CNN integrates an adaptive gradient descent solution for optimiz-
ation, which can be employed in other model-based CNNs. It can be observed that
this circumvents the need to learn the gradient steps as occurring in alternative model-
based CNNs. Besides this, an other more general concept integrated the proposed
design is to make the noise reduction dependent on the noise level of the input, which
is inspired by the multi-scale sparse coding network [48]. Both approaches improve
the generalization of the proposed solution.

1.7 Thesis outline

This section presents an outline of the chapters in terms of research topics. A schematic
diagram of the chapter layout of this text is depicted in Fig. 1.4, where it is visible that
the first chapter of this dissertation addresses the introductory content. Meanwhile,
Chapter 2 introduces background in noise reduction, CNNs and notation. Chapter 3
explores the mathematical formulation of CNNs from a signal processing perspective.
Based on this exploration, Chapters 4 and 5 show CNNs that incorporate framelets in
their design to improve their interpretability. As final application, Chapter 6 presents
a model-based noise reduction and material decomposition application in the context
of dual-energy cone-beam (CB) CT. In this model, the core element is a regularization
network which incorporates elements of the designs shown in Chapters 4 and 5. The
remainder of this section briefly addresses the contents of each chapter.

Chapter 2 introduces the necessary background on noise reduction, which includes
linear filtering, variational methods, transform-domain methods, as well as structured-
rank approximation techniques. These concepts are important to understand the
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developments presented in the succeeding chapters. Furthermore, this chapter also ad-
dresses the deep neural networks and encoder-decoder CNNs in more detail. Finally,
the last part of Chapter 2 describes the mathematical notation used for the remaining
chapters.

Chapter 3 presents an extensive analysis of the connections of encoding-decoding
CNNs with signal processing principles, as well as an analysis framework for noise
reduction with CNNs. Afterwards, different encoding-decoding CNNs based on ReLU
and shrinkage activations are analyzed. This chapter is based on an publication in the
IEEE Signal Processing Magazine [55].

Chapter 4 addresses the design of a CNN, whose encoding-decoding path is com-
posed by tight wavelet frames. The chapter initially addresses the dual-tree complex
wavelet transform (DTCWT), which has certain characteristics that makes it attractive
for its integration within a CNN such as filter directionality and perfect reconstruction.
Still, the main drawback of the DTCWT is the use of large filters, which reduce their
spatial localization and increase the padding needed to avoid signal loss. For a better
integration within CNNs, a number of simplifications are introduced to the DTCWT,
which results in the so-called over-complete Haar wavelet transform. This chapter is based
on publications presented at the IEEE Int. Workshop in Machine Learning for Signal
Proc. (2020) [56] and the journal IEEE Trans. on Image Proc. (2021) [57].

Chapter 5 is exploring the design of a CNN in which the encoding and decoding
paths are learned, but where it is still possible to prove that from a global point of view,
the encoding-decoding path of the model behaves approximately as a tight wavelet
frame and its inverse. This property is proved both theoretically and experimentally.
The results of this research are published in the journal IEEE Trans. on Medical Imaging
(2022) [58].

Chapter 6 discusses the insights provided by the designs from the previous two
chapters and integrates them into a model-based CNN applied to material decom-
position and denoising of dual-energy cone-beam CT scans. The models presented
for the experiments in this chapter are trained on a small set of synthetic images and
evaluations are conducted in synthetic and clinically-acquired dual-energy cone-beam
CT. The results indicate that the proposed model is able to generalize better to unseen
images than the reference models. The insights of this research are submitted to the
journal IEEE Trans. on Medical Imaging [59].

Chapter 7 addresses the final remarks of this dissertation and addresses the re-
search questions formulated at the start of this thesis. In addition, the chapter provides
a future outlook for the research presented in this thesis.



CHAPTER2
Background in noise reduction,

sparsity-driven modeling and
CNNs

The previous chapter has introduced the context of this thesis, which is the design
and understanding of noise reduction CNNs with applications to CT imaging. The
development of such CNNs is based on the existing knowledge of diverse existing
signal processing algorithms, which rely on assumptions on the signal and noise mod-
els. Prior to addressing the design and specific connections that exist between signal
processing, noise reduction and CNNs, this chapter summarizes the main principles
of relevant signal processing algorithms with the aim of building the foundations
for understating their connections with CNNs. Afterwards, the following chapters
will use the defined concepts to develop noise reduction algorithms and to draw
connections between them and CNNs.

The first concept to be addressed in this chapter is noise reduction, which is an
inverse problem where a noiseless estimate is obtained from a noisy observation.
Historically, this problem has received significant attention and has been approached
from many different perspectives. This dissertation is particularly relevant for the
concepts behind sparsity [14], [60], [61], and the structure of the data [13], [62], [63]. It
should be noted that under certain considerations some of these techniques can be
considered equivalent and/or complementary.

An additional element relevant for this chapter is the concept of neural networks
and of encoding-decoding CNNs. It will be shown in Chapter 3 that these concepts
have a strong connection with diverse signal processing elements often applied to
noise-reduction algorithms. Another important concept introduced in this chapter is
the mathematical notation that will be used in the remainder of this text as well as
relevant image quality metrics that are used in subsequent chapters.

The remainder of this chapter is structured as follows. Section 2.1 introduces the
fundamental aspects of relevant noise reduction algorithms. Afterwards, Section 2.2
introduces the concept of neural networks. Afterwards, Section 2.4 introduces the
notation and symbols using in this dissertation, while Section 2.5 presents the image
quality metrics that are used in the thesis. Finally, Section 2.6 discusses the conclusions
for these sections as well as the challenges to be addressed by the following chapters.
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2.1 Existing noise reduction methods

As mentioned in Chapter 1, there are numerous techniques that can be used to reduce
noise in images. Among the existing methods, it is possible to find many examples,
which are the result of assumptions about the signal and noise characteristics. This
section shows a small sample of such techniques, which are also relevant to understand
subsequent CNN models in the remainder of this dissertation.

2.1.1 Linear filtering

Linear filtering is perhaps the earliest form of noise reduction. Consequently, there
is a wide range noise reduction algorithms based on this principle, which go from
simple Gaussian and block filters to model-based algorithms such as Wiener and
collaborative filtering. As a first example, convolution-based linear filtering estimates
the local mean of the signal with the weighted average/expected value of the signal
values around a predefined neighborhood for every pixel. An alternative technique, is
the non-causal Wiener filter, where the noisy input is modeled as a noiseless image
contaminated with a noise signal that follows a specific distribution. The final step
of the Wiener filter is to produce the least-squares estimate of the signal, which is
often performed in the Fourier domain. The final technique of linear noise reduction
addressed here is non-local or collaborative filtering, which appeals to the redundancy
of natural images by grouping sets of similar patches and performing a weighted
average. The most common of these algorithms is non-local means [64].

2.1.2 Variational methods

Variational methods are optimization-driven techniques, where noise reduction is
achieved by minimizing an objective function which enforces desirable properties in
the resulting noiseless estimate. The most common example of a variational noise
reduction technique is the model by Rudin Osher and Fatemi (ROF) [13], which is
mathematically expressed by

ŷ = argmin
z

[
F (x, z) +R(z)

]
, (2.1)

where variable ŷ is an estimate of a noiseless image y, while x is the observed noise-
contaminated image and z is an intermediate representation of the noiseless image
y. In addition, function F (·) is the fidelity term, which enforces the estimate z to
remain close to the noisy input x, while the term R(·) is a regularization term, which
introduces prior information about the image estimate. For example, natural images
are often considered to be locally smooth/constant. Therefore, the R(·) could penalize
non-smooth images.

In the popular ROF method, functions R(·) and F (·) are defined by R(z) = ∥z∥TV

and F (x, z) = λ · ∥x− z∥22, respectively. Here, ∥·∥TV stands for the total variation norm,
while ∥·∥2 is the L2 norm and constant λ defines a trade-off between fidelity with
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the development of 2-D multiscale transforms that represent
edges more efficiently than the separable DWT. Examples
include steerable pyramids [41], [96], directional FBs and pyra-
mids [10], [31], curvelets [15], [100], and directional wavelet
transforms based on complex FBs [36], [39], [55], [57]. These
transforms isolate edges with different orientations in different
subbands, and they frequently give superior results in image
processing applications compared to the separable DWT.

The separable (row-column) implementation of the 2-D DWT
is characterized by three wavelets (see Figure 14):

ψ1(x, y) = φ(x) ψ(y) (LH wavelet), (36)

ψ2(x, y) = ψ(x) φ(y) (HL wavelet), (37)

ψ3(x, y) = ψ(x) ψ(y) (HH wavelet). (38)

The LH wavelet is the product of the low-pass function φ(·)
along the first dimension and the high-pass (actually a band-
pass) function ψ(·) along the second dimension. The HL and
HH wavelets are similarly labeled. While the LH and HL
wavelets are oriented vertically and horizontally, the HH
wavelet has a checkerboard appearance—it mixes +45° and
−45° orientations. Consequently, the separable DWT fails to
isolate these orientations.

One way to understand why the checkerboard artifact arises
in the separable DWT is to look in the frequency domain. If
ψ(x) is a real wavelet and the 2-D separable wavelet is given by
ψ(x, y) = ψ(x) ψ(y), then the Fourier spectrum of ψ(x, y) is
illustrated by the following idealized diagram:

Since ψ(x) is a real function, its spectrum must be two-sided
and hence, it is unavoidable that the 2-D spectrum contains
passbands in all four corners of the 2-D frequency plane.
Therefore, this wavelet will be unable to distinguish between
+45° and −45° spectral features, and this leads to the same
ambiguity in the space domain. 

2-D DUAL-TREE CWT
To explain how the dual-tree CWT produces oriented wavelets,
consider the 2-D wavelet ψ(x, y) = ψ(x) ψ(y) associated with
the row-column implementation of the wavelet transform, where
ψ(x) is a complex (approximately analytic) wavelet given by
ψ(x) = ψh(x) + j ψg(x). We obtain for ψ(x, y) the expression

ψ(x, y) = [ψh(x) + j ψg(x)] [ψh(y) + j ψg(y)] (39)

= ψh(x) ψh(y) − ψg(x) ψg(y)

+ j [ψg(x) ψh(y) + ψh(x) ψg(y)]. (40)

The support of the Fourier spectrum of this complex wavelet is
illustrated by the following idealized diagram:

Since the spectrum of the (approximately) analytic 1-D wavelet
is supported on only one side of the frequency axis, the spec-
trum of the complex 2-D wavelet ψ(x, y) is supported in only
one quadrant of the 2-D frequency plane. For this reason, the
complex 2-D wavelet is oriented.

If we take the real part of this complex wavelet, then we
obtain the sum of two separable wavelets

Real Part{ψ(x, y)} = ψh(x) ψh(y) − ψg(x) ψg(y). (41)

Since the spectrum of a real function must be symmetric with
respect to the origin, the spectrum of this real wavelet is sup-
ported in two quadrants of the 2-D frequency plane, as illustrated
in the following (idealized) diagram:

Real Part { } =

× =

=×

[FIG14] Typical wavelets associated with the 2-D separable DWT.
(a) illustrates the wavelets in the space domain (LH, HL, HH); (b)
illustrates the (idealized) support of the Fourier spectrum of each
wavelet in the 2-D frequency domain (the origin lies at the
center). The checkerboard artifact of the third wavelet is evident.

(a)

(b)

Figure 2.1. Example of detail/high-pass filters of the discrete wavelet transform (subfigure (a))
and their frequency response (subfigure (b)). Image extracted from the work by Selesnick and
Kingsbury [65] © 2005 copyright IEEE.
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Unlike the real separable wavelet, the sup-
port of the spectrum of this real wavelet
does not possess the checkerboard arti-
fact, and therefore, this real wavelet, illus-
trated in the second panel of Figure 15, is
oriented at −45°. Note that this construc-
tion depends on the complex wavelet
ψ(x) = ψh(x) + j ψg(x) being (approxi-
mately) analytic or, equivalently, on ψg(t)
being approximately the Hilbert trans-
form of ψh(t), [ψg(t) ≈ H{ψh(t)}].

Note that the first term in expression
(41), ψh(x) ψh(y), is the HH wavelet of a
separable 2-D real wavelet transform
implemented using the filters
{h0(n), h1(n)} . The second term,
ψg(x) ψg(y), is also the HH wavelet of a
real separable wavelet transform, but one that is implemented
using the filters {g0(n), g1(n)}.

To obtain a real 2-D wavelet oriented at +45°, consider now
the complex 2-D wavelet ψ2(x, y) = ψ(x) ψ(y), where ψ(y)
represents the complex conjugate of ψ(y) and, as above, ψ(x) is
the approximately analytic wavelet ψ(x) = ψh(x) + j ψg(x).
We obtain for ψ2(x, y) the expression

ψ2(x, y) = [ψh(x) + j ψg(x)]
[
ψh(y) + j ψg(y)

]
= [ψh(x) + j ψg(x)] [ψh(y) − j ψg(y)]

= ψh(x) ψh(y) + ψg(x) ψg(y)

+ j [ψg(x) ψh(y) − ψh(x) ψg(y)].

The support in the 2-D frequency plane of the spectrum of this
complex wavelet is illustrated by the following idealized diagram:

As above, the spectrum of the complex 2-D wavelet ψ2(x, y) is sup-
ported in only one quadrant of the 2-D frequency plane. If we take
the real part of this complex wavelet, then we obtain the real wavelet

Real Part{ψ2(x, y)} = ψh(x) ψh(y) + ψg(x) ψg(y), (42)

the spectrum of which is supported in two quadrants of the 2-
D frequency plane, as illustrated in the following (idealized)
diagram:

Again, neither the spectrum of this real wavelet nor the wavelet
itself possesses the checkerboard artifact. This real 2-D wavelet
is oriented at +45° as illustrated in the fifth panel of Figure 15.

To obtain four more oriented real 2-D wavelets, we can
repeat this procedure on the following complex 2-D wavelets:
φ(x) ψ(y) , ψ(x) φ(y) , φ(x) ψ(y) , and ψ(x) φ(y) , where
ψ(x) = ψh(x) + j ψg(x) and φ(x) = φh(x) + j φg(x). By taking
the real part of each of these four complex wavelets, we obtain
four real oriented 2-D wavelets, in addition to the two already
obtained in (41) and (42). Specifically, we obtain the following
six wavelets:

ψi(x, y) = 1√
2
(ψ1,i(x, y) − ψ2,i(x, y)), (43)

ψi+3(x, y) = 1√
2
(ψ1,i(x, y) + ψ2,i(x, y)) (44)

for i = 1, 2, 3, where the two separable 2-D wavelet bases are
defined in the usual manner:

ψ1,1(x, y) = φh(x) ψh(y), ψ2,1(x, y) = φg(x) ψg(y), (45)

ψ1,2(x, y) = ψh(x) φh(y), ψ2,2(x, y) = ψg(x) φg(y), (46)

ψ1,3(x, y) = ψh(x) ψh(y), ψ2,3(x, y) = ψg(x) ψg(y). (47)

We have used the normalization 1/
√

2 only so that the sum/
difference operation constitutes an orthonormal operation.
Figure 15 illustrates the six real oriented wavelets derived from
a pair of typical wavelets satisfying ψg(t) ≈ H{ψh(t)} .
Compared with separable wavelets (see Figure 14), these six
wavelets (which are strictly nonseparable) succeed in isolating
different orientations—each of the six wavelets are aligned
along a specific direction and no checkerboard effect appears.
Moreover, they cover more distinct orientations than the separa-
ble DWT wavelets.

Real Part { } =

=×

[FIG15] Typical wavelets associated with the real oriented 2-D dual-tree wavelet
transform.  (a) illustrates the wavelets in the space domain; (b) illustrates the (idealized)
support of the Fourier spectrum of each wavelet in the 2-D frequency plane. The absence
of the checkerboard phenomenon is observed in both the space and frequency domains.

(a)

(b)

Figure 2.2. Real part of the filters of the detail filters of the dual-tree complex wavelet transform
(subfigure (a)) and their associated frequency spectrum (subfigure (b)). Image extracted from
the work by Selesnick and Kingsbury [65] © 2005 copyright IEEE.

respect to the input signal and smoothness. The total variation norm ∥·∥TV is defined
by

∥x∥TV= ∥∇x∥1, (2.2)

in which∇· is the divergence operator that is often implemented with a first one-sided
finite difference.

In order to solve the optimization problem of Eq. (2.1), multiple solutions have
been proposed, such as finite difference solvers [13], primal-dual optimization [66],
Brengman iterations [67]–[69] and fixed-point methods [70]. All these optimization
procedures result in iterative solutions.

2.1.3 Transform-domain methods

Transform-based denoising leverages the idea that an image can be mapped to a
sparse domain, in which most of its energy is contained within a few high-amplitude
components, whereas noise is distributed in low-amplitude samples. It should be
noted that this separation is useful and can be exploited for noise removal. Examples
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Figure 2.3. Processes involved in the computation of the forward and inverse wavelet transform
and their effect in the Fourier spectrum of the input signal. In the figure, X(ω) is the input
signal in the Fourier domain, H0 and H1 are low-pass and high-pass filters used in the forward
transform, respectively, while G0 and G1 are their inverse transform counterparts. After the first
processing stage, the signal X(ω) is bisected into the bands YL(ω) and YH(ω), since only half
of the bandwidth is used. Then, YL(ω) and YH(ω) are down-sampled, resulting in signals Y ′

L(ω)
and Y ′

H(ω). Finally, during the inverse transformation, the encoded signals Y ′
L(ω) and Y ′

H(ω)
are up-sampled, resulting in the aliased signals Y ′′

L (ω) and Y ′′
H(ω), which can be anti-alias

filtered by G0 and G1 and later added to recover recover the signal X(ω). It should be noticed
that the reconstructed signal has no prime indication because of the perfect reconstruction.
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Figure 2.4. Simple wavelet-based denoising pipeline. In the first place, the signal is converted
to the wavelet domain. The second step consists in applying a non-linear sparsity-enforcing
operator. Finally, the signal is mapped back to the original domain with the inverse wavelet
transform.



Existing noise reduction methods 19

of such transforms are the Discrete Cosine Transform [71], orthogonal wavelets [14],
[54], [60], [61], [72] and redundant transformations such as framelets/shearlets [73]–
[75].

The discrete wavelet/framelet transform is a signal representation that maps a
(single-) channel signal to a multi-channel domain, where each channel contains a
fraction of the (Fourier) spectrum of the original image. The mapping to the wavelet
domain is achieved by convolving the input image with filters referred to as wavelet
bases/kernels (e.g. see Fig 2.1). An advantage of the multi-channel representation of
wavelets/framelets is that every channel contains only a fraction of the total bandwidth
of the original signal. Furthermore, the bandwidth-limited representation allows to
down-sample the resulting channels with minimal aliasing. This property enables
multi-scale processing by recursively decomposing the low-frequency band/channel
of the previous decomposition level. A one-dimensional simplified example of the
spectrum partitioning of the wavelet decomposition is depicted in Fig. 2.3.

Although wavelets/framelets yield good space/frequency partitioning charac-
teristics, using the orthogonal DWT, it has some limitations. For example, filters of
an orthogonal DWT are shown in Fig. 2.1, where it is visible that the directionality
of the conventional DWT is limited (i.e. the filters are aligned only with directions
0◦, 90◦ and ±45◦). The directionality issues of the DWT can be solved with the use
of redundant framelet decompositions, such as the dual-tree complex wavelet trans-
form (DTCWT) [74]. For reference, part of the filters of the DTCWT are displayed in
Fig. 2.2. It can be observed that the filters of the DTCWT divide the Fourier spectrum
of the signal into narrower sections than the DWT, which results in better directionality
and less aliasing than the conventional DWT.

Finally, it should be considered that there are many methods for denoising in the
framelet/wavelet domain. However, most of them follow the procedure displayed
in Fig. 2.4, based on the following steps. First, a noisy input is converted to the
framelet/wavelet domain. Second, a non-linear sparsity-enforcing function is applied.
Third, the noiseless estimate is mapped back to the original domain. It should be
noted that the thresholding procedure is often derived from statistical properties of
the image and noise [14], [76].

2.1.4 Rank-based methods

An alternative formulation for modeling signals is to assume that every image patch is
generated by the superposition of simpler image bases. This concept has been applied
by denoising algorithms, such as sparse dictionaries [15] and (structured) low-rank
approximation [62], [63], [78]. Moreover, there are also methods like the low-rank
approximation based on Hankel-structured matrices, in which every image patch is
lifted to a matrix Hankel representation. This last approach has been successfully used
for removal of impulse noise [77], [79], [80] and an example of such algorithm is the
robust annihilating-filter-based low-rank Hankel matrix approach (ALOHA) [77], which is
described in more detail below.

The global operation of ALOHA is shown in Fig. 2.5, while its signal model is
depicted in Fig. 2.6. In addition, the steps of robust ALOHA based on the referred
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Fig. 2. Sparse + low rank decomposition of Hankel structured matrix from
an image patch corrupted with impulse noise. Because a lifting to Hankel
structure is linear, the sparse impulse noise are also lifted to sparse outliers.

Fig. 3. Patch-by-patch processing framework using robust ALOHA for
impulse noise removal.

robust principal component analysis (RPCA) was actively
investigated [32], [33]. More specifically, for a given measure-
ment matrix M, the RPCA solves the following minimization
problem:

min �L�∗ + τ�S�1 (9)

subject to L + S = M, (10)

where � · �∗ denotes the nuclear norm. To minimize this,
alternating direction methods were employed.

Compared to the standard RPCA approach, our sparse +
low-rank decomposition problem using (8) requires an addi-
tional constraint due to the Hankel structure. Therefore,
the RPCA algorithm should be modified. The specific opti-
mization algorithm under this constraint will be explained
later. Additionally, because the image statistics change across
an image with spatially varying annihilating properties, a noisy
image should be partitioned into overlapped patches, which
are processed independently in a patch-by-patch fashion using
robust ALOHA with their average reconstruction pixel values
used as described in the algorithm flowchart shown in Fig. 3.

III. OPTIMIZATION METHODS

A. Sparse + Low-Rank Decomposition of a Hankel Matrix

Note that the Hankel structured matrix in (6) is determined
by the underlying image patch (X) size and the associated
annihilating filter (H) size. For given M × N image patch and
p × q annihilating filter, we now denote the associated spaces
for the Hankel matrix as H(M, N; p, q). Then, for a given
noisy image patch M ∈ RM×N and p × q annihilating filter
size, our impulse-noise removal algorithm can be implemented
by solving the following sparse + low-rank decomposition

under the Hankel structure matrix constraint:

(P) min
L,S

�L�∗ + τ�S�1

subject to L + S = H (M),

L, S ∈ H(M, N; p, q) (11)

Given that the sparse components in image patch are also
sparse in a lifted Hankel structure, (P) can be further sim-
plified to

(P �) min
X,E

�H (X)�∗ + τ�E�1

subject to X + E = M.

where, with some slight abuse of notation, τ denotes an
appropriately scaled version from τ in (P). Note that E is
now in the image patch domain, unlike S in the lifted Hankel
matrix structured matrix domain in (P). The advantage of (P �)
over (P) is an associated simpler optimization method. More
specifically, if we apply a factorized form of nuclear norm
relaxation, then the final problem formulation of the optimiza-
tion problem can then be expressed as

min
E,X,{(U,V)|UVH=H (X)}

�U�2
F + �V�2

F + τ�E�1 (12)

subject to X + E = M. (13)

The constraints in (12) and (13) can be handled using the
alternating direction method of multiplier (ADMM) [30], [37].
The associated Lagrangian function ADMM is given by:

L(U, V, E, X,�,�) := 1

2

�
�U�2

F + �V�2
F

�
+ τ�E�1

+ β

2
�X + E − M + ��2

F

+ μ

2
�H (X) − UVH + ��2

F (14)
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It is easy to show that the first step can be simply reduced to a
single instance of soft-thresholding in the image patch domain
rather than in a lifted Hankel matrix space
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Figure 2.5. High-level description of the robust annihilating-filter-based low-rank Hankel matrix
approach (ALOHA). This algorithm is designed to remove impulse noise from images and it
is composed of the following steps. (1) A sliding window is applied to extract image patches.
(2) The extracted patches are lifted to a Hankel-matrix representation with operator H. (3)
The resulting Hankel-structured matrix is denoised with the robust ALOHA algorithm. (4) The
estimated noiseless Hankel-structured matrix is mapped back to an image patch. (5) The final
step is to aggregate all the estimated patches in the final noiseless image estimate. Image from
Jin et al. [77] © 2017 copyright IEEE.

diagrams are described as follows.

1. Image patches are extracted with overlap (represented in Fig. 2.6 by signal
M [i, j]).

2. The extracted patches are lifted to a Hankel matrix representation (in Fig. 2.6 the
lifted patch is the signal L + S, where L is the low-rank Hankel matrix and S
represents the sparse outliers).

3. The Hankel representation is modeled as the superposition of sparse and struc-
tured outliers S plus a low-rank (noiseless) signal L and an optimization ap-
proach based on annihilating filters is applied, to produce an estimate L̂ of the
low-rank component L.

4. The estimated low-rank Hankel matrix L̂ is mapped back to an image patch
M̂ [i, j] and spatially averaged with surrounding estimates. This procedure
generates the final estimated noiseless picture.

It should be noted that robust ALOHA has been referred to as the main inspiration
for the theory of deep convolutional framelets [40], which explains the operation of
denoising ReLU CNNs and which is later addressed in Chapter 3.
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Fig. 2. Sparse + low rank decomposition of Hankel structured matrix from
an image patch corrupted with impulse noise. Because a lifting to Hankel
structure is linear, the sparse impulse noise are also lifted to sparse outliers.

Fig. 3. Patch-by-patch processing framework using robust ALOHA for
impulse noise removal.

robust principal component analysis (RPCA) was actively
investigated [32], [33]. More specifically, for a given measure-
ment matrix M, the RPCA solves the following minimization
problem:

min �L�∗ + τ�S�1 (9)

subject to L + S = M, (10)

where � · �∗ denotes the nuclear norm. To minimize this,
alternating direction methods were employed.

Compared to the standard RPCA approach, our sparse +
low-rank decomposition problem using (8) requires an addi-
tional constraint due to the Hankel structure. Therefore,
the RPCA algorithm should be modified. The specific opti-
mization algorithm under this constraint will be explained
later. Additionally, because the image statistics change across
an image with spatially varying annihilating properties, a noisy
image should be partitioned into overlapped patches, which
are processed independently in a patch-by-patch fashion using
robust ALOHA with their average reconstruction pixel values
used as described in the algorithm flowchart shown in Fig. 3.

III. OPTIMIZATION METHODS

A. Sparse + Low-Rank Decomposition of a Hankel Matrix

Note that the Hankel structured matrix in (6) is determined
by the underlying image patch (X) size and the associated
annihilating filter (H) size. For given M × N image patch and
p × q annihilating filter, we now denote the associated spaces
for the Hankel matrix as H(M, N; p, q). Then, for a given
noisy image patch M ∈ RM×N and p × q annihilating filter
size, our impulse-noise removal algorithm can be implemented
by solving the following sparse + low-rank decomposition

under the Hankel structure matrix constraint:
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Figure 2.6. Signal model of the ALOHA algorithm. The robust ALOHA algorithm assumes
that the observed patch M [i, j] (where [i, j] denotes the patch location) is composed by the
superposition of a noiseless image X[i, j] and a noise patch E[i, j]. As second step, the signal
M [i, j] is lifted to a Hankel representation (denoted by the operator H(·)). This approach results
in a patch P = L+ E, where L = H(X) is the low-rank component that represents the image,
while S = H(E) is the Hankel representation of the impulse noise. Image from Jin et al. [77]
© 2017 copyright IEEE.

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5× 5× 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 × 3 ×
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 × 3 × 192 , and the fifth convolutional layer has 256
kernels of size 3× 3× 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224× 224 patches (and their horizontal reflections) from the
256×256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 × 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224× 224× 3-dimensional.

5

Figure 2.7. Diagram of the AlexNet architecture. This is is one of the first CNNs with integrated
multiple convolution layers, using ReLU activations, max-pooling and fully-connected layers in
the final classification stage. Image from Krizhevsky et al. [5].

2.2 Convolutional neural networks

Over the past decade, convolutional neural networks have achieved state-of-the-art
performance and become the de-facto solution for diverse computer vision tasks, such
as image classification [5], [81], [82], image detection [7], [83], [84], image segmenta-
tion [8], [85], and image denoising [35].

AlexNet [5] is a CNN used for classifying images that established the deep learning
breakthrough because it outperforms feature-based classifiers. Highlights of the
AlexNet architecture with respect preceding models are the use of rectified linear
units (ReLUs) [86], as well as of multiple sequential convolution and down-sampling
layers. The AlexNet model is displayed in Fig. 2.7 and the filters learned by this
model are shown in Fig. 2.8. It should be noted that the filters learned by this CNN
are reminiscent of the framelet/wavelet kernels discussed earlier (i.e. see Figs. 2.2
and 2.8). The commonalities between the learned filters by CNNs and framelets will
be addressed later in this thesis.
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Figure 2.8. Filters learned by one of the layers of the AlexNet architecture. It can be observed
that these filters are similar to the basis functions of the DTCWT depicted in Fig. 2.2. Image
from Krizhevsky et al. [5].

boundaries. Some of these architectures are difficult to train
due to their parameter size [12]. Thus a multi-stage training
process is employed along with data augmentation. The
inference is also expensive with multiple convolutional
pathways for feature extraction. Others [43] append a CRF
to their multi-scale network and jointly train them. How-
ever, these are not feed-forward at test time and require
optimization to determine the MAP labels.

Several of the recently proposed deep architectures for
segmentation are not feed-forward in inference time [3], [4],
[17]. They require either MAP inference over a CRF [42],
[43] or aids such as region proposals [4] for inference. We
believe the perceived performance increase obtained by
using a CRF is due to the lack of good decoding techniques
in their core feed-forward segmentation engine. SegNet on
the other hand uses decoders to obtain features for accurate
pixel-wise classification.

The recently proposed Deconvolutional Network [4] and
its semi-supervised variant the Decoupled network [17] use
the max locations of the encoder feature maps (pooling indi-
ces) to perform non-linear upsampling in the decoder net-
work. The authors of these architectures, independently of
SegNet (first submitted to CVPR 2015 [11]), proposed this
idea of decoding in the decoder network. However, their
encoder network consists of the fully connected layers from
the VGG-16 network which consists of about 90 percent of
the parameters of their entire network. This makes training
of their network very difficult and thus require additional
aids such as the use of region proposals to enable training.
Moreover, during inference these proposals are used and
this increases inference time significantly. From a bench-
marking point of view, this also makes it difficult to evalu-
ate the performance of their architecture (encoder-decoder
network) without other aids. In this work we discard the
fully connected layers of the VGG16 encoder network which
enables us to train the network using the relevant training
set using SGD optimization. Another recent method [3]
shows the benefit of reducing the number of parameters sig-
nificantly without sacrificing performance, reducing mem-
ory consumption and improving inference time.

Ourworkwas inspired by the unsupervised feature learn-
ing architecture proposed by Ranzato et al. [18]. The key
learningmodule is an encoder-decoder network. An encoder
consists of convolution with a filter bank, element-wise tanh
non-linearity, max-pooling and sub-sampling to obtain the

feature maps. For each sample, the indices of the max loca-
tions computed during pooling are stored and passed to the
decoder. The decoder upsamples the feature maps by using
the stored pooled indices. It convolves this upsampled map
using a trainable decoder filter bank to reconstruct the input
image. This architecture was used for unsupervised pre-
training for classification. A somewhat similar decoding
technique is used for visualizing trained convolutional net-
works [46] for classification. The architecture of Ranzato
et al. mainly focused on layer-wise feature learning using
small input patches. This was extended by Kavukcuoglu
et al. [47] to accept full image sizes as input to learn hierarchi-
cal encoders. Both these approaches however did not
attempt to use deep encoder-decoder networks for unsuper-
vised feature training as they discarded the decoders after
each encoder training. Here, SegNet differs from these archi-
tectures as the deep encoder-decoder network is trained
jointly for a supervised learning task and hence the decoders
are an integral part of the network in test time.

Other applications where pixel wise predictions are
made using deep networks are image super-resolution [48]
and depth map prediction from a single image [49]. The
authors in [49] discuss the need for learning to upsample
from low resolution feature maps which is the central topic
of this paper.

3 ARCHITECTURE

SegNet has an encoder network and a corresponding
decoder network, followed by a final pixelwise classification
layer. This architecture is illustrated in Fig. 2. The encoder
network consists of 13 convolutional layers which corre-
spond to the first 13 convolutional layers in the VGG16 net-
work [1] designed for object classification. We can therefore
initialize the training process from weights trained for clas-
sification on large datasets [40]. We can also discard the
fully connected layers in favour of retaining higher resolu-
tion feature maps at the deepest encoder output. This also
reduces the number of parameters in the SegNet encoder
network significantly (from 134 to 14.7 M) as compared to
other recent architectures [2], [4] (see. Table 6). Each encoder
layer has a corresponding decoder layer and hence the
decoder network has 13 layers. The final decoder output is
fed to a multi-class soft-max classifier to produce class prob-
abilities for each pixel independently.

Fig. 2. An illustration of the SegNet architecture. There are no fully connected layers and hence it is only convolutional. A decoder upsamples its input
using the transferred pool indices from its encoder to produce a sparse feature map(s). It then performs convolution with a trainable filter bank to den-
sify the feature map. The final decoder output feature maps are fed to a soft-max classifier for pixel-wise classification.
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Figure 2.9. Diagram of SegNet CNN. This model is an early example of a fully convolutional
encoding-decoding CNN. Image from Badrinarayanan et al. [85]

Since the early AlexNet model, CNNs have evolved and have permeated into
many applications. The rest of this section focuses on the encoding-decoding CNNs,
which are used in many pixel-level tasks [8], [85], [87] and are the mostly used concept
of network modeling in this dissertation.

2.3 Encoder-decoder architectures

The origins of encoding-decoding CNNs are rooted in techniques for dimensional-
ity reduction and unsupervised feature extraction. Specifically, one of the oldest
encoder-decoder architectures is principal component analysis (PCA), where a set of
high-dimensional feature vectors are mapped into a low-dimensional space with a
linear projection (encoder). The processed lower-dimensional data point is known as
code. Finally, the code could be mapped back to the original data dimensionality with
another linear projection (decoder).

In the specific context of neural networks, an early encoder-decoder (or autoen-
coder) example is Kramer’s model [88], which reduces the dimensionality of the codes
produced by PCA, by employing a single-layer encoding-decoding pair with sigmoid
activations. Alternatives to Kramer’s model are performed by Rumelhart, Hinton and
Williams [89], who have introduced the back-propagation and initialization algorithms
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for training multiple encoding-decoding layers. Later, more approaches have been
developed to further enhance the representations learned by autoencoder models. For
example, Vincent et al. [90] proposed the concept of a denoising autoencoder, where
the autoencoder is trained to produce noise-free estimates from noise-contaminated
inputs.

The preceding text has introduced only autoencoders that perform dimensionality
reduction. However, it should be noticed that besides the low-dimensionality property,
other features may be desirable. One the these properties is sparsity, which indicates
when most of the energy of a signal is concentrated in a few parameters. An example
of an autoencoder enforcing sparsity is the model by Alireza and Brendan [91], whose
training incorporates constraints that increase the sparsity of the generated codes.
An alternative conception of the autoencoder is to use convolution filters, instead of
fully-connected layers. This results in designs such as the model by Ranzato et al. [92],
which is one of the first encoding-decoding convolutional neural networks (CNNs). For
the remainder of this dissertation, any reference to encoding-decoding CNNs follows
the same structure of Ranzato’s design.

After the wide adoption of CNNs for image classification, these models have
been introduced to pixel-level tasks such as segmentation. These early attempts use
CNNs to label every pixel in the image and often refine this result with approaches
such as conditional random fields [93], [94]. It should be noted that the pixel-level
classification approach is slow, because it requires thousands (or even millions) of
evaluations to process a full image. The disadvantages of pixel-level classifiers for
image segmentation are circumvented by works such as from Ronnenberger et al. [8],
Badrinarayanan et al. [85] (see Fig. 2.9) and Miletari et al. [87], all of which propose
segmentation models based on fully convolutional neural networks that perform
end-to-end image segmentation. Furthermore, the referred models have encoding-
decoding convolutional structures, akin to the model by Ranzato et al. [92]. Given the
success of CNNs in image segmentation, the fully convolutional encoding-decoding
CNN concept has been quickly adopted for multiple image-to-image tasks, such as
image denoising.

2.4 Notation

Convolutional neural networks (CNNs) are composed by basic functions such as
convolutions, activations and down/up-sampling. In order to achieve better clarity
in the explanations given in this dissertation, this section defines the mathematical
notations being used to represent the internal operations of CNNs.

In this thesis, a scalar is represented by a lower-case letter (for example a), while
a vector is represented by an underlined lower-case letter (e.g. b). Furthermore, a
matrix –such as an image or convolution mask– is represented by a boldface letter (e.g.
variables x and y). Finally, a tensor is defined by an underlined uppercase letter in
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boldface. For example, the two arbitrary tensors A and Q are defined by

A =

 a00 . . . a0NC−1
...

. . .
...

aNR−1
0 . . . aNR−1

NC−1

 ,Q =

 q0

...
qNR−1

 . (2.3)

Here, entries arc and qr represent two-dimensional arrays (matrices). Since the defined
tensors are used in the context of CNNs, matrices arc and qc can be learned filters,
which have dimensions (NH ×NV), where NH and NV denote the filter dimensions in
the horizontal and vertical directions, respectively. Finally, the total tensor dimension
of A and Q are defined by (NR ×NC ×NH ×NV) and (NR × 1×NH ×NV), where
NR and NC are the number of row and column entries, respectively. If the tensor A
contains the convolution weights in a CNN, the row-entry dimensions represent the
input number of channels to a layer, while the number of column elements denotes
the number of output channels.

Having defined the notation for the variables, a few relevant operators are dis-
cussed. First, the transpose (·)⊺ of the previously defined tensor Q (here expressed
by Q⊺) switches its row and column entries. This is shown by the mathematical
expression

Q⊺ =
(
q0 . . . qNR−1

)
. (2.4)

Note that the transpose of the tensor is different from the transposed convolution often
used in CNNs, since the transposed convolution is an up-sampling layer. Furthermore,
the tensor convolution A⊛Q is specified by

A⊛Q =


∑R−1

r=0 a0r ∗ qr

...∑R−1
r=0 aNC−1

r ∗ qr

 . (2.5)

Here, operator ⊛ is the tensor convolution, while symbol ∗ defines the convolution
between two matrices (images).

