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Sparse Linear Array Synthesis Using
Exponential Analysis

Ramonika Sengupta, Annie Cuyt, David S. Prinsloo, Lukas Nyström and A. Bart Smolders

Abstract—This paper presents an exponential analysis tech-
nique for synthesizing a sparse non-uniform linear array using
equidistant samples of the array factor of a dense uniform
linear array. The problem statement is explored in a realistic
production noise setting (i.e., we model uncertainties/tolerances
during production as Gaussian noise), which motivates some
slight oversampling. The collected samples are organized in
the form of a Hankel matrix. A Cadzow iteration provides an
accurate lower-rank approximation of the Hankel matrix. This
lower-rank Hankel matrix is then used to obtain an equivalent
sparse reduced array that accurately approximates the per-
formance of the original dense array. Numerical experiments
demonstrate that the newly developed method is more robust
and accurate compared to the methods previously reported.

Index Terms—Exponential Analysis, Sparse Array, Array
Factor, Gaussian Noise, Hankel Matrix, Cadzow Iteration,
Array Synthesis

I. INTRODUCTION

Modern wireless communication systems frequently em-
ploy antenna arrays because of their high gain and beam-
forming capabilities. Recently, unequally spaced sparse ar-
rays that utilize fewer antenna elements are becoming in-
creasingly popular, in terms of reducing the system com-
plexity, cost and power consumption, as well as minimizing
the effects of mutual coupling. Several techniques are em-
ployed to synthesize sparse linear and planar arrays. Some
notable optimization methods include the genetic algorithm
[1], where the antenna element positions are optimized in
order to achieve a minimum peak sidelobe level, keeping the
number of elements and their complex excitations fixed, and
simulated annealing [2], where a stochastic method is utilized
for synthesizing a planar array from a fully sampled array
with half-wavelength element spacing. While these iterative
methods have shown promising results for small arrays, they
have a tendency to be trapped into local optima resulting in
significant computation time when the array is large. Other
optimization techniques for array sparsification are presented
in [3], [4] and [5]. In [3], a sequence of weighted l1 convex
optimization problems are solved to synthesize a sparse array,
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and in [4] a multi-objective optimization problem is solved to
minimize the number of elements and the peak sidelobe level.
In [5], a Bayesian compressive sensing inversion algorithm
is proposed to solve a sparseness constrained optimization
problem, in order to minimize the number of elements in
the array. Other than these iterative methods, non-iterative
algorithms using subspace based methods have also been
proposed to synthesize sparse linear [6], [7] and planar arrays
[8]. Using matrix pencil based algorithms, the methods have
successfully reconstructed focused or shaped beam patterns
with fewer elements, while also significantly reducing the
computation time, when compared to the iterative methods.

In this work, we present a novel exponential analysis
approach, for synthesizing a sparse non-uniform linear array.
The new approach described in this paper, extends the
technique given in [6].

The paper is organized as follows: The problem statement
in terms of exponential analysis, along with a discussion
of the ill-posed nature of such a problem is described in
Section II. In Section III, a new approach for synthesizing
a sparse reduced array, using a given uniform dense array,
is outlined and compared with the method given in [6]. The
examples given in [6] are addressed using the new approach
and the results thereof are discussed in Section IV. The
conclusions and future work are given in Section V.

II. PROBLEM STATEMENT

Consider the array factor F (θ, ϕ) for a linear array along
the x-axis, given by

F (θ, ϕ) =

N−1∑
n=0

In exp (jk0dn sin θ cosϕ) , (1)

where N is the total number of elements in the array, k0 =
2π/λ0 is the wavenumber, λ0 is the wavelength in free space,
In and dn are the complex excitation and x-coordinate of
the position vector of the nth element respectively, and θ
and ϕ are angular coordinates such that θ = 0◦ along ẑ and
increasing towards −ẑ and ϕ = 0◦ along x̂ and increasing
towards ŷ, where x̂, ŷ and ẑ are the unit vectors along the
x, y and z-axes respectively.

