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Abstract: This article proposes an active control strategy to suppress self-excited coupled
axial-torsional vibrations of a distributed drill-string system while the coupling takes place
through the bit-rock interaction. The drill-string model is expressed as Neutral-type Delay
Differential Equations (NDDEs) with constant and state-dependent state delays and constant
input delays. As a first step in the novel controller design, an implementable input transformation
is introduced, resulting in the elimination of the neutral terms from the equations of motion.
This supports a simplified next step of stabilizing controller design. In the second step, a
new analytic method named the “Eigenvector Contradiction Method” is proposed to provide
sufficient conditions to ensure that all eigenvalues have real parts less than a prescribed value.
Based on this criterion, an automated parametric feedback control law is designed. A case study
simulation is presented to illustrate the effectiveness of the proposed control strategy.

Keywords: Distributed drill-string; Coupled axial-torsional vibrations; Neutral-type
Time-Delay (NTD) model; State-dependent delay; Input delay.

1. INTRODUCTION

Drill-string systems suffer from self-excited oscillations
leading to drilling efficiency reduction and system fail-
ure. The interaction forces between formation and Poly-
crystalline Diamond Compact (PDC) bits consist of a
cutting and a frictional contact process Detournay and
Defourny (1992). Regenerative cutting effects are known as
the root cause of self-excited oscillations in drilling systems
Richard et al. (2007); Aarsnes and van de Wouw (2018).

Several approaches have been employed to model the drill-
string dynamics: lumped-parameter models Germay et al.
(2009); Tashakori and Fakhar (2019); Richard et al. (2007),
finite element models Priest et al. (2021), distributed
parameter models Aarsnes and van de Wouw (2018), and
Neutral-type Time Delay (NTD) models Boussaada et al.
(2012); Tashakori et al. (2020); Faghihi et al. (2022).
The NTD model is more comprehensive than lumped-
parameter models, and easier to analyze compared to
models based on Partial Differential Equations (PDEs)
Krstic (2009).

Various approaches have been proposed to suppress un-
wanted axial-torsional drill-string vibrations for lumped-
parameter models Besselink et al. (2015), for finite element

models Vromen et al. (2017), for distributed parameter
models Bresch-Pietri and Di Meglio (2016), and for NTD
models Saldivar et al. (2013); Tashakori et al. (2021).
However, existing control solutions for the suppression
of coupled axial-torsional vibrations in the framework of
NTD models have some drawbacks/limitations. The con-
sidered bit-rock interaction law in Saldivar et al. (2013)
does not capture the regenerative effects. The proposed
controller in Tashakori et al. (2021) is not automated, i.e.,
the controller design should be repeated if the drill-string
parameter values change.

In this paper, the infinite-dimensional drill-string dynam-
ics is formulated in terms of Neutral-type Delay Differen-
tial Equations (NDDEs) with multiple constant or state-
dependent state and input delays. The lateral vibration
is neglected, while the axial and torsional motions are
coupled through the bit-rock interaction. One of the main
challenges towards controlling the systems with NDDE
open-loop dynamics is the existence of spectral asymptotes
which cannot be changed by state-feedback controllers
Loiseau et al. (2002). By introducing an implementable
input-transformation, i.e., precompensator, the dynamics
is transformed into simpler Retarded Delay Differential
Equations (RDDEs). Herein, a new approach is developed
by presenting a sufficient condition to ensure that all

Suppression of axial-torsional vibrations of
a distributed drilling system by the
eigenvector contradiction method

Mohammad Amin Faghihi ∗ Shabnam Tashakori ∗∗,∗∗∗,∗∗∗∗

Ehsan Azadi Yazdi ∗ Mohammad Eghtesad ∗

Nathan van de Wouw †

∗ Department of Mechanical Engineering, Shiraz University, Iran
∗∗ Centre for Applied Dynamics Research, School of Engineering,

University of Aberdeen, United Kingdom
∗∗∗ Department of Mechanical and Aerospace Engineering, Shiraz

University of Technology, Iran
∗∗∗∗ Rahesh Innovation Center, Iran

† Department of Mechanical Engineering, Eindhoven University of
Technology, 5600 MB Eindhoven, The Netherlands

Abstract: This article proposes an active control strategy to suppress self-excited coupled
axial-torsional vibrations of a distributed drill-string system while the coupling takes place
through the bit-rock interaction. The drill-string model is expressed as Neutral-type Delay
Differential Equations (NDDEs) with constant and state-dependent state delays and constant
input delays. As a first step in the novel controller design, an implementable input transformation
is introduced, resulting in the elimination of the neutral terms from the equations of motion.
This supports a simplified next step of stabilizing controller design. In the second step, a
new analytic method named the “Eigenvector Contradiction Method” is proposed to provide
sufficient conditions to ensure that all eigenvalues have real parts less than a prescribed value.
Based on this criterion, an automated parametric feedback control law is designed. A case study
simulation is presented to illustrate the effectiveness of the proposed control strategy.

Keywords: Distributed drill-string; Coupled axial-torsional vibrations; Neutral-type
Time-Delay (NTD) model; State-dependent delay; Input delay.

1. INTRODUCTION

Drill-string systems suffer from self-excited oscillations
leading to drilling efficiency reduction and system fail-
ure. The interaction forces between formation and Poly-
crystalline Diamond Compact (PDC) bits consist of a
cutting and a frictional contact process Detournay and
Defourny (1992). Regenerative cutting effects are known as
the root cause of self-excited oscillations in drilling systems
Richard et al. (2007); Aarsnes and van de Wouw (2018).

Several approaches have been employed to model the drill-
string dynamics: lumped-parameter models Germay et al.
(2009); Tashakori and Fakhar (2019); Richard et al. (2007),
finite element models Priest et al. (2021), distributed
parameter models Aarsnes and van de Wouw (2018), and
Neutral-type Time Delay (NTD) models Boussaada et al.
(2012); Tashakori et al. (2020); Faghihi et al. (2022).
The NTD model is more comprehensive than lumped-
parameter models, and easier to analyze compared to
models based on Partial Differential Equations (PDEs)
Krstic (2009).

Various approaches have been proposed to suppress un-
wanted axial-torsional drill-string vibrations for lumped-
parameter models Besselink et al. (2015), for finite element

models Vromen et al. (2017), for distributed parameter
models Bresch-Pietri and Di Meglio (2016), and for NTD
models Saldivar et al. (2013); Tashakori et al. (2021).
However, existing control solutions for the suppression
of coupled axial-torsional vibrations in the framework of
NTD models have some drawbacks/limitations. The con-
sidered bit-rock interaction law in Saldivar et al. (2013)
does not capture the regenerative effects. The proposed
controller in Tashakori et al. (2021) is not automated, i.e.,
the controller design should be repeated if the drill-string
parameter values change.

