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Triggered Repetitive Control: Application to
Mechanically Ventilated Patients

Joey Reinders , David Elshove , Bram Hunnekens , Nathan van de Wouw , Fellow, IEEE,
and Tom Oomen , Senior Member, IEEE

Abstract— Asymptotic rejection of a periodic disturbance can
be achieved using repetitive control (RC). The aim of this article
is to develop a triggered RC (TRC) framework that can handle
repeating tasks that are initiated by an external disturbance
induced trigger on varying intervals, which clearly violates
the periodicity assumption in RC. A design method for this
TRC framework is presented with a stability guarantee. Finally,
through an experimental use-case, it is shown that pressure
tracking performance for mechanically ventilated patients is
improved significantly.

Index Terms— Mechanical ventilation, repetitive control (RC),
respiratory systems, switching systems, target tracking, trigger-
ing.

I. INTRODUCTION

MECHANICAL ventilators are essential equipment in
intensive care units (ICUs) to assist patients who need

support to breathe sufficiently. The main goals of mechanical
ventilation are to ensure oxygenation and carbon dioxide elim-
ination [1]. Especially during the flu season or a worldwide
pandemic such as the COVID-19 pandemic [2], mechanical
ventilation is a life saver for many patients around the world.

An important ventilation mode is pressure-controlled—
assist control ventilation (PC-ACV). In PC-ACV, the ventilator
synchronizes with the patient. This is achieved by triggering
the ventilator when a spontaneous patient breath is detected.
More specifically, when the patient starts an inspiration, the
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ventilator is triggered and increases the pressure near the
patient’s airway to ensure sufficient flow into the patient. Then,
after a preset time, the ventilator decreases its pressure to
allow an expiration flow of carbon-dioxide-rich air. After this
expiration, the ventilator waits for the next patient-induced
breath. In more generic terms, the controller should track a
repeating reference profile (target pressure) which is triggered
by an external disturbance (patient effort) at varying and
a priori unknown intervals.

Accurate tracking of the pressure profile is essential to
ensure sufficient patient support and enhance patient com-
fort. According to [3], improved pressure tracking prevents
patient–ventilator asynchrony. In [4], patient–ventilator asyn-
chrony is even associated with increased mortality rates. Fur-
thermore, accurate tracking avoids undesired pressure peaks
caused by overshoot. These peaks can possibly harm the
patient’s lungs and therewith prolong the ICU stay.

The challenging problem of pressure tracking in the pres-
ence of widely varying and uncertain patient parameters has
spurred the development of a wide range of pressure control
methodologies. In [5], an overview of modeling and control
techniques for mechanical ventilation is presented. Examples
of control methods for ventilation are variable-gain con-
trol [3], adaptive control [6], funnel-based control [7], model-
based control [8], model-predictive control [9], and adaptive
hose-compensation control [10], [11]. All these methods have
shown to improve the tracking performance in ventilation.
However, the repetitiveness of breathing is not used to further
improve the performance.

Because of the repetitive nature of breathing, learning
control strategies, such as iterative learning control (ILC)
([12], [13], [14], [15], [16]) and repetitive control (RC) ([16],
[17], [18], [19], [20]), are particularly suitable for mechanical
ventilation. ILC is a feedforward control strategy that com-
putes the optimal feedforward signal based on errors made
during previous tasks. In contrast, RC is a feedback control
strategy for continuous repetitive processes, which do not have
identical states at the start of a task. Recently, these learning
control strategies have been applied to mechanical ventilation.
For example, ILC is applied in [21], [22], and [23] and RC is
applied in [24]. These methods achieve superior performance
in case of a fully sedated patient, i.e., when the pressure
reference is fully repetitive. However, in case a patient starts
breathing spontaneously and triggers the ventilator at a priori
unknown varying intervals (as in PC-ACV), the performance
of these methods degrades significantly.
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Several approaches on learning control strategies with
improved task-to-task flexibility are developed in literature.
For example, ILC with basis functions [25], [26], basic task
approach for ILC [27], and ILC with varying pass lengths [28],
[29]. However, the main assumption for ILC is that the initial
states are identical between subsequent tasks and independent
of the output of the previous task. Because breathing is a
continuous process, this assumption is not satisfied. Therefore,
RC is the preferred learning control strategy for mechanical
ventilation. Also, for RC several methods are developed that
improve the task-to-task flexibility. For example, in [30],
a robust RC approach for systems with uncertain period
times is presented; however, only small variations are covered.
In [31], delay-varying RC is developed that can handle
repetitive disturbances that are repetitive with respect to a
different variable than time. However, the example of triggered
ventilation is not perfectly repetitive to any variable. Further-
more, in [32], an RC approach using the Gaussian processes
is developed to suppress disturbances that are repetitive in the
position domain instead of the time domain. This method does
not allow unknown varying times in between tasks.

Although significant tracking performance improvements
in mechanical ventilation have been obtained using learning
control strategies, this superior tracking performance is not
achieved for triggered ventilation modes such as PC-ACV,
where the duration in between breaths is varying and a priori
unknown. Therefore, the aim of this article is to develop a
triggered learning control framework that learns from data of
previous breaths to improve the tracking performance in case
of PC-ACV. The developed framework could also be applied
in other application fields with similar challenges, e.g., pick-
and-place machines and dual-stage positioning systems.

The main contribution of this article is as follows.

1) A triggered RC framework that can improve the tracking
performance for systems with perfectly repetitive tasks,
where the start of a task is triggered at a priori unknown
varying timing intervals.

Besides the main contribution, the article contains several
subcontributions.

1) A method to guarantee stability of the closed-loop
system with the proposed triggered RC framework.

2) A design methodology of the triggered RC framework
for a mechanical ventilation system in PC-ACV.

3) An experimental case study showing the performance
increase, compared with a state-of-the-art control strat-
egy, in mechanical ventilation.

The outline of this article is as follows. In Section II,
PC-ACV is explained and a general, not ventilation-specific,
control problem is formulated. Then, in Section III, the
triggered RC (TRC) framework is presented. In Section IV,
the relevant system models for mechanical ventilation are
described. Thereafter, in Section V, a TRC for mechanical
ventilation is designed and its performance is experimentally
tested. Finally, in Section VI, the main conclusions and future
work are presented.

Fig. 1. Schematic example of PC-ACV with two breaths, where the
inspiration is triggered by a flow trigger and the expiration is timed. The
figure shows the target pressure ( ), the airway pressure and patient flow
( ), and the patient’s breathing effort ( ).