In this dissertation, images –which are 2D arrays (matrices)– are often convolved
with 4D tensors. When this operation is performed, images are considered to have
dimensions (1×1×NH×NV), where NH and NV denote the number of elements in the
horizontal and vertical directions, respectively. In addition, in this dissertation matrix
I is the identity signal for the convolution operator, which for a two-dimensional
image is the Kronecker delta/discrete impulse (an image with a single non-zero pixel
in the middle with unity amplitude). In order to keep the notation simple, the same
symbol for identity will be used regardless of the number of channels of the signal.
Furthermore, the variables in the decoding path of a CNN are distinguished with a tilde
(e.g. K̃, b̃). This notation applies to trainable and non-trainable elements.

Additional symbols that are used throughout this dissertation are the down-
sampling and up-sampling operations by a factor s, which are denoted by f(s↓)(·) for
down-sampling and f(s↑)(·) for up-sampling. Here, both operations are defined in
the same way as in multi-rate filter banks [42]. Furthermore, other operators such as
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Figure 2.10. Symbols used for the schematic representations of CNNs. It can be observed that
the down-sampling and the up-sampling layers do not specify up/down-sampling factor s, which
is typically 2 in this thesis.

rectified linear unit (ReLU) bye (·)+, the shrinkage/thresholding by τ(·)(·) and the clipping
activations by C(·)(·).

For better clarity, the most important symbols used in this thesis are summarized
in Table 2.1. In addition, their graphical representations are shown in Fig. 2.10.

2.5 Image quality metrics

This section summarizes the main image similarity metrics that are employed to
assess the denoising performance of the analyzed models in this thesis. The first
image-quality metric described here is the signal-to-noise ratio (SNR), which measures
the relative power of the noiseless and noise images. This metric is mathematically
described by

SNR(x,y) = 10 · log10

( ∑NH−1
h=0

∑NV−1
v=0 (x[h, v])2∑NH−1

h=0

∑NV−1
v=0 (x[h, v]− y[h, v])2

)
, (2.6)

in which x is the noiseless image and y indicates the noise-contaminated version
of x, while indices h and v are parameters for the horizontal and vertical directions,
respectively. In addition, NH and NV are the number of pixels in the horizontal
and vertical dimensions, respectively. Complementary to the SNR, this dissertation
employs also the peak signal-to-noise ratio (PSNR), described by the expression

PSNR(x,y) = 10 · log10
(

Max2

MSE(x,y)

)
. (2.7)

Here, MSE(x,y) is the mean squared error between the images x and y, while Max is
the maximum value that can be contained in the images x and y.

The (P)SNR does not fully reflect the local similarity between two images. In order
to address this limitation, Wang et al. [95] propose the structural similarity index metric
(SSIM), which is defined by

SSIM(x,y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σx + σy + c2)
(2.8)
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Here, µx and µy represent the pixel means for images x and y, respectively. Like-
wise, images σx and σy are the pixel variances of images x and y, while σxy is the
covariance between them. Moreover, constants c1 and c2 are employed for numerical
stability. For the experiments here presented, the mean of the SSIM (MSSIM) is em-
ployed as image-quality metric and its implementation is found in the computational
package Scipy [96].

Despite the fact that the (M)SSIM accounts for local similarity between two images,
this metric does not always correlate with the perceptual similarity between them.
This limitation has been addressed by the Haar-wavelet-based perceptual similarity index
(HaarPSI) [97]. The referred index uses Haar wavelets as prepossessing to compute
the local similarity, as well as a weighting function based on the concept of phase
congruency [98]. For the computation of this metric, this dissertation uses the routine
provided by Reisenhofer et al. [97].

2.6 Conclusions

This chapter has presented introductory materials in noise reduction and neural
networks, which are key concepts for understanding the discussions addressed in this
dissertation. Moreover, this chapter has introduced the mathematical notations being
used to describe CNNs and an overview of the most important quality metrics that are
used to compare image estimates. The next chapter elaborates on the commonalities
between signal processing algorithms and encoding-decoding (ED) CNNs.



Conclusions 27

Symbol Meaning

G(·) Generic encoding-decoding CNN.

I Convolution identity.
K Encoding convolution kernel.
K̃ Decoding convolution kernel.
W Filters for the forward discrete wavelet transform.
W̃ Filters for the inverse discrete wavelet transform.
WH High-pass filters of the forward discrete wavelet transform.
WL Low-pass filter of the forward discrete wavelet transform.
x Noiseless image.
y Noisy image.
η Additive noise.
b Bias vector.
t Threshold level.

f(2↓)(·) Down-sampling operation.
f(2↑)(·) Up-sampling operation.

∗ Image convolution.
⊛ Tensor convolution.
(·)⊺ Transpose of a tensor.

(·)+ ReLU activation.
τ(·)(·) Generic thresholding/shrinkage operation.
C(·)(·) Generic clipping operation.

Table 2.1. Mathematical notation of the most common symbols and variables used in this thesis.





CHAPTER3
Encoding-decoding CNNs for

image denoising

3.1 Introduction

The previous chapter shows noise reduction algorithms based on signal processing,
which employ direct assumptions on the signal and noise characteristics, such as
wavelet shrinkage [14], [60] and low-rank approximation methods [99]. With the
advent of deep learning techniques, signal processing algorithms for image denoising
have been regularly outperformed and increasingly replaced by encoding-decoding
convolutional neural networks (CNNs).

In contrast to conventional signal processing algorithms, encoding-decoding CNNs
are often presented as a solution that does not make explicit assumptions on the signal
and noise. For example, in supervised CNN-based algorithms, an encoding-decoding
CNN learns the optimal parameters to filter the signal from a set of paired examples
of noise/artifact-free images and images contaminated with noise/artifacts [9], [36],
[37]. This approach highly simplifies the solution of the noise reduction problems,
since this circumvents the use of explicit modeling of the signal and noise. Further-
more, the good performance and simple use of encoder-decoder CNNs/autoencoders
have enabled additional data-driven noise reduction algorithms, where CNNs are
embedded as part of a larger system. Examples of such approaches are unsupervised
noise reduction [100] and denoising based on generative adversarial networks [101].
Besides this, smoothness in signals can be obtained also by advanced regularization
using CNNs, e.g. by exploiting data-driven model-based iterative reconstruction [102],
[103].

Challenges. Despite of the flexibility and good performance of CNNs for noise
reduction, the high-complexity of these models in terms of number of parameters and
non-linear behavior pose a challenge for the interpretability of CNNs. This is a major
downside for medical applications, because the black-box approach can hide potential
failure cases of these models where critical content of medical images is compromised.
Consequently, for the professional medical area, more transparent models where the
treatment applied to the signal is well visible and understood, is highly desirable.
Hence, the good noise reduction performance of auto-encoding models is attractive,
but these models have also the following challenges that should be considered.

• Explainability. The complexity and heuristic nature of encoding-decoding CNNs
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often offers restricted understanding of the internal operation of such architec-
tures [17].

• Computational load. The training and deployment of CNNs requires special-
ized hardware and the use of significant computational resources. Therefore,
attention has to be paid to the efficiency of algorithms and the design of the
model.

• Unclear model limitations. The restricted understanding of the signal modeling
in encoding-decoding CNNs does not clearly reveal the limitations of specific
models and, consequently, it is not evident how to overcome these problems.

Background. In order to overcome the limitations of encoding-decoding CNNs, new
research has addressed the lack of explainability of these models by acknowledging the
similarity of the building blocks of encoding-decoding CNNs and the elements of well-
known signal processing algorithms, such as wavelet decomposition, low-rank approx-
imation [40], [43], [104], variational methods [105], lower-dimensional manifolds [100]
and sparse coding [41]. Furthermore, practical works based on shrinkage-based CNNs
inspired by well-established wavelet shrinkage algorithms, has further deepened the
connections between signal processing and CNNs [39], [48]. This unified treatment of
signal processing-inspired CNNs has resulted in more explainable designs [36], [100],
better model performance [36] and improved memory efficiency [58].

Direction of the approach. This chapter has three main objectives. First, to summar-
ize the diverse explanations of the components of encoding-decoding convolutional
neural networks applied to image noise reduction, based on the concept of deep con-
volutional framelets [40] and on elementary signal processing concepts. Both aspects
are considered with the aim of achieving an in-depth understanding of the internal
operation of encoding-decoding CNNs and to show that the design choices make im-
plicit assumptions about the signal characteristics inside the CNN. A second objective
is to offer practitioners tools for optimizing their CNN designs with signal processing
concepts. Third and final, this chapter presents practical use cases, where existing
CNNs are analyzed in a unified framework, thereby enabling a better comparison of
different designs, by making their internal operation explicitly visible and paving the
way for introducing the proposed designs from Chapters 4 and 5 .

Layout. The structure of this chapter is as follows. Section 3.2 describes the signal
model and the architecture of encoding-decoding networks. Afterwards, Section 3.3
addresses fundamental aspects of signal processing, such as singular value decom-
position, low-rank approximation, framelets, as well as the estimation of signals in
the framelet domain. All the concepts of Sections 3.2 and 3.3 converge in Section 3.4,
where the encoding-decoding CNNs are interpreted in terms of a data-driven low-
rank approximation and of wavelet shrinkage. Afterwards, based on the learnings
from Section 3.4, Section 3.5 shows the analysis of diverse architectures from a signal
processing perspective and under a set of explicit assumptions. Finally, Section 3.8
elaborates concluding remarks.
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3.2 Encoding-decoding CNNs

This section aims to define the signal model and a high-level description of an
encoding-decoding CNN. Specifically, Subsection 3.2.1 introduces the additive-noise
signal model. Meanwhile, Section 3.2.2 addresses the elementary parts of an encoding-
decoding CNN. These definitions will be used in subsequent sections to connect them
with signal processing concepts.

3.2.1 Signal model and noise reduction configurations

In noise reduction applications, the common additive signal model is defined by

y = x+ η, (3.1)

where the observed signal y is the result of contaminating a noiseless image x with
additive noise η. For many applications the noiseless signal x is estimated from the
noisy observation y. In deep learning applications, this is often achieved by models
with the form

x̂ = G(y). (3.2)

Here, G(·) is a generic encoding-decoding CNN. We refer to this form of noise reduc-
tion as non-residual, where the model approaches to estimate x directly from y as good
as possible. Alternatively, it is possible to find x̂ by training G(·) to estimate the noise
component η̂, and subtract it from the noisy image y to estimate the noiseless image
x̂, or equivalently

x̂ = y −G(y). (3.3)

This model is referred to as residual [9], [37], [50], because the output of the network is
subtracted from its input. For reference, Fig. 3.1 portrays the difference of the place-
ment of the encoding-decoding structure in residual and non-residual configurations.

Encoding-decoding 
network 𝐺(⋅) EstimateInput Encoding-decoding 

network 𝐺(⋅)

Input Estimate+

-

Residual configurationNon-residual configuration

𝐊

⊛

↑↓

+

𝑏 𝑡 𝑡

Tensor convolution Sum

ReLU Shrinkage Clipping

Down-sampling Up-sampling

Figure 3.1. Residual and non-residual network configurations for the encoding-decoding
model. Note that the main difference between both designs is the global skip connection
occurring in the residual structure.

3.2.2 Parts of encoding-decoding CNNs

It can be observed that encoding-decoding CNNs are constituted of three main parts.
(1) The encoder, which maps the incoming image to a more redundant representation
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(i.e. the number of channels of the tensor increases), using a convolution layer. Every
channel of the resulting redundant representation contains a fraction of the content
of the original signal. It should be noted that the encoder often (but not necessarily)
decreases the resolution of the high-dimensional representation, to enable multi-
resolution processing and to decrease the memory requirements of the design. (2) The
non-linearities, which suppress specific parts of the signal. (3) The decoder, which
maps the multi-channel representation back to the original space. In summary, the
most basic encoding-decoding step in a CNN G(x) is expressed by

G(y) = Gdec(Genc(y)) , (3.4)

where Genc(·) is the encoder, which is generally defined by

C0 = E0(y), C1 =E1(C0), C2 = E2(C1),

...
CN−1 =EN−1(CN−2),

Genc(y) =CN−1.

(3.5)

Here, Cn represents the encoding generated by the n-th encoder En(·). It should
be noted that this chapter makes extensive use of operators such as convolutions,
up/down-sampling layers and variables with diverse dimensions such as images,
vectors and tensors. The notation to distinguish these elements is defined in detail in
Section 2.4 and adopted in this chapter. From Eq. (3.5), the encoder layers En(·) are
defined by the equation

Cn = En(Cn−1) = f(s↓)(A(bn−1)
(Cn−1 ⊛Kn−1)). (3.6)

Here, the function A(·)(·) is a generic activation used in the encoder, f(s↓)(·) is a down-
sampling function by factor s and Kn and bn are the convolution kernel and biases of
the n-th encoding layer. Complementary to the encoder, the decoder network maps
the multi-channel sparse signal back to the original domain. Here, we define the
decoder by

C̃N−2 =DN−1(CN−1),

...

C̃1 = D2(C̃2), C̃0 = D1(C̃1),

G(y) =D0(C̃0),

(3.7)

where Ĉn is the n-th decoded signal, which is produced by the n-th decoder layer,
yielding the general expression:

C̃n−1 = Dn(C̃n) = Ã(b̃)(f(s↑)(C̃n)⊛ K̃
⊺
n). (3.8)

In the above, Ã(·)(·) is the activation function used in the decoder and f(s↑)(·) is an
up-sampling function with factor s.
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An important remark is that the encoder-decoder CNN does not always contain
down/up-sampling layers in which case, the decimation factor s is unity, which causes
f(1↑)(x) = f(1↓)(x) = x for any matrix x. Furthermore, it should be noted also that we
assume that the number of channels of the code CN is always larger than the previous
one CN−1. Furthermore, it should be noted that a single encoder layer En(·) and its
corresponding decoder layer Dn(·) can be considered a single-layer encoder-decoder
network/pair.

For completeness, we briefly discuss the dimensionality of the tensors of the
encoding and decoding convolution layers (i.e. the number of channels). Specifically,
the encoding convolution filter K for a given layer has dimensions (Ni×No×Nh×Nv),
where Ni and No are the number of input and output channels for a convolution layer,
respectively. Similarly, Nh and Nv are the number of elements in the horizontal
and vertical directions, respectively. Note that the encoder increases the number of
channels of the signal (e.g. No > Ni), akin to Ranzatto’s design [92]. Furthermore, it
is assumed that the decoder is symmetric in the number of channels to the encoder, so
that the dimensions of the decoding convolution kernel K̃

⊺
are (No ×Ni ×Nh ×Nv).

The motivation of this symmetry is to emphasize the similarity between the signal
processing and the CNN elements.

3.3 Fundamental concepts of signal processing

As shown by Ye et al. [40], within encoding-decoding CNNs, the signal is treated akin
to well-known sparse representations, where the coefficients used for the transform-
ation are directly learned from the training data. Prior to addressing this important
concept in more detail, relevant supporting concepts such as sparsity, sparse transform-
ations are explained, as well as non-linear signal estimation in the wavelet/framelet
domain. Specifically, Section 3.3.1 defines the concept of sparsity, Section 3.3.2 ad-
dresses the concept of sparse transforms, such as the wavelet transform and singular
value decomposition. Finally, Section 3.3.3 addresses the use of non-linear estimators
on the framelet domain.

3.3.1 Sparsity

For a sparse signal, most coefficients are small and the relatively few large coefficients
capture most of the information [106]. This characteristic allows to discard low-
amplitude components with relatively small perceptual changes. Hereby, the use of
sparse signals is attractive for applications such as image compression, denoising and
suppression of artifacts.

Despite the convenient characteristics of sparse signals, natural images are often
non-sparse. Still, there are numerous transformations, which allow to map the signal
to a sparse domain and which are analogous to the internal operations of CNNs.
For example, singular value decomposition factorizes the image in terms of two sets of
orthogonal bases of which few basis pairs contain most of the energy of the image. An
alternative transformation is based on framelets, where an image is decomposed in a
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multi-channel representation, whereby each resulting channel contains a fragment
of the Fourier spectrum. In the remainder of this section, we will address these
representations in more detail.

3.3.2 Sparse signal representations

A Singular value decomposition (SVD) and low-rank approximation

Assuming that an image (patch) is represented by a matrix y with dimensions (Nr×Nc),
where Nr and Nc are the number of rows and columns, respectively. Then, the singular
value decomposition factorizes y as

y =

NSV−1∑
n=0

(unv
⊺
n) · σ[n], (3.9)

in which NSV is the number of singular values, n is a scalar index, while un and vn are
the nth left- and right-singular vectors, respectively, having dimensions (Nr × 1) and
(1 ×Nc). Furthermore, vector σ contains the singular values and each of its entries
σ[n] is the weight assigned to every basis pair un, vn. This means that the product
(unv

⊺
n) contributes more to the image content for higher values of σ[n]. It is customary

that the singular values are ranked in descending order and the amplitudes of the
singular values σ are sparse, therefore σ[0]≫ σ[NSV − 1]. The reason for the sparsity
of signals in the SVD-domain is because images intrinsically have a high correlation.
For example, many images contain repetitive patterns (e.g. a wall with bricks, a fence,
the tiles of a rooftop or the stripes of a zebra) or uniform regions (for example, the
sky, the skin of a person). This means an image patch may contain only a few linearly
independent vectors that describe most of the image contents. Consequently, a higher
weight is assigned to those singular vectors/image bases.

Given that the amplitudes of the singular values of y in SVD are sparse, it is possible
approximate ŷ with only a few vector products unv

⊺
n. Note that this procedure reduces

the rank of signal y and hence it is known as low-rank approximation. This process is
equivalent to

ŷ =

NLR−1∑
n=0

(unv
⊺
n) · σ[n], (3.10)

where NLR < NSV. Note that this effectively cancels the terms (unv
⊺
n) for which the

corresponding weight given by σ[n] is low. Alternatively, it is possible to assign a
weight of zero to the product (unv

⊺
n) for n ≥ NLR in Eq. (3.9).

The low-rank representation of a matrix is desirable for diverse applications among
which we can find image denoising. The motivation for using low-rank approxim-
ation for this application results from the fact that –as mentioned earlier– natural
images are considered low-rank due to the strong spatial correlation between pixels,
whereas noise is high-rank (it is spatially uncorrelated). In consequence, reducing the
rank/number of singular values decreases the presence of noise, while still providing
a good approximation of the noise-free signal, as exemplified in Fig. 3.2.
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Noisy Noisy 𝑁 = 8 Noisy 𝑁 = 32

Clean Clean 𝑁 = 8 Clean 𝑁 = 32

Figure 3.2. SVD reconstruction of clean and corrupted images with a different number of
singular values. Note that the reconstruction of the clean image with 8 or 32 singular values
(NSV = 8 or NSV = 32, respectively) yields to reconstructions indistinguishable from the original
image. This contrasts with their noisy counterparts, where NSV = 8 reconstructs a smoother
image in which the noise is attenuated, while NSV = 32 reconstructs the noise texture perfectly.

B Framelets

Just as SVD, framelets are also commonly used for image processing. In a nutshell, a
framelet transform is a signal representation that factorizes/decomposes an arbitrary
signal into multiple bands/channels. Each of these channels contain a segment of the
energy of the original signal. In image and signal processing, the framelet bands are
the result of convolving the analyzed signal with a group of discrete filters that have
finite length/support. In this text, the most important characteristic that the filters of
the framelet transform should comply with, is that the bands they generate capture all
the energy contained on the input to the decomposition. This is important to avoid
the loss of information of the decomposed signal. In this text, we refer to framelets
that comply with the previous characteristics as tight framelets and the following
paragraphs will describe this property in more detail.

In its decimated version, the framelet decomposition for tight frames is represented
by

Yfram = f(2↓)(y ⊛ F), (3.11)

in which Yfram is the decomposed signal and F is the framelet basis (tensor). Note
that the signal Yfram has more channels than y. Furthermore, the original signal y is
recovered from Yfram by

y = f(2↑)(Yfram)⊛ F̃
⊺ · c. (3.12)

Here, F̃ is the filter of the inverse framelet transform and c denotes an arbitrary con-
stant. If c = 1 the framelet is normalized. Finally, note that the framelet transform
can also be undecimated. This means that in undecimated representations, the down-
sampling and up-sampling layers f(2↓)(·) and f(2↑)(·) are not used. An important
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property of the undecimated representation is that it is less prone to aliasing than its
decimated counterpart, but more computationally expensive. Therefore, for efficiency
reasons, the decimated framelet decomposition is often preferred over the undecim-
ated representation. In summary, the decomposition and synthesis of the decimated
framelet decomposition is represented by

y = f(2↑)
(
f(2↓)

(
y ⊛ F

))
⊛ F̃

⊺ · c, (3.13)

while for the undecimated framelet it holds that

y = (y ⊛ F)⊛ F̃
⊺ · c. (3.14)

A notable normalized framelet is the discrete wavelet transform (DWT), where
variables F and F̃ are replaced by tensors W =

(
wLL,wLH,wHL,wHH

)
and W̃ =(

w̃LL, w̃LH, w̃HL, w̃HH
)
, respectively. Here, wLL is the filter for the low-frequency band,

while wLH, wHL, wHH are the filters used to extract the detail in the horizontal, vertical
and diagonal directions, respectively. Finally, w̃LL w̃LH, w̃HL, w̃HH are the filters of the
inverse decimated DWT.

In order to understand the DWT more intuitively, Fig. 3.3 shows the decimated
framelet decomposition using the filters of the discrete wavelet transform. Note that
the convolution y ⊛W results in a four-channel signal, where each channel contains
only a fraction of the spectrum of image y. This allows to down-sample each channel
with minimal aliasing. Furthermore, to recover the original signal, each individual
channel is up-sampled, thereby introducing aliasing, which is then removed by the
filters of the inverse transform. Finally, all the channels are added and the original
signal is recovered.

Analogous to the low-rank approximation, in framelets, the reduction of noise
is achieved by setting noisy components to zero. These components are typically
assumed to have low-amplitude compared with the amplitude of the sparse signal, as
expressed by

ŷ = f(2↑)
(
τ(t)
(
f(2↓)(y ⊛ F)

))
⊛ F̃

⊺ · c, (3.15)

where τt(·) is a generic thresholding/shrinkage function, which sets each of the pixels
in f(2↓)(y ⊛ F) to zero when values are lower than the threshold level t.

3.3.3 Nonlinear signal estimation in the framelet domain

As mentioned in Section 3.3.2, framelets decompose a given image y by convolving it
with a tensor F. Note that many of the filters that compose F have a high-pass nature.
Images often contain approximately uniform regions in which the variation is low,
therefore, convolving a signal y with a high-pass filter fh –where fh ∈ F– produces the
sparse detail band d = fh ∗ y in which uniform regions have low amplitudes, while
transitions i.e. edges contain most of the energy of the bands.

Assuming a model in which a single pixel d ∈ d is observed, which is contaminated
with additive noise η. Then, the resulting observed pixel z is defined by

z = d+ η. (3.16)
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In order to recover the noiseless pixel d from observation z, it is possible to use the
point-maximum a posteriori (MAP) estimate [14], [76], defined by the maximization
problem

d̂ = argmax
d

[
ln
(
P (d|z)

)]
. (3.17)

Here, the log-posterior ln
(
P (d|z)

)
is defined by

ln
(
P (d|z)

)
= ln

(
P (z|d)

)
+ ln

(
P (d)

)
, (3.18)

where the conditional probability density function (PDF) P (z|d) expresses the noise
distribution, which is often assumed Gaussian and is defined by

P (z|d) ∝ exp

(
− (z − d)2

2σ2
η

)
. (3.19)

Here, σ2
η is the noise variance. Furthermore, as prior probability, it is assumed that the

distribution of P (d) corresponds to a Laplacian distribution, which has been used in
wavelet-based denoising [14]. Therefore, P (d) is mathematically described by

P (d) ∝ exp

(
− |d|

σd

)
, (3.20)

where σd is the dispersion measure of the Laplace distribution. For reference, Fig. 3.4
portrays an example of a Gaussian and a Laplacian PDF. Note that the Laplacian
distribution has a higher probability of zero elements to occur than the Gaussian
distribution for the same standard deviation. Finally, substituting Eq. (3.19) and
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Figure 3.4. Probability density function for Gaussian (left) and Laplacian (right) distributions.

Eq. (3.20) in Eq (3.18) results in

ln
(
P (d|z)

)
∝ − (z − d)2

2σ2
η

− |d|
σd

. (3.21)

In the above, maximizing d in ln
(
P (d|z)

)
with the first derivative criterion –in an

(un) constrained way– leads to two common activations in noise reduction CNNs: the
ReLU and the soft-shrinkage function. Furthermore, the solution also can be used to
derive the so-called clipping function, which is useful in residual networks.



Fundamental concepts of signal processing 39

For reference and further understanding, Fig. (3.5) portrays the elements com-
posing the noise model of Eq. (3.16), the signal transfer characteristics of the ReLU,
soft-shrinkage and clipping functions, and the effect that these functions have on the
signal of the observed noisy detail band z.
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Figure 3.5. Signals involved in the additive noise model, input/output transfer characteristics
of activation layers and estimates produced by the activation layers when applied to the noise-
contaminated signal. The first row shows the signals involved in the additive noise model.
The second row depicts the output amplitude of activation functions with respect to the input
amplitude. Finally, the last row depicts the application of the activation functions to the noisy
observation z.



40 Encoding-decoding CNNs for image denoising

A Rectified linear unit (ReLU)

If Eq. (3.21) is solved for d while constraining the estimator to be positive, the noiseless
estimate d̂ becomes

d̂ = (z − t)+, (3.22)

which is also expressed by

(z − t)+ =

{
z − t, if z ≥ t,

0, if t > z.
(3.23)

Here, the threshold level is defined by

t = σ2
η/σd. (3.24)

Note that this estimator cancels the negative and low-amplitude elements of d lower
than the magnitude of the threshold level t. For example, if the signal content on the
feature map is low, then σd → 0. In such case, t→ +∞ and consequently d̂→ 0. This
means that the channel is suppressed. Alternatively, if the feature map has strong
signal presence i.e. σd →∞, consequently t→ 0 and then d̂→ (z)+.

A final remark is made on the modeling of functions of a CNN. It should be noted
that the estimator of Eq. (3.22) is analogous to the activation function of a CNN, known
as rectified linear unit (ReLU). However, in a CNN the value of t would be the bias b
learned from the training data.

B Soft-shrinkage/thresholding

If Eq. (3.21) is maximized in an unconstrained way, the estimate d̂ is

d̂ = τ Soft
(t) (z) = (z − t)+ − (−z − t)+. (3.25)

Here, τ Soft
(t) (·) denotes the soft-shrinkage/-thresholding function, which is often also

written in the form

τ Soft
(t) (z) =


z + t, if z ≥ t,

0, if t > z ≥ −t,
z − t, if − t > z.

(3.26)

It can be observed that the soft-threshold enforces the low-amplitude components
whose magnitude is lower than the magnitude threshold level t to zero. In this case, t
is also defined by Eq. (3.24). It should be noted that the soft-shrinkage estimator can
also be obtained from a variational perspective [107]. Finally, it can be observed that
the soft-shrinkage is the superposition of two ReLU functions, which has been pointed
out by Fan et al. [39].
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C Soft-clipping

In Section 3.3.3-A and Section 3.3.3-B, the estimate d̂ is obtained directly from the noisy
observation z. Alternatively, it is possible to estimate the noise η and subtract it from z
akin to the residual CNNs represented by Eq. (3.3). This can be achieved by solving
the model

η̂ = z − d̂ = z − τ Soft
(t) (z), (3.27)

which is equivalent to

η̂ = CSoft
(t) (z) = z − ((z − t)+ − (−z − t)+), (3.28)

where CSoft
(t) (·) is the soft-clipping function. Note that this function also can be expressed

by

CSoft
(t) (z) =


t, if z ≥ t,

z, if t ≥ z > −t,
−t, if − t ≥ z.

(3.29)

D Other thresholding layers

One of the main drawbacks of the soft-threshold activation is that it is a biased
estimator. This limitation has been addressed by the hard [60] and semi-hard [108]
thresholds, which are (asymptotically) unbiased estimators for large input values. In
this section, we focus solely on the semi-hard threshold and avoid the hard variant,
because it is discontinuous and, therefore, not suited for models that rely on gradient-
based optimization, such as CNNs.

Among the semi-hard thresholds, two notable examples are the garrote shrink and
the shrinkage functions generated by derivatives of Gaussians (DoG) [58], [108]. The
garrote shrink function τGar

(·) (·) is defined by

τGar
(t) (z) =

(z2 − t2)+
z

. (3.30)

Furthermore, an example of a shrinkage function based on the derivative of Gaussians
is given by

τDoG
(t) (z) = z − CDoG

(t) (z), (3.31)

where the semi-hard clipping function with the derivative of Gaussians CDoG
(·) (·) is

given by

CDoG
(t) (z) = z · exp

(
− zp

tp

)
, (3.32)

in which p is an even number.
The garrote and semi-hard DoG shrinkage functions are shown in Fig. 3.6, as well

as their clipping counterparts. Note that the shrinkage functions approximate unity
for |z| ≫ t. Therefore, they are asymptotically unbiased for large signal values.
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Figure 3.6. Transfer characteristics of the semi-hard thresholds based on the derivative of
Gaussians (first row) and of the garrote shrink (second row), as well as their clipping counterparts.
Note that in contrast with the soft-shrinkage and soft-clipping functions shown in Fig. 3.5, the
semi-hard thresholds tend to unity for large values, while the semi-hard clipping functions tend
to zero for large signal intensities.

The final thresholding function addressed in this section is the linear expansion of
thresholds, as proposed by Blu and Luisier [108]. This technique combines multiple
thresholding functions to improve the performance. This approach is known as linear
expansion of thresholds (LET) and it is defined by

τLET
(t) (z) =

NT−1∑
n=0

an · τ(tn)(z), (3.33)

where an is the weighting factor assigned to each threshold, where all weighting
factors add up to unity.

3.4 Bridging the gap between signal processing and
CNNs: Deep convolutional framelets and shrinkage-
based CNNs

This section addresses the theoretical operation of noise reduction convolutional
neural networks, based on ReLUs and shrinkage/thresholding functions. The first
part of this section describes the theory of deep convolutional framelets [40], which



Deep convolutional framelets and shrinkage-based CNNs 43

–up to this moment– is the most extensive study on the operation of encoding-decoding
ReLU-based CNNs. Afterwards, the section concentrates on the operation of networks
which use shrinkage functions instead of ReLUs [39], [48], [58], with the aim of
mimicking well-established denoising algorithms [14], [60] by assuming that the
encoder learns to perform a sparse transformation where soft shrinkage is applied
akin to the soft-shrinkage denoising algorithm first introduced in Section 2.1.3. Finally,
the last part of this section addresses the connections between both methods and
additional links between convolutional neural networks and signal processing.

3.4.1 Theory of deep convolutional framelets

A Description of this theory

The theory of deep convolutional framelets [40] describes the operation of encoding-
decoding ReLU-based CNNs. Its most relevant contributions are as follows. (1) It
establishes the equivalence of framelets and the convolutional layers of CNNs. (2)
The theory of deep convolutional framelets provides the conditions to preserve the
signal integrity within a ReLU CNN. (3) It explains how ReLU and convolution layers
reduce noise within an encoding-decoding CNN. This powerful theory is inspired by
the low-rank denoising methods, based on the Hankel-matrix decomposition such as
ALOHA presented in Section 2.1.4.

The similarity between framelets and the encoding and decoding convolutional
filters can be observed when comparing Eqs. (3.5), (3.8) with Eqs. (3.11), (3.12), where
it becomes visible that the convolution structure of encoding-decoding CNNs is
analogous to the forward and inverse framelet decomposition.

Regarding the signal reconstruction characteristics, the theory of deep convolu-
tional framelets states the following. In order to be able to recover an arbitrary signal
y ∈ RN , the number of output channels of a convolution layer with ReLU activation
should at least duplicate the number of input channels. Furthermore, the convolution
kernel should be composed of filter pairs with opposite phase. These two requirements
ensure that any negative and positive values propagate through the network. Under
these conditions, the encoding and decoding convolution filters K and K̃ should
comply with

y = (y ⊛K)+ ⊛ K̃ · c. (3.34)

It can be noticed that Eq. (3.34) is an extension of Eq. (3.14), which describes the recon-
struction characteristics of tight framelets. From this point, we refer to convolutional
kernels compliant with Eq (3.34) as phase-complementary tight framelets. As a final
remark, it should be noted that a common practice in CNN designs is also to use ReLU
non-linearities in the decoder, in such case the phase-complementary tight-framelet
condition can still be met as long as the pixels y ∈ y comply with y ≥ 0, which is
equivalent to

y = (y)+ =
(
(y ⊛K)+ ⊛ K̃ · c

)
+
. (3.35)
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Figure 3.7. Operation of a denoising (non-) residual ReLU CNN according to the theory of
deep convolutional framelets (TDCF). In the figure, the noisy observation y is composed by two
vertical bars plus uncorrelated Gaussian noise. Furthermore, for this example, the encoding
and decoding convolution filters (K and K̃, respectively) are the Haar basis of the 2D discrete
wavelet transform and its phase-inverted counterparts. Given the content of the image, the
image in the decomposed domain y ⊛K produces only a weak activation for the vertical and
diagonal filters (wLH and wHH, respectively) and those feature maps contain mainly noise. In
the case of the non-residual network, the ReLUs and biases suppress the channels with low
activation (see column (y ⊛K+ b)+), which is akin to the low-rank approximation. In contrast,
in the residual example, the channels with image content are suppressed, while preserving the
uncorrelated noise. Finally, the decoding section reconstructs the noise-free estimate x̃ for the
non-residual network or the noise estimate η̂ for the residual example, where it is subtracted
from y to compute the noiseless estimate x̂.

It can be observed that the relevance of the properties defined in Eqs. (3.34) and (3.35)
is that they ensure that a CNN can propagate any arbitrary signal, which is important
to avoid any distortions (such as image blur) in the processed images.

An additional element of the theory of deep convolutional framelets regarding the
reconstruction of the signal, is to show that conventional pooling layers (e.g. average
pooling) discard high-frequency information of the signal, which effectively blurs the
processed signals. Furthermore, Ye et al. [40] have demonstrated that this can be fixed
by replacing the conventional up/down-sampling layers by reversible operations, such



Deep convolutional framelets and shrinkage-based CNNs 45

as the discrete wavelet transform. To exemplify this property, we refer to Fig. 3.3. If
only an average pooling layer followed by an up-sampling stage would be applied, the
treatment of the signal would be equivalent to the low-frequency branch of the DWT.
Consequently, only the low-frequency spectrum of the signal would be recovered and
images processed with that structure would become blurred. In contrast, if the full
forward and inverse wavelet transform of Fig. 3.3 is used for up/down-sampling, it is
possible to reconstruct any signal, irrespective of its frequency content.

The ultimate key contribution of the theory of deep convolutional framelets is
the explanation of the operation of ReLU-based noise reduction CNNs. For the non-
residual configuration, ReLU CNNs perform the following sequence of operations. (1)
The convolution filters decompose the incoming signal into a sparse multi-channel
representation. (2) The feature maps which are uncorrelated to the signal, contain
mainly noise. In this case, the bias and the ReLU activation cancel the noisy feature
maps in a process analogous to the MAP estimate shown in Section 3.3.3-A. (3) The
decoder reconstructs the filtered image. In the case of residual networks, the CNN
learns to estimate the noise, which means that in that configuration the ReLU non-
linearities suppress the channels with high activation.

Fitting low-rank approximation in ReLU CNNs

From low-rank approximation to an encoding-decoding CNN. In order to further un-
derstand the analogy between CNNs and low-rank approximation established
by the theory of deep convolutional framelets, we can use as starting point the
definition of singular value decomposition, which is expressed in Eq. (3.9), by

y =

NSV−1∑
n=0

(unv
⊺
n) · σ[n].

Given that left and right singular vector pairs unv
⊺
n generate an image D[n],

then Eq. (3.9) can be rewritten to

y =

NSV−1∑
n=0

D[n] · σ[n], (3.36)

where tensor D =
(
(u0v

⊺
0) . . . (uNSV−1v

⊺
NSV−1)

)
contains the products of the left

and right singular vectors and has dimensions (1×NSV×M×N). Furthermore,
the preceding equation can be further reformulated to

y = D⊛ K̃
⊺
, (3.37)

in which K̃
⊺
=
(
(σ[0]) . . . (σ[NSV−1])

)⊺, where the brackets of the (1× 1) filters
have been excluded for simplicity. In addition, it is can be assumed that
for performing low-rank approximation of signal y it is attractive to use the
reformulation of Eq. (3.37). If we assume that D ∈ RN

≥0, then the low-rank
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approximation of y into ŷ can be expressed by

ŷ = (D+ b)+ ⊛ K̃
⊺
, (3.38)

in which the values b are set to zero for the channels of D that have high
contributions to the image content. Conversely, the channels of D[n] with less
perceptual relevance are then cancelled by assigning large negative values to
the corresponding entries of b. As final reformulation, we can assume that the
basis images D are the result of decomposing our input image y with a set
of feature maps generated by the encoder of a CNN i.e. D = y ⊛ K, which
transforms Eq. (3.38) into

x̂ = (y ⊛K+ b)+ ⊛ K̃
⊺
. (3.39)

Here, it is visible that Eq. (3.39) is analogous to the encoding-decoding architec-
ture defined in Eqs. (3.4) to (3.8) and the encoder and decoder filters are akin to
the framelet formulation of Section 3.3.2-B. Note that Eq. (3.39) assumes that the
entries D = y⊛K are positive, which may be not always true. In this situation,
tensor D requires redundant channels in which their respective phases are
inverted to avoid the signal loss. Furthermore, it should also be noticed that in
a CNN, the bias/threshold level is not inferred from the statistics of the feature
maps, but learned from the data presented to the network during training.

Multi-layer designs. It should be noted that CNNs contain multiple layers,
which recursively decompose/reconstruct the signal. This may pose an ad-
vantage with respect to conventional low-rank approximation algorithms for a
few reasons. First, the data-driven nature of CNNs allows to learn the basis
functions which optimally decompose and suppress noise in the signal. Second,
since networks are deep, the incoming signal is recursively decomposed and
sparsified. This multi-decomposition scheme is very similar to the designs
used in noise-reduction algorithms based on framelets. It can be noted that
the recursive sparsifying principles have been observed in the past in methods
such as the (learned) iterative soft-thresholding algorithm [109], [110] as well
as convolutional sparse coding. In fact, convolutional sparse-coding approach,
which also has been used for interpreting the operation of CNNs [41]

What about practical implementations? When training a CNN, the parameters
of the model (i.e. K, K̃⊺ and b) are updated to reduce the loss between the
processed noisy signal and the ground truth, which does not warranty that
the numerical values of the convolution filters and biases of the trained model
comply with the assumptions performed here. This is because CNNs do
not have mechanisms to enforce that filters have properties such as sparsity
or perfect reconstruction and negative values for the biases. Consequently,
CNNs may not necessarily perform a low-rank approximation of the signal,
although the mathematical formulation of the low-rank approximation and the
single-layer encoding-decoding are similar. Hence, the analysis presented here
should be treated as insight on the mathematical formulation and/or potential
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properties that can be enforced for specific applications and not as a literal
description of what trained models do.

