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Abstract: The proliferation of smartphones and internet connectivity has provided the opportunity
to use crowdsourced data in traffic management. Nowadays, many people use navigation apps such
as Google Maps, Waze, and Flitsmeister to obtain real-time travel information and provide feedback
on road conditions, such as reporting police speed checks. As an accurate traffic speed prediction
is of great significance for road users and traffic managers, different models have been proposed
and widely used to predict traffic speed considering the spatio-temporal dependence of traffic data
and external factors such as the weather, accidents and points of interest. This study investigates the
impact of crowdsourced data about police enforcement from navigation apps on traffic speed. In
addition, we examine whether the police enforcement report affects the accuracy of the deep learning
prediction model. The authors extract crowdsourced police enforcement information from navigation
apps, collect the corresponding historical traffic speed data, and predict traffic speed in several
corridors in The Netherlands using a GCN-GRU traffic speed prediction model. The results show
that the crowdsourced data for police enforcement cause the average vehicle speed to drop between
1 [km/h] and 3 [km/h] when passing the road segments marked with police activity. Moreover, the
prediction performance of the GCN-GRU model during the periods without police enforcement is
better than the periods with reported police activity, showing that police speed check reports can
decrease the accuracy of speed prediction models.

Keywords: crowdsourced data; traffic speed prediction; traffic enforcement; police enforcement

1. Introduction

These days, most people use navigation apps such as Google Maps, Waze, and Flitsmeis-
ter to find the best route for their trip due to the proliferation of smartphones and internet
connectivity [1,2]. These apps utilize the users’ GPS data known as crowdsourced data
to estimate and provide real-time travel information. Recently, these apps also enabled a
feature where users can provide feedback and share their experiences; for instance, users
can report traffic accidents and police speed checks. This information not only can help
these apps predict future travel times more accurately but also can warn other app users
about the conditions and help travelers adjust their routes or driving behaviors accordingly.

The 3Es approach, which comprises engineering, education, and enforcement, has
been used for decades to improve road safety. The traffic safety level is expected to increase
through educating people about safety knowledge and driving skills, as well as improving
road infrastructure and vehicle standards. In addition, traffic enforcement can influence the
behavior of high-risk drivers and is still an integral part of safety improvement. For instance,
around 3 million traffic fines were issued in The Netherlands in the second half of 2021,
of which 512,277 were issued by police flashing along the roads [3]. However, the report
of police activity on navigation apps may nullify the impact of enforcement. Intuitively
drivers who receive crowdsourced data from the app could potentially adjust their driving
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behavior, which otherwise may be different. This means that police activity reports in
navigation apps could impact the driving speed in certain locations, and as a result, may
influence the overall traffic condition.

Traffic speed is one of the three imperative traffic parameters, which could reflect the
traffic state and has become the key component of traffic prediction research. Forecasting
traffic speed is of great significance for road users and urban managers, which could help to
reasonably plan travel routes and manage urban traffic. Urban traffic speed prediction has
always been one of the most challenging parts of intelligent transportation systems (ITSs)
due to the complicated spatial and temporal correlations of urban road networks. Many
predictive models have been proposed to capture the spatio-temporal dependence of traffic
data, and their effectiveness has been proved using real traffic data [4–6]. Moreover, to in-
crease the prediction accuracy, the influence of external factors, such as social attributes [7],
accidents [8], weather [9], and point of interest (POI) [10] have been investigated. However,
the impacts of external factors on traffic speed are unclear. In particular, the impact of
crowdsourced data about police activity on traffic speed has not been investigated yet. Cap-
turing such temporary impacts is important for traffic management because the induced
speed changes at enforcement locations may impact the overall traffic situation.

Therefore, the purpose of this research is to examine to what extent the reported
police enforcement on navigation apps affects traffic speed and the accuracy of traffic speed
prediction models.

To achieve these goals, this research extracts police enforcement information from
crowdsourced data from navigation apps in The Netherlands, collects historical traffic
speed data on the same road segments where enforcement happened, and predicts the
speed based on a deep learning prediction model. The impact of police speed checks
reported in navigation apps on drivers’ behaviors, as well as the accuracy of deep learning
predictive models in the presence of police enforcement, are examined. Our analysis shows
that the average actual traffic speed is 1–3 [km/h] lower compared to the predicted speed.
In addition, the accuracy of the speed prediction model is lower during reported police
enforcement periods than the periods without police enforcement.