II. CONTROL PROBLEM FORMULATION

In this section, the control problem of PC-ACV is refor-
mulated to a general control problem. First, a description
of PC-ACV of spontaneously breathing patients is given in
Section II-A. Thereafter, in Section II-B, the control problem
for mechanical ventilation in PC-ACV is stated and it is
translated to a general TRC problem that is solved in this
article. Next, in Section II-C, the main challenges when
triggering conventional RC are explained and demonstrated
through a simulation example.

A. PC-ACV of Spontaneously Breathing Patients

The goal in PC-ACV is to assist the patient’s breathing when
the spontaneous breathing effort is insufficient. The ventilator
assists the patient to achieve the desired tidal volume. In such
assisted ventilation modes, it is important to synchronize the
ventilator strokes with the patient’s spontaneous breathing
effort for the comfort of the patient.

A schematic example of PC-ACV pressure and flow curves
is depicted in Fig. 1. The figure shows that the patient is
generating a negative pressure in the lung, resulting in a small
positive patient flow. However, this effort is not enough to
achieve the desired volumes. Therefore, when the patient flow
exceeds a predefined trigger level, the ventilator increases
the airway pressure, i.e., the pressure near the patient’s
airway, to the inspiratory positive airway pressure (IPAP)
level, to increase the patient flow and volume. Then, after a
predefined time, the ventilator pressure decreases again, to the
positive end-expiratory pressure (PEEP) level, to allow for an
expiration. After the ventilator breath, of N samples long,
is finished, the ventilator waits until a new patient-induced
trigger is detected. Then, it starts a new ventilator-assisted
breath. The time in between breaths is unknown and varying
since it is determined by the patient. During the idle phase,
this controller aims at keeping the pressure at PEEP level.
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B. Control Problem

As mentioned in the introduction, RC is a suitable control
strategy to handle the variety of patients in ventilation. There-
fore, a general control problem is formulated using Fig. 1
and the block diagram of a plant with a parallel structured
repetitive controller in Fig. 2, i.e., the RC R is implemented
in parallel with the feedback controller C . Now, we aim to
describe a generic control problem here, but in the scope of
PC-ACV, G represents the patient–hose–ventilator dynamics,
y is the airway pressure, and r is the target pressure, see the
black line in Fig. 1.

A plant G has to be controlled using a feedback controller
Ci and RC Ri , consisting of a learning filter L i and robustness
filter Qi which can be causal implementations of noncausal
filters using the delay operators with pl and pq in Fig. 2, where
z−1 represents a delay of one discrete time step. This control
strategy should ensure that the output y tracks the reference r ,
i.e., the control goal is to achieve a tracking error e := r − y
of zero. The reference r , which is visualized in Fig. 1, has the
following properties.

1) During the active phase r(ks, j + i) := r(ks, j+1 + i) ∀ j ∈

N+ and ∀i ∈ [1, N ] (with j a task counter), i.e., the
reference r is exactly the same in shape and duration
(N samples) as the reference r during the subsequent
tasks.

2) During the idle phase r(ks, j +N +i) := r(ks, j +N ) ∀ j ∈

N+ and ∀i ∈ [1, Nϵ, j ], i.e., the reference r in the idle
phase is constant and equal to the last value of the
reference in the active phase.

3) The duration of the idle phase, Nϵ, j , is varying over j
and a priori unknown. Switching to the idle phase is
caused by the detection of an external disturbance d .1

Switching between these phases at varying intervals
obstructs usage of the conventional RC, which is designed to
suppress disturbances, i.e., track references, that are perfectly
periodic with respect to time, see for example [24], [33].
Simply switching conventional RC on and off results in an
undesired actuation spike at the end of a task. The perfor-
mance issue when switching conventional RC is investigated
in Section II-C by means of a simulation use-case.

C. Example: Toward Triggering Repetitive Control

In this section, the challenge of triggering a conventional
RC is visualized through simulations. More specifically, it is
shown that applying standard RC does not achieve satisfactory
performance in an application with a repetitive reference on
varying intervals. To show these challenges, first the simulation
use-case is described where standard RC is used in a triggered
application. Then, the time-domain simulation results and the
resulting problem are presented. Finally, the challenges that
should be addressed are described.

1) Simulation Use-Case: In this simulation, PC-ACV in the
mechanical ventilation application is adopted as a use-case
and a conventional parallel repetitive controller structure is

1In the case of PC-ACV, d reflects the patient-induced disturbance on the
airway pressure due to a spontaneous breathing action.

Fig. 2. Block diagram of the plant G, feedback controller Ci , and a
parallel repetitive controller Ri . The index i indicates that in the triggered
RC setting the controller blocks are potentially different in the active and
idle phases. Switching between these states can have different causes; in
mechanical ventilation this is the detection of the disturbance d. The dashed
arrow is included in the ventilation example without loss of generality of the
framework.

adopted as presented in Fig. 2. The repetitive controller filters
in this example are designed following the design methodology
in [24]. However, in the current article a parallel structured RC
is adopted, for which the design approach in [24] is appropri-
ately modified. In the ventilation use-case, hose-compensation
control is included in the plant G; as a consequence, the
feedback controller Ci is set to zero. Therefore, plug-in RC
as in [24], where the RC output is processed by the controller
Ci = 0, cannot be used directly, since the RC output would
be nullified. Therefore, parallel RC as visualized by the block
diagram in Fig. 2 is adopted. To handle the varying times in
between tasks, i.e., breaths, the RC is turned on at the start
of the active phase and turned off at the end of the active
phase. During the idle phase, the internal states of the repetitive
controller are kept constant and its output is set to zero. This
represents an intuitive RC design for such scenario.

2) Time-Domain Results: The time-domain results of the
simulation are depicted in Fig. 3. The figures show three
separate tasks in the simulations, i.e., the first, sixth, and
20th tasks. During these tasks, it shows the reference (or
target pressure), the output (or measured airway pressure),
the RC output w, and a scaled version of the disturbance (or
patient effort). The figure shows that the tracking performance
during the tasks significantly improves over subsequent tasks.
However, at the transition from the active to the idle phase
a problem is observed. The RC output in the bottom plot of
all three figures increases at the end of the active breath. This
results in an increasing undesired peak in the measured output
at the start of the idle phase; see the blue line in the top figure
of the sixth and 20th tasks. This spike in the measured output
is seen in the idle phase because of the output delay, i.e., the
output does not instantly respond to the control signal. This
spike in the output deteriorates control performance at the start
of the idle phase and is therefore undesired.