In this paper, the infinite-dimensional drill-string dynam-
ics is formulated in terms of Neutral-type Delay Differen-
tial Equations (NDDEs) with multiple constant or state-
dependent state and input delays. The lateral vibration
is neglected, while the axial and torsional motions are
coupled through the bit-rock interaction. One of the main
challenges towards controlling the systems with NDDE
open-loop dynamics is the existence of spectral asymptotes
which cannot be changed by state-feedback controllers
Loiseau et al. (2002). By introducing an implementable
input-transformation, i.e., precompensator, the dynamics
is transformed into simpler Retarded Delay Differential
Equations (RDDEs). Herein, a new approach is developed
by presenting a sufficient condition to ensure that all

Suppression of axial-torsional vibrations of
a distributed drilling system by the
eigenvector contradiction method

Mohammad Amin Faghihi ∗ Shabnam Tashakori ∗∗,∗∗∗,∗∗∗∗

Ehsan Azadi Yazdi ∗ Mohammad Eghtesad ∗

Nathan van de Wouw †

∗ Department of Mechanical Engineering, Shiraz University, Iran
∗∗ Centre for Applied Dynamics Research, School of Engineering,

University of Aberdeen, United Kingdom
∗∗∗ Department of Mechanical and Aerospace Engineering, Shiraz

University of Technology, Iran
∗∗∗∗ Rahesh Innovation Center, Iran

† Department of Mechanical Engineering, Eindhoven University of
Technology, 5600 MB Eindhoven, The Netherlands

Abstract: This article proposes an active control strategy to suppress self-excited coupled
axial-torsional vibrations of a distributed drill-string system while the coupling takes place
through the bit-rock interaction. The drill-string model is expressed as Neutral-type Delay
Differential Equations (NDDEs) with constant and state-dependent state delays and constant
input delays. As a first step in the novel controller design, an implementable input transformation
is introduced, resulting in the elimination of the neutral terms from the equations of motion.
This supports a simplified next step of stabilizing controller design. In the second step, a
new analytic method named the “Eigenvector Contradiction Method” is proposed to provide
sufficient conditions to ensure that all eigenvalues have real parts less than a prescribed value.
Based on this criterion, an automated parametric feedback control law is designed. A case study
simulation is presented to illustrate the effectiveness of the proposed control strategy.

Keywords: Distributed drill-string; Coupled axial-torsional vibrations; Neutral-type
Time-Delay (NTD) model; State-dependent delay; Input delay.

1. INTRODUCTION

Drill-string systems suffer from self-excited oscillations
leading to drilling efficiency reduction and system fail-
ure. The interaction forces between formation and Poly-
crystalline Diamond Compact (PDC) bits consist of a
cutting and a frictional contact process Detournay and
Defourny (1992). Regenerative cutting effects are known as
the root cause of self-excited oscillations in drilling systems
Richard et al. (2007); Aarsnes and van de Wouw (2018).

Several approaches have been employed to model the drill-
string dynamics: lumped-parameter models Germay et al.
(2009); Tashakori and Fakhar (2019); Richard et al. (2007),
finite element models Priest et al. (2021), distributed
parameter models Aarsnes and van de Wouw (2018), and
Neutral-type Time Delay (NTD) models Boussaada et al.
(2012); Tashakori et al. (2020); Faghihi et al. (2022).
The NTD model is more comprehensive than lumped-
parameter models, and easier to analyze compared to
models based on Partial Differential Equations (PDEs)
Krstic (2009).

Various approaches have been proposed to suppress un-
wanted axial-torsional drill-string vibrations for lumped-
parameter models Besselink et al. (2015), for finite element

models Vromen et al. (2017), for distributed parameter
models Bresch-Pietri and Di Meglio (2016), and for NTD
models Saldivar et al. (2013); Tashakori et al. (2021).
However, existing control solutions for the suppression
of coupled axial-torsional vibrations in the framework of
NTD models have some drawbacks/limitations. The con-
sidered bit-rock interaction law in Saldivar et al. (2013)
does not capture the regenerative effects. The proposed
controller in Tashakori et al. (2021) is not automated, i.e.,
the controller design should be repeated if the drill-string
parameter values change.

In this paper, the infinite-dimensional drill-string dynam-
ics is formulated in terms of Neutral-type Delay Differen-
tial Equations (NDDEs) with multiple constant or state-
dependent state and input delays. The lateral vibration
is neglected, while the axial and torsional motions are
coupled through the bit-rock interaction. One of the main
challenges towards controlling the systems with NDDE
open-loop dynamics is the existence of spectral asymptotes
which cannot be changed by state-feedback controllers
Loiseau et al. (2002). By introducing an implementable
input-transformation, i.e., precompensator, the dynamics
is transformed into simpler Retarded Delay Differential
Equations (RDDEs). Herein, a new approach is developed
by presenting a sufficient condition to ensure that all

Suppression of axial-torsional vibrations of
a distributed drilling system by the
eigenvector contradiction method

Mohammad Amin Faghihi ∗ Shabnam Tashakori ∗∗,∗∗∗,∗∗∗∗

Ehsan Azadi Yazdi ∗ Mohammad Eghtesad ∗

Nathan van de Wouw †

∗ Department of Mechanical Engineering, Shiraz University, Iran
∗∗ Centre for Applied Dynamics Research, School of Engineering,

University of Aberdeen, United Kingdom
∗∗∗ Department of Mechanical and Aerospace Engineering, Shiraz

University of Technology, Iran
∗∗∗∗ Rahesh Innovation Center, Iran

† Department of Mechanical Engineering, Eindhoven University of
Technology, 5600 MB Eindhoven, The Netherlands

Abstract: This article proposes an active control strategy to suppress self-excited coupled
axial-torsional vibrations of a distributed drill-string system while the coupling takes place
through the bit-rock interaction. The drill-string model is expressed as Neutral-type Delay
Differential Equations (NDDEs) with constant and state-dependent state delays and constant
input delays. As a first step in the novel controller design, an implementable input transformation
is introduced, resulting in the elimination of the neutral terms from the equations of motion.
This supports a simplified next step of stabilizing controller design. In the second step, a
new analytic method named the “Eigenvector Contradiction Method” is proposed to provide
sufficient conditions to ensure that all eigenvalues have real parts less than a prescribed value.
Based on this criterion, an automated parametric feedback control law is designed. A case study
simulation is presented to illustrate the effectiveness of the proposed control strategy.

Keywords: Distributed drill-string; Coupled axial-torsional vibrations; Neutral-type
Time-Delay (NTD) model; State-dependent delay; Input delay.

1. INTRODUCTION

Drill-string systems suffer from self-excited oscillations
leading to drilling efficiency reduction and system fail-
ure. The interaction forces between formation and Poly-
crystalline Diamond Compact (PDC) bits consist of a
cutting and a frictional contact process Detournay and
Defourny (1992). Regenerative cutting effects are known as
the root cause of self-excited oscillations in drilling systems
Richard et al. (2007); Aarsnes and van de Wouw (2018).

Several approaches have been employed to model the drill-
string dynamics: lumped-parameter models Germay et al.
(2009); Tashakori and Fakhar (2019); Richard et al. (2007),
finite element models Priest et al. (2021), distributed
parameter models Aarsnes and van de Wouw (2018), and
Neutral-type Time Delay (NTD) models Boussaada et al.
(2012); Tashakori et al. (2020); Faghihi et al. (2022).
The NTD model is more comprehensive than lumped-
parameter models, and easier to analyze compared to
models based on Partial Differential Equations (PDEs)
Krstic (2009).

Various approaches have been proposed to suppress un-
wanted axial-torsional drill-string vibrations for lumped-
parameter models Besselink et al. (2015), for finite element

models Vromen et al. (2017), for distributed parameter
models Bresch-Pietri and Di Meglio (2016), and for NTD
models Saldivar et al. (2013); Tashakori et al. (2021).
However, existing control solutions for the suppression
of coupled axial-torsional vibrations in the framework of
NTD models have some drawbacks/limitations. The con-
sidered bit-rock interaction law in Saldivar et al. (2013)
does not capture the regenerative effects. The proposed
controller in Tashakori et al. (2021) is not automated, i.e.,
the controller design should be repeated if the drill-string
parameter values change.