3.4.2 Shrinkage and clipping-based CNNs

Just as ReLU networks, the encoder of shrinkage networks [39], [48], [58] separates
the input signal in a multi-channel representation. As a second processing stage,
the shrinkage networks estimate the noiseless encoded signal by cancelling the low-
amplitude pixels in the feature maps in a process akin to the MAP estimate of Sec-
tion 3.3.3-B. As final step, the encoder reconstructs the estimated noiseless image. Note
that the use of shrinkage functions reduces the number of channels required by ReLU
counterparts to achieve perfect signal reconstruction, because the shrinkage activation
preserves positive and negative values, while ReLU only preserves the positive part
of the signal.

As shown in Section 3.2.1, in residual learning, a given encoding-decoding network
estimates the noise signal η, so that it can be subtracted from the noisy observation
y to generate the noiseless estimate x̂. Furthermore, as discussed in Section 3.3.3-C,
in the framelet domain this is achieved by preserving the low-amplitude values of
the feature maps by clipping the signal. Consequently, in residual networks, the
shrinkage functions are explicitly replaced by clipping activations. This contrasts
with the ReLU networks, where the same activation suffices for both, residual and
non-residual designs.

Visual examples of the operation of single-layer shrinkage and clipping networks
are presented in Fig. 3.7, where it can be noted that the operation of shrinkage and clip-
ping networks is analogous to their ReLU counterparts, with the main difference that
shrinkage and clipping networks do not require phase-complements in the encoding
and decoding layers as ReLU-based CNNs do.

3.4.3 Shrinkage and clipping in ReLU networks

As addressed in Section 3.3.3, the soft-threshold function is the superposition of two
ReLU activations. As a consequence, it is feasible that in ReLU CNNs shrinkage
behavior can arise in addition to the low-rankness enforcement mentioned in Sec-
tion 3.4.1. It should be noted that this can happen only if the number of channels of
the encoder and decoder complies with the redundancy constraints of the theory of
deep convolutional framelets and if the decoder is linear. To prove this, Eq. (3.25) is
re-parameterized as

d̂ = (y ⊛K+ b)+ ⊛ K̃
⊺
, (3.40)

where convolution filters K and K̃
⊺

are defined by

K = K̃ =
((
I −I

))
(3.41)

and
b =

(
−t −t

)
, (3.42)
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Figure 3.8. Operation of denoising in shrinkage and clipping networks. In the non-residual
configuration, the noisy signal y is decomposed by a set of convolution filters, which for this
example are the 2D Haar basis functions of the discrete wavelet transform (y⊛K). As a second
step, the semi-hard shrinkage produces a MAP estimate of the noiseless detail bands/feature
maps (τDoG

(b) (y ⊛ K)). As third and final step, the decoder maps the estimated noiseless
encoded signal to the original image domain. In the residual network, the behavior is similar,
but the activation layer is a clipping function that performs a MAP estimate of the noise in the
feature maps, which is reconstructed by the decoder to generate the noise estimate η̂. After
reconstruction, the noise estimate is subtracted from the noisy observation y to generate the
noise-free estimate x̂.

where b represents the threshold value.
In addition to the soft-shrinkage, note that the clipping function described by

Eq. (3.28) can be also expressed by Eq. (3.40), when K, K̃
⊺

and b are defined by

K =
((
I −I I −I

))
,

K̃
⊺
=
((
I −I −I I

))⊺ (3.43)

and

b =
(
0 0 −t −t

)
, (3.44)

respectively. It can be noted that representing the clipping function in convolutional
form requires four times more channels than the original input signal.
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Network depth

The relationship between network depth and low-rank approximation. It should be
noted that one of the key elements of CNNs is the network depth, which we
address in this section. To illustrate the effect of network depth, assume an
arbitrary N -layer encoding-decoding CNN, in which the encoding layers are
defined by

E0 =(y ⊛K0 + b0)+,

E1 =(E0 ⊛K1 + b1)+,

E2 =(E1 ⊛K2 + b2)+,

...
EN−1 =(EN−2 ⊛KN−1 + bN−1)+,

(3.45)

En = (En−1 ⊛Kn + bn)+ . (3.46)

Here, En represents the encoded signal at the n-th decomposition level, while
Kn, bn are the convolution weights and biases for the n-th encoding layer,
respectively. As addressed in Sections 3.3.3-A and 3.4.1, the role of the ReLU
activations is to enforce sparsity and non-negativity, which can be interpreted
as the process of suppressing non-informative bases in the low-rank approx-
imation algorithm. Consequently, every encoded signal En, is an encoded
sparsified version of the signal En−1. In order to recover the signal, we apply
the decoder part of the CNN, given by

ẼN−1 =(EN−1 ⊛ K̃
⊺
N−1 + b̃N−1)+,

...

Ẽ1 =(Ẽ2 ⊛ K̃
⊺
2 + b̃2)+,

Ẽ0 =(Ẽ1 ⊛ K̃
⊺
1 + b̃1)+,

x̂ =(Ẽ0 ⊛ K̃
⊺
0 + b̃0)+,

(3.47)

Ẽn−1 = (Ẽn ⊛ K̃
⊺
n + b̃n)+ . (3.48)

Here, x̂ is the low-rank estimate/denoised version of the input signal y, while
Ẽn, K̃

⊺
n, b̃n are the decoded signal components at the n-th composition level

and the decoder convolution weights and biases for the n-th layer, respectively.
In Eq. (3.48) every decoded signal Ẽn is the low-rank estimate of the encoded
layer E(n−1). It should be noted that the activation of each of the decoder layers
(·+ b̃n)+ can further enforce sparsity on the low-rank estimates Ẽ(n−1).

Summary. In conclusion, the mathematical formulation of deep networks
is analogous to a recursive data-driven low-rank approximation, where the
input to the successive encoding-decoding pairs is the low-rank approximated
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encoded signal generated by the encoder of the previous level. Still, just as
mentioned in the text box Fitting low-rank approximation in ReLU CNNs, low-
rank approximation algorithms and CNNs are similar in terms of mathematical
formulation, but we cannot ensure that the values obtained during training for
the encoding, decoding filters and their biases have the properties needed to
ensure that a CNN is an exact recursive data-driven low-rank approximation.
For example, it is possible that the filters of the encoder and decoder do not
reconstruct the signal perfectly, because this may not be necessary to reduce
the loss function used to optimize the network.

Is it possible to impose a tighter relation between low-rank approximation and
CNNs? In specific applications where signal preservation and interpretability
is required (e.g. medical imaging) it is desirable that the operation of CNNs
is closer to the low-rank approximation description. In order to achieve this,
the CNNs embedded in frameworks such as the convolutional analysis oper-
ator [102] and FISTA-Net [111] explicitly train the filters Kn and K̃n to have
properties such as perfect signal reconstruction and sparsity. By enforcing these
characteristics, the mathematical descriptions of the low-rank behavior and of
CNNs are more similar and the models become inherently more interpretable
and predictable on their operation.

3.4.4 Additional links between encoding-decoding CNNs and
existing signal processing techniques

Up to this moment, it has been assumed that the operation of the encoding and decod-
ing convolution filters are limited to map the input image to a sparse representation
and to reconstruct it (i.e. K and K̃

⊺
comply with K⊛K̃

⊺
= I ·c). Still, it is possible that

–besides decomposition and synthesis tasks– the encoding-decoding structure also
filters/colors the signal in a way that improves the image estimates. It should be noted
that this implies that the perfect reconstruction encoding-decoding structure is no
longer preserved. For example, considering the following linear encoding-decoding
structure

ŷ = x⊛K⊛ K̃
⊺
, (3.49)

which can be reduced to

ŷ = x ∗ k. (3.50)

Here, k = K⊛ K̃
⊺

is optimized to reduce the distance between x ∗ k and the ground
truth y. Consequently, the equivalent filter k can be considered as being a Wiener filter.
It should be noted that this text is not the first in addressing the potential Wiener-like
behavior of a CNN. For example, Mohan et al. [104] suggested that by eliminating the
bias of the convolution layers, the CNN could behave more akin to the Wiener filter
and to be able to generalize better to unseen noise levels. It should be noted that by
doing so, the CNN can also behave akin to the switching behavior described by the
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theory of deep convolutional framelets, which can is described by the equation

(z)+ =

{
z, if z ≥ 0,

0 if z < 0,
, (3.51)

where z is a pixel which belongs to the signal z = x ∗ k. It can be observed that
in contrast with the low-rank behavior described in Section 3.4.1, in this case the
switching behavior is only dependent on the correlation between signal x and the
filter k. Consequently, if the value of z is positive, its value is preserved. On the
contrary, if the correlation between x and k is negative, then the value of z is cancelled.
Consequently, the noise reduction becomes independent/invariant of the noise level.
It should be noted that this effect can be considered a non-linear extension of the
so-called signal annihilation filters [112].

It should be noticed that besides the low-rank approximation interpretation of
ReLU-based CNNs, additional links to other techniques can be derived. For example,
the decomposition and synthesis provided by the encoding-decoding structure is
also akin to the non-negative matrix factorization (NMF) [113], in which a signal is
factorized as a weighted sum of positive bases. In this conception, the feature maps are
the bases, which are constrained to be positive by the ReLU function. Furthermore, an
additional interpretation of encoding-decoding CNNs can be obtained by analyzing
them from a low-dimensional manifold representation perspective [100]. Here, the
convolution layers of CNNs are interpreted as two operations. On one hand, they can
provide a Hankel representation. On the other hand, they provide a bottleneck which
reduces the dimensionality of the manifold of image patches. It should be noticed
that the Hankel-like structure that is attributed to the convolution layers of CNNs,
has also been noticed by the theory of the deep convolutional framelets [40]. A final
connection with signal processing and CNNs is the variational formulation combined
with kernel-based methods [105], [114], [115].

3.5 Analysis of relevant designs

In order to demonstrate the application of the principles summarized in Sections 3.3
and 3.4.3, this section analyzes relevant designs of ReLU and shrinkage CNNs. The
analyses focus on three main aspects, which are: (1) the overall descriptions of the
network architecture, (2) the signal propagation characteristics provided by the con-
volutional layers of the encoder and decoder sub-networks, and (3) the number
operations O(·) executed by the trainable parts of the network, since this will give
insight on the computational requirements to execute each network and its overall
complexity.

The signal reconstruction analysis provides a theoretical indication that a given
CNN design can propagate any arbitrary signal when considering the use of ideal
filters (i.e. they provide perfect reconstruction and are maximally sparse). In other
words, for a fixed network architecture, there exists a selection of parameters (weights
and biases) that make the neural network equal to the identity function. This result is
important, because a design that cannot propagate arbitrary signals in ideal conditions,
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Figure 3.9. Simplified structure of encoding-decoding ReLU CNNs. The displayed networks are
the U-Net/filtered back-projection network, the tight-frame U-Net, the residual encoder-decoder
(RED) CNN and finally, the multi-scale sparse-coding network. Note that for all the designs, the
encoding-decoding structures are indicated by dashed blocks. It should be beared in mind that
the drawings are simplified, they do not contain normalization layers, are shallow, commonly
appearing dual convolutions are drawn as one layer.
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will potentially distort the signals that propagate through it by design. Consequently,
this cannot be fixed by training with large datasets and/or with the application of any
special loss term. In order to understand better the signal reconstruction analysis, we
provide a brief example, where it is a non-residual CNN G(·), where we propagate a
noiseless signal x contaminated with noise η, so that

x ≈ G(x+ η). (3.52)

Here, an ideal CNN allows to propagate any x, while cancelling the noise component
η, irrespective of the content of x. If we switch our focus to an ideal residual CNN R(·),
it is possible to observe that

x̂ ≈ R(y) = y −G(y). (3.53)

Here, G(·) is the encoding-decoding section of the residual network R(·). Con-
sequently, it is desirable that the network G(·) is able to propagate the noise η, while
suppressing the noiseless signal x, which is equivalent to

η ≈G(x+ η). (3.54)

It should be noted that in both residual and non-residual cases, there are two behaviors.
On one hand, there is a signal which the network decomposes and reconstructs (almost)
perfectly, and on the other hand a signal is suppressed. The signal reconstruction
analysis focuses on the signals that the network can propagate or reconstruct, rather
than the signal cancellation behavior. In consequence, we focus on the linear part of
G(·) (i.e. its convolution structure), of which, according to Section 3.4.1, we assume
that it properly handles the decomposition and reconstruction of the signal within the
CNN. It should be noted that the idealized model assumed here, is only considered
for analysis purposes, since practical implementations do no guarantee that this exact
behavior is factually obtained. The reader is referred to Section 3.4.4 and the text boxes
Fitting low-rank approximation in ReLU CNNs and Network depth.

In order to test the perfect reconstruction in non-residual CNNs, we propose the fol-
lowing procedure. (1) We assume an idealized model G(·), where its convolution filters
Kn and K̃n comply with the phase-complementary tight framelet condition and where
the biases and non-linearities suppress low-amplitude (and negative for ReLU activa-
tions) samples from the feature maps. (2) The biases/thresholds of ReLU/shrinkage
CNNs are set to zero (or to infinity for clipping activations). It can be observed that
this condition prevents the low-rank (or high-rank for residual models) approximation
behavior of the idealized CNN. Under this circumstance, it should be possible to prove
that the analyzed CNN can perfectly reconstruct any signal. (3) The last step involves
simplifying the mathematical description of the resulting model of the previous point.
The mathematical simplification of the model should lead to the identity function if
the model complies with the perfect reconstruction property.

To conclude the explanation on the perfect reconstruction analysis, we provide two
relevant considerations. First, it can be claimed that residual networks, such as the
model R(y) = y −G(y) discussed in Eq. (3.53), is able to reconstruct any signal when
G(y) = 0 for any y = x+ η. Still, this does not convey information about the behavior
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of the encoding-decoding network G(·), which should be able to perform perfect
decomposition and reconstruction of the noise signal η, as discussed in Eq. (3.53).
To avoid this trivial solution, instead of analyzing the network R(·), the analysis
described for non-residual models is applied to the encoding-decoding structure G(·),
which means that the residual connection is excluded from the analysis.

The second concluding remark is that in order to distinguish the equations of the
perfect signal reconstruction analysis from other models, we specify the analyzed
designs of the perfect reconstruction models, in which the low-rank approximation
behavior is avoided by setting the bias values to zero, with a special operator P{·}.

For the analyses regarding the total number of operations of the trainable paramet-

ers, it is assumed that the tensors K0, K̃0, K̃
u
0, K̃

d
0 , K1 and K̃1 shown in Fig. 3.9 have

dimensions (1×C0×Nf×Nf), (1×C0×Nf×Nf), (1×C0×Nf×Nf), (C0×1×Nf×Nf),
(C0 ×C1 ×Nf ×Nf), (C0 ×C1 ×Nf ×Nf), respectively. Here, C0 and C1 represent the
number of channels after the first and second convolution layer, all the convolution
filters are assumed to be square with Nf ×Nf pixels. Furthermore, the input signal x
has dimensions (1× 1×Nr ×Nc), where Nr and Nc denote the numbers of rows and
columns of signal x, respectively.

Limitations. The analyses shown for the different networks in this chapter have the
following limitations. (1) The analyzed networks have only enough decomposition
levels and convolution layers to understand their basic operation. The motivation
for this simplification is to keep the analyses short and clear. Moreover, the same
principles can be extended to deeper networks, because a deep CNN can be con-
sidered a recursive embedding of single-level models. (2) The normalization layers
are not considered, because they are linear operators which provide mean shifts and
amplitude scaling. Consequently, for analysis purposes it can be assumed that they
are embedded in the convolution weights. (3) For every encoder convolution kernel,
it is assumed that there is at least one decoder filter. (4) No co-adaptations between
the filters of the encoder and decoder layers are considered.

The remainder of this section shows analyses of a selection of a few representative
designs. Specifically, the chosen designs are the U-Net [8] and its residual counterpart
the filtered back-projection network [50] 1, the tight-frame U-Net 2, the residual encoder-
decoder CNN [37] 3, and finally, the multi-scale sparse-coding network. For reference, all
the designs are portrayed in Fig. 3.9.

1Matlab implementation by their authors available at https://github.com/panakino/FBPConvN
et

2Pytorch implementation available at https://github.com/LuisAlbertZM/demo_LWFSN_TMI
and interactive demo available at IEEE’s code ocean https://codeocean.com/capsule/9027829/tr
ee/v1. The demo also includes as reference pytorch implementations of FBPConvNet and the tight-frame
U-Net.

3Pytorch implementation by their authors available at https://github.com/SSinyu/RED-CNN

https://github.com/panakino/FBPConvNet
https://github.com/panakino/FBPConvNet
https://github.com/LuisAlbertZM/demo_LWFSN_TMI
https://codeocean.com/capsule/9027829/tree/v1
https://codeocean.com/capsule/9027829/tree/v1
https://github.com/SSinyu/RED-CNN
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3.5.1 U-Net/filtered back-projection network

A U-Net – overview of the design

The first networks analyzed are the U-Net and filtered back-projection networks, both
of which share the encoding-decoding structure U(·). However, they differ in the fact
that the U-Net is non-residual, while the filtered back-projection network operates in
residual configuration. Therefore, the estimate of the noiseless signal x̂ from the noisy
observation y in the conventional U-Net is achieved by

x̂ = U(y), (3.55)

whereas in the filtered back-projection network, U(·) is used in residual configuration,
which is equivalent to

x̂ = y − U(y). (3.56)

If we now switch focus to the encoding-decoding structure of the U-Net U(y), it can
be shown that it is described by

U(y) = Uu(y) + Ud(y), (3.57)

where Uu(y) corresponds to the undecimated path, which is defined by

Uu(y) =
(
y ⊛K0 + b0

)
+
⊛
(
K̃

u
0

)⊺
, (3.58)

while the decimated path is

Ud(y) = f(2↑)

((
(Z⊛K1 + b1)+ ⊛ K̃

⊺
1 + b̃1

)
+

)
⊛ W̃

⊺
L ⊛

(
K̃

d

0

)⊺
. (3.59)

Here, signal Z is defined by

Z = f(2↓)
(
(y ⊛K0 + b0)+ ⊛WL

)
. (3.60)

Note the decimated path contains two nested encoding-decoding architectures, as
observed by Jin et al. [50], who has acknowledged that the nested filtering structure is
akin to the (learned) iterative soft thresholding algorithm [109], [110].

B U-Net – reconstruction analysis

To prove if the U-Net can perfectly reconstruct any signal, we assume that the biases
are equal to zero, on this condition the network P{U}(y) is defined by

P{U}(y) = P{Uu}(y) +P{Ud}(y), (3.61)

where sub-network P{Uu}(·) is defined by

P{Uu}(y) = (y ⊛K0)+ ⊛
(
K̃

u
0

)⊺
. (3.62)
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Assuming that
(
K0, K̃

u
0

)
is a complementary-phase tight-framelet pair then P{Uu}(y)

is simplified to

P{Uu}(y) = y · c0. (3.63)

Furthermore, the low-frequency path is

Ud(y) = f(2↑)

((
(Z⊛K1)+ ⊛ K̃

⊺
1

)
+

)
⊛ W̃

⊺
L ⊛

(
K̃

d
0

)⊺
, (3.64)

where Z is defined by

Z = f(2↓)
(
(y ⊛K0)+ ⊛WL

)
. (3.65)

If K1 is a phase-complementary tight frame, we know that (Z⊛K1)+ ⊛ K̃
⊺
1 = Z · c1.

Consequently, Eq. (3.64) becomes

P{Ud}(y) = f(2↑)(f(2↓)
(
(y ⊛K0)+ ⊛WL

)
)⊛ W̃

⊺
L ⊛

(
K̃

d
0

)⊺ · c1. (3.66)

Here, it can be noticed that if K0 is a phase-complementary tight framelet, then
P{Ud}(y) approximates a low-pass version of y, or equivalently

P{Ud}(y) ≈ y ⊛WL · c1, (3.67)

where WL is a low-pass filter. Finally, substituting Eq. (3.63) and Eq. (3.67) in Eq. (3.61)
results in

P{U}(y) ≈ y ⊛ (I · c0 +WL · c1). (3.68)

This result proves that the design of the U-Net cannot evenly reconstruct all the
frequencies of y unless c1 = 0, in which case the whole low-frequency branch of the
network is ignored. Note that this limitation is inherent to its design and cannot be
circumvented by training with large datasets and/or with any loss function.

C U-Net – number of operations

It can be noted that encoding filter K0 convolves x at its original resolution and maps
it to a tensor with C0 channels. Therefore, the number of operations O(·) for kernel
K0 is O(K0) = C0 ·Nr ·Nc ·N2

f [FLOPS] (floating-point operations). Conversely, due

to the symmetry between encoder and decoder filters, O(K̃u
0) = O( ˜

Kd
0) = O(K0).

Furthermore, for this design, filter K1 processes the signal encoded by K0, which is
down-sampled by a factor of one half for and maps it from C0 to C1 channels, this
results in the estimated operation cost O(K1) = O(K̃1) = C0 · C1 · Nr · Nc · N2

f ·
(2)−2 [FLOPs]. Finally, adding the contributions of filters K0, K̃

u
0, K̃

d
0 , K1 and K̃1

results in

O(U) = (3 + 2−1 · C1) · C0 ·Nr ·Nc ·N2
f [FLOPS] (3.69)
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D U-Net – Concluding remarks

The U-Net/FBPConvNet is a flexible multi-resolution architecture. As it has been
shown, the pooling structure of this CNN may be still sub-optimal for noise reduction
applications because this configuration does not allow to recover the frequency in-
formation of the signal evenly. This has been noted and fixed by Han and Ye [36], who
introduced the so-called tight-frame U-Net, where the down/up-sampling structure
is replaced by the discrete wavelet transform and its inverse.

3.5.2 Tight-frame U-Net

A Tight-frame-U-Net – Overview of the design

In order to avoid the low-frequency over-emphasis caused by the U-Net, Han et
al. proposed the so-called tight-frame U-Net [36]. In this network, the up- and
down-sampling layers of the U-Net are replaced by the discrete wavelet transform
and its inverse. This simple modification eliminates the blurring associated to the
conventional U-Net.

The tight-frame U-Net depicted in Fig. 3.9 (b) is used in residual configuration.
Therefore, its estimates are obtained by

x̂ = y − T (y). (3.70)

Here, T (·) represents the encoding-decoding structure of the tight-frame U-Net, de-
scribed by

T (y) = T u(y) + T d(y). (3.71)

In the above equation, T u(y) is the undecimated path, defined by

T u(y) =
(
y ⊛K0 + b0

)
+
⊛
(
K̃

u

0

)⊺
, (3.72)

which is equivalent to the undecimated path of the conventional U-Net. In contrast
with the conventional U-Net, the tight-frame U-Net uses the discrete wavelet transform
as down- and up-sampling layer. This modification bifurcates the signal in low- and
high-frequency paths, which is equivalent to

T d(y) = T d
H(y) + T d

L (y), (3.73)

where the simplest, high-frequency path T d
H(y) is

T d
H(y) = f(2↑)

(
ZH
)
⊛ W̃

⊺
H ⊛

(
K̃

d
0

)⊺
, (3.74)

and ZH is
ZH = f(2↓)

(
(y ⊛K0 + b0)+ ⊛WH

)
. (3.75)

Furthermore, the more elaborated low-frequency path has an extra convolution com-
pared with the high-frequency path, is described by

T d
L (y) = f(2↑)

((
(ZL ⊛K1 + b1

)
+
⊛ K̃

⊺
1 + b̃1

)
+

)
⊛ W̃

⊺
L ⊛

(
K̃

d

0

)⊺
. (3.76)
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In this case, the signal ZL is in the low-frequency path is defined by

ZL = f(2↓)
(
y ⊛K0 + b0)+ ⊛WL. (3.77)

Note that the filtering structure is very similar to the U-Net/filtered back-projection
network, but the design contains an additional high-frequency skip connection, which
is extracted with filter WH.

B Tight-frame U-Net – signal reconstruction analysis

When analyzing the signal reconstruction on the tight-frame U-Net, the equation
describing the (un)decimated paths Eq. (3.71) becomes

P{T}(y) = P{T u}(y) +P{T d}(y), (3.78)

where the undecimated signal path described by Eq. (3.72) is

P{T u}(y) = (y ⊛K0)+ ⊛
(
K̃

u

0

)⊺
. (3.79)

It is assumed that the filter pair (K0, K̃
u
0) complies with the phase-complementary

tight-framelet property. This reduces P{T u}(y) to

P{T u(y)} = y · cu. (3.80)

Furthermore, the decimated path P{T d}(·) is defined by

P{T d}(y) = P{T d
H}(y) +P{T d

L }(y), (3.81)

where the high-frequency branch P{T d
H} is

P{T d
H}(y) = f(2↑)

(
f(2↓)

(
(y ⊛K0)+ ⊛WH

))
⊛ W̃

⊺
H ⊛

(
K̃

d
0

)⊺
. (3.82)

Similarly, the low-frequency branch P{T d
L } of Eq. (3.81) is

P{T d
L }(y) = f(2↑)

((
(ZL ⊛K1)+ ⊛ K̃

⊺
1

)
+

)
⊛ W̃

⊺
L ⊛

(
K̃

d

0

)⊺
, (3.83)

where signal P{ZL} is defined by

P{ZL} = f(2↓)

(
(y ⊛K0)+ ⊛WL

)
. (3.84)

Assuming (K1, K̃1) is a complementary-phase tight-framelet pair, Eq. (3.83) is simpli-
fied to

P{T d
L }(y) = f(2↑)

(
(ZL)+

)
⊛ W̃

⊺
L ⊛

(
K̃

d

0

)⊺
. (3.85)

If ZL≥0, we obtain

P{T d
L }(y) = f(2↑)

(
f(2↓)

(
y ⊛K0 ⊛WL

))
⊛ W̃

⊺
L ⊛

(
K̃

d

0

)⊺
. (3.86)



Analysis of relevant designs 59

When adding the high- and low-frequency branches described in Eqs. (3.82) and (3.86)
in Eq. (3.81), the result becomes

P{T d}(y) = f(2↑)
(
f(2↓)

(
(y ⊛K0)+ ⊛W

))
⊛ W̃

⊺
⊛
(
K̃

d

0

)⊺
. (3.87)

Furthermore, for the discrete wavelet transform, any signal Q can be perfectly recon-
structed by Q = f(2↑)

(
f(2↓)

(
Q⊛W

))
⊛W̃

⊺
. Consequently, Eq. (3.87) can be simplified

to
P{T d}(y) = (y ⊛K0)+ ⊛

(
K̃

d

0

)⊺
, (3.88)

and then further reduced to
P{T d}(y) = y · cd. (3.89)

Inserting Eq. (3.89) and Eq. (3.80) in Eq. (3.78), leads to

P{T}(y) = y · cu + y · cd. (3.90)

If cu + cd = 1, the expression becomes

P{T}(y) = y. (3.91)

Eq. (3.91) proves that the tight-frame U-Net can perfectly reconstruct any signal. This
finding proves that the additional high-frequency skip-connection introduced by
Han et al. improves the signal propagation characteristics when compared to the
conventional U-Net.

C Tight-frame U-Net – number of operations

In the case of the tight-frame U-Net, it can be observed that the convolutional structure
is identical to the original U-Net, therefore the number of operations executed by the
convolutional layers is also equal to

O(T ) = (3 + 2−1 · C1) · C0 ·Nr ·Nc ·N2
f [FLOPS]. (3.92)

D Tight frame U-Net – Concluding remarks

The tight frame U-Net is a multi-resolution design which overcomes the limitations of
the conventional U-Net by means of using an additional high-pass skip connection.

In order to allow to reconstruct any arbitrary signal through the convolutional
structure of the tight frame U-Net, multiple conditions should be satisfied. First, the

encoding-decoding filter pairs (K0, K̃
d

0), (K0, K̃
u

0 ) and (K1, K̃1) should be complementary-
phase tight framelets. In addition, filters (K1, K̃

u

1 ) also should comply with the condi-
tion ZL≥0.

Furthermore, for simplification it should be noted that the convolution kernel K0

has two inverse convolution kernels (K̃
d

0 and K̃
u

0 ). Therefore, the skip connection that
is convolved with the kernel K̃

u

0 could potentially be eliminated to save parameters in
the decoder.
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3.5.3 Residual encoder-decoder CNN

A Residual encoder-decoder CNN – overview of the design

The residual encoder-decoder CNN shown in Fig. 3.9 (c) consists of nested single-layer
residual encoding-decoding networks. For example, in the network showcased in
Fig. 3.9 (c) it is visible that network R1(·) is nested into R0(·). Furthermore, for this
case the image estimate is given by

x̂ = (y +R0(y) + b̃0
)
+
, (3.93)

in which R0(·) is the outer residual network and b̃0 is the bias for the output layer.
Note that the ReLU placed at the output layer intrinsically assumes that the estimated
signal x̂ is positive.

From Eq. (3.93), the output of the sub-network R0(·) is defined by

Z = Rdec
0 (Q̂). (3.94)

Here, the decoder Rdec
0 (·) is defined by

Rdec
0 (Q̂) = Q̂⊛ K̃

⊺
0 . (3.95)

In the above, Q̂ is the noiseless estimate of the intermediate signal Q (see Fig. 3.9 (c))
and it is defined by

Q̂ = (Q+R1(Q) + b̃1)+, (3.96)

where the network R1(·) is

R1(Q) =
(
Q⊛K1 + b1)+ ⊛ K̃

⊺
1 . (3.97)

Furthermore, Q represents the signal encoded by R0(·), or equivalently

Q = Renc
0 (y), (3.98)

where Renc
0 (·) is defined by

Renc
0 (y) = y ⊛ K0. (3.99)

B Residual encoder-decoder CNN – reconstruction analysis

As mentioned earlier, the residual encoder-decoder CNN is composed by nested
residual blocks, which are independently analyzed to study the reconstruction char-
acteristics of this network. First, for block R1(·), the linear representation is given
by

P{R1}(Q) = (Q⊛K1)+ ⊛ K̃
⊺
1 . (3.100)

Under complementary-phase tight-frame assumptions for the pair (K1, K̃1), Eq. (3.100)
reduces to

P{R1}(Q) = Q, (3.101)
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which shows that the encoder and decoder R1(·) can approximately reconstruct any
signal. When switching to R0, it can be observed that the linear part is

P{R0}(y) = y ⊛ (K0 ⊛Q)+ ⊛ K̃
⊺
0 . (3.102)

Just as with R1(·), it is assumed that the convolution kernels are tight-framelets.
Therefore, Eq. (3.102) becomes

P{R0}(y) = y. (3.103)

Consequently, R0(·) and R1(·) can reconstruct any arbitrary signal under
complementary-phase tight-frame assumptions.

C Residual encoder-decoder CNN – number of operations

In this case, all the convolution layers operate at the original resolution of image x.
Therefore, the number of operations O(·) for kernel K0 and K̃0 is O(K0) = O(K̃0) =

C0 ·Nr ·Nc ·N2
f [FLOPs], while K1 and K̃1 are requiring O(K1) = O(K̃1) = C0 · C1 ·

Nr ·Nc ·N2
f [FLOPs]. By adding the contributions of both encoding-decoding pairs,

the total operations for the residual encoder-decoder becomes

O(R) = 2 · (1 + C1) · C0 ·Nr ·Nc ·N2
f [FLOPS]. (3.104)

D Residual encoder-decoder CNN – Concluding remarks

The residual encoder-decoder network consists of a set of nested single-resolution
residual encoding-decoding CNNs. The single-resolution design increases its compu-
tation cost with respect to multi-resolution designs such as the U-Net. In addition, it
should be noted that the use of a ReLU as output layer of the encoder-decoder residual
network forces the signal estimates to be positive, but this is not always convenient.
For example in computed tomography imaging, it is common that images contain
positive and negative values.

3.5.4 Multi-scale sparse coding network

A Multi-scale sparse coding network – description of architecture

The multi-scale sparse coding network is a multi-resolution architecture, in which the
discrete wavelet transform is used as a mean for up/down-sampling. The filtering
configuration is non-residual, therefore, the estimates are computed by

x̂ = M(y). (3.105)

Here, the encoding-decoding structure M(·) is given by

M(y) =f(2↓)
(
f(2↑)

(
τGar
(t0·ση)

(y ⊛K0)⊛ K̃
⊺
0

)
⊛WH

)
⊛ W̃

⊺
H+

f(2↓)
(
f(2↑)

(
y
)
⊛WL

)
⊛ W̃

⊺
L,

(3.106)
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where ση is the standard deviation of the noise present in the image, which is also an
input to the network. The noise parameter allows the network to adapt the threshold
in function of the noise level. Furthermore, it can be noted that the filters of the
discrete wavelet transform are not used as part of the noise reduction process, i.e.
τGar
(t0·ση)

(y ⊛K0).
As concluding remark, we would like to mention that in deeper networks ad-

ditional decomposition levels are placed in the low-frequency branch of the DWT,
between the down- and up-sampling operations. In this condition, the additional
encoding-decoding pairs operate at a lower resolution than the original input image.
This makes the diagram less simplified than it looks, resulting in different considera-
tions.

B Multi-scale sparse coding network – reconstruction analysis

When analyzing the perfect reconstruction of the model described by Eq. (3.106) we
obtain

P{M}(y) =f(2↓)
(
f(2↑)

(
y ⊛K0 ⊛ K̃

⊺
0

)
⊛WH

)
⊛ W̃

⊺
H+

f(2↓)
(
f(2↑)

(
y
)
⊛WL

)
⊛ W̃

⊺
L.

(3.107)

Assuming that K0 is a normalized framelet, i.e. K0 ⊛ K̃
⊺
0 = I · c, with c = 1, then

Eq. (3.107) becomes

P{M}(y) =f(2↓)
(
f(2↑)

(
y
)
⊛W

)
⊛ W̃

⊺
, (3.108)

which is further simplified to
P{M}(y) = y. (3.109)

As a result, the encoding-decoding structure of the multi-scale sparse coding network
can potentially reconstruct any signal.

C Multi-scale sparse coding network – number of operations

The multi-scale sparse coding network contains a simpler convolution structure than
the networks reviewed up to this moment. Therefore, for a single-level decomposition
architecture, the total number of operations is

O(M) = 2 ·O(K̃0) = 2 · C0 ·Nr ·Nc ·N2
f [FLOPs]. (3.110)

D Multi-scale sparse coding network – Concluding remarks

As shown, the multi-scale sparse coding network is a shrinkage-based CNN, whose
design allows for perfect signal reconstruction. Still, its design does not leverage the
DWT to generate a sparser signal to further eliminate noise.
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Design elements No. of operations normalized
by (Nr ·Nc ·N2

f ) [FLOPS]

U-Net (3 + 0.5 · C1) · C0

Tight-frame U-Net (3 + 0.5 · C1) · C0

Res. enc.-dec. net. (RED) 2 · (1 + C1) · C0

Multi-scale sparse coding net. 2 · C0

Table 3.1. Normalized number of computations performed by the analyzed CNNs
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Figure 3.10. Phase-complementary tight-framelet test for the trained toy network, initialized with
random weights. The left figure shows the product (K2)+K̃2, where the initialization of K2 and
K̃2 is different. It can be seen that the pair (K2, K̃2) does not comply with the complementary-
phase framelet criterion of Eq. (3.111). This contrasts with the right result, which displays the
result of the product (K2)+K̃2, for the same CNN, but where the initial values of K̃2 and K2 are
identical. For this initialization, the filters approximate the complementary-phase tight-framelet
criterion.
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Figure 3.11. Toy model used for experiment on the properties of the filters of a trained CNN. The
dimensions for tensors K0, K1 and K2 are (1×6×3×3), (6×12×3×3) and (12×24×3×3).
The network is symmetric and the filter dimensions for the decoder convolution kernels K̃n are
the same as there corresponding encoding kernel Kn.

3.6 What happens in reality in trained models?

3.6.1 Filter properties and low-rank approximation

The assumption that the convolution filters of a CNN behave as (comple-mentary-
phase) tight framelets is useful for analyzing the theoretical ability of a CNN to
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SNR=19.43 [dB]

Init Kn Kn, bn = 0

SNR=19.02 [dB]

Init Kn = Kn, bn = 0

Figure 3.12. Processed “cameraman" image for (in)dependently sampled initialization for the
encoding and decoding filters. The top-left picture represents the noise-contaminated input
(ση = 0.1) and the bottom-left, the noiseless reference. The middle-column images are the
processed noisy image with the toy model trained with different initialization for its convolution
filters, while the right-column images are processed with the model where the same initial values
are used for the encoding and decoding filters. The top-middle and top-right images are nearly
identical in terms of quality and SNR, so that initialization has no effect. The middle and bottom-
right images are the same model presented that processed the middle and top-right figures,
but where its bias is set to zero. As expected, the noise is partly reconstructed. Furthermore, it
can be observed that in the model where the initial values are different, the reconstructed noisy
input has a coarser nature and tends to be more visible.

propagate signals. However, it is difficult to prove that trained models comply with
this assumption, because there are diverse elements affecting the optimization of the
model, e.g. the initialization of the network, the data presented to the model, the
optimization algorithm as well as its parameters. In addition, in real CNNs, there
may be co-adaptation between the diverse CNN layers, which may prevent that the
individual filters of the CNN behave as tight framelets, since the decomposition and
filtering performed by one layer is not independent from the rest [116].