3) Challenges: The spike in the RC output is a result of the
noncausal filters and errors at the beginning of the task. These
noncausal filters allow a conventional RC implementation to
start actuation pl + pq samples before the end of task j .
More specifically, if an error is entering the memory block,
z−(N−pℓ−pq )

i in Fig. 2; at the beginning of the task, it propagates
through the causal filters Qi and L i before the N th time step,
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Fig. 3. Simulation results of PC-ACV showing conventional repetitive control
that is turned on and off upon the trigger of the active phases, which is
indicated by the gray area. The figures shows the reference r or ptarget ( ),
the output y or p̃aw and RC output w ( ), and a scaled disturbance d or
pmus ( ). Showing that conventional RC in a triggered setting results in
an undesired actuation spike at the end of the task.

i.e., before the end of the task. This allows the control output w

to increase before the end of the task to compensate the error
at the start of the subsequent task. This actuation can eliminate
the tracking error at the start of task j + 1 in the conventional
RC. However, the task j + 1 does not start immediately after
the end of the active phase of task j due to the varying
and uncertain length Nϵ, j of the idle phase. Therefore, this
actuation results in an undesired peak at the start of the idle
phase, which is increasing over subsequent breaths.

Two distinct causes for the error at the beginning of
a task, and therewith causes of the actuation spike, are
identified. The first cause of the error at the start of the
active phase is the immediate ramp-up of the reference r ,
i.e., the target pressure. Because the system output does not
respond to this instantaneously, this results in an error at
the start of the active phase. The second cause of the error
at the start of the active phase is the disturbance d, which
causes a slight dip in the output y. This disturbance and
its timing are unknown and the resulting error cannot be
compensated perfectly. To overcome these challenges, a trig-
gered RC framework is developed, which is presented in
Section III.

III. TRC FRAMEWORK

In this section, the TRC framework is presented and its
theoretical support is established. The main contribution of this
article, i.e., the TRC framework, is presented in Section III-A.
Thereafter, a stability proof for the controlled system is
presented in Section III-B.

A. TRC Framework

In this section, the exact implementation of the TRC frame-
work is explained. This means that for both the idle and
active phases the content of the building blocks in Ri of
Fig. 2 is explained. Note that this section does not contain
the design of the feedback controller Ci and the exact TRC
filter design method. For the mechanical ventilation use-case,
this is explained in Section V-C. Next, the RC building blocks
during the active phase, i = 1, and thereafter the building
blocks in the idle phase, i = 2, are explained.

1) Active Phase: In the active phase, the learning filter
L1 and the robustness filter Q1 are designed similar to the
conventional parallel RC; see Section V-C for a detailed design
methodology of L1 and Q1 for the mechanical ventilation use-
case.

To avoid that the error at the start of active phase j causes
an actuation spike at the end of the active phase j , this initial
error should not be propagated through robustness and learning
filters. To avoid that the immediate increase in the reference
causes an error, the reference is delayed, such that it does not
change immediately when the task is started. This allows the
RC to respond to the change in reference at the start of the
task, eliminating this error.

Furthermore, it should be avoided that the error caused by
the disturbance d causes an actuation spike. This is achieved
by altering the delay blocks, i.e., memory block (z−(N−pl−pq )

i )
and preview buffer (z−pl

i ), in Fig. 2. The memory block is
changed such that it behaves as a pure delay in the first
N − pℓ − pq samples in a task. Thereafter, it holds its last
output but keeps updating its internal states, preventing that the
error at the beginning of the task is propagated to the learning
and robustness filter. To achieve this, the main memory block
z−(N−pℓ−pq )

1 , with input θ(k), is replaced by the following
switching state-space system during task j :

xZ (k + 1) = AZ xZ (k) + BZθ(k)

φ(k) =


CZ xZ (k) + DZθ(k)

for k − ks, j < N − pℓ − pq

φ(k − 1), for N − pℓ − pq ≤ k − ks, j ≤ N
(1)

where

AZ =


0 0 · · · 0

IN−pℓ−pq−1
...

0

, BZ =


1
0
...

0


CZ =

[
0 · · · 0 1

]
, DZ = 0 (2)

where ks, j is defined as the sample number k at the start of
task j , i.e., ks, j = ( j − 1)N +

∑n−1
m=1 Nϵ,m + 1.

In addition, the preview buffer z−pℓ

1 in Fig. 2 has a contri-
bution to the actuation spike. Therefore, the preview buffer is
altered such that it is a direct feedthrough at times k − ks, j ∈

[N − pℓ, N ], during every active phase. This means that at
the end of the task both the learning and robustness filters
are causal filters and no actuation spike will occur. This is
implemented using the following switching state-space system
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for the preview buffer, with input β(k), in the active phase
during task j :

xP(k + 1) = AP xP(k) + BPβ(k)

ζ(k) =

{
CP xP(k) + DPβ(k), for k − ks, j < N − pℓ

β(k), for N − pℓ ≤ k − ks, j ≤ N
(3)

where

AP =


0 0 · · · 0

IN−pℓ−1
...

0

, BP =


1
0
...

0


CP =

[
0 · · · 0 1

]
, DP = 0. (4)

This preview buffer behaves as a pure delay during the first
N − pℓ samples of a task. Thereafter, it behaves as a direct
feedthrough and its internal states are updated.

2) Idle Phase: During the idle phase, i.e., k − ks, j ∈

[N + 1, N + Nϵ, j ], the design of the different building blocks
of R2 is straightforward. During this phase, it is desired
to hold the internal states of all the blocks, such that the
controller remembers what it learned during previous active
phases. Therefore, the state-space models of the four building
blocks of R2 in Fig. 2 all have a system matrix A, i.e.,
AZ , AP , AQ, and AL , equal to an identity matrix of the proper
size. All other system matrices of the four building blocks of
R2 in Fig. 2 contain only zeros in the idle phase. Using these
state-space models, the states of the different blocks are held
and no new information is going in or out of R2.

B. Stability of the Closed-Loop System

In this section, a stability proof for the closed-loop con-
trolled system with TRC is presented. Because the TRC
strategy contains a robustness filter Q, the error dynamics
will not converge exactly to zero for time-varying references.
Hence, convergence of the error dynamics to zero cannot be
shown for the time-varying references which are considered
in RC. The stability proof in this section provides a method
to guarantee asymptotic stability of the unforced system and
it guarantees that the closed-loop system has (asymptotically)
bounded states for bounded inputs, i.e., it exhibits the input-to-
state stability (ISS) property. The stability proof follows three
main steps.

1) The closed-loop system (with TRC) is written as a
switching system.

2) This switching system is rewritten to a new switching
system over successive breaths; this new switching sys-
tem describes the relationship between the plant and
controller states at the start of task j and those at the
start of task j + 1.

3) This new switching system representation is used to
prove (input-to-state) stability using a common quadratic
Lyapunov function (CQLF).