In this paper, the infinite-dimensional drill-string dynam-
ics is formulated in terms of Neutral-type Delay Differen-
tial Equations (NDDEs) with multiple constant or state-
dependent state and input delays. The lateral vibration
is neglected, while the axial and torsional motions are
coupled through the bit-rock interaction. One of the main
challenges towards controlling the systems with NDDE
open-loop dynamics is the existence of spectral asymptotes
which cannot be changed by state-feedback controllers
Loiseau et al. (2002). By introducing an implementable
input-transformation, i.e., precompensator, the dynamics
is transformed into simpler Retarded Delay Differential
Equations (RDDEs). Herein, a new approach is developed
by presenting a sufficient condition to ensure that all

Suppression of axial-torsional vibrations of
a distributed drilling system by the
eigenvector contradiction method

Mohammad Amin Faghihi ∗ Shabnam Tashakori ∗∗,∗∗∗,∗∗∗∗

Ehsan Azadi Yazdi ∗ Mohammad Eghtesad ∗

Nathan van de Wouw †

∗ Department of Mechanical Engineering, Shiraz University, Iran
∗∗ Centre for Applied Dynamics Research, School of Engineering,

University of Aberdeen, United Kingdom
∗∗∗ Department of Mechanical and Aerospace Engineering, Shiraz

University of Technology, Iran
∗∗∗∗ Rahesh Innovation Center, Iran

† Department of Mechanical Engineering, Eindhoven University of
Technology, 5600 MB Eindhoven, The Netherlands

Abstract: This article proposes an active control strategy to suppress self-excited coupled
axial-torsional vibrations of a distributed drill-string system while the coupling takes place
through the bit-rock interaction. The drill-string model is expressed as Neutral-type Delay
Differential Equations (NDDEs) with constant and state-dependent state delays and constant
input delays. As a first step in the novel controller design, an implementable input transformation
is introduced, resulting in the elimination of the neutral terms from the equations of motion.
This supports a simplified next step of stabilizing controller design. In the second step, a
new analytic method named the “Eigenvector Contradiction Method” is proposed to provide
sufficient conditions to ensure that all eigenvalues have real parts less than a prescribed value.
Based on this criterion, an automated parametric feedback control law is designed. A case study
simulation is presented to illustrate the effectiveness of the proposed control strategy.

Keywords: Distributed drill-string; Coupled axial-torsional vibrations; Neutral-type
Time-Delay (NTD) model; State-dependent delay; Input delay.

1. INTRODUCTION

Drill-string systems suffer from self-excited oscillations
leading to drilling efficiency reduction and system fail-
ure. The interaction forces between formation and Poly-
crystalline Diamond Compact (PDC) bits consist of a
cutting and a frictional contact process Detournay and
Defourny (1992). Regenerative cutting effects are known as
the root cause of self-excited oscillations in drilling systems
Richard et al. (2007); Aarsnes and van de Wouw (2018).

Several approaches have been employed to model the drill-
string dynamics: lumped-parameter models Germay et al.
(2009); Tashakori and Fakhar (2019); Richard et al. (2007),
finite element models Priest et al. (2021), distributed
parameter models Aarsnes and van de Wouw (2018), and
Neutral-type Time Delay (NTD) models Boussaada et al.
(2012); Tashakori et al. (2020); Faghihi et al. (2022).
The NTD model is more comprehensive than lumped-
parameter models, and easier to analyze compared to
models based on Partial Differential Equations (PDEs)
Krstic (2009).

Various approaches have been proposed to suppress un-
wanted axial-torsional drill-string vibrations for lumped-
parameter models Besselink et al. (2015), for finite element

models Vromen et al. (2017), for distributed parameter
models Bresch-Pietri and Di Meglio (2016), and for NTD
models Saldivar et al. (2013); Tashakori et al. (2021).
However, existing control solutions for the suppression
of coupled axial-torsional vibrations in the framework of
NTD models have some drawbacks/limitations. The con-
sidered bit-rock interaction law in Saldivar et al. (2013)
does not capture the regenerative effects. The proposed
controller in Tashakori et al. (2021) is not automated, i.e.,
the controller design should be repeated if the drill-string
parameter values change.

In this paper, the infinite-dimensional drill-string dynam-
ics is formulated in terms of Neutral-type Delay Differen-
tial Equations (NDDEs) with multiple constant or state-
dependent state and input delays. The lateral vibration
is neglected, while the axial and torsional motions are
coupled through the bit-rock interaction. One of the main
challenges towards controlling the systems with NDDE
open-loop dynamics is the existence of spectral asymptotes
which cannot be changed by state-feedback controllers
Loiseau et al. (2002). By introducing an implementable
input-transformation, i.e., precompensator, the dynamics
is transformed into simpler Retarded Delay Differential
Equations (RDDEs). Herein, a new approach is developed
by presenting a sufficient condition to ensure that all

Suppression of axial-torsional vibrations of
a distributed drilling system by the
eigenvector contradiction method

Mohammad Amin Faghihi ∗ Shabnam Tashakori ∗∗,∗∗∗,∗∗∗∗

Ehsan Azadi Yazdi ∗ Mohammad Eghtesad ∗

Nathan van de Wouw †

∗ Department of Mechanical Engineering, Shiraz University, Iran
∗∗ Centre for Applied Dynamics Research, School of Engineering,

University of Aberdeen, United Kingdom
∗∗∗ Department of Mechanical and Aerospace Engineering, Shiraz

University of Technology, Iran
∗∗∗∗ Rahesh Innovation Center, Iran

† Department of Mechanical Engineering, Eindhoven University of
Technology, 5600 MB Eindhoven, The Netherlands

Abstract: This article proposes an active control strategy to suppress self-excited coupled
axial-torsional vibrations of a distributed drill-string system while the coupling takes place
through the bit-rock interaction. The drill-string model is expressed as Neutral-type Delay
Differential Equations (NDDEs) with constant and state-dependent state delays and constant
input delays. As a first step in the novel controller design, an implementable input transformation
is introduced, resulting in the elimination of the neutral terms from the equations of motion.
This supports a simplified next step of stabilizing controller design. In the second step, a
new analytic method named the “Eigenvector Contradiction Method” is proposed to provide
sufficient conditions to ensure that all eigenvalues have real parts less than a prescribed value.
Based on this criterion, an automated parametric feedback control law is designed. A case study
simulation is presented to illustrate the effectiveness of the proposed control strategy.

Keywords: Distributed drill-string; Coupled axial-torsional vibrations; Neutral-type
Time-Delay (NTD) model; State-dependent delay; Input delay.

1. INTRODUCTION

Drill-string systems suffer from self-excited oscillations
leading to drilling efficiency reduction and system fail-
ure. The interaction forces between formation and Poly-
crystalline Diamond Compact (PDC) bits consist of a
cutting and a frictional contact process Detournay and
Defourny (1992). Regenerative cutting effects are known as
the root cause of self-excited oscillations in drilling systems
Richard et al. (2007); Aarsnes and van de Wouw (2018).

Several approaches have been employed to model the drill-
string dynamics: lumped-parameter models Germay et al.
(2009); Tashakori and Fakhar (2019); Richard et al. (2007),
finite element models Priest et al. (2021), distributed
parameter models Aarsnes and van de Wouw (2018), and
Neutral-type Time Delay (NTD) models Boussaada et al.
(2012); Tashakori et al. (2020); Faghihi et al. (2022).
The NTD model is more comprehensive than lumped-
parameter models, and easier to analyze compared to
models based on Partial Differential Equations (PDEs)
Krstic (2009).

Various approaches have been proposed to suppress un-
wanted axial-torsional drill-string vibrations for lumped-
parameter models Besselink et al. (2015), for finite element

models Vromen et al. (2017), for distributed parameter
models Bresch-Pietri and Di Meglio (2016), and for NTD
models Saldivar et al. (2013); Tashakori et al. (2021).
However, existing control solutions for the suppression
of coupled axial-torsional vibrations in the framework of
NTD models have some drawbacks/limitations. The con-
sidered bit-rock interaction law in Saldivar et al. (2013)
does not capture the regenerative effects. The proposed
controller in Tashakori et al. (2021) is not automated, i.e.,
the controller design should be repeated if the drill-string
parameter values change.

