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Abstract This paper proposes a data-based approach
for model order reduction that preserves incremental
stability properties. Existing data-based approaches do
typically not preserve such incremental system proper-
ties, especially for nonlinear systems. As a result, insta-
bility of the constructed model commonly occurs for
inputs outside the training set, which seriously limits
the usefulness of such models. Therefore, we propose
to construct incrementally stable or incrementally �2-
gain stable reduced-order nonlinear models to ensure
robustness for a broad class of (bounded) input sig-
nals. Hereto, nonlinear discrete-time state-space equa-
tions are fitted to input-state-output data, obtained by
simulations with the original model. We conjecture
that certain classes of hyperbolic partial differential
equations enjoy such incremental stability properties.
Given the fact that complexity reduction in such PDE
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models is desirable, we employ the developed data-
based reductionmethod to the discretized version of the
hyperbolic equations thereby preserving the incremen-
tal stability features of the original system. In particular,
this method is applied to a linear advection equation,
for which stability properties are proved analytically.
Finally, simulation results show the successful applica-
tion of the method to the nonlinear Burgers’ equation.

Keywords Model order reduction ·Hyperbolic partial
differential equation · Data-based reduction · Stability
preservation · Non-intrusive model order reduction

Mathematics Subject Classification 35L65 ·
37M05 · 93A15 · 93B99 · 93C99 · 93D05

1 Introduction

Data-based approximation of nonlinear dynamical sys-
tems by mathematical models is a challenging task
in science and engineering. Data-based model order
reduction (MOR) and system identification are two
well-known branches of science and engineering that
tackle approximation of dynamical systems. These two
branches differ mainly in the source of the provided
data. In MOR, data come from solutions of a com-
plex model (called snapshots), which is usually based
on the physical principles [6,16]. The critical issue in
MOR is to find a model of lower order and complex-
ity that imitates accurately the high-order dynamical
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model. In system identification, however, data come
from experiments [24], which bring additional prob-
lems such as measurement noise and exogenous distur-
bances. Therefore, the techniques that have been devel-
oped in the system identification community can poten-
tially be exploited and tailored for MOR by neglecting
the effect of noise and disturbances. In this paper, we
build upon a system identification technique for non-
linear systems to develop a novel data-based MOR of
nonlinear systems, thereby combining the best of both
worlds.

While reducing the dimension of a high-order
dynamical system, preserving essential characteristics
of the original model, such as stability, is desirable.
Namely, stability is a key aspect in many control sys-
tems, especially those for safety-critical applications.
In (model-based) balanced truncation techniques, sta-
bility preservation is achieved globally for linear sys-
tems [15] and for systemswith local nonlinearities after
satisfying certain conditions [9]. In addition, stability
is preserved locally in balancing of nonlinear systems
[38]. In data-based MOR, stability enforcement on the
trained model helps the trained model to behave more
robustly to inputs absent in the training data. Well-
known data-based techniques such as Proper Orthogo-
nal Decomposition (POD) [16] and empirical balanc-
ing [11] do not necessarily (provably) preserve stability
and may lead to unstable system models.

Machine Learning (ML) has recently been used for
imitating dynamical system responses [37]. The most
used structure in ML to generate dynamical models is
the Recurrent Neural Network (RNN). In the approx-
imation of dynamical systems by RNN, the one-step
ahead prediction error is typically minimized, rather
than the long-term output error between the origi-
nal model and the predicted model. This might yield
an unstable model for which small errors accumulate
under recursive simulations [29]. RNNs are used to
identify nonlinear systems [4]; however, the model
class is restrictive and the identified weights, during
training, should evolve in a specific way to retain sta-
bility. Stability of RNNs has received attention inmany
works. However, the stability has only been proved
locally for the equilibrium point of the discrete-time
RNNby using asymmetric weightingmatrices [23,27],
which restricts model performance and its trainabil-
ity. The model performance for stable RNNs has been
increased in [35] by applying contraction analysis
for nonlinear systems; nonetheless, the model perfor-

mance is still limited. The RNN model class can be
slightly enlarged by only adding more hidden layers
and increase the number of neurons within each layer,
which in return increases computational cost for train-
ing and simulation. In this paper, we try to enlarge the
model class by using polynomials. In the literature,
RNNs are also used forMOR of systems in which there
are no time-varying inputs to the system [37]. This input
feature is also fixed while training and testing physics-
informed neural networks [33]. In all of these studies,
only some parameters are changed and boundary con-
ditions (i.e., inputs) are fixed from one simulation to
another. In other words, this trained RNNmodel acts as
a nonlinear interpolation between the solutions at each
time instant. Therefore, for these problems, stability is
of less importance and the trained model can behave
unpredictably for previously unseen inputs [29].

Hence, we pursue the goal of preserving the stabil-
ity of the model through data-based order reduction in
such a way that it is robustly stable for a wide class of
inputs. There are many notions of stability for nonlin-
ear systems.Among them, incremental stability notions
do not depend on prior knowledge of inputs and trajec-
tories [5,26,30]. The most important notions used in
this paper are Incremental Asymptotic Stability (IAS)
and Incremental �2-Gain Stability (IGS). While IAS
implies that all solutions converge to each other (and
‘forget’ initial conditions) for different initial condi-
tions under the same input signal, IGS characterizes
the bounded sensitivity of the output to changes in the
input [36]. These notions have been recently enforced
in system identification for nonlinear systems [39,41],
but not yet exploited for MOR problems where the
full-state trajectory can be constructed via the reduced-
order model, rather than only the output of the system.

Themain contributions of this paper are, first, report-
ing a new observation on the incrementally stable
responses of hyperbolic Partial Differential Equations
(PDEs), second, proposing an MOR technique for
hyperbolic PDEs that preserves incremental stability
properties and, third, employing POD to compress the
dataset and exploiting it for output estimation and also
for constructing the full-state trajectories. It is note-
worthy to mention that the proposed method combines
data-based MOR approaches and physics of the sys-
tem. In this setting, the physics of the system is its
(incremental) stability properties. To the best of our
knowledge, no data-based MOR technique has such a
feature of stability preservation. Preserving such prop-
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erties helps the ROM to behave more robustly to inputs
that have not been seen during training.

The present paper extends the results of [39,41] in
three aspects. Firstly, we investigate the effectiveness
of the proposed method in order reduction of high-
dimensional models after discretization of hyperbolic
PDEs. To this end, we consider a linear and a nonlin-
ear PDE as our motivating and illustrative case studies.
While in [39,41], the system identification depends on
the input-output response of a real physical system, our
MOR method relies on the solution of a mathematical
model of the physical system. Secondly, we introduce
other incremental stability notions that are required
to be preserved through data-based model complexity
reduction. Thirdly, we add an intermediate step (data
compression) in the optimization problem to render the
procedure computationally feasible for MOR of high-
fidelity models, which in addition allows the construc-
tion of full-state trajectories. Notably, the model class
we assume in this paper is of the form of polynomi-
als, which can cover a large class of nonlinear prob-
lems. Other forms of nonlinearities (such as exponen-
tial terms) can also be transformed to the polynomial
form by lifting transformations [19].

The structure of the paper is as follows. In Sect. 2,
mathematical models of the hyperbolic PDEs together
with the corresponding discretization technique are
presented. Next, the stability properties are defined and
the incremental stability properties of the case stud-
ies are investigated. In Sect. 3, a general model class
for MOR is introduced. In Sect. 4, the constrained
optimization framework underlying the proposed data-
based MOR approach is presented. Numerical results
are shown in Sect. 5. Finally, Sect. 6 concludes the
paper.