First, the closed-loop system within a single task is
described by the block diagram in Fig. 2. For generality, the

disturbance and the dashed arrow are omitted. This closed-loop
system is written as a switching state-space model as follows:

x(k + 1) = Al x(k) + Blr(k)

y(k) = Cl x(k) + Dlr(k)

}
, for l ∈ 1, 2, 3, 4 (5)

where x represents the states of all different blocks in Fig. 2,
i.e.,

x =
[
xG xL xQ xC xZ xP

]T (6)

where the subscripts in the state vector represent the different
building blocks, i.e., G represents the plant, L the learning
filter, Q the robustness filter, C the linear feedback controller,
Z the main buffer, and P the preview buffer. The correspond-
ing state-space system matrices are retrieved by combining the
state-space models of all the subsystems and are given in the
Appendix . In the state-space system (5), l = 1, 2, 3 represent
the system in the active phase and l = 4 represents the system
in the idle phase. More specifically, during breath j ,

l = 1 ∀ k − ks, j ∈ [1, N − pℓ − pq − 1]

l = 2 ∀ k − ks, j ∈ [N − pℓ − pq , N − pℓ − 1]

l = 3 ∀ k − ks, j ∈ [N − pℓ, N ]

l = 4 ∀ k − ks, j ∈ [N + 1, N + Nϵ, j ].

Second, the closed-loop dynamics are written as a
state-space model over multiple breaths. This state-space
model represents the relationship between the system state
γ ( j) := x(ks, j ), i.e., system and controller states, at the start
of active phase j , and the system state γ ( j + 1) := x(ks, j+1),
i.e., system and controller states, at the start of the next active
phase j +1. The new closed-loop switching system is obtained
using the knowledge that the system always switches in a fixed
order and that the closed-loop system matrices in these distinct
phases are known. This results in the following closed-loop
state-space model:

γ ( j + 1) = A(N , Nϵ, j )γ ( j) + B(N , Nϵ, j )r( j) (7)

where r( j) = [r(ks, j ) · · · r(ks, j + N + Nϵ, j )]
T is the bounded

input vector (concerning the reference) and the system matri-
ces are defined in (8), as shown at the bottom of the next page.
Note that the system matrices in (7) depend on the length of
the idle phase, which in turn varies over j . Hence, a switching
system is retrieved where the system matrices depend on the
length of the idle phase, i.e., Nϵ, j .

Third, the switching state-space system on task level in
(7) is used to prove stability of the closed-loop system. For
this stability proof, it is assumed that the idle phase has
a known maximum duration in samples Nmax, i.e., Nϵ, j ∈

{0, 1, . . . , Nmax}. Furthermore, it is assumed that the value Nϵ, j

can change arbitrarily within this set from task to task. Using
this, we can prove that the controlled system is (robustly)
exponentially stable for r( j) = 0 and it has bounded a
state evolution for bounded inputs for bounded inputs r( j) by
following Proposition 1. If the conditions of this proposition
are satisfied, it also implies stability of (5); see Remark 1.

Proposition 1: Consider the closed-loop switching system
(7) with arbitrary switching of Nϵ, j ∈ {0, 1, . . . , Nmax}, for all
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Fig. 4. Schematic representation of the blower–hose–patient system of the
considered positive pressure ventilation system. Showing the resistances, lung
compliance, flows, and pressures.

j , and the discrete-time Lyapunov equation ([34, Sec. 8.6]):

A(N , Nϵ, j )
T P A(N , Nϵ, j ) − P︸ ︷︷ ︸

:=Dℓ(N ,Nϵ, j )

≺ −αPT

∀ Nϵ, j ∈ {0, 1, . . . , Nmax}. (9)

If there exists a matrix P = PT
≻ 0 and an α > 0 such that the

linear matrix inequalities in (9) are satisfied, then the origin of
(7) is globally exponentially stable for r( j) = 0. In addition,
for r( j) ̸= 0, (7) is input-to-state stable with respect to the
input r .

Proof: The proof follows standard line of reasoning
for ISS stability analysis of (switching) discrete-time linear
systems, such as, e.g., in [35] and [36]. □

Remark 1: Note that if the conditions in Proposition 1 are
satisfied, this also implies as follows.

1) For r = 0, the states of (5) converge to zero.
2) For r ̸= 0, the state evolution of (5) is bounded.

IV. VENTILATION SYSTEM AND PATIENT EFFORT
MODELING

In this section, models of the ventilation system and patient
effort are presented. In Section IV-A, a high-level description
of the ventilation system is presented. Then, in Section IV-B,
models of the considered ventilation system are presented.
First, a first principles model is derived that is used in the
closed-loop stability analysis in Section V-D. Then, an exper-
imental frequency response function (FRF) model is presented
that is used for the TRC filter design in Section V-C. There-
after, in Section IV-C, the considered patient effort model is
given.

A. High-Level System Description

A schematic of the considered blower–patient–hose system,
with the relevant parameters, is shown in Fig. 4. The main
components are the blower, the hose-filter system, and the
patient.

1) Blower: A centrifugal blower compresses ambient air to
achieve the desired blower outlet pressure pout. The blower
system is modeled as a second-order low-pass filter with an
output delay τb. This describes the relationship between the
control output pcontrol and the outlet pressure pout.

2) Hose-Filter System: The hose-filter system connects
the blower to the patient. The difference between pout and
paw results in a flow through the hose Qout. This pressure
difference and flow relationship are modeled by a linear hose
resistance Rlin. The change in airway pressure paw results in
two flows, namely, the leak flow Qleak and the patient flow
Qpat. The leak flow is used to flush exhaled CO2-rich air from
the hose. The patient flow is required to ventilate the patient.
The airway pressure is measured using a pilot line attached
to the module and the end of the hose. The pressure transfer
through the hose and the pilot line results in delays in the
system, caused by the finite propagation speed of the pressure
waves. This delay is assumed to be a measurement delay of
paw referred to as the hose delay τh . For simplicity, all the
system delays are lumped as one output delay τd = τb +τh on
the measurement of the airway pressure. The measured, i.e.,
delayed, airway pressure is denoted by p̃aw.

3) Patient: The patient is modeled by a linear
one-compartmental lung model as described in
[37, pp. 37–60]. This model consists of a linear resistance
Rlung and a linear compliance Clung. The patient flow is a
result of the lung resistance and the difference between the
airway pressure and the lung pressure plung, i.e., the pressure
inside the lungs. The patient flow results in a change in the
lung pressure, and the relationship between patient flow and
lung pressure is given by the lung compliance. Finally, in this
article, a patient with spontaneous, muscle-induced, breathing
effort pmus(t) is considered. The patient effort is an unknown
disturbance introduced by the patient’s spontaneous breathing
effort that affects the lung pressure. This patient effort allows
a patient to (partially) inhale and exhale by themselves.