In this paper, the infinite-dimensional drill-string dynam-
ics is formulated in terms of Neutral-type Delay Differen-
tial Equations (NDDEs) with multiple constant or state-
dependent state and input delays. The lateral vibration
is neglected, while the axial and torsional motions are
coupled through the bit-rock interaction. One of the main
challenges towards controlling the systems with NDDE
open-loop dynamics is the existence of spectral asymptotes
which cannot be changed by state-feedback controllers
Loiseau et al. (2002). By introducing an implementable
input-transformation, i.e., precompensator, the dynamics
is transformed into simpler Retarded Delay Differential
Equations (RDDEs). Herein, a new approach is developed
by presenting a sufficient condition to ensure that all



110 Mohammad Amin Faghihi  et al. / IFAC PapersOnLine 55-36 (2022) 109–114

eigenvalues have real values less than a prescribed value.
In Tashakori et al. (2021), an observer-like predictor was
developed to compensate for the input delays. Hence,
this paper focuses on designing a novel state-feedback
controller assuming that the predicted states are avail-
able. The automated parametric structure of the controller
makes it easily applicable for different drill-string systems
with different parameter values.

2. DRILL-STRING MODEL

The equations governing the torsional and axial dynamics
of the drill-string are given by Aarsnes and van de Wouw
(2018); Tashakori et al. (2020):

∂2Φ

∂x2
(x, t) = c2t

∂2Φ

∂t2
(x, t),

∂2U

∂x2
(x, t) = c2a

∂2U

∂t2
(x, t), (1)

which are wave equations with Φ(x, t) and U(x, t), respec-
tively, the angular and axial displacements of the cross
section located at the (axial) distance x from the top
extremity of the drill-string at time t. In addition, the wave
constants in (1), ct and ca, are defined as ca =

√
ρ/E,

ct =
√

ρ/G, where ρ, E, and G are, respectively, the
density, Young’s modulus, and the shear modulus of the
pipes. Employing Riemann variables, the solution of (1) is
defined as follows:

Φ(x, t) = ηt(t+ ctx) + ξt(t− ctx), (2a)

U(x, t) = ηa(t+ cax) + ξa(t− cax), (2b)

where η and ξ are, respectively, associated to the up- and
down-traveling waves with the subscripts t and a relating
to the torsional and axial dynamics. Differentiating (2a)
with respect to t and x gives:

∂Φ

∂t
(0, t) = η̇t(t) + ξ̇t(t), (3a)

∂Φ

∂x
(0, t) = ctη̇t(t)− ctξ̇t(t), (3b)

∂Φ

∂t
(L, t) = η̇t(t+ τt) + ξ̇t(t− τt), (3c)

∂Φ

∂x
(L, t) = ctη̇t(t+ τt)− ctξ̇t(t− τt), (3d)

where L is the length of the string and Ḟ (t) denotes the
differentiation of F (t) with respect to t and the time-delay
τt = ctL is the time required for the torsional waves to
travel from one end of the string to the other.

The equations of motion of the Bottom Hole Assembly
(BHA), which is considered as a rigid part, are as follows:

JbΦ̈b = −GJ
∂Φ

∂x
(L, t)− T (t), (4a)

MbÜb = −EA
∂U

∂x
(L, t)−W (t), (4b)

where Φb(t) = Φ(L, t) and Ub(t) = U(L, t) represent the
BHA angular and axial dislacements, respectively. J is
the cross-sectional polar moment of area, A is the cross-
sectional area of the string, Jb is the BHA moment of
inertia, and Mb is the mass of the BHA. Furthermore,
T (t) and W (t) are the applied Torque On Bit (TOB) and
Weight On Bit (WOB) from the formation, respectively.

The torsional dynamics can be obtained by solving (3) and
(4a) as a set of algebraic equations (for more details refer
to Tashakori et al. (2021)):

Φ̈b(t)− Φ̈b(t− 2τt) = −GJcT
Jb

(
Φ̇b(t) + Φ̇b(t− 2τt)

)

+
1

Jb

(
− T (t) + T (t− 2τt)

)
+

2GJct
Jb

Ω(t− τt), (5)

where Ω(t) is the rotary table angular velocity. The axial
dynamics can be obtained in a similar way yielding:

Ü b(t)− Üb(t− 2τa) = −EAca
Mb

(
U̇b(t) + U̇b(t− 2τa)

)

+
1

Mb

(
−W (t) +W (t− 2τa)

)
+

2EAca
Mb

V (t− τa), (6)

where V (t) is the imposed axial velocity at the top-side of
the drill-string. V (t) and Ω(t) are considered as the control
inputs. The time delay τa = caL is the time required
for the axial waves to travel the drill-string length. The
following bit–rock interaction law is employed to model
T (t) and W (t) Richard et al. (2007):

T (t) = Tc(t) + Tf (t), (7a)

W (t) = Wc(t) +Wf (t), (7b)

where T (t) and W (t) are composed of the cutting and
wearflat/frictional components, denoted with c and f sub-
scripts, respectively. In the case of low-amplitude vibra-
tions around the nominal solution, the wearflat/frictional
components are constant and the cutting components are
defined as follows 1 Detournay and Defourny (1992):

Tc(t) =
1

2
ϵa2d(t), Wc(t) = ϵaζd(t), (8)

where ϵ is the rock intrinsic specific energy, a is the bit ra-
dius, and ζ is the cutter inclination number. Furthermore,
d(t), the depth of cut, is governed by:

d(t) = n
(
Ub(t)− Ub

(
t− τn(t)

))
, (9a)

Φb(t)− Φb

(
t− τn(t)

)
= 2π/n. (9b)

where n is the number of the cutting blade, and τn(t) is
a state-dependent time delay governed by (9b). Now, the
total model is defined by (5)-(9b) that it is an NDDE with
constant and state-dependent state delays and constant
input delays.

2.1 Perturbation Dynamics

The steady-state response of the bit to constant imposed
velocities at the surface, V0 and Ω0, with initial conditions
Φ0 and U0, is given by:

Φbs(t) = Ω0t+Φ0, Ubs(t) = V0t+ U0. (10)

The perturbed variables associated with the steady-state
response are defined as follows:

A(t) = As(t) +Ap(t), B(t) = B0 +Bp(t), (11)

where A ∈ {Φb, Ub} and B ∈ {Ω, V, T,W, d} with the
subscripts 0 and p correspond to nominal and perturbed
responses, respectively (for more details refer to Tashakori
et al. (2021)). According to the low amplitude vibration
assumption, only the cutting components of the bit-rock
interaction contribute to the perturbed part of the TOB
and WOB as follows:

Tp(t) =
1

2
ϵa2dp(t), Wp(t) = ϵa2dp(t). (12)

Regarding (12) and considering that the perturbed re-
sponse (as well as the nominal response) satisfies (5) and

1 for more general cases with high vibration amplitudes see
Tashakori et al. (2021)
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eigenvalues have real values less than a prescribed value.
In Tashakori et al. (2021), an observer-like predictor was
developed to compensate for the input delays. Hence,
this paper focuses on designing a novel state-feedback
controller assuming that the predicted states are avail-
able. The automated parametric structure of the controller
makes it easily applicable for different drill-string systems
with different parameter values.