To test the behavior if the filters of a trained CNN can converge to complementary-
phase tight framelets, at least on a simplified environment, we propose to train a toy
model, as displayed in Fig. 3.11. If the trained filters of an encoder-decoder pair of
the toy model (Kl, K̃l), (where l denotes one of the decomposition levels) behave as
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Figure 3.13. Comparison of the baseline (original) toy model against its adaptive and bias-free
variants. The models are evaluated in the cameraman picture with increasing noise levels. The
top row displays the noisy input. The second top-row represents the images processed with the
original toy model. Meanwhile, the third row are the results of the adaptive toy model. Finally,
the bottom-row are the results corresponding to the bias-free model. It can be observed that the
performance original toy model degrades as the noise level increases, while the performance
adaptive and bias-free model degrade less with increased noise levels, resulting in pictures with
lower noise levels.

a complementary-phase tight framelet, then the pair (Kl, K̃l) approximately complies
with the condition presented in Eq. (3.34), which for identify input I simplifies to

(Kn)+ ⊛ K̃n = I · cn , (3.111)



66 Encoding-decoding CNNs for image denoising

in which cn is an arbitrary constant.
The toy model is trained on images that contain randomly-generated overlapping

triangles. All the images are scaled to the range [0,1]. For this experiment, the input
to the images is the noise-contaminated image and the objective/desired output
is the noiseless image. For training the CNNs, normally-distributed noise with a
standard deviation of 0.1 is added to the ground truth. For every epoch, a batch
of 192 training images is generated. For validation and test images, we use the
“astronaut" and “cameraman" images included in the software package Scipy. The
model is optimized with Adam for 25 epochs with a linearly decreasing learning rate.
The initial learning rate for the optimizer is set to 10−3 and the batch size is set to
1 sample. The convolution kernels are initialized with Xavier initialization using a
uniform distribution (see Glorot and Bengio [117]). The code is available at IEEE’s
code ocean https://codeocean.com/capsule/7845737/tree.

With the described settings, we have trained the toy model, and have tested if
the phase-complementary tight-framelet property holds for the filters of the deepest
level l=2. The results for the operation (K2)+ ⊛ K̃

⊺
2 are displayed in Fig. 3.10 (left),

which shows that when the weights of the encoder and decoder have different initial
values, the kernel pair (K2, K̃2) are not complementary-phase tight framelets. We
have observed that the forward and inverse filters of wavelets/framelets are often
the same or at least very similar. Based on this findings, we have initialized and
trained the toy model again, now with the same initial values, for the kernel pairs (Kn,
K̃n). As shown by Fig. 3.10 (right), with the proposed initialization and subsequent
training, the filters of the CNN converge to tensors with properties reminiscent of
complementary-phase tight-framelets. This suggests that the initialization of the CNN
has an important influence on the convergence of the model to a specific solution.

Fig. 3.12 displays a test image processed with two toy models, one trained trained
with different and one trained with the same initial values for the encoding-decoding
pairs. Note that the basic training consists in mapping a noisy input to an estimate
of the noiseless signal. It can be observed that there are no significant differences
between the images produced by both models. In the same figure (lower row), we
have set the bias of both networks to zero. In this case, the network should reconstruct
the noisy input, as confirmed by the figure, where both CNNs partly reconstruct the
original noisy signal. This result suggests that the ReLU plus bias pairs operate akin
to the low-rank approximation mechanism proposed the theory of deep convolutional
framelets.

The following conclusions can be drawn from this experiment. First, the filters
of the CNN may not necessarily converge to complementary-phase tight framelets.
This is possibly caused by the initialization of the network and/or the interaction/co-
adaptation between the multiple encoder/decoder layers. Second, we confirm that
for our experimental setting, the low-rank approximation behavior in the CNN can
be observed. For example, when setting the biases and thresholds to zero, part of the
noise texture (high-rank information) is recovered, albeit the structure of the recovered
noise did change with the initialization setting. Still, we are not sure if this matter
could be resolved by more extensive training. Third, it is possible that linear filtering
happens in the network as well, which may explain why noise texture is not fully

https://codeocean.com/capsule/7845737/tree
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recovered when setting the biases to zero. Fourth and final, we have observed that
the behavior of the trained models change drastically depending on factors such
as the learning rate and the initialization values of the model. For this reason, we
consider this experiment and its outcome more as a proof of concept, where further
investigation is needed.

3.6.2 Generalization

From the explanations in Section 3.3.3, it can be noted that the bias/threshold used
in CNNs can control how much of the signal is suppressed by the nonlinearities. In
addition, Section 3.4.4 established that there are additional mechanisms for noise
reduction within the CNN, such as the Wiener-like behavior observed by Mohan et
al. [104]. This raises the question how robust conventional CNNs are to noise-level
changes different from the level that the model has been trained with. To address this
question, we have trained two variants of the toy model. The first variant is inspired
by the multi-scale sparse coding network by Mentl et al. [48], where the biases of each
of the nonlinearities (ReLU in this case) are multiplied by an estimate of the standard
deviation of the noise. In the design of this example, the noise estimate σ̂η , is defined
in accordance with Chang et al. [14] and specified by

σ̂η = 1.4826 ·Median(|fHH ∗ x|). (3.112)

Here, variable fHH is the diagonal convolution filter of the discrete wavelet transform
with Haar basis. For comparison purposes, we will refer to this model as the adaptive
toy model. The second variant of the toy model being tested, examines the case where
the convolution layers of the model do not add bias to the signal. This model is
based in the so-called bias-free CNNs proposed by Mohan et al., in which the bias of
every convolution filter is set to zero during training. This setting has the purpose of
achieving better generalization on the model, since it is claimed that this modification
causes the model to behave independently of the noise level. This model will be
referred to as the bias-free toy model.

We have trained the described variants of the toy models with the same settings of
the experiment in Section 3.6.1. The three models are evaluated on the test image with
varying noise levels σn ∈[0.100, 0.150, 0.175, 0.200] and the result for this evaluation
is displayed in Fig. 3.13. The result confirms that the performance of the original toy
model degrades for higher noise levels. In contrast, the adaptive and bias-free models
toy model perform better than the original toy model for most noise levels .

The results of this simple experiment confirm the diverse noise reduction mech-
anisms within a CNN, as well as showing that the CNNs have certain modeling
limitations. For example, noise invariance, which can be addressed by further incor-
porating prior knowledge to the model, such as the case of the adaptive model, or by
forcing the model to have a more Wiener-like behavior such as in the bias-free model.
For the latter model, it should be noted that it is possible to obtain exactly the same be-
havior with the original toy model if the biases of the model would have converged to
zero. This reasoning suggests that the large amount of free parameters and non-linear
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Design elements Express. Perform. No. param. Rec. field

Activation
ReLU High Best High N/A
Shrinkage Low Good Medium N/A
Clipping Low Good Medium N/A

Scale Single-scale High Good High Big
Multi-scale High Good Med./high Small

Topology Non-residual High Good Higher N/A
Residual High Best Lower N/A

Table 3.2. Design elements and their impact in performance and computation cost.

behavior of the model can potentially prevent to find the optimal/robust solution, in
which case the incorporation of prior knowledge can help to improve the model.

3.7 Which network fits to my problem?

3.7.1 Design elements

When choosing or designing a CNN for a specific noise reduction application, multiple
choices and design elements should be considered. For example, the target perform-
ance, the memory required to train/deploy models, if certain signal preservation
characteristics are required, the target execution time for the model, the characteristics
of the images being processed, etc. Based on these requirements, diverse design
elements of CNNs can be more or less desirable, for example, the activation functions,
the use of single/multi-resolution models, the need for skip connections, and so forth.
This section briefly discusses such elements by focusing on the impact that these
elements have in terms of performance and potential computational cost. A summary
of the main conclusions of these elements is included in Table 3.2.

A Nonlinearity

In literature, the most common activation function in CNNs is the ReLU. There are
two main advantages of the ReLU with respect to other activations. First, ReLUs
potentially enforce more sparsity in the feature maps than –for example– the soft
shrinkage, because ReLUs cancel not only small values of the feature maps like the
shrinkage functions do, but also all the negative values. The second advantage of the
ReLU is its capacity to approximate other functions (see Section 3.4.3). Note that the
high capacity of the ReLU to represent other functions [43], [118] (often referred to as
expressivity) may also be one of the reasons why these models are prone to overfitting.

The better expressivity of the ReLU-CNNs may be the reason why –at the time
of writing this manuscript– ReLU-based CNNs perform marginally better than the
shrinkage-based models in terms of metrics such as signal-to-noise ratio or the struc-
tural similarity index metric (SSIM) [53], [58], [119]. Despite this small benefit, the
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visual characteristics of estimates produced by ReLU and shrinkage-based networks
are very similar. Furthermore, the computational cost of ReLU-based designs is
potentially higher than the costs of networks using shrinkage functions, because
ReLU-based models require more feature maps to preserve the signal integrity. For
example, the learned wavelet frame shrinkage network (LWFSN) that will be intro-
duced in Chapter 5 achieves a performance very close to the FBPConvNet and the
tight-frame U-Net for noise reduction in computed tomography, but only with a
small fraction of the total trainable parameters, which allows for a faster and less
computation-expensive model [58].

B Single/multi-scale designs

Single-scale models have the advantage that they avoid aliasing because no down/up-
sampling layers are used, which comes at the expense of more computations and
memory. Furthermore, this approach may lead to models with larger filters and/or
deeper networks to achieve the same receptive field than multi-scale models do, which
may further increase the computation costs of single-scale models. For example, in
Table 3.1 it can be observed that a single-scale CNN such as RED CNN executes more
computations than a simple multi-scale model such as the multi-scale sparse coding
network.

In the case of multi-scale models, the main consideration should be that the
down/up-sampling structure should allow perfect signal reconstruction to avoid
introducing aliasing and/or distortion to the image estimates (e.g. the discrete wavelet
transform in the tight-frame U-Net and in the multi-scale sparse coding network).

C (Non-)residual models

Residual noise reduction CNNs often perform better than their non-residual counter-
parts (e.g. the U-Net vs FBPConvNet and the LWFSN vs the rLWFSN). The reason
may be that the trained models have more freedom to learn the filters, because the
design does not need to learn to reconstruct the signal, but only to estimate the
noise signal [40]. Also, it can be observed that non-residual models potentially need
more parameters than residual networks, since the propagation/reconstruction of the
noiseless signal is also dependent on the number of channels of the network.

3.7.2 State-of-the art of image denoising CNNs

Defining the state-of-the art in image denoising with CNNs is challenging for diverse
reasons. First, there is a wide variety of available CNNs, which often are not compared
to each other. Second, the suitability of a CNN for a given task may depend on
the image and noise characteristics, such as noise distribution and (non-)stationarity.
Third, the large amount of variables, in terms of e.g. optimization, data and data
augmentation, adds reproducibility issues which further complicate making a fair
comparison between all available models [17].

Despite of the mentioned challenges, there is some consensus in suggesting that
DnCNN [9] or one of its variants can be regarded as the state of the art for image
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denoising. This network is residual, single-scale, while also using ReLU activations.
Furthermore, the bias-free version of DnCNN [104] further extends the generalization
of DnCNN by making it invariant to the noise level. Another state-of-the-art model is
the multi-level wavelet CNN [120], which has a design very similar to the tight-frame
U-Net [36]. Both of these models are based on the original U-Net design [8], but are
deployed in residual configuration and the down/up-sampling structure is based on
the discrete wavelet transform. In addition, the use of encoding-decoding CNNs used
as prior/regularizer within model-based methods [121] have further improved the
denoising power of single encoding-decoding CNNs. An example of this approach
is the plug-and-play framework [122], where CNNs such as DnCNN are used as
priors/proximal operators in image restoration tasks.

3.8 Conclusions

This chapter has analyzed the encoding-decoding structure of CNNs with basic signal
processing principles, such as low-rank approximation and framelets. In order to
achieve this, we have presented a set of basic signal principles and their mathematical
formulations and have fitted them within the mathematical description of CNN mod-
els.

Meaning of the followed approach. By taking the adopted approach, we have able to
improve modeling and the related analysis of CNN models in the following way.

• We have summarized Ye’s [40] observation on the need for channels with in-
verted phase in ReLU CNNs in the so-called phase-complementary tight framelet
condition, which has been mathematically summarized. This view is the key for
improving the analysis of ReLU-based models because in previous work the
effect of the non-linearity is often neglected (models are often assumed linear
during the signal reconstruction analysis).

• The theory of deep convolutional framelets [40] as well as other related works [39],
[40], [48] have been incorporated to provide a single, more general framework to
analyze and design CNNs, which unifies shrinkage, clipping and ReLU-based
designs. Hence, the model designer has more freedom to adopt one of these
functions based on the requirements of the model to improve the modeling
process.

Summarizing and from the principal point of view, the analysis is as follows. First,
the encoder maps the incoming signal to a sparse representation, where a MAP es-
timate of the noiseless band is performed with an activation function. Afterwards,
the decoder maps the estimated noiseless signals back to the original domain. The
processing chain of encoding-decoding CNNs is akin to low-rank approximation and
framelet shrinkage. In addition, it can be concluded also that the activations implicitly
assume noise and signal characteristics of the feature maps.
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Contributions. These new modeling and mathematical formulations have revealed that
the following aspects of encoding-decoding CNNs. (1) Multiple signal processing con-
cepts converge in the mathematical formulation encoding-decoding CNNs models. For
example, the convolution and down/up-sampling structure of the encoder-decoder
structure is akin to the framelet decomposition, the activation functions are rooted on
conventional signal estimators. In addition, linear filtering also may happen within
the model. (2) The activations implicitly assume noise and signal characteristics of the
feature maps.

In summary, this chapter has presented the following contributions

1. Unified mathematical notation. We provide a unified and explicit notation which
has direct correspondence with the schematic representations of CNNs. This
notation involves up/down-sampling, explicit tensor convolutions for the filter-
ing applied during framelet decompositions, etc. In addition, the used schematic
representations are more akin to the schemes used to represent signal processing
systems such as filter banks, which is more accurate than the conventional
block-based representations of CNNs.

2. Better-informed design choices. An additional contribution of this chapter is the set
heuristics and hints that can be leveraged by CNNs designers from the results in
Section 3.7).

The results of this chapter are further explored in succeeding work. Chapters 4
explores the design of a noise reduction CNN, where the encoding and decoding paths
are tight wavelet framelets and the trainable part of the network removes the noise
from the sparse encoded signal. In contrast, Chapter 5 presents a design where the
encoding and decoding paths are learned, but where it is possible to prove practically
and theoretically that the encoding and decoding paths of the CNN allow for perfect
signal reconstruction and where the non-linearities suppress the noise from the signal.
Both of these designs are based on the heuristics defined in this chapter and on existing
noise reduction CNNs.





CHAPTER4
Data-driven denoising using

non-trainable framelets

4.1 Introduction

Chapter 3 has explored the mathematical formulation of encoding-decoding CNNs
from a low-rank approximation perspective. As starting point, this analysis uses the
theory of deep convolutional framelets [40] and shows that the operation of CNNs is
akin to conventional framelet-based denoising pipelines. More specifically, the convo-
lution layers within the encoder and decoder structure provide a linear decomposition
reminiscent of the forward and inverse framelet transforms. Furthermore, the biases
and activations within the CNN eliminate the noisy segments of the signal in a process
akin to soft-shrinkage and low-rank approximation.

When considering the signal processing interpretation of noise reduction CNNs, it
can be observed that in order to achieve noise reduction, CNNs learn to decompose,
reconstruct and denoise the signal, which is significantly more complex than conven-
tional wavelet-based noise reduction methods, where non-trainable framelets map the
input to a sparse domain, in which a shrinkage function is applied and afterwards,
the inverse transform is applied to produce the final noiseless estimate.

Challenges. Rather than exploiting conventional CNNs, such as the residual
encoder-decoder (RED) CNN [37] and the filtered back-projection network [50] ana-
lyzed in Chapter 3, this chapter explores the design of a CNN where the encoding-
decoding path is composed by non-trainable framelets. This design choice leverages
the sparse transformation and perfect reconstruction provided by existing transform-
ations and limits the operations that are learned to eliminate the noise in the signal.
This approach poses several challenges listed below.

1. Choice of framelet basis. Given that this chapter explores a design that uses non-
trainable filters for the encoder and decoder, the choice of appropriate basis
functions is critical for the design to achieve a good performing model.

(a) Design towards directionality and sparsity. Conventional orthogonal trans-
forms are prone to aliasing and have limited directionality, which constrains
their performance for noise reduction applications. In our application, we
aim for improved directionality in order to preserve the image contents.

(b) Computational complexity. The chosen framelet bases should have short
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filters to improve the spatial localization of the design and to decrease the
computational cost of training/executing the design. It should be noted
that this comes at the expense of decreasing the frequency localization,
hence there is a careful trade-off to be made in order to find the right basis1

2. Design of the noise reduction structure. As discussed in Section 3.3.3, there are mul-
tiple activation functions which can be applied for noise reduction applications.
Since framelets provide a sparse representation, the activation functions often
shrink low-amplitude components which are assumed to be noisy. Consequently,
the choice of the appropriate function is critical for the optimal performance of
the proposed model. In this chapter, rather than a single activation layer, we
explore to incorporate a CNN to eliminate the noise of the sub-bands of the
signal in the transformed domain.

The following section addresses the background on signal transformations in more
depth and their associated noise reduction techniques. In that discussion, the above
terms on directionality, sparsity and shrinkage techniques are frequently used to
explore and assess the relation to noise reduction. The layout of the chapter will be
presented at the end of Section 4.2.

4.2 Background on transformations and related work

In order to address noise reduction with framelets, multiple approaches have been
proposed. Among the simplest pipelines, we find conventional models that use
(bi)orthogonal transforms, in which the signal is converted to the framelet domain
with a multi/single-resolution transform, which is also sparse. In the sparse domain,
an element-wise sparsity enforcing function such as soft/hard thresholding is applied.
These functions suppress samples with low amplitude, which are typically associated
to noise. After the shrinkage stage, the signal is mapped back to the original domain to
produce the final noiseless estimate. An example of a model that operates this way is
the well-known Bayes-shrink [14]. More sophisticated denoising algorithms go beyond
using the amplitude of the components to eliminate noise. An example of a more
sophisticated system is Bi-shrink [76]. This system leverages the correlation between
the detail information at multiple scales in multi-resolution framelet decompositions.
Alternative approaches leverage information at the same scale. This is covered by
for example, the locally-spatial indicators introduced in [123] and the well-known
Markov random fields [124]. In addition to conventional wavelet-based denoising,
also algorithms based on optimization techniques have been employed. Examples of
these techniques are the (fast) iterative soft thresholding algorithm [109], [125].

A common limitation of the previously mentioned approaches can be attributed to
the choice of (bi)orthogonal transforms, which are critically-sampled. This means that
these transforms are implemented with filter banks with only enough bandwidth to

1When using signal transformations, the designer is always faced with the uncertainty principle. For
example, in the wavelet domain, increasing the frequency localization of the wavelet bands comes at the
expense of using longer filters that have lower spatial localization.
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represent the original signal. Furthermore, as discussed in Fig. 3.3 of Section 3.3.2-B, the
structure of (bi)orthogonal framelet transforms introduce aliasing in the transformed
signal, which is cancelled in the inverse-transformed signal by carefully designing the
filters of the forward and inverse transform. Consequently, when eliminating samples
in the transformed domain as it is performed by conventional wavelet-based denoising
algorithms, the relationship between the channels which allows for alias cancellation
is broken and aliasing is introduced to the signal. In addition to aliasing, an additional
limitation of (bi)orthogonal framelet transformations is the lack of directionality [126].
It should be noted that the filters of the conventional discrete wavelet transform
are aligned only to 90◦, 0◦ and ±45◦, so that they have limited directionality. This
causes that the sparsity in the transformed domain decreases for edges/transitions
that have different directions than the previously mentioned angles, thereby limiting
the performance of the noise reduction algorithms that use (bi)orthogonal transforms.

The limitations of (bi)orthogonal transforms have been solved by using directional
transforms that are redundant. In contrast with critically-sampled transforms such as
the discrete wavelet transform (DWT), redundant transforms are oversampled. This means
that each of the bands in the transform represents a smaller region of the Fourier
spectrum. Consequently, less aliasing is introduced by the transform [126], since there
is more bandwidth available to represent the signal. In addition, the directionality of
some of these transforms improves the performance of noise reduction algorithms.
Examples of these transforms are curvelets [127], shearlets [128], the quaternion
wavelet transform [129], the hyper-analytic wavelet transform [130], the directional
hyper-complex wavelet transform [131] and, finally, the dual-tree complex wavelet
transform [74], all of which have been applied to noise reduction applications.

This chapter particularly concentrates on the dual-tree complex wavelet transform
(DTCWT). This transformation is an extension of the orthogonal discrete wavelet
transform in which an additional wavelet tree is used for every dimension (often
referred to as trees “a" and “b"). The additional tree has a group delay of half a sample
with respect to the first tree, which causes the filtered signals to form an approximately
analytic signal. In order to achieve the required phase shift, a common implementation
is the so-called q-shift filters, which are orthogonal filters having a group delay of
one quarter sample. The filter in tree “a" is inverted with respect to tree “b", which
generates the required phase delay of a half sample.

The DTCWT has two attractive properties of the DTCWT, which are specified as
follows. (1) The representation is an analytic signal which is is free of aliasing. (2) The
implementation of the DTCWT is achieved with linear combinations of orthogonal
DWT trees. The advantages of the DTCWT come with the backside aspects such as the
following. (3) In order to achieve an analytic representation, the transform requires
larger filters, which decreases the spatial localization property of the transform. Con-
sequently, shrinking the wavelet components in this representation impacts a larger
neighborhood in the image, which may be undesirable for noise-reduction applica-
tions. (4) The implementation of this transform is sequential, which may increase the
execution time of the transformation.

Followed approach in this chapter. The design part of this chapter consists of two parts. (1)
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Figure 4.1. High-level representation of a single-decomposition level DHSN model. In the figure,
the SM block stands for shrinkage module, while the filters KOH
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filters of the overcomplete Haar wavelet transform for the low-pass and high-pass filters in the
horizontal, vertical and diagonal directions, respectively. Furthermore, filters K̃
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HH are the corresponding filters for the inverse transform/decoder.

A fixed framelet basis known as the overcomplete Haar wavelet transform (OHWT) which
transforms the signal to a sparse decomposition. (2) A noise-reduction CNN which
eliminates the noise in the sparse domain. The combination of these two elements is
referred to here as dual-Haar shrinkage network (DHSN), of which a high-level schematic
description is depicted in Fig. 4.1.

The remainder of this chapter is structured as follows. Section 4.3 introduces the dual-
tree complex wavelet transform and its modification to the wavelet transformation
used in this chapter. Furthermore, it also introduces the design of two noise reduction
modules. Section 4.4 shows the experiments and results of the proposed networks
and compare them with RED CNN and FBPConvNet. Finally, Section 4.5 summarizes
the main contributions of our work and addresses future endeavors.

4.3 Methods

The design developed in this section integrates a fixed framelet with noise reduc-
tion CNNs that eliminate the noise in the sparse domain. In order to achieve this
endeavor, Sections 4.3.1 and 4.3.2 first explain the design of the framelet transform,
while Section 4.3.3 addresses the design of the noise reduction CNNs.

The layout for this section is as follows. First, Section 4.3.1 addresses in more
detail the design of the DTCWT. Afterwards, in Section 4.3.2, the algorithm of DTCWT
is modified to define the overcomplete Haar wavelet transform. Finally, having
defined the transformation used for our CNN, Section 4.3.3 addresses the design of
the shrinkage networks employed in the designs here presented.
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Figure 4.2. Conventional discrete wavelet transform tree for two dimensions. Filters wa
Hh and

wa
Hv are the high-pass filters of the 1D DWT in the vertical and horizontal directions, respectively.

Furthermore, the down-sampling represented by the arrow symbol ↓ is applied either to the
horizontal or vertical dimensions.

4.3.1 Dual-tree complex wavelet (framelet) transform

Section 3.3.2-B shows that orthogonal framelets, such as the discrete wavelet trans-
form (DWT), provide a sparse representation which is often used in noise reduction
applications. For N -dimensional DWTs, the transformations (bi)orthonormal bases
can be achieved by successive 1D transformations applied successively along each
each of the N dimensions. The resulting filtering structure for every dimension is
referred to as a tree.

As mentioned in Section 4.1, the conventional DWT is in limited directionality
and introduces aliasing, which limits its performance for image denoising. These
shortcomings are circumvented by redundant directional transforms such as the
DTCWT [74]. This transform introduces an additional DWT tree per dimension
(referred to as tree “a" and “b"), where the filters of the tree “b" have a group delay of
half a sample with respect to the tree “a". This means that the tree “b" approximates
a quadrature component of tree “a". Consequently, if tree “b" is considered to be a
complex/imaginary number, then the sum of trees “a" and “b" form an approximately
analytic signal (i.e. it has a Fourier spectrum which is only positive). In addition,
by grouping the real and complex components of the transform, a set of directional
filters are generated, which improves the representation of image segments that are
not aligned in the horizontal or vertical axes. In summary, the algorithm to compute
the DTCWT, is composed by the following steps.

1. The input signal x is processed with the the trees “a" and “b" for every dimension
and for every wavelet band, except for the low-frequency (LL). In 2D, this process
generates a four-channel system per wavelet band. In this configuration, for
every tree “b", it is assumed that the signal is multiplied by a complex number
γ = ±j|γ|, where j2=-1.

It should be noted that Kingsbury [74] only applies the transform with q-shift
filters for decomposition levels higher than one. In the first decomposition level,
any orthogonal or (bi)orthogonal wavelet can be used, as long as both trees are
shifted by one sample with respect to each other, which virtually generates an
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Figure 4.3. Graphical representation of the algorithm used to represent the dual-tree complex
wavelet transform.

undecimated transform.

2. The bands generated by the dual-tree configuration are added and grouped in
real and complex components. Furthermore, each individual real or complex
component is considered to be an independent signal and placed on a separate
image channel. This process is repeated for the complex conjugates of tree “b".

To exemplify the algorithm of the dual-tree complex wavelet transform we refer
to Fig. 4.2, where the conventional DWT is described. In contrast, Fig. 4.3 showcases
the DTCWT, where it can be observed that the dual-tree algorithm is applied to the
LH, HL and HH bands. Furthermore, for better understanding it is shown that the
processing of the signal x with the tree “a" in the horizontal dimension and “a" for the
band HH results in the signal xaa

HH, defined by

xaa
HH = f(2↓v)(f(2↓h)(x ∗wa

Hh) ∗wa
Hv). (4.1)

Here, f(2↓v)(·) and f(2↓h)(·) are the down-sampling functions in the vertical and hori-
zontal directions, respectively, while wa

Hh and wa
Hv are the high-pass filters of the 1D

DWT in the vertical and horizontal directions. When processing all the branches of
the dual-tree and grouping the components in real and complex values leads to

(xaa
HH + γ0γ1x

bb
HH) + (γ1x

ab
HH + γ0x

ba
HH), (4.2)

where γn = ±j. Assuming γ0 = j and γ1 = −j generates the signal

(xaa
HH + xbb

HH) + j · (−xab
HH + xba

HH). (4.3)
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Furthermore, if γ0 = j and γ1 = +j, the signal becomes

(xaa
HH − xbb

HH) + j · (xab
HH + xba

HH). (4.4)

From Eq. (4.3) and Eq. (4.4), we obtain two real terms (xaa
HH + xbb

HH) and (xaa
HH − xbb

HH)
and two complex terms (−xab

HH + xba
HH) and (xab

HH + xba
HH). which can be grouped as a

single tensor XDir
HH, defined by

XDir
HH =

(
(xaa

HH + xbb
HH) (xaa

HH − xbb
HH) (−xab

HH + xba
HH) (xab

HH + xba
HH)

)
. (4.5)

Here, the complex number j has been excluded since the implementations are often
based on real arithmetic (where j is inferred by the channel location). As final step,
the full DTCWT transform of a signal is specified in tensor form as previously by

DTCWT(x) =
(
f(2↓)(x⊛wLL) XDir

LH XDir
HL XDir

HH

)
. (4.6)

Here, XDir
LH and XDir

HL are computed with the same algorithm that is previously presen-
ted for XDir

HH. Finally, as a closing remark, it should be noted that in order to recover
the original signal, it is sufficient to apply all the operations in the reverse order.

4.3.2 Overcomplete Haar wavelet transform (OHWT)

A major limitation of the DTCWT is the longer support of the q-shift filters when
compared with the DWT. It should be noticed that longer filters decrease the spa-
tial localization of the transformation. Furthermore, an additional downside of the
DTCWT is the sequential nature of the algorithm used to compute it, which makes
it less interesting for its integration into CNNs, since it would increase the execution
time of models based on this transform.

In order to reduce the kernel size of the filters used on the DTCWT, we have
modified the original algorithm to the so-called over-complete Haar wavelet transform
(OHWT). The OHWT uses the dual-tree structure of the first decomposition level of
the DTCWT and applies it to all the bands instead of only doing it to the detail as
performed in the DTCWT. This means that the filters in trees “a" and “b" are the same,
but they are shifted by one sample in every dimension. Furthermore, the OHWT uses
the Haar basis as convolution kernel which is very compact. The motivation for the
proposed modifications are twofold. First, this transform preserves the directionality
of the DTCWT, while offering a compact response (equivalent to convolution masks of
3×3 samples). Second, the transform is virtually undecimated, which means that less
aliasing components will occur in the noise reduction application. Finally, as will be
shown, this structure simpler to implement in a real practical system, because the full
transform can be summarized in a single convolution basis, rather than the sequential
algorithm of the DTCWT.

With the aforementioned modifications to the original DTCWT algorithm, the
OHWT changes the DTCWT-converted signal from Eq. (4.5) to

XOHWT
HH =


f(2↓)( x ∗wHH ∗ saa + x ∗wHH ∗ sbb)
f(2↓)( x ∗wHH ∗ saa − x ∗wHH ∗ sbb)
f(2↓)(−x ∗wHH ∗ sab + x ∗wHH ∗ sba)
f(2↓)( x ∗wHH ∗ sab + x ∗wHH ∗ sba)


⊺

, (4.7)
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where the shifts are introduced by convolving with the convolution masks saa, sab,
sba and sbb. The filtering coefficients are found in the filter wHH. Specifically, saa is
the identity operation, sab provides a shift of one sample in the vertical dimension,
sba provides a shift of one sample in the horizontal dimension, sab is a shift in the
horizontal dimension and sbb is a shift in both, the vertical and horizontal dimensions.
The shift operators saa, sab, sba and sbb are defined by

saa =

(
1 0
0 0

)
sab =

(
0 0
1 0

)
sba =

(
0 1
0 0

)
sbb =

(
0 0
0 1

)
. (4.8)

Consequently, Eq. (4.7) can be simplified in notation to

XOHWT
HH = f(2↓)(x⊛wHH ⊛ S), (4.9)

where the convolution kernel S is given by

S =


( saa + sbb)
( saa − sbb)
(−sab + sba)
( sab + sba)


⊺

=



(
1 0
0 1

)
(
1 0
0 −1

)
(
0 −1
1 0

)
(
0 1
1 0

)



⊺

. (4.10)

Here, when inspecting the result of Eq. (4.10), it becomes explicit that the combination
of the dual-tree structure and the linear combinations of the OHWT generate two
DWTs with 1D Haar bases that are rotated by ±45◦ (see the 2×2 matrices at the right,
therefore we now use the symbol H). This result is very convenient, because it means
that whole transform can be implemented with fixed convolutional layers, which
are readily available in standard deep learning (DL) libraries. Applying the same
procedure to all the wavelet bands, we achieve that the OHWT can be summarized to
a single tensor convolution, or equivalently

xOHWT = f(2↓)(x⊛KOH), (4.11)

in which convolution kernel KOH is defined by

KOH =


KOH

LL
KOH

LH
KOH

HL
KOH

HH


⊺

=


(wLL ⊛H)
(wLH ⊛H)
(wHL ⊛H)
(wHH ⊛H)


⊺

. (4.12)
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Here, the specification of the numerical values of tensor KOH are given by

 1 1 0
1 2 1
0 1 1

−1−1 0
−1 0 1
0 1 1

 0 1 1
1 2 1
1 1 0

 0−1−1
1 0−1
1 1 0


−1 1 0

−1 0 1
0−1 1

 1−1 0
1−2 1
0−1 1

 0−1 1.
−1 0 1
−1 1 0

 0 1−1
−1 2−1
−1 1 0


−1−1 0

1 0−1
0 1 1

 1 1 0
−1−2−1
0 1 1

 0−1−1
−1 0 1
1 1 0

 0 1 1
−1−2−1
1 1 0


 1−1 0

−1 2−1
0−1 1

−1 1 0
1 0−1
0−1 1

 0 1−1
1−2 1

−1 1 0

 0−1 1
1 0−1

−1 1 0





1

2
√
2
,

where the kernel KOH is composed by four sub-tensors KOH
LL , KOH

LH , KOH
HL and KOH

HH
with dimensions (1 × 4 × 3 × 3). A graphical representation of OHWT is shown in
Fig. 4.4.

In order to map the representation xOHWT back to its original signal x, an analogous
procedure to the forward transform is required, which results in an inverse OHWT
convolution kernel K̃OH. Just as the forward transformation kernel can be summarized

in tensor K̃, or in in term of its components K̃
OH
LL , K̂

OH
LH , K̃

OH
HL and K̃

OH
HH. The numerical

values of K̃OH are defined by

 1 1 0
1 2 1
0 1 1

 1 1 0
1 0−1
0−1−1

 0 1 1
1 2 1
1 1 0

 0 1 1
−1 0 1
−1−1 0

 1−1 0
1 0−1
0 1−1

 1−1 0
1−2 1
0−1 1

 0 1−1
1 0−1
1−1 0

 0 1−1
−1 2−1
−1 1 0

 1 1 0
−1 0 1
0−1−1

 1 1 0
−1−2−1
0 1 1

 0 1 1
1 0−1
−1−1 0

 0 1 1
−1−2−1
1 1 0

 1−1 0
−1 2−1
0−1 1

 1−1 0
−1 0 1
0 1−1

 0 1−1
1−2 1
−1 1 0

 0 1−1
−1 0 1
1−1 0





1

8
√
2
. (4.13)

It should be noticed that the OHWT, is a tight framelet which allows for perfect
reconstruction. Therefore, its inverse satisfies the formulation

x = f(2↑)(xOHWT)⊛ K̃
⊺
OH. (4.14)

A reflection on the achieved formulation of the forward/backward OHWT is
helpful at this point. The OHWT is also conceptually similar to the directional hy-
percomplex (DHWT) and quaternion wavelet (QWT) transforms [132]. However, the
OHWT is not an analytic representation, which is the case with the DHWT, QWT and
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Figure 4.4. Visualization of the generation of the kernels of the OHWT. At the left, the diagonal
Haar wavelets are shown, in the middle the Haar basis for the 2D DWT are displayed. Finally,
the right subfigure shows the resulting 2D basis functions. Note that the kernel KOH has good
space and frequency localization, while the filters are also directional.

DTCWT. Furthermore, in the case of the 2D DTCWT, DHWT and the DTCWT, the
additional transformations that are required to generate the directional filters are only
applied to the high-frequency bands, while in the OHWT the same transformations
are applied to all the bands, including the low-frequency one.

4.3.3 Wavelet Shrinkage Networks (WSNs)

The proposed wavelet shrinkage networks (WSNs) are generated by integrating the
encoding path defined by Eq. (4.12), the decoding section is specified by Eq. (4.14), as
well as the processing path executing wavelet shrinkage, denoted by CNN(·), operated
on the detail bands LH, HL and HH. As a result, a one-decomposition-level WSN is
expressed by

G(x) =f(2↑)(f(2↓)(x⊛KOH
LL ))⊛ (K̃

OH
LL )⊺+

f(2↑)(SN(f(2↓)(x⊛KOH
LH )))⊛ (K̃

OH
LH )⊺+

f(2↑)(SN(f(2↓)(x⊛KOH
HL )))⊛ (K̃

OH
HL )

⊺+

f(2↑)(SN(f(2↓)(x⊛KOH
HH)))⊛ (K̃

OH
HH)

⊺.

(4.15)

In the first term of Eq. (4.15), the operator SN(·) is missing because shrinkage is not
applied in that sub-band.

For deeper CNNs, the OHWT is applied recursively using the low-frequency band
as input for the next wavelet decomposition. It is important to bear in mind that the
OHWT is in fact an expansive representation. Therefore, for every input channel in
the signal, four image channels are generated for each of the bands. This means that
if deeper networks are required, an exponential growth in image channels/feature
maps is faced, which is described by the expression

N(C,L) = C · 4L, (4.16)

in which N represents the number of feature maps per wavelet band at the decompos-
ition level L >1 given an input signal with C channels. It should be noticed that these
are the values per band, and in 2D, the OHWT decomposes the signal into four bands.
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Figure 4.5. High-level diagram of DHSN1 and DHSN2, in which the OHWT transform (encoding
section) decomposes a noisy images into 4 sub-bands LL, LH, HL and HH, from which the
high-passed bands (LH, HL and HH) are fed to a shared shrinkage module SM[l](·) which
performs noise reduction and later feds the output to the inverse OHWT (decoding section).
Here index l denotes the decomposition level. It should be noticed that the main difference
between the original DHSN1 and the DHSN2 are the shrinkage module SM[l](·).

4.3.4 Shrinkage modules employed in the WSN

There are diverse existing denoising algorithms, such as the shrinkage estimators
described in Chapter 3. In contrast, this section explores concepts based on the ideas
of the method referred to as NeighShrink [54], where instead of a shrinkage function, a
neighborhood-dependent multiplicative weight W(·), is applied to each element of the
high-pass bands of the OHWT d, where D ∈ [f(2↓)(x⊛KOH

LH ), f(2↓)(x⊛KOH
HL ), f(2↓)(x⊛

KOH
HH)]. The described concept can be mathematically defined by

D̂ = W(D)⊙D. (4.17)

Here, if the noise power is high with respect to the signal over a specific neighborhood
in D, then W(·) saturates to zero, thereby shrinking the noisy sample. In a converse
reasoning, it can happen that an edge or detail of the signal occurs in which case
W(·) saturates to unity, thereby preserving the sample. It should be noticed that
the neighbor dependency of NeighShrink sets it apart from most shrinkage-based
algorithms, because most of them do not account for the correlation between pixels.

Despite the good performance of Neighshrink, its design assumes Gaussianity,
which is not representative for the noise observed in CT. More importantly, in this work
the low-contrast areas and texture should be preserved as much as possible. Therefore,
we propose a shrinkage based on a data-driven weighting network that emulates
the value of the weighting function W(·) in Neighshrink. Specifically, this chapter
explores two solutions. First, a heuristic design that learns the weighting function and
second, a weighting structure that is more akin to the original NeighShrink, aiming at
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improving transparency by preserving the interpretability of the model. Both of these
networks will be defined in more detail in the succeeding paragraphs.
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Figure 4.6. Proposed shrinkage modules SM1(·) (top) and SM2(·) (middle). The middle row
of pictures depict internal signals of stages within Module 2. Specifically, The outputs of the
intermediate shrinkage layers are shown in Subfigures (I) and (II). The final generated mask
used to suppress noise is displayed in Subfigure (III) and the noise-reduced band D̂ is depicted
in Subfigure (IV). It can be observed in signals (I) and (II) that the edge information is assigned
a higher weight (close to unity), whereas the areas with little change are assigned a weight
closer to zero. This is further visible when comparing the input and output signals (I) and (IV),
respectively.