B. Ventilation System Model With Hose Compensation

In this section, a linear state-space model of the ventilation
system is presented. First, a model of the ventilation system
is presented. Thereafter, a state-of-the-art control strategy, i.e.,
hose-compensation control [10], is included in the model to
obtain the full mechanical ventilation model. This model can
be used as the plant G in the stability analysis of Section V-D.
Thereafter, experimental FRFs of this controlled plant are
presented. These FRF models are used for design of the RC
filters in Section V-C.

The ventilation system consists of a blower, hose-filter
system, and the patient itself, as shown in Fig. 4. First, the
blower is modeled as a second-order low-pass filter with cutoff

A(N , Nϵ, j ) = ANϵ, j

4 Apℓ

3 Apq

2 AN−pℓ−pq

1

B(N , Nϵ, j ) =

[
ANϵ, j

4 Apℓ

3 Apq

2 AN−pℓ−pq−1
1 B1 ANϵ, j

4 Apℓ

3 Apq

2 AN−pℓ−pq−2
1 B1 · · · ANϵ, j

4 Apℓ

3 Apq

2 B1 ANϵ, j

4 Apℓ

3 Apq−1
2 B2 · · ·

ANϵ, j

4 Apℓ

3 B2 ANϵ, j

4 Apℓ−1
3 B3 · · · ANϵ, j

4 B3 ANϵ, j −1
4 B4 · · · B4

]
(8)

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on December 13,2023 at 12:34:12 UTC from IEEE Xplore.  Restrictions apply. 



REINDERS et al.: TRIGGERED REPETITIVE CONTROL: APPLICATION TO MECHANICALLY VENTILATED PATIENTS 1587

Fig. 5. Schematic overview of the open-loop ventilation system H combined
with hose-compensation control strategy, combined this results in the plant G
in Fig. 2.

frequency ωn = 30 Hz. This gives the following state-space
model of the blower:

ẋb = Abxb + Bb pcontrol

pout = Cbxb (10)

with

Ab =

[
−ωn 0
ωn −ωn

]
, Bb =

[
ωn

0

]
, Cb =

[
0 1

]
(11)

where pcontrol is the input for the blower, i.e., the total control
signal, xb are the blower states, and pout is the blower outlet
pressure.

Second, the hose-filter patient system is obtained by assum-
ing that all the resistances are linear and that the patient is
modeled by a linear one-compartment lung model. Detailed
derivation of this model can be found in [10]. The different
components, i.e., hose, leak, and patient, are connected by
conservation of flow, i.e., Qout = Qpat + Qleak. This results in
the following linear state-space patient–hose model:

ṗlung = Ap plung + Bp pout + Ep ṗmus

paw = Cp plung + Dp pout (12)

with

Ap = −
Rlin + Rleak

Clung R̄
, Bp =

Rleak

Clung R̄
, Cp =

Rlin Rleak

R̄

Dp =
Rleak Rlung

R̄
, Ep = 1

and R̄ = Rlin Rleak + Rlin Rlung + Rleak Rlung. (13)

Discrete-time models are used for RC design and the stability
analysis. Therefore, the blower and the hose-filter patient
system models are discretized using exact zero-order hold
discretization with a sampling time Ts = 2 × 10−3 s. The
associated discrete-time system matrices are denoted with an
additional subscript d .

Third, a discrete-time model for the output delay τd is
obtained. This model represents the delay between the actual
airway pressure paw(k) and the measured airway pressure
p̃aw(k). For this model, the delay length is computed in terms
of sampling time Ts . This gives the delay length in samples
ds = (τd/Ts). The following discrete-time state-space model
represents the output delay z−ds :

xτd ,d(k + 1) = Aτd,dxτd ,d(k) + Bτd,d paw(k)

p̃aw(k) = Cτd,dxτd ,d(k) (14)

with

Aτd,d =

 0 · · · 0
. . .

...

Ids−1 0

, Bτd,d =


1
0
...

0


Cτd,d =

[
0 · · · 0 1

]
. (15)

In this state-space model, the actual airway pressure paw(k)

first propagates for ds samples through the state xτd ,d before
it is seen in the output p̃aw.

Next, the discretized models in (10)–(15) are combined.
Using the combined state xm,d =

[
xT

b,d plung,d xT
τd ,d

]T , gives
the following discrete-time state-space model of the ventilation
system H :

xm,d(k + 1) = Am,dxm,d(k) + Bm,d pcontrol(k) + Em,d ṗmus(k)

p̃aw(k) = Cm,dxm,d(k) (16)

with

Am,d =

 Ab,d 0 0
Bp,dCb,d Ap,d 0

Bτd,dDp,dCb,d Bτd,dCp,d Aτd,d


Bm,d =

Bb,d
0
0

, Cm,d =
[
0 0 Cτd,d

]
, Em,d =

0
1
0

.

(17)

Finally, linear hose compensation is added to the ven-
tilation system to retrieve the desired plant model. The
hose-compensation strategy in this article is a special case of
the strategy in [10]. A schematic overview of the ventilation
system H with hose compensation is depicted in Fig. 5.
Hose-compensation control is used to compensate the pressure
drop over the hose; in combination with unit feedforward,
i.e., u := ptarget in Fig. 5, it theoretically results in zero
tracking error according to [10]. Fig. 5 shows how hose
compensation is added to the control signal u and included to
the ventilation system H represented by (16) and (17). This
results in the controlled plant G represented by (19) below.
This compensation is implemented as follows:

pcontrol = u + 1 p̂ = u + R̂lin Qout. (18)

To obtain the dynamics of G, Qout is rewritten as Qout :=

((pout − paw)/Rlin), where pout = Cb,dxb,d and paw =

Cp,d plung,d + Dp,dCb,dxb,d , and (18) is substituted in (16) and
(17). This results in

x f,d(k + 1) = Af,dx f,d(k) + Bf,d ptarget(k) + Ef,d ṗmus(k)

p̃aw(k) = Cf,dx f,d(k) (19)

where x f,d = xm,d

Af,d = Am,d + Bm,d
R̂lin

Rlin

[
Cb,d − Dp,dCb,d −Cp,d 0

]
Bf,d = Bm,d, Cf,d = Cm,d, and Ef,d = Em,d. (20)

In the remainder of this article, the plant G, described by (19)
and (20), is used as the open-loop plant. This is the ventilation
model including this hose-compensation strategy. Note that the
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Fig. 6. Identified FRF models of the ventilation system with
hose-compensation control from u to p̃aw, i.e., the plant G. The different
FRFs represent different patients from babies to adults at different pressure
levels.

reference pressure ptarget corresponds to the reference r in the
triggered RC framework of Section III, i.e., r := ptarget.