The rest of this paper is organized as follows. Section 2 presents the related literature.
Section 3 presents the used methods and discusses the data, followed by the analyses and
discussion of findings in Section 4. Finally, Section 5 concludes the paper and presents the
future research directions.

2. Literature Review

Many researchers have delved into the matter of how police enforcement influences
drivers’ driving speeds. Ref. [11] investigated factors influencing speed choices on rural
roads in Norway with an 80 km/h speed limit. It looked at how drivers’ perceptions of
police enforcement, penalties for speeding, and other drivers’ speeds affect their choices.
The study found that making most other drivers slow down or increasing law enforcement
had the most significant impact on reducing individual speed choices, while stricter penal-
ties had only a minor effect. Ref. [12] examined the impact of police presence on speeding
in urban areas using a realistic-looking police cut-out named “Constable Scarecrow” in
British Columbia, Canada. The findings showed that deploying the cut-out along major
roads helped reduce speeding among motorists. Ref. [13] looked at how police saturation
enforcement impacts speeding on a highway corridor in Western Canada. They used radar
devices at different locations to measure speeds during enforcement and non-enforcement
periods. The results showed that police saturation enforcement effectively reduced average
vehicle speeds and the proportion of speeding vehicles in the enforcement area, contribut-
ing to discussions on policing and road safety. However, there is still a scarcity of relevant
research on crowdsourced data for police enforcement.
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2.1. Crowdsourced Data Usage in ITS

Crowdsourced data from social media apps such as Twitter have become an emerging
data source to provide new support for predicting or managing traffic issues due to the
rapid growth of smartphone users. An increasing number of research has investigated the
application of such crowdsourced data in traffic management. Ref. [14] used crowdsourced
data from smartphone applications, GIS-based web interfaces, and weather sensors to
model the individual mobility decision processes. The model is regarded as a potential
platform for personalized travel management in smart cities, as well as a communication
tool between cities and users. Ref. [15] mined crowdsourced media data from Twitter
and Foursquare to look into the spatial and temporal patterns of human activities in
a city, and showed the importance and usefulness of crowdsourced data in analyzing
people’s activities. Ref. [16] proposed that mining social media data can be a basic low-cost
supplement and convenient solution for ITS. More than 1 million tweets were collected
over 3 months, and an Arabic Twitter content analysis framework was proposed to tackle
the problem of missing the location information of traffic-related incidents in the tweets.
Ref. [17] developed a machine learning method to predict traffic evolution after accidents
based on the user-generated crowdsourced data (UGCD) provided by navigation apps
that have interfaced for users to report traffic incidents, and showed the efficiency of
using UGCD for the real-time analysis of traffic accidents. Ref. [18] assessed the speed
data based on a crowdsourced navigation system, Waze, and conducted a case study in
Sevierville. They showed that the posted speed on Waze is a good representation of actual
speed. Ref. [19] proposed an innovative machine learning framework to extract traffic-
related information from social network crowdsourced data for traffic incident detection.
These studies and others [20–22] indicate that crowdsourced data from social media or
smartphone applications are one of the promising data sources for managing smart cities
and transportation systems.

2.2. Traffic Speed Prediction

Accurate traffic speed prediction is an important component in ITS, as it offers useful
information to reduce traffic congestion by providing route guidance to travelers [23].
Extensive research has been conducted on using available datasets to predict traffic evolu-
tion. The difficulty of predicting traffic speed in urban road networks lies in (i) accurately
extracting temporal and spatial features of traffic networks, and (ii) adequately considering
the impact of external factors on traffic flow from multiple sources of data, such as weather,
social events, accidents, etc.

Traditionally, researchers use mathematical statistics to analyze and predict traffic
states, such as the ARIMA model [24,25], the Kalman filter algorithm [26], the hidden
Markov model [27], the Bayesian network [28], etc. These statistical techniques could
model the traffic conditions using relatively small-scale datasets but have limited ability to
capture the nonlinear characteristics of traffic data.