Notation and preliminaries: Function α : R≥0 →
R≥0 is of classK if it is continuous and strictly increas-
ing and zero at the origin. If a class-K function is
unbounded, it belongs to the function class K∞. A
function σ : R≥0 → R≥0 is of class L if it is continu-
ous, strictly decreasing and lim

n→∞ σ(n) = 0. A function

β : R≥0 × R≥0 → R≥0 is of class KL if it is of class
K in its first argument and of class L in its second
argument. Space �2,N consists of all vector functions
which are bounded and inherits the norm as ‖u‖2�2,N =
∑N

n=1 |un|2. A positive definite matrixM is denoted by
M > 0 (positive semi-definiteness by M ≥ 0). A mul-
tivariate polynomial z(x) is a Sum-Of-Squares (SOS)

if there exists polynomials z1(x), . . . , zc(x) such that
z(x) = ∑c

i=1 z
2
c(x).

2 Motivating examples of hyperbolic PDE models
and stability features

In this section, we introduce two sets of hyperbolic
PDEs, widely used in the MOR community as bench-
mark problems. These equations represent often-used
models for a wide range of physical phenomena, such
as fluid mechanics, nonlinear acoustics, gas dynamics,
and traffic flows [22]. More complex hyperbolic mod-
els are also built upon these motivating examples.

Firstly, the simplest hyperbolic PDE is an advection
equation, representing themovement of awave through
a fixed spatial domain in a specific direction. This PDE
has applications in physics, engineering and earth sci-
ences [22]. Higher-order one-dimensional hyperbolic
systems such as the isothermal Euler equations may be
constructed by combining many advection equations
with different directions of moving waves [12]. The
advection equation we study in this paper is of the fol-
lowing form:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂X

∂t
+ c

∂X

∂ζ
= 0,

X(0, ζ ) = X0(ζ ),

X(t, 0) = ū(t),

, ζ ∈ [0, L], t ∈ [0, T ],

(1)

where X(t, ζ ) is the conservative variable of the sys-
tem with initial condition X0(ζ ) and ū(t) represents
the time-varying input entering through the boundary
condition at ζ = 0. Here, t , ζ , T , L and c are the tem-
poral variable, the spatial variable, the time horizon,
the length of the computational domain and the wave
velocity, respectively. We define ȳ(t) = X(t, ζy) as the
conservative variable at a specific location ζy in the
spatial domain, to be used later. Notably, this output
can be any smooth function of the conservative vari-
able X; however, for this study, we choose this specific
function, ȳ(t) = X(t, ζy).

Secondly, Burgers’ equation is known as the scalar
version of the Navier–Stokes equations [28], which has
been the subject of study for many MOR approaches
[3,43]. This PDE has been used in many branches
of science, such as, e.g., in fluid mechanics and gas
dynamics. Burgers’ equation reads as follows:
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂X

∂t
+ ∂

∂ζ
(
1

2
X2) = 0,

X(0, ζ ) = X0(ζ ),

X(t, 0) = ū(t),

, ζ ∈ [0, L], t ∈ [0, T ],

(2)

where variables and parameters are as defined in (1).
The output function ȳ(t) is also defined similarly. Var-
ious numerical schemes have been developed to solve
(1) and (2). In this study, we use the Rusanov scheme
[20] to spatially and temporally discretize the PDEs.

2.1 Spatial and temporal discretization

Finite-volume discretization is commonly employed to
solve hyperbolic PDEs. Assume that we are interested
in the solution at the i-th spatial grid cell located at
the center of the spatial interval ((i − 1)�ζ, i�ζ), i ∈
{1, . . . , I}, and at the discrete time instant tn+1 =
(n+1)�t, n ∈ {0, . . . ,N −1}, with�t and�ζ denot-
ing the temporal and spatial discretization step sizes.
Here, N is the total number of time-steps and I is the
number of grid cells, which is usually large. First-order
Godunov-type schemes numerically solve (1) and (2)
by

x̄n+1
i = x̄ni − �t

�ζ

(
Q(x̄ni , x̄

n
i+1) − Q(x̄ni−1, x̄

n
i )

)
, (3)

where x̄ni is the spatial average of the conservative vari-
able X over i-th cell at the time instant tn := n�t .
The numerical flux function Q(·, ·) in (3) is a scheme-
dependent function of the conservative variables. There
are a variety of schemes in the literature to define
Q(·, ·). As a special case, the classical Rusanov scheme
[20] employs a flux function as below:

Q(x̄ni , x̄
n
i+1) = q(x̄ni+1) + q(x̄ni )

2
−λni+1/2(x̄

n
i+1 − x̄ni ), (4)

with

q(x̄ni ) = cx̄ni , λni+1/2 = 1

2
c, (5)

for the advection equation (1) and

q(x̄ni ) = 1

2
(x̄ni )

2, λni+1/2 = 1

2
max(x̄ni , x̄

n
i+1), (6)

for Burgers’ equation (2). Here, the operator “max”
gives the maximum value of its arguments. Augment-
ing (3) for all given i ∈ {1, . . . , I}, we obtain:

{
x̄n+1 = f̄ (x̄n, ūn),

ȳn = ḡ(x̄n),
(7)

where x̄n := [x̄n1 · · · x̄nI ]T ∈ R
I with superscript T

denoting the transpose action. In addition, ūn := x̄n0
appears in the right-hand side of equation (3) when we
set i = 1. We also set x̄nI+1 := x̄nI when setting i = I
in (3). In (7), f̄ is a nonlinear function which encodes
all the relationships in (3) and (4). Moreover, ȳn ∈ R

m

with m number of outputs and ḡ is a function to define
the outputs. In our case study, ḡ(x̄n) = Zζy x̄

n , where
Zζy is a linear operator which extracts the values of x̄

n

at the location ζy . The dimension of functions f̄ , ḡ is
as high as the number of grid cells in case of the scalar
PDEs; here, the dimension isI, which is typically large.

Note that the above discretization typically leads
to high-dimensional models (due to the large number
of grid cells) that obstruct efficient multi-query sim-
ulations and controller design. Therefore, we aim to
construct a low-order, finite-dimensional, discrete-time
model that well approximates the discretized version of
(1) and (2), which is (7).

We have observed specific features in the numerical
simulation of PDEs (1) and (2). These specific features
invoke the definition of incremental stability properties,
which are detailed in the next section.

2.2 Stability notions

Here, we give definitions and Lyapunov characteriza-
tions of two incremental stability notions: incremental
asymptotic stability and incremental �2-gain stability
for system (7).

Definition 1 [40] System (7) is IAS if there exists
β ∈ KL such that

∥
∥x̄n1 − x̄n2

∥
∥ ≤ β(

∥
∥x̄01 − x̄02

∥
∥ , n)

holds for any two initial conditions x̄01 and x̄02 and the
corresponding state trajectories x̄n1 and x̄n2, given the
same input sequence ūn .

Remark 1 In other words, as a result of Definition 1,
IAS systems forget their initial conditions. A good
example of such systems is hyperbolic (PDE) systems,
where initial conditions finally exit the spatial domain,
and henceforth, the boundary conditions fully govern
the dynamics.