For the RC filter design, the experimental FRF models
of the ventilation system with hose-compensation control are
obtained. More specifically, FRFs from u to p̃aw for different
patients are depicted in Fig. 6. In these experiments, the
estimated hose resistance R̂lin is retrieved by a calibration
procedure. The figure shows FRFs of different patients from
babies to adults. Furthermore, these FRFs are obtained at
different pressure levels, to capture the effect of the absolute
pressure on the FRF. The significant phase lag that is seen in
the FRFs is caused by the output delay τd . These FRFs are
used to design the RC filters in Section V-C.

C. Patient Effort Modeling

The patient’s spontaneous effort pmus enables a person, i.e.,
healthy or patient, to inhale and exhale air by themselves.
Physically, the patient effort can be seen as a change in
lung pressure caused by contractions and relaxation of the
respiratory muscles, e.g., the diaphragm.

According to [38], a sinusoidal half-wave is a common
and accurate model of the patient effort. An example of the
sinusoidal half-wave is depicted in Fig. 7. The decrease in
pmus results in a decrease in the lung pressure, which results in
flow into the patient lungs. In other words, a decrease in pmus
represents an inspiration. Thereafter, the increase in pressure
results in an increase in the lung pressure and flow out of
the lungs. In other words, an increase in pmus represents an
expiration.

In this article, it is assumed that the patient effort is an
exogenous disturbance to the system. In practice, it is a result
of the breathing behavior of the patient. Modeling of this
behavior is out of scope for this article.

V. TRC APPLIED TO MECHANICAL VENTILATION

In this section, the proposed TRC framework of Section III
is used to improve the pressure tracking performance
of an experimental mechanical ventilation setup. First, in
Section V-A, the experimental setup and use-cases are
described. Thereafter, in Section V-B, the overall controller

Fig. 7. Model of the muscle-induced patient effort pmus(t), defined by the
sinusoidal half-wave.

Fig. 8. Experimental setup consisting of the blower-driven ventilator, ASL
5000 breathing simulation, dSpace, and a hose.

design is presented. Next, the RC filter designs are explained
in Section V-C. Then, the stability of the closed-loop system
is analyzed in Section V-D. Finally, in Section V-E, the exper-
imental results are presented and compared with a benchmark
control strategy.

A. Experimental Setup and Use-Cases

The main components of the experimental setup used in
this case study are depicted in Fig. 8. The figure shows a
Macawi blower-driven mechanical ventilation module (DEM-
CON Macawi respiratory systems, Best, The Netherlands).
Furthermore, the ASL 5000 Breathing Simulator (IngMar
Medical, Pittsburgh, PA) is shown in the figure. This breathing
simulator is used to emulate a linear one-compartmental
patient model as described in [37]. Furthermore, a typical
hose-filter system for ventilation of a patient in a hospital
setting is shown. The control and ventilation algorithms are
implemented in a dSPACE system (dSPACE GmbH, Pader-
born, Germany).

To design and evaluate TRC for mechanical ventila-
tion, three different patients and ventilation scenarios are
considered. The considered patient scenarios are a baby,
pediatric, and adult scenario from the ISO standard for
pressure-controlled mandatory ventilation obtained from Table
201.104 in NEN-EN-ISO 80601-2-12:2011 (NEN, Delft,
The Netherlands). For these standardized scenarios, the patient
parameters and the ventilator settings are given in Table I.
Furthermore, the patient effort pmus for all three scenarios
is depicted in Fig. 9. The variations in this patient effort
are exaggerated to analyze the control performance in a
worst case scenario. As a benchmark controller, the hose
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Fig. 9. Considered patient effort for all the cases during the first 30 s.
Showing the breathing effort of the adult ( ), the pediatric ( ), and the
baby ( ) use-cases.

TABLE I
PATIENT PARAMETERS AND VENTILATION SETTINGS USED FOR FILTER

DESIGN AND IN THE EXPERIMENTS

resistance compensation strategy, as discussed in Section IV,
is considered. This corresponds to the first breath in every
use-case, when the TRC has not yet learned from previous
breaths.

B. Overall Controller Design

The overall controller design can be divided into four sep-
arate controllers, i.e., feedforward control, hose-compensation
control, linear feedback control, and the triggered repetivie
controller R. As a basis, the control scheme in Fig. 2 is con-
sidered. First, as a feedforward controller, unity feedforward
is considered, i.e., the dashed arrow in Fig. 2. Next, the hose
resistance compensation controller is implemented to achieve
adequate performance from the start, i.e., before the triggered
repetitive controller has learned from previous breaths. Imple-
mentation of the hose resistance controller results in the plant
G described by (19). This control strategy ensures that the
initial performance of the system is sufficient. The estimated
hose resistance R̂lin is obtained by an offline calibration of the
hose prior to ventilation.

The linear feedback controller Ci in Fig. 2 is set to be 0 in
both the active and idle phases, i.e., C1 = C2 = 0. This choice
for Ci is made because the hose resistance compensation
controller in G combined with unity feedforward already
achieves sufficient performance during the first breath and
during the idle phase.

Finally, the triggered repetivie controller Ri is designed
using the framework presented in Section III. The exact
learning and robustness filter design is discussed next.

C. Repetitive Control Filter Design

The filters for the triggered repetitive ctonroller during the
active phase are designed following the methodology of [24].
More specifically, this means that the learning filter L1 in
Fig. 2 is based on an average FRF measurement of the
plant G for several patients. Furthermore, the robustness filter
Q1 in Fig. 2 is designed such that it ensures stability of the

conventional RC, i.e., without switching, using the separate
FRFs of all the considered patients.

Before designing the RC filters for the mechanical venti-
lation system, a stability result and a design procedure are
given. First, the sensitivity of the controlled system in Fig. 2,
without the dashed arrow, during the active phase is defined
as follows:

e = (1 + C1G)−1︸ ︷︷ ︸
S1

(1 + PS,1 R1)
−1︸ ︷︷ ︸

SR,1

(r − d) (21)

where PS,1 = (1 + C1G)−1G. Using this sensitivity, the
following sufficient stability theorem is obtained for the system
in the active phase, without switching to the idle phase. This
theorem ensures that the transfer function SR,1 is asymptot-
ically stable, and hence, the sensitivity function in (21) is
asymptotically stable.

Theorem 1 (Based on the MIMO Plug-In RC Stability
Results in [19]): Assume that S1 and PS,1 are asymptotically
stable. Then, SR,1 is asymptotically stable for all N if

|Q1(z)(1 − PS,1(z)L1(z))| < 1 ∀z = eiω, ω ∈ [0, 2π).