With the development of data collection and computing power, most recent works
have focused on data-driven models, particularly from traditional machine learning mod-
els [29,30] to deep learning models [31,32] that could perform the prediction task well
based on historical traffic databases. The advantages of machine learning models are the
ability to handle multidimensional data, implementation flexibility, generality, and strong
predictive capabilities [33]. However, they cannot capture the spatial correlations of road
networks well. In addition, compared with deep learning methods, the prediction accuracy
of machine learning is relatively lower due to the shallow structure.

Recently, more advanced and powerful deep learning models have been applied to
traffic prediction. Ref. [34] represented large-scale traffic networks as images, and adopted
the deep learning architecture of convolutional neural network (CNN) to extract the spatio-
temporal traffic features contained in the images. The traditional CNN can use a fixed-size
learnable convolution kernel, which effectively describes the spatial characteristics of
Euclidean data, such as text, sound, and images, and extracts useful information from
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them [35]. However, real road networks are difficult to meet the approximate grid shape in
space, and a large amount of traffic data is complex non-Euclidean data [36].

In order to incorporate the topology of road networks and exploit graph structure
information, the graph convolutional neural network (GCN) is extended and applied to
traffic prediction [37,38]. The principles of GCN are to regard the transportation network
as a graph and recognize the connectivity of roads by an adjacency matrix, then extend the
convolution operation on the graph structure to aggregate the information of each node,
which is proved to be more effective than a grid-type convolution on capturing topology
features of transportation networks and forecasting traffic speed [39]. In order to take into
account the temporal characteristics of traffic data simultaneously, the gated recurrent unit
(GRU) is also widely used in traffic speed prediction combined with GCN [31]. GRU is an
improved version of the recurrent neural network (RNN), which could process sequence
data and can reduce the vanishing gradient problem, while preserving long-term sequence
information [40]. The efficiency of GCN and GRU as traffic prediction models has widely
been proved using real traffic data [39,41].

In addition, traffic forecasting is more challenging than other spatiotemporal forecast-
ing problems because it involves many external factors, which affect traffic states. Ref. [42]
constructed the traffic speed prediction model considering the day of the week and POI.
Ref. [43] proposed a model with bidirectional long short-term memory (LSTM) and a
complex attention mechanism to predict the urban traffic volume, combined with weather
conditions and event information as external features to further improve the prediction
precision. A traffic graph convolution operator was proposed in [44] in order to extract the
local features and combine the physical features of the road network. Ref. [45] modeled
external factors as dynamic and static attributes, and designed an attribute augmentation
unit to encode and integrate these factors into a spatio-temporal graph convolution model,
and demonstrated the effectiveness of considering external information in the traffic speed
prediction task. However, due to the complexity of built environment, there are various
types of latent factors which affect the driver behavior, thereby affecting the traffic speed
and adding uncertainty to traffic prediction problems.

To summarize, works in the existing literature do not fully consider the influence of
external factors on traffic. In particular, how the crowdsourced data about police speed
checks report in navigation apps influence drivers’ driving behavior and overall traffic
speed on the road network has not been investigated yet.

3. Methodology

In order to study the driver’s response to the police enforcement information from
users’ feedback on navigation apps, it is firstly necessary to accurately predict the driving
speed. This research uses a graph convolutional–gated recurrent network (GCN-GRU)
model proposed by [39] to implement the speed prediction task. We use this model because
it can well capture the spatial correlation between sensors and the time-series features of
historical speed data, with high computational efficiency and prediction accuracy. For the
sake of completeness, we briefly introduce the model in the next subsection.

Then, we obtain the crowdsourced data of police enforcement in The Netherlands,
including the time and location of police activity reported by users. According to this
information, we select the road segments around speed check points, collect the historical
speed data of all the sensors on these corridors, and use the aforementioned deep learning
model to predict the traffic speed at the target locations during the police enforcement
period to analyze whether the actual driving speed is different from predicted speed and
the potential speed change induced by the police enforcement information. Figure 1 shows
the framework of our approach.
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Figure 1. Proposed research framework.

3.1. Speed Prediction
3.1.1. GCN

This research mainly aims at the traffic speed prediction problem. The essence is to
learn function f to predict the traffic state of all nodes in the future time period according
to the historical data and the corresponding road structure.

