

Dispatching AGVs with Battery Constraints using Deep
Reinforcement Learning
Citation for published version (APA):
Singh, N., Akcay, A., Dang, Q.-V., Martagan, T. G., & Adan, I. J. B. F. (2024). Dispatching AGVs with Battery
Constraints using Deep Reinforcement Learning. Computers & Industrial Engineering, 187, Article 109678.
https://doi.org/10.1016/j.cie.2023.109678

Document license:
CC BY

DOI:
10.1016/j.cie.2023.109678

Document status and date:
Published: 01/01/2024

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://doi.org/10.1016/j.cie.2023.109678
https://doi.org/10.1016/j.cie.2023.109678
https://research.tue.nl/en/publications/a38dbbff-0a08-4a3f-a3c3-db0218252bf6

Computers & Industrial Engineering 187 (2024) 109678

A
0

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

Dispatching AGVs with battery constraints using deep reinforcement learning
Nitish Singh, Alp Akcay ∗, Quang-Vinh Dang, Tugce Martagan, Ivo Adan
Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

A R T I C L E I N F O

Keywords:
Dispatching
Automated guided vehicles
Deep reinforcement learning
Mixed-integer linear programming

A B S T R A C T

This paper considers the problem of real-time dispatching of a fleet of automated guided vehicles (AGVs)
with battery constraints. AGVs must be immediately assigned to transport requests, which arrive randomly.
In addition, the AGVs must be repositioned and recharged, awaiting future transport requests. Each transport
request has a soft time window with late delivery incurring a tardiness cost. This research aims to minimize the
total costs, consisting of tardiness costs of transport requests and travel costs of AGVs. We extend the existing
literature by making a distinction between parking and charging nodes, where AGVs wait idle for incoming
transporting requests and satisfy their charging needs, respectively. Also, we formulate this online decision-
making problem as a Markov decision process and propose a solution approach based on deep reinforcement
learning. To assess the quality of the proposed approach, we compare it with the optimal solution of a mixed-
integer linear programming model that assumes full knowledge of transport requests in hindsight and hence
serves as a lower-bound on the costs. We also compare our solution with a heuristic policy used in practice.
We assess the performance of the proposed solutions in an industry case study using real-world data.
1. Introduction

There is an increasing shift in the industry towards data-driven man-
ufacturing systems, in which all devices possess their own ‘intelligence’.
This intelligence enables a free flow of data and direct communica-
tion of devices within production and logistics. The literature often
refers to a factory embedding these intelligent features as ‘smart fac-
tory’ (Vuksanović, Ugarak, & Korčok, 2016). One of the ambitions of
smart factories is to control operations at shop floor with little human
interference (De Ryck, Versteyhe, & Debrouwere, 2020). To support
this ambition, mobile robots (henceforth referred to as AGVs) promise
a flexible, efficient and dynamic means of transporting materials. In
this setting, we define AGVs as driverless and programmable vehicles
that transport materials in facilities such as manufacturing plants and
warehouses.

An example of a smart factory is the Brainport Industries Cam-
pus (BIC), a new high-tech campus in Eindhoven, Netherlands. The
BIC is currently testing a fully self-driving logistics system (Brain-
port Industries Campus, 2020), increasing the need for new planning
algorithms (Singh, Dang, Akcay, Adan, & Martagan, 2022). Inspired
by the smart factory initiatives at the BIC, we consider the problem
of real-time control of a fleet of AGVs with battery constraints. Our
optimization problem consists of three interdependent decisions made
in real-time: dispatching of AGVs, assigning transport requests to AGVs,

∗ Corresponding author.
E-mail addresses: n.singh1@tue.nl (N. Singh), a.e.akcay@tue.nl (A. Akcay), q.v.dang@tue.nl (Q.-V. Dang), t.g.martagan@tue.nl (T. Martagan),

i.adan@tue.nl (I. Adan).

and recharging AGVs. Moreover, our problem setting involves several
distinguishing features that challenge the real-time decision making:

(i) Aspects related to AGV charging. Battery management is a
critical factor in AGV dispatching. Electric AGVs have a limited battery,
constraining their availability. Moreover, AGV dispatching rules need
to distinguish the charging (electrified) and parking (non-electrified)
stations. Charging stations are equipped with an infrastructure to charge
AGVs, where AGVs can either charge or park without charging. On the
other hand, parking stations do not have an infrastructure for battery
charging, and hence AGVs can only park.

(ii) Capacity and time restrictions. Capacity and time constraints
can significantly affect the performance of AGV systems (Vis, 2006). In
common practice, the capacities of the charging and parking stations
are limited (because of space or financial limitations). Moreover, trans-
port requests are typically associated with a time window, leading to
high tardiness costs for late deliveries.

(iii) Spatial and temporal patterns. Spatial (e.g., the specific loca-
tion of an AGV in a factory) and temporal (e.g., job arrival charecteris-
tics during the planning horizon patterns) present an important infor-
mation for AGV dispatching decisions. For example, certain locations
on the shop floor can become busier than others during specific time
periods in a day. However, this spatial and temporal information
is dynamic and involves uncertainty, as it depends on the complex
vailable online 18 October 2023
360-8352/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.cie.2023.109678
Received 27 June 2023; Received in revised form 26 September 2023; Accepted 9
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

October 2023

https://www.elsevier.com/locate/caie
http://www.elsevier.com/locate/caie
mailto:n.singh1@tue.nl
mailto:a.e.akcay@tue.nl
mailto:q.v.dang@tue.nl
mailto:t.g.martagan@tue.nl
mailto:i.adan@tue.nl
https://doi.org/10.1016/j.cie.2023.109678
https://doi.org/10.1016/j.cie.2023.109678
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2023.109678&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computers & Industrial Engineering 187 (2024) 109678N. Singh et al.
interactions between AGV dispatching, assignment, and recharging
decisions. To achieve an effective fleet management system, there is an
increasing need for dynamically learning and reacting to these spatial
and temporal patterns over time.

To capture the aforementioned problem features, we build an op-
timization model based on Markov decision processes (MDP), and de-
velop a deep reinforcement learning (DRL) approach to solve industry-
size problem instances. Two important advances in DRL are autoen-
coders (Bank, Koenigstein, & Giryes, 2020) and noisy nets (Fortunato
et al., 2017). Autoencoders are neural nets that learn to encode input
data into compressed formats, extracting and representing information
from input data of high dimensions into learnt lower dimensions.
Noisy nets introduce stochastic behavior directly into the parameters
of the DRL policy. By introducing randomness into the parameters,
the policy’s exploration is not driven by the experimenter, rather, a
problem-specific exploration strategy is produced.

The main contributions and novelty of this work are summarized as
follows. (i) We develop an MDP model to optimize three interdependent
decisions on dispatching, assigning transport requests, and recharging
of AGVs. As a novel feature, the MDP model simultaneously captures
the practically-relevant aspects related to AGV charging, capacity, and
time restrictions, and information on spatial and temporal patterns.
(ii) We propose a DRL-based framework which uses autoencoders and
NoisyNets to support AGV dispatching decisions in which AGVs respond
in real-time to transport requests but have to comply with capacity
constraints at stations (i.e., at most one AGV can be accommodated
at each station). (iii) We extend a mixed-integer linear programming
(MILP) model proposed by Singh et al. (2022) to solve our problem in
hindsight with the perfect information assumption, where the arrival
times and all other characteristics of the transport requests are known
in advance. The extended model can serve as a benchmark for the
DRL policy (i.e., upper bound on the optimal reward) for small case
instances. We also compare the DRL policy to two other benchmarks,
i.e., the random allocation policy and a practitioner’s heuristic used by
our industry partner. (iv) We illustrate the use of the developed models
using an industry case study from Klein Mechanische Werkplaats Eind-
hoven (KMWE), which is one of the high-tech companies located in the
BIC. Numerical analysis shows that our DRL framework significantly
outperforms the benchmark heuristics, as it exploits the spatial and
temporal information on AGVs and transport requests.

Industry feedback indicates that most companies rely on the
prepackaged fleet management software provided by the AGV manufac-
turers. The existing software is usually composed of simple dispatching
rules. However, research reveals that while dispatching rules are simple
and easy to implement, their performance is limited by the intuitive
reasoning used to design them (Le-Anh & De Koster, 2006). Therefore,
there is an increasing need for comprehensive optimization models and
flexible planning algorithms to manage AGV fleets. The MDP model and
DRL approach developed in this research are generalizable, and can be
broadly applied in situations when a central fleet owner has to commit
to capacity constraints at nodes while dynamically serving transport
requests.

The remainder of this paper is organized as follows. We summa-
rize relevant literature in Section 2. The problem is formulated in
Section 3. We present the MDP model in Section 4 and present our
solution approach in Section 5. Benchmark policies are presented in
Section 6. In Section 7, the industry case study, computational results,
and sensitivity analyses are provided. Finally, we provide conclusions
and future research directions in Section 8.

2. Literature review

Dispatching can be considered as a crucial and also one of the
most challenging design aspects of an AGV management and control
system (De Ryck et al., 2020). Le-Anh and De Koster (2006) defined
dispatching as selecting and assigning tasks to vehicles, including the
2

routes that vehicles travel to accomplish these tasks. If all tasks are
known prior to the planning period, the problem can be solved simul-
taneously. Literature often refers to this type of problems as static or
offline dispatching problems. In practice, tasks are often unknown in
advance and are revealed or modified over time, i.e. dispatching relies
on real-time information. Hence, the dispatching problem needs to be
solved sequentially. Literature often refers to this type of problem as
a real-time, dynamic, or online dispatching problem (Vis, 2006). This
research considers a dynamic AGV dispatching problem.

AGV dispatching can be considered as a special case of traditional
problems such as the Traveling Salesman Problem (TSP), Vehicle Rout-
ing Problem (VRP), and dial-a-ride problem (DARP). Nonetheless, AGV
dispatching contains shorter travel distances, shorter planning hori-
zons, higher traffic density, vehicle interference, and battery-charging
problems (Le-Anh & De Koster, 2006). Similar to TSP, VRP, and DARP,
AGV dispatching belongs to the class of NP-hard problems. A widely-
known characteristic of NP-hard problems is that if the number of
tasks and vehicles grows, the number of solutions will be enormous.
Hence, only for cases with a relatively small number of vehicles and
tasks, an exact algorithm can find an optimal solution within a polyno-
mial (reasonable) amount of time. A widely used stream of heuristics
that is well-suited to cope with increasing problem size is the stream
of dispatching rules. Most dispatching rules used in literature are
single-attribute rules, which dispatch vehicles based on one parame-
ter. De Koster, Le-Anh, and Van Der Meer (2004) evaluated several
well-known single-attribute dispatching rules in different settings to
reduce pallet waiting times. They found that, in general, distance-based
dispatching rules such as Nearest Workstation First (NWF) and Nearest
Vehicle First (NVF) perform significantly better compared to time-based
dispatching rules such as Modified First Come First Served (MODFCFS).

Although single-attribute dispatching rules have been widely stud-
ied in the literature, multiple studies have shown that multi-attribute
dispatching rules outperform these single-attribute rules (Bilge et al.,
2006; Confessore, Fabiano, & Liotta, 2013; Guan & Dai, 2009; Le-Anh &
De Koster, 2004, 2005; Singh, Sarngadharan, & Pal, 2011; Zamiri Mar-
vizadeh & Choobineh, 2014). Le-Anh and De Koster (2004) proposed
a multi-attribute dispatching rule (Multi-Att) considering the empty
vehicle travel time and balancing workload among workstations for
systems with a large number of vehicles. They also modified this Multi-
Att rule by adding a power coefficient, creating a second dispatching
rule: Multi-Mod. Le-Anh and De Koster (2005) developed the combined
dispatching rule Combi. This rule combines multi-attribute dispatching
based on a waiting time component and an empty-travel distance com-
ponent with vehicle reassignment while parking. Singh et al. (2011)
studied the AGV scheduling problem for distributing uniform materials
from a truck dock to machining units in an automotive machine shop.
They proposed and assessed various dispatching rules (e.g., single
destination, multiple destinations with priorities) for assigning jobs to
AGVs. Confessore et al. (2013) proposed a vehicle-initiated dispatching
rule for dynamically assigning transportation tasks to AGVs, taking into
account a number of factors simultaneously, such as pick, drop, and
travel times, battery recharging, capacity constraints, and congestion
and error issues. Zamiri Marvizadeh and Choobineh (2014) proposed
several AGV dispatching algorithms to balance the workload content
among the work centers based on their input and output queue sizes.
In brief, these rules often encompass several attributes, such as travel
time, waiting time, distance to pick-up locations, and capacity of input
and/or output buffers.