(22)

This stability theorem ensures that the entire loop in Fig. 2
is asymptotically stable if no switching to the idle state occurs.

Using the stability condition in Theorem 1, the follow-
ing two-step design procedure is followed for the single-
input single-output (SISO) RC systems; see [17], [30], [39],
and [33].

Procedure 1 (Based on Frequency-Domain SISO RC
Design, From [33] and [24]).

1) Given a parametric model of the “nominal” process sen-
sitivity PS,1(z), construct L1(z) as an approximate, pos-
sibly noncausal, stable inverse of PS,1(z), i.e., L1(z) ≈

P−1
S,1(z).

2) Using nonparametric FRF models, P p
S,1(e

iω), p ∈

{1, . . . , Np} with Np the number of patient models,
of different patients, design one Q1(z) such that The-
orem 1 is satisfied for P p

S,1(e
iω) ∀p ∈ {1, . . . , Np}.

To design the RC filters for the active phase, Procedure 1 is
followed. First, FRF measurements of the process sensitivity
P p

S,1(z) for every patient are obtained; see Fig. 10. The
average of these FRF measurements and a fourth-order fit
with 12 samples delay are used to obtain a parametric model
Pn

S,1(z) of the “nominal” process sensitivity; see Fig. 10. This
fit of the “nominal” process sensitivity is used to construct a
noncausal learning filter L1(z) = z pl Lc(z) as an approximate
stable inverse of Pn

S,1(z). This inverse is obtained using zero
phase error tracking control (ZPETC) [40].

For the robustness filter design, the second step in Pro-
cedure 1 is followed. First, the stability condition of the
conventional repetitive controller is checked for Q1 = 1.
In the left-hand side of Fig. 11, it is clearly seen that the
stability conditions for conventional RC are not guaranteed for
all the patients. Therefore, a 20th-order noncausal zero-phase
finite impulse response (FIR) filter with a cutoff frequency
of 20 Hz is implemented as the robustness filter Q1. This FIR
filter is implemented by computing a causal symmetric FIR
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Fig. 10. FRF measurements of process sensitivity for the individual patients
( ), the “nominal” (average) process sensitivity ( ), and the fourth-order
fit of the “nominal” process sensitivity ( ).

Fig. 11. Left: stability condition for all the patients with Q1 = 1. Right:
stability condition for all the patients with Q1 a 20th-order FIR filter with
cutoff frequency at 20 Hz. The figures show (|Q1(1 − PS,1 L1)|) for every
patient ( ) and the corresponding Q filters ( ).

filter Q1,c and applying a forward shift of z pq with pq half
the order of the FIR filter. This makes it a zero-phase FIR
filter that is symmetric around zero lag, such that no phase
lag is introduced by the filter. The forward shift is possible
because of the memory loop, as long as pl + pq ≤ N . With
the implementation of this robustness filter, the conventional
RC stability condition in Theorem 1 is ensured, as is shown
in the right-hand side Fig. 11.

Eventually, to reduce the effect of the varying disturbances,
e.g., breathing effort, in subsequent breaths a learning gain
α ∈ [0, 1] is included by multiplying L1 with α. The choice of
the learning gain is a tradeoff between convergence speed and
varying disturbance suppression, and this varying disturbance
is mainly caused by the patient effort in the ventilation use-
case. A high learning gain means that the controller converges
quickly and responds abruptly to the changes in the patient’s
breathing effort. A low value for the learning gains results in
a controller that converges slowly and tries to compensate the
average of a set of patient breaths. Therefore, a learning gain
of 0.2 is implemented, and this value is a result of extensive
testing.

D. Stability Analysis

In Section V-C, stability of the closed-loop system is
guaranteed in case the system does not switch to the idle
phase. However, in the PC-ACV use-case, the system switches
to the idle phase after every ventilator-assisted breath. There-
fore, the results in Section III-B are used to ensure stability
of the switching system controlled by TRC. In other words,
the three-step procedure in Section III-B is followed.

First, the switching system in (5) is obtained, with
1) G the mechanical ventilation system with hose compen-

sation in (19) for l = 1, 2, 3, 4.
2) Learning filter L1 as designed in Section V-C for

l = 1, 2, 3, and L2 during the idle phase, i.e., for
l = 4, designed such that the internal states are held,
as described in Section III-A.

3) Robustness filter Q1 as designed in Section V-C for
l = 1, 2, 3, and Q2 during the idle phase, i.e., for
l = 4, designed such that the internal states are held,
as described in Section III-A.

4) C1 = C2 = 0 in both the phases, i.e., for l = 1, 2, 3, 4.
5) The main memory block BZ (z−(N−pℓ−pq )

i ) is designed
following (1) in the active phase for l = 1, 2, 3, and
during the idle phase, i.e., for l = 4, designed such that
the internal states are held, as described in Section III-A.

6) The preview buffer BP (z−pℓ

i ) is designed following (3)
in the active phase for l = 1, 2, 3, and during the idle
phase, i.e., for l = 4, designed such that the internal
states are held, as described in Section III-A.

Second, using this representation the system is rewritten as
the switching state-space model over multiple breaths in (7).
This model describes the system and controller state at the
start of breath j + 1, using the states at the start of breath j
and the reference r( j) = [r(ks, j ) · · · r(ks, j + N + Nϵ, j )]

T ,
with r(k) := ptarget(k) for the ventilation use-case.

Third, for this switching system a CQLF should be com-
puted that satisfies Proposition 1. Doing this for the considered
use-cases, a challenge occurs. Namely, the P matrices are very
large in dimension, up to 1042 × 1042 for the adult case. This
is caused by the size of the system matrix A(N , Nϵ, j ), which is
large because of the states that are introduced by the memory
loop in the triggered repetitive controller. Therefore, when
attempting to solve the system of linear matrix inequalities
in MATLAB to compute a suitable P matrix, our system,
an Intel Core i7-7700HQ, 2.8-GHz processor with 16-GB
RAM, runs out of memory and is unable to find a P matrix that
satisfies the linear matrix inequalities and guarantees stability.
Furthermore, it is observed that the computation time and
storage cost grow rapidly with an increasing value of N .
This is a known limitation of such methods to prove stability;
see [41] and [42], and solving this issue is out-of-scope for
this article.

For smaller values of N , we are able to find P matrices that
guarantee stability of the system. Therefore, we followed two
approaches to analyze the system’s stability properties for the
baby use-case, namely,

1) Solve the LMIs for smaller values of N , i.e., a CQLF is
found for breath lengths that are shorter than the actual
breath length.