Since the target road segments of this study are all unidirectional, an undirected
unweighted graph G(V, E) is constructed to describe the topological structure of the road
network. The position of sensors is treated as nodes set V in the graph, and the connection
relationship between the sensors are treated as edges E. Assuming that the current time is
t, the traffic information X at time t + 1 can be expressed as:

Xt+1 = f (G; Xt−T , . . . , Xt−1, Xt), (1)

where T represents the length of the input historical time series; Xt represents the traffic
information of each sensor at time t.

The GCN is a neural network that extends the convolution operation to the graph
structure [46]. The core idea is that the central node performs information aggregation
on its neighbor nodes. The node feature is regarded as a signal, which is transformed
into the frequency domain space through Fourier transform, and finally the graph domain
convolution is obtained through inverse Fourier transform. Each layer of convolution
only processes the first-order neighborhood information, and the information transfer of
multi-order neighborhoods can be realized by stacking several convolutional layers [47].
The propagation rules for each convolutional layer are as follows:

GCN(X) = D̃−
1
2 ÃD̃−

1
2 Xθ, (2)

where Ã = A + IN represents adjacency matrix A with a self-connection structure, I is the
identity matrix, and D̃ = ∑j Ãij represents the degree matrix of Ã. X represents the input,
and θ is the convolution kernel. The adjacency matrix A, which contains elements of 0 and
1, is used to describe the connection between nodes. The element is 1 if the sensors are
connected, and 0 otherwise. Traffic speed is treated as a feature of nodes.

3.1.2. GRU

GRU is an improved model based on RNN and LSTM. Compared with RNN, it can
solve problems such as long-term memory and gradient disappearance in back propagation.
In comparison with LSTM, using GRU could achieve comparable results, and is easier to
train. So the training efficiency could be greatly improved. The hidden unit in GRU is a
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special cell structure rather than a node of a traditional neural network. There are two gates
inside it, a reset gate and an update gate. Intuitively, the reset gate determines how the new
input information is combined with the previous memory, and the update gate determines
the amount of the previous memory saved to the current time step. The cell structure of
GRU is shown in Figure 2, and each gate is calculated as follows:

rt = σ(Wr[ht−1, Xt]), (3a)

zt = σ(Wz[ht−1, Xt]), (3b)

ct = tanh(Wh[rt � ht−1, Xt]), (3c)

ht = (1− zt)� ct + zt � ht−1, (3d)

where rt and zt represent the reset and update gates, which control the input data Xt at
time t and the hidden state ht−1 transmitted from the previous layer at time t− 1. ct is
the memory content at time t. ht denotes the output at time t. W represents the weight
of the model in the training process. σ is the nonlinear activation function, and � is the
element-wise multiplication of the two vector groups.

Figure 2. The internal structure of GRU.

3.1.3. GCN-GRU

In order to simultaneously capture the spatial and temporal correlations of traffic
data, this research uses a combined GCN-GRU model to implement the prediction task.
The principle of the model is shown in Figure 3 and is as follows: (1) Use a two-layer
graph convolutional network to aggregate the spatial information of first- and second-order
neighbors to capture the spatial correlation of traffic flow. (2) Incorporate a gated recurrent
unit model to capture the temporal correlation through information transfer between units.
(3) Obtain the prediction results through the fully connected layer.

Figure 3. The structure of GCN-GRU.
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The internal structure of GCN-GRU is shown in Figure 4, where Yt is the final predicted
speed value. The graph convolution operation is calculated as follows:

f (X, A) = σ(ÂReLU(ÂXW0)W1), (4)

where W0 and W1 denote the weight matrix in the first and second layers, and ReLU
represents the activation function.

Figure 4. The internal unit of GCN-GRU.

Then, combined with a gated recurrent unit model, the temporal correlations are
captured through information transfer between memory units, and the specific process is
as follows:

rt = σ(Wr[ f (A, Xt), ht−1] + br), (5a)

zt = σ(Wz[ f (A, Xt), ht−1] + bz), (5b)

ct = tanh(Wh[ f (A, Xt), (ht−1 � rt)] + bh), (5c)

ht = (1− zt)� ct + zt � ht−1, (5d)

where f (A, Xt) denotes the graph convolution process defined in Equation (4), and b
represents the deviation of the model in the training process.