The Lyapunov characterization of IAS systems is
given below.
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Lemma 1 [40] System (7) is IAS if and only if
there exists a smooth incremental Lyapunov function
V (x̄n1, x̄

n
2) and functionsα1, α2 ∈ K∞ andα3 : R≥0 →

R≥0 positive definite such that

α1(
∣
∣x̄n1 − x̄n2

∣
∣) ≤V (x̄n1, x̄

n
2) ≤ α2(

∣
∣x̄n1 − x̄n2

∣
∣),

V (x̄n+1
1 , x̄n+1

2 )−V (x̄n1, x̄
n
2) ≤ −α3(

∣
∣x̄n1 − x̄n2

∣
∣),

(8)

hold for all x̄n1, x̄
n
2 .

Now, we discuss the definition of the IGS property
and its corresponding Lyapunov characterization. This
definition and the corresponding lemma are discrete-
time equivalents of the continuous-time counterparts
in [8,36].

Definition 2 System (7) is IGS with an �2-gain bound
of less than γ if, for any two initial conditions x̄01
and x̄02 and two input sequences ūn1, ū

n
2 ∈ �2,N , the

corresponding output trajectories ȳn1 and ȳn2 satisfy
‖ȳ1 − ȳ2‖2�2,N ≤ γ 2 ‖ū1 − ū2‖2�2,N + τ(x̄01, x̄

0
2), with

τ a bounded positive function satisfying τ(0, 0) = 0.

Remark 2 Loosely speaking, Definition 2 says that if
the input signals vary slightly, the output signals also
vary only slightly.

Lemma 2 System (7) is IGS with an �2-gain bound of
less than γ if and only if there exists a positive semi-
definite incremental storage function V (x̄n1, x̄

n
2) such

that:

V (x̄n+1
1 , x̄n+1

2 ) − V (x̄n1, x̄
n
2) ≤ γ 2

∣
∣ūn1 − ūn2

∣
∣2

− ∣
∣ȳn1 − ȳn2

∣
∣2 (9)

holds for all ūn1, ū
n
2 and the corresponding x̄

n
1, x̄

n
2, ȳ

n
1 , ȳn2

along trajectories of (7).

These definitions and lemmas will be extensively
used later to a priori guarantee the stability of the
obtained reduced-order models. In the next section, we
report some observations about the responses of the
discretized version of the advection and Burgers’ equa-
tion. These observations, based on the above defini-
tions, suggest incremental stability properties of these
PDEs that we wish to preserve in reduced complexity
models.

2.3 Evaluation of stability properties

While incremental stability has been thoroughly stud-
ied for nonlinear ordinary differential equations [5] and

for a class of delay differential equations [10,31], the
theoretical characterizations of incremental stability
properties for (hyperbolic) PDEs are lacking in the liter-
ature and this is a topic for research outside the scope of
this paper. Therefore, we consider high-fidelity (high-
order) discretized versions of the PDEs obtained via
(7) and assess the incremental stability properties for
those discretized models. This is also motivated by the
fact that such discretized models will be used as a basis
for data-based MOR.

2.3.1 Stability properties of the advection equation

Consider the advection equation (1) with a constant
initial condition along the spatial domain, X0(ζ ) = X0.
Using the Laplace transform, the analytical solution of
(1) is as follows:

X (t, ζ ) =
{

X0, t ≤ ζ/c,

ū(t − ζ/c), t > ζ/c.
(10)

Apparently, at the spatial location ζ after time instant
t = ζ/c, the effect of the initial condition vanishes
and the state evolution is governed only by the control
input ū(t), in a delayed fashion. Clearly this implies
that, independent of the initial condition, all solutions
of (1) converge to each other, and therefore, the advec-
tion equation exhibits the incremental stability prop-
erty. Moreover, by changing the inputs, the state evo-
lution experiences the same change as the input after
the transient response of the system. This is an indica-
tion that the advection equation is also incrementally
�2-gain stable. This behavior can also be observed for
the case of spatially varying initial conditions.

Due to the linear nature of (3), (4) and (5), the dis-
cretized advection equation in form of (7) leads to
a linear discrete-time system. Therefore, the stability
notions for the discretized advection equation are only
related to the system matrix obtained after spatial and
temporal discretization. This system matrix is indeed
Schur (if thewell-knownCFL condition, c�t/�ζ < 1,
is satisfied). Therefore, Lemma 1 and 2 can be satis-
fied with a quadratic Lyapunov and storage functions,
and subsequently, the discretized advection equation
is guaranteed to be IAS and IGS. This observation
for the advection equation motivates us to also study
the behavior of nonlinear Burgers’ equation since both
equations are hyperbolic.
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Remark 3 This simple advection equation can easily
be represented by a simple delay differential equation,
which can be efficiently reduced by other methods.
However, the advection equation here serves as a illus-
trative, though simple, example. This illustrates how
incremental stability (and thus the robust stability for a
wide class of inputs) can be preserved for a representa-
tive systemwithwave propagation,which is considered
challenging [34]. In this regard, it is noteworthy tomen-
tion thatmethods such as shifted-POD [34] are problem
specific and mainly work with systems with periodic
boundary conditions. In contrast, our methodworks for
any generic bounded input signals at the boundaries of
the system.

2.3.2 Stability properties of Burgers’ equation

For highly nonlinear infinite-dimensional systems such
as Burgers’ equation and also the corresponding dis-
cretized version, it is hard to assess incremental sta-
bility notions analytically since no formal definitions
and (Lyapunov-based) characterization of incremental
stability properties for such PDEs exist to the best of
the authors’ knowledge. Hence, we test the hypothe-
sis that Burgers’ equation is IAS and IGS by means
of comprehensive simulation-based studies. Since the
discretized Burgers’ equation in (7) is also highly non-
linear, it is hard to find Lyapunov and storage functions
for Lemma 1 and 2. However, we use simulations of
(7) to infer such stability properties.

To analyze IAS, we numerically solve Burgers’
equation with different initial conditions but with the
same input signal. Burgers’ equation indeed exhibits
the behavior of an IAS system (see Fig. 1), since all
output solutions converge to each other (and the same
is verified for the full state evolution). Three different
initial conditions and the corresponding outputs in Fig.
1 are denoted by the subscripts 1,2 and 3. Moreover,
this property has been tested for various input signals
(which are not reported in this paper) and all results
confirm such behavior of the model.

For IGS,we numerically simulate Burgers’ equation
with slightly different input signals, and as observed
in Fig. 2, the corresponding outputs change slightly.
This can be an empirical testifier for IGS. Again, this
behavior has been observed for many different input
signals of different nature. We acknowledge that the
above is by no means a proof for IAS/IGS of Burgers’
equation. We hope that this inspires further research

in the direction of incremental stability for hyperbolic
PDEs and emphasize that this is not the focus of this
paper, which is on the preservation of such properties
for discretized reduced-order models based on high-
fidelity discretizations of Burgers’ equation.

In the following section, we recall the definition
of incremental stability properties and corresponding
Lyapunov characterizations for discrete-time models
(being either discretized PDE models of the form (7)
or their reduced-order variants).

3 Model class for model order reduction

If PDEs (1) and (2) are discretized by a finite differ-
ence technique 1, polynomial discrete-time equations
will be obtained. As a Galerkin projection in classical
MOR preserves the structure of polynomials [32], clas-
sical MOR techniques (applied to the discrete model
obtained after finite difference discretization) lead to
the same structure in the reduced-order model. There-
fore, polynomial discrete-time equations are a good
candidate for approximating the dynamics in (1) or (2),
or their corresponding discretized forms in (7). More-
over, lifting transformations can be applied to general
nonlinear systems to convert them to a polynomial form
[19]. Therefore, we focus on polynomial discrete-time
models within the proposed MOR approach and use
the incremental stability properties for such models.