Module 1 For the first shrinkage module design, the multiplicative factor W(·) is
replaced by a CNN SM1(·). For SM1, the design is guided by the following aspects.
First, the shrinkage is only based on the amplitude and it uses the magnitude of
the wavelet coefficients as input. Second, a convolutional layer generates linear
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combinations of the channels in the same band. Third, a ReLU operation is applied,
which should saturate to zero in the presence of noisy components, providing a rough
detail mask, which is then later refined by a residual connection. This concept can
be repeated to improve the network operation. Fourth, the last layer saturates the
output value between zero and unity with a sigmoid function, thereby suppressing
noisy components, while preserving clean samples. A block diagram of the weighting
network W(·) is depicted in Fig. (4.6).

Module 2 The second shrinkage module (SM2(·)), further leverages ideas behind
BayesShrink [14] and NeighShrink [54], which use the relative amplitude between
the estimated noise variance and the signal power as features to perform wavelet
shrinkage. In the case of BayesShrink, the signal power is globally taken into account,
since the detail information is considered to have a Laplacian distribution, whereas
the noise is assumed to be Gaussian and the threshold defines an optimal level that
separates both distributions. In contrast, the empirical method NeighShrink generates
an element-wise weight, based on a ratio between the local signal power against the
global power of the noise. We find NeighShrink to be particularly interesting, because
the calculations of the weights W(·) are very similar to conventional operations used
in CNNs. This becomes clear from the expression of NeighShrink [54] for which W(·)
is computed by

W(d) =

(
1−

[
λ2(d)

]
· 1[

(Q(d))2
])

+

, (4.18)

where d is the input detail band, parameter λ is the universal threshold [60], which is
proportional to the standard deviation of the noise. Furthermore, the function Q(·) is
the local standard deviation, defined by

Q(d[h, v]) =
1

n

√√√√√ +⌊n/2⌋∑
h=−⌊n/2⌋

+⌊n/2⌋∑
v=−⌊n/2⌋

d2[h, v], (4.19)

where ⌊·⌋ is floor operator, truncating the number to the nearest integer with a lower
absolute value and parameter n is the neighborhood chosen as an odd number. Finally,
integer variables h, v are the horizontal and vertical indexes, respectively.

Motivated by the local nature of NeighShrink, we define a trainable shrinkage layer,
of which the input feature is the inverse of the standard deviation of the noise within a
neighborhood Q(·), and where the universal threshold λ is replaced by a convolution
kernel C. This shrinkage layer is then defined by the following expression:

Fs(d) =

(
1−

[
(C)+

]
⊛

1[
Q(D) + ϵ

])
+

. (4.20)

It should be noticed that Eq. (4.20) is an extended version of Eq. (4.18). We consider
that outcome Fs(d) produces a shrinkage estimate that can be used as intermediate
feature in our noise reduction CNN. We hypothesize that the use of a convolution
kernel C may capture additional information provided by adjacent feature maps
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d ∈ D, rather than a global measure using a universal threshold λ. To ensure stability,
C must be non-negative which is enforced by using the ReLU operation. The constant
ϵ is added for numerical stability.

In the module SM2(·), two different neighborhoods of 1 and 3 pixels are employed,
where these signals serve as inputs to two independent instances of Eq. (4.20), each of
which producing estimates A and B. The dimensions of the convolution kernel C for
A and B are (NF ×NF × 1× 1), where NF is the number of feature maps of the band
to which denoising is applied. After the shrinkage stage, this output is supplied to
a two-layer perceptron that produces the final weighting, for which the input is the
concatenation of the estimates A and B. The dimensions of the convolution kernels are
(2 ·NF×2 ·NF×1×1) and (NF×2 ·NF×1×1), respectively, plus their respective biases.
The first layer of the perception is followed by a ReLU activation and the second by a
sigmoid σ(·) which ensures that the weight ranges between zero and unity, thereby
enforcing that the network only can shrink detail components and not boost them. A
full picture of the full shrinkage sub-network is depicted in Fig. 4.6.

An example of the operation of the proposed data-driven shrinkage network for
the OHWT is presented in Fig. 4.6, where the meaning of the individual diagram
steps are explained in the figure caption. The diagram is divided in three main stages
(indicated at the top). The first stage is in charge of computing the local standard
deviation estimate and its inverse, which are later fed to the second stage, where a
shrinkage layer inspired by NeighShrink produces intermediate features. Finally, the
last stage joins both of the NeighShrink estimates and produces a denoised estimate
via an element-wise multiplication between the input band and the weights produced
by the CNN.

To finalize the discussion on the shrinkage stage, the proposed design of SM1(·)
and SM2(·) share the same data-driven shrinkage network across different bands at
the same decomposition level, to reduce the number of parameters. The parameter
reduction has two main advantages. First, it makes the models less prone to over-
fitting. Second, it reduces the memory requirements to train and execute the model.

4.4 Experiments and results

The experimental section of this chapter is divided in the following sections. First,
Section 4.4.1 describes the dataset used for the experiments, the performance metrics
employed as well as the reference CNNs. Afterwards, in Section 4.4.2 the experiments
related to supervised noise reduction are addressed, while Section 4.4.3 discusses the
results of the presented unsupervised noise reduction application.

The content for the present chapter is primarily sourced from the article Image
noise reduction based on a fixed wavelet frame and CNNs applied to CT [57]. In the original,
a few additional applications are presented that been excluded from this disserta-
tion. The reason for this omission is to improve the storyline of the thesis and the
integration with the following chapters. The excluded experiments are as follows.
(1) An application of the models explored here as a regularizers/proximal operators
in reconstruction in computed tomography. (2) Ablation studies of the proposed
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architecture highlighting the impact of the components of the shrinkage module of
the DHSN2.

4.4.1 Data, performance metrics and reference CNNs

Section 4.4.1-A describes the dataset used for the experiments, while Section 4.4.1-B
addresses the loss terms used for the (un)supervised training regimes used in this
chapter, as well as some of the quality metrics used to evaluate the image estimates.
Finally, Section 4.4.1-C addresses the reference CNNs used in the experiments.

A Dataset

For the experiments in this paper, we have used the 50 brain CT images from the
cancer imaging archive [133]. For testing, 25 scans are applied in which at least one
lesion was specified in the clinical data provided with the scans. The training and
testing sets are shown in Table 4.1. We include the scan numbers for reference, because
the clinical information provided with the dataset contains information regarding the
image content and/or clinical conditions on each of the patients. Specifically, in the
case of the scans selected for the test set, on patient basis the location of the lesion and
clinical prognosis are provided.

Set Scans

Training N012, N024, N030, N047, N053, N072, N076,
N082, N085, N113, N132, N139, N175, N176,
N180, N187, N204, N209, N216, N236, N252,

N264, N270, N293, N298

Testing N005, N051, N056, N079, N090, N100, N105,
N127, N138, N140, N141, N153, N156, N160,
N169, N177, N181, N188, N190, N198, N202,

N265, N279, N284, N300

Table 4.1. Training and testing sets used for the experiments. Here, the numbers indicate
subject subsets.

B Training loss and image similarity metrics

This chapter explores two main applications for noise reduction, which are a super-
vised noise reduction in which the loss term Lsup used for training the CNN is defined
by

Lsup(y,x) = ∥G(y)− x∥1. (4.21)

Here, G(·) is the network being trained, while y and x are the noisy input and the
noiseless ground truth, respectively. Finally, function ∥·∥1 refers to the L1 metric, that
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evaluates the distance between the image estimates produced by G(·) and the ground
truth x.

In addition to the supervised approach, an experiment is also performed in which
we train the proposed WSN with an unsupervised scheme. Here, the model is exclus-
ively based on noisy data (instead of using paired data to train the WSN to perform
noise reduction). For this application, during training, the full-dose CT image in the
pipeline is ignored. This resembles the deep-image prior (DIP) by Ulyanov et al. [134],
where it is proposed to use noise reduction by training CNNs on noisy images and
the training procedure stops before the CNN learns to represent the high-frequency
details, which are assumed to be noise. In the proposed models in this chapter, the
encoding-decoding path is a wavelet frame, that has perfect reconstruction. Therefore,
we use a regularization term to ensure image smoothness, which is more akin to
Oter et al. [135], where they exploit the total variation norm (TVN) together with the
DIP framework.

Instead of using the TVN, we propose to improve the smoothness of QDCT scans
by enforcing sparsity of the detail bands. This idea has been exploited earlier by many
well-established wavelet-based noise reduction methods [14], [76]. The proposed
approach maximizes the sparsity of the signals after the shrinkage stage. As a regu-
larization parameter that ensures fidelity to the original, we adopt a similarity metric
M(·) between the noisy input x against the processed image G(x). The resulting loss
term Lunsup is specified by

Lunsup(x) = λ · ∥G(x)− x∥1+R(x), (4.22)

in which the constant λ defines a trade-off between signal sparsity and fidelity. Regu-
larizer/proximal operatorR(x) is defined by

R(x) = 1

L

L−1∑
l=0

(
1−GI

(
SM(dl)

) )
, (4.23)

in which dl are the samples of the high-pass bands of the wavelet-decomposed image
x at the l-th level and GI(·) represents the Gini Index (GI) [136]. The GI is a well-known
measure of sparsity and it is defined by

GI(f) = 1− 2

N∑
k=1

|f
s
[k]|

||f ||1
·
(
N − k + 1

2

N

)
, (4.24)

where ||f ||1 denotes the L1 norm of f , the vector f = (f [1], ..., f [N ]) is the input and
f
s

is the same vector, but with its elements sorted in an ascending magnitude. This
description concludes the loss-function specification.

In order to assess the quality of the processed images, we use the mean struc-
tural similarity index metric [95] (MSSIM) between the processed QDCT and the
FDCT scans (computed with Scipy [96] with the default parameters) and the peak
signal-to-noise ratio (PSNR)), defined by Chapter 2, in which we define as maximum
value MAX = 80 [HU], which is often used as the maximum intensity used in the



Experiments and results 89

ZAVALA-MONDRAGÓN et al.: IMAGE NOISE REDUCTION BASED ON FIXED WAVELET FRAME AND CNNS 9393

Fig. 5. CNNs used for reference in the experiments. The top figure is the
FBPConvNet, while the bottom image depicts the RED CNN. In the case of
RED, we eliminated the ReLU activation of the output layer as the images
contain negative intensity values.

Fig. 6. Noise Power Spectrum (NPS) of a slice of the dataset (upper row) and
of a simulated phantom with one noise realization equivalent to one quarter
dose (middle row), as well as a radial profile of the noise (lower row). The
radial profiles of the QDCT slice of the dataset and of the simulated image
are highly similar. Moreover, in both profiles the response around the DC
frequency is close to zero, which should be the case because in the FBP
reconstruction the signal is high-pass filtered with a ramp filter.

Signal-to-Noise Ratio (PSNR)), defined by

PSNR(x, y) = 10 · log10



MAX2

MSE(x, y)

�
. (33)

Here, x and y are the processed QDCT and the ground-truth
FDCT images, respectively. Here, MSE(x, y) is the Mean
Squared Error between the images x and y. The reader should
note that generally, MAX is conventionally the maximum
value of the images. In the case of CT imaging, the maximum
values of x and y are not bounded. For this reason, we propose
to assign MAX = 80 [HU], which is the maximum intensity
used in the visualization of brain images in CT. Furthermore,
we have found that this value gives a good sensitivity to the
PSNR reported here.

3) Noise Power Spectrum: Noise in fan-beam (or helical)
reconstructed images in CT is non-stationary, due to the

weighting and filtering of the sinogram during the backprojec-
tion step. In order to better characterize the noise correlation
effect introduced by processing and filtering stages –such noise
reduction–, the Noise Power Spectrum (NPS) is often used,
since it allows to characterize the noise power at every spatial
frequency [33]. Following Li et al. [34], we define the NPS
as

NPS(x, y) = 1

Nh

1

Nv

�NRealizations
n=1 ||DFT2D(xn − y)||22

NRealizations
, (34)

where variables xn and y are the n-th noisy input and the
processed/ground-truth images, respectively. Furthermore, Nh

and Nv are the number of pixels in the horizontal and
vertical axes, while constant NRealizations is the number of noise
realizations used to smooth out the NPS estimate and the func-
tion DFT2D(·) denotes the two-dimensional discrete Fourier
transform. Finally, complementary to the NPS, we obtain the
radial profiles1 which indicate the noise power as a function
of the direction-independent spatial frequency.

For obtaining the NPS and its respective radial profile,
we use a synthetic phantom composed of an oval shape with
intensity in the range of bone and which is filled tissue with
an intensity similar to the gray matter. Additionally, we have
added noise with a pattern reminiscent to a slice of the
QDCT of the subject N190. The noise pattern was obtained by
empirically adding Poisson-distributed noise to the sinogram
synthetic phantom. The noise image is generated as follows

N = c · B(AT 
(λ − P(λ))), (35)

in which N is the generated noise mask, λ is the
mean/deviation of the Poisson-distributed process P(·),
defined by λ = 1/

�
N0 · exp(−Ay) (defined in the work of

Yu et al. [35]). Where constant N0 is the approximate number
of incident photons to the detector, which was determined
empirically to match the noise distribution of the QDCT
from subject N190. Furthermore, 
(·) is a frequency-domain
smooth ramp filter, the B(·) is a low-pass filter in the image
domain introduced to further improve match the distribution of
subject N190 and constant c is a scaling parameter to map the
noise to H.U. The generated phantom and its noisy version,
a reference FDCT and its simulated QDCT from subject
N190, as well as their NPS and radial profiles are depicted in
Fig. 6. Furthermore, Fig. 7 depicts the noise variance per pixel
estimated after 50 noise realizations, as well as its estimated
NPS and its radial profile. Notice that the NPS has a donut-
like shape due to the employed reconstruction kernel and due
to the ramp filter used in FBP, which suppresses the zero-th
frequency of the noise.

4) Reference CNNs: For selecting reference methods,
we have adopted the Residual Encoder-Decoder (RED),2

which has been applied to noise reduction in reduced dose
CT, and the FBPConvNet,3 which is a multi-resolution CNN
applied successfully to suppression of artifacts in sparse-view

1For the radial averages shown here we used the function radial_profile
available at https://stackoverflow.com/questions/21242011/most-efficient-way-
to-calculate-radial-profile

2Code obtained from https://github.com/SSinyu/RED-CNN
3Adapted from https://github.com/jvanvugt/pytorch-unet
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Figure 4.7. Noise Power Spectrum (NPS) of a slice of the dataset (upper row) and of a simulated
phantom with one noise realization equivalent to one quarter dose (middle row), as well as a
radial profile of the noise (lower row). The radial profiles of the QDCT slice of the dataset and of
the simulated image are highly similar. Moreover, in both profiles the response around the DC
frequency is close to zero, which should be the case because in the FBP reconstruction the
signal is high-pass filtered with a ramp filter.

visualization of the brain parenchyma in CT. Furthermore, we have found that this
value gives a good sensitivity to the PSNR reported here.

Noise in reconstructed CT images is non-stationary and non-Gaussian, due to the
weighting, filtering and radial averaging of the sinogram during back-projection. In
order to better characterize the noise effect introduced by processing and filtering
stages –such noise reduction–, the noise power spectrum (NPS) is often used, since
it allows to characterize the noise power at every spatial frequency [137]. Following
Li et al. [138], the NPS is defined as

NPS(x,y) =
1

Nh

1

Nv

∑Nr
n=1 ||DFT2D(xn − y)||2

Nr
, (4.25)

where variables xn and y are the n-th noisy input and the processed/ground-truth im-
ages, respectively. Furthermore, Nh and Nv are the number of pixels in the horizontal
and vertical dimensions, while constant Nr is the number of noise realizations used to
smoothen the NPS estimate and the function DFT2D(·) denotes the two-dimensional



90 Data-driven denoising using non-trainable framelets9394 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

Fig. 7. Pixel-wise noise variance, Noise Power Spectrum and its radial
profile. For this figure, 50 noise realizations were averaged as indicated in
Eq. (34).

TABLE II

NUMBER OF PARAMETERS FOR THE CNNS

CT. The number of trainable parameters of the networks
under test are summarized in Table (II). In the case of the
FBPConvNet, being the closest to the proposed architecture,
we approximately matched the number of feature maps and
decomposition levels of the DHSN2. The overall architectures
of the CNNs tested here are depicted in Fig. (5). For refer-
ence, in the diagrams, the number of feature maps and their
resolution are displayed in some of the relevant segments of
the CNNs.

B. Direct Noise Reduction in CT Images and Generalization

1) Overall Noise Reduction: For this experiment, we have
trained our WSN with the Adam optimizer with a learning
rate of 3 × 10−4 for 50 epochs with the QDCT and FDCT
image pairs for each of the training sets shown in Table I.
Furthermore, a multiplicative learning rate decay of 0.5 is
applied every 7 epochs.

The SNR and MSSIM measurements of the QDCT images
processed over the test set are shown in Table III. Furthermore,
as additional supporting evidence, Fig. 8 shows slices of the
input and processed QDCT images by each of the CNNs,
as well as the ground-truth FDCT. In the figure, we have
highlighted some of the lesions contained in the images and
included the SNR and MMSIM for displayed patches. The
depicted lesions are chosen to be of low-contrast nature (e.g.
strokes or hemorrhages) to emphasize the preservation of
information by each of the evaluated CNNs.

From Fig. 8 it is visible that the four networks under analy-
sis are capable of achieving good noise reduction performance,
which is backed up by the measurements shown in Table III.
Whereas the performance of the DHSN2, FBPConvNet and
RED are comparable in terms of SNR and MSSIM, we observe
that the global metrics of Table III indicate that in terms

TABLE III

MMSIM AND PSNR MEASURED IN THE TEST SET,
COMPARED TO BASELINE

of MSSIM, DHSN2 performs best, followed very closely by
the original DHSN and RED. In contrast, when looking at
the PSNR values, RED seems to performs best followed by
the proposed DHSN2 and the original DHSN. Furthermore,
when looking at the MSSIM of the local metrics of the
patches portrayed by Fig. 8 we observe that RED generates
the smoothest estimates, which favours its PSNR, but penalizes
the MISSM, as it is often the lowest performing CNN in terms
of the MSSIM metric.

The differences between the MSSIM and PSNR metrics
shown in Table III between the DHSN2 and the original DHSN
can be better understood when observing subject N051 and
N198 in Fig. 8. In the figure, we observe that the original
DHSN has a higher error in the vicinity of high-intensity struc-
tures, which penalizes its PSNR and MSSIM, but it performs
marginally better than the updated DHSN2 in the patches
that do not contain skull (N138 and N153). In contrast, the
updated DHSN2 minimizes errors in the high-intensity regions
of the phantom. It is worth mentioning that Fig. 9, shows
that the original DHSN and DHSN2 only reduce the intensity
of the noise in the high-frequency segment of the Fourier
spectrum (the high-frequency bands of the OHWT), which is
a consequence of the spectrum partitioning produced by the
wavelet transformation. In summary, the original DHSN makes
more errors in high-intensity areas, but it can in preserve well
small low-contrast objects. In contrast the updated DHSN2
overcomes the errors in the vicinity of the skull, at the cost of
a marginally lower performance in the lower contrast regions.

As demonstrated by Ye et al. [9], the ED path of noise
reduction CNNs can often be understood as a set of learned
wavelet frames (the convolution kernels) in which noise reduc-
tion is performed via low-rank mapping. This is caused by
the internal channel mapping in the CNN and the applied
non-linearities applied to the feature maps by the ReLU
activations. In the specific case of RED and FBPConvNet,
we observe that the NPS profiles displayed in Fig. 9 are
reminiscent to the pattern of DHSN2, in which a fixed wavelet
frame is used. This suggests that, as proposed by Ye et al., the
ED paths of FBConvNet and RED are wavelet frames in which
noise reduction is performed. However, in the reference CNNs,
either the ED path, or the processing may be sub-optimal,
since in FBPConvNet and RED we see a DC component in the
Fourier domain. This suggests that these CNNs introduce an
offset and/or aliasing. Furthermore, it seems that the frequency
partitioning provided by the ED path of FBConvNet may
cover less of the low-frequency segment of the spectrum
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Figure 4.8. Pixel-wise noise variance, Noise Power Spectrum and its radial profile. For this
figure, 50 noise realizations were averaged as indicated in Eq. (4.25).

discrete Fourier transform. Finally, complementary to the NPS, we obtain the radial
profiles2, which indicate the noise power as a function of the direction-independent
spatial frequency.

For obtaining the NPS and its respective radial profile, we have employed a
synthetic phantom composed of an oval shape with intensity in the range of bone and
which is filled with a virtual material with an intensity similar to the gray matter in a
brain CT scan. Additionally, noise has been added with a special frequency reminiscent
to the noise present on the a slice of the QDCT of the subject N190. The noise signal
is obtained by empirically adding Poisson-distributed noise to the sinogram of the
synthetic phantom. The generated phantom and its noisy version, a reference FDCT
and its simulated QDCT from subject N190, as well as their NPS and radial profiles
are all visualized in Fig. 4.7. Furthermore, Fig. 4.8 depicts the noise variance per pixel
estimated after 50 noise realizations, as well as its estimated NPS and its radial profile.
Notice that the NPS has a donut-like shape due to the employed reconstruction kernel
and due to the ramp filter used in filtered back-projection, which suppresses the zero
frequency of the noise.

C Reference CNNs

As reference methods, we have adopted the residual encoder-decoder (RED) 3, which
has been applied to noise reduction in reduced-dose CT, and the filtered back-projection
network (FBPConvNet) 4, which is a multi-resolution CNN applied successfully to

2For the radial averages shown here, we have used the function radial_profile available at https:
//stackoverflow.com/questions/21242011/most-efficient-way-to-calculate-radia
l-profile.

3Code obtained from https://github.com/SSinyu/RED-CNN
4Adapted from https://github.com/jvanvugt/pytorch-unet

https://stackoverflow.com/questions/21242011/most-efficient-way-to-calculate-radial-profile
https://stackoverflow.com/questions/21242011/most-efficient-way-to-calculate-radial-profile
https://stackoverflow.com/questions/21242011/most-efficient-way-to-calculate-radial-profile
https://github.com/SSinyu/RED-CNN
https://github.com/jvanvugt/pytorch-unet
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Fig. 8. Examples slices of images in the testing set highlighting lesions for the different methods under analysis. The lesions displayed are the following:
Subjec N051 - acute subdural hematoma, Subject N188 - chronic frontal infarct, Subject N198 - acute cerebellar infarcts, Subject N138 - acute frontal infarct,
Subject N153 - traumatic subarachnoid hemorrhage.

when compared with the DHSN2, DHSN1 and RED because
we observe that in the reference CNNs, the noise power in
the low-frequency region of the spectrum is higher when
compared with the DHSN2. In the case of RED it seems
that it managed to reduce more noise in the high-frequency
bands than the proposed method and achieved a similar
NPS in the low-frequency spectrum, except on the DC level,
where it introduced a component which is not present in the
DHSN2.

2) Generalization: For testing the generalization of the
CNNs under analysis, we have divided the training set in
5 subsets, which is motivated by assessing the consistency
of the results when exposing the different models to a smaller
sample of the training data. If a model generalizes well, then
the influence on the quality of the estimates by changing the
training set should be small. The selected subjects used for
each of the subsets are shown in Table IV. In order to conduct
a similar amount of training than in the previous experiment
with the reduced training sets, we have increased the number

of epochs to 250 and the period for the multiplicative learning
rate decay to 35 epochs. Akin to the previous experiment,
we have measured the PSNR values for each of the trained
images which are summarized in Table V. It is worth mention-
ing that we did not included the MSSIM for this experiment
because we found that the results of this metric were redundant
with the PSNR.

From the data, it can be observed that the DHSN2 is
only marginally affected by changing the subset of the
training set for the CNN learning (the difference in PSNR
between the best and worst model is only 0.11 [dB]). In con-
trast, the original DHSN has larger variations between the
best and worst performing models, e.g. 0.61 [dB]. Finally,
FBPConvNet and RED also behave consistently, although
less than the proposed DHSN2 (with differences between
best and worse models of 0.32 and 0.4 [dB], respectively).
Therefore, from this experiment, it can be concluded that
FBPConvNet is the most affected by changing the training
dataset.
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Figure 4.9. Example slices of images in the test set highlighting lesions for the different
methods under analysis. The displayed lesions are: Subject N051 - acute subdural hematoma,
Subject N188 - chronic frontal infarct, Subject N198 - acute cerebellar infarcts, Subject N138
- acute frontal infarct, Subject N153 - traumatic subarachnoid hemorrhage. In the figure, the
right column is the reference full-dose CT (FDCT) image. The leftmost column is the noisy
quarter-dose CT (QDCT) input.
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Fig. 9. Estimated variances, Noise Power Spectra (NPS) and radial profiles
for the noise estimates produced by the DHSN2, DHSN, FPBConNet, and
RED CNNs. The bottom graph integrates the NPS profiles of all the CNNs
for better comparison.

TABLE IV

PARTITIONS OF TRAINING SET USED FOR TESTING GENERALIZATION

TABLE V

PSNR FOR GENERALIZATION EXPERIMENT

3) Phantom Experiments to Test Preservation of Fine Detail
and Performance of CNNs for Different Dose Levels: To test
the effect of the DHSN2, DHSN, FBPConvNet and RED

Fig. 10. Noisy phantom and estimates for testing preservation of image
content as function of contrast, width and dose. Due to the low contrast nature
of the patterns in the virtual phantom, the display range is set to 25 to 75 [HU].

in terms of preservation of low-contrast and narrow image
content, we have generated a test phantom with synthetic
noise with a the same procedure described in Section III-A.3.
In the phantom we have inserted a test pattern based on lines
with 9 distinct Regions Of Interest (ROIs) A-I (see Fig. 10).
The amplitude of patterns inside the selected ROIs are the
following. Patterns within [A, B, C] have amplitude 15 [HU],
the lines inside [D, E, F] 10 [HU]. Finally, the elements in
[G, H, I] have amplitude of 5 [HU]. Furthermore, the patterns
have distinct widths and spacing to test the spatial resolution of
the signal estimates with the following characteristics. Patterns
within [A, D, G] have width of 7 pixels and a separation of
5 pixels, [B, E, H] are 3 pixels wide with a spacing of 3 pixels.
Finally, [C, F, I] are 1 pixel wide and are spaced 2 pixels.

In Table VI, we summarize the MSSIM for the estimates
produces by the evaluated CNNs measured on each of the
ROIs A to I for a simulated quarter-dose CT slice (QDCT).
Furthermore, in Fig. 10, the estimates produced by the diverse
CNNs are shown. As seen in Fig. 10, all the CNNs manage to
recover the larger patterns, although the estimates degrade as
the contrast and width deceases. For most of the selected ROIs,
the best performing CNN is the original DHSN (DHSN1),
while the updated DHSN (DHSN2) and FPBConvNet are
usually in second place in terms of MSSIM.

To test the performance of the CNNs when processing
images with different dose levels, we simulated acquisitions
of the phantom with half- and full-dose (referred to as HDCT
and FDCT, respectively). The FDCT, HDCT and QDCT and
the noise-reduced images are shown in Fig. 10. The MSSIM
between the processed images and the noiseless ground-truth
are summarized in Table VII. The MSSIM values show that
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Figure 4.10. Estimated variances, noise power spectra (NPS) and radial profiles for the noise
estimates produced by the DHSN2, DHSN1, FPBConNet and RED CNNs. The bottom graph
integrates the NPS profiles of all the CNNs for better comparison.
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CNN type Total no. of
parameters

DHSN2 35,196
DHSN 26,544
FBPConvNet 1,157,009
RED 465,889

Table 4.2. Number of parameters for the evaluated CNNs in the noise reduction experiments.

Model MSSIM [AU] PSNR [dB]

Baseline (QDCT) 0.650± 0.036 23.88± 1.83

FBPConvNet 0.657± 0.032 24.66± 1.64
RED 0.662± 0.031 26.77± 1.86

DHSN1 0.662± 0.031 25.54± 1.68
DHSN2 0.667± 0.031 26.20± 1.95

Table 4.3. Noise reduction performance for the supervised noise reduction in CT scans. The
measured performance metrics are the MMSIM and PSNR measured in the test set. Here, AU
stands for arbitrary unit, while the MSSIM values range between zero and unity.

suppression of artifacts in sparse-view CT. The number of trainable parameters of the
networks under test are summarized in Table (4.2). In the case of the FBPConvNet,
which is the closest to the proposed architecture, we approximately matched the
number of feature maps and decomposition levels of the DHSN2. In addition, the
implementation of all the networks shown here is available in GitHub 5.

4.4.2 Supervised noise reduction in CT images, generalization
and phantom experiments

A Supervised noise reduction

For this experiment, the proposed WSN is trained with the Adam optimizer with a
learning rate of 3×10−4 for 50 epochs with the QDCT and FDCT image pairs for each
of the training sets, as shown in Table 4.1. Furthermore, a multiplicative learning-rate
decay of 0.5 is applied every 7 epochs.

The SNR and MSSIM measurements of the QDCT images processed over the test
set are shown in Table 4.3. Furthermore, as additional supporting evidence, Fig. 4.9
shows slices of the input and processed QDCT images obtained with each of the
CNNs, as well as the ground-truth FDCT. In the figure, some of the lesions contained
in the images in the images are highlighted and their SNR and MMSIM values are

5The code that replicates the most important results of this model is available at https://github.c
om/LuisAlbertZM/Image-noise-reduction-based-on-a-fixed-wavelet-frame-and-CNN
s-applied-to-CT.

https://github.com/LuisAlbertZM/Image-noise-reduction-based-on-a-fixed-wavelet-frame-and-CNNs-applied-to-CT
https://github.com/LuisAlbertZM/Image-noise-reduction-based-on-a-fixed-wavelet-frame-and-CNNs-applied-to-CT
https://github.com/LuisAlbertZM/Image-noise-reduction-based-on-a-fixed-wavelet-frame-and-CNNs-applied-to-CT
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shown for the displayed patches. The depicted lesions are chosen to be of low-contrast
nature (e.g. strokes or hemorrhages) to emphasize the preservation of information by
each of the evaluated CNNs.

From Fig. 4.9 it is visible that the four networks under analysis are capable of
achieving good noise reduction performance, which is backed up by the measurements
shown in Table 4.3. Whereas the performance of the DHSN2, FBPConvNet and RED
are comparable in terms of PSNR and MSSIM, it can be observed that the global
metrics of Table 4.3 indicate that in terms of MSSIM, DHSN2 performs best, followed
very closely by the original DHSN1 and RED. In contrast, when looking at the PSNR
values, RED seems to perform best followed by the proposed DHSN2 and the original
DHSN1. Furthermore, when looking at the MSSIM of the local metrics of the patches
portrayed by Fig. 4.9, it can be noticed that RED generates the smoothest estimates,
which favours its PSNR, but penalizes the MSSIM, as it is often the lowest-performing
CNN in terms of the that metric.

The differences between the MSSIM and PSNR metrics shown in Table 4.3 between
the DHSN2 and the original DHSN1 can be better understood when observing subject
N051 and N198 in Fig. 4.9. In the figure, the DHSN1 has a higher error in the vicinity of
high-intensity structures, which penalizes its PSNR and MSSIM, but it performs mar-
ginally better than the updated DHSN2 in the patches that do not contain skull (N138
and N153). In contrast, the updated DHSN2 minimizes errors in the high-intensity
regions of the phantom. It is worth mentioning that Fig. 4.10 shows that the original
DHSN1 and DHSN2 only reduce the intensity of the noise in the high-frequency
segment of the Fourier spectrum (the high-frequency bands of the OHWT), which is a
consequence of the spectrum partitioning produced by the wavelet transformation.

As shown in the summary of the theory of deep convolutional framelets [40] shown
in Section 3.4.1, the encoding-decoding path of noise reduction CNNs can often be
understood as a set of learned wavelet frames (the convolution kernels), in which noise
reduction is performed with the ReLU non-linearities in a process akin to low-rank
approximation. In the specific case of RED and FBPConvNet, it can be observed that
the NPS profiles displayed in Fig. 4.10 are reminiscent to the pattern of DHSN2, in
which a fixed wavelet frame is used. This suggests that, as proposed by Ye et al.,
the ED paths of FBConvNet and RED are wavelet frames in which noise reduction is
performed. However, in the reference CNNs, either the ED path, or the processing may
be sub-optimal, since in FBPConvNet and RED a DC component is clearly noticeable
in the Fourier domain. This could be caused by offset and/or aliasing introduced by
these networks. Furthermore, it seems that the frequency partitioning provided by the
ED path of FBConvNet may cover less of the low-frequency segment of the spectrum
when compared with the DHSN2, DHSN1 and RED, since it can be observed that in
the reference CNNs, the noise power in the low-frequency region of the spectrum is
higher when compared with the DHSN2. In the case of RED, it seems that the network
manages to reduce more noise in the high-frequency bands than the proposed method
and achieves a similar NPS in the low-frequency spectrum, except for the DC level,
where RED introduces a component which is not present in the DHSN2.
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Set Patient scan numbers

Subset 0 N012, N024, N030, N047, N053
Subset 1 N072, N076, N082, N085, N113
Subset 2 N132, N139, N175, N176, N180
Subset 3 N187, N204, N209, N216, N236
Subset 4 N252, N264, N270, N293, N298

Table 4.4. Partitions of patients in the training set, used for testing generalization.

PSNR on test set [dB]
Network Subset 0 Subset 1 Subset 2 Subset 3 Subset 4

FBPConvNet 24.68 24.65 24.63 24.49 24.36
RED 26.71 26.69 26.76 26.68 26.31

DHSN1 25.92 25.43 26.04 25.71 25.68
DHSN2 26.22 26.16 26.22 26.24 26.13

Table 4.5. Measured PSNR values in the test set for the generalization experiment.

B Generalization of the analyzed networks

For testing the generalization of the considered CNNs, the training set is split into
5 subsets, which is motivated by assessing the consistency of the results when exposing
the different models to a smaller sample of the training data. If a model generalizes
well, then the influence on the quality of the estimates by changing the training set
should be small. The selected subjects used for each of the subsets are shown in
Table 4.4. In order to conduct a similar amount of training than in the previous
experiment with the reduced training sets, we have increased the number of epochs to
250 and the period for the multiplicative learning-rate decay to 35 epochs. Akin to the
previous experiment, the PSNR values are measured for each of the trained images
which are summarized in Table 4.5. It is worth mentioning that the MSSIM has been
excluded for this experiment because it has been found that the results of this metric
are redundant with the PSNR.

From the data, it can be observed that the DHSN2 is only marginally affected by
changing the subset of the training set for the CNN learning (the difference in PSNR
between the best and worst model is only 0.11 dB). In contrast, the DHSN1 has larger
variations between the best and worst performing models, i.e 0.61 dB. Finally, FBP-
ConvNet and RED also behave consistently, although less than the proposed DHSN2
(with differences between best and worse models of 0.32 and 0.40 dB, respectively).
Therefore, from this ablation experiment, it can be concluded that FBPConvNet is the
mostly affected by changing the training dataset.
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Figure 4.11. Noisy phantom and estimates produced by the tested CNNs for testing preservation
of image content as function of contrast, width and dose. Due to the low-contrast nature of the
patterns in the virtual phantom, the display range is set to 25 to 75 HU.

C Phantom experiments, test preservation of fine detail and CNN performances
for different dose

To test the effect of the DHSN2, DHSN1, FBPConvNet and RED in terms of preser-
vation of low-contrast and narrow image content, we have generated a test phantom
with synthetic noise with a the same procedure as described in Section 4.4.1-B. In the
phantom, a test pattern is inserted based on lines with 9 distinct Regions Of Interest
(ROIs) A through I (see Fig. 4.4.1-A). The amplitude of patterns inside the selected
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Fig. 12. Examples of iterative reconstructions of QDCT, the FDCT
ground-truth and regularized with DHSN2, DHSN1, FBPConvNet, and RED.

references for all the slices shown. It should be noted that
in the zoomed difference of subjects N198 and N051, the
gain in PSNR is slightly lower in the patches that contain
larger parts of the skull. We have found that by allowing more
regularization, the error in the bones increases and penalizes
heavily on the PSNR, due to the high-intensity values of bones
in HU.

E. Ablation Study

The current design of the DHSN2 integrates diverse ele-
ments of conventional signal processing algorithms and of
CNNs, which opens a discussion on the contribution of the
diverse elements composing the proposed design. First, we are

Fig. 13. Examples of slices of scans filtered with the WSN2 trained without
FDCT ground-truth. In the image is shown the reference QDCT, the processed
QDCT with the DHSN2 and the reference FDCT.

TABLE VIII

NUMBER OF TRAINABLE PARAMETERS FOR THE NETWORK VARIANTS OF

THE DHSN2 FRAMEWORK USED IN THE ABLATION STUDY

TABLE IX

MMSIM AND PSNR FOR THE NETWORK VARIANTS OF

DHSN2 USED FOR THE ABLATION STUDY

interested in evaluating the contribution of a fixed wavelet
frame instead of a trainable convolution kernel, as is done
in conventional CNN designs. To this end, as first architecture
we replace the fixed kernel by a set of trainable parameters
k0, k1, k2, k3 per decomposition level. This variant is referred
to as DHSN2TK. The second variant explores to bypass the
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Figure 4.12. Examples of slices of scans filtered with the WSN2 trained without FDCT ground-
truth. In the image is shown the reference QDCT, the processed QDCT with the DHSN2 and
the reference FDCT.

ROIs are as follows. Patterns within [A, B, C] have amplitude 15 HU, the lines inside
[D, E, F] 10 HU. Finally, the elements in [G, H, I] have amplitude of 5 HU. Furthermore,
the patterns have distinct widths and spacing to test the spatial resolution of the signal
estimates with the following characteristics. Patterns within [A, D, G] have width
of 7 pixels and a separation of 5 pixels, [B, E, H] are 3 pixels wide with a spacing of
3 pixels. Finally, [C, F, I] are 1 pixel wide and are spaced 2 pixels.

Table 4.6 summarizes the MSSIM values for the estimates produced by the evalu-
ated CNNs, measured on each of the ROIs A through I for the simulated quarter-dose
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CT slice (QDCT). Furthermore, in Fig. 4.11, the estimates produced by the diverse
CNNs are shown. As seen in Fig. 4.11, all the CNNs manage to recover the larger
patterns, although the estimates degrade as the contrast and width decreases. For
most of the selected ROIs, the best performing CNN is the DHSN1, while DHSN2 and
FPBConvNet are usually in second place in terms of MSSIM.