Overall, through the effective combination of GCN and GRU, the spatio-temporal
dependence of traffic data is well modeled to predict traffic speed.

4. Numerical Experiment

In this section, we investigate the influence of police enforcement crowdsourced data
from navigation apps on traffic speed in The Netherlands. We selected corridors that
met two conditions: (a) there are both police speed enforcement records and speed loop
detectors; and (b) the number of speed cameras on the corridor is relatively small to ensure
that the reports are all about police activity.

Two datasets, namely, the speed dataset and the crowdsourced dataset of The Nether-
lands, are used in our experiment:

- The speed data are provided by the national data warehouse for traffic information
(http://opendata.ndw.nu/, accessed on 26 October 2023). The raw speed data are
collected from loop detectors on the highways every 5 min interval, and the samples
are shown in Table 1.

- The crowdsourced data of police speed enforcement reported between September and
December 2021 in The Netherlands are provided by a navigation app. The dataset
includes the latitude, longitude, and start and end time information reported by users
on the navigation apps, and a sample of the data is provided in Table 2. Erroneous
reports were removed, and reported police activities were accurately mapped to
specific road segments using their location information. Figure 5 shows the study
area and the location of speed loop detectors and reported police activities.

http://opendata.ndw.nu/
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Table 1. Sample of loop detectors data.

ID Start_Period End_Period Average_Speed (km/h) Lane Category

RWS01_MONIBAS_0021hrl1726ra 9/3/2021 0:00 9/3/2021 0:05 113.49 lane2 anyVehicle
RWS01_MONIBAS_0021hrl1726ra 9/3/2021 0:05 9/3/2021 0:10 113.54 lane2 anyVehicle
RWS01_MONIBAS_0021hrl1726ra 9/3/2021 0:10 9/3/2021 0:15 112.31 lane2 anyVehicle
RWS01_MONIBAS_0021hrl1726ra 9/3/2021 0:15 9/3/2021 0:20 106.09 lane2 anyVehicle
RWS01_MONIBAS_0021hrl1726ra 9/3/2021 0:20 9/3/2021 0:25 115.54 lane2 anyVehicle
RWS01_MONIBAS_0021hrl1726ra 9/3/2021 0:25 9/3/2021 0:30 112.32 lane2 anyVehicle
. . .

Table 2. Sample of speed check data.

ID Created_at Updated_at Latitude Longitude Highway Location

1 2021-11-08 15:06 2021-11-08 16:14 51.3699 5.52383 A2 Valkenswaard
2 2021-09-10 06:04 2021-09-10 06:42 51.37228406 5.521841 A2 Valkenswaard
3 2021-09-11 11:36 2021-09-11 14:38 51.37074803 5.523306 A2 Valkenswaard
4 2021-09-10 05:15 2021-09-10 05:21 51.36998451 5.524018 A2 Valkenswaard
5 2021-09-14 19:31 2021-09-15 03:55 51.36921362 5.524737 A2 Valkenswaard
6 2021-09-09 05:53 2021-09-09 06:52 51.36845498 5.525459 A2 Valkenswaard

. . .

Figure 5. Study area.

A section of the A67 highway on the south of Eindhoven from west to east was
investigated first. It is a two-lane highway and the speed limit on express lane is 120 [km/h]
and on the local lane is 100 [km/h]. There are two speed check points in this section. We
collected the historical traffic speed data of the past 7 days for every 5 min interval of each
check time period. The speed data are all from local lanes since there are plenty of missing
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data from loop detectors on express lanes. Then, we make predictions by the GCN-GRU
model for each point and its corresponding inspection time; 80% of the input data was
used as the training set and the remaining 20% was used as the testing set. Figure 6 shows
the predicted and actual speeds during the reported police enforcement periods and an
hour before the start of police enforcement as a comparison.

Figure 6. The predicted and actual speeds on the A67 highway. The shaded area shows the enforce-
ment period.