Hence, smooth, nonlinear, implicit discrete-time

dynamical systems of the following formwith x̂n ∈ R
Î

are considered for the low-order model to be trained:
{
h(x̂n+1) = f (x̂n, un),

ŷn = g(x̂n)
(11)

with

h(x̂n+1) :=
k∑

i=0

θi hi (x̂
n+1), f (x̂n, un) :=

k∑

i=0

θi fi (x̂
n, un),

:=
k∑

i=0

θi gi (x̂
n),

(12)

where θ = {θi , i = {0, . . . , k}} is the vector of coef-
ficients of the polynomials hi , fi , gi of fixed degrees,
which linearly parameterizes the polynomials h, f, g.
The coefficients θi are the decision variables to be tuned

1 Not the Rusanov scheme due to the “max” operator.
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Fig. 1 Different initial conditions for Burgers’ equation (left), input signal and output signal corresponding to different initial conditions
(right)
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Fig. 2 Slightly different input signals (left), slight change in the output of Burgers’ equation (right)

later to ensure model quality and the preservation of
stability properties. The number of these coefficients,
k + 1, increases by increasing the polynomial orders
of h, f, g (which increase the number of functions
hi , fi , gi ). Note that we choose hi , fi , gi from a library
of the combination of all possible polynomials below
a fixed degree. Moreover, x̂n is the approximation of
xn , which is the scaled and compressed version of x̄n

obtained via numerical solution of (7) at discrete time
instant tn . Finally, un is the discrete scaled version of
ū(t) in (1) and (2). Notably, scaling helps the trained
model to generalize better to a broader set of inputs
(to be introduced in Sect. 4.1). It should be noted that

the dimension of x̂n , f (·, ·) and g(·) is low, namely Î,
much smaller than I.

In the next section, we introduce the proposed data-
basedmodel reduction approach, where we require that
the constructed reduced-ordermodel satisfies one of the
incremental stability conditions.

4 Data-based model order reduction with
incremental stability guarantees

In this section, we explain the steps toward building
a reduced-order model from data. In the first step, we
generate snapshots of the discretemodel (7) invoked by
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a rich (persistently exciting) input data. Here, we aim
at approximating the full-state trajectory of the origi-
nal model (7) based on the states of the reduced-order
model (11). As the dimension of (7) is large (namely
I) and the dimension of (11) should be low (namely
Î), data compression should be performed to render
our approach computationally feasible. From this com-
pressed data, we construct a low-order model of the
form (11) such that (11) is guaranteed to be IAS or
IGS and also accurately represents the state and output
evolution of the original system (model quality). To
compare the state trajectories of the two models, the
state trajectory of the reduced-order model (11) should
be lifted to the dimension of the original model (7).
This is explained in Sect. 4.1. In Sect. 4.2, we formu-
late the model quality in terms of an objective function
to be minimized and the incremental stability guaran-
tee as constraints, jointly leading to a constrained opti-
mization problem used as basis for construction of the
reduced-order model.

4.1 Data compression

The objective of data compression in this section is
twofold. First, the state evolution of system (7) is of
high-dimensional nature. The data compression proce-
dure is employed to reduce the size of the trainedmodel.
Second, to compare the trajectories of the full-order
model and the reduced-order model, we lift the states
of the reduced-ordermodel to the dimensionof the orig-
inal model by using the reverse procedure of the data
compression. This is similar to the encoder–decoder
notion in Convolutional Neural Networks (CNN) [13].
On the snapshots X̄ = [x̄1, . . . , x̄N ] ∈ R

I×N (recall
x̄n = [x̄n1, . . . , x̄nI ]T ) corresponding to the training
input ūn , we apply POD [17] to compress the data and
also obtain basis functions φ according to:

X̄ = USV → φ = U (:, 1 : Î) (13)

where Î is the desired number of states in the
reduced-order model (11), which specifies the dimen-
sion of the reduced-order model and φ represents the
first Î columns of U . In (13), U ∈ R

I×I is a unitary
matrix, S ∈ R

I×N is a rectangular diagonal matrix
with singular values of the matrix X̄ on its diagonal
and V ∈ R

N×N is again a unitary matrix. Then, the

compressed version x̄nc ∈ R
Î of x̄n obtained from (7)

would be

x̄nc = φT x̄n, (14)

for each time instant n. The output data ȳn for training
are generated directly by (7).

It is common to normalize the input and output sig-
nals in the machine learning community to enhance
the generalization of the trained model. For the train-
ing to preserve IAS, we use the maximum over time of
input signals, compressed states (obtained from (14))
and outputs in the training data for normalization. The
training data and validation data are normalized as fol-
lows:

xn = x̄nc/C̄x, yn = ȳn/C̄y,

un = ūn/C̄u, (15)

where ūn is the discretized version of ū(t) and C̄x, C̄y

and C̄u are, respectively, the maximum over all time
instants and all elements of x̄nc (compressed states), ȳn

(output of (7)) and ūn (inputs of (7)):

C̄x = max
n,i

x̄nc,i , C̄y = max
n,i

ȳni , C̄u = max
n

ūn . (16)

Notably, in this study,weonly consider positive signals.
During training to preserve IGS, we replace (16) with
the maximum values of the data used to find γ . We
define function g in (11) for later use (see Theorem 3):

g(x̂n) := (
C̄x/C̄y

)
φy x̂

n, (17)

where φy ∈ R
m×Î is a matrix containing the value of

basis functions φ at the output location ζy (recall m
is the number of outputs), i.e., φy = Zζyφ with Zζy

defined for (7).
In the next section, we formulate the optimization

problem formalizing the data-based MOR approach,
preserving incremental stability properties.

4.2 Constrained optimization problem for MOR

In this section, we first introduce an objective function
expressing the model quality and second formulate sta-
bility properties as constraints to the optimization prob-
lem.

4.2.1 Convex cost function for model quality

Let us consider the scaled and compressed snapshots xn

and scaled output yn corresponding to the input signal
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ūn generated by (7) and (15) for each PDE. We aim to
minimize the one-step ahead prediction cost Js defined
as follows:

Js =

Js1
︷ ︸︸ ︷
N∑

n=2

(∣
∣
∣h(xn) − f (xn−1, un−1)

∣
∣
∣
2
)

+
N∑

n=1

(∣
∣yn − g(xn)

∣
∣2

)
, (18)

by choosing optimization variables θi , the polynomial
coefficients parametrizing the functions h, f, and g as
in (12). We will pursue such optimization of model
quality while preserving incremental stability proper-
ties of (11). The objective function Js is convex with
respect to the decision variables θi since functions
h, f, g are linearly parametrized as in (12).

The convex objective function (18), however, does
not take into account the correct estimation of the com-
pressed and scaled states while we do have such simu-
lation data on the state evolution at our disposal in the
context of MOR. In the next section, we propose an
alternative to the objective function (18) that considers
this aspect.

4.2.2 Convex upper bound for one-step ahead
prediction cost

It has been shown in [41] that objective function (18)
leads to a bias in the trained trajectories. Here, we intro-
duce an alternative for Js1 (first part in (18)) such that
the scaled and compressed version of the state evolu-
tion (generated by the high-fidelity discretized model
(7) followed by (15)) is also accounted for in the objec-
tive function. To find the alternative, we introduce the
following minimization problem (to be used later to
replace the minimization of Js1 in (18)):

min
θ,x̂n

∣
∣xn − x̂n

∣
∣2 ,

s.t. h(x̂n) = f (xn−1, un−1).