2. DRILL-STRING MODEL

The equations governing the torsional and axial dynamics
of the drill-string are given by Aarsnes and van de Wouw
(2018); Tashakori et al. (2020):

∂2Φ

∂x2
(x, t) = c2t

∂2Φ

∂t2
(x, t),

∂2U

∂x2
(x, t) = c2a

∂2U

∂t2
(x, t), (1)

which are wave equations with Φ(x, t) and U(x, t), respec-
tively, the angular and axial displacements of the cross
section located at the (axial) distance x from the top
extremity of the drill-string at time t. In addition, the wave
constants in (1), ct and ca, are defined as ca =

√
ρ/E,

ct =
√
ρ/G, where ρ, E, and G are, respectively, the

density, Young’s modulus, and the shear modulus of the
pipes. Employing Riemann variables, the solution of (1) is
defined as follows:

Φ(x, t) = ηt(t+ ctx) + ξt(t− ctx), (2a)

U(x, t) = ηa(t+ cax) + ξa(t− cax), (2b)

where η and ξ are, respectively, associated to the up- and
down-traveling waves with the subscripts t and a relating
to the torsional and axial dynamics. Differentiating (2a)
with respect to t and x gives:

∂Φ

∂t
(0, t) = η̇t(t) + ξ̇t(t), (3a)

∂Φ

∂x
(0, t) = ctη̇t(t)− ctξ̇t(t), (3b)

∂Φ

∂t
(L, t) = η̇t(t+ τt) + ξ̇t(t− τt), (3c)

∂Φ

∂x
(L, t) = ctη̇t(t+ τt)− ctξ̇t(t− τt), (3d)

where L is the length of the string and Ḟ (t) denotes the
differentiation of F (t) with respect to t and the time-delay
τt = ctL is the time required for the torsional waves to
travel from one end of the string to the other.

The equations of motion of the Bottom Hole Assembly
(BHA), which is considered as a rigid part, are as follows:

JbΦ̈b = −GJ
∂Φ

∂x
(L, t)− T (t), (4a)

MbÜb = −EA
∂U

∂x
(L, t)−W (t), (4b)

where Φb(t) = Φ(L, t) and Ub(t) = U(L, t) represent the
BHA angular and axial dislacements, respectively. J is
the cross-sectional polar moment of area, A is the cross-
sectional area of the string, Jb is the BHA moment of
inertia, and Mb is the mass of the BHA. Furthermore,
T (t) and W (t) are the applied Torque On Bit (TOB) and
Weight On Bit (WOB) from the formation, respectively.

The torsional dynamics can be obtained by solving (3) and
(4a) as a set of algebraic equations (for more details refer
to Tashakori et al. (2021)):

Φ̈b(t)− Φ̈b(t− 2τt) = −GJcT
Jb

(
Φ̇b(t) + Φ̇b(t− 2τt)

)

+
1

Jb

(
− T (t) + T (t− 2τt)

)
+

2GJct
Jb

Ω(t− τt), (5)

where Ω(t) is the rotary table angular velocity. The axial
dynamics can be obtained in a similar way yielding:

Ü b(t)− Üb(t− 2τa) = −EAca
Mb

(
U̇b(t) + U̇b(t− 2τa)

)

+
1

Mb

(
−W (t) +W (t− 2τa)

)
+

2EAca
Mb

V (t− τa), (6)

where V (t) is the imposed axial velocity at the top-side of
the drill-string. V (t) and Ω(t) are considered as the control
inputs. The time delay τa = caL is the time required
for the axial waves to travel the drill-string length. The
following bit–rock interaction law is employed to model
T (t) and W (t) Richard et al. (2007):

T (t) = Tc(t) + Tf (t), (7a)

W (t) = Wc(t) +Wf (t), (7b)

where T (t) and W (t) are composed of the cutting and
wearflat/frictional components, denoted with c and f sub-
scripts, respectively. In the case of low-amplitude vibra-
tions around the nominal solution, the wearflat/frictional
components are constant and the cutting components are
defined as follows 1 Detournay and Defourny (1992):

Tc(t) =
1

2
ϵa2d(t), Wc(t) = ϵaζd(t), (8)

where ϵ is the rock intrinsic specific energy, a is the bit ra-
dius, and ζ is the cutter inclination number. Furthermore,
d(t), the depth of cut, is governed by:

d(t) = n
(
Ub(t)− Ub

(
t− τn(t)

))
, (9a)

Φb(t)− Φb

(
t− τn(t)

)
= 2π/n. (9b)

where n is the number of the cutting blade, and τn(t) is
a state-dependent time delay governed by (9b). Now, the
total model is defined by (5)-(9b) that it is an NDDE with
constant and state-dependent state delays and constant
input delays.

2.1 Perturbation Dynamics

The steady-state response of the bit to constant imposed
velocities at the surface, V0 and Ω0, with initial conditions
Φ0 and U0, is given by:

Φbs(t) = Ω0t+Φ0, Ubs(t) = V0t+ U0. (10)

The perturbed variables associated with the steady-state
response are defined as follows:

A(t) = As(t) +Ap(t), B(t) = B0 +Bp(t), (11)

where A ∈ {Φb, Ub} and B ∈ {Ω, V, T,W, d} with the
subscripts 0 and p correspond to nominal and perturbed
responses, respectively (for more details refer to Tashakori
et al. (2021)). According to the low amplitude vibration
assumption, only the cutting components of the bit-rock
interaction contribute to the perturbed part of the TOB
and WOB as follows:

Tp(t) =
1

2
ϵa2dp(t), Wp(t) = ϵa2dp(t). (12)

Regarding (12) and considering that the perturbed re-
sponse (as well as the nominal response) satisfies (5) and

1 for more general cases with high vibration amplitudes see
Tashakori et al. (2021)

(6), the equations of motion in the perturbed coordinates
are obtained as follows:

Φ̈bp(t)− Φ̈bp(t− 2τt) = −GJcT
Jb

(
Φ̇bp(t) + Φ̇bp(t− 2τt)

)

− ϵa2

2Jb

(
dp(t)− dp(t− 2τt)

)
+

2GJct
Jb

Ω(t− τt), (13a)

Übp(t)− Übp(t− 2τa) = −EAca
Mb

(
U̇bp(t) + U̇bp(t− 2τa)

)

− ϵaζ

Mb

(
dp(t)− dp(t− 2τa)

)
+

2EAca
Mb

V (t− τa). (13b)

The only nonlinear term in (13a) and (13b) is the term
related to the perturbed depth of cut dp(t), which, after
linearization is given by Tashakori et al. (2021):

dp(t) = n
(
Ubp(t)− Ubp(t− τ0)−

V0

Ω0
(Φp(t)−Φp(t− τ0))

)
,

(14)
with τ0 = 2π

nΩ0
.

2.2 Dimensionless equations of motion

The characteristic time and length, the dimensionless
angular and axial displacements, and the dimensionless
control inputs are introduced as follows:

t∗ =
Jb

GJct
, L∗ =

2Jb
nt2∗ϵa

2
, ϕ = Φbp , u =

Ubp

L∗
,

ω(t̂) =
2GJct
Jb

t2∗Ω(t), v(t̂) =
2EAca
Mb

t2∗
L∗

V (t), (15)

with t̂ = t/t∗ the dimensionless time. The dimensionless
form of (13) is hence given by:

ϕ′′(t̂)− ϕ′′(t̂− 2τ̂t) = −ϕ′(t̂)− ϕ′(t̂− 2τ̂t)

− d̂(t̂) + d̂(t̂− 2τ̂t) + ω(t̂− τ̂t), (16a)

u′′(t̂)− u′′(t̂− 2τ̂a) = −κu′(t̂) + κu′(t̂− 2τ̂a)

− ψd̂(t̂) + ψd̂(t̂− 2τ̂a) + v(t̂− τ̂a), (16b)

with the dimensionless time-delays τ̂t = τt/t∗, τ̂a = τa/t∗,
τ̂0 = τ0/t∗, dimensionless parameters