Considering the ϕ = 0◦ plane, we sample sin θ of (1)
uniformly in [−1, 1] with a sampling interval of ∆ =
2/ (M − 1), where M ≥ 2N is the total number of samples.
Two sampling schemes are applicable: an even sampling
scheme (M ≥ 2N is even) and an odd sampling scheme
(M ≥ 2N + 1 is odd). Both sampling schemes give
comparable results, hence either can be used for applying
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Fig. 1. Array factor of 20 element ULA with uniform excitation

Prony’s method. The array factor in (1) is transformed to a
Prony problem [9] as follows:

Fs =

N−1∑
n=0

In exp (jk0dn (−1 + s∆)) , s = 0 . . .M − 1

=

N−1∑
n=0

In exp (−jk0dn)︸ ︷︷ ︸
rn

exp (jsk0dn∆)︸ ︷︷ ︸
Φs

n

=

N−1∑
n=0

rnΦ
s
n

(2)

where rn and Φn are called the coefficients and the base
terms respectively.

Using the array factor samples Fs, one can solve for Φn

and rn in order to obtain the original dn and In, or one can
solve for an equivalent sparse reduced array

L−1∑
n=0

r̃nΦ̃
s
n ≈

N−1∑
n=0

rnΦ
s
n, L < N, s = 0, . . . ,M−1. (3)

The procedure is explained using an example of a 20 element
ULA (uniform linear array) with uniformly excited elements
and λ0/2 spacing. The array factor is shown in Figure 1.

In order to solve for Φn and rn from the Prony problem
(2), M = 2N samples are sufficient. The approximation of
the original array by a reduced array with nearby array factor
behaviour is possible because the Prony problem is ill-posed
[13]. For the purpose of reducing the original linear array, we
propose to add realistic production noise ϵs to each sample
Fs, as explained in Section III, and oversample the array
factor, in other words, take M > 2N + 1. The disposedness
[11] of Φn is measured using the Hankel matrix

H =


F0 F1 . . . Fν−1

F1 F2 . . . Fν

...
...

. . .
...

Fm Fm+1 . . . FM−1

 , (4)

where m ≥ ν ≥ N and m+ν = M . Let the Hankel matrices
H(0) and H(1) of size m × ν be obtained by respectively
removing the last and first rows from H . Here we consider
m = ν (in case M is even) or m = ν + 1 (in case M is

Fig. 2. Disposedness and relative position of Φn with M = 2N

odd), such that we obtain (almost) square Hankel matrices
in the generalized eigenvalue problem [12]

H(1)vn = ΦnH
(0)vn, (5)

where the base terms Φn are the generalized eigenvalues and
the vn the right eigenvectors.

The disposedness of Φn is determined as the upper bound
of the relative Euclidean condition number κ(n)

2,H(Φn) of the
generalized eigenvalue problem and is given by [13]

κ
(n)
2,H(Φn) ≤ (|Φn|+ 1) ||vn/

√
αn||22

||(F0, . . . , FM−1)||2
|Φn|

(6)
where αn = ynH

(0)vn and yn are the left eigenvectors of the
eigenvalue problem (5). In Figure 2 we display the disposed-
ness of the 20 original base terms Φn for m = ν = N = 20.
Observe that it is indeed quite large (1010 ≲ κ

(n)
2,H ≲ 1020).

Using the new approach discussed in Section III, the
disposedness is significantly reduced along with a reduction
of the array.

III. NEW APPROACH

Let us compute the singular value decomposition (SVD)
of H , given by

H = UΣW ∗, (7)

where ∗ denotes the Hermitian transpose, U and W are
unitary matrices of size (m+ 1) × (m+ 1) and ν × ν
respectively, and Σ is an (m+ 1)× ν diagonal matrix with
the singular values σ1 ≥ · · · ≥ σν ≥ 0 on its diagonal.
Figure 3 shows the log scale plot of the singular values of
H for M = 2N samples and hence m = ν = N = 20.