(19)

The above constrained minimization problem is equiv-
alent to theminimization of Js1 as it has the sameobjec-
tive and feasible set. The constraint in (19) is, however,
not jointly convex in θ and x̂. To find a convex approx-
imation to this problem, we use Lagrangian relaxation
similar to [41] and define

Jn := sup
x̂n

{
∣
∣xn − x̂n

∣
∣2 − 2

(
λn

(
x̂n

))T

(
h(x̂n) − f (xn−1, un−1)

) }

,

(20)

where λn(x̂n) = x̂n−xn is a candidate Lagrangemulti-
plier [39]. This choice of multiplier simplifies compu-
tation of the supremum, see (24), and ensures perfect
model recovery when the scaled and compressed snap-
shots xn are truly generated from a model of the form
(11). However, other choices for this multiplier can be
analyzed, which will not be pursued here. Jn is truly an
upper bound for the objective function in (19) since if
h(x̂n) = f (xn−1, un−1) in (20), then Jn equates (19),
so the supremum over x̂n cannot be smaller than (19).
Now, instead of Js1, we define the following objective
function [39]:

Ĵ :=
N∑

n=2

Jn . (21)

To find a convex upper bound on Ĵ , we use a Sum-
Of-Squares (SOS) [21] technique by defining a slack
variable sn such that
{

sn − sup
x̂n

{
∣
∣xn − x̂n

∣
∣2 − 2

(
x̂n − xn

)T

(
h(x̂n) − f (xn−1, un−1)

)}}

∈ SOS,

(22)

where SOS denotes the cone of sum-of-squares poly-
nomials [39]. It is challenging to find the supremum in
the statement in (22). Therefore, we use the following
linearization to find the supremum in (22):

h(x̂n) ≈ h(xn) + H(xn)(x̂n − xn), (23)

where E(·) is the Jacobian of h(x̂n) with respect to x̂n .
After substituting (23) in (22), the part with supremum
is replaced by

sup
x̂n

{
∣
∣xn − x̂n

∣
∣2 − 2

(
x̂n − xn

)T

(
h(x̂n) − f (xn−1, un−1)

)}

≈

sup
x̂n

{
∣
∣xn − x̂n

∣
∣2 − 2

(
x̂n − xn

)T

(
H(xn)

(
x̂n − xn

) + εn
)
}

(24)

where εn = h(xn)− f (xn−1, un−1). By differentiating
with respect to x̂n , the value of x̂n to find the supremum
in (24) can be evaluated as follows:
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(
xn − x̂n

)T −
((
xn − x̂n

)T
HT (xn) + εn

T
)

−
(
xn − x̂n

)T
H(xn) = 0 ⇒

(
xn − x̂n

)T
(
I − HT (xn) − H(xn)

)
= εn

T ⇒
(
xn − x̂n

)T = εn
T

(
I − HT (xn) − H(xn)

)−1
,

(25)

where I is the identity matrix with appropriate dimen-
sions. By substituting

(
xn − x̂n

)T in (24) by

εnT
(
I − HT (xn) − H(xn)

)−1
, we have:

sup
x̂n

{
∣
∣xn − x̂n

∣
∣2 − 2

(
x̂n − xn

)T

(
h(x̂n) − f (xn−1, un−1)

)}

≈

εn
T

(
H(xn) + HT (xn) − I

)−1
εn .

(26)

Replacing the supremum value obtained from (26) into
(22), we obtain:

sn − εn
T

(
H(xn) + HT (xn) − I

)−1
εn ∈ SOS. (27)

The above term should be always positive to be con-
tained in the SOS polynomials. As an approximation,
the constraint (27) on the slack variables sn after apply-
ing Schur decomposition can be written as a Linear
Matrix Inequality (LMI):

sn − εn
T

(
H(xn) + HT (xn) − I

)−1
εn ≥ 0 ⇒

[
sn εnT

εn H(xn) + HT (xn) − I

]

≥ 0.
(28)

This LMI is solved using the SOS tools [41]. For
this LMI to be solvable, it is required that H(xn) +
HT (xn) − I > 0. Finally, the convex objective func-
tion becomes

J =
N∑

n=2

(
sn + ∣

∣yn − g(xn)
∣
∣2

)
. (29)

Here, J is an approximate upper bound (not a true
upper bound due to the linearization in (23)) of Ĵ .
Minimizing J in (29) with the constraint (28) might
give a better result compared to minimizing (18) in
terms of the closeness of the trajectories obtained from
the full-order and the reduced-order models. Objective
function (29) makes use of the state evolution while
it enforces an approximate bound on the closeness of
the state trajectories. Although objective function (18)
does not take into account the closeness of the state tra-
jectories, it is a convex function. The effect of objective

functions on the trained reduced-order models is com-
pared in Sect. 5.

To enforce incremental stability properties of the
trained models, the objective functions (18) and (29)
should be constrained by Lyapunov characterizations
of such properties, which is made explicit below.

4.2.3 Incremental stability constraint

Here,wewill formulate incremental stability character-
izations as constraints to the objective functions andwe
rewrite these stability constraints in a convex manner
to convexify the total constrained optimization problem
underlying the proposed MOR approach.

Due to the nonlinearity of (11), it is challenging
to analyze its (incremental) stability properties. There-
fore, in order to assess the incremental stability prop-
erties of (11) (to ultimately guarantee that the reduced
complexity model that we construct has these proper-
ties), we analyze the differential dynamics associated
with (11).

To characterize IAS, we consider the differential
dynamics:
{
H(x̂n+1)�n+1 = Fx̂(x̂

n, un)�n,

�n
ŷ = G(x̂n, un)�n,

(30)

with� and�ŷ the infinitesimal variations between two
neighboring state and output trajectories, respectively,
of the original system (11). Here, H = ∂h/∂ x̂, Fx̂ =
∂ f/∂ x̂ andG = ∂g/∂ x̂. Notably, the stability of the dif-
ferential system (30) and the incremental stability of the
primal system (11) are equivalent for smooth systems
[14,42]. As a consequence, instead of constructing an
incremental Lyapunov function that satisfies (8), we
search for a differential Lyapunov function V (x̂,�)

that satisfies the inequality

V (x̂n+1,�n+1) − V (x̂n,�n) ≤ −α3(
∣
∣�n

∣
∣), (31)

for all x̂n+1, x̂n satisfying (11) and all �n+1,�n sat-
isfying (30). Hence, if the dissipation inequality (31)
holds for all solutions of (11) and the differential
dynamics (30), then the model (11) is IAS. The next
theorem provides a sufficient condition for IAS of (11).

Theorem 1 Assume there exists a P = PT > 0 and a
μ > 0 such that the following LMI is satisfied for any
pair of (x̂n,�n):

MI AS :=
[
H + HT − P − μI FT

x̂
Fx̂ P

]

≥ 0. (32)

Then, (11) is IAS.
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Proof By substituting the quadratic differential Lya-
punov function V (x̂,�) = �T H(x̂)T P−1H(x̂)� and
α3(|�|) = μ�T� in (31), and by taking into account
(30), we have that

�T
(
FT
x̂ P−1Fx̂ − HT P−1H

)
� ≤ −μ�T�.

Using the inequality−HT P−1H ≤ P−H −HT , the
above inequality is implied by the inequality

H + HT − P − FT
x̂ P−1Fx̂ − μI ≥ 0.

Using aSchur decomposition around thefirst term leads
to the desired LMI (32). 
�
Remark 4 It should be noted that the degree of poly-
nomials in (11) is fixed before starting the optimization
problem. Therefore, the Schur decomposition of LMI
(32) is a polynomial of a fixed degree.