2) Solve the LMIs for the same system and controller
which is discretized at a lower sample frequency, more
specifically 50 Hz instead of 500 Hz. The reduced
sample frequency results in a significantly smaller buffer
length N , reducing the computational burden.

Using these two approaches to analyze the system’s sta-
bility properties and extensive testing in simulations and
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Fig. 12. Airway pressure, patient flow, and TRC output of the 19th–21th
breath for the converged triggered repetivie controller ( ) and hose resis-
tance compensation controller ( ) for the adult case, and the target pressure
( ) and the scaled patient effort pmus ( ). The triggered repetivie
controller is in the active phase in the gray areas and in the idle phase in the
white areas. The figure shows that the airway pressure tracking performance
is improved.

Fig. 13. Error two-norm per breath for every use-case; a single breath
consists of the active phase and the subsequent idle phase. The first breath
represents the system with hose-compensation control, since the RC output
is zero. The figure shows the adult ( ), the pediatric ( ), and the baby
( ) use-cases.

experiments, we are confident that the system behaves safe
and stable in practice.

These computational issues are a known issue for control
strategies with large dimensions, e.g., model predictive con-
trol with large prediction horizons and solving the Ricatti
equations for H∞ control with large dimensional systems.
Therefore, solving large-scale LMIs is considered out of the
scope of this article. Also other approaches to reduce the buffer
size could be considered in future work, e.g., using periodic
basis functions to compute the RC signal.

E. Experimental Results

In this section, the results of the experiments are presented.
First, the time-domain results of the adult use-case are shown
and analyzed. Thereafter, all the use-cases are analyzed in
terms of the pressure error two-norm on breath level.

The results of the 19th–21th breath of the adult use-case are
shown in Fig. 12. The figure shows the airway pressure and
patient flow for the system with TRC and for the system with
just hose resistance compensation. It is clearly shown that the
airway pressure tracking performance is improved significantly
by TRC. Both the rise times and overshoot are significantly

reduced. Some slight oscillations in the airway pressure with
TRC are seen at the IPAP level, and these oscillations are
caused by the varying patient efforts. Because these are
varying over breaths, the triggered repetitive controller cannot
compensate this perfectly. Furthermore, the actuation peak
after the active phase, as observed in Section II-C, is prevented.

The error two-norm per breath for all the use-cases is shown
in Fig. 13. The error two-norm per breath is defined as the
two-norm of the tracking error, e := ptarget − p̃aw, during
the active and subsequent idle phases. The first data point in
Fig. 13 represents the error two-norm of the system with hose
resistance compensation only, i.e., the output of the repetitive
controller is zero. It is seen in the figure that for all the three
use-cases the error converges in about ten breaths, and this
is due to the particular choice of α. The figure shows that
the tracking performance is improved with a factor 3.9–4.6.
Upon convergence, some oscillations are seen, and these are
caused by the varying lengths of the idle phase and the varying
patient efforts. The adult use-case is especially sensitive to
varying patient efforts because of the high compliance and
low resistance.

Concluding, pressure tracking performance is improved
significantly for a wide variety of spontaneously breathing
patients by including TRC in the mechanical ventilation
setup. Furthermore, the undesired actuation spike, as seen in
Section II-C, is resolved.

VI. CONCLUSION AND FUTURE WORK

The developed triggered repetitive control (RC) framework
enables improved tracking performance improvement for sys-
tems with repeating tasks where the start of a task is triggered
at varying intertask times, and this provides a breakthrough
for applying repetitive control (RC) techniques to mechanical
ventilation with possibly spontaneously breathing patients. The
main challenge that is solved in this article is the fact that
the period in between a task is not exactly the same for
subsequent tasks, and it depends on the timing of an external
disturbance, deteriorating the performance of traditional RC.
This challenge is solved by activating and deactivating the
RC when the repetitive task starts and ends, respectively.
Furthermore, adjustments to the traditional RC filters are made
to prevent undesired actuation peaks at the end of the repetitive
task.

Furthermore, the TRC framework is theoretically supported
by a stability analysis. Thereafter, a design procedure of TRC
for mechanically ventilated patients is presented. Following
this design procedure, TRC is implemented and tested in an
experimental setup for ventilation. A performance analysis of
these experiments shows a significant performance increase
compared with other control strategies for ventilation. In the
experimental case study, a reduction of the error two-norm up
to a factor 4.6 has been achieved compared with a state-of-
the-art control strategy.

Several recommendations are considered relevant for future
extensions and improvements. First, a variable learning gain
could be considered to decrease the effects of varying patient
efforts on the tracking performance upon convergence while
ensuring fast convergence. Second, an additional triggered
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Al =



al,11 al,12 al,13 al,14 al,15 0

0 AL ,l BL ,lCQ,l 0 BL ,l DQ,lCZ ,l 0

0 0 AQ,l 0 BQ,lCZ ,l 0

−BC,lCG 0 0 AC,l 0 0

al,51 al,52 al,53 al,54 al,55 BZ ,lCP,l

0 0 BP,lCQ,l 0 BP,l DQ,lCZ ,l AP,l


Bl =

[
BG(1 + DC,l) 0 0 BC,l BZ ,l 0

]T (23)

Cl =
[
CG 0 0 0 0 0

]
Dl = 0

repetitive controller for the expiration should be added to
enable triggered off-cycling of the mechanical ventilator. This
allows ventilator strokes with varying lengths, improving
synchronization between the patient and the ventilator even
further. Third, a simple method to guarantee stability of the
closed-loop system with TRC should be developed, to avoid
the computational burden of solving the linear matrix inequal-
ities. Using such stability guarantee, it might be possible to
develop a design procedure that guarantees stability. Finally,
input-to-state bounds can be used in future work to obtain a
formal measure of the system’s performance.

APPENDIX
INTERCONNECTED STATE-SPACE SYSTEM

The full switching closed-loop system with TRC is
described by the state-space system in (5). The corresponding
state-space matrices are retrieved by working out the intercon-
nections in Fig. 2 and considering the state vector in (6). This
results in the following state-space system matrices: (23), as
shown at the top of the page, where

al,11 = AG − BG DC,lCG, al,51 = −BZ ,lCG

al,12 = BGCL ,l , al,52 = 0

al,13 = BG DL ,lCQ,l , al,53 = BZ ,l DP,lCQ,l

al,14 = BGCC,l , al,54 = 0

al,15 = BG DL ,l DQ,lCZ ,l , al,55 = AZ ,l + BZ ,l DP,l DQ,lCZ ,l .

(24)

In these matrices, the first subscript defines to which subsys-
tem in Fig. 2 the corresponding matrix belongs, and the second
subscript, i.e., l ∈ 1, 2, 3, 4, refers to the phase it belongs to.
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