A low rank approximation of H can be obtained by re-
taining only the largest/principal singular values, and setting
the rest to zero. The Hankel matrix H is then approximated
by

H̃ = U Σ̃W ∗, (8)

where Σ̃ = diag
{
σ1, σ2, . . . , σL, 0 . . . 0

}
with L correspond-

ing to the number of elements in the synthesized array (3).
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Fig. 3. Log scale plot of singular values σi for M = 2N samples

The distance between H given in (4) and its low rank
approximation H̃ , equals [14]∣∣∣∣∣∣H − H̃

∣∣∣∣∣∣
F
=

√√√√ N∑
i=L+1

σ2
i , (9)

where ||·||F is the Frobenius norm. Determining the appro-
priate value of L, simply by observing Figure 3, may lead
to inaccuracies since it necessitates setting a user-defined
tolerance ξ, as in [6], where

L = min

l :

√
ν∑

i=l+1

σ2
i√

l∑
i=1

σ2
i

< ξ

 . (10)

In order to make L recognizable, we present a new
approach that does not require choosing a value for ξ. To
this end, we start by adding complex Gaussian noise ϵs to
the array factor samples Fs,

Fs ← Fs + ϵs, s = 0 . . .M − 1. (11)

The level of the noise terms is chosen such that it repre-
sents acceptable production noise. For instance, a reasonable
assumption regarding the tolerance on the antenna element
positions dn, for an array operating at 1.5 GHz, is somewhere
between 25 and 50 micrometers, while for the excitation
In one has 5- or 6-bit control resolution on the amplitude
and phase. Such assumptions amount to around 35 dB SNR
for our 20 element ULA. In general, the correct noise level
can easily be determined by carrying out a sufficiently high
number of simple array factor evaluations.

The singular value plot of the noisy Hankel matrix H with
m = ν = 25, is shown in Figure 4. The larger number of
samples M = 2.5N also in a way compensates for the poorer
quality of the samples due to the added noise. Observe that
there is a sharp decrease after σ12, which is also the point of
maximum curvature in the singular value plot. From Figure 4
it is more straightforward to determine how many antenna
elements contribute to the array factor above the production
noise level.
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Fig. 4. Log scale plot of noisy singular values σi for M = 2.5N

While the addition of noise facilitates the determination
of L, the ill-posedness might lead to inconsistent results.
Indeed, since an ill-posed problem does not have a unique
solution, different noise realizations might result in different
arrays. Hence, to improve the reliability of this approach,
we obtain a noisy version of H as the average of a few
perturbations (11), and we include a Cadzow iteration [15]
as an additional step as well.

The Cadzow iteration is initialized by detecting the point
of maximum curvature in the singular value plot of the noisy
H matrix (which is L = 12 in Figure 4) and computing H̃
as in (8) by retaining only the first L singular values. Note
here that H̃ is not necessarily Hankel structured anymore.
To amend this, one averages in each iteration step over
the anti-diagonals in the matrix H̃ . The process is repeated
by computing the SVD of the “averaged” matrix to obtain
an updated L and a new H̃ . The iteration stops when H̃
itself is sufficiently close to being Hankel structured. The
stopping criterion here can also be formulated in terms of
the production noise level:

max
p+q=k+1

∣∣∣H̃p,q −mean p+q=k+1H̃p,q

∣∣∣ ≤ γ, (12)

where k denotes the antidiagonal (we go through the full
matrix H̃) and γ is the threshold value γ = 10(−SNR/20).
Figure 5 shows the singular value plot of H̃ after the Cadzow
iteration.

Comparing Figures 4 and 5, it is clear that the inclusion of
Cadzow inserts a clear gap between the principal and non-
principal singular values. Moreover, we obtain L = 13 from
Figure 5, which indicates that our initial guess of L = 12
from Figure 4 was not optimal. Although L = 12 would
also produce a reasonable synthesis, inclusion of the Cadzow
iteration improves the robustness and ensures an optimal L.