To test the performance of the CNNs when processing images with different dose
levels, we have simulated acquisitions of the phantom with half-dose and full-dose
(referred to as HDCT and FDCT, respectively). The FDCT, HDCT and QDCT and the
noise-reduced images are portrayed by Fig. 4.11. The MSSIM between the processed
images and the noiseless ground truth are summarized in Table 4.7. The MSSIM values
show that for all the dose levels, the DHSN1 performs best. In the case of the QDCT
and HDCT images, the DHSN2 performs closely to the DHSN1. This suggests that
the DHSN1 is slightly better in preserving the low-contrast information, while the
DHSN2 is better at preserving global structures, as shown by the global measurements
of Table 4.3. This may be caused by the NeighShrink-inspired layer, in which less
weight is given to sections of the image with lower-intensity edges. This will be further
investigated in future work. In the case of the FDCT of (Fig. 4.11), the input has little
noise and the blur introduced by DHSN2, FBPConvNet and RED penalizes the MSSIM
of the processed images as shown in Table 4.7.

ROI Input DHSN2 DHSN1 FBPConvNet RED

A 0.623 0.661 0.679 0.648 0.629

B 0.491 0.593 0.604 0.583 0.553

C 0.261 0.429 0.444 0.417 0.390

D 0.366 0.252 0.295 0.273 0.253

E 0.312 0.333 0.357 0.335 0.307

F 0.136 0.196 0.208 0.188 0.205

G 0.217 0.172 0.225 0.178 0.158

H 0.185 0.165 0.208 0.180 0.161

I 0.053 0.067 0.085 0.066 0.067

Table 4.6. MSSIM for ROIs with varying contrast and thickness measured in processed QDCT.

Dose Input DHSN2 DHSN1 FBPConvNet RED

QDCT 0.117 0.130 0.140 0.129 0.123

HDCT 0.132 0.135 0.146 0.135 0.127

FDCT 0.147 0.137 0.151 0.139 0.131

Table 4.7. MSSIM for synthetic patch as function of the dose level.
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4.4.3 Unsupervised noise reduction application

For this experiment, the DHSN2 is trained with the procedure discussed in Eq. (4.22).
The training of the DHSN2 is performed with the Adam optimizer with a learning
rate of 1×10−3 for 12 epochs with the QDCT images of the training set of 25 scans,
as shown in Table 4.1, while applying a learning-rate decay of 0.5 every 4 epochs.
The regularization parameter λ of Eq. (4.22) is set to 0.0135. With this procedure,
we have obtained average MSSIM and and PSNR values equal to 0.655±0.032 and
24.63±1.36 dB, respectively, which is slightly superior to the QDCT data (0.650±0.036
as shown in Table 4.3). In addition, considering the individual patches and slices
shown in Fig. 4.12, the DHSN2 manages to achieve a significant noise reduction in this
modality. In particular, the PSNR is significantly higher than the QDCT references for
all the slices shown. It should be noted that in the zoomed difference of subjects N198
and N051, the the gain in PSNR is slightly lower in the patches that contain larger
parts of the skull. We have found that by allowing more regularization, the error in the
bones increases and penalizes heavily on the PSNR, due to the high-intensity values
of bones in HU.

4.5 Conclusions and future work

This chapter presents two designs of encoding-decoding CNNs in which the the en-
coder and decoder of the networks are fixed/non-trainable convolution filters. The
used framelet basis is referred to as overcomplete Haar wavelet transform (OHWT), which
is a special case of the dual-tree complex wavelet transform. Furthermore, this chapter
presents also two CNN models that leverages the proposed OHWT to remove noise in
CT images (DHSN1 and DHSN2). Specifically, these models employ the CNN model
in the OHWT domain, which allows the CNNs to leverage the sparse representation
and perfect reconstruction of the OHWT.

Contributions. The proposed framelet transform and shrinkage functions allow for
good performing CNNs which offer performance similar to well-known denoising
CNN methods, while preserving interpretability. Specifically, the convolution filters
of the encoding and decoding paths are a linear transformation in which a shrinkage
function is applied. This increases the certainty on what the model is doing. In
summary, this approach presents the following contributions.

1. Framelet representation. This chapter proposes the overcomplete Haar wavelet trans-
form as basis representation. This transform is a special case of the dual-tree
complex wavelet transform and differs from the DTCWT algorithm in the fol-
lowing ways. (1) The proposed transform uses Haar basis functions as filters
in all the decomposition levels. In addition, the phase shift between tree “a"
and “b" is one full sample, rather than half a sample, as is done in the DTCWT.
The proposed method produces a non-analytic representation with compact
and directional filters. The proposed basis also can be implemented as a single
convolutional filter, which avoids sequential operations and allows for a simple
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integration within CNNs. (2) All the wavelet bands (LL, LH, HL, HH) use
the proposed OHWT, which contrasts with the original DTCWT in which the
additional processing steps are only applied to the the high-pass bands (LH, HL,
HH). As a result, the OHWT is a more redundant transform in which every band
represents a narrower frequency band, which leads to a sparser representation.

2. Shrinkage function. The presented shrinkage CNN combines neural networks and
feature-based machine learning. That is, the proposed method actively exploits
the wavelet representations where noise reduction is performed, where the noise
reduction is based on the computation of intermediate features based on the
local power of the detail coefficients.

The tight integration of deep learning and wavelet denoising within the proposed
DHSN1 and DHSN2 CNNs generalizes well, avoid processing in the low-frequency
band, while these models are easy to implement and they have an interpretable
operation. It can be hypothesized that for image restoration tasks, the use of this
type of architectures may offer advantages over conventional CNNs, because they
focus the learning procedure on the noise reduction task, rather than also learning to
decompose and reconstruct the signals like RED and FBPConvNet do.

The next chapter continues the exploration of designing noise reduction CNNs
and explores an alternative approach in which the encoding-decoding path is learned,
where it can be proven that the network can achieve approximate perfect reconstruc-
tion, both practically and theoretically.



CHAPTER5
Data-driven denoising using

trainable framelets

5.1 Introduction

The previous chapter has presented a CNN where the encoding and decoding filters
are non-trainable tight framelets, while the trainable part of the CNN performs the
noise reduction process. This design choice leads to a simple and interpretable model,
because the signal decomposition, reconstruction and denoising are clearly defined
in the design. This chapter explores an alternative model, where both the encoding-
decoding and noise reduction steps are learned and in which it is verifiable that (a)
the encoding and decoding paths behave akin to tight framelets and (b) the non-linear
section suppresses the noise of the signal.

Challenges. As presented in Chapter 3, common CNNs (e.g. FBPConvNet [50]) con-
tain highly non-linear paths where (almost) every convolution layer is followed by a
non-linear activation. This configuration is powerful and it has a similar mathematical
formulation to well-known signal processing techniques for noise reduction based
on framelets and low-rank approximation. Still, the data-driven nature of CNNs,
does not guarantee that CNNs converge to a set of parameters which ensure that the
trained models behave exactly as low-rank approximators, as discussed in the text
boxes of Fitting low-rank approximation in ReLU CNNs and Network depth (in Section 3.4)
and, as well as Section 3.6. Consequently, in order to achieve an encoding-decoding
path where the convolution filters are actual tight framelets, there are challenges that
should be addressed. These challenges that are described now.

1. Design of the encoding-decoding path. In order to achieve a data-driven CNN where
the encoder and decoder are tight framelets, the linear part of the encoding-
decoding path should allow for perfect reconstruction, otherwise the design
could not represent all the spatial frequencies evenly by design (e.g. the U-
Net/FBPConvNet example shown in Section 3.5.1).

2. Model complexity. As shown in Section 3.3.3, the choice for non-linearity contains
assumptions about and enforces properties to the feature maps of CNNs. For
example, both the ReLU and soft-shrinkage functions enforce sparsity on the
feature maps by setting low-amplitude samples to zero. Still, the ReLU func-
tion also enforces the signal to be positive. Consequently, if the feature maps
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Figure 5.1. One-level LWFSN architecture, in which it is visible that the LWFSN has clear
encoding, denoising and decoding paths. In the figure, filter WH represents the high-frequency
filters of the DWT WH =

(
wLH,wHL,wHH

)
, while WL =

(
wLL

)
is the filter of the low-frequency

band. In addition, Kl and K̃l are the learned convolution filters in the encoding-decoding paths,
while variables tn and an are the threshold values and weights used in the thresholding function
implemented via the linear expansion of thresholds.

contain both positive and negative samples, additional channels are required
to avoid signal loss (see Section 3.4.1). This increases the computational cost of
training/deploying ReLU-based models, as well as the number of parameters,
which consequently augments the risk of overfitting.

3. Model interpretability. The use of trainable filters as encoding-decoding path poses
a challenge in model interpretability. For example, low-rank approximation and
wavelet shrinkage can operate differently than the learned structure on the
mechanisms of CNNs, in spite of their similar mathematical formulations. The
models presented in this chapter should display properties that prove that the
proposed models operate more closely to algorithms based on wavelet shrinkage.

Background/related work. Among the first models exploiting interpretations of CNNs-
based wavelet shrinkage and/or low-rank approximation to improve the operation
of encoding-decoding CNNs, we find the so-called filtered-backprojection network
(FBPConvNet) [50] as well as the tight frame U-Net [36]. In the latter network, the
down/up-sampling structure of the conventional U-Net is replaced by the discrete
wavelet transform and its inverse. Consequently, the down/up sampling is composed
by tight frames with perfect reconstruction, which improves its performance for
artifact removal in compressed sensing imaging for CT. Still it should be noted that
despite the down/up-sampling structure are tight frames, the same cannot be assumed
for the encoding and decoding filters which are learned.

More active attempts to achieve encoding encoding paths with a predictable oper-
ation have appeared in literature. For example, the convolutional analysis operator [139],
is a model where a regularization CNN is used to eliminate artifacts from CT images.
Within this framework, the regularizer is trained to eliminate the artifacts, while ensur-
ing that the encoder and decoder allow for perfect reconstruction. A similar approach
for the regularizer of FISTA-Net [111], which s explicitly trained also to achieve perfect
reconstruction and to provide a sparse representation for the data.
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An alternative approach to improve the interpretability of noise reduction CNNs
is to make that encoding-decoding structure and that the non-linear section of CNNs
mimics the operation of more conventional framelet-based denoising designs (e.g.
BayesShrink [14]). This can be achieved by simplifying the CNNs and to use activa-
tions that are more reminiscent to conventional noise reduction designs such as the
soft-shrinkage operation. An example of such approaches is the soft autoencoder [39].
This network is a single-resolution CNN in which soft-shrinkage functions are placed
as activations in the encoder, while the decoder of the CNN remains linear. Alternat-
ively, the multi-scale sparse coding network [48] presents a solution in which single-layer
CNNs present a single non-linearity placed between both paths.

Direction of the followed approach. In order to address the above challenges, this
chapter proposes a model referred to as learned wavelet frame shrinkage network (LWFSN).
This model has a linear encoding-decoding path, where the DWT is used as up/down-
sampling structure. Furthermore, the model also contains the semi-hard thresholds as
non-linearities in between the encoder and decoder.

The simple design of the LWFSN has the following advantages. (1) The use of
semi-hard thresholds reduces the number of channels/feature maps of the model
when compared with ReLU-based models. This decreases the number of trainable
parameters and memory required to train/deploy the model. (2) The design is simpler
and less redundant than alternative models. (3) The placement of the non-linearities
in the middle of the encoder and decoder sections and the up/down-sampling path
based on the DWT allows to leverage the DWT filters not only for down/up-sampling,
but also to make sparser feature maps. This overcomes the limitations of the multi-
scale sparse coding network discussed in Section 3.5.4. (4) The simple and almost
linear design of the LWFSN eases to provide experimental evidence that the filters
of the encoding and decoding path behave akin to tight framelets. Specifically for
this purpose, the impulse response analysis over the linearized encoding-decoding
path is employed. This practical analysis complements the theoretical approaches of
Section 3.5 and increases the certainty on what the model is doing.

Structure of this chapter. The structure of this chapter is as follows. First, Section 5.2
introduces the design of the (residual) LWFSN as well as an analysis of its recon-
struction characteristics. Afterwards, Section 5.3 presents the performance of the
LWFSN for noise reduction as well as its impulse response. Section 5.4 discusses the
the experimental results. Finally, Section 5.5 draws the conclusions on the proposed
design.

5.2 Methods

5.2.1 Overview of the design of the LWFSN

As mentioned in Section 5.1, the main source of inspiration for the model presented
in this chapter is the tight-frame (TF) U-Net [36]. Prior to the development of this
work, Section 3.5 shows an exhaustive analysis of the design of the TF U-Net that
shows simplifications which can be performed to this design. These aspects are listed
as follows. First, the ReLUs can be replaced by semi-hard thresholding functions.
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This modification reduces the redundancy required for perfect reconstruction and
ensures that the CNN learns to perform wavelet thresholding. Second, the non-
linearities are placed in between the forward and inverse DWT, instead of within the
encoding-decoding path. This is done with the purpose of leveraging the high-pass
filters of the DWT, since they generate the zero-mean signals that are required by the
shrinkage functions. Third, and based on Section 3.5, it is noticed that the number of
trainable parameters can be further reduced by eliminating the skip connection(s) of
the undecimated path.

Altering the TF U-Net with the proposed modifications generates the so-called
learned wavelet frame shrinkage network (LWFSN). It is possible to prove that the
encoding-decoding path of the proposed design can theoretically achieve an encoding-
decoding with approximate perfect reconstruction. Furthermore, the LWFSN design
has low memory footprint. This allows to use a wider variety of computing hard-
ware for training/deployment and to process larger images and/or to train deeper
networks.

The proposed LWFSN with one decomposition level is shown in Fig. 5.1 and is
described mathematically by

L(y) =f(2↑)

(
τLET
(t)

(
f(2↓)

(
y ⊛K⊛WH

))
⊛ W̃

⊺
H ⊛ K̃

⊺
)
+

f(2↑)
(
f(2↓)

(
y ⊛K⊛WL

))
⊛ W̃

⊺
L ⊛ K̃

⊺
.

(5.1)

Here, tensor K is the learned convolution filter and K̃ is its (learned) inverse, function
τLET
(t) (·) is some form of thresholding applied to the high-pass signal y⊛K⊛WH, which

in this chapter is implemented via the linear expansion of thresholds (LET) approach
discussed in Section 3.3.3-D. In the following subsections, if deeper networks are
required, this can be achieved by further decomposing the low-frequency signal
y ⊛K⊛WL.

A Encoding-decoding path of the LWFSN

In Eq. (5.1) it can be noticed that there are no ReLUs in between the trainable con-
volution filter K and the fixed convolution sub-filters of the DWT (WL and WH).
Therefore, we can rewrite Eq (5.1) into

L(y) =f(2↑)

(
τLET
(t)

(
f(2↓)

(
y ⊛ FH

))
⊛ F̃

⊺
H

)
+

f(2↑)
(
f(2↓)

(
x⊛ FL

))
⊛ F̃

⊺
L,

(5.2)

in which the convolution filters FH =
(
FLH,FHL,FHH

)
and FL = (FLL) are parts of

the frame F, defined by

F =


FLL
FLH
FHL
FHH


⊺

=


K0 ⊛K1 ⊛wLL
K0 ⊛K1 ⊛wLH
K0 ⊛K1 ⊛wHL
K0 ⊛K1 ⊛wHH


⊺

. (5.3)
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Here, we define F as the separable filter F = K0 ⊛K1 ⊛W, where K0 and K1 are
the trainable convolution weights. This is akin to the explorations of Rigamonti et
al. [140], who demonstrated –in the context of learned sparse dictionaries– that complex
filters/features can be expressed by linear combinations from a smaller number of
separable filters to reduce computational complexity. Furthermore, this also has been
exploited in the design of CNNs [141]. Finally, we highlight that in conventional
CNNs, successive convolution layers cannot be assumed as separable filters, because
they contain ReLUs between each convolution. Finally, the filters of the decoding path
are defined by

F̃
⊺
=


F̃LL
F̃LH
F̃HL
F̃HH

 =


w̃LL ⊛ K̃

⊺
1 ⊛ K̃

⊺
0

w̃LH ⊛ K̃
⊺
1 ⊛ K̃

⊺
0

w̃HL ⊛ K̃
⊺
1 ⊛ K̃

⊺
0

w̃HH ⊛ K̃
⊺
1 ⊛ K̃

⊺
0

 . (5.4)

The remainder of this subsection focuses on analyzing the characteristics of the
encoding-decoding path in a process akin to Section 3.5. In this process, diverse CNNs
are analyzed under ideal conditions, i.e., K⊛K⊺ = I · c. It can be anticipated that in
practice, the filter K inside the LWFSN is trained for a specific task (in our case noise
reduction), which will likely result in a frame that is not tight, but which instead has
desirable properties for the noise reduction task. Still, the ideal assumption is useful to
test if the topology of the LWFSN allows for perfect reconstruction, at least under ideal
conditions. To characterize the encoding-decoding path of the LWFSN we analyze the
linear part of network L(·) in a process akin to Section 3.5, in the case of shrinkage
networks it is possible to assume that the threshold values are equal to zero (t = 0).
In this condition τLET

(0) (·) = I and the LWFSN becomes linear. This transforms Eq (5.1)
into

P{L}(y) =f(2↑)
(
f(2↓)

(
y ⊛K⊛WH

))
⊛ W̃

⊺
H ⊛ K̃

⊺
+

f(2↑)
(
f(2↓)

(
y ⊛K⊛WL

))
⊛ W̃

⊺
L ⊛ K̃

⊺
.

(5.5)

This expression can be further simplified to

P{L}(y) = f(2↑)
(
f(2↓)

(
y ⊛K⊛W

))
⊛ W̃

⊺
⊛ K̃

⊺
. (5.6)

For the DWT it holds that p = f(2↑)(f(2↓)(p)⊛W)⊛W̃
⊺

, therefore P{L}(y) is reduced
to

P{L}(y) = y ⊛K⊛ K̃
⊺
. (5.7)

This result is the further simplified to

P{L}(y) = y · c. (5.8)

If c = 1, then the LWFSN ensures perfect signal reconstruction. This proves that in the
ideal scenario in which K is a tight frame, the encoding-decoding path of the LWFSN
ensures perfect reconstruction for any signal.
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B Shrinkage path

In this chapter, we apply noise reduction on the high-frequency bands generated by a
learned frame F via a semi-hard thresholding function, which is based on the linear
expansion of thresholds (LET) proposed by Blu and Luisier [108] and which is defined
in Section 3.3.3-D in Eq. (3.33), which for self containment we show again here

τLET
(t) (o) =

NT−1∑
n=0

an · τ(tn)(o),

where an is the weighting factor assigned to each threshold, and in which all weighting
factors should add up to unity and NT is the total number of thresholds used. As
thresholding function, we define τ(·) as a semi-hard thresholding operation, based on
the difference of Gaussians of Eq. (3.32), given by

τ(t)(d) = d ·
(
1− tanh(5 · t) · exp

(
− d4

t4

))
. (5.9)

where d is an element of the tensor of the detail bands D. Note that Eq. (3.32) has been
augmented with the term term tanh(·), which approximates the sign function. This
modification is motivated to allow τ(·)(·) to also perform signal boost (t<0) in addition
to thresholding (t>0) and the unity operation (t=0). The possibility of performing
signal boost may be relevant in other inverse problems, such as image deblurring.

Finally, in order to justify the use of the semi-hard instead of soft-thresholding,
we revisit two observations performed by Luisier [142]. First, the soft-thresholding
function sets the image coefficients that fall below the threshold level to zero, despite
the fact that natural images contain small coefficients which convey important texture
information. In contrast, the semi-hard threshold used does not fully eliminate small
components. Second, the soft-thresholding function is a biased estimator, while the
semi-hard function is asymptotically unbiased for large image coefficients, which are
most likely parts of the signal.

C Residual LWFSN

In contrast with conventional ReLU-based CNNs [8], [50], the LWFSN cannot be
directly employed to produce the noise estimates required for residual noise reduction
for two reasons. First, the thresholding functions applied to the high-pass framelet
bands are designed to eliminate the noise, not to preserve it. Second, the absence of
non-linearities in the low-frequency framelet band does not allow to cancel that part of
the signal. Consequently, if it is desired to use the LWFSN in residual configuration, it
must be modified as shown in Fig. 5.3. We refer to this modified architecture as residual
LWFSN (rLWFSN). It should be noted that besides the main residual connection, there
are two additional changes. First, the the semi-hard threshold τLET

(t) (·) is replaced by a
semi-hard clipping CLET

(t) (d), which is defined by

CLET
(t) (d) = η̂d = d− τLET

(t) . (5.10)
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Figure 5.3. Modified LWFSN for residual noise reduction. In this configuration the noise is
estimated at every scale so that it can be removed from the noisy input image with with the
global residual connection. In the figure, the dashed lines denote the signal path if the network
is bypassed to obtain the impulse response. Note that if the dotted bypasses are used, the
bypassed network becomes equivalent to the bypassed non-residual LWFSN, thereby creating
the same behavior.

The second alteration necessary to adapt the LWFSN for residual learning, is that the
low-frequency band is set to zero at the deepest level, since in residual configuration
the signal is suppressed. Note that this is akin to the low-frequency nulling used
by Kwon and Ye [143]. Finally, the noise is reconstructed by the decoding path and
subtracted from the noisy observation.

To conclude this section, the attention of the reader is directed to the diagram
portrayed in Fig. 5.3, which shows that to compute the impulse response of the
rLWFSN, it is sufficient to ignore the residual blocks and the suppression of the low-
frequency band. This makes the signal path equivalent to the signal path of the
conventional LWFSN. Hence, the same impulse response analysis also applies for this
CNN.

5.3 Experiments and results

This section presents the experiments that compare the performance and properties
of the proposed (r)LWFSN models with other state-of-the art models. The layout of
this section is as follows. First, Section 5.3.1 explains the implementation details of the
presented LWFSN model. Afterwards, Section 5.3.2 introduces the dataset, reference
methods and metrics. Finally, Section 5.3.3 presents the training procedure and shows
the results of the noise reduction experiments with the (residual) LWFSN model.

It can be observed that the content for the present chapter is primarily sourced from
the article Noise reduction in CT using Learned Wavelet-Frame Shrinkage Networks [58].
In this chapter some applications are presented in the original text that have been
excluded from this chapter. The reason for this omission is to improve the storyline
of the thesis and the integration with the other chapters of this text. The excluded
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experiments are as follows. (1) The analysis of a CNN model which shows the con-
ditions necessary for the TF U-Net to converge to a model with shrinkage functions.
(2) Ablation studies of the proposed architecture highlighting the impact of the com-
ponents of the LWFSN, as well as the effect of sharing the encoding and decoding
filters in the reconstruction characteristics of the individual layers. In addition, during
the realization of this thesis it was found that in the article that sourced this chapter
a scaling error occurred in the computation of the HaarPSI metric. This error causes
that there are a few differences between the results presented here and in the original
article. A description of the error and the corrections that have been applied are
presented in Appendix A.

5.3.1 Implementation of the LWFSN

The architecture of the implemented LWFSN system is depicted in Fig. 5.2 (a). The
input image is first decomposed by the convolution tensors Kl,j , where l denotes the
decomposition level and j the tensor index. The following step is a recursive dyadic
decomposition implemented with the DWT, which enables multi-resolution processing
and sets the high-frequency path, which can be filtered efficiently with wavelet-
thresholding. At each level, we perform wavelet shrinkage with the linear expansion
of thresholds (LET), where the threshold level and weight for every threshold unit is
learned. The right part of the diagram represents the reconstruction.

Fig. 5.2 (b) is a more detailed description of the LET operation, where we use only
two trainable vectors t and b at every decomposition level. The weights an and the
thresholds tn are computed, which are used in the final computation of the LET, and
the dimensions and number of parameters per layer of the LWFSN are displayed in
Table 5.1. The thresholds are initialized with uniform random values ranging between
zero and 0.1, while vector b is initialized with unity values. All the CNNs in this paper
are implemented in Pytorch [144] and the implementation of all the networks shown
here is available in GitHub and on IEEE’s Code Ocean 1.

5.3.2 Dataset, reference methods and metrics

A Dataset

For the experiments presented in this section, we use the full- and simulated
reduced-dose brain CT scans (FDCT and QDCT, respectively) of the cancer imaging
archive [145], [146]. The dataset contains pairs of full-dose CT scans and realistically
simulated low-dose images. For testing, we apply 25 scans (892 slices), all of which
have at least one lesion specified in the clinical information of the dataset. The remain-
ing 25 scans are split into the training and validation sets with 12 subjects each (with
417 and 427 slices, respectively). Scan N293 was excluded from training/validation
because the neck and shoulders were scanned as well. It was found that the slices of

1The code that replicates the most important results of this model is available at https://gith
ub.com/LuisAlbertZM/demo_LWFSN_TMI and interactive demo available at IEEE’s code ocean
https://codeocean.com/capsule/9027829/tree/v1

https://github.com/LuisAlbertZM/demo_LWFSN_TMI
https://github.com/LuisAlbertZM/demo_LWFSN_TMI
https://codeocean.com/capsule/9027829/tree/v1
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Level Tensor Dimensions Parameters
per axis count

0 K0,0 (1, 4, 2, 2) 16
0 K0,1 (4, 8, 2, 2) 128
0 t0 (5) 5
0 b0 (5) 5
1 K1,0 (8, 8, 2, 2) 256
1 K1,1 (8, 16, 2, 2) 512
1 t1 (5) 5
1 b1 (5) 5
2 K2,0 (16, 16, 2, 2) 1,024
2 K2,1 (16, 32, 2, 2) 2,048
2 t2 (5) 5
2 b2 (5) 5
3 K3,0 (32, 32, 2, 2) 4,096
3 K3,1 (32, 64, 2, 2) 8,192
3 t3 (5) 5
3 b3 (5) 5

Table 5.1. Tensor dimensions and parameters of the LWFSN encoder.

these regions contain photon starvation artifacts which are not representative of the
rest of the scans. All the scans were acquired with helical geometry, slice thickness of
0.5 mm, pixel spacing/size of 0.48 mm and the slice size is 512 rows by 512 columns.

B Reference methods

For evaluating the noise reduction performance of the LWFSN, we have compared
it against the TF U-Net and FBPConvNet. These are two state-of-the-art networks
which have been successfully employed for artifact reduction in CT imaging. For fair
comparison, all the CNNs use four decomposition levels. Furthermore, in the case
of the TF U-Net the number of feature maps is decreased from 64 to 48 feature maps
after the first convolution layer, since the large amount of feature rendered insufficient
available hardware for the experiments (RTX-2080Ti GPU). For reference, we display
the number of parameters of the methods under comparison in Table 5.2. Notice that
the LWFSN only uses approximately 0.19% of the parameters of the described four-
level TF U-Net and 0.45% of the parameters of FBPConvNet. In addition, Table 5.2
also displays the average forward propagation time for each of the CNNs, computed
by averaging 500 forward propagations of an image with 512×512 pixels. Note that
the LWFSN is 3.04 and 7.58 times faster that FBPConvNet and TF U-Net, respectively.
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CNN Total Forward
parameters prop. time [ms]

LWFSN 32,584 7.22
TF U-Net 17,657,904 54.77
FBPConvNet 7,306,497 22.02

Table 5.2. Number of trainable parameters and forward propagation time for the LWFSN TF U-
Net and FBPConvNet CNNs.

C Image quality metrics

In order to compare the similarity between the processed images and the ground truth,
we use the HaarPSI perceptual metric. Note that this metric requires the processed
QDCT and ground-truth FDCT images (x and y, respectively) to be bounded within
the range [0, 255]. Therefore, prior to the computing the HaarPSI metric, we perform a
pre-processing step in which the intensity of the images is clipped between maximum
and minimum intensity, i.e. Min=0 [HU] and Max=80 [HU]. Afterwards, the clipped
images are scaled to the range [0, 255]. This pre-processing is represented by function
P (·), which is given by

P (x) = 255 · C(x)−Min
Max−Min

. (5.11)

Here, function C(x) is the clipping operation, defined by

C(xi,j) =


Max if Max < xi,j;

xi,j if Max ≤ xi,j ≤Min;
Min if x < Min.

(5.12)

The maximum and minimum values are chosen because they are similar to the in-
tensity ranges used to display the brain parenchyma [147]–[149]. Summarizing, the
process to compute the HaarPSI HP(·), which is specified by

HP(x,y) = HPSI(P (x), P (y)), (5.13)

where HPSI(·) represents is HaarPSI computer program provided by Reisenhofer [97].
In addition to the HaarPSI, additional quality metrics used in this chapter are mean

structural similarity index [95] (MSSIM) between the FDCT and processed QDCT, as
well as the PSNR, where we assign as maximum value Max = 80 [HU], in concordance
with the chosen intensity range used for visualization.

5.3.3 Noise reduction experiments

In order to fully characterize the proposed LWFSN and rLWFSN, we conduct diverse
experiments. Section 5.3.3-A compares the noise reduction performance of the conven-
tional LWFSN, the TF U-Net and the FBPConvNet models. Section 5.3.3-B shows an
experiment that highlights the impact of using the semi-hard versus soft-thresholding
in the LET. Meanwhile, Section 5.3.3-C discusses the performance of the residual
LWFSN.
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Figure 5.4. Training and validation loss curves for the main noise reduction architectures
explored in this paper.

A Noise reduction performance for non-residual LWFSN

For the noise reduction experiments, we have trained the LWFSN, TF U-Net and
FBPConvNet by minimizing the mean-squared error (MSE) loss function with Adam
optimization, where the learning rate linearly decays from an initial value to zero.
For the optimizer, the initial learning rate is empirically fine-tuned for each CNN, so
that all of them achieve optimal performance. Specifically, the LWFSN is trained with
an initial learning rate of 5×10−4 for 500 epochs. Meanwhile in the TF U-Net, the
initial learning rate is set to 3×10−5 and the CNN is trained for 12 epochs. Finally,
FBPConvNet is trained with an initial learning rate equal to 10−4 for 14 epochs. All
the networks are trained directly in the HU scale. For training and testing, any pixels
where zero-padding is applied within the CNNs are excluded. This is achieved by
padding with reflections of the QDCT images prior to be processed and later crop the
results back to the input dimensions. Fig. 5.4 showcases the training and validation
losses for the tested CNNs, where it can be observed that the proposed LWFSN is
slower in converging in terms of iterations. This is sensible because it is a non-residual
CNN, so that it must learn to represent the image, which leads to larger errors in the
initial iterations.

The noise reduction performance of the LWFSN, TF U-Net and FBPConvNet is
summarized in Table 5.3, in which AU stands for arbitrary units. In Fig. 5.10, it is visible
that the compared methods are preserving fine detail in the images, while reducing
the noise considerably. For most patches, either the proposed LWFSN or FBPConvNet
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Figure 5.5. Wavelet frame learned by the LWFSN and its frequency localization characteristics,
visualized for the first decomposition level. The first row depicts the elements of the convolution
filter W used in the DWT. The second row is the learned section of the frame K = K0,0 ⊛K0,1.
Finally, the third row of the figure depicts the equivalent frame F = K⊛W. To the right of every
tensor, the Fourier spectrum of the learned filters is shown (indicated by script letters).

perform best. When analyzing Table 5.3, it can be observed that FBPConvNet performs
best in terms of the HaarPSI and PSNR when measuring over the entire dataset, while
the best MSSIM is achieved by the TF U-Net. It should be noted that the performance
gap between the compared CNNs is small.

Model HaarPSI [AU] MSSIM [AU] PSNR [dB]

Baseline (QDCT) 0.796 0.654 25.65
LWFSN 0.836 0.670 27.19
TF U-Net 0.833 0.693 27.61
FBPConvNet 0.838 0.692 27.63

Table 5.3. HaarPSI, MSSIM and PSNR for noise reduction experiment.

Section 5.2.1-A proves that the LWFSN design ensures perfect signal reconstruction
under the assumption that the encoding-decoding path is composed by tight frames.
In this application, the LWFSN has been trained for noise reduction and there is no
guarantee that the model has perfect reconstruction and/or that the filters of the
encoding-decoding path are tight frames. In order to assess perfect reconstruction in
the trained CNN, a unit impulse is supplied to the bypassed LWFSN. The result of this
experiment is shown in Fig. 5.6, where it can be observed that the LWFSN reconstructs
the unit pulse almost perfectly. Furthermore, the magnitude of the frequency response
of the network’s encoding-decoding path (i.e. the magnitude of the spectrum of
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Figure 5.6. Impulse and frequency response of the encoding-decoding path of the LWFSN. In
the left column, the unit impulse is displayed, that is supplied to the LWFSN. The center column
illustrates the impulse response of the LWFSN. Finally, the right column portrays the Fourier
spectrum of the impulse responses. The energy numbers in plots of the impulse response
clearly indicate the dispersion of the energy in the samples surrounding the center pixel. It can
be observed that reconstructed impulse is very close to the original input (a 2D delta Dirac
function), which results in the nearly-flat unity spectrum at the right.

the impulse response) closely approximates an all-pass filter. This confirms that the
encoding-decoding path of the LWFSN allows approximate perfect reconstruction,
which is further corroborated by forward-propagating a QDCT slice through the
bypassed LWFSN, as portrayed in Fig. 5.7. There it can be observed that the processed
image is indistinguishable from the input.

The final characterization of the encoding-decoding path evaluates whether con-
volution filters at level l (Kl and K̃l) sufficiently approximate tight wavelet frames
and their inverse. For this purpose, we perform the operation Kl ⊛ K̃

⊺
l . If Kl is

tight, it should hold that Kl ⊛ K̃
⊺
l = I · c. The result of this operation for the level

l = 1 is shown in Fig. 5.8, where it becomes visually clear that K1 ⊛ K̃
⊺
1 ̸= I · c. This

means that the individual filters do not behave as tight frames. Despite the visual
distortion in Fig. 5.8 with the filters at l=1, the LWFSN is still able to approximate
perfect reconstruction as shown by the impulse response of the network shown in
Fig. 5.6. Apparently, the other filters at higher levels are partly compensating for the
imperfect reconstruction of the individual filters. It should be noted that if the filters
in the encoding and decoding paths are shared i.e. K̃l = Kl, the filter K̃l behaves
more akin to a tight frame, but the noise reduction performance is lower [58].

Besides the noise reduction and reconstructed images, Fig. 5.5 presents the wavelet
frame learned by the LWFSN on the first layer, which is computed by F0 = K0 ⊛W.
Here, K0 is the learned section of the wavelet frame F0. For better understanding
of this result, the convolution filter of the DWT W is displayed in row form for
convenience. In addition, the learned section K0 and the resulting wavelet frame F0

are presented as well.

Finally, Section 5.2.1-B mentions that the LWFSN model uses the LET [108] ap-
proach, which generates a composite threshold after a linear combination of simpler
functions. Fig 5.9 displays all the learned thresholds for the first decomposition level,
as well as the final combined function. This concludes the characterization of the
proposed LWFSN architecture.
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Figure 5.7. Example of input QDCT image (left column) and its reconstruction by the LWFSN
with the shrinkage stage bypassed (right column). It can be noticed that the reconstructed image
is very similar to the input. For better visualization, zoomed regions are shown (highlighted in
red color for the processed images and in cyan for the noisy input).

K1 ⊛ K̃
⊺
1

Figure 5.8. Convolution result K1 ⊛ K̃
⊺
1 of the learned encoding K1 and decoding filters K̃1

at the first decomposition level. The specified color indicates the magnitude of the resulting
signal. In the figure it can be observed that the filters K1 and K1 are not tight framelets because
K1 ⊛ K̃

⊺
1 ̸= I, which is visible because there is a strong response outside the diagonal elements

of the resulting tensor.
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Figure 5.9. Learned thresholding functions of the shrinkage path of the LWFSN (τ(t0)(·), τ(t1)(·),
τ(t2)(·), τ(t3)(·), τ(t4)(·)) and combined LET shrinkage function.

B Semi-hard vs soft-thresholding in non-residual LWFSN

To study the influence of the semi-hard thresholding on the LET, this section shows
an experiment, where the semi-hard thresholds of the LET are replaced by soft-
thresholding functions. In the sequel, We refer to this variant as LWFSN soft, or
LWFSN-S.

Given that the only difference between the LWFSN and LWFSN-S are the activation
functions, the LWFSN-S is trained with the same parameters as the conventional
LWFSN. The results of this experiment are shown in Table 5.4, from which it can be
derived that the performance on the LWFSN-S is marginally lower than the semi-
hard LWFSN. Since the performance gap between both designs is very small, three
additional models of each architecture have been trained and the their performance
metrics on the test set are averaged. The results of this experiment are displayed
in Table 5.5 and confirm that the semi-hard thresholding used in the conventional
LWFSN marginally outperforms soft-thresholding for this application.

Model HaarPSI [AU] MSSIM [AU] PSNR [dB]

Baseline 0.796 0.654 25.65
LWFSN 0.836 0.670 27.19
LWFSN-S 0.833 0.667 26.99

Table 5.4. Noise reduction measurements comparing the LWFSN and LWFSN-S models, for
three different performance indicators. Here, [AU] stands for arbitrary units. HaarPSI stands for
the Haar perceptual similarity index.
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Figure 5.10. Input QDCT, processed QDCT and ground-truth FDCT images for diverse patients.
Subject N100 contains a lesion caused by pulmonary carcinoma metastasis, N079 contains an
acute stratal infarct, N181 has fluid accumulation and N300 a thalamic hemorrhage. The zoomed
regions (highlighted in red color for the processed images and in cyan for the ground-truth)
indicate the locations of the lesions. Furthermore, the difference between the zoomed regions
and the ground-truth is also displayed. In addition, we also depict the HaarPSI, MISSIM and
PSNR metrics on the displayed patches.



118 Data-driven denoising using trainable framelets

Model HaarPSI [AU] MSSIM [AU] PSNR [dB]

LWFSN 0.835±4.4E-4 0.667±1.4E-3 27.12±0.032
LWFSN-S 0.832±1.1E-4 0.667±1.0E-3 26.98±0.027

Table 5.5. Average metrics for three LWFSN and LWFSN-S models.

Model HaarPSI [AU] MSSIM [AU] PSNR [dB]

LWFSN 0.836 0.670 27.19
rLWFSN-NRW 0.836 0.672 27.53
rLWFSN 0.838 0.670 27.69

Table 5.6. HaarPSI, MSSIM and PSNR for the experiment that compares the non-residual
LWFSN, the rLWFSN-NRW and the rLWFSN models.

C Residual vs non-residual LWFSN

LWFSN rLWFSN-NRW rLWFSN

Figure 5.11. Slice of subject N079 processed by the LWFSN, the rLWFSN with the weights of
the LWFSN (rLWFSN-NRW) and the rLWFSN. The metric results are indicated at the bottom of
each figure.