Dispatching rules are widely known to be simple and easy to im-
plement in practice. Still, at the same time, they are also criticized
for having a myopic view, i.e. not learning from patterns in historical
data. A method that has proven to do a much better job learning from
historical data is reinforcement learning (RL). Recently, RL, and in par-
ticular deep reinforcement learning (DRL), has also acquired attention
and appreciation in the field of routing problems. Both Kamoshida and

Kazama (2017) and Rhazzaf and Masrour (2021) introduced a route

Computers & Industrial Engineering 187 (2024) 109678N. Singh et al.

r

W
T
w
t

s
a

t

r
c
t
t
t
a

planning method for an AGV order picking system using a model-
free Deep Q-network (DQN). Similar to Rhazzaf and Masrour (2021)
and Zhang, Sang, Li, Han, and Duan (2022), we use a multi-objective
reward function comprising of vehicle travel times and request tardi-
ness in our study. Additionally, we use novel advancements over the
vanilla DQN approach of other studies for decision making.

Missing from all previous works are the challenges that arise with
the electrification of vehicles. The limited but growing stream of the
Electric Vehicle Routing Problem (EVRP) discusses these challenges.
Due to the use of a battery instead of a combustion engine, EVs have
a limited driving range compared to traditional Internal Combustion
Engine Vehicles (ICEVs). Hence, (re)charging needs to be considered
in routing problems’ operational and tactical decision making. Many
studies employ full recharging (FR) of batteries once vehicles need
to recharge. Keskin and Çatay (2016) relaxed this FR restriction by
introducing the Electrical Vehicle Routing Problem with Time Windows
and Partial Recharge (EVRPTW-PR). The authors showed that the
partial recharging strategy might save from recharging time, allowing
the vehicle to catch an otherwise missed customer time window. In our
study, we allow partial recharging of AGVs.

An often neglected area within the EVRP is the congestion that may
arise at charging stations (CS) with a finite capacity. Many studies con-
sider chargers to be available at every station (Pettit, Glatt, Donadee,
& Petersen, 2019; Shi, Gao, Wang, Yu, & Ioannou, 2019). Our work
distinguishes from this setting in two ways. The first extension en-
tails considering stations with chargers and stations without chargers.
Therefore, the charging component becomes less straightforward than
in standard literature. The second extension is a result of relaxing the
assumption of infinite capacity at the stations. We model each station
with fixed capacity of one, i.e., at most one vehicle can be at any
station at any time. Sweda, Dolinskaya, and Klabjan (2017) addressed
a path-finding problem in which CSs are unavailable with a certain
probability. Therefore, the vehicle dynamically decides upon its path
and when to charge. Related to this problem, Froger, Mendoza, Jabali,
and Laporte (2017) built a two-stage matheuristic for a situation in
which stations have a limited number of chargers (one, two, or three).
In the first stage, a metaheuristic builds a pool of routes (bases on
iterated local search), while not yet considering the capacity of the CSs.

To conclude this literature review, we selected the studies that we
consider most similar to this research. Pettit et al. (2019) employed a
single-agent Trust Region Policy Optimization (TRPO) DRL algorithm
to learn an agent when to serve a request and when to recharge its
battery. Wei, Yan, Zhang, Xiao, and Wang (2022) used DQN algorithm
with a self-attention mechanism to dispatch an idle workstation to an
AGV. Hu, Jia, He, Fu, and Liu (2020) developed a DQN algorithm to
select a suitable dispatching rule. Similar to the works of Holler et al.
(2019) and Lin, Zhao, Xu, and Zhou (2018), Shi et al. (2019) employed
a DRL algorithm with decentralized learning and centralized decision
making, allowing both scalability and coordination. The objective of
this work was to minimize customer waiting times, electricity costs, and
operating costs. Kullman, Cousineau, Goodson, and Mendoza (2022)
developed two DDQN policies aiming to maximize the fleet’s revenue
as a whole. Nevertheless, to the best of our knowledge, our paper is
the first to consider real-time transport requests with soft time win-
dows, partial charging at charging stations, fleet repositioning, capacity
constraint at stations, and distinction in station types. We describe the
considered problem in detail in the next section.

3. Problem description

We consider a central operator that controls a fleet of AGVs rep-
resented by the set 𝑉 . The AGVs serve the transport requests that
andomly arrive during a time horizon of length 𝐻 . We let 𝑅 denote

the set of these transport requests. Since the transport requests arrive
randomly, the set 𝑅 is unknown to the decision maker at the beginning
of the time horizon. The AGVs travel over a two-dimensional space that
3

r

includes a set of nodes denoted by 𝑁 . A node can either be a pickup-
and-delivery, parking, or charging node. We let 𝑂 denote the set of
pickup-and-delivery nodes, 𝑃 denote the set of parking nodes, and 𝐶
denote the set of charging nodes. The parking and charging nodes are
also referred to as the station nodes and denoted with 𝑆, i.e., 𝑆 = 𝑃 ∪𝐶.

e assume that at most one AGV can be at a station node at any time.
he pickup and delivery nodes of transport request 𝑟 ∈ 𝑅 are denoted
ith 𝑛𝑟 and 𝑛𝑟 , respectively, where 𝑛𝑟 , 𝑛𝑟 ∈ 𝑂. Additionally, each

ransport request has a time window [𝑒𝑟, 𝑙𝑟], where 𝑒𝑟 is the arrival time
and 𝑙𝑟 is the latest delivery time of transport request 𝑟. The transport
request 𝑟 ∈ 𝑅 has a handling time ℎ𝑟 for loading at a pickup node and
also for unloading at a delivery node.

We refer to the amount of delay in the completion of transport
request 𝑟 as the tardiness of request 𝑟, and denote it with 𝜏𝑟. The
tardiness is penalized by a tardiness cost per time unit, denoted with 𝑐𝜏 .
The higher the number of AGV movements, the more the operational
and maintenance-related costs for the AGVs. Therefore, unnecessary
travel of an AGV is undesired in real life. Thus, we introduce a travel
cost per time unit, denoted with 𝑐𝛿 , representing the cost charged per
time unit for each traveling AGV.

During AGV travel, the battery level discharges proportionally to
the travel time with a discharging rate 𝑑. Battery also discharges at the
ame rate during unloading and loading activities. If an AGV is located
t a node and has a charge level less than a critical threshold 𝑏 percent,

it must be instructed to recharge, and the recharging duration should
be long enough to allow the charge level to reach at least this critical
threshold. The charging rate of an AGV is denoted with 𝑐. The critical
hreshold 𝑏 is a prespecified parameter for a given network to assure

that an AGV can reach any destination and a charging station right
afterwards if needed. We emphasize that an AGV is not permitted to
visit a charging station while performing a transport request (i.e., it first
needs to complete the delivery). The AGVs can be routed to any station
node, and we refer to this as the repositioning action. The repositioning
action moves an AGV to an appropriate charging station to recharge its
battery or moves the AGV to an appropriate parking station to wait
idle. An AGV is allowed to stay in a charging station even after it is
fully recharged.

We make certain assumptions to comply with real-world scenarios.
First of all, when a new transport request arises, the operator responds
immediately, either by assigning it to an AGV or by rejecting it. A trans-
port request may be rejected by the central operator in anticipation of
more jobs with less tardiness in the future, and this leads to a rejection
cost denoted by 𝑐𝑑 . The assignment of a transport request to an AGV
is considered as feasible when the AGV is either idle, traveling to the
delivery node of the previously assigned transport request, or charging
at or repositioning to one of the station nodes. In addition, for the
assignment to be feasible, the AGV’s battery level must be at least 𝑏
at the time of assignment. Once assigned, we do not allow modifying
a transport request anymore. If there is a transport request but there is
no feasible AGV, this situation is referred to as an infeasibility, and the
request must be rejected. The AGVs are assumed to be equipped with
hardware that assures collision-free movements on the shop floor.

The objective of the central operator is to minimize the expected
total cost during the time horizon 𝐻 . The central operator may prior-
itize travel cost or the tardiness cost by adjusting the so-called weight
coefficients 𝜂1 and 𝜂2 that correspond to the travel and tardiness costs,
espectively. When a new transport request enters the system, the de-
ision maker needs to decide whether to accept or reject the incoming
ransport request, and if accepted, it is decided which AGV is assigned
o this transport request. When an AGV finishes the delivery of a
ransport request, the decision maker is allowed to take a repositioning
ction for each AGV, i.e., to decide whether an AGV needs to be

epositioned, and if so, to which station node.

Computers & Industrial Engineering 187 (2024) 109678N. Singh et al.

D

k
o
t

S

𝑠

𝑠

a

o
d
t
i
a
t
F
t
i
s
o
C
l

𝑠
a
p
i

n

A
d
t
b
𝑎

e
A
b
r
a
n

d
a
t
t
e

d
d
n
a
c
𝑠

c
h
𝑠
u
t
t
t
a
a

4. Model

We formulate the problem described in Section 3 as a finite-horizon,
continuous-time Markov Decision Process (MDP) model. As common in
the reinforcement learning literature, we refer to the period that starts
at time 0 and ends at time 𝐻 as an episode.

ecision epochs. The decision epoch 𝑘 ∈ {1,… , 𝐾} is the moment a
new transport request enters the system or an AGV finishes the delivery
of a transport request, whichever occurs first. The value of 𝐾 is not
nown upfront due to the randomness in the system (i.e., the number
f transport requests that will arrive during an episode is not known at
he beginning of the episode).

tates. The system state at decision epoch 𝑘 is denoted by 𝑠𝑘 ∈ with
denoting the state space. In general, we represent the system state as
=
(

𝑠𝑡 ⊕ 𝑠𝑟 ⊕ 𝑠𝑉
)

, where

𝑡 =
[

𝑠𝑡1
𝑠𝑡2

]

=
[

Time of the day (in seconds)
Day of the week (one-hot encoded)

]

,

𝑠𝑟 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑠𝑟1
𝑠𝑟2
𝑠𝑟3
𝑠𝑟4

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

Binary variable indicating the existence of a new transport request
The pickup location of the new transport request

The delivery location of the new transport request
Latest delivery time of the new transport request

⎤

⎥

⎥

⎥

⎥

⎦

,

and 𝑠𝑉 = (𝑠1 ⊕⋯⊕ 𝑠|𝑉 |) with

𝑠𝑣 =
⎡

⎢

⎢

⎣

𝑠𝑣1
𝑠𝑣2
𝑠𝑣3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

The charge level of AGV 𝑣
Location of AGV 𝑣

AGV 𝑣’s currently assigned tasks

⎤

⎥

⎥

⎦

nd ⊕ denoting the concatenation operator.
The time component 𝑠𝑡 contains the time of the day and the day

f the week. The request component 𝑠𝑟 captures whether the current
ecision epoch is triggered due to a new transport request, and if so,
he information related to this transport request. To be specific, if there
s a new transport request, then 𝑠𝑟1 is set to 1, and 𝑠𝑟2 and 𝑠𝑟3, which
re two-dimensional vectors, are set to the Cartesian coordinates of
he pickup and delivery nodes of the transport request, respectively.
inally, 𝑠𝑟4 is set to the latest delivery time of this transport request. If
he decision epoch is not triggered by a new transport request, then 𝑠𝑟1
s equal to 0, and the state variables 𝑠𝑟2, 𝑠

