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Abstract—Modern wireless systems, especially at millimeter-
wave, place increasingly stringent requirements on size, weight,
power and cost (SWaP-C). In this talk we present an overview of
our recent work on active beamsteering array antennas for mm-
wave sensing applications, highlighting an active transmitarray
antenna for Ka-band (34-36 GHz) monopulse tracking radar
with commercial SiGe-based beamforming chips developed for
5G. Moreover, an outlook is given towards higher levels of
integration between electronics and array antennas, where co-
design techniques such as direct matching and in-antenna
combining may help optimizing output power and efficiency.

I. INTRODUCTION

The ever-increasing demand for improved wireless com-
munication and sensing performance within a densely al-
located radio frequency (RF) spectrum is rapidly pushing
developments to millimeter-wave (mm-wave) frequency bands
beyond 30 GHz. The wider available bandwidths at higher
frequencies can provide better range resolution and smaller
device sizes, as demonstrated by the shift from 24 to 77 GHz
in automotive radars [1].

Active electronically scanned phased arrays (AESAs) show
promise for a wide range of (satellite)-communication and
radar sensing applications at mm-wave, enabling efficient use
of radiated power using a steerable beam to track individual
mobile users, satellites, or radar targets to name a few
examples. However, the half-wavelength element spacing for
wide-scanning arrays combined with the degrading efficiency
performance of active devices at mm-wave leads to tight

area budgets and stringent thermal considerations. Moreover,
the decreasing achievable power levels of power amplifiers
(PAs) when going up in frequency can make long-range
performance a challenging and costly affair.

The authors present an overview of their work on improv-
ing size, weight, power, and cost (SWaP-C) performance in
demanding mm-wave antenna systems, with a focus on a
scaleable active transmitarray for Ka-band monopulse radar
with low-cost silicon germanium (SiGe)-based beamforming
integrated circuits (BFICs). Moreover, an outlook is given
towards higher levels of integration between electronics and
array antennas. With increasing frequencies we expect in-
creasing levels of integration within the same package or even
on the same die, where co-design techniques such as direct
matching and in-antenna power combining may help push
performance beyond the capabilities of a modular approach.

II. SIGE-BASED ACTIVE TRANSMITARRAY

Thanks to advances in the development of millimeter-
wave electronics for the fifth generation mobile network (5G)
and satellite communications, off-the-shelf BFICs operating
at Ka-band are becoming more commonly available. These
devices are silicon or SiGe-based, which limits their achiev-
able power levels compared to III-V semiconductors such
as gallium arsenide (GaAs) and gallium nitride (GaN) [3].
However, the benefits of vastly lower costs and the on-
chip integration of digital control makes them attractive in
AESAs for commercial satellite communication and mobile
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Fig. 1: The demonstrator array in the near-field measurement
setup. Photo by Bart van Overbeeke photography, from [2].

networks [4], [5]. These developments can also benefit radar
technology with reduced system complexity, time-to-market
and development cost.

We demonstrate this potential for technological cross-
pollination with the design of an active Ka-band transmitarray,
proposing the use of SiGe-based 5G BFICs in a large-
scale and high-power naval radar. The transmitarray design
simplifies the distribution of power over a large number
of elements, and provides lens-like gain enhancement for
a monopulse system. The limited power per chip can be
offset through sheer number of low-cost elements, adding
both transmit power and antenna gain. The combination of
per-element phase shifting and power amplification results in
a rapidly steerable pencil beam to track fast-moving targets.

A small-scale 8×8 array has been realized and charac-
terized in the anechoic chamber of Eindhoven University of
Technology (TU/e) as shown in Fig. 1. The array achieves
a peak EIRP of 56 dBm, a 12° HPBW and presents the
first demonstration of beam-scanning with a BFIC-based
reconfigurable transmitarray in published literature [2]. The
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Fig. 2: Measured beamsteering performance of the Ka-band
transmitarray in Tx mode, at 35 GHz with all BFICs

operating in compression. Adapted from [2].

small-scale array can scan up to ±60° in the H-plane with
cos θ scan loss and no grating lobes, as shown in Fig. 2.
E-plane scanning is achieved up to ±45° with cos θ1.1 scan
loss. Integrated liquid cooling channels enable a high degree
of thermal scalability.

III. AMPLIFIER-INTEGRATED ARRAY ANTENNAS

In demanding applications such as long-range radars and
high-volume wireless backhaul in 5G networks, high-power
monolithic microwave integrated circuits (MMICs) in GaAs
or GaN technology are widely used. Many of these MMICs
are custom designs for specific applications, with relatively
low production volumes and high unit costs. As a result, any
power losses beyond the MMIC can be considered expensive.

The stringent SWaP-C requirements imposed by the small
element spacing in scanning arrays can lead to highly inte-
grated antenna systems within a package or chip [6]. This
close integration limits the interconnect length, reducing the
valuable power losses between amplifier and radiating ele-
ment. This section highlights two potential PA-antenna co-
design strategies to optimize output power, efficiency, and
device size as described in [7]. The focus will be on scanning
array implementations, as these were extremely limited in
literature until recently [8].