In order to show the operation of the LWFSN in a residual configuration, the
rLWFSN has been trained for noise reduction for 200 epochs with the Adam optimizer
in which the initial learning rate is 3.5×10−4. The training curve is shown in Fig. 5.4,
where it can be seen that the convergence of the rLWFSN is faster and more stable
than the conventional LWFSN. In addition, for reference, we have loaded also the
parameters learned for the experiment in Section 5.3.3-A in the rLWFSN structure.
This configuration is called residual LWFSN with non-residual weights, or rLWFSN-
NRW. The purpose of showing this model is to demonstrate that the residual and
non-residual are similar in how the signal is decomposed and reconstructed. This will
be proven by loading the parameters that are learned in the non-residual model in the
residual configuration. Meanwhile, the residual and non-residual models are different
in the sense that the non-residual model shrinks low-amplitude values (typically
associated to noise) in the decomposed signal, while preserving the high-amplitude
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Figure 5.12. Impulse response of the rLWFSN. It should be noted that the image has a band-
pass behavior and approximately half of the impulse response energy is spread out, resulting in
frequency response variations.

values. On the contrary, residual models estimate the noise while suppressing the
high-amplitude components of the decomposed signals. This is accounted for by
replacing the shrinkage functions by clipping activations.

The performance metrics for this experiment are shown in Table 5.6. Furthermore,
to complement this table, we display the processed slice by the LWFSN, rLWFSN-NRW
and rLWFSN in Fig. 5.11. It can be observed that the rLWFSN performs better that the
non-residual LWFSN, with a performance closer to FBPConvNet and the TF U-Net
in terms of HaarPSI and MSSIM, and even better than the reference models in terms
of PSNR. As expected, the rLWFSN-NRW performs very similar to the conventional
LWFSN, which is a sensible result because both models share the same weights.
Furthermore, it can be seen that the impulse response of the rLWFSN in Fig. 5.12
also approximates an impulse, but it has a band-pass behavior. While the origin of
this behavior is not yet completely clear, we hypothesize that this may be caused by
lowering the priority of signal reconstruction, since the low-frequency band is ignored
in this configuration. In-depth research of this behavior is beyond the scope of this
chapter and left for future work.

5.4 Discussion

The results of Section 5.3.3-A show that the presented models achieve noise reduction
performance close to the state-of-the art CNNs, such as the TF U-Net and FBPConvNet.
However, the proposed models have the benefit of a much lower computational cost
and inference time. Furthermore, in the case of the LWFSN, it has been observed that
its encoding-decoding path (globally) approximates perfect reconstruction without
performing any regularization. This behavior is attributed to the topology of the
network and to the fact that the input and target images only differ in the noise level.
In the case of the rLWFSN, the perfect reconstruction is compromised, but better noise
reduction performance is achieved as well as faster convergence and more stable
training. This could be related to the fact that for residual models the signal does
not need to be reconstructed (only the noise is estimated), which likely simplifies the
optimization for this configuration.

The approximate perfect reconstruction shown by the encoding-decoding path of
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the LWFSN matches the theoretical analysis shown in Section 5.2.1-A, where ideal
conditions are assumed, i.e. the encoding convolution frames are tight frames. Still,
it has been found that the individual filters of the experimental LWFSN with inde-
pendent encoding and decoding filters do not meet this condition. Nevertheless,
the LWFSN approximates perfect reconstruction when all the systems interact. An
important realization is that if the encoding and decoding filters are shared akin to
BCD-Net [150] (i.e. K̃l = Kl), the convolution filters display a behavior closer to
tight frames. However, this resemblance comes with cost of lower noise reduction
performance.

5.5 Conclusions

This chapter has proposed an encoding-decoding CNN that eliminates noise in
reduced-dose CT acquisitions. The proposed CNN is called learned wavelet-frame
shrinkage network (LWFSN) and the architecture is based on wavelet-based denoising
algorithms such as BayesShrink [14] and the linear expansion of thresholds (LET) [108],
which are well-known approaches for noise reduction in the wavelet domain.

Contributions A substantial advantage of the LWFSN over models such as TF U-Net
and the FBPConvNet is that the design, has a low complexity, it is lightweight, fast
and can be easily characterized. These advantages are elaborated in the following
points.

1. Well-interpretable operation. The low complexity of the LWFSN and chosen non-
linearity allows to prove theoretically and practically that the encoding-decoding
path of the CNN can represent almost all of the spatial frequencies. The prac-
tical evidence about the signal reconstruction is achieved by measuring the
impulse response of the encoding-decoding path of the trained LWFSN model.
This test complements the theoretical analyses of Section 3.5. In addition, this
result confirms that in the LWFSN model, the encoding-decoding path decom-
poses/reconstructs the input signal, while the shrinkage non-linearities eliminate
parts of the signal decomposed by the encoder which are associated to noise.

It should be noted that the proposed impulse response analysis is only pos-
sible because shrinkage non-linearities are chosen instead of the predominantly
used ReLUs. The reason for this is that shrinkage functions guarantee than
the model becomes linear when the threshold value is set to zero. It should
be noted that measuring the impulse response is a widely accepted method to
characterize linear systems. As a final remark, it can be observed that setting
the bias/threshold level to zero in ReLU-based CNNs does not guarantee that
the model becomes linear. Consequently, the analysis of the impulse response
may not be a valid characterization of the behavior of those models and further
studies are needed for that activation.

2. Reduction of computational cost and number of parameters. The proposed LWFSN
model has a performance comparable to the TF U-Net and the FBPConvNet,
while achieving a significant reduction in terms of the model size and execution
time. Specifically, the LWFSN uses approximately 0.19% of the parameters of
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the tested TF U-Net and 0.45% of the parameters of FBPConvNet. Furthermore,
the LWFSN obtains inference 3.04 and 7.58-times faster than FBPConvNet and
the TF U-Net, respectively.

The parameter and computation reduction is achieved with two main design
choices. First, the model is very simple and uses less skip connections than the
TF U-Net. This means that less feature maps are computed and stored. Second,
the choice of a shrinkage activation allows for a reduction of feature maps, since
ReLU-based models require more feature maps in order to avoid signal loss as
discussed in Section 3.4.1.

Comparison with previous chapter. It can be observed that the training settings,
network depth are different in Chapters 4 and 5. This does not allow for a fair
comparison between the DHSN and the LWFSN models. In order to circumvent this
limitation, Appendix B presents a comparison of the DHSN1, DHSN2, LWFSN and
rLWFSN trained with the same settings as in this chapter. The experiments show that
the rLWFSN, DHSN1 and DHSN2 achieve similar performance. Still, the rLWFSN
uses less trainable parameters. The higher parameter count of the DHSN1 and DHSN2
owes to the fact that in these models, most of the trainable parameters are placed in
between the encoder and decoder models (the OHWT-decomposed signal) in which
the signal is high dimensional, which causes the convolution kernels to use more
parameters and elevates the overall complexity of the models.

Final conclusions.The presented LWFSN model shows that the appropriate selection
of design parameters based on basic understanding of the underlying signal concepts
can lead to better interpretation of the system operation and insightful ways to address
noise reduction. This is important to increase the trust in data-driven models that are
used in medical systems.

It can be noted that the signal processing informed approach to design the CNN
in this chapter is an alternative to the models presented in Chapter 4. Whereas in the
previous chapter the design is based on a non-trainable framelet for decomposition
and reconstruction of the signal, this chapter learns the signal decomposition and
reconstruction as well as the denoising process. The advantage of the learnable
transformation in this chapter is exploited for parameter reduction and simplifying
the network. Still, the performance of both approaches is very similar and comparable
as is the interpretability of the solutions. On the other hand, the representations in
Chapter 4 are more accurate because the filters comply with perfect reconstruction
and directionality by design, which may be attractive for specific applications.

As a final remark, we envision that this active approach to design CNNs may
be useful in other pixel-level operations such as image segmentation, which is also
widely applied in the medical domain.

The next chapter presents the final application of this text in which elements of the
encoder-decoder CNNs shown in Chapters 4 and 5 are incorporated as part of a larger
system. In fact, the solution developed in the next chapter is a hybrid system where
elements of both approaches are combined to leverage their respective advantages.
Specifically, Chapter 6 presents a model-based CNN which is used for denoising and
material decomposition in a dual-energy cone-beam CT system.





CHAPTER6
Regularized DE CBCT material
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6.1 Introduction

Chapters 4 and 5 have presented CNNs that have known properties such as ED
paths with (almost) perfect reconstruction. The referred models are simpler and
less computation-intensive than common CNNs, yet, the proposed models achieve
performances comparable to state-of-the-art alternatives. Consequently, it is attract-
ive to incorporate designs such as the models shown in Chapters 4 and 5 to other
applications, such as model-based deep learning, in which CNNs are applied as a
regularization technique within optimization-driven solutions to inverse problems.
This chapter explores model-based material separation and noise reduction for dual-
energy (DE) cone-beam (CB) CT. At the core of this application, there is a regularization
CNN which incorporates elements of the models described in the previous chapters.

Background in dual-energy cone-beam CT. Denoising algorithms are important pro-
cessing steps to improve the visualization of clinically relevant information in modern
CT systems. In this chapter, noise reduction is applied to dual-energy (DE) cone-
beam (CB) CT imaging, which is a novel technique and system concept where two
spectral images are acquired simultaneously [151]. Each of the referred spectral im-
ages is tuned to absorb either most of the high-energy (HE) or the low-energy (LE)
segments of the X-ray spectrum [151]. The additional observation of the energy-
dependent X-ray attenuation process allows for better material quantification and/or
virtual non-contrasted imaging. In order to exploit these capabilities, spectral decom-
position algorithms are required. These algorithms work under the assumption that
the sensed signals are composed by two energy-dependent sources of attenuation
(e.g. two materials), which can be formulated as an equation system, of which the
solution represents the material concentrations. With such an approach it should be
noted that the inversion of noisy scans can boost the noise present in the material
domain. Consequently, the inclusion of noise reduction stages as part of DE CBCT
pipeline is critical to fully exploit the processing associated to this dual-energy system
architecture.

Related work. Many techniques have been proposed for reducing noise in CT.
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Some notable examples are total-variation denoising [13], sparse coding [31], frame-
lets/wavelets [30] and more recently, convolutional neural networks (CNNs) [37], [50],
[58]. In the case of dual-energy CT, specific denoising algorithms have been proposed.
For example, the anti-correlated (AC) concept of Rudin, Osher and Fatemi (ROF) [152]
and the iterative regularized image decomposition by Niu et al. [153] are proposed
works that match with the denoising with dual-energy CT. Alternatively, CNNs such
as the butterfly network (Butterfly-Net) of [154] have combined the DE CT material
decomposition with noise reduction in a CNN that simultaneously estimates noise-free
bone-water images from noisy dual-energy CT inputs.

Additional techniques which are applied to denoising single/dual-energy CT
are model-based CNNs [121], which are designs incorporating physical modelling
of the image acquisition process. Specifically, these models use iterative solutions
to regularized least-squares problems as "templates", in which specific elements of
the solution (e.g. regularization steps), are replaced by trainable components such
as CNNs. This integration enhances the interpretability and data efficiency of the
resulting model [155]. The main disadvantage of model-based CNNs is their sequential
nature, which potentially increases the execution time. An example of a model-based
CNN is FISTA-Net [156], which has been applied to remove artifacts in single-energy
CT. Another example is the block-coordinate gradient descent (BCD) network [156],
which simultaneously removes noise and estimates material concentrations in DE CT.

Challenges. Training CNNs for material decomposition and denoising of dual-
energy CBCT introduces a number of specific challenges that are summarized as
follows.

1. Data characteristics. DE CBCT data is noisy by nature because the photon flux
that reaches the detector is divided into two sensing layers (i.e. low-energy
and high-energy). This means the noise per layer is higher than conventional
(single-layer) CBCT. Consequently, it is desirable to investigate the application
of noise reduction algorithms for improving the visualization of information
and/or to enhance the operation of downstream algorithms.

2. Preservation of spectral information. The noise reduction pipeline in DE CBCT
should preserve the spectral information contained in the scan. This means
that the noise reduction algorithm should not only improve the signal-to-noise
ratio per channel, but also to preserve the intensity relationships between the
low-energy and high-energy pictures.

3. Data efficiency. DE CBCT is an emerging technique where limited data are avail-
able. Consequently, it is desirable that the techniques applied to process these
scans are data-efficient.

In order to meet the above-described requirements, it is attractive to use model-
based CNNs such as FISTA-Net [111], since these models incorporate prior knowledge
of the signal generation process. The FISTA-Net model is a CNN which is based on
the original FISTA [125] approach. This technique is a solution for inverse problems
that consists of alternating gradient descent updates and wavelet shrinkage-based
regularization. It should be noted that FISTA is designed for fast convergence and one
of its main features is the accelerated-gradient updates which decrease monotonically
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by design. Akin to FISTA, FISTA-Net employs also gradient descent, but FISTA-Net
uses a more elaborate design in order to learn monotonically decreasing step-sizes.
Furthermore, in FISTA-Net, the regularization CNN requires additional training to
mimic the sparsity and perfect reconstruction of FISTA’s wavelet-based regularization.

Proposed solution. This chapter explores material decomposition and denoising
in DE CBCT. This application consists of mapping a noisy DE CBCT slice to their
respective concentrations of bone and water materials. However, it can be observed
that the DE CBCT slice contains noise. Consequently, the intended application should
involve noise reduction steps besides the mapping requirement. For this purpose, this
dissertation proposes an alternative method known as regularized conjugate gradient
network (rCGN), which further leverages proximal gradient descent, framelet-based
denoising and deep learning.

The proposed rCGN consists of two main steps. The first action employs a CNN
model to reduce noise in the dual-energy domain, where the noise has lower intensity
when compared to the mapped image with bone-water concentrations. The second
step uses the dual-energy CT estimate generated in the first step as initialization to
a conjugate gradient least-squares (CGLS) algorithm with proximal updates. In this
second step, the CGLS method is applied to decompose DE CBCT scans into their bone-
water components. At every iteration, an additional CNN is applied for regularization
in the bone-water domain. The CGLS algorithm computes the optimal step-sizes for
each DE CBCT slice being processed. It can be observed that the integration of the
adaptive CGLS algorithm within the rCGN contrasts with alternative model-based
deep learning-based solutions where the step-sizes are learned, and consequently,
they become independent from the slice that is being processed. The latter concept
with learned step-sizes limits the generalization of conventional models, since the
optimization landscape of the model-based solution changes for different DE CBCT
slices.

Rather than using conventional CNNs for regularization in the rCGN, this chapter
uses a proximal CNN that leverages a tight framelet with directional filters and perfect
reconstruction. In the framelet domain, shrinkage-based networks are applied to
eliminate the noise. From previous text, it can be inferred that two of such models
are applied within the rCGN, one in the dual-energy domain and another one in the
bone-water domain.

Contributions and organization of this chapter. In summary, our contribution is to
propose a new image-domain material decomposition and denoising CNN referred to
as regularized conjugate gradient network (rCGN), which integrates framelets, proximal
gradient descent and CNNs. The proposed network achieves excellent denosing
performance and generalization, while being faster than FISTA-Net. It can be ob-
served that the proposed rCGN mimics more closely proximal gradient models than
alternative model-based CNNs, that is, the rCGN uses the well-known CGLS method
at its core, while employing a framelet-based denoising CNN. This means that the
operation is even more explainable than conventional model-based deep learning. The
second benefit of this approach is the inherent flexibility and adaptivity because the
concept can be optimized per slice and is based on generic optimization techniques.

The organization of this chapter is as follows. First, Section 6.2 introduces inform-
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ation on DE CBCT and material decomposition. Section 6.3 presents the proposed
approach. Section 6.4 shows the experimental results, which are discussed in Sec-
tion 6.5. Finally, Section 6.6 presents the concluding remarks of this chapter.

6.2 Background on proximal optimization and DE CBCT

Prior to addressing the proposed method, Section 6.2.1 provides key insights on
proximal gradient methods for optimization and Section 6.2.2 discusses material
decomposition of DE CBCT images.

6.2.1 Proximal gradient methods

Line-search optimization encompasses algorithms where an objective function J(·)
(e.g. the mean squared error) is minimized by finding successive points xn, xn+1, . . . ,
xN , such that J(xn+1)≤J(xn). Here, the minimization is achieved by moving from
point xn in the direction dn by a step-size αn [157]. This procedure is mathematically
expressed by

xn+1 = xn + αndn. (6.1)

A common example of line-search optimization algorithms is (steepest) gradient
descent, where the direction d is given by the gradient of the objective function, i.e.
d=∇J(xn). An alternative algorithm within this family is the conjugate gradient least
squares (CGLS), which is used in this chapter. In contrast with SGD, in the CGLS
method the current position xn and its previous value xn−1 are used to compute the
optimal direction dn and step-size αn. This concept allows for faster convergence than
the simpler SGD.

The above paragraph summarizes gradient-based optimization, which requires
that the objective function is convex and smooth. In more general cases, it may be
needed to optimize functions that are still convex, but not necessarily smooth. For
example, assume that J(·) has the form

J(x) = F (x) +G(x) . (6.2)

Here, F (·) is smooth, differentiable and convex, while G(·) is convex as well, but not
smooth (e.g. ∥x∥1). In this case, it is to possible minimize this objective using proximal
gradient optimization. In this technique, the above-described line search algorithm is
employed to compute a new point xn+1 that minimizes F (·). At the point xn+1, a
smaller optimization problem is set to minimize G(·). The solution of this problem is
achieved by a proximal operator [158]. The proximal gradient solution is summarized
by the expression

xn+1 = proxG(xn)

(
xn + αndn

)
, (6.3)

where Eq. (6.1) is augmented with the proximal operator proxG(xn)
(·), which is the

solution of the optimization problem G(·) at the point zn = xn + αndn. A typical
proximal operator is the soft-thresholding function, which is the solution for G(xn) =
λ∥xn∥1. An overview of proximal operators for specific objective functions can be
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found in the work by Wen et al. [159]. Finally, it should be noted that in model-
based deep learning solutions, such as MoDL [160] and FISTA-Net [111], the proximal
operator is replaced by a CNN.

6.2.2 Material decomposition in DE-CBCT

A. Sinogram-domain material decomposition

As mentioned earlier, spectral DE CBCT employs a detector that has two layers that
are tuned to absorb photons in specific sections of the X-ray spectrum. Based on
this configuration, the spectral X-ray attenuation of the object can be sufficiently
approximated by a linear combination of two base materials, e.g. bone and water [161].
Consequently, the system is modelled by integrating the photon energy ε, which is
exponentially attenuated and weighted by the sensing layers of the system, leading to

pl(r⃗) =

εM∫
0

S(ε)Dl(ε)

(
e−dB·µB(ε)−dW·µW(ε)

)
εdε, (6.4)

where pl is a sinogram, which contains a set of measurements pl(r⃗), which reflect the
measured intensity at a specific sensing layer l, with l∈[LE, HE]. Here, LE and HE stand
for low-energy and high-energy, respectively, while ray r⃗ indicates the path followed
by the X-ray from the source to an element in the detector. In addition, constant
εM is the maximum energy emitted by the X-ray source. Furthermore, S(ε) denotes
the X-ray source spectrum, D(ε) is the detector responsivity and function Dl(·) is the
spectral responsivity of the layer l. Finally, the energy-dependent material attenuations
are µB(·) and µW(·) for the bone and water materials, respectively. Here, variables dB
and dW are the ray integrals of the volumes which indicate the concentration of each
of the materials along a given path. The ray integrals are defined by

dB =

∫
δB(r⃗)dr⃗; dW =

∫
δW(r⃗)dr⃗. (6.5)

Here, variables δB and δW are material-concentration volumes. After estimating dB
and dW for every ray r⃗, a CT image reconstruction technique is employed to obtain the
values of δB and δW. It should be noted a scanned object can be composed by many
materials, therefore, the accuracy of the estimated material concentration may vary
depending its composition.

B. Image-domain material decomposition

When the raw dual-energy sinogram is not accessible (e.g. the material estimation
is applied as post-processing or dual-source or voltage-switching CBCT) scanning
configurations, the material decomposition can be applied in the image domain under
the assumption that the CT images produced by the low-energy and high-energy
detectors are mono-energetic [154]. From this reference, this property is expressed by



128 Regularized DE CBCT material decomposition with framelet-based CNN

the mathematical model

µLE =µLE
B δB + µLE

W δW + ηLE ,

µHE =µHE
B δB + µHE

W δW + ηHE .
(6.6)

Here, µLE and µHE are individual voxels of the volumetric CT images µLE and µHE,
which are the CT reconstructed images for the low-energy and high-energy detector
sinograms pLE and pHE, respectively. Furthermore, in the equation, µLE

B =µB(εLE), is
the bone attenuation for the energy level εLE, which is the average sensed energy level
for the low-energy detector. Consequently, the variables µLE

B , µHE
B , µLE

W and µHE
W are

the bone and water images at the low-energy and high-energy levels, respectively. In
addition, variables δB and δW are voxels of the volumetric images δB and δW, which
indicate the concentration of the bone and water, respectively. Expressing Eq. (6.6) in
matrix form 1 results in the model(

µHE µLE

)
=
(
δB δW

)(µLE
B µHE

B

µLE
W µHE

W

)
+
(
ηLE ηHE

)
, (6.7)

which is equivalent to
µ = δa+ η. (6.8)

Here, vectors µ and δ represent the CT attenuation and material proportions for a
given voxel, respectively. In addition, a is the matrix for the forward model, which
contains the attenuations for the bone and water materials at the low-energy and
high-energy bands. As a final remark for this section, it can be observed that assuming
that µLE and µHE being mono-energetic is a simplification and renders this model less
accurate than the sinogram-domain model of Section 6.2.2 A.

6.3 Methods

6.3.1 Overview of the proposed approach

As mentioned in Section 6.1, this chapter explores image-domain material decomposi-
tion and denoising for DE CBCT. Consequently, the starting point for this application
is the image-domain model from Eq (6.8). It can be observed that the referred model
considers only individual pixels. Extending this model to full DE CBCT slices , results
in

D = M⊛A+N . (6.9)

Here, D is a DE CBCT slice, whose entries are vectors µ from Eq. (6.6), M is a tensor
containing the images whose materials are the bone and water concentrations δB and
δW. Furthermore, tensor N contains the noise components for the low-energy and
high-energy images, respectively. Tensors D, M and N have dimensions (1 × 2 ×
Nh×Nv), were Nh and Nv are the dimensions in the horizontal and vertical directions,

1In order to maintain consistency with the previous chapters, we have chosen to adopt row vectors
instead of column vectors in this formulation.
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respectively. Furthermore, tensor A is the matrix a in Eq. (6.8), which is reshaped
as a tensor with dimensions (2 × 2 × 1 × 1). This tensor models the relationship
between the attenuations measured by DE CBCT and their corresponding bone-water
concentrations.

In order to find the noiseless material image M from Eq. (6.9), this thesis integrates
the CGLS method with a data-driven regularizer that enforces smoothness. The
resulting method is shown in Algorithm 1, where the CGLS part is the same method
proposed by Kawata and Nacioglu [162] for algebraic reconstruction in CT. It should be
noted that the referred algorithm has been conceived initially for a different application.
However, it is a general solution for solving linear inverse problems, such as the
application shown here. Consequently, the only adaptation that is required is to
replace the forward CT model by matrix A. In addition, in this thesis, the gradient
updates are regularized with the CNNs PBW(·) and PDE(·) that operate in the bone-
water and dual-energy domains, respectively. The remainder of this section details the
steps that compose the proposed solution. It can be observed that since this chapter
is more application-oriented and builds upon applying the concepts of the previous
chapters in a practical case, the method description starts readily with the algorithm
and is explained in a straightforward manner.

Initialization. The first step in Algorithm 1, described in line 3 is the computation
of the initial value of the material tensor M0. This process consists of two sub-stages.
The first sub-stage is a filtering procedure applied in the dual-energy domain, which
is computed by the CNN PDE(·). It should be noted that in this domain, the noise
intensity is lower than in the bone-water domain, which should help to provide a good
initialization to the CGLS part of the algorithm. It can be observed that the second
input of PDE(·) is an estimate of the noise level in the dual-energy domain, denoted by
σ̂DE. The second sub-stage (also in line 3) is to convert the initial noiseless dual-energy
CBCT estimate to the bone-water domain. This is achieved by convolving the output
of the regularization stage by the tensor B, whose elements are the inverse of A.

SGD step. The initialization of the CGLS algorithm requires the computation of an
initial SGD optimization step, whose direction and step-size is obtained by the function
SGD_DIRSTEP(·), as shown in Line 5. Afterwards, in Line 10 the intermediate
material update is regularized with PBW(·). Note that the regularizer employs an
estimate of the noise level of the image in the bone-water domain (σ̂BW).

CGLS iterations. After the completion of the initialization of the CGLS optimization,
the remainder of Algorithm 1 updates and regularizes the material estimates with the
actual CGLS steps and directions, which are given by routine CGLS_DIRSTEP(·) in
Line 9 and with the network PBW(·) in Line 10.

Retrieval of dual-energy and material estimates. The last steps of Algorithm 1 are
shown in Lines 12 and 13. Both of these lines represent the final bone-water noiseless
estimates, as well as the noiseless estimate of the DE CBCT image, respectively. It can
be observed that the estimate of the DE CBCT is obtained by applying the forward
model to the bone-water estimate. As a final remark, it should be noted that the
operator ⊙ in Lines 23 and 28 represent the inner product operation and not an
element-wise multiplication. The next section describes the design of the networks
PDE(·) and PBW(·).
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Algorithm 1 Regularized CGLS CNN for DE CBCT decomp. and denoising.

1: function RCGN ( D, σ̂BW, σ̂DE)
2: // Initialization
3: M0 ← PDE(D, σ̂DE)⊛B
4: // The first step is SGD
5: α0,R0 ← SGD_DIRSTEP (M0,D)
6: M1 ← PBW(M0 + α0R0, σ̂BW)
7: // Computing the remaining iterations with CGLS
8: for n ∈ 1, ..., Ni − 1 do
9: αn,Rn ← CGLS_DIRSTEP(Mn,D, Rn−1)

10: Mn+1 ← PBW(Mn + αnRn, σ̂BW)

11: // Return values
12: M̂←MNi−1 // bone-water slice

13: D̂←MNi−1 ⊛A // dual-energy slice

14: return D̂, M̂

15: function SGD_DIRSTEP ( Mn, D)
16: // Gradient step
17: Rn ← (D−Mn ⊛A)⊛A⊺ // direction
18: αn ← ∥Rn∥22/∥Rn−1 ⊛A∥22 // step-size
19: return αn, Rn

20: function CGLS_DIRSTEP ( Mn, D, Rn−1)
21: // Intermediate steps
22: Q

n
← (D−Mn ⊛A)⊛A⊺ // intermediate residual

23: Γ← (Q
n
⊛A)⊙ (Rn−1 ⊛A)

24: βn−1 ← Γ/∥Rn−1 ⊛A∥22 // Intermediate step-size
25:
26: // Computing step-size for update
27: Rn ← Q

n
− βn−1Rn−1 // direction

28: αn ← (Rn ⊙Q
n
)/∥Rn ⊛A∥22 // step-size

29: return αn, Rn

6.3.2 Data-driven proximal operator

A Design of the denoising network

The data-driven proximal operators PDE(·) and PBW(·) are composed by two main
elements which are listed as follows. (1) The encoding-decoding path is composed by
the overcomplete Haar wavelet transform (OHWT) [57]2, which has the filters displayed
in Fig. (6.1). This transform is chosen because of its compact and directional filters.

2Note that the number of feature maps of the OHWT increases with respect to the number of decomposi-
tion levels. Consequently, deeper networks require tensors with more parameters. This leads to a trade-off
between the number of parameters and the network depth.
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Figure 6.1. Graphical representation of the kernel of the overcomplete Haar wavelet trans-
form (OHWT). The tensors highlighted in red have a high-pass nature and are referred to as HH,
whereas the kernels highlighted in blue, represent the filters used to extract the low-frequency
bands and are expressed by HL. The numerical values for the filters can be found in Chapter 4.
As highlighted in the picture, this transform generates 14 high-pass and 2 low-pass bands,
respectively. It can be observed that every input channel produces two low-pass channels/bands,
which are further decomposed in deeper networks. Consequently, the number of channels
expands with a growing number of decomposition levels.

(2) The second element of P(·) is a group of noise reduction CNNs D(·) which operate
in the high-pass bands of the framelet-transformed signal. For a single-level network,
the proposed regularization CNN P(·) is given by

P(Mi, σ̂) = O
(
Mi ⊛HL ⊛ H̃

⊺
L ⊛+D(σ̂M)(Mi ⊛HH)⊛ H̃⊺

H

)
. (6.10)

In this expression M is the input signal, whereas σ̂M is an estimate of its noise level.
Moreover, tensors HL and HH are the low/high-pass filters of the forward OHWT,
while H̃L and H̃H are their counterparts for the inverse transformation. Furthermore,
the denoising network D(·)(·) operates in the high-pass bands X = Mi ⊛HH and it is
defined by

D(σ̂)(X) = X− C(σ̂M·t1)
(
C(σ̂M·t0)(X⊛K0)⊛K1

)
⊛ K̃

⊺
1 ⊛ K̃

⊺
0 . (6.11)

Here, C(·)(·) is the soft-clipping function [55]. In addition, K0, K1, K̃0 and K̃1 are
convolution filters with spatial dimensions 1×1, which are learned during training.
Furthermore, t0 and t1 are their respective biases/threshold levels. It should be noted
that the denoising network D(·) shown in Eq. (6.11) is executing a shrinkage function
expressed in residual form [55]. Consequently, the proximal network P(·) is simply
executing a shrinkage operation in the framelet-decomposed signal, which is in line
with well-established algorithms such as the original FISTA model [125].

The output layer of P(·) depends on the domain where the network operates (i.e.
bone-water or dual-energy), as further heuristics can be used to improve the operation
of P(·) on each specific domain. When P(·) is applied to dual-energy images, the
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Figure 6.2. Proposed regularization CNN P(·) with four decomposition levels. Here, tensors
HL and HH are the convolution basis functions of the overcomplete Haar wavelet transform.
Furthermore, H̃L and H̃H are their inverse transform counterparts.

output layer is the identity (i.e. O(M) = M). Alternatively, when the model is applied
to bone-water images, the output layer O(·) is defined by

O
((

mB

mW

))
=

(
(mB)+ − µW

µB
· (mW)−

(mW)+ − µB

µW
· (mB)−

)
. (6.12)

Here, (mB , mW) are voxels of the intermediate estimates of the bone-water images Mi.
It can be observed that this layer suppresses negative values in the bone and water
concentration images, because negative material concentrations do not have physical
meanings and clearly are an underestimation. We hypothesize that the negative values
likely belong to the other material channel. Consequently, negative bone values are
set to zero, and the suppressed part is scaled, negated and added to the water channel.
In the case of negative water concentrations an analogous procedure is followed.

B. Estimation of noise intensity

The empirical estimates of the standard deviation in the bone-water and dual-energy
images (σ̂BW and σ̂DE, respectively) in Algorithm 1 are defined by

σ̂BW =
√
σ̂2
B + σ̂2

W; σ̂DE =
√

σ̂2
LE + σ̂2

HE . (6.13)
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Here, σ̂l is the noise standard deviation for layer/channel l∈[B,W,LE,HE], being
computed with the median absolute deviation M(·) of the high-pass voxels that
belong to the head of the subject. This operation is mathematically described by

σ̂l =M(Zl) · k, (6.14)

in which k = 1.4826 is a constant value, Zl is a layer of the input image Z and σ̂l is its
estimated noise standard deviation. Furthermore, operatorM(·) is defined by

M(Zl) =

{
msk_med(|Zl ∗wHH|,m), for ∥m∥0> 0;

median(|Zl ∗wHH|), otherwise.
(6.15)

Here, wHH is the diagonal filter of the 2D discrete wavelet transform with Haar basis
function msk_med(·), which is the median computed over the non-zero elements of
the mask m, while function median(·) is the conventional median, and denotes ∥·∥0 is
the L0 norm (the number of non-zero entries). Furthermore, the mask m indicates the
non-air pixels, which we arbitrarily define as the voxels with more than 500 Hounsfield
units in the low-energy image. Consequently, m is expressed by

m =

{
1, if 1000 ·

(
DLE−µW(εLE)

µW(εLE)

)
> −500;

0, otherwise.
(6.16)

where DLE is the low-energy channel of the DE CBCT image being processed.
It should be noted that the current computation for the noise standard deviation

estimate has two main limitations. (1) The computation in Eq. (6.13) inherently
assumes that the noise in both layers is uncorrelated, which may not completely true.
(2) The median absolute deviation estimator assumes that the noise is Gaussian, which
is not true for CT imaging. Still, it is assumed that the noise level is reasonably constant
for the head voxels within a given slice.

6.4 Experiments and results

6.4.1 Experimental setup

A. Dataset and reference methods

Synthetic dataset. For training, validation and testing, 19 pairs of noisy synthetic
DE CBCT scans and their respective clean bone-water images have been employed.
The synthetic scans use the head model by Simon et al. [163], which is based on the
BrainWeb phantom [164]. The simulated acquisition geometry consists of a flat panel
that has pixel size 0.742 mm, 396 rows and 512 columns. The detector responsitivity is
taken from the paper of Engel et al. [165]. For reconstruction, the panel-to-source and
isocenter-to-detector distances are set to 1.195 m and 0.39 m, respectively. With the de-
scribed settings, 440 projections with angular spacing of 0.5◦ have been simulated. The
reconstructions of the simulated projections have been performed with isotropic voxels
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Filter Decomp. Kernel Groups Total
name level dimensions parameters

K0 0 (28× 56× 1× 1) 1 1,568
K1 0 (56× 112× 1× 1) 2 3,136
t0 0 (56) N.A. 56
t1 0 (112) N.A. 112

K0 1 (56× 112× 1× 1) 2 3,136
K1 1 (112× 224× 1× 1) 4 6,272
t0 1 (112) N.A. 112
t1 1 (224) N.A. 224

K0 2 (112× 224× 1× 1) 4 6,272
K1 2 (224× 448× 1× 1) 8 12,544
t0 2 (224) N.A. 224
t1 2 (448) N.A. 448

K0 3 (224× 448× 1× 1) 8 12,544
K1 3 (448× 896× 1× 1) 16 25,088
t0 3 (448) N.A. 448
t1 3 (896) N.A. 896

Table 6.1. Kernel dimensions and number of parameters per layer of the denoising network
within the rCGN algorithm.

CNN Total Forward
parameters prop. time [ms]

rCGN 287,280 68.2
Butterfly-Net 301,954 15.6
FISTA-Net 75,176 102.5

Table 6.2. Number of trainable parameters and forward propagation time for the applied CNNs
under testing.

with size of 1 mm. The low-energy and high-energy volumes have been reconstructed
independently with the conjugate-gradient least-squares (CGLS) method [162], which
has been applied for 40 iterations. The reconstruction algorithm has been implemented
with the ASTRA toolbox [166]. After reconstruction, the volumes were inverted to its
bone-water components to generate the ground-truth, while synthetically-generated
noise is added to the reconstructed DE CBCT to serve as input to the networks.

The 19 synthetic scans are split in 5 scans for training, 5 for validation and 4 for
testing. This generates a total of 990, 990 and 792 slices for training, validation and
testing, respectively. For both synthetic and clinical scans, the energy levels used to
compute A have values of εLE=60 keV and εHE=75 keV.

Clinical scans. In addition to the synthetic scans, it is of primary importance to
evaluate the performance of the methods under analysis when processing clinical
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scans. The scans selected for this section contain a contrast agent (iodine), which
enhances the vascular structure of the brain. It should be noted that the models
evaluated here assume that the CT slices are composed of bone and water and not
iodine. In spite of this, it is hypothesized that most of the contrast agent will be
displayed in the bone image because it is a dense material with a high attenuation
coefficient for X-rays, which similar to the expected attenuation of bone. Just as in the
case of the synthetic dataset, the energy levels are assumed to be εLE = 60 keV and
εHE = 75 keV.

Reference methods. For comparison, this chapter uses the butterfly network (Butterfly-
Net) [154] and FISTA-Net [111] as baseline solutions. Butterfly-Net is a CNN designed
to denoise and convert DE CBCT scans to material concentrations. In our implementa-
tion of this model, the normalization layers are avoided, since it is observed that they
introduce distortions to the estimated material images and affect the generalization of
this model. This observation is in line with other imaging applications that avoid these
layers as well [167], [168]. The second baseline for this chapter is FISTA-Net [111].
For this model, the forward matrix is set to the values of a as specified in Eq. (6.8).
In addition, the number of input/output channels have been changed from one to
two, so that it operates with dual-energy CBCT scans. Moreover, in line with the
CT artifact-reduction application of the article by Xiang et al. [111], the Laplacian
regularization matrix is not used for initialization. Finally, just as in the original article
of FISTA-Net, 7 FISTA steps are employed.

Implementation of rCGN. The rCGN employed here has the following characteristics.
First, the regularizers PDE(·) and PBW(·) are implemented with four decomposition
levels, as shown in Fig. 6.2. Furthermore, the tensor dimensions and the grouping
performed in the convolutions for parameter reduction are described in Table 6.1.
Finally, it is worth mentioning that the trained rCGN model uses 10 CGLS iterations.

Model size and execution time. The total number of trainable parameters as well as
the execution times for all models are displayed in Table 6.2. It can be noted that the
smallest model in terms of parameters is FISTA-Net. However, it can be observed that
it is the slowest model as well, because it is undecimated and consequently executes
more operations. In contrast, Butterfly-Net is the model with the most parameters,
but it is the fastest, which is caused by the non-iterative construction of this model, as
opposed to rCGN and FISTA-Net. Finally, the rCGN model is the second smallest and
fastest model.