χ =
nV0ϵa

2

2JbΩ0
t2∗, κ =

EAca
Mb

t∗, ψ =
nϵaζ

Mb
t2∗, (17)

and the dimensionless form of the linearized perturbed
depth of cut:

d̂(t̂) =
(
u(t̂)− u(t̂− τ̂0)

)
− χ

(
ϕ(t̂)− ϕ(t̂− τ̂0)

)

:=

∫ t̂

t̂−τ̂0

(
u′(θ)− χϕ′(θ)

)
dθ. (18)

By employing the dimensionless angular and axial veloci-
ties and the dimensionless depth of cut as representative
states, system (16) is described in the following state-space
form:

x′
1(t̂)− x′

1(t̂− 2τ̂t) = −x1(t̂)− x1(t̂− 2τ̂t)

− x3(t̂) + x3(t̂− 2τ̂t) + ω(t̂− τ̂t), (19a)

x′
2(t̂)− x′

2(t̂− 2τ̂a) = −κx2(t̂) + κx2(t̂− 2τ̂a)

− ψx3(t̂) + ψx3(t̂− 2τ̂a) + v(t̂− τ̂a), (19b)

x3 =

∫ t̂

t̂−τ̂0

−χx1(θ) + x2(θ)dθ, (19c)

with x(t̂) = [x1, x2, x3]
T
:=

[
ϕ′(t̂), u′(t̂), d̂(t̂)

]T
.

3. CONTROL PROBLEM FORMULATION

The neutral terms in (5), (6), which makes the dynam-
ics dependent on its state at 2τt and 2τa seconds ago,
originates from the elastic waves traveling from the bit
to the top of the drill-string and then returning back to
the bit. Accordingly, the neutral terms will be removed by
preventing the up-traveling wave to be reflected at the top.
Based on this notion, a precompensator is designed in Sec-
tion 3.1 to remove the neutral terms from the equations of
motion. Then, a new approach for checking the exponential
stability of the dynamics in the compensated coordinates
with a prescribed decay rate is developed in Section 3.2. In
this approach, which we call the ”eigenvector contradiction
method”, a sufficient condition is presented to ensure that
none of the eigenvalues lie in an undesirable right-half
complex plane. If there exists an eigenvalue in such half-
plane, an eigenvector corresponding to such eigenvalue
has to satisfying the corresponding (eigenvalue problem)
matrix equation. According to this matrix equation, some
inequalities between the magnitudes of the eigenvector ele-
ments are extracted. Then, such inequalities are combined
to obtain an inequality between the system parameters
(and control gains). By choosing control gains in a way
that violates such inequality, the existence of an eigenvalue
in the undesirable complex half-plane becomes impossible
and the stability is guaranteed.

3.1 Compensator design methodology

The up-traveling wave η̇t(t) can be expressed in terms
of the measurable velocities and strains at the top by
multiplying (3b) by 1/ct and adding it to (3a) as follows:

η̇t(t) =
1

2

∂Φ

∂t
(0, t) +

1

2ct

∂Φ

∂x
(0, t). (20)

Accordingly, the up-traveling wave η̇t(t) is available for
feedback. On the other hand, solving (3c) and (3d) gives
η̇t(t) in terms of down-hole variables as follows:

η̇t(t+ τt) =
1

2

(
∂Φ

∂t
(L, t) +

1

ct

∂Φ

∂x
(L, t)

)
. (21)

Substituting ∂ϕ/∂x(L, t) from (4a) into (21), regarding
Φ(L, t) = Φb(t), yields:

η̇t(t) = Φ̈b(t− τt)−
GJct
Jb

Φ̇b(t− τt) +
1

Jb
T (t− τt). (22)

Now, let us introduce the following input transformation
to remove the neutral terms from the equations of motion
(5) and (6):

Ωt(t) = Ω(t)− η̇t(t), Vt(t) = V (t)− η̇a(t), (23)

where Ωt(t) and Vt(t) are the transformed control inputs
with the measurable up-traveling waves η̇t(t) and η̇a(t)
as the precompensation terms. By employing such input
transformation, the torsional dynamics (5) is transformed,
with regards to (22), as follows:

Φ̈b(t) = −GJcT
Jb

Φ̇b(t)−
1

Jb
T (t) +

2GJct
Jb

Ωt(t− τt). (24)

Similarly, the transformed form of the axial dynamics, by
application of the input transformation in (23), is obtained
as follows:

Üb(t) = −EAca
Mb

U̇b(t)−
1

Mb
W (t)+

2EAca
Mb

Vt(t−τa)t. (25)
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Unlike (5), (6), the transformed system (24), (25) does not
include any neutral terms, and hence, its spectrum has no
vertical asymptote. The dimensionless perturbation form
of the transformed dynamics (24), (25), according to the
procedure in subsection 2.2 and subsection 2.1, is obtained
as follows:

ϕ′′(t̂) = −ϕ′(t̂)− d̂(t̂) + ωt(t̂− τ̂t), (26a)

u′′(t̂) = −κu′(t̂)− ψd̂(t̂) + vt(t̂− τ̂a), (26b)

where ωt(t̂) and vt(t̂) are the dimensionless perturbed form
of the transformed control inputs (23),

ω =
2GJct
Jb

t2∗Ωt, v =
2EAca
Mb

t2∗
L∗

Vt. (27)

Equations (26) can be described by employing the state
vector used in (19) as follows:

x′
1(t̂) = −x1(t̂)− x3(t̂) + ωt(t̂− τ̂t), (28a)

x′
2(t̂) = −κx2(t̂)− ψx3(t̂) + vt(t̂− τ̂a), (28b)

x3 =

∫ t̂

t̂−τ̂0

−χx1(θ) + x2(θ)dθ, (28c)

As a consequence, the proposed precompensation strategy
simplifies the dynamics to be stabilized, enabling the
stabilizing controller design discussed in subsection 3.2.

3.2 State-feedback control design methodology

Let us define the following state-feedback control law:

ωt(t̂− τ̂t) = −K1x(t̂), vt(t̂− τ̂a) = −K2x(t̂). (29)

Note that this feedback strategy is non-causal and can
as such not be implemented directly. It has been shown
in Tashakori et al. (2021) that such control strategy can
be extended with a predictor to render the total strategy
causal and implementable. Here, we refrain from discussing
the inclusion of the predictor for the sake of brevity. The
gain matrices in (29) are proposed to have the following
structure:

K1 = [k11 0 k13] , K2 = [0 k22 k23] , (30)

with k11, k13, k22, k23, the controller gains. These gains
are designed to place all poles of the system (28) in the
left-half plane R−

−ν = {λ|Re(λ) ≤ −ν} for an arbitrary
positive value ν. Substituting (29) into (28) gives:

x′
1(t̂) = (k11 − 1)x1(t̂) + (k13 − 1)x3(t̂), (31a)

x′
2(t̂) = (k22 − κ)x2(t̂) + (k23 − ψ)x3(t̂), (31b)

x3(t̂) =

∫ t̂

t̂−τ̂0

−χx1(θ) + x2(θ)dθ. (31c)

The characteristic matrix of the closed-loop system is then
obtained as follows:

∆c(λ) =

[
λ+ 1− k11 0 1− k13

0 λ+ κ− k22 ψ − k23
χg(λ) −g(λ) 1

]
, (32)

by introducing g(λ) = 1− eλτ̂0/λ.

In the following theorem, we provide analytical and para-
metric (in the system parameters) synthesis conditions for
the controller gains in (29) that ensure the exponential sta-
bilization (with guaranteed exponential convergence rate).

Theorem 1. (Contradiction eigenvalue criterion) If the fol-
lowing relations hold between the control gains and the
parameters of the system (31):

1− k11, κ− k22 > ν, 1− k13, ψ − k23 > 0 (33a)

1 + eτ0ν

ν
(
χ(1− k13)

1− k11 − ν
+

ψ − k23
κ− k22 − ν

) ≤ 1, (33b)

then all poles of the system (31) are in the half-plane
R−

−ν = {λ|Re(λ) ≤ −ν}.