𝑟
3 and 𝑠𝑟4 are all set to ∅. The

tate of AGV 𝑣 is captured by 𝑠𝑣, where 𝑠𝑣1 represents the charge level
f AGV 𝑣. The variable 𝑠𝑣2 is a two-dimensional vector representing the
artesian coordinates of AGV 𝑣, and the variable 𝑠𝑣3 represents the task

ist of AGV 𝑣. We let 𝑠𝑣3 consist of three elements, i.e., 𝑠𝑣3 = (𝑠𝑣31, 𝑠
𝑣
32, 𝑠

𝑣
33)

where the state component 𝑠𝑣31 represents the current task, and 𝑠𝑣32 and
𝑣
33 are planned future tasks of AGV 𝑣 (note that an AGV can have
t most two planned future tasks at any moment according to the
roblem description in Section 3). Specifically, the state component 𝑠𝑣3𝑖
tself consists of three elements, i.e., 𝑠𝑣3𝑖 = (𝑠𝑣3𝑖1, 𝑠

𝑣
3𝑖2, 𝑠

𝑣
3𝑖3), where 𝑠𝑣3𝑖1

represents the type of task 𝑖, and 𝑠𝑣3𝑖2 and 𝑠𝑣3𝑖3 represent the Cartesian
coordinates of the start and end locations of task 𝑖, respectively. The
task type can be one of the following: idle when AGV 𝑣 is located at a
parking node (0), charging when AGV 𝑣 is located at a charging node
(1), unloaded travel when AGV 𝑣 is repositioning to a station node (2),
unloaded travel to a transport request’s origin (3), loaded travel when
AGV 𝑣 is on its way to a transport request’s delivery node (4). That is,
𝑠𝑣3𝑖 ∈ {0, 1,… , 4}.

State initialization. Let 𝑠0 denote the system state at the beginning of
each episode. In this state, there is no outstanding transport request,
and all of the AGVs are idle at a certain station node with some
4

percentage amount of battery level, denoted by 𝑏𝑣 for AGV 𝑣 ∈ 𝑉 . The
value of 𝑏𝑣 is assumed to be no less than 𝑏 for all 𝑣 ∈ 𝑉 , meaning that
o recharging is needed for any AGV at the beginning of an episode.

ctions. The set of actions in a decision epoch depends on whether the
ecision epoch is triggered by the arrival of a new transport request or
he completion of a transport request. If the decision epoch is triggered
y the arrival of a new transport request, we denote the action taken by
𝑟 ∈ {0} ∪ 𝑉 . If no AGV is assigned to the incoming transport request

(either because there is no feasible AGV assignment or the transport
request is rejected), then 𝑎𝑟 is equal to 0. On the other hand, 𝑎𝑟 is set
qual to 𝑣 if AGV 𝑣 ∈ 𝑉 is assigned to the incoming transport request.
s notational convention, we let 𝑎𝑟 = ∅ if the decision epoch is triggered
y the completion of a transport request. In this type of decision epoch,
epositioning decisions must be made for all the AGVs which are idle at
parking node, just completed the delivery of a load, or at a charging
ode with battery level no less than 𝑏. We let 𝐚𝑉 = (𝑎1,… , 𝑎𝑉) denote

the actions taken in a decision epoch triggered by the completion of
a transport request, where 𝑎𝑣 ∈ {0} ∪ 𝑆 represents the station node
to which AGV 𝑣 is re-positioned. Here 𝑎𝑣 = 0 means no repositioning
action is taken for AGV 𝑣. We let 𝐚𝑉 = ∅ if the decision epoch is not
triggered by the completion of a transport request but with the arrival
of a new transport request.

State transitions & Costs. At decision epoch 𝑘, the agent observes
the state 𝑠𝑘 and then takes the action 𝐚𝑘 = (𝑎𝑟, 𝐚𝑉). Subsequently, the
ecision epoch 𝑘′ = 𝑘 + 1 is triggered when a new transport request
rrives or an AGV completes its delivery, whichever occurs first (given
hat the end of the horizon 𝐻 is not reached yet). We next describe how
he state 𝑠𝑘 is updated to the next state 𝑠𝑘′ in the subsequent decision
poch 𝑘′.

First, the time component 𝑠𝑡 is updated with the current time and
ay of the week at decision epoch 𝑘′. The request state 𝑠𝑟 is updated
epending on the event triggering the new epoch. To be specific, if a
ew transport request is triggering the next epoch 𝑘′, 𝑠𝑟1 is set to 1,
nd the request’s origin, destination, and the latest delivery time are
aptured in 𝑠𝑟2, 𝑠

𝑟
3, and 𝑠𝑟4, respectively. Otherwise, 𝑠𝑟1 is set to 0, and

𝑟
2, 𝑠

𝑟
3 and 𝑠𝑟4 are all set to ∅.

Next, the AGV states 𝑆𝑉 are updated as follows. First of all, the
harge level and location of each AGV is updated based on what has
appened between decision epoch 𝑘 and 𝑘′, i.e., for each 𝑣 ∈ 𝑉 , 𝑠𝑣1 and
𝑣
2 are updated by using 𝑠𝑡 and the information captured in the (not yet
pdated) state variable 𝑠𝑣3 that correspond to the tasks of AGV 𝑣. Next,
he state variable 𝑠𝑣3 is updated for each 𝑣 ∈ 𝑉 . For each AGV, there are
hree possible situations at any decision epoch. It can either be assigned
o a transport request, be repositioned to a station node, or receive no
ction (i.e., neither assigned to a transport request nor repositioned to
station node):

• When the transport request 𝑟 is assigned to AGV 𝑣, the state 𝑠𝑣3
is updated as follows: If the AGV 𝑣 is currently idle, charging or
conducting an unloaded travel (i.e., its current task type is 0, 1,
2 or 3), the tasks of AGV 𝑣 are set such that 𝑠𝑣311 = 3, 𝑠𝑣312 = 𝑠𝑣2,
𝑠𝑣313 = 𝑠𝑟2, 𝑠𝑣321 = 4, 𝑠𝑣322 = 𝑠𝑟2, and 𝑠𝑣323 = 𝑠𝑟3. Since there is no
second future task to keep in the memory in this situation, 𝑠𝑣33 is
set to ∅. If AGV 𝑣 is currently conducting a loaded travel (i.e., its
type is 4), then, the tasks of AGV 𝑣 are set such that 𝑠𝑣321 = 3,
𝑠𝑣322 = 𝑠𝑣2, 𝑠

𝑣
323 = 𝑠𝑟2, 𝑠

𝑣
331 = 4, 𝑠𝑣332 = 𝑠𝑟2, and 𝑠𝑣333 = 𝑠𝑟3.

• When AGV 𝑣 is repositioned to a station node 𝑛 ∈ 𝑆 with
Cartesian coordinate (𝑛𝑥, 𝑛𝑦), the assigned tasks of AGV 𝑣 are set
such that 𝑠𝑣311 = 2, 𝑠𝑣312 = 𝑠𝑣2, 𝑠𝑣313 = (𝑛𝑥, 𝑛𝑦). Then, the type
of second task is set to 𝑠𝑣321 = 0 if 𝑛 ∈ 𝑃 , and 𝑠𝑣321 = 1 if
𝑛 ∈ 𝑃 (i.e., the task type is retained in the state variable as either
parking task or charging task depending on which station node
the AGV is repositioned to) and 𝑠𝑣322 and 𝑠𝑣323 are both set to ∅ as
the corresponding tasks do not include travel.

𝑣
• When AGV 𝑣 receives no action, 𝑠3 remains unchanged.

Computers & Industrial Engineering 187 (2024) 109678N. Singh et al.

w
t
i
r
𝛿
d
d
t
i
w
i
(
t
t
t
t

𝛽

I
i
c
i

Costs. At each decision epoch, all of the costs incurred during the time
interval between the last and the current decision epochs are charged.
To be specific, suppose that the interval starts at decision epoch 𝑘 − 1

ith state 𝑠𝑘−1 and ends at decision epoch 𝑘 where the action 𝑎𝑘 is
aken and the new state 𝑠𝑘 is obtained. Then, the cost 𝐶(𝑠𝑘−1, 𝑎𝑘, 𝑠𝑘)
s incurred at decision epoch 𝑘, consisting of travel, tardiness, and
ejection costs. The travel cost is determined by the travel time variable
(𝑠𝑘−1, 𝑠𝑘) that reflects the total travel time of the AGV fleet between
ecision epochs 𝑘 − 1 and 𝑘. The tardiness cost is charged when the
ecision epoch 𝑘 is triggered by a new transport request and the
ransport request is assigned to an AGV but it will be delivered after
ts latest delivery time. The tardiness of a transport request, which
e denote with 𝜏(𝑎𝑟, 𝑠), can be precisely calculated at the time of

ts assignment by utilizing the characteristics of the transport request
captured in the request component 𝑠𝑟 of the system state), the current
asks of the assigned AGV 𝑎𝑟 (captured in the AGV component 𝑠𝑎𝑟 of
he system state, where 𝑎𝑟 ∈ 𝑉), and the current time (captured in the
ime component 𝑠𝑡 of the system state). Consequently, in addition to
he travel costs, the following cost is charged at each decision epoch:

(𝑎𝑟, 𝑠) =

⎧

⎪

⎨

⎪

⎩

𝑐𝜏 ⋅ 𝜏(𝑎𝑟, 𝑠) 𝑎𝑟 ∈ 𝑉
𝑐𝑑 𝑠𝑟1 = 1, 𝑎𝑟 = 0
0 𝑠𝑟1 = 0.

(1)

n Eq. (1), there are three cases. The first case represents that the
ncoming transport request is assigned to AGV 𝑎𝑟 and accounts for the
orresponding tardiness cost. The second case represents there is an
ncoming request (𝑠𝑟1 = 1) but it is not assigned to any AGV (𝑎𝑟 = 0),

leading to the rejection cost 𝑐𝑑 . Finally, the third case represents that
the decision epoch was not triggered by a new transport request, and
therefore, there is no cost related to a task assignment.

Altogether, the immediate cost function charged at decision epoch
𝑘 is defined as

𝐶(𝑠𝑘−1, 𝐚𝑘, 𝑠𝑘) = 𝜂1 ⋅ 𝑐𝛿 ⋅ 𝛿(𝑠𝑘−1, 𝑠𝑘) + 𝜂2 ⋅ 𝛽(𝑎𝑟𝑘, 𝑠𝑘) (2)

for 𝑘 ∈ {1,… , 𝐾} with 𝑎𝑟𝑘 ∈ {0}∪𝑉 denoting the AGV assignment action
at decision epoch 𝑘. The moment that the time hits 𝐻 the problem ends,
and the travel cost of the AGV fleet between the last decision epoch
𝐾 and the time 𝐻 is incurred. This additional travel cost is given by
𝜂1 ⋅ 𝑐𝛿 ⋅ 𝛿(𝑠𝐾 , 𝑠𝐾+1), where 𝑠𝐾+1 denotes the updated state variables at
time 𝐻 .

Objective Function. The objective is to learn an optimal policy 𝜋⋆ that
minimizes the expected total cost during time horizon 𝐻 (consisting of
𝐾 decision epochs), conditional on initial state 𝑠0. A policy 𝜋 consists of
a sequence of decision rules

(

𝑋𝜋
1 (𝑠1),… , 𝑋𝜋

𝐾 (𝑠𝐾)
)

that map state 𝑠𝑘 at
decision epoch 𝑘 to a feasible action. Then the optimal policy is given
by

𝜋⋆ = min
𝜋∈𝛱

E

[𝐾
∑

𝑘=1
𝐶
(

𝑠𝑘−1, 𝑋
𝜋
𝑘
(

𝑠𝑘
)

, 𝑠𝑘
)

+ 𝜂1 ⋅ 𝑐𝛿 ⋅ 𝛿(𝑠𝐾 , 𝑠𝐾+1)

]

(3)

where 𝛱 is the set of all policies.