With L established, the production noise ϵs, s =
0, . . . ,M − 1 is not required anymore. We proceed with
the computation of Φ̃n using noise-free samples Fs in (5).
Here, we use H̃(0) and H̃(1), obtained from the noise-free H̃
computed from (8) with L delivered by the Cadzow iteration.
Note that

H̃ = USW∗, (13)
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Fig. 6. Disposedness and relative position of Φ̃n with M = 2.5N

where U and W are of size (m+ 1) × L and ν × L
respectively, obtained by retaining L left and right singular
vectors in (8). The matrix S of size L × L, only has
σ1, . . . , σL on the diagonal and zero elsewhere.

As earlier, U (0) and U (1) are formed by respectively
removing the last and first rows from U . Then H̃(0) and
H̃(1) are given by

H̃(0) = U (0)SW∗, H̃(1) ≈ U (1)SW∗. (14)

By introducing wn = SW∗vn, the base terms Φ̃n in (3) are
obtained from the eigenvalue problem

Xwn = Φ̃nwn (15)

where X is the L × L matrix satisfying U (0)X = U (1).
Figure 6 shows the disposedness of Φ̃n, given by

κ
(n)
2,X (Φ̃n) ≤

||zn||2||wn||2
|z ∗

n wn|
||X ||2
|Φ̃n|

, (16)

where zn are the left eigenvectors of the eigenvalue problem
(15). Comparing Figures 2 and 6, it is clear that the dis-
posedness is reduced drastically from 1010 ≲ κ

(n)
2,H ≲ 1020

to 105 ≲ κ
(n)
2,X ≲ 1010.
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Fig. 7. Array factor of the synthesized array

We calculate r̃n by solving the over-determined system of
linear equations

1 1 . . . 1

Φ̃0 Φ̃1 . . . Φ̃L−1

...
...

. . .
...

Φ̃
(M−1)
0 Φ̃

(M−1)
1 . . . Φ̃

(M−1)
L−1




r̃0
r̃1
...

r̃L−1

 =


F0

F1

...
FM−1

 ,

(17)
obtained from (3), using the computed values of Φ̃n.

In a final step, we filter out the terms with coefficients of
negligible magnitude, meaning less than a few percentages
of the term with largest magnitude. This on the one hand
ensures that only the main contributing elements remain in
the synthesized array, and on the other hand maximizes the
sparsity. The final and retained element positions d̃n and
excitations Ĩn are recomputed using (15) and (17) with a
possibly even smaller L. In case of the 20-term ULA (N =
20) synthesized as a 13-term non-uniform array (L = 13),
the final step did not further decrease L.

Figure 7 shows the array factor of the synthesized array. A
good agreement is obtained, with a small error of order 10−4.
This approach also automatically reveals a small threshold
value ξ ≈ 10−5 for use in (10). In the end, comparing the
Figures 3 and 5, it is very clear that a satisfactory value for
L is much easier to obtain from Figure 5 than from Figure 3.

IV. EXAMPLES

A. Example 1: Chebyshev Tapering

In this example, we present results for the Chebyshev
pattern/array factor given in [6], obtained using the new
approach. A Chebyshev tapering [16] is applied to the 20
element uniform array considered in Section III, in order to
obtain a side-lobe level SLL = −30 dB. Using the same
sampling scheme of M = 2.5N and SNR of 35 dB, the
reconstructed array factor is shown in Figure 8. With the
new approach, a 13 element array is synthesized, resulting
in 35% savings in the number of elements. A comparison
with the array factor, reconstructed using the method given
in [6], with ξ = 10−2, is also shown in Figure 8. This
alternative method delivers an array with 12 elements. The
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Fig. 8. Chebyshev pattern from [6] reconstructed using the new approach

element positions and excitations are listed in Table I, with
the arrays being symmetric about the origin.

With the new approach, the maximum error between the
true array factor and the reconstructed array factor is only
5.6 × 10−4, while ξ equals 1.6 × 10−4. For the alternative
method [6], the error depends on the chosen value of ξ. For
ξ = 10−2, the error is 7.0 × 10−3, and for ξ = 10−3, a 13
element array is obtained and the error is comparable to the
one of the new approach.