The differential dynamics used to study IGS is as
follows:
{
H(x̂n+1)�n+1 = Fx̂(x̂

n, un)�n + Fu(x̂
n, un)�n

u,

�n
ŷ = G(x̂n)�n,

(33)

with Fu = ∂ f/∂u and �u the infinitesimal variation
between two neighboring input signals. Notably, the
�2-gain of the differential system (33) is less than γ

if and only if the incremental �2-gain of the primal
system (11) is less than γ [14,42]. As a consequence,
instead of constructing an incremental storage function
that satisfies (9), we search for a differential storage
function V (x̂,�) that satisfies the inequality

V (x̂n+1,�n+1) − V (x̂n,�n) ≤ γ 2
∣
∣�n

u

∣
∣ 2

− ∣
∣G(x̂n)�n

∣
∣ 2. (34)

In the following exposition, we provide two sets of
LMIs representing sufficient conditions for incremental
�2-gain stability of (11). The first LMI condition is con-
servative but does not restrict the choice for the output
function g in (11). The second condition is less conser-
vative but imposes restrictions on the output function
g to generate a convex stability constraint.

Theorem 2 Assume there exists a P = PT > 0 such
that the two following LMIs are satisfied for any pairs
of (x̂n,�n) and (un,�n

u):
⎡

⎣
H + HT − P

√
2FT

x̂ GT√
2Fx̂ P 0T

G 0 I

⎤

⎦ ≥ 0,

[
γ 2I

√
2FT

u√
2Fu P

]

≥ 0. (35)

Then, system (11) is IGS with incremental �2-gain γ

(where 0 is a zero matrix of appropriate dimension).

Proof Let us employ the quadratic candidate storage
function V (x̂,�) = ∣

∣H(x̂)�
∣
∣
P−1 =

�T H(x̂)T P−1H(x̂)� in (34), which leads to the
inequality

|H�|2P−1 − |Fx̂� + Fu�u |2P−1 + γ 2 |�u | 2
− |G�| 2 ≥ 0. (36)

Exploiting the inequality |Fx̂� + Fu�u |2P−1 ≤
2|Fx̂�|2

P−1 +2|Fu�u |2P−1 in the inequality above leads
to

�T
(
HT P−1H − 2FT

x̂ P−1Fx̂ − GTG
)

�

+ �T
u

(
γ 2I − 2FT

u P−1Fu
)

�u ≥ 0.

If the matrices in between brackets in the first and the
second terms in the above inequality are both positive
definite, then the full inequality is satisfied. Rewriting
these two conditions via a Schur decomposition leads
to the LMIs in (35). 
�
Theorem 3 Suppose g is a given function and is not
parameterized. If there exists a P = PT > 0 such that
the following LMI is satisfied for any pairs of (x̂n,�n)

and (un,�n
u):

MIGS :=
⎡

⎣
H + HT − P − GTG 0T FT

x̂
0 γ 2I FT

u
Fx̂ Fu P

⎤

⎦ ≥ 0,

(37)

then (11) is IGS with incremental �2-gain less than γ .

Proof Recall (36) in Theorem 2:

|H�|2P−1 − |Fx̂� + Fu�u |2P−1 + γ 2 |�u | 2
− |G�| 2 ≥ 0.

Detailing the above inequality leads to:

�T
(
HT P−1H − FT

x̂ P−1Fx̂ − GTG
)

�

+�T
u

(
γ 2I − FT

u P−1Fu
)

�u

−�T
u F

T
u P−1Fx̂� − �T FT

x̂ P−1Fu�u ≥ 0.

This inequality can be written as follows:
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[
�

�u

]T

[
HT P−1H − FT

x̂ P−1Fx̂ − GT G −FT
x̂ P−1Fu

−FT
u P−1Fx̂ γ 2I − FT

u P−1Fu

]

[
�

�u

]

≥ 0.

Exploiting the Schur decomposition for the middle
matrix with respect to the first argument leads to:

HT P−1H − FT
x̂ P−1Fx̂ − GTG − FT

x̂ P−1Fu
(
γ 2I

−FT
u P−1Fu

)−1
FT
u P−1Fx̂ ≥ 0.

(38)

By denoting M := γ 2I − FT
u P−1Fu , we can use the

following matrix inverse relation:
[
γ 2I FT

u
Fu P

]−1

=
[

M−1 −M−1FT
u P−1

−P−1FuM−1 P−1 + P−1FuM−1FT
u P−1

]

.

(39)

By using (39), a Schur decomposition of the following
matrix gives the same results as (38):
⎡

⎣
HT P−1H − GTG 0T FT

x̂
0 γ 2I FT

u
Fx̂ Fu P

⎤

⎦ ≥ 0.

To yield an LMI, we again use the inequality
−HT P−1H ≤ P−H−HT and we obtain the desired
LMI (37). 
�
Remark 5 To be able to satisfy these LMIs, the degree
of the polynomial in h should be greater than or equal to
the degree of the polynomial in f . This is also detected
by the optimization technique where, e.g., the highest
identified polynomials in h with nonzero coefficient
θi were higher than the highest identified polynomials
in f with nonzero coefficient θi . Therefore, to avoid
heavy computations, we set the degree of polynomi-
als in h always equal to or greater than the degree of
polynomials in f . Moreover, to solve the LMI (37),
consider Remark 4.

Remark 6 By satisfying all stability LMIs, we auto-
matically obtain H + HT − P ≥ 0 (note the diag-
onal terms in all LMIs should be positive definite).
This ensures the bijectivity of h and therefore well-
posedness of the reduced-order model (11) [41].

Remark 7 Theorem2 enforces highly conservative sta-
bility constraints, which lead to rather unsatisfactory
simulation results. Therefore, for IGS, we only study
Theorem 3.

Remark 8 LMIs (32) and (37), in, respectively, The-
orems 1 and 3, need to be satisfied for any pairs
of (x̂n,�n) and (un,�n

u), which challenges checking
these conditions. To solve this problem, these LMIs are
solved using SOS techniques [25], where expansion of
LMIs is compared with a combination of polynomials
with only even degrees and with positive coefficients,
i.e., we restrict the Schur decomposition of the LMIs
to be an SOS polynomial [7,21]. Although SOS poly-
nomials are only a subset of all non-negative polyno-
mials, using this method we can tune the free param-
eters to satisfy those LMIs globally for all the men-
tioned pairs. There are some software packages that
ensure the SOS nature of a polynomial via converting
the problem into a semi-definite programming problem
[1,25]. As LMIs (32) and (37) are dependent on the
pairs mentioned in the respective theorems, we solve
zT MI ASz ∈ SOS (zT MIGSz ∈ SOS), where z is a
vector of slack dummy variables with known order of
polynomials of the pairs. Then the SOS software pack-
ages findMI AS (MIGS) to be semi-positive definite and
therefore satisfy the LMIs.

To summarize, we solve four problems in Sect. 5 for
both the advection and Burgers’ equation:
Problem 1: Minimize objective function in (18) con-
strained to (32) to obtain an IAS system.
Problem 1∗: Minimize objective function in (29) con-
strained to (28) and (32) to obtain an IAS system.
Problem 2: Minimize objective function in (18) con-
strained to (37) and a fixed output function g as in (17)
to obtain an IGS system.
Problem 2∗: Minimize objective function in (29) con-
strained to (28) and (37) and a fixed output function g
as in (17) to obtain an IGS system.