5. Solution approach

In this section, we describe our primary solution approach for the
MDP model described in Section 4. Reinforcement Learning (RL) is
associated with the specific case of a MDP in which the agent does
not necessarily have any prior knowledge of the environment (Wiering
& van Otterlo, 2012). To optimize its policy, the agent interacts with
the environment through states, actions, and a feedback mechanism of
scalar rewards. The agent learns an optimal policy 𝜋⋆ (see Eq. (3)) to
maximize the expected total reward. Optimal policy 𝜋⋆ corresponds
5

to an optimal action-value function, which literature often refers to as
optimal Q-function 𝑞∗(𝑠, 𝑎) that satisfies:

𝑞∗(𝑠, 𝑎) = E
[

𝑅(𝑠, 𝑎) + 𝛾 max
𝑎′

𝑞∗
(

𝑠′, 𝑎′
)

∣ 𝑠, 𝑎
]

(4)

In Eq. (4), we adopt the common convention in DRL literature, and
cast the problem as reward maximization (instead of cost minimization)
with 𝑅(𝑠, 𝑎) denoting the immediate reward obtained by taking action
𝑎 in state 𝑠 and the maximum expected discounted reward that can
be achieved from the subsequent state–action pair (𝑠′, 𝑎′). Discount
factor 𝛾 ∈ (0, 1] denotes the weight we apply to future rewards. We
aim to make the so-called Q-values (i.e., the value of a given state–
action pair (𝑠, 𝑎)) as close as possible to the right-hand side of Eq. (4).
Eventually, the Q-value will converge to the optimal Q-value 𝑞∗. We
obtain convergence by updating the Q-value over time to reduce the
loss. Let 𝑅𝑡 denote the reward collected in decision epoch 𝑡. We define
loss as follows:

𝑞∗(𝑠, 𝑎) − 𝑞(𝑠, 𝑎) = loss

E
[

𝑅(𝑠, 𝑎) + 𝛾 max
𝑎′

𝑞∗
(

𝑠′, 𝑎′
)

]

− E

[∞
∑

𝑘=0
𝛾𝑘𝑅𝑡+𝑘+1

]

= loss
(5)

In the remainder of this section, we describe the approaches taken in
this study for developing the proposed agent responsible for assignment
of transport request to a particular AGV and carrying out the reposition-
ing actions. Sections 5.1 and 5.2 describe the exploration and learning
strategies of our proposed agent. Section 5.3 introduces additional state
variables. Section 5.4 describes the repositioning rule used in this study.

5.1. Noisy exploration strategy

While learning, the agents needs a strategy to determine what action
to take. A famous exploration strategy is epsilon greedy strategy (Sutton
& Barto, 2018). This strategy has two main components: exploration
and exploitation. While exploration, the agent takes a random action,
and while exploitation, it takes an action based on information al-
ready known (for example, gained during exploration), i.e., the action
corresponding to the highest Q-value. Exploration is controlled by a
parameter, 𝜖, which is initially set to a high value (for example, equal to
1). The way exploration–exploitation trade-off works in practice is that
a random value between 0 and 1 is generated at each training step. If
this value is larger than 𝜖, we choose an exploitation action. Otherwise,
we take an exploration action. In most studies, 𝜖 is decayed based
on a fixed schedule (for example, linearly). However, these methods,
separate the mechanism of generalization from that of exploration,
i.e., these methods are controlled by the experimenter, rather than
based on interactions with the environment being explored. Therefore
we make use of NoisyNets, first presented in Fortunato et al. (2017),
for a parameterized exploration of the environment. NoisyNets utilize
learned perturbations of the network weights to drive exploration. The
perturbations are sampled from a noise distribution, and the variance
of the perturbation is a parameter that is learned using gradients from
the reinforcement learning loss function alongside the other parameters
of the agent. We utilize the Factorized Gaussian noise, which uses an
independent noise per each output and another independent noise per
each input, totaling 𝑝 + 𝑞 unit Gaussian variables (for 𝑝 inputs and 𝑞
outputs to the layer), and thereby limiting the computational overhead
in the case of single-thread agents such as ours. Since our problem
is quite complex and contains a large number of input features and
actions, this exploration strategy greatly enhances the performance of
our agent compared to the vanilla implementation of the D3QN agent
since a NoisyNet produces a problem-specific exploration strategy as
opposed to fixed exploration strategy used in standard DQN, i.e., the
degree of exploration is contextual and depends on the state being
explored. While more gradients are required due to the increase in
the number of parameters in the linear layers of the network, the
computational overhead is minimal since the weights are simple affine

transformations of the noise. For an exact implementation, we refer

Computers & Industrial Engineering 187 (2024) 109678N. Singh et al.
the reader to Fortunato et al. (2017) Further, different from Fortunato
et al. (2017), we utilize the NoisyNets in the value and the advantage
networks in our implementation. Henceforth, we will refer to the pro-
posed agent as the noisy dueling double deep Q network (ND3QN) agent.
ND3QN agent is used to assign an AGV to a new transport request.
It also uses a dispatching rule to make the repositioning decisions
for sending an AGV to a parking or charging node. In Section 5.4,
we present this dispatching rule that takes the repositioning actions.
The repositioning actions will be used by the ND3QN agent while
making the assignment decisions of the incoming transport requests
to AGVs. A ND3QN network uses two streams of computation, one
for the state value function and the other for the advantage function
(i.e., a measure of how much a certain action is a good or bad decision
at a certain state). The value stream approximates the state values
and the advantage stream provides the relative advantage for each
action (Wang et al., 2016). We provide a general explanation of Deep
Q-Learning and its variants in Appendix A.

5.2. Prioritized replay and multi-step learning

In our solution approach, we implement prioritized experience re-
play (PER) first proposed by Schaul, Quan, Antonoglou, and Silver
(2016) which is an enhancement over uniformly sampling batches
(with batch size 𝑁𝑏𝑎𝑡𝑐ℎ) from a replay memory introduced by Mnih et al.
(2015). Learning speed can be increased by sampling the experiences
more frequently to enable the agent to learn more at a given time.
The PER samples experiences where the agent was more surprised
by (big loss-value) or experiences that are not yet sampled before
(unknown loss-value). As Schaul et al. (2016) describe in their proposed
framework, PER can be controlled by two parameters: 𝛼 and 𝛽. The
first parameter prioritizes the sampling of experiences. With 𝛼 = 0, all
experiences are sampled with equal probability. However, by changing
the sampling distribution, PER introduces a bias. Therefore, the authors
introduce 𝛽 to correct this bias. They correct the bias using importance-
sampling weights that fully compensate for non-uniform probabilities.
The authors anneal the amount of importance-sampling correction over
time, by defining a schedule on 𝛽 that reaches 1 at the end of learning.
We linearly anneal 𝛽 from its initial value 𝛽0 to 1 in 𝛽𝑠𝑡𝑒𝑝𝑠 training steps.

Lastly, as presented by Sutton (1988), forward-view multi-step
learning considers a learning procedure in which the correctness of a
prediction is revealed more than one step after making a prediction.
Matching this idea with Deep Q-Learning, we store the state of 𝑛 steps
ahead, denoted by 𝑠𝑛, in the replay memory instead of storing the
subsequent state. Moreover, rather than using the reward of only the
subsequent state, we use the sum of discounted rewards up to state
𝑠𝑛 (Hessel et al., 2018).

5.3. Additional state variables

In our implementation, we introduce additional state variables de-
rived from the available state information in the MDP formulation
described in Section 4 for more efficient learning of the proposed
ND3QN agent. We extend 𝑠𝑟 by introducing state variable 𝑠𝑟5, represent-
ing the distance between the transport request’s origin and destination.
Also, we use the information in state variables in 𝑠𝑣 to generate state
variables 𝑠𝑣4, 𝑠

𝑣
5, 𝑠

𝑣
6, and 𝑠𝑣7, where 𝑠𝑣4 is set to the time at which AGV 𝑣

will be available for carrying a new transport request, 𝑠𝑣5 is set to the
charge level at time 𝑠𝑣4, and 𝑠𝑣6 is set to the destination of the currently
assigned transport request. If AGV 𝑣 is currently idle or charging, then
𝑠𝑣6 is set to the current location of AGV 𝑣. Finally, 𝑠𝑣7 is set to the distance
of AGV 𝑣 from the origin of the request if the AGV is feasible, and it is
set to −1 if the AGV is infeasible for the assignment.

Since neural networks are known to be sensitive to the scale of
input features, we normalize state variables 𝑠𝑡1, 𝑠𝑟4, 𝑠𝑟5, 𝑠𝑣4, 𝑠𝑣5, and 𝑠𝑣7
such that they take continuous values between zero and one. Further,
6

state components containing Cartesian coordinates are represented as
Fig. 1. Given 2D layout is sub-divided into 𝐿 tiles such that Cartesian coordinates can
be represented as one-hot vectors.

Fig. 2. Autoencoder architecture used to create code for location information.

one hot vectors by tiling the given layout (shown in Appendix C) into
𝐿 tiles. Thus, each (𝑥, 𝑦) coordinate falls inside exactly one tile. For
example, the coordinate shown in Fig. 1 lies in tile 2 and is represented
as [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. We convert this 𝐿 dimensional vector
representation into a 𝑈 dimensional encoded representation using a
trained autoencoder network, where 𝑈 is typically much lesser than
𝐿 (Hinton & Salakhutdinov, 2006). Details are provided in Appendix D.
In short, an autoencoder is a special type of neural network that is
trained to copy its input to its output. It consists of an encoder network,
which in our case, takes an input and converts it into codes with a
reduced dimensionality, and a decoder network, that decodes those
codes back into the input (Vincent, Larochelle, Bengio, & Manzagol,
2008). This way a trained encoder network converts the input data
into learned representations with much lesser dimensions, and in our
case, compresses the location information from 𝐿 dimensional to a 𝑈
dimensional vector. Fig. 2 shows the autoencoder network used in this
study.

Since it is conventional in reinforcement-learning literature to max-
imize rewards instead of minimizing costs, we define the reward as
negation of the cost function shown in Eq. (2). Further, we normalize
the reward for stable learning across problem instances of varying

Computers & Industrial Engineering 187 (2024) 109678N. Singh et al.

e
h

5

w
r
n
a
t
A
n
o

A
t
p
t
n
i
s
t
t

d
l
r
i
t
a
n
t
t
a
A
t
c

6

t
t
v
t
r
m
p
a
S
a

6

a
l
d
r
a
T
c
t

f
a
E
A
t
t
r
a
b
r

6

o
f

6

a
t
i
o
p
a
o
r
t
i

7

f
b
c
q
a
s
f
c

7

i
i
f
a
a
o
a
w
r
𝑏
T
s

scales (Mnih et al., 2015). To be specific, the corresponding reward
function returns a real value 𝑟𝑘 such that 𝑟𝑘 ∈ [0, 1] in each decision
poch 𝑘. We set 𝑐𝑑 = 0 (i.e., the minimum reward, or equivalently, the
ighest possible cost) in our experiments.

.4. Dispatching rule for repositioning decisions

A repositioning decision must be made for each AGV in the fleet
hen a decision epoch is triggered by the completion of a transport

equest. This includes deciding whether to send an AGV to a charging
ode for recharging or to send it to a parking node to wait for its next
ssignment. In either case, it needs to be decided to which specific node
he AGV is sent. It is also possible to do no repositioning action for an
GV. Considering the finite capacity and heterogeneity of the station
odes, the ND3QN agent makes the AGV repositioning decisions based
n a modified distance-based dispatching rule.