We performed the one factor analysis of variance (ANOVA) test to determine whether
there are any statistically significant differences between the means of the predicted and
actual speeds. In addition, in order to compare the performance of the GCN-GRU model
in predicting traffic speed during the periods with and without police enforcement, three
evaluation indicators were used:

(i) Mean absolute error (MAE):

MAE =
1
n

n

∑
i=1

∣∣Yt − Ŷt
∣∣, (6)

(ii) Root mean square error (RMSE):

RMSE =

√
1
n

n

∑
i=1

(Yt − Ŷt)2, (7)

(iii) Accuracy (ACC):

ACC = 1−
∥∥Y− Ŷ

∥∥
F

‖Y‖F
, (8)

where Ŷt represents the actual traffic speed at time t, Yt represents the predicted speed,
n is the total number of test samples, and ‖.‖F represents the Frobenius norm. MAE
and RMSE can well reflect the deviation between the predicted values and the actual
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values, and smaller values of them indicate better prediction. ACC is used to detect
the prediction precision, and larger values represent better prediction.

Table 3 shows the test results of the A67 highway. A one-factor ANOVA test with
a significance level of 0.05 is performed. The p-values of the groups with and without
police enforcement are 0.1502 and 0.2289, respectively, which means that the differences
between the actual and predicted speed means are not statistically significant. Comparing
the prediction evaluation indicators of the model with and without police enforcement
shows that the model performs slightly better when there is no enforcement.

Table 3. The test result of the A67 highway.

With Police

Groups Count Average F p-Value MAE RMSE ACC

Prediction value 9 90.59 2.2836 0.1502 1.6320 1.9177 0.9803Actual value 9 89.59

Without Police

Groups Count Average F p-Value MAE RMSE ACC

Prediction value 36 91.09 1.4870 0.2289 1.9989 2.6089 0.9840Actual value 36 91.55

We note that there are only two speed check points on this corridor, and relatively small
samples might be the reason for not seeing a statistically significant difference. However,
the actual average speed is 1 [km/h] lower than the predicted average speed during
the police enforcement periods, while it is slightly higher when no police enforcement
is reported.

Then, we selected a section of A2, one of the busiest highways in The Netherlands.
This section is located in the south of Eindhoven, and connects Eindhoven to Weert. We first
analyzed the south-to-north driving direction on A2. It is a two-lane highway, and the speed
limit is again 120 [km/h] on the express lane and 100 [km/h] on the local lane. According to
the latitude and longitude information of police enforcement, there are eight enforcement
points distributed in this direction. Among them, the speed check at two locations occurred
during weekends, when the speed datasets had a large amount of missing data, so they
were not considered for the analysis. Again, the speed data were collected from local
lanes. The predicted and actual speeds with and without police enforcement are shown in
Figure 7. The ANOVA test results and the prediction performance of GCN-GRU on this
corridor are reported in Table 4.

Table 4. The test results of A2 highway for the south-to-north driving direction.

With Police

Groups Count Average F p-Value MAE RMSE ACC

Prediction value 48 96.93 4.8102 0.0308 3.4016 4.6643 0.9553Actual value 48 94.56

Without Police

Groups Count Average F p-Value MAE RMSE ACC

Prediction value 74 95.79 0.4140 0.5210 2.7499 3.7303 0.9683Actual value 74 96.46
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Figure 7. The predicted and actual speed on A2 highway for the south-to-north driving direction.
The shaded area shows the enforcement period.

It can be seen from Table 4 that the p-value of the with-police group (=0.03) is smaller
than the confidence level 0.05, which means that the predicted and the actual speeds have
statistically significant differences. On the contrary, no significant differences between the
predicted and actual speeds were observed during the time period one hour before the
police enforcement. Similar to the A67 corridor, in the presence of the police, the average of
the actual speed is smaller than the predicted speed by 2.37 [km/h]; however, the actual av-
erage is 0.67 [km/h] larger than the predicted average when there is no police enforcement.
Again, we can observe that the performance of the GCN-GRU model during reported
police enforcement periods is relatively lower than periods without police enforcement.

We also analyzed the north-to-south driving direction on A2. There are 15 police
enforcement points in this direction. In particular, a part of the road section including
five check points is a three-lane highway. As there is too much missing data in the express
lane, we conducted the experiments on the local lanes of three lanes (5 points) and two lanes
(10 points) on A2 separately. The predicted and actual speeds with and without police
enforcement are shown in Figures 8 and 9, and the ANOVA test results and the prediction
metrics of the GCN-GRU are shown in Tables 5 and 6.