Concerning the choice of ξ, any value between 1.6×10−4

and 2.2× 10−3 results in a 13 element array, while for ξ >
2.2× 10−3, a 12 element array is obtained.

TABLE I
CHEBYSHEV ARRAY COMPARISON WITH [6]

Original Array Positions and Positions and Excitations
Excitations [6] Using New Approach

n In d̃n/λ0 Ĩn d̃n/λ0 Ĩn
0 1 0.425 1 0 1
1 0.970 1.275 0.914 0.819 0.958
2 0.912 2.123 0.760 1.635 0.842
3 0.831 2.967 0.567 2.444 0.673
4 0.731 3.801 0.371 3.238 0.483
5 0.620 4.637 0.268 4.002 0.303
6 0.505 4.712 0.235
7 0.391
8 0.286
9 0.326

B. Example 2: Non-Uniform Array Presented in [17]

For this example, we use the non-uniform array from [17],
present results obtained using the new approach and compare
them with the results given in [6]. The samples are taken
from the desired pattern, shown in Figure 9. With the new
approach, we only consider 3N = 51 samples, rather than
80 samples as in [6]. The SNR considered for this case is
45 dB.

The reconstructed array factor is shown in Figure 9. In
[17], the element positions are optimized to generate a
pattern using 17 elements. Using the alternative method given
in [6], the number of elements is reduced to 13. With the
new approach, we obtain a 15 element array. The positions
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Fig. 9. Reconstructed array factor using the new approach and comparison
with [17] and [6]

and excitations are shown in Table II, with the arrays being
symmetric about the origin.

It is clear from Figure 9 that the reconstructed pattern
from the new approach has a lower SLL compared to both
[17] and [6]. Moreover, the pattern is generated using only
3N samples from the desired pattern, resulting in savings of
about 12% in the number of elements.

TABLE II
ARRAYS SYNTHESIZED BY [17], [6] AND THE NEW APPROACH

Positions [17] Positions and Positions and Excitations
Excitations [6] Using New Approach

n dn/λ0 d̃n/λ0 Ĩn d̃n/λ0 Ĩn
0 0 0 1 0 1
1 0.5 0.885 0.959 0.891 0.961
2 1.0 1.770 0.869 1.782 0.876
3 1.5 2.654 0.733 2.672 0.747
4 2.0 3.537 0.569 3.562 0.590
5 2.683 4.418 0.399 4.452 0.425
6 3.464 5.303 0.247 5.341 0.272
7 4.297 6.230 0.146
8 5.163

C. Example 3: Reconstruction of Pattern from [18]

For this final example, we reconstruct the pattern given
in [18] using the new approach. The true pattern for this
example, shown in Figure 10, is obtained for a 32 element
non-uniform array. Using 2.5N = 80 samples and an SNR
of 35 dB, we obtain a 24 element linear array, identical to
the one in [6] for the same example. While the method in
[6] requires a pre-defined ξ = 10−3 to acquire the principal
singular values, the new approach automatically separates the
24 principal singular values from the non-principal ones (see
Figure 11).

V. CONCLUSIONS AND FUTURE WORK

A new approach for synthesizing a sparse reduced array,
starting from a uniform dense array, is presented. With
the new approach, we extend the method described in [6],
making it more autonomous and robust. The array factor
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expression is rewritten as an exponential analysis problem
(2). Due to the inherent ill-posedness of the inverse problem,
as discussed in Section II, it is possible to solve for an equiv-
alent sparse reduced array (3). Using a Cadzow iteration, we
establish the number of elements in the synthesized array.
Compared to [6], the new approach does not depend on
user-defined thresholds, while being equally computationally
efficient.

Future work to further develop the presented method
involves investigating the usage of non-uniform sampling
and the support of constraints on the element spacing and
antenna dimension. In addition, the implementation of sub-
Nyquist sampling schemes is also an area of interest.
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