This rule is described as follows: First, the agent checks whether
GV 𝑣 is currently charging with battery level still less than the critical

hreshold, already repositioning to a station node, waiting idle at a
arking node, or serving a transport request. For these task types, it
akes the no-repositioning action (𝑎𝑣 = 0). The reasons for taking the
o-repositioning action to AGVs with those task types are (i) reposition-
ng an AGV that is already repositioning or parked is undesirable, (ii)
erving transport requests are non-preemptable tasks, and (iii) for AGVs
hat are already charging (and not yet reached the critical threshold),
he charging must continue as much as possible.

Next, we consider AGVs that are idle (i.e., just completed the
elivery of a transport request, or at a charging node with a battery
evel greater than the critical threshold) as remaining candidates for
epositioning. The agent first checks whether AGV 𝑣 has a charge level
s greater than or equal to the critical threshold (𝑠𝑣1 ≥ 𝑏). If this is
rue and if the AGV is not located at one of the station nodes yet, the
gent assigns the AGV to the closest station node (𝑎𝑣 ∈ 𝑆), which is
ot occupied yet. On the other hand, if the AGV’s charge level is less
han the critical threshold (𝑠𝑣1 < 𝑏), the agent tries to assign the AGV to
he closest available charging station (𝑎𝑣 ∈ 𝐶). If all charging stations
re fully occupied, the agent swaps the to-be-charged AGV with the
GV at the closest charging station with a charge level greater than

he critical threshold. The agent then assigns the swapped AGV to the
losest available parking station.

. Benchmark policies

In this section, we outline the policies through which we assess
he performance of the ND3QN agent. In Section 6.1, we introduce
he Multi-Att policy, a competitive benchmark inspired by the electric-
ehicle dispatching literature. We present the Random policy in Sec-
ion 6.2. This policy randomly assigns a feasible AGV to a new transport
equest and serves as an upper bound (on cost) to show what perfor-
ance advantage can be obtained by employing more sophisticated
olicies. Both policies use the same repositioning actions as the ND3QN
gent. Finally, we present a mixed-integer linear program (MILP) in
ection 6.3 that assumes full knowledge of future transport requests
nd hence serves as a lower bound on the cost of the optimal policy.

.1. Multi-att policy

Multi-Att policy is a multi-attribute dispatching rule inspired by
rule-based dispatching strategy commonly used in dial-a-ride prob-

ems. Maciejewski, Bischoff, and Nagel (2016) argue that a popular taxi
ispatching rule is to assign the nearest idle vehicle to a new transport
equest. Although they consider this strategy a good starting point, they
lso argue that today’s technology could improve this myopic strategy.
o improve the dispatching performance, they propose to include the
apability of vehicles looking into the near future and communicating
heir expected time until availability (ETA) with each other.
7

o

In our context, the central fleet owner can also determine the ETA
or all AGVs in the fleet. We propose the Multi-Att policy, which works
s follows. The agent first identifies the feasible AGVs which have an
TA less than a specified parameter 𝑚𝑎𝑥. Subsequently, among these
GVs, the agent determines which one has the smallest distance to

he pick-up location of the transport request and assigns that AGV to
he transport request. If no AGVs are feasible when a new transport
equest arises, the agent rejects the request. To summarize, we employ

distance-based rule that uses information from the near future to
alance the traveled distance by AGVs and the tardiness of transport
equests.

.2. Random policy

Similarly to Multi-Att, the Random policy rejects a request if none
f the AGVs is feasible. Otherwise, the policy assigns a random AGV
rom the set of feasible AGVs to the new transport request.

.3. Mixed-integer linear program

We extend the MILP model presented in Singh et al. (2022) by
llowing rejection of transport requests and incurring rejection costs in
he objective function. In addition, we extend their model by consider-
ng unit capacity at each station node where only a limited number
f AGVs can charge at the same time. The MILP is solved with the
erfect information assumption, i.e., we relax the real-time request
rrival scenario and solve the instance sets in hindsight, i.e., the MILP
ptimizes AGV travel for charging and repositioning considering the
equests to be served. The results then serve as a benchmark to calculate
he performance gaps from other policies. The MILP model is presented
n Appendix B.

. Computational experiments

In this section, we present the experiments for assessing the per-
ormance of the proposed ND3QN agent and to compare it with the
enchmark heuristics and the MILP. Firstly, Section 7.1 discusses the
ase study design, including the generation of test instances. Subse-
uently, Section 7.2 compares the performance of the ND3QN agent
nd benchmark heuristics with the performance of the MILP for small-
cale scenarios. Finally, Section 7.3 provides further insights on the per-
ormance of the ND3QN agent and sensitivity analyses in a real-world
ase study.

.1. Case study design

We utilize the problem instances in this research provided by our
ndustry partner KMWE, a company specialized in precision machin-
ng.1 The layout used for this case study is based on KMWE’s production
acility in the BIC. This layout is shown in Fig. 6 (see Appendix C). We
ssume that loads are always ready for pickup when an AGV arrives
t a pickup-and-delivery node. In practice, around 900 requests arise
ver a time horizon H, which is equal to 24 h. Episodes start (and end)
t 7:00 am, corresponding to the start of a working day. As discussed
ith industry practitioners from KMWE and the BIC, we set discharging

ate 𝑑 = 0.0055%/s, charging rate 𝑐 = 0.011%/s, and critical threshold
= 20%. The AGVs’ initial charges are drawn uniformly from [𝑏, Q].
he initial locations of vehicles are set randomly. We set the initial
et of stations 𝑆 = 18, of which nine are charging stations and nine

are parking stations. Lastly, we set 𝑐𝜏 = 1 unit/s and 𝑐𝛿 = 1 unit/s. A
summary of parameter values is shown in Table 1.

1 Problem instances are available from https://github.com/nitman118/drl-
d-h-data.

https://github.com/nitman118/drl-od-h-data
https://github.com/nitman118/drl-od-h-data

Computers & Industrial Engineering 187 (2024) 109678N. Singh et al.

1
w
W
a
c

p
i
p

Table 1
Parameter values.

Parameter Description Value

𝐻 Planning horizon 24 h
|𝐶| Number of charging stations 9
|𝑃 | Number of parking stations 9
𝑐 Charging rate 0.011%/s
𝑑 Discharging rate 0.0055%/s
𝑏 Critical charge level 20%
𝑐𝜏 Tardiness cost 1 unit/s
𝑐𝛿 Travel time cost 1 unit/s
𝑚𝑎𝑥 Maximum ETA 600 s

Before evaluation, we first trained the ND3QN on a separate set of
000 episodes, which typically takes 8 h of training time on a computer
ith Intel Core i7-4710MQ CPU @ 2.50 GHz CPU and 16 GB RAM.
e note that 200 episodes are sufficient to obtain a stable width of

round 2%–5% of the objective value in all our instances. The weight
oefficients 𝜂1 and 𝜂2 are both set to 1. The MILP and heuristics are

programmed in Python v3.7.3. Additionally, we used the Gurobi Python
package for solving the MILP. In terms of computational efficiency, it
is noteworthy that our neural network-based agent can make decisions
almost instantaneously during deployment, owing to its pre-trained
weights, making the neural network approach suitable for real-time
applications.

7.2. Performance comparison of alternative solution approaches

In this section, we study the performance of the proposed ND3QN
agent and the MILP. We also compare their performance with the Multi-
Att policy and the Random policy. Since the MILP model cannot be
solved for large problem sizes encountered in real life, in this section
we focus on the problem sizes smaller than the case study presented
in Section 7.1 (the large instances of the case study will be considered
in Section 7.3). To be specific, we let the requests |𝑅| range from 3
to 20, 𝐻 = 0.5 h, and |𝑉 | = 6. We generate ten instances for each
arameter set and run each instance 10 times, making a total of 100
terations for each parameter set. We run the MILP model on one
rocessor core and limit the computational time to 15 s for MILP-15.

We also extend the time for the MILP to 120 s (MILP-120) to check
whether the MILP can reach the optimal value in more computational
time. Next to the objective values, we also calculate percentage gaps of
the ND3QN policy with respect to the other policies. Note that since we
are comparing costs, a negative gap indicates an improvement in the
objective value of the ND3QN policy against the compared approach.

Table 2 shows that the MILP-15 is not able to solve any considered
instance scale to optimality, while the MILP-120 can optimally solve
small instances, i.e., with three and four requests. However, they can
only provide the best feasible solutions with an increase in the number
of requests. Also, not all iterations provide a solution when requests
exceeds 4 for the MILP-15 and 10 for the MILP-120. Further, the MILP-
15 and MILP-120 cannot find any solutions beyond 10 and 17 requests,
respectively.

The ND3QN, Multi-Att, and Random methods can find solutions for
all instance scales presented in Table 2. Also, the ND3QN outperforms
the MILP-15 for most cases for which the latter can find a solution.
On the other hand, the ND3QN shows an average deterioration of
around 24% compared to the MILP-120 for the instances from 3 to
15 requests. With the instances beyond 17 requests, the ND3QN starts
outperforming the MILP-120. The ND3QN is also superior to the Multi-
Att and Random methods for all the instances, with around 18% and
54% improvement, respectively.

Several reasons explain the relatively large gaps between the
ND3QN and the MILP-120. First, since the MILP-120 is a static method,
it possesses all information about transport requests before planning
8

them. In contrast, the ND3QN can only observe the transport requests
at the time they enter the system. The MILP models know the locations
and time of all requests in advance and obtain an essential advantage
in reaching new requests faster with less travel time. However, the
ND3QN’s performance compared to MILP-15 is more representative
than the MILP-120 in a real-life situation since models should respond
quickly to requests. While a response time of 15 s is still acceptable,
120 s is already troublesome. As a last reason for the relatively large
gaps, the ND3QN is originally designed and trained for bigger scenar-
ios. We can obtain the ND3QN’s full potential in scenarios with a longer
time horizon (24 h) and more requests (around 900), which are taken
into account in the next section.

7.3. Sensitivity analyses

In this section, we study the performance of the ND3QN agent
and provide managerial insights by performing sensitivity analyses on
common instance scales in practice. We exclude the MILP from the
sensitivity analyses since it could not find solutions for larger-scale
instances (see Table 2). We introduce 𝑇𝑊 as the probability of a
request having a tight time window. The tightness of a time-window
is measured by the difference between the earliest pickup time and the
latest delivery time, and a value of TW, e.g., equal to 0.5, indicates that
transport requests have a 50% chance of having tight time-windows,
where 𝑇𝑊 ∈ [0, 1]. As base scenario, we use 𝐻 = 24 h, 𝑇𝑊 = 0.5,
|𝑅| ∼ 900, and |𝑉 | = 12. We evaluate instances over 200 episodes. We
analyze the effect of varying the number of requests and AGV fleet size,
time-window tightness, and stations type in Sections 7.3.1, 7.3.2, and
7.3.3, respectively.

7.3.1. Impact of number of requests and AGV fleet size
In this experiment, we train the ND3QN agent for four fleet sizes:

9, 12, 15, and 18 for a scenario with |𝑅| = 900 (i.e., the ND3QN was
not specifically trained for other request sizes in this section). We then
varied |𝑅| in {450, 900, 1800}. |𝑅| = 1800 represents a busy day with
approximately double the number of request arrivals in comparison to
the base scenario, whereas |𝑅| = 450 represents a less busy day and
contains approximately half of the number of requests realized in the
base scenario. The average costs obtained by the ND3QN, Multi-Att,
and Random methods are summarized in Table 3. The results show
that the ND3QN performs the best across all the fleet sizes and across
all request sizes. The ND3QN’s improvement in objective value over the
Multi-Att increases from 9 to 12 AGVs, whereas this gap decreases when
the fleet size increases further. Overall, the ND3QN’s best performance
is obtained with 12 AGVs. The ND3QN’s superior performance with
respect to the Random remains constant, whereas its improvement over
the Multi-Att slightly increases with the request sizes. Especially for the
busy day scenario, we expect a ND3QN agent specifically trained on
that request size to obtain a higher advantage than the one trained
on the base scenario. However, the results show that the ND3QN
agent is equipped to handle fluctuations in request arrivals. In general,
since the proposed methodology leverages deep neural networks that
are known for their ability to generalize on unseen data, the model
can accommodate various layouts, variations in pickup and delivery
distributions, spatial and temporal patterns, and even scenarios like
mechanical failures or breakdowns, provided they are represented in
the training data.