In the next section, we compare the trained mod-
els obtained from these four different problems, which
assign different stability notions through different opti-
mization problems. Then, we decide which of these
problems lead to a more flexible reduced-order model
(in terms of responding correctly to various input sig-
nals) and compare the effect of different objective func-
tions explained in Sect. 4.2.
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5 Numerical Results

In this section, we present two case studies: the advec-
tion equation and Burgers’ equation. For each case
study, we solve Problems 1, 1*, 2, 2* to construct accu-
rate reduced-order models with incremental stability
certificates. In Sect. 5.1, we first show howwe compute
the incremental �2-gain of the original model, to enable
enforcing the same incremental �2-gain on the trained
model. Then, we train and validate implicit models as
in (11) to imitate the response of the discretized version
of (1) and (2) via (7). We also compare the response of
the trainedmodels with reduced-ordermodels obtained
after the classical POD-Galerkin approach. For the
advection equation, the POD-Galerkin with 10 POD
basis function is used as explained in [2]. For Burg-
ers’ equation, we compare the results with the POD-
Galerkin method combined with Empirical Interpola-
tion Method (EIM) as explained in [3] with 10 POD
basis functions and 10 EIM basis functions. These
10 basis functions yield a good accuracy in compar-
ison with the full-order model solution. The trained
reduced-order model is also of dimension 10. Finally,
the claimed stability properties on the trained model
are tested empirically. It should be noted that POD-
Galerkin techniques do not guarantee stability and we
compare its results with our method that guarantees
stability.

In the numerical examples, we set L = 100 m, c =
10 m/s, T = 100 s, N = 1000 (we collect simulation
data every 0.1 s), I = 1000, Î = 10, μ = 10−10 with
�t = 0.01 s, �ζ = 0.1 m in (1), (2) and (3). Notably,
all figures show the original variables, not the scaled
ones. In case of the advection and Burgers’ equation,
we choose ḡ(x̄n) = [0 · · · 0 1]x̄n . The initial condition
for the simulations is X0(ζ ) = ū(0).

5.1 Computation of �2-gain bound

For the advection equation, the incremental �2-gain
bound is equal to the H∞-norm of the linear state-
space system obtained after discretization [18], due to
linearity. In our numerical example, this gain is equal
to 1. Since this gain is computed from the state-space
equations, we do not apply data normalization as in
Sect. 4.1 for the advection equation test case.

Since it is challenging to analytically obtain �2-gain
bounds for Burgers’ equation, we simulate Burgers’
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Fig. 3 Empirical evaluation of the �2-gain bound of Burgers’

equation, blue circles: value of
‖y1−y2‖2�2,N
‖u1−u2‖2�2,N

for long simulation

with different inputs, red line: a straight line with the slope of

max
‖y1−y2‖2�2,N
‖u1−u2‖2�2,N

among many different simulations

equation with many different inputs consisting of sinu-
soidal and step function contributions. Then, we com-
pare the outputs for every two input pairs and compute
the smallest incremental �2-gain bound γ . As shown in
Fig. 3, the incremental �2-gain bound of Burgers’ equa-
tion is estimated to be 1.78. In our training process, we
consider γ = 2; in other words, we aim to construct
a reduced-order model that is IGS with a guaranteed
incremental �2 gain of 2, which is hence hardly conser-
vative.

Remark 9 Since the LMIs used for model reduction
are conservative, for the IGS case in the optimization
problem,we use two different values for γ , one equal to
the gain of the original system, the other higher than that
of the original system. In linear test cases, we compare
the gains of the original system and the trained reduced-
order model.

5.2 Training and validation results

In this section, extensive simulation studies are carried
out for the four problems defined before. Simulations
are divided into two sections for the advection and
Burgers’ equation. The validation and training errors
are reported as below:
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Fig. 4 Input and output signals for training and validation of the advection equation (left) and Burgers’ equation (right)

error% =
∥
∥y − ŷ

∥
∥

�2,N
‖y‖�2,N

× 100. (40)

The training data include an input signal as a combi-
nation of multi-sinusoidal and steps signals. Since the
interested inputs for our case are a combination of steps
(in fluid mechanics, the boundary conditions are usu-
ally changed in this manner), we validate our results
against a step input.

5.2.1 Advection equation

Left side of Fig. 4 shows the training and validation
input and output for the advection equation. Snapshots
corresponding to the training input signal are used to
determine basis functions for compressing the data, see
Sect. 4.1, and also for applying POD-Galerkin.

Since the advection equation is linear and linear sys-
tems are included in the model class (11), we only train
a linear system for this test case. Results of training and
validation of a linear implicit model for the advection
equation are shown in Figs. 5 and 6. Table 1 reports the
training and validation errors (40) for the four problems
and also the POD-Galerkin approach.

Problems 1 and 1* show a good agreement with
the training and validation data. Notably, Problem 1*
generates a linear model that outperforms the POD-
Galerkin approach both for the training and validation
data set while guaranteeing IAS. In contrast, POD-
Galerkin approach does not guarantee such stability
property.
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Fig. 5 Training (top) and validation (bottom) results for the
advection equation, Problems 1 and 1*

Remark 10 Notably, POD is optimal in the sense that
it minimizes the difference between a set of snapshots
and their projection on a lower-dimensional space. It
is not optimal in the sense of difference between the
snapshots of the full-order and reduced-order models.

Hence, this shows that we can construct accurate
reduced-ordermodelswith incremental stability certifi-
cates using the proposed approach. Notably, the dimen-
sion of the original model is 1000 while the dimension
of the reduced-order model is 10. An issue with Prob-
lem 2* is mainly due to the conservativeness in the
objective function (29) (using an upper bound on the
real objective function, rather than using the objective
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Fig. 6 Training (top) and validation (bottom) results for the advection equation, Problems 2 and 2*, left: γ = 1, right: γ = 2 during
the training process

Table 1 Training and
validation error, advection
equation
(POD-Galerkin:PG)

Problem 1 Problem 1* Problem 2 Problem 2* PG
γ = 1(�2-gain) γ = 1(�2-gain) (�2-gain)
γ = 2(�2-gain) γ = 2(�2-gain)

Training 0.47% 0.12% 0.84%(0.98) 18.47%(0.69) 0.36%

0.86%(0.991) 0.14% (0.998) (0.999)

Validation 0.00013% 0.0000045% 0.028% 14.45% 0.00032%

function itself) and consequently underestimating the
�2-gain bound.

Although we set γ = 1 in (37), the incremental
�2-gain bounds obtained after training linear reduced-
order models for Problem 2 and 2* are, respectively,
0.98 and 0.69. Due to the conservativeness mentioned
above, the trainedmodelwould have a lower gainwhich
restricts the generality of the trainedmodel. Ifwe assign
a higher value for the �2-gain during the optimization
problem, the optimization problem might not choose a
model that has a higher gain than the original model
since the data was generated with the original system.
To compare better, we perform another set of optimiza-
tion with γ = 2 in (37) without modifying other steps.

Table 1 also reports the training and validation errors
(40) together with the incrementally �2-gain bounds of
the trained models with γ = 2. Although we set a
higher gain, the optimization process did not choose a
higher value than the original one (for Problem 2 and
2*, we get γ = 0.991 and γ = 0.998, respectively).
Right side of Fig. 6 shows the performance of Problems

2 and 2* with γ = 2, where Problem 2* has improved
significantly.

5.2.2 Burgers’ equation

Right side of Fig. 4 shows the non-scaled version of
the training andvalidation input andoutput forBurgers’
equation. The solution to the discretized version of (2)
based on (7) to the training input is used to determine
basis functions for compressing the data and applying
POD-Galerkin and also for computing EIM basis func-
tions.