Tables 5 and 6 show that the difference between the prediction and actual speeds
during police enforcement is statistically significant, while the two values are statistically
the same when there is no police enforcement. The actual speeds are 1.1 [km/h] and
2.1 [km/h] in the case of three lanes and two lanes, respectively, and both are lower than
the predicted speed during the police enforcement period. Similar to the other corridors,
the model prediction accuracy is decreased during police enforcement compared to the
time without any police activity. Furthermore, all the results consistently demonstrate
that in the absence of police, the F-score exhibits a higher value, while in the presence of
police, the F-score is generally much lower. This indicates that when police are present,
the model’s performance tends to decline.



Appl. Sci. 2023, 13, 11822 12 of 16

Figure 8. The predicted and actual speed of three lanes on A2 highway for north-to-south driving
direction. The shaded area shows the enforcement period.

Figure 9. The predicted and actual speeds of two lanes on the A2 highway for north-to-south driving
direction. The shaded area shows the enforcement period.
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Table 5. The test results of three lanes of the A2 highway for the north-to-south driving direction.

With Police

Groups Count Average F p-Value MAE RMSE ACC

Prediction value 46 92.46 5.5116 0.0211 2.1936 2.5764 0.9718Actual value 46 91.36

Without Police

Groups Count Average F p-Value MAE RMSE ACC

Prediction value 59 92.86 0.6986 0.4050 1.6798 2.1959 0.9718Actual value 59 93.15

Table 6. The test results of two lanes of the A2 highway for the north-to-south driving direction.

With Police

Groups Count Average F p-Value MAE RMSE ACC

Prediction value 45 97.97 5.2935 0.0238 2.3813 2.9230 0.9695Actual value 45 95.88

Without Police

Groups Count Average F p-Value MAE RMSE ACC

Prediction value 84 97.54 0.1173 0.7324 1.7312 2.0463 0.9791Actual value 84 97.82

5. Conclusions and Future Research

In recent years, using crowdsourced data for traffic management has become increas-
ingly possible due to smart devices and internet connectivity. The report of police activity
in navigation apps by users is an example of such crowdsourced data. The traffic speed
prediction models have considered the effect of external factors, such as accidents, weather,
and POI, to increase prediction accuracy. In this research, the potential impact of the
crowdsourced data of police enforcement on traffic speed and the prediction accuracy of a
speed prediction model using real data from The Netherlands were investigated. The anal-
yses showed that in most cases, there are significant statistical differences between the
predicted speed and actual speed when there exist police enforcement reports, and the
actual average speed is lower than the predicted average speed by 1–3 [km/h] during the
presence of a police enforcement report. This suggests that the drivers adjust their speed as
a result of such reports on navigation apps, which can nullify the enforcement effort by
police. In addition, we find that the report of police activity lessens the performance of the
speed prediction model GCN-GRU. Existing models considered the influence of external
factors, such as weather and accidents on traffic speed. However, the presence of police
enforcement on a road segment also affects the performance of deep learning prediction
models. Therefore, during the model training phase, it is necessary to incorporate the
impact of external factors related to the reported police activity. Furthermore, the existence
of crowdsourced police activity data allows drivers to be aware of the locations and times
of police presence in advance. While this might somewhat diminish the effectiveness of
law enforcement, such as reducing the number of traffic citations, it can encourage drivers
to slow down in advance, which is also a safety-enhancing measure.

A limitation of this study is selecting road segments that have both police activity
reports as well as speed loop detectors. Most of the reported police enforcement takes place
on rural or secondary roads, where few or no speed sensors, and consequently speed data,
exist to conduct such investigations. Moreover, this study investigates the impact of police
activity reported in one navigation app in The Netherlands. Hence, it is worth performing
similar analyses in other locations and using data from more navigation apps to examine
if the same results can be made. In addition, there is a limitation in performing traffic
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forecasting on large-scale road networks because of the randomness of the time and location
of reported police enforcement. In this study, we perform the analysis based on the single
enforcement location in different corridors because the enforcement on the same roads may
occur several weeks apart. For a future study, we plan to collect more crowdsourced police
enforcement data and speed data based on an entire road network, using police activity as
an influencing factor, and integrate it into the speed prediction models.
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