Moreover, the cost in Eq. (7) comprise of travel and tardiness costs,
and in Figs. 3 and 4 we report their gaps individually for the base sce-
nario. We observe that ND3QN outperforms the Multi-Att with superior
performance (larger gap) on the mean total tardiness costs compared
to mean total travel costs, which may indicate that the ND3QN agent
is able to utilize the spatial and temporal information of available fleet
and arriving requests in order to achieve lower operational costs, and
the savings on tardiness costs is higher than in travel costs. Also, Fig. 3
shows that the performance gap on tardiness costs becomes larger with

increase in the number of requests. In addition, Fig. 4 shows that with

Computers & Industrial Engineering 187 (2024) 109678N. Singh et al.
Table 2
Performance comparison of the policies.
|𝑅| MILP-15 MILP-120 Random Multi-Att ND3QN Gap (%)

ND3QN vs. MILP-15 ND3QN vs. MILP-120 ND3QN vs. Multi-Att ND3QN vs. Random

3 60.15 58.40a 130.30 85.00 58.88 −2.11 0.82 −30.73 –54.81
4 78.35b 65.28a 171.50 101.25 80.23 2.39 22.90 −20.76 –53.21
5 93.52b 73.06 193.66 104.00 86.15 −7.88 17.91 −17.16 –55.51
7 175.97b 95.18 293.51 151.00 129.75 −26.26 36.32 −14.07 –55.79
10 432.00b 127.82 379.29 219.75 169.13 −60.85 32.31 −23.03 –55.40
12 – 168.43b 467.41 263.75 209.94 – 24.64 −20.40 –55.08
15 – 249.07b 623.95 319.75 265.34 – 6.53 −17.01 –57.47
17 – 342.00b 679.00 362.50 280.48 – −17.98 –22.62 −58.69
20 – – 810.67 439.00 355.68 – – −18.98 −56.12

(–) Feasible solution not found.
a Optimal solution found by all iterations.
b Not all iterations found a solution.
Table 3
Performance comparison with varying request sizes 𝑅.
|𝑅| |𝑉 | ND3QN Multi-Att Gap (%)

Random ND3QN vs. Multi-Att ND3QN vs. Random

450 9 7 225.26 8 332.40 13 166.85 −13.29 −45.13
900 9 16 635.25 20 105.98 28 623.57 −17.26 −41.88

1800 9 27 542.11 33 681.30 46 403.28 −18.23 −40.65
450 12 7 454.84 9 325.82 17 846.76 −20.06 −58.23
900 12 13 998.33 18 238.56 35 029.90 −23.25 −60.04

1800 12 27 968.27 35 239.53 67 823.59 −20.63 −58.76
450 15 7 210.09 8 399.80 17 536.93 −14.16 −58.89
900 15 16 009.52 18 259.22 38 554.87 −12.32 −58.48

1800 15 29 449.68 33 743.80 69 824.06 −12.73 −57.82
450 18 7 950.74 8 376.00 15 259.69 −5.08 −47.90
900 18 17 258.94 18 349.94 42 005.32 −5.95 −58.91

1800 18 31 549.79 33 780.10 70 055.86 −6.60 −54.96
Fig. 3. Gap in performance of ND3QN with Multi-Att on average tardiness costs and average travel time costs for various request sizes |𝑅|.
Fig. 4. Gap in performance of ND3QN with Multi-Att on average tardiness costs and average travel time costs for various fleet sizes |𝑉 |.
an increase in fleet size the performance gaps on travel time costs and
tardiness costs diminish. The reduction in costs is higher when moving
from 12 to 18 AGVs which may indicate that with an increase in fleet
size the potential to save on costs may be lower since AGVs are more
readily available.
9

7.3.2. Impact of time-window tightness
We train the ND3QN agent for various probabilities of having tight

time windows, i.e., 𝑇𝑊 = {0.2, 0.5, 0.8}. The average costs obtained
by the ND3QN and Multi-Att are presented in Table 4. The results
show that the ND3QN’s improvement over the Multi-Att remains stable

Computers & Industrial Engineering 187 (2024) 109678N. Singh et al.
Fig. 5. The perception-action learning loop.
Table 4
Performance comparison with varying probability of time-window tightness 𝑇𝑊 .

TW Multi-Att ND3QN Gap (%)

0.2 17 491.89 13 571.12 −22.41
0.5 18 238.56 13 998.33 −23.25
0.8 19 405.08 15 546.86 −19.88

Table 5
Performance comparison with varying |𝐶|.
|𝐶| Multi-Att ND3QN Gap (%)

9 18 238.56 13 998.33 −23.25
18 17 966.05 13 735.89 −23.55

when increasing the probability 𝑇𝑊 . It implies that the ND3QN’s
performance is reliable when the tightness of the time windows change.

7.3.3. Impact of station types
In this experiment, we trained a ND3QN agent that considers only

charging stations. Average costs obtained by ND3QN and Multi-Att for
this scenario is reported in Table 5. The objective performance gap
between ND3QN and Multi-Att increases with changing the station
type to only charging stations. Hence, changing the station type to
only charging stations could be beneficial but comes at considerable
investment cost for each additional charging station.

8. Conclusions

This research investigates the problem of real-time vehicle-request
allocation, repositioning, and recharging of a fleet of AGVs. The main
novelty of this research consists of simultaneously addressing transport
requests with soft due dates, loading and unloading activities at pick-up
and delivery nodes, heterogeneous stations, and a capacity constraint at
these stations. We also formulated a MILP model to minimize the total
cost, including the tardiness and rejection costs related to the transport
requests as well as the AGV travel costs. Since the MILP model could not
solve instances beyond 17 requests, we proposed a ND3QN model that
could find good-quality solutions for industry-size instances within a
reasonable amount of computational time. Computational experiments
on real-world data reveal that the proposed model outperforms the
practitioners heuristic Multi-Att by up to 23%. The ND3QN showed a
significant advantage over Multi-att concerning the productive travel
of the AGVs, implying a more efficient use of the AGVs. Lastly, we pro-
vided sensitivity analyses with respect to several problem parameters.
An interesting future research may include a multi-agent approach to
solve the proposed problem with the proposed agent to also learn the
optimal repositioning and recharging tasks for the fleet.
10
CRediT authorship contribution statement

Nitish Singh: Conceptualization, Methodology, Software, Writing
– original draft. Alp Akcay: Supervision, Conceptualization, Writing
– original draft. Quang-Vinh Dang: Formal analysis, Investigation.
Tugce Martagan: Supervision, Writing – review & editing. Ivo Adan:
Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was supported by a grant from Provincie Noord-Brabant
in the Netherlands for the project ‘‘Advanced Manufacturing Logistics’’
(grant number C2218902/4301942, 2017). We would also like to thank
Koen Herps from KMWE for providing data and his support during this
research.

Appendix A. DQN algorithm

In Q-learning, the agent learns the Q-values for all state–action
pairs. However, since we consider a large-scale system, learning all
unique state–action pairs becomes computationally intractable. Hence,
instead of using value estimation to calculate the optimal Q-function,
we use a Deep Neural Network to estimate this function. Combining Q-
learning with the use of a Deep Neural Network is called Deep Q-learning
or DQN. The way the agent interacts with the environment is captured
by the perception-action learning loop as presented in Fig. 5. The DQN’s
objective remains the same as in regular Q-learning: minimizing the
loss (see Eq. (5)). The weights of the Artificial Neural Network are
updated via Stochastic Gradient Descent (SGD) and backpropagation,
like regular Neural Nets. During training, we use a technique called
experience replay, in which the agent’s experiences are stored in a data
set called replay memory. A key reason for using replay memory is to
break the correlation between consecutive samples (Liu & Zou, 2019).
The agent’s experience at time t consists of the state of the environment
𝑠 , the action 𝑎 taken from that state, the reward 𝑟 obtained by
𝑡 𝑡 𝑡+1

Computers & Industrial Engineering 187 (2024) 109678N. Singh et al.

d

𝑒

s
S
r
p
w
t
b
t
u
n
t
T
o
w
c

D

o
t
t
d
a
a
s
w
c
t
‘
t
c
B
p
v

D

W
b
D
o
Q
‘
2

A

(
t

a

l

r
i

t

m

𝑥

taking action 𝑎𝑡 from state 𝑠𝑡, and the consecutive state 𝑠𝑡+1 and is
enoted as follows.

𝑡 =
(

𝑠𝑡, 𝑎𝑡, 𝑟𝑡+1, 𝑠𝑡+1
)

(6)

In practice, the size of the replay memory is often set with finite
ize 𝑁𝑟𝑒𝑝𝑙𝑎𝑦, in which only the last 𝑁𝑟𝑒𝑝𝑙𝑎𝑦 experiences are stored.
ubsequently, we randomly sample a batch of experiences from the
eplay memory to train the network. This training is prosecuted by
assing the batch of experiences to the network as input. Henceforth,
e will refer to this network as the policy network since its objective is

o find the optimal policy. Next, the ‘max-term’ in Eq. (5) is calculated
y a forward pass of 𝑠𝑡+1 to the network. Now that we dispose of both
he target Q-values and actual Q-values, we can calculate the loss and
pdate the network’s weights. However, simultaneously updating the
etwork’s weights, the actual Q-values and target Q-values update in
he same direction, leading to the optimization ‘chasing its own tail’.
o overcome this issue, we introduce a target network, which is a clone
f the policy network with ‘frozen’ weights. We update these weights
ith the policy network’s weights after a 𝑁𝑠𝑡𝑒𝑝𝑠 steps, thereby reducing

orrelations with the target (Mnih et al., 2015).

ouble DQN
The DQN agent may get stuck in a region of local optima due to

verestimation of Q values. In the earlier section, we discussed about
wo Q Networks, one being the policy network and the other being
he target Q Network which is a clone of the policy network. We also
iscussed that the target Q network is not updated very frequently
nd instead it is updated only after a certain number of steps. The
bove highlighted overestimation problem may become even more
ignificant if the actions are taken on the basis of the target network
hose values are not frequently updated. However, we would like to

ontinue using the target Q Network as it offers better and more stable
arget values for the update. To combine the best of both worlds, the
‘Double DQN’’ algorithms propose to select the action on the basis of
he policy network but to use the values of the target state–action value
orresponding to the particular state–action from the target network.
y doing so we can simultaneously overcome both the ‘‘overestimation’’
roblem of Q Values while also avoiding the instability in the target
alues (Sewak, 2019).

ueling Double DQN (D3QN)
A dueling double DQN builds on the double DQN architecture.

hile in double DQN, a particular layer could be connected to the layer
efore and the layer after, a dueling architecture is non-sequential. In
3QN, the model layers branches into two different streams. The first
f these branches correspond to the value function which estimates the
value of a given state. The second branch computes the value of the

‘advantage’’ of taking a particular action in the current state (Sewak,
019; Wang et al., 2016).

ppendix B. Mixed integer linear program

We define the mathematical problem on a directed graph 𝐺 =
𝑁,𝐴), where 𝑁 is the set of nodes as described in Section 3. We denote
he set of arcs as 𝐴 = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗}. Each arc is associated

with a travel time denoted by 𝑡𝑖𝑗 . Additionally, the set of charging
requests and parking requests are captured by 𝐵 = {1, 2,… , 𝑛𝐵} and
𝐸 = {1, 2,… , 𝑛𝐸}, respectively, where 𝑛𝐵 and 𝑛𝐸 are safe upper bounds,
allowing multiple requests per charging and parking node, such that
every AGV can charge and park as many times as needed. As a result,
not all requests of 𝐵 and 𝐸 are required to be scheduled. Note that a
charging request is assigned to reposition an AGV to a charging node
while a parking request repositions it to a parking node. Further, we set
the source and destination nodes of such a charging or parking request
(𝑛𝑟 = 𝑛𝑟 ,∀𝑟 ∈ 𝐵 ∪ 𝐸) equal to each other and set the earliest pickup
11

nd latest delivery time to zero and infinity, respectively. We denote
the total set of requests considered for the MILP by 𝑇 = 𝑅 ∪ 𝐵 ∪ 𝐸.
Lastly, we formulate the mathematical model as follows.