Since Burgers’ equation is quadratic, the function f̄
in the discretized version will be quadratic. Moreover,
the max operators inside (4) renders (7) more compli-
cated and this model class is not in (11) (note Remark 5
that for satisfying stability conditions we need polyno-
mials of higher degree in h than f in (11)). Therefore,
we train many different models of different polyno-
mial orders for this test case and compare the results.
If nh denotes the polynomial degree in h (similarly for
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Table 2 Training and validation error for different problems with different polynomial orders and POD-Galerkin (PG) error, Burgers’
equation

Orders (1,1,1) (%) (2,1,1) (%) (2,2,1) (%) (3,1,1) (%) (3,2,1) (%) (3,3,1) (%) PG (%)

1 Training 3.80 3.80 3.46 0.98 0.82 0.82 2.65

Validation 2.38 2.37 2.5 3.72 2.33 1.55 1.00

1* Training 4.42 4.42 3.90 0.98 0.89 0.90 2.65

Validation 2.17 2.17 2.64 1.98 2.18 1.75 1.00

2 Training 4.25 4.25 4.25 1.43 1.20 1.20 2.65

Validation 2.51 2.51 2.51 2.52 1.91 1.91 1.00

2* Training 3.89 3.89 3.89 1.35 1.26 1.26 2.65

Validation 2.40 2.40 2.40 1.42 1.43 1.43 1.00
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Fig. 7 Training results of Burgers’ equation for Problem 1 and
1*,Data (blue solid line), Problem1 (green dashed line), Problem
1* (red dashed-dotted line), POD-Galerkin (yellow dotted line)

n f and ng), we train six models with (nh, n f , ng) =
{(1, 1, 1), (2, 1, 1), (2, 2, 1), (3, 1, 1), (3, 2, 1),
(3, 3, 1)}. Table 2 reports the training and validation
error (40) for Burgers’ equation. Again, it should be
noted that POD-Galerkin method does not guarantee
stability.

Figures 7 and 8 show the training and validation
results for Problems 1 and 1*. Results show a promis-
ing application of ourmethod to this nonlinear problem.
It seems that by increasing the polynomial orders, the
reduced-order model (11) can adapt better to the highly
nonlinear behavior of the actualmodel (7). Specifically,
models (3, 3, 1) for Problems 1 and 1* have close train-
ing and validation error. Both Problems 1 and 1* work
effectively in this test case.
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Fig. 8 Validation results of Burgers’ equation for Problem 1 and
1*,Data (blue solid line), Problem1 (green dashed line), Problem
1* (red dashed-dotted line), POD-Galerkin (yellow dotted line)

In Figs. 9 and 10, results of training and validation
for Problem 2 and 2* are reported. The gain bounds
for the linear system obtained from training of Burg-
ers’ equation via Problem 2 and 2* are, respectively,
1.06 and 1.07. Since we did not have any problem with
these sets of training and validation data set, we did
not increase the gain during training. For this test case,
orders (3, 2, 1) work the best for Problems 2 and 2*.
The training and validation results are closer in case of
Problem 2*, which confirms its generalization power
over Problem 2.

The required simulation time for training and vali-
dation for Problem 1 is reported in Table 3. All sim-
ulations are carried out in MATLAB R2021a on a
HP ZBook Studio G5 laptop equipped with Intel(R)
Core(TM) i7-9750HCPUwith 16 GBRAMand 1 core
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Fig. 9 Training results for Burgers’ equation, Problem 2 and 2*,
blue solid line: Data, green dashed line: Problem 2, red dashed-
dotted line: Problem 2*, yellow dotted line: POD-Galerkin

running at 2.60 GHz. The simulation time for different
problems is similar and this only varies significantly by
changing the polynomial orders.

5.3 Testing the required stability properties

Since the trained advection equation is linear, all sta-
bility properties can be extracted from the state-space
equation, which as expected confirmed IAS and IGS
of all trained models for the advection equation. Here,
we test the four trained models of Burgers’ equation
for Problems 1, 1*, 2 and 2*. For the initial conditions
and inputs shown in Fig. 1, the trained IAS models
respond as shown in Fig. 11. As observed in this fig-
ure, the IAS property for Problems 1 and 1* is clearly

inherited. To check IGS in Problems 2 and 2*, different
inputs and initial conditions used in Fig. 2 are used to
excite the trained IGS models. Apparent from Fig. 12,
the IGS property of Burgers’ equation is preserved in
the reduced-order model.

5.4 Discussion

According to the reported results, our approach pro-
vides accurate reduced-order models with incremen-
tal stability certificates. In the test cases we carried
out, the accuracy is comparable with the POD-Galerkin
approach with the extra property of incremental stabil-
ity. These incremental stability certificates are instru-
mental in providing robustness of the trained models
for broader classes of inputs (as shown in the valida-
tion results). The generated training input is a persis-
tently exciting signal while the validation input is the
one which is usually encountered in the real applica-
tion of the advection and Burgers’ equation. We also
have tested the model behavior in case of inputs never
used during the training, and the testing inputs were
sufficiently different from the ones used in the train-
ing phase. The results were comparable to the POD-
Galerkin with the additional property of preserving
incremental stability.

As reported in Table 2, the training error and vali-
dation error are much closer in Problem 2*. This con-
firms that Problem 2* leads to models behaving more
robustly by changing the inputs. However, it should
be assured that the original model has such stability
properties.

Fig. 10 Validation results
for Burgers’ equation,
Problem 2 and 2*, blue
solid line: Data, green
dashed line: Problem 2, red
dashed-dotted line: Problem
2*, yellow dotted line:
POD-Galerkin
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Table 3 Training and validation time in minutes for Burgers’ equation for Problem 1

Orders (1,1,1) (2,1,1) (2,2,1) (3,1,1) (3,2,1) (3,3,1)

Training 0.43 2.59 2.60 133.63 233.42 250.23

Validation 0.05 0.56 0.57 11.79 12.18 13.12
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Fig. 11 Simulation of the trained models of Problems 1 (left) and 1* (right) for input and initial conditions shown in Fig. 1
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Fig. 12 Simulation of the trained models of Problems 2 (left) and 2* (right) for input and initial conditions shown in Fig. 2

6 Conclusions

Preserving stability of the reduced-order model is a key
feature for safety-critical applications. The incremen-
tal stability properties help the reduced-order model
to behave more robustly to general input signals. In

this paper, we presented a data-based model order
reduction approach, which preserves the incremen-
tal stability features (incremental asymptotic stabil-
ity and incremental �2-gain stability), for two rele-
vant hyperbolic PDE models: advection equation and
Burgers’ equation. First, it has been argued that these
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models exhibit incremental stability properties. This
observation motivated to develop a data-based model
reduction approach that guaranteed the constructed
model to preserve these incremental stability prop-
erties. These incremental stability properties, which
are valid for all bounded inputs, help the reduced-
order model to be also valid (in terms of preserving
these stability characteristics) when the inputs are not
present in the training dataset. We developed a (con-
strained) optimization-based approach for data-driven
model reduction to construct accurate low-complexity
models preserving incremental stability properties. The
proposed approach is comparable to POD-Galerkin
approach in terms of accuracy with the additional
advantage of incremental stability enforcement. There-
fore, this approach can be used when POD-Galerkin
approach yields an unstable model. This method can be
extended to other systems of hyperbolic equations of
higher complexity,which is investigated by the authors.
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