Proof. Assume that there exists a characteristic root λr

for the characteristic matrix (32), which belongs to the
complex set R+

−ν = {x|Re(x) > −ν}. Correspondingly,

there exists a nontrivial eigenvector Vr = [v1, v2, v3]
T
,

which satisfies the following equation:[
λr + 1− k11 0 1− k13

0 λr + κ− k22 ψ − k23
χg(λr) −g(λr) 1

][
v1
v2
v3

]
= 0, (34)

which gives the following magnitude equalities:

|λr + 1− k11||v1| = |1− k13||v3|, (35a)

|λr + κ− k22||v2| = |ψ − k23||v3|, (35b)

|g(λr)||χv1 − v2| = |v3|. (35c)

According to Lemma 4 and the triangle inequality, the
following inequality can be obtained from (35c):

|v3| ≤ |g(λr)|(χ|v1|+ |v2|) ≤
1 + e−τ̂0ν

ν
(χ|v1|+ |v2|). (36)

Regarding Lemma 3 and condition (33a), the following
inequalities are obtained:

|λr + 1− k11| > 1− k11 − ν, (37a)

|λr + 1− k22| > 1− k22 − ν. (37b)

Substituting (37) in (35a) and (35b), considering (33a),
gives the following inequalities:

|v1| <
1− k13

1− k11 − ν
|v3|, |v2| <

ψ − k23
κ− k22 − ν

|v3|. (38a)

Substituting (38) into (36) leads to the following relation:

1 + e−τ̂0ν

ν
(
χ(1− k13)

1− k11 − ν
+

ψ − k23
κ− k22 − ν

) > 1, (39)

which is in contradiction with the condition (33b). As a
result, the assumption is not valid, and the theorem is
proved by contradiction.

Theorem 1 already gives synthesis conditions for the
feedback controllers gains (depending parametrically on
drill-string system parameters). However, the controller
gains cannot be explicitly designed by the relations in
Theorem 1. Now, Proposition 2 gives the controller gains
explicitly in terms of the drill-string system parameters,
based on the conditions presented in Theorem 1.

Proposition 2. Let d1, d2, d3, and d4 be arbitrary, positive
real numbers, which satisfy

1− d3 − d4 > 0. (40)

Then, the following control gains ensure that all closed-
loop poles in (31) are in the half-plane R−

−ν = {λ|Re(λ) ≤
−ν}:

k11 = 1− ν − d1, k13 = 1− d1d3

χ 1+e−τ̂0ν

ν

,

k22 = κ− ν − d2, k23 = ψ − νd2(1− d3 − d4)

1 + e−τ̂0ν
. (41)
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Unlike (5), (6), the transformed system (24), (25) does not
include any neutral terms, and hence, its spectrum has no
vertical asymptote. The dimensionless perturbation form
of the transformed dynamics (24), (25), according to the
procedure in subsection 2.2 and subsection 2.1, is obtained
as follows:

ϕ′′(t̂) = −ϕ′(t̂)− d̂(t̂) + ωt(t̂− τ̂t), (26a)

u′′(t̂) = −κu′(t̂)− ψd̂(t̂) + vt(t̂− τ̂a), (26b)

where ωt(t̂) and vt(t̂) are the dimensionless perturbed form
of the transformed control inputs (23),

ω =
2GJct
Jb

t2∗Ωt, v =
2EAca
Mb

t2∗
L∗

Vt. (27)

Equations (26) can be described by employing the state
vector used in (19) as follows:

x′
1(t̂) = −x1(t̂)− x3(t̂) + ωt(t̂− τ̂t), (28a)

x′
2(t̂) = −κx2(t̂)− ψx3(t̂) + vt(t̂− τ̂a), (28b)

x3 =

∫ t̂

t̂−τ̂0

−χx1(θ) + x2(θ)dθ, (28c)

As a consequence, the proposed precompensation strategy
simplifies the dynamics to be stabilized, enabling the
stabilizing controller design discussed in subsection 3.2.

3.2 State-feedback control design methodology

Let us define the following state-feedback control law:

ωt(t̂− τ̂t) = −K1x(t̂), vt(t̂− τ̂a) = −K2x(t̂). (29)

Note that this feedback strategy is non-causal and can
as such not be implemented directly. It has been shown
in Tashakori et al. (2021) that such control strategy can
be extended with a predictor to render the total strategy
causal and implementable. Here, we refrain from discussing
the inclusion of the predictor for the sake of brevity. The
gain matrices in (29) are proposed to have the following
structure:

K1 = [k11 0 k13] , K2 = [0 k22 k23] , (30)

with k11, k13, k22, k23, the controller gains. These gains
are designed to place all poles of the system (28) in the
left-half plane R−

−ν = {λ|Re(λ) ≤ −ν} for an arbitrary
positive value ν. Substituting (29) into (28) gives:

x′
1(t̂) = (k11 − 1)x1(t̂) + (k13 − 1)x3(t̂), (31a)

x′
2(t̂) = (k22 − κ)x2(t̂) + (k23 − ψ)x3(t̂), (31b)

x3(t̂) =

∫ t̂

t̂−τ̂0

−χx1(θ) + x2(θ)dθ. (31c)

The characteristic matrix of the closed-loop system is then
obtained as follows:

∆c(λ) =

[
λ+ 1− k11 0 1− k13

0 λ+ κ− k22 ψ − k23
χg(λ) −g(λ) 1

]
, (32)

by introducing g(λ) = 1− eλτ̂0/λ.

In the following theorem, we provide analytical and para-
metric (in the system parameters) synthesis conditions for
the controller gains in (29) that ensure the exponential sta-
bilization (with guaranteed exponential convergence rate).

Theorem 1. (Contradiction eigenvalue criterion) If the fol-
lowing relations hold between the control gains and the
parameters of the system (31):

1− k11, κ− k22 > ν, 1− k13, ψ − k23 > 0 (33a)

1 + eτ0ν

ν
(
χ(1− k13)

1− k11 − ν
+

ψ − k23
κ− k22 − ν

) ≤ 1, (33b)

then all poles of the system (31) are in the half-plane
R−

−ν = {λ|Re(λ) ≤ −ν}.

Proof. Assume that there exists a characteristic root λr

for the characteristic matrix (32), which belongs to the
complex set R+

−ν = {x|Re(x) > −ν}. Correspondingly,

there exists a nontrivial eigenvector Vr = [v1, v2, v3]
T
,

which satisfies the following equation:[
λr + 1− k11 0 1− k13

0 λr + κ− k22 ψ − k23
χg(λr) −g(λr) 1

][
v1
v2
v3

]
= 0, (34)

which gives the following magnitude equalities:

|λr + 1− k11||v1| = |1− k13||v3|, (35a)

|λr + κ− k22||v2| = |ψ − k23||v3|, (35b)

|g(λr)||χv1 − v2| = |v3|. (35c)

According to Lemma 4 and the triangle inequality, the
following inequality can be obtained from (35c):

|v3| ≤ |g(λr)|(χ|v1|+ |v2|) ≤
1 + e−τ̂0ν

ν
(χ|v1|+ |v2|). (36)

Regarding Lemma 3 and condition (33a), the following
inequalities are obtained:

|λr + 1− k11| > 1− k11 − ν, (37a)

|λr + 1− k22| > 1− k22 − ν. (37b)

Substituting (37) in (35a) and (35b), considering (33a),
gives the following inequalities:

|v1| <
1− k13

1− k11 − ν
|v3|, |v2| <

ψ − k23
κ− k22 − ν

|v3|. (38a)

Substituting (38) into (36) leads to the following relation:

1 + e−τ̂0ν

ν
(
χ(1− k13)

1− k11 − ν
+

ψ − k23
κ− k22 − ν

) > 1, (39)

which is in contradiction with the condition (33b). As a
result, the assumption is not valid, and the theorem is
proved by contradiction.