A. Training procedure

For training the proposed network as well as Butterfly-Net, the L1 loss is computed
between the input noisy slices D processed with a given CNN G(·) and the noise-free
material-specific slice M. This is mathematically described by

Ldec = ∥G(D)−M∥1. (6.17)

Here, Ldec is the material decomposition loss. In the specific case of FISTA-Net, in
addition to the similarity metric between the processed signal and the ground-truth,
an additional loss is employed to ensure that the representation generated by the
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Image type CNN PSNR [dB] MSSIM

Low energy

Input 22.03 0.508
rCGN 26.21 0.577
Butterfly-Net 19.03 0.561
FISTA-Net 26.84 0.683

High energy

Input 14.76 0.352
rCGN 26.50 0.577
Butterfly-Net 19.97 0.563
FISTA-Net 27.22 0.681

Bone

Input 7.49 0.084
rCGN 29.80 0.303
Butterfly-Net 26.13 0.484
FISTA-Net 33.44 0.561

Water

Input -1.45 0.104
rCGN 20.45 0.518
Butterfly-Net 18.18 0.496
FISTA-Net 23.62 0.581

Table 6.3. Obtained performance in terms of PSNR and MSSIM for noise reduction and material
decomposition with DE CBCT images using different neural networks (rCGN, Butterfly-Net and
FISTA-Net).

encoder of the regularization network of FISTA-Net is sparse (Lspa). Furthermore,
FISTA-Net employs an additional loss term to train the encoding-decoding path of
the regularizer to learn perfect signal reconstruction. This is referred to in the paper
of Xiang et al. [111] as the symmetry loss (Lsym). Consequently, the complete loss for
training FISTA-Net [111] is defined by

LFISTAnet = Ldec + λsymLsym + λspaLspa , (6.18)

where LFISTAnet is the loss term used to train FISTA-Net, while λsym and λspa define
a trade-off for learning material decomposition, perfect reconstruction (sym) and
sparsity.

All CNNs presented here are trained with Adam optimization with a linearly
decaying learning rate. It can be observed that all presented models are very different
in terms of their architecture, which means that the learning rate and the epochs neces-
sary to train the models are different in each case. After an empirical evaluation, we
have determined that the initial learning rate (iLR) for the proposed rCGN algorithm
is set to 2×10−3 and the model is trained for 200 iterations, while for Butterfly-Net,
the iLR is 5×10−4 and it is trained for 400 epochs. Finally, FISTA-Net is trained with
an iLR of 5×10−4 and trained for 400 iterations.
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C. Image quality metrics

In order to compare the similarity between the processed images and the ground
truth, the experiments presented here employ the mean structural similarity index
metric (MSSIM) between the processed signal X and the ground truth Y, as well as
the peak signal-to-noise ratio (PSNR(·)), which is defined by

PSNR(X,Y) = 10 · log10
(

(Max(Y))2

MSE(X,Y)

)
. (6.19)

Here, MSE denotes the mean-squared error, while Max(Y) is set to 55 [HU], which is
the maximum value used for display in the CT images processed.

For display, the bone-water images have been scaled, so that their display intensit-
ies resemble Hounsfield units. For example, the water concentration dW should be
centered around 0 units. For this purpose, the water image is scaled by

dPHU
W = (dW − 1) · 1000, (6.20)

where dPHU
W is the water image scaled in what is referred here as pseudo Hounsfield

units. It should be noted that this scaling sets to zero when the concentration of water
is 100% (dW=1). Similarly, the bone image dB is scaled by

dPHU
B = dB · 1000, (6.21)

where dPHU
B is the image dB in pseudo Hounsfield units.

6.4.2 Experiments

Synthetic scans. Using the described experimental setup, we have trained the rCGN,
Butterfly-Net and FISTA-Net. The performance measurements for the synthetic dataset
can be found in Table 6.3. In addition, Fig. 6.3 displays the dual-energy CT slices
of one of the synthetic scans, as well as the resulting bone-water and dual-energy
CT estimates, produced by the tested CNNs. From Fig. 6.3, and Table 6.3, it can be
observed that all the networks are able to significantly remove the noise present in
the simulated noisy acquisitions. However, the estimates produced by FISTA-Net are
the best in terms of the quality metrics, followed by the rCGN. It can be noticed that
despite the differences in terms of quality metrics, for this dataset, the appearance of
the estimates produced by the rCGN and FISTA-Net are virtually similar to each other
with almost indistinguishable differences. This is not the case for the slice processed
with Butterfly-Net, which has a significant amount of remaining low-frequency noise.
This is likely caused by the network model, since the Butterfly-Net architecture is
single-scale and relatively shallow. This means that its receptive field is small when
compared to the rCGN and FISTA-Net.

Clinical scans. In addition to the synthetic dataset, the tested CNNs are also evalu-
ated in the clinically-acquired CBCT slices, as displayed in Figs. 6.4, 6.5 and 6.6. The
referred figures show the low-energy, water and bone images processed by the rCGN,
Butterfly-Net and FISTA-Net, respectively. It should be noted that the high-energy
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Figure 6.3. Dual-energy CT slices and their corresponding bone-water concentration images.
The figure shows the noisy inputs, the ground-truth and the processed slices with the rCGN,
Butterfly-Net and FISTA-Net. In the figure, the columns present the visual results of each of the
networks being tested, while the rows are the image channels for the processed slice.

slices are excluded because the low-energy and high-energy images have a similar
appearance.

To start the analysis in clinically-acquired images, it can be observed in Fig. 6.4
that all the networks improve the visibility of the lesions and produce high-quality
low-energy images. In fact, there are no significant differences between the appearance
of the low-energy images processed by the three networks.

When analyzing the water concentration components shown in Fig. 6.5, it can
be observed that the most uniform images are produced by the rCGN. In this case,
the second-best model is FISTA-Net, for which the image still shows some residual
low-frequency noise. When observing the image produced by Butterfly-Net, it can be
noted that the parenchyma is almost an exact copy of the low-energy image. This is
specifically noticeable because most of the contrast agent is still visible in the images
produced by this network. This result suggests that Butterfly-Net does not generalize
well and it learns to copy the parenchyma from the low-energy to the water image,
while suppressing the skull. An important realization from Fig. 6.5 is that the water-
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Figure 6.4. Low-energy image processed with the rCGN, butterfly network and FISTA-Net as
well as the noisy input. For all the subjects lesions found in the scan are highlighted.

concentration images produced by the rCGN and FISTA-Net show beam-hardening
in the vicinity of the skull. This is especially visible in Subjects A18 and A03 in
Fig. 6.5. This behavior is expected, due to the modeling limitations of the image-
domain material decomposition, which implicitly assumes that dual-energy images
are mono-energetic. In can be noted that this is a simplification of the poly-energetic
imaging process. This aspect can be circumvented by the use of a sinogram-domain
decomposition, which is beyond the scope of this thesis.

The bone-concentration images displayed in Fig. 6.6 show that the proposed
rCGN model produces smoother results with lower noise levels than FISTA-Net and
Butterfly-Net. However, it should be noted that for the rCGN, the added smoothness
comes at the cost of loosing some fine details (see subject A03). Finally, Fig. 6.7 shows
the effect of the analyzed CNNs in the bone image, to improve the visualization of
the contrast agent in the patients by displaying the maximum intensity projection in
the bone concentration image over 55 slices. In Fig. 6.7, it can be observed that all the
CNNs greatly improve the visualization of the vascular structure of the brain. In this
case, the network that produces the clearest vessel structures is FISTA-Net, followed
very closely by the rCGN. Here, Butterfly-Net seems to be darker than the rest of the
methods, which indicates that this estimate is biased towards lower concentrations.
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Figure 6.5. Corresponding water component to the scans of Fig. 6.4, which are processed with
the rCGN, butterfly netwok and FISTA-Net as well as the noisy input. For all the subjects lesions
found in the scan are highlighted.

6.5 Discussion and limitations

Discussion. The presented rCGN model is able to produce high-quality estimates
which have performance metric results close to FISTA-Net for the synthetic scans.
In addition, it can be observed in Fig. 6.3 that the images produced by the rCGN
and FISTA-Net are almost indistinguishable from each other for this dataset, while
the rCGN is considerably faster. Furthermore, it can be observed that the rCGN
model also generalizes better to real clinical scans than FISTA-Net and Butterfly-
Net. The improved generalization of the rCGN can be attributed to a few reasons
which are as follows. (1) The proposed model leverages a sparse and directional
transformation, which is already compliant with perfect reconstruction. (2) The noise
reduction network architecture is very simple and therefore less likely to overfit on
the synthetic dataset. (3) The proposed approach leverages prior knowledge about the
strength of the noise, which allows to adapt the denoising process. (4) The CGLS is
an adaptive optimization approach, which computes the optimal step size for every
slice being processed. This contrasts with FISTA-Net, where the step sizes are learned.
Henceforth, they are determined by the training procedure and not by the slice that is
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Figure 6.6. Corresponding bone component to the scans of Fig. 6.4, which are processed with
the rCGN, Butterfly-Net and FISTA-Net as well as the noisy input. For all the subjects lesions
found in the scan are highlighted.

being processed.
Regarding Butterfly-Net, two major issues can be observed. First, its receptive field

is small, which causes that this model performs worse than the rCGN and FISTA-Net
on the synthetic images. The second problem of Butterfly-Net is that it learns the
forward/inverse model. This contrasts with FISTA-Net and the rCGN, which leverage
the physics model of the attenuation process. This limitation causes that Butterfly-Net
overfits on the synthetic scans and decreases its performance when evaluated on the
real clinical images. This is especially visible in the water concentrations displayed in
Fig. 6.5.

Limitations. The image-domain model presented in Eq. (6.6) is a simplification of
Eq. (6.4), and neglects the wide spectrum of energy levels occurring in the dual-energy
CBCT scan. This simplification causes beam hardening in the vicinity of the skull for
some slices (e.g. in the water image of subject A03 shown in Fig. 6.5). Improvements
to the current approach can be achieved by decomposing the signal in the sinogram
domain, where it is possible to leverage a more accurate model of the imaging process
(see Eq. (6.4)). It should be noted that this requires a more elaborate prepossessing
of the data, using the sinogram and the acquisition geometry. This is beyond of the
scope of this chapter and is considered for future work.
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6.6 Conclusions

This chapter has presented a solution for noise reduction and material decomposition
in dual-energy CBCT. In order to address this problem, a new model-based CNN
known as regularized conjugate gradient network (rCGN) is proposed. The proposed
model leverages the conjugate gradient least squares algorithm (CGLS), which is an
iterative method for solving linear inverse problems. At every CGLS step, a proximal
operator represented by a CNN enforces smoothness. The smooth-enforcing CNN
is simple and leverages an existing framelet (the OHWT) that provides properties
such as directionality, sparsity and perfect reconstruction. This design choice circum-
vents the use of explicit training to achieve such properties. The integration of these
concepts, leads to a highly interpretable model-based CNN, since it mimics closely
other proximal methods for solving inverse problems. The rCGN model has two main
contributions which are listed below.

1. The rCGN avoids the more complex step-size scheduling of FISTA-Net by in-
troducing the CGLS algorithm as optimization backbone. This means that in
the rCGN the step-size is adaptively computed for every slice that is being
processed.

2. The use of an existing framelet with perfect reconstruction and sparsity proper-
ties improves the interpretation of the model and it may be one of the reasons
why this design is able to generalize better than the reference methods. In ad-
dition, the presented model has an adaptive behavior to the noise level, which
is reminiscent of previously used wavelet-based denoising algorithms [14] and
which has been exploited by the multi-scale sparse coding network [48].

The proposed rCGN model performs closely to FISTA-Net in material separation
and denoising of dual-energy CBCT synthetic scans and generalizes better to clinical
scans than the reference models, despite the fact that it is trained only with a limited
amount of simulated scans. Furthermore, an additional advantage of the rCGN model
is that it offers a faster execution than the FISTA-Net.

Model-based deep learning is an application where CNNs are a part of a larger
system. As mentioned in this chapter, within model-based deep learning an optimiza-
tion algorithm is employed to solve an inverse problem and part of this solution is a
CNN that is employed for learned regularization. It can be observed that typically in
spite of the more interpretable behavior of model-based deep learning, at its core a
conventional "black box" CNN is employed. We have noted this aspect and considered
it as an opportunity for employing some of the design elements of previous chapters
to enhance the interpretability of these systems. For example, the rCGN employs the
OHWT, which was first developed as the encoding-decoding path of the DHSN mod-
els from Chapter 5. Furthermore, the noise reduction network within the regularizer
is inspired on the residual LWFSN model from Chapter 6, which proved to have high
performance, while being compact. Finally, the idea of incorporating adaptivity to
the denoising process comes from the multi-scale sparse coding network [48], which
is first addressed in Chapter 3 as a means to improve the generalization of noise
reduction models.





CHAPTER7
Conclusions

This concluding chapter summarizes the main learning points of the conducted thesis
research. The structure of this chapter is as follows. First, Section 7.1 summarizes the
conclusions of each individual chapter. Afterwards, Section 7.2 addresses the research
questions presented in Chapter 1 and discusses the contributions and answers to these
questions. Finally, Section 7.3 discusses the future outlook for the research on further
integration of signal processing and deep learning models.

7.1 Conclusions of the individual chapters

Chapter 2 introduces noise reduction techniques, such as total-variation denoising,
wavelets, low-rank methods, as well as deep learning elements such as CNNs and
autoencoders. These concepts form the foundations for the research of this thesis. In
addition, this chapter introduces also the mathematical notation and relevant image
quality metrics that are used in the experiments of the succeeding chapters.

Chapter 3 commences with the analysis of neural networks in terms of signal
propagation and analysis. More specifically, existing signal processing concepts, as
well as the theory of deep convolutional framelets [40] are developed for a solid
theoretical description of ED CNNs. This approach strengthens the theory of deep
convolutional framelets and extends it to more general networks with shrinkage and
clipping activations. In addition, this chapter presents a framework that is used to
describe and analyze CNNs to find potential limitations of these models. The found
limitations on the analyzed CNNs motivate the design choices used in the following
chapters.

Chapter 4 presents a new framelet transformation with compact and directional
filters. The developed framelet is referred to as the overcomplete Haar wavelet
transform (OHWT), which is a special case of the dual-tree complex wavelet transform.
Afterwards, this new framelet is employed as encoding-decoding structure in two
CNN models, referred to as the dual-Haar shrinkage networks 1 and 2 (addressed as
DHSN1 and DHSN2, respectively). Both of these networks are designed for removing
noise in CT images and are inspired by the Neigh-shrink [54] approach for noise
reduction. The followed technique consists of using a CNN to provide element-
wise weights that suppress noisy components in the high-pass bands of the framelet
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decomposition, while preserving the detail information. The motivation for the
integration of framelets and CNNs in the DHSN1 and DHNS2 models is to use
trainable parts only to eliminate the noise from the signal and to handle the image
decomposition/reconstruction with framelets that have known properties.

The DHSN1 and DHSN2 models achieve good noise reduction performance, which
is comparable with other state-of-the-art models (the RED CNN and FBPConvNet)
and produce image estimates that display excellent quality when visualizing patches
of clinically-relevant structures. Furthermore, to demonstrate the advantages of using
an ED path with known properties, this chapter shows also an unsupervised noise
reduction pipeline, which leverages the sparsity properties of the proposed DHSN2.
The results demonstrate that the tight integration of signal processing and deep learn-
ing leads to simpler models with more interpretable operation.

Chapter 5 proposes a CNN architecture for noise reduction, called learned wavelet-
frame shrinkage network, or LWFSN, and its residual counterpart, the rLWFSN. In these
networks, the encoding-decoding (ED) path is learned instead of a fixed structure as
used previously. Furthermore, the ED path in this model is linear and performs the
decomposition/reconstruction of the input signal, while the noise is suppressed by a
shrinkage stage that is based on a linear expansion of thresholds [108].

The ED path of the LWFSN model is designed to achieve perfect reconstruction
under ideal assumptions, as shown by the analysis in Section 5.2.1-A. Furthermore,
the use of shrinkage non-linearities enables linear model behavior when the threshold
is set to zero. This method is used to demonstrate that the linear part of the model
operates in such way that the encoder and decoder decompose and reconstruct the
signal in an almost perfect way, while the noise reduction behavior of the system is
mainly caused by the shrinkage non-linearities. The described behavior is confirmed
and validated empirically by using the impulse and frequency responses of the system.
At the time of this research, it was the first time that such analysis was applied to a
CNN.

Finally, it is worth mentioning that the LWFSN presented in Chapter 5 employs
only a fraction of the training parameters of conventional CNNs (< 1%), while it offers
a very short inference time (more than 7 times faster than the reference thigh-frame
U-Net). However, the LWFSN performs similar to state-of-the-art alternatives, such as
the tight frame (TF) U-Net and FBPConvNet for denoising low-dose CT images.

Chapter 6 Chapter 6 is more application-oriented and employs the concepts from
preceding chapters, by incorporating a framelet-based CNN into a model that decom-
poses dual-energy (DE) cone-beam (CB) CT into material-specific images. The pro-
posed model is referred to as regularized conjugate gradient network (rCGN) and incorpor-
ates framelet-based regularization, CNNs and conjugate gradient least squares (CGLS)
optimization. It is observed that the proposed approach is closer to conventional iterat-
ive soft thresholding algorithms (ISTAs) than alternative model-based solutions such
as FISTA-Net. This means that the proposed rCGN is more interpretable, since ISTA-
like algoriths are designed with concrete assumptions about the signal-generation
process. The rCGN and FISTA-Net models are trained with simulated DE CBCT scans
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and evaluated in both, synthetic and clinically-acquired images. The obtained results
show that the proposed rCGN uses only 66% of the execution time of FISTA-Net,
while achieving comparable peak signal-to-noise ratio and mean structural similarity
index when evaluated with synthetic scans. However, the proposed rCGN generalizes
better when evaluated with clinically-acquired scans.

7.2 Discussion on the research questions

RQ 1: Integrating conventional signal processing into CNNs
RQ1a. What are the consequences of the integration of non-trainable framelets as ED path in
noise reduction CNNs?

Chapter 4 The integration of non-trainable framelets into the convolution structure
of CNNs has two main consequences. On one hand, the use of non-trainable framelets
as ED path in CNNs limits the tasks that the CNN learns, because the decomposition
and signal reconstruction are already provided by the framelet transformation. On the
other hand, the use of non-trainable filters decreases the flexibility of the model. This
should be mitigated by choosing a suitable representation based on prior knowledge
about the task and the nature of the data. Both of the addressed consequences are
discussed in more detail below.

The main elements that should be considered when choosing the framelet basis are
its directionality, redundancy and filter size/support. The use of redundant transforms
with directional filters is often preferred for image processing applications, because
directional transforms (see Chapter 2) capture better transitions in more directions
than (bi)orthogonal wavelets [169] (0◦, ±45◦ and 90◦). In addition, the redundancy
of directional transforms reduces the aliasing introduced by denoising, because this
representation provides more "bandwidth" than non-redundant transforms [126]. The
last element considered is the filter support/length, since it sets a trade-off between
frequency and space localization. For image processing tasks, shorter filters are often
preferred because they increase the spatial localization of the transform.

The directionality and compact filters are the main elements that motivate the
OHWT as ED path for the noise reduction networks in Chapter 4. However, it can be
observed that the redundancy of the OHWT increases the computational cost for its
implementation, when compared with non-redundant transforms. Furthermore, the
redundancy impacts the model size as well, because redundant transforms generate
more bands/feature maps, which increase the number of input/output channels of
the denoising network. This is addressed in more detail in Appendix B, where it
is shown that the expansive representation provided by the OHWT causes that the
number of parameters increases exponentially as the network becomes deeper. Still, it
should be noted that this effect can be partly mitigated by sharing parameters within
the network, as performed in the DHSN1 and DHSN2 models in Chapter 4, or by
using grouped convolutions as implemented in the regularization network shown in
Chapter 6. However, it should be noted from the analysis performed in Appendix B,
that the models based on the OHWT have more trainable parameters than the models
where the encoding-decoding path is learned (the LWFSN). This disadvantage is
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addressed later.

RQ1b. Is it possible to realize a denoising CNN with a trainable ED path that offers per-
fect reconstruction, without explicitly training for this property?

The LWFSN presented in Chapter 5 shows that it is possible to learn a model
where the ED path approximates perfect reconstruction. There are two main aspects
to consider for achieving this property. (1) The LWFSN model is designed in such a
way that it can be theoretically proven that it is able to achieve perfect reconstruction,
as shown by the analysis performed in Section 5.2.1. (2) The use of shrinkage func-
tions allows a behavior closer to a linear system. Moreover, this type of activation is
critical to study the linear behavior of the system, because it becomes linear when the
threshold is set to zero. This property enables the impulse and frequency response
analyses shown in Section 5.3.

Despite the fact that the LWFSN achieves an ED path where the impulse response
is close to the convolution identity, it should be noted that the individual encoding-
decoding filter pairs do not comply with such property. A likely explanation for this
is that the CNN learns the best filters for noise reduction, which may not necessarily
guarantee perfect reconstruction for each individual layer, as mentioned in Chapter 3.
In addition, effects, such as variations in gain between individual layers, which is
known as the neural balance theorem [170] may further complicate to study the response
of individual layers, because the energy of a specific band may be scaled by other
layers in the design.

RQ1c. Can the integration of signal processing knowledge improve CNNs in any aspect?
The use of signal processing concepts such as wavelet shrinkage within CNNs

can circumvent some issues associated with conventional ReLU-based models. For
example, as shown in Chapter 5, the use of shrinkage activations instead of ReLUs
allows to reduce the number of feature maps in CNNs, which inherently reduces
the computational cost and complexity the design. Specifically, shrinkage functions
propagate the positive and negative elements of the feature maps of the CNN, while
ReLUs require twice as many feature maps to propagate the same signal, as mentioned
in Section 3.4.1.

In addition, it should be noted that, although not discussed in the technical chapters
of this thesis, at the moment of writing this dissertation, other signal processing
concepts are being exploited within CNNs and have shown to achieve state-of-the-art
image denoising, while remaining interpretable. An example of such integration is
the deep total-variation by Kobler et al. [114], [171], which integrates elements of
total-variation denoising [13], [172] with CNNs.

RQ 2: Impact of the activation functions in CNNs
RQ2a. Do shrinkage functions have any advantages when compared to ReLUs in terms of
CNN interpretability?

Shrinkage activations enable more model predictable models when compared with
ReLUs, because shrinkage layers only can perform either signal shrinkage, the unity
operation or signal boost, whereas the ReLUs can represent any arbitrary function



Discussion on the research questions 149

if the number of channels and network depth are large enough [118]. Furthermore,
by using shrinkage activations in a CNN, the model can be linearized by setting the
threshold to zero, which allows to characterize the behavior of the linear part of the
model with the impulse and frequency response of the system. It should be noted that
this is not possible with ReLU activations, because they do not become linear when
the bias/threshold is set to zero.

RQ2b. How do shrinkage functions limit the operation of CNNs when compared to ReLU
activations?

As discussed in RQ2a, ReLUs are universal approximators and can represent
functions such as shrinkage and clipping activations (see Section 3.4.2). Consequently,
the use of shrinkage layers limits the type of functions that can be represented by
the model to shrink/boost or to perform the identity function over the feature maps.
This limitation may not be critical for noise reduction applications in which may
even have benefits, such as reduced computational complexity. However, shrinkage
functions could be a limitation for other more complicated tasks. For example, in
image segmentation and image classification, it could be important to preserve only
the positive or negative part of a feature map, because it may indicate specific intens-
ity/colour transitions that are relevant for classifying/segmenting a specific pattern.
Consequently, we hypothesize that in this context, the use of shrinkage activations
may be detrimental for the performance of the model, because shrinkage functions
affect equally the positive and negative values of the feature maps.

RQ 3: Comparing characteristics of convolutional neural networks
RQ3a. Is it possible to define a common framework for the analysis of denoising CNNs to
identify their potential limitations?

Prior to the work presented in this dissertation, there have been diverse frame-
works that have defined a formal analysis of the reconstruction characteristics of
CNNs. The analyses performed by these frameworks represent the convolutions
and/or down/up-sampling layers of CNNs with matrix-vector notation. This may
be confusing for deep learning practitioners that do not have signal processing back-
ground, because it assumes that the designer understands how to translate the various
elements to an actual implementation, which is not always straightforward. For
example, in matrix-vector notation, a multi-resolution wavelet decomposition is rep-
resented by a single matrix multiplication. However, in terms of implementation this
is equivalent to multiple convolutions and down/up-sampling layers. Consequently,
it can be observed that matrix-vector forms hide the local nature of framelet decom-
positions.

In order to avoid the shortcomings of the vector-matrix form, Section 2.4 and
Chapter 3 introduce a notation that reflects better the implementation of the network,
which is a clear advantage when compared with matrix-vector representations. In
addition, the proposed notation can be easily related to graphical representations as
demonstrated by the analyses of Chapters 3, 4 and 5. The key to the improved notation
is that the proposed framework models each individual layer in the model, instead of
abstractions presented in previous works such as the theory of deep convolutional
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framelets [40]. This is bridging the gap that deep learning practitioners experience
with conventional frameworks.

Finally, a major advantage of the proposed framework is that it explicitly shows the
influence of the non-linear part of the model in terms of signal reconstruction. Notably,
alternative approaches, such as the theory of deep convolutional framelets [40], only
model the linear part of CNNs and ignore the effects of the non-linearities in the
reconstruction of the signal.

RQ3b. What are the limitations of such framework?
The main limitations of the analysis framework proposed in Chapter 3 are listed

as follows. (1) The analyses presented in Section 3.5 always consider filters that
allow for perfect reconstruction, which is a useful property for analysis, but as shown
in Section 3.6, trained models do not always comply with such property. (2) The
proposed framework does not account for the effects of the number of channels,
which impacts the ability of the model to reconstruct the signal. (3) The framework
accounts for the effects of the convolution and non-linearities of a given CNN, but
does not consider other operations, such as normalization layers. The reason for this
omission is that (during test time), these layers perform linear operations, which could
be embedded within the convolution weights. Furthermore, their behavior during
training is signal-dependent, which greatly complicates any analysis of the model.
(4) The final limitation of the framework is that it only studies the signal reconstruction
characteristics of CNNs, but it cannot predict the actual noise reduction performance
of a given model.

RQ 4: Expanding the applications of encoding-decoding CNNs
RQ4a. Which concepts and principles can be applied to improve the generalization of model-
based deep learning?

Chapter 6 presents a model-based CNN for denoising and material decom-
position in dual-energy CBCT. The proposed model is referred to as regularized
conjugate-gradient network (rCGN) and incorporates elements of the CNNs discussed
in Chapters 3 and 4. The rCGN model contains two sources of adaptivity that can
improve its generalization. (1) The CGLS optimization backbone has adaptive step-
size computation updates that are optimized for the material decomposition of every
analyzed slice. We hypothesize that this is one of the reasons why the rCGN model
generalizes better than FISTA-Net for the regularized material decomposition shown
in Chapter 6. More specifically, the trained step-sizes of FISTA-Net assume that all
the processed slices generate the same optimization landscape for the material decom-
position, whereas the use of the CGLS method ensures that the process is optimized
for every processed slice. (2) The thresholds in the regularizer of the rCGN are pro-
portional to the noise intensity of the processed image. It should be noted that we
are not the first in using this technique. In fact, this approach has been successfully
followed in the multi-scale sparse coding network [48] and it is common in (non-deep
learning-based) adaptive filters[14].
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RQ4b. Can the proposed concepts with ED CNNs also contribute to lower their complexity
and how does this compare with conventional CNN designs?

One of the core elements of the rCGN model is a simplified regularization network
that uses a non-trainable framelet as encoding-decoding path. Chapter 6 shows that
this simplified CNN produces estimates with slightly lower PSNR and MSSIM values
than the reference FISTA-Net, when evaluated in images that are similar to the scans
that the network was trained upon. It should be noted that the core of FISTA-Net is a
more conventional CNN design, based on ReLU activations. Nevertheless, despite the
small degradations in PSNR and MSSIM, the images produced by the proposed rGCN
and FISTA-Net are almost identical in terms of appearance. In addition, as shown
by the evaluation in clinical scans, the simpler rCGN is able to generalize better to
unseen images, such as the clinical scans examined in Chapter 6, thereby improving
the robustness of the system.

7.3 Outlook for the integration of signal processing
and deep learning

At the moment of writing this dissertation, the use of CNNs that leverage knowledge
of signal processing concepts has gained momentum and it is likely that this trend
will continue. A possible reason for the increased popularity in model-centric design
of CNNs may be related to the fact that the performance of conventional CNNs (often
trained and designed with data-centric considerations in mind) is only improving
marginally when compared with the initial successes of deep learning approaches.
Consequently, properties such as robustness, interpretability and reduced computa-
tional complexity have become more relevant and attractive for exploration. This
renewed interest in system-centric design of CNNs has sparked the integration of
many signal processing concepts that go beyond the framelet interpretation shown in
this thesis.

Going beyond the framelet interpretation, parallel developments occur towards
alternative deep learning models that integrate established signal processing concepts
with CNNs. For example, the discrete cosine transform 2 network (DCT2-Net) [119]
integrates DCT-based denoising with deep learning. An additional signal processing
concept that has gained momentum for its integration with deep learning in image
denoising is sparse coding, which has been applied to the convolutional dictionary
learning network (CDLNet) [173], the convolutional sparse coding network (CSC Net) [174],
and the deep K-SVD denoising [53] model. Finally, the total deep variation framework [114],
[171] integrates elements of total-variation denoising algorithms [13], [172] with CNNs.
It should be noted that all of these models achieve results that are competitive with
state-of-the art CNNs, while being more interpretable that conventional models.

In addition to noise reduction, model-based deep learning approaches [139], [175]–
[180] have also leveraged signal processing and CNN concepts. (e.g. the DE CBCT
material decomposition shown in Chapter 6). This approach is powerful, interpretable
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and has found success in many problems such as image reconstruction in CT [181]
and magnetic resonance imaging (MRI) [160].

It should be noted that the presented examples of CNNs which are used to solve
inverse problems such as noise reduction, are only a small sample of the plethora
of signal processing-based designs of deep learning models. Due to their better
interpretability [58], lower computational complexity [182] and –in some cases– higher
performance [114], [173], it is likely that the trend of integrating signal processing
concepts with CNNs will continue and may become the de-facto approach for solving
inverse problems in the coming years. For example, an immediate extension of the
work in noise reduction of this dissertation is to employ the proposed models for other
similar inverse problems such as image enhancement and creation of super-resolution
imagery. This extension is plausible because the models applied to this problem would
subjectively enhance the information in the feature maps, rather than suppressing it
as in the noise reduction case.

In conclusion, it can be observed that some of the most robust interpretations
of CNNs from a signal processing perspective, focus on the context of noise reduc-
tion [40], [41], [43]. This is most likely related to the parallels between the mathematical
formulation of CNNs and well-known denoising algorithms. However, it should be
noted that conventional ED CNNs, such as the U-Net [8], can be used in many pixel-
level operations (often without modifications) simply by (re-)training the network
with new data. Consequently, the studies presented here can be used as a starting
point to understand how ED CNN models operate in other contexts and how this
affects the representations that they are learning. However, this is unlikely to happen
because the vast majority of deep learning researchers commonly use existing CNN
designs without questioning or caring about their internal operation.



APPENDIXA
Errata of "Noise reduction in CT

using Learned Wavelet-Frame
Shrinkage Networks"

Chapter 5 is based on the article Noise reduction in CT using Learned Wavelet-Frame
Shrinkage Networks [58]. While editing this thesis, it was found that there is a bug
present in the routine that computes the HaarPSI metric [97]. The referred bug causes
that the performance measurements in Tables III, IV, V and VI of the referred article
are scaled up by a factor of approximately 1.04 times and affects all models. However,
it should be noted that the specified mistake does not change the conclusions of the
referred publication because it affects all the models in approximately the same way.
Furthermore, the HaarPSI is only one out of the three quality metrics displayed in the
aforementioned tables. The text below reflects the corrections that have been applied
in Chapter 5 of this thesis with respect to published article [58]. Here, Tables A.1, A.2,
A.3 and A.4 reflect the applied corrections, in which the incorrect values are presented
in red.

Model HaarPSI [AU] HaarPSI [AU] MSSIM [AU] PSNR [dB]

Baseline (QDCT) 0.796 0.835 0.654 25.65
LWFSN 0.836 0.868 0.670 27.19
TF U-Net 0.833 0.874 0.693 27.61
FBPConvNet 0.838 0.876 0.692 27.63

Table A.1. Corrected values of Table III [58]. This dissertation displays the rectifications on
Table 5.3.



154 Errata of “Noise red. in CT using Learned Wavelet-Frame Shrink. Nets."

Model HaarPSI [AU] HaarPSI [AU] MSSIM [AU] PSNR [dB]

Baseline 0.796 0.835 0.654 25.65
LWFSN 0.836 0.868 0.670 27.19
LWFSN-S 0.833 0.868 0.667 26.99

Table A.2. Corrected values of Table IV [58]. This dissertation displays the rectifications on
Table 5.4.

Model HaarPSI [AU] MSSIM [AU] PSNR [dB]

LWFSN 0.835±4.4E-4 0.868±3.2E-4 0.667±1.4E-3 27.12±0.032
LWFSN-S 0.832±1.1E-4 0.867±4.3E-4 0.667±1.0E-3 26.98±0.027

Table A.3. Corrected values of Table V [58]. This dissertation displays the rectifications on
Table 5.5.

Model HaarPSI [AU] MSSIM [AU] PSNR [dB]

LWFSN 0.836 0.868 0.670 27.19
rLWFSN-NRW 0.836 0.868 0.672 27.53
rLWFSN 0.838 0.872 0.670 27.69

Table A.4. Corrected values of Table VI [58]. This dissertation displays the rectifications on
Table 5.6.



APPENDIXB
Performance comparison of the

proposed models

B.1 Introduction

Chapters 4 and 5 propose two CNNs [57], [58] in which the encoding-decoding paths
decompose and reconstruct the signal, while a non-linear section positioned in the
middle of the encoding-decoding path eliminates the noise. Specifically, the models
are the (residual) wavelet-frame shrinkage network (LWFSN) and the dual-Haar
shrinkage networks 1 and 2 (DHSN1 and DHSN2, respectively). A major limitation of
the studies presented in Chapters 4 and 5 is that it is not possible to directly compare
the performance of the models which they present, since there are differences in their
experimental settings. For example, the DHSN1 and DHSN2 models from Chapter 4
use three decomposition levels, while the rLWFSN and LWFSN models from Chapter 5
use four. Furthermore, the training loss, the training loop and learning rate scheduling
are different. In order to address this limitation, this appendix compares all the models
by training them under similar conditions and by testing their performance based on
the same metrics and procedure, as presented in Chapter 5.

B.2 Experiments and results

The experiments presented in this appendix use the same dataset (the low-dose
and high-dose CT scans from the cancer imaging archive [183]), data partitioning,
optimizer (Adam), training loop, learning rate scheduling and network depth of the
experiments in Chapter 5. This means that the DHSN1 and DHSN2 models from
Chapter 5 are trained for this experiment with four decomposition levels, instead
of the three used in Chapter 4. Furthermore, it was found experimentally that the
DHSN1 and DHSN2 models converge on this setting with 300 training epochs, while
the training for the (r)LWFSN stays the same as in Chapter 5.

With the above-described settings, the DHSN1, DHSN2, LWFSN and rWFSN
models have been trained to estimate full-dose out of quarter-dose CT scans. Based on
the data partitioning from Chapter 5, the trained models have been evaluated on the
test set and the results are summarized in Table B.1, which presents the performance
metrics’ outcomes for all models. The measured performance indicators are the Haar
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Model HaarPSI [AU] MSSIM [AU] PSNR [dB] No. params.

Noisy inp. 0.796 0.654 25.65 N/A
rLWFSN 0.838 0.670 27.79 32,584
LWFSN 0.836 0.670 27.19 32,584
DHSN1 0.837 0.673 27.70 420,784
DHSN2 0.838 0.673 27.70 560,252

Table B.1. Haar PSI, MSSIM and PSNR metrics measured on CT scans from the cancer
imaging archive. The table contains the performance measurements of the image estimates
produced by the (r)LWFSN and the DHSN1 and DHSN2 models. The method for testing is the
same as in Chapter 5 for most of the models and under similar conditions.

perceptual similarity index (Haar PSI), the mean structural similarity index metric
(MSSIM) and the peak signal-to-noise ratio (PSNR).

From Table B.1 it can be observed that all the above-described models achieve
similar performance. However, it can be observed that the best performing model is
the rLWFSN, while the worst is the non-residual LWFSN. The second best model is the
DHSN2. In addition to the quantitative performance metrics, Fig. B.1 presents slices
processed with each of tested networks, related to Table B.1, where it can be observed
that all models perform similarly, although the DHSN1 and DHSN2 tend to produce
slightly smoother image estimates than the (r)LWFSN.

In addition to the performance measurements, Table B.1 also displays the total
number of trainable parameters for each of the CNNs. It should be noted that the
models with the least number of parameters are the rLWFSN and the LWFSN. In
contrast, the DHSN2 is the model with the most parameters. This can be understood
when considering the exponential growth of feature maps of the encoding-decoding
of the DHSN1 and DHSN2, which is the OHWT [57]. As discussed in Section 4.3.3,
the number of feature maps of the OHWT increases exponentially with respect to the
number of decomposition levels. This issue can be partly circumvented by sharing
parameters within the trainable part of the DHSN models.

B.3 Conclusions

The presented experiment shows that the proposed ED CNNs in this thesis are able
to produce high-quality full-dose estimates out of low-dose CT to a level which is
almost equivalent. The main difference between them is the total number of trainable
parameters, which is higher for the DHSN1 and DHSN2 and it is caused by the large
number of channels in the high-frequency bands of the OHWT, which is integrated in
this model. More specifically, the OHWT produces a large number high-pass channels
that are used as input to the denoising CNNs employed in this design. This increases
the dimensions of convolution kernels of the CNNs that are used to remove the noise,
which results in more parameters than the (r)LWFSN. Finally, it can be observed that
the best trade-off between image quality and total number of trainable parameters is
provided by the rLWFSN model.
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Acronyms
CNN Convolutional neural network.

CT Computed tomography.

CBCT Cone-beam computed tomography.

TV Total variation.

ReLU Rectified linear unit.

DoG Derivative of Gaussian.

LET Linear expansion of thresholds.

MAP Maximum a posteriori.

TF U-Net Tight frame U-Net.

RED CNN Residual encoder-decoder CNN.

MSCN Multi-scale sparse coding network.

FBPConvNet Filtered backprojection network.

DTCWT Dual-tree complex wavelet transform.

OHWT Overcomplete Haar wavelet transform.

DHWT Directional hypercomplex wavelet transform.

QWT Quaternion wavelet transform.

DHSN Dual-Haar wavelet transform.

QDCT Quarter-dose CT.

FDCT Full-dose CT.

WSN Wavelet shrinkage network.



160 Acronyms

NPS Noise power spectrum.

PSNR Peak signal-to-noise ration.

MSSIM Mean structural similarity index metric.

DIP Deep image prior.

LWFSN Learned wavelet frame shrinkage network.

HaarPSI Haar perceptual similarity index.

SGD Steepest gradient descent.

CGLS Conjugate gradient least squares.

DE Dual energy.

CBCT Cone-beam computed tomography.
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