Decision variables

𝑥𝑟𝑟′𝑣 Binary variable, equal to 1 if AGV 𝑣 performs request 𝑟
immediately prior to request 𝑟′, 0 otherwise

𝑧𝑟 Binary variable, equal to 1, if request 𝑟 does not appear in
any tour (i.e., 𝑟 is rejected), 0 otherwise

𝑎𝑟𝑣 Arrival time of AGV 𝑣 at the source node of request 𝑟
𝑎𝑟𝑣 Arrival time of AGV 𝑣 at the destination node of request 𝑟
𝑓
𝑟𝑣 Finish (pick-up) time of AGV 𝑣 at the source of request 𝑟

𝑓
𝑟𝑣 Finish (delivery) time of AGV 𝑣 at the destination of request 𝑟

𝑑𝑟𝑣 Battery discharge of AGV 𝑣 after travel to and loading at the
source of request 𝑟

𝑑𝑟𝑣 Battery discharge of AGV 𝑣 after travel to and unloading at
the destination of request 𝑟

𝑦𝑟𝑟′𝑣𝑣′ Binary variable, equal to 1 if request 𝑟 of AGV 𝑣 is done prior
to request 𝑟′ of AGV 𝑣′ at the same charging or parking
station (𝑛𝑟 = 𝑛𝑟′), 0 otherwise

The mathematical model of the described problem can be formu-
ated as follows:

Objective (7) minimizes the weighted sum of tardiness costs of
equests, travel costs of AGVs, and rejection costs of requests, where 𝜏𝑟
s the tardiness of request 𝑟, 𝜋𝑟𝑣 is the travel time of AGV 𝑣 when per-

forming request 𝑟, and 𝑧𝑟 is the number of rejected transport requests.
Note that 𝜂1 and 𝜂2 are the weight coefficients used to prioritize the
ravel costs and tardiness, respectively.

in 𝜂1
∑

𝑣∈𝑉

∑

𝑟∈𝑇
𝑐𝛿 𝜋𝑟𝑣 + 𝜂2

∑

𝑟∈𝑅
𝑐𝜏 𝜏𝑟 +

∑

𝑟∈𝑅
𝑐𝑑 𝑧𝑟 (7)

We must satisfy the following constraints:

∑

𝑟′∈𝑇

∑

𝑣∈𝑉
𝑥𝑟𝑟′𝑣 ≤ 1 ∀𝑟 ∈ 𝑇 (8)

𝑟𝑟𝑣 = 0 ∀𝑟 ∈ 𝑇 ,∀𝑣 ∈ 𝑉 (9)
∑

𝑟∈𝑅
𝑥𝑟𝑟′′𝑣 −

∑

𝑟′∈𝑇
𝑥𝑟′′𝑟′𝑣 = 0 ∀𝑟′′ ∈ 𝑇 ,∀𝑣 ∈ 𝑉 (10)

𝑧𝑟 = 1 −
∑

𝑟′∈𝑅

∑

𝑣∈𝑉
𝑥𝑟𝑟′𝑣 ∀𝑟 ∈ 𝑅 (11)

Constraints (8) impose that if a request is accepted, then at most
one AGV performs the request. Self-visits are avoided by Constraints
(9). Constraints (10) conserve the incoming and outgoing arcs for all
requests. Constraints (11) count the number of requests that do not
appear in any tour of any AGV, or in other words, count the number
of rejected requests.

𝑎𝑟𝑣 ≥ 𝑒𝑟 ∀𝑟 ∈ 𝑇 ,∀𝑣 ∈ 𝑉 (12)

𝑎𝑟𝑣 + ℎ𝑟 ≤ 𝑓
𝑟𝑣 ∀𝑟 ∈ 𝑇 ,∀𝑣 ∈ 𝑉 (13)

𝑎𝑟𝑣 + ℎ𝑟 ≤ 𝑓
𝑟𝑣 ∀𝑟 ∈ 𝑇 ,∀𝑣 ∈ 𝑉 (14)

𝑓
𝑟𝑣 + 𝑡𝑛𝑟 𝑛𝑟 ≤ 𝑎𝑟𝑣 ∀𝑟 ∈ 𝑇 ,∀𝑣 ∈ 𝑉 , (15)

𝑓
𝑟𝑣 + 𝑡𝑛𝑟 𝑛𝑟 − 𝐿(1 − 𝑥𝑟𝑟′𝑣) ≤ 𝑎𝑟′𝑣 ∀𝑟, 𝑟′ ∈ 𝑇 , 𝑟 ≠ 𝑟′,∀𝑣 ∈ 𝑉 (16)

Constraints (12) ensure that AGVs start loading at the source node
of a request after the earliest pickup time. Constraints (13) and (14)
ensure that AGVs are only allowed to leave the nodes after completing
the time needed for material handling. Constraints (15) and (16) deter-
mine the arrival times at the destination and source nodes, respectively.
Constraints (16) also prevent sub-tours, where 𝐿 is a large positive
constant.

𝜏𝑟 ≥ 𝑓𝑟𝑣 − 𝑙𝑟 ∀𝑟 ∈ 𝑇 ,∀𝑣 ∈ 𝑉 (17)

Computers & Industrial Engineering 187 (2024) 109678N. Singh et al.
Fig. 6. Layout used for this case study. We highlight one movement of an AGV en route to the pickup-and-delivery nodes on this layout.
𝜋𝑟′𝑣 ≥ (𝑡𝑛𝑟 𝑛
𝑟′
+ 𝑡𝑛

𝑟′
𝑛
𝑟′
) 𝑥𝑟𝑟′𝑣 ∀𝑟, 𝑟′ ∈ 𝑇 , 𝑟 ≠ 𝑟′,∀𝑣 ∈ 𝑉 (18)

Constraints (17) and non-negative Constraints (28) define the tardi-
ness of each request. Constraints (18) determine the travel time of an
AGV to perform a request.

𝑎𝑟′𝑣′ + 𝐿 (1 − 𝑦𝑟𝑟′𝑣𝑣′) ≥ 𝑓
𝑟𝑣 ∀𝑟, 𝑟′ ∈ 𝐵 ∪ 𝐸, 𝑟 ≠ 𝑟′, 𝑛𝑟 = 𝑛𝑟′ ,

∀𝑣, 𝑣′ ∈ 𝑉 , 𝑣 ≠ 𝑣′ (19)
𝑎𝑟𝑣 + 𝐿𝑦𝑟𝑟′𝑣𝑣′ ≥ 𝑓

𝑟′𝑣′ ∀𝑟, 𝑟′ ∈ 𝐵 ∪ 𝐸, 𝑟 ≠ 𝑟′, 𝑛𝑟 = 𝑛𝑟′ ,

∀𝑣, 𝑣′ ∈ 𝑉 , 𝑣 ≠ 𝑣′ (20)

Constraints (19) and (20) make sure that if two parking or charging
requests have the same source (and destination), they can never be at
that node during the same time.

𝑑0𝑣 = 𝑄 − 𝑏𝑣 ∀𝑣 ∈ 𝑉 (21)

𝑑𝑟𝑣 ≥ 𝑑𝑟𝑣 + 𝑑 (𝑡𝑛𝑟 𝑛𝑟 + ℎ𝑟) ∀𝑟 ∈ 𝑅,∀𝑣 ∈ 𝑉 (22)

𝑑𝑟′𝑣 ≥ 𝑑𝑟𝑣 + 𝑑 (𝑡𝑛𝑟 𝑛
𝑟′
+ ℎ𝑟′) − 𝐿(1 − 𝑥𝑟𝑟′𝑣) ∀𝑟, 𝑟′ ∈ 𝑅, 𝑟 ≠ 𝑟′,∀𝑣 ∈ 𝑉 (23)

𝑑𝑟𝑣 ≥ 𝑑𝑟𝑣 − 𝑐 (𝑎𝑟𝑣 − 𝑎𝑟𝑣) ∀𝑟 ∈ 𝐵,∀𝑣 ∈ 𝑉 (24)

0 ≤ 𝑑𝑟𝑣 ≤ 𝑄 − 𝑏 ∀𝑟 ∈ 𝑅,∀𝑣 ∈ 𝑉 (25)

0 ≤ 𝑑𝑟𝑣 ≤ 𝑄 ∀𝑟 ∈ 𝑅,∀𝑣 ∈ 𝑉 (26)

0 ≤ 𝑑𝑟𝑣 ≤ 𝑄 ∀𝑟 ∈ 𝐵,∀𝑣 ∈ 𝑉 (27)

Constraints (21) set the initial battery discharge levels. Constraints
(22) determine the battery discharge after traveling from a pickup to a
delivery node and unloading there, whereas Constraints (23) determine
the battery discharge after traveling from a delivery to a pickup node
and loading activity. Constraints (24) define the battery discharge of
an AGV after visiting a charging station. It is reduced by an amount
of charge proportional to the time that the AGV spends at the station.
Constraints (25)–(26) set the lower and upper limits (𝑄 = 100) for
an amount of battery discharge. Constraints (28)–(29) ensure valid
domains for the remaining decision variables.

𝜏𝑟, 𝛿𝑟𝑣 ≥ 0 ∀𝑟 ∈ 𝑇 ,∀𝑣 ∈ 𝑉 (28)

𝑧 , 𝑥 , 𝑦 ∈ {0, 1} ∀𝑟, 𝑟′ ∈ 𝑇 ,∀𝑣 ∈ 𝑉 (29)
12

𝑟 𝑟𝑟′𝑣 𝑟𝑟′𝑣𝑣′
Appendix C. Layout in the case study

The layout shown in Fig. 6 is based on the KMWE’s production
facility. Each blue square represents a pickup-and-delivery (PD) node,
each orange square represents a parking (P) node, and each green
square represents a charging (C) node. In total, there are 61 PD nodes
(divided over 5 departments), 9 parking nodes, and 9 charging nodes.
For the AGV movements within this layout, we use the Manhattan
distance metric.

In our case study environment, a flexible flow-shop manufacturing
system in a high-mix-low-volume production environment, AGVs are
responsible for transporting products between work centers (containing
CNC machines) as well as from a manufacturing preparation center
(MPC) to different work centers. In Fig. 6, the AGV can be seen moving
from its parking location at the MPC towards the material handling
point of a work center, from where the product needs to be transported
to another work center. In this system, human operators still play a vital
role in preparing materials (at the MPC) and overseeing the loading
and unloading activities (at the work centers) in coordination with the
AGVs. Currently, our industry partner is in the process of adopting and
deploying AGVs in the production facility.

Appendix D. Hyperparameters

We tuned the hyperparameters using Bayesian Optimization.
Whereas tuning techniques such as grid search and random search use
a relatively high computational time, bayesian optimization technique
typically requires fewer iterations to get to a high performant set of
hyperparameter values. The reason for this relatively low optimization
time is that Bayesian Optimization focuses on hyperparameters that
yield the most promising results and tends to neglect hyperparameters
that do not make a substantial difference in performance. The open-
source hyperparameter optimization framework Optuna (which used
for the tuning) provided us with hyperparameter importances. Ac-
cording to Optuna, the most important hyperparameters were epsilon
start, experience buffer capacity, gamma, and the number of neurons
in the hidden layer. Plugging the hyperparameter values of the best
performing models found by Optuna lead to an increase of 7.89%
compared to the model using the initial hyperparameter values. Final

Computers & Industrial Engineering 187 (2024) 109678N. Singh et al.

K

L

L

Table 6
ND3QN’s hyperparameters.