Theorem 1 already gives synthesis conditions for the
feedback controllers gains (depending parametrically on
drill-string system parameters). However, the controller
gains cannot be explicitly designed by the relations in
Theorem 1. Now, Proposition 2 gives the controller gains
explicitly in terms of the drill-string system parameters,
based on the conditions presented in Theorem 1.

Proposition 2. Let d1, d2, d3, and d4 be arbitrary, positive
real numbers, which satisfy

1− d3 − d4 > 0. (40)

Then, the following control gains ensure that all closed-
loop poles in (31) are in the half-plane R−

−ν = {λ|Re(λ) ≤
−ν}:

k11 = 1− ν − d1, k13 = 1− d1d3

χ 1+e−τ̂0ν

ν

,

k22 = κ− ν − d2, k23 = ψ − νd2(1− d3 − d4)

1 + e−τ̂0ν
. (41)
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Proof. Since d1, d2, d3 ,and 1−d3−d4 are positive values,
the first condition of Theorem 1, (33a), is satisfied. The
following relation is obtained from (41):

1 + eτ0ν

ν
(
χ(1− k13)

1− k11 − ν
+

ψ − k23
κ− k22 − ν

) = 1− d4. (42)

According to (40) and the positiveness of d3 and d4, the
inequality 1−d4 < 1 holds, which indicates the satisfiction
of the second condition of (33b) regarding (42).

Compared to the existing approaches for NDDE models,
the novel control design method explicitly gives the control
gains as functions of the drill-string parameters, which
makes it applicable for different drill-strings, needless to
redesign the controller.

4. SIMULATION RESULTS

In this section, the effectiveness of the designed controller
on the drill-string dynamics (5), (6) is illustrated. Em-
ploying the drilling parameters presented in Tashakori
et al. (2021) gives the dimensionless parameter values as
κ = 0.65, ψ = 13.5, and χ = 0.32.

The open-loop spectrum of the system (with Ω(t) =
V (t) = 0), which is equivalent to the spectrum of the
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system (19) with ω(t̂) = v(t̂) = 0, is shown in Fig. 1.
The TDS-STABIL MATLAB package Michiels (2010) is
employed to find the stability-relevant characteristic roots
of the system. The existence of some characteristic roots in
the RHP indicates that the system is inherently unstable.
As shown, the asymptote of the NTD system (5), (6) is
located on the imaginary axis indicating the system is not
formally stable, either.

Regarding (23), the control inputs are decomposed into
two parts, e.g., Ωt(t) and the precompensating part η̇t(t)
in the angular direction. First, the precompensating parts
η̇t(t) and η̇a(t) are designed by measuring the top-side
velocities and strains, see relation (21). Mathematically,
the precompensating part can be written in terms of the
bit state by using the relation (22). Therefore, the full tor-
sional and axial dynamics (5), (6) with the control inputs
Ω(t), V (t) are transformed into compensated dynamics
(24), (25) with the control inputs Vt(t), Ωt(t).

The open-loop spectrum of the precompensated dynamics
(24), (25) (with Ωt = Vt = 0) is depicted in Fig. 2.
Compared to Fig. 1, the number of unstable poles is
decreased, and there is no root accumulation. However,
still, there are some unstable poles.

The next step is to design the remaining parts of the con-
trol inputs Ωt(t) and Vt(t) by employing the state-feedback
law (29) with regards to (27). Based the eigenvalue con-
tradiction approach, the feedback gains in (29) should be
designed by setting the values for d1, d2, d3, and d4 in (41).
By choosing d1 = d2 = 2, d3 = 0.5, d4 = 0.1 (other values
satisfying the conditions in Proposition 2 can also be cho-
sen) and the exponential design parameter ν = 3 (larger
values can be chosen but it increases the sensitivity of the
closed-loop system to noise and disturbance), the control
gains are designed as follows to exponentially stabilize the
system, i.e., to place all roots such that their real values
are smaller than −ν = −3:

k11 = −4, k22 = −4.35, k13 = 0.72, k23 = −109.9. (43)

The spectrum of the closed-loop system is illustrated in
Fig. 3. As shown, all roots have real values less than
the intended value −3. Furthermore, the time evolution
of the angular velocity of the closed-loop system is il-
lustrated in Fig. 4. Fig. 4 shows that the bit angular
velocity approaches the desired trajectory. Employing the
smoothened trajectory for the reference values prevents
large overshoots at the beginning of the operation. It is
seen that the tracking operation is delayed. Such delay is
unavoidable according to the input delay corresponding to
the time required for the elastic waves to reach the bit.
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5. CONCLUSIONS

An automated control scheme has been presented to mit-
igate undesired vibrations of a distributed drill-string,
formulated in terms of NDDEs. By employing a novel prec-
ompensator, the open-loop dynamics has been transferred
into the RDDE rather than the NDDE framework. A suffi-
cient condition, the eigenvector contradiction criterion, is
developed to ensure that the right-most pole is located in
a prescribed left-half complex plane. Based on this crite-
rion, a parametric controller is designed in analytic form
(depending on drill-string system parameters). Simulation
results indicate that the proposed controller stabilizes the
drilling system, which is unstable for the selected field
parameters, with the prescribed decay rate.
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Appendix A

Lemma 3. For positive values b > ν > 0, min|λ+ b|λ∈D =
b− ν, where D = {λ|Re(λ) ≥ −ν}.

Proof. Since Re(λ) ≥ −ν, we can write Re(λ) = −ν +
α + βi where α is a non-negative real number, and β is a
real number. Hence, for λ ∈ D,

|λ+ b| =
√(

Re(λ) + b
)2

+ Im(λ)2 =
√
(b− ν + α)2 + β2,

(A.1)

where min
√
(b− ν + α)2 + β2

α≥0,β
= b − ν, which com-

pletes the proof of the statement of the lemma.

Lemma 4. The maximum magnitude of the complex func-
tion g(λ) = (1 − eλτ̂0)/λ in the region D = {λ|Re(λ) ≥
−ν}, with τ̂0, ν > 0 , is not greater than (1 + e−τ̂0ν)/ν.

Proof. Let us divide the region D into two sub-regions,
inside and outside the ball |λ| = ν: D1 = {λ||λ| ≤ ν},
and D2 = {λ|Re(λ) > −ν ∧ |λ| > ν}, respectively. Since
limλ→0 g(λ) = −τ̂0, the origin is a removable singular point
for g(λ), and the function g(λ) = (1−eλτ̂0)/λ, (with defin-
ing g(0) = −τ̂0) can be considered as an analytic function.
Hence, according to the maximum modulus principle in
complex analysis, its maximum magnitude in the region
D1 corresponds to a point located on its boundary, |λ| = ν:

max|1− eλτ̂0

λ
|λ∈D1

= max|1− eλτ̂0

λ
||λ|=ν

≤
1 +max|eλτ̂0 ||λ|=ν

ν
=

1 + eντ̂0

ν
. (A.2)

In addition, inf |λ|λ∈D2 = ν and since sup
(
Re(−λτ̂0)

)
=

ντ̂0, sup|e−λτ̂0 |λ∈D2
= eντ̂0 , the following relation holds:

sup|1− eλτ̂0

λ
|λ∈D2 ≤ 1 + sup|eλτ̂0 |λ∈D2

ν
=

1 + eντ̂0

ν
.

(A.3)

As a result, max| 1−eλτ̂0

λ |λ∈D ≤ 1+eντ̂0

ν .