A. Direct matching

The conventional 50 Ω interface as depicted in Fig. 3a may
be a suboptimal solution terms of required area and power
losses. Instead, a single matching network or a direct match
between a co-designed PA and antenna as in Figs. 3b and 3c
could help minimize size and losses which may outweigh the
extra cost and effort of a custom co-design and the loss of
modularity [9].

High-power transistors at Ka-band frequencies typically
require a complex load to reach their optimum power and
efficiency. The resistive part of this load tends to be low, as
the output voltage is limited by the semiconductor material
breakdown and peak output current must be increased.

From a circuit point of view, the antenna impedance Zant

can be expressed as [10]

Zant(f) = Rant(f) + jXant(f), where
Rant(f) = Rrad(f) +Rloss(f).

(1)

Both the resistive part R as well as the reactive part X
are a function of frequency f . The antenna resistance Rant

describes both the desired ‘loss’ due to radiation Rrad, and the
conventional losses in dielectrics and metals Rloss. As Rloss

is generally undesired in each antenna design and should be

(b)

ZL 50 Ω Zant ZL=Zant

(a) (c)

Output

match

Input

match
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Fig. 3: (a) Conventional 50 Ω matching, (b) single matching
network and (c) direct amplifier-antenna matching, from [9].



Fig. 4: Left: Unit cell model of a Ka-band multi-feed
stacked patch antenna. Right: Simulated active-reflection

coefficients for ports 1 and 2 when scanning in the E-plane.

minimized regardless of interface impedance, a low Rant for
co-design will generally be achieved by reducing Rrad.

Whilst a low load resistance may benefit the PA, the
antenna radiation efficiency ηrad may decrease according to

ηrad(f) =
Prad(f)

Pin(f)
=

Rrad(f)

Rrad(f) +Rloss(f)
, (2)

where Pin and Prad are the antenna input and radiated power.
Clearly, a trade-off between minimizing matching network

losses and optimizing ηrad must be made. Moreover, Zant

and the optimum load impedance may vary significantly over
frequency, and the variations with scan angles make a direct
match challenging to achieve in scanning arrays.

B. In-antenna power combining

Similarly to matching networks, the power combining
network at the output of a high-power amplifier (HPA) will
contribute to loss and reduce the overall achievable power
efficiency. These combining losses can potentially be avoided
by using a multi-feed antenna as power combiner [7].

Multi-feeds antenna generally offer little to no isolation be-
tween the feeds, which may lead to performance degradation
in scanning arrays. As an illustrative example, a differential-
fed stacked patch array element is depicted in Fig. 4. Scanning
in the H-plane affects the active impedances at both ports
equally due to the geometric symmetry. However, E-plane
scanning results in different responses between the two ports:
the reflection of port 1 deteriorates across the band, whereas
an improvement can be seen around 30 GHz for port 2. The
difference in active impedances will result in an asymmetric
excitation, which will affect the element pattern and radiation
efficiency. Whether this imbalance could be compensated for
through the amplitude and phase at the ports, and whether
antennas can be designed with better robustness against this
effect, are both interesting topics for continued work.

C. PA-array antenna modeling

Aiming to derive generalized strategies for active-integrated
array antennas (AIAAs) co-designed with amplifiers, we are
presenting a model that combines antenna and transistor data
for fast assessment of power and efficiency performance over
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Fig. 5: Modeled example of varying load impedance of a
beam-scanning single-feed stacked-patch antenna with
matching network at 30 GHz, projected onto transistor

load-pull data, from [9]. A power and efficiency operating
point can be mapped to scan angles from broadside to 60°.

a full scanning range as shown in Fig. 5. A more detailed
description of this model is presented in [9].

IV. CONCLUSION & OUTLOOK

As developments continue to push the boundaries of mm-
wave system performance, two distinct design strategies are
envisioned. On one hand, the commercialisation of mm-
wave frequencies is expected to lead to wider availability
of mass-produced, low-cost components operating at Ka-
band and above. This in turn will make the development of
mm-wave systems easier, faster and cheaper. Moreover, the
availability of low-cost components will stimulate experimen-
tation beyond their intended use, as has been demonstrated
in Section II. A lower threshold for experimentation will
potentially lead to new and innovative applications throughout
the mm-wave bands.

On the other hand, in demanding AESA applications where
every tenth of a dB is a valuable performance improvement,
the level of system integration is expected to keep increasing.
As circuits, antennas, interconnects and cooling need to be
considered within millimeter-scale area budgets, it becomes
increasingly difficult to tell where one discipline ends and
where another begins. With co-design techniques becoming
essential as a consequence, cross-disciplinary design flows
and fast multi-physics simulation tools will be increasingly
important assets in the mm-wave antenna engineer’s toolbox.
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