Hyperparameter Description Value

Number of hidden layers in policy network 2
Number of hidden layers in autoencoder network 2
Number of neurons per hidden layer in policy network 512
Number of neurons in first hidden layer in autoencoder network 25
Number of neurons in second hidden layer in autoencoder network 20
Gradient optimizer Adam

𝑈 Code dimensions 5
𝐿 Number of tiles 25
𝑙𝑟 Learning rate 0.0001
𝛾 Discount Factor 0.95
𝑛 n-step learning 5
𝑁𝑟𝑒𝑝𝑙𝑎𝑦 Experience buffer capacity 250 000
𝛽0 Beta start 0.4
𝛽𝑠𝑡𝑒𝑝𝑠 Linearly anneal from 𝛽0 to 1 in training steps 100 000
𝛼 Alpha 0.4
𝑁𝑠𝑡𝑒𝑝𝑠 Number of steps after which to replace the target net 100
𝑁𝑏𝑎𝑡𝑐ℎ Batch size 1024
M

S

S

S

S

S
S

V

V

V

W

W

W
Z

Z

hyperparameter values are shown in Table 6. For the Bayesian Opti-
mization, we used a Tree-structured Parzen Estimator (TPE) algorithm
recommended by Optuna in situations with limited parallel computing
power and a not low-dimensional search space.

References

Bank, D., Koenigstein, N., & Giryes, R. (2020). Autoencoders. arXiv preprint arXiv:
2003.05991.

Bilge, U., Esenduran, G., Varol, N., Öztürk, Z., Aydin, B., & Alp, A. (2006).
Multi-attribute responsive dispatching strategies for automated guided vehicles.
International Journal of Production Economics, 100(1), 65–75.

Brainport Industries Campus (2020). The evolution of the high-tech manufacturing in-
dustry. https://www.brainportindustriescampus.com/en/innovating/factory-of-the-
future. Accessed 21 January 2023.

Confessore, G., Fabiano, M., & Liotta, G. (2013). A network flow based heuristic
approach for optimising AGV movements. Journal of Intelligent Manufacturing, 24,
405–419.

De Koster, R. B., Le-Anh, T., & Van Der Meer, J. R. (2004). Testing and classifying vehi-
cle dispatching rules in three real-world settings. Journal of Operations Management,
22, 369–386.

De Ryck, M., Versteyhe, M., & Debrouwere, F. (2020). Automated guided vehicle
systems, state-of-the-art control algorithms and techniques. Journal of Manufacturing
Systems, 54, 152–173.

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband, I., Graves, A., et al. (2017).
Noisy networks for exploration. arXiv preprint arXiv:1706.10295.

Froger, A., Mendoza, J. E., Jabali, O., & Laporte, G. (2017). A matheuristic for the
electric vehicle routing problem with capacitated charging stations. In [Research
report] centre interuniversitaire de recherche sur les reseaux d’entreprise, la logistique et
le transport (CIRRELT).

Guan, X., & Dai, X. (2009). Deadlock-free multi-attribute dispatching method for AGV
systems. International Journal of Advanced Manufacturing Technology, 45, 603–615.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., et
al. (2018). Rainbow: Combining Improvements in Deep Reinforcement Learning.
Proceedings of the AAAI Conference on Artificial Intelligence, 32(1).

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with
neural networks. Science, 313(5786), 504–507.

Holler, J., Vuorio, R., Qin, Z., Tang, X., Jiao, Y., Jin, T., et al. (2019). Deep reinforce-
ment learning for multi-driver vehicle dispatching and repositioning problem. In
Proceedings - IEEE international conference on data mining, ICDM (pp. 1090–1095).

Hu, H., Jia, X., He, Q., Fu, S., & Liu, K. (2020). Deep reinforcement learning based
AGVs real-time scheduling with mixed rule for flexible shop floor in industry 4.0.
Computers & Industrial Engineering, 149, Article 106749.

Kamoshida, R., & Kazama, Y. (2017). Acquisition of automated guided vehicle route
planning policy using deep reinforcement learning. In 6th IEEE international
conference on advanced logistics and transport, ICALT 2017 (pp. 1–6). IEEE.

Keskin, M., & Çatay, B. (2016). Partial recharge strategies for the electric vehicle routing
problem with time windows. Transportation Research Part C (Emerging Technologies),
65, 111–127.

ullman, N. D., Cousineau, M., Goodson, J. C., & Mendoza, J. E. (2022). Dynamic
ride-hailing with electric vehicles. Transportation Science, 56(3), 775–794.

Le-Anh, T., & De Koster, R. M. B. M. (2004). Multi-attribute dispatching rules for agv
systems with many vehicles. ERIM Report Series Research in Management.

e-Anh, T., & De Koster, M. B. (2005). On-line dispatching rules for vehicle-based
internal transport systems. International Journal of Production Research, 43(8),
1711–1728.

e-Anh, T., & De Koster, M. B. (2006). A review of design and control of automated
13

guided vehicle systems. European Journal of Operational Research, 171(1), 1–23.
Lin, K., Zhao, R., Xu, Z., & Zhou, J. (2018). Efficient large-scale fleet management
via multi-agent deep reinforcement learning. In Proceedings of the ACM SIGKDD
international conference on knowledge discovery and data mining (pp. 1774–1783).

Liu, R., & Zou, J. (2019). The Effects of Memory Replay in Reinforcement Learning.
In 2018 56th annual Allerton conference on communication, control, and computing,
Allerton 2018 (pp. 478–485). Institute of Electrical and Electronics Engineers Inc..

Maciejewski, M., Bischoff, J., & Nagel, K. (2016). An assignment-based approach to
efficient real-time city-scale taxi dispatching. IEEE Intelligent Systems, 31(1), 68–77.

nih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
et al. (2015). Human-level control through deep reinforcement learning. Nature,
518(7540), 529–533.

Pettit, J. F., Glatt, R., Donadee, J. R., & Petersen, B. K. (2019). Increasing performance
of electric vehicles in ride-hailing services using deep reinforcement learning. arXiv
preprint arXiv:1912.03408.

Rhazzaf, M., & Masrour, T. (2021). Deep learning approach for automated guided
vehicle system. In Artificial intelligence and industrial applications: smart operation
management (pp. 227–237). Springer.

Schaul, T., Quan, J., Antonoglou, I., & Silver, D. (2016). Prioritized experience replay.
In 4th international conference on learning representations, ICLR 2016 - conference
track proceedings. International Conference on Learning Representations, ICLR.

ewak, M. (2019). Deep q network (dqn), double dqn, and dueling dqn. In Deep
reinforcement learning (pp. 95–108). Springer.

Shi, J., Gao, Y., Wang, W., Yu, N., & Ioannou, P. A. (2019). Operating electric vehicle
fleet for ride-hailing services with reinforcement learning. IEEE Transactions on
Intelligent Transportation Systems, 1–13.

ingh, N., Dang, Q.-V., Akcay, A., Adan, I., & Martagan, T. (2022). A matheuristic for
AGV scheduling with battery constraints. European Journal of Operational Research,
298(3), 855–873.

ingh, N., Sarngadharan, P., & Pal, P. K. (2011). AGV scheduling for automated material
distribution: a case study. Journal of Intelligent Manufacturing, 22, 219–228.

utton, R. S. (1988). Learning to predict by the methods of temporal differences.
Machine Learning, 3(1), 9–44.

utton, R. S., & Barto, A. G. (2018). Reinforcement learning: an introduction. MIT Press.
weda, T. M., Dolinskaya, I. S., & Klabjan, D. (2017). Adaptive routing and recharging

policies for electric vehicles. Transportation Science, 51(4), 1326–1348.
incent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and

composing robust features with denoising autoencoders. In Proceedings of the 25th
international conference on machine learning (pp. 1096–1103).

is, I. F. (2006). Survey of research in the design and control of automated guided
vehicle systems. European Journal of Operational Research, 170(3), 677–709.

uksanović, D., Ugarak, J., & Korčok, D. (2016). Industry 4.0: the future concepts
and new visions of factory of the future development. In Paper presented at sinteza
2016 - international scientific conference on ICT and e-business related research (pp.
293–298).

ang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., & De Frcitas, N.
(2016). Dueling Network Architectures for Deep Reinforcement Learning. In 33rd
international conference on machine learning, ICML 2016, Vol. 4 (pp. 2939–2947).
(9).

ei, Q., Yan, Y., Zhang, J., Xiao, J., & Wang, C. (2022). A self-attention-based deep
reinforcement learning approach for AGV dispatching systems. IEEE Transactions on
Neural Networks and Learning Systems.

iering, M., & van Otterlo, M. (2012). Reinforcement Learning State-of-the-Art, Vol. 12.
amiri Marvizadeh, S., & Choobineh, F. (2014). Entropy-based dispatching for au-

tomatic guided vehicles. International Journal of Production Research, 52(11),
3303–3316.

hang, X.-j., Sang, H.-y., Li, J.-q., Han, Y.-y., & Duan, P. (2022). An effective multi-
AGVs dispatching method applied to matrix manufacturing workshop. Computers &
Industrial Engineering, 163, Article 107791.

http://arxiv.org/abs/2003.05991
http://arxiv.org/abs/2003.05991
http://arxiv.org/abs/2003.05991
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb2
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb2
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb2
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb2
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb2
https://www.brainportindustriescampus.com/en/innovating/factory-of-the-future
https://www.brainportindustriescampus.com/en/innovating/factory-of-the-future
https://www.brainportindustriescampus.com/en/innovating/factory-of-the-future
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb4
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb4
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb4
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb4
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb4
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb5
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb5
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb5
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb5
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb5
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb6
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb6
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb6
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb6
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb6
http://arxiv.org/abs/1706.10295
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb8
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb8
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb8
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb8
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb8
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb8
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb8
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb9
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb9
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb9
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb10
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb10
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb10
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb10
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb10
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb11
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb11
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb11
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb12
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb12
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb12
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb12
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb12
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb13
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb13
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb13
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb13
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb13
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb14
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb14
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb14
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb14
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb14
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb15
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb15
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb15
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb15
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb15
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb16
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb16
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb16
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb17
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb17
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb17
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb18
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb18
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb18
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb18
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb18
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb19
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb19
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb19
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb20
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb20
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb20
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb20
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb20
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb21
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb21
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb21
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb21
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb21
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb22
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb22
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb22
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb23
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb23
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb23
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb23
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb23
http://arxiv.org/abs/1912.03408
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb25
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb25
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb25
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb25
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb25
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb26
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb26
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb26
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb26
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb26
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb27
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb27
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb27
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb28
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb28
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb28
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb28
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb28
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb29
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb29
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb29
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb29
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb29
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb30
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb30
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb30
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb31
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb31
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb31
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb32
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb33
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb33
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb33
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb34
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb34
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb34
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb34
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb34
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb35
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb35
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb35
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb36
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb36
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb36
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb36
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb36
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb36
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb36
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb37
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb37
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb37
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb37
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb37
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb37
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb37
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb38
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb38
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb38
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb38
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb38
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb39
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb40
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb40
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb40
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb40
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb40
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb41
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb41
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb41
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb41
http://refhub.elsevier.com/S0360-8352(23)00702-7/sb41

	Dispatching AGVs with battery constraints using deep reinforcement learning
	Introduction
	Literature Review
	Problem Description
	Model
	Solution Approach
	Noisy Exploration Strategy
	Prioritized replay and multi-step learning
	Additional state variables
	Dispatching rule for repositioning decisions

	Benchmark Policies
	Multi-Att Policy
	Random Policy
	Mixed-Integer Linear Program

	Computational Experiments
	Case study design
	Performance comparison of alternative solution approaches
	Sensitivity analyses
	Impact of number of requests and AGV fleet size
	Impact of time-window tightness
	Impact of station types

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. DQN Algorithm
	Appendix B. Mixed Integer Linear Program
	Appendix C. Layout in the case study
	Appendix D. Hyperparameters
	References

