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A B S T R A C T

Accurate brain tumor segmentation is critical for diagnosis and treatment planning, whereby multi-modal
magnetic resonance imaging (MRI) is typically used for analysis. However, obtaining all required sequences
and expertly labeled data for training is challenging and can result in decreased quality of segmentation models
developed through automated algorithms.

In this work, we examine the possibility of employing a conditional generative adversarial network (GAN)
approach for synthesizing multi-modal images to train deep learning-based neural networks aimed at high-
grade glioma (HGG) segmentation. The proposed GAN is conditioned on auxiliary brain tissue and tumor
segmentation masks, allowing us to attain better accuracy and control of tissue appearance during synthesis.
To reduce the domain shift between synthetic and real MR images, we additionally adapt the low-frequency
Fourier space components of synthetic data, reflecting the style of the image, to those of real data. We
demonstrate the impact of Fourier domain adaptation (FDA) on the training of 3D segmentation networks
and attain significant improvements in both the segmentation performance and prediction confidence. Similar
outcomes are seen when such data is used as a training augmentation alongside the available real images. In
fact, experiments on the BraTS2020 dataset reveal that models trained solely with synthetic data exhibit an
improvement of up to 4% in Dice score when using FDA, while training with both real and FDA-processed
synthetic data through augmentation results in an improvement of up to 5% in Dice compared to using real
data alone. This study highlights the importance of considering image frequency in generative approaches
for medical image synthesis and offers a promising approach to address data scarcity in medical imaging
segmentation.
1. Introduction

Accurate and consistent brain tumor segmentation is crucial for di-
agnosis, treatment planning and post-treatment assessment (Chen et al.,
2017). Gliomas are a prevalent type of brain tumors, further divided
into different tumor grades based on their underlying histology and
molecular characteristics, whereby the most commonly studied ones in-
clude low-grade (LGG) and more aggressive high-grade (HGG) gliomas.
Magnetic resonance imaging (MRI) is most commonly used for glioma
diagnosis, providing the ability to extract complementary information
from multiple sequences to distinguish and assess the key tumor com-
ponents, such as the necrotic and non-enhancing region (NCR/NET),
the peritumoral edema (ED) and the enhancing (ET) region. Typical
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sequences utilized include T1-weighted (T1w), T2-weighted (T2w),
contrast-enhanced T1-weighted (T1ce) and Fluid Attenuation Inversion
Recovery (FLAIR) images (Li et al., 2018; Zhou et al., 2019).

The current gold standard in brain tumor segmentation is manual
tracing by professional radiologists (Işın et al., 2016; Zhao et al.,
2019). However, manual segmentation is a tedious, labor-intensive
and subjective process, leading to inter-expert variability and ques-
tionable accuracy. With the recent rise of machine and deep learning
in medical image analysis, many automated segmentation algorithms
have been proposed in the literature (Işın et al., 2016; Zhao et al.,
2019). Nonetheless, automated brain tumor segmentation remains a
challenging task, largely due to appearance and shape heterogeneity
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of tumor lesions (Wang et al., 2019; Takahashi et al., 2021; AlBadawy
et al., 2018).

While ample research in the field is focused on architectural changes
to improve the segmentation performance of existing methods, these
bring up only a small fraction of improvement, as all such algorithms
mainly rely on the data available for training (Wadhwa et al., 2019;
Magadza and Viriri, 2021). Research in other domains of computer
vision and image processing has already established the need for at-
taining large datasets to train robust and generalizable deep learning
models (LeCun et al., 2015).

However, acquiring cross-institutional heterogeneous data is a chal-
lenging task, made even more difficult by patient privacy and restrictive
data sharing policies (Nalepa et al., 2019). To overcome these limita-
tions, data augmentation has been introduced to artificially increase
variation in existing data, where classical approaches of transforming
the shape and appearance of images have now become a standard.

However, classical approaches rarely cover the extensive variations
typically seen in MR images, often producing very similar or correlated
samples, not beneficial to algorithm training (Shin et al., 2018).

Recent developments in generative adversarial networks (GANs)
have enabled the generation of new images from both labeled and
unlabeled original images, with various ways of injecting variations
in the generation process (Chlap et al., 2021; Chen et al., 2022).
Despite promising results achieved in the domain of medical image
synthesis, considerable distortions are still reported when consider-
ing the frequency information of the generated data (Schwarz et al.,
2021). In fact, most GAN-based synthesis approaches operate in image
space only, which is not sufficient to adequately capture the low-level
features influencing the contrast, texture and large-scale content of
images during training. This leads to potentially sub-optimal results
in a number of downstream tasks, such as segmentation (Zhang et al.,
2022).

This study aims to achieve several objectives. First, we explore
the feasibility of training segmentation models solely with fully syn-
thetically generated data and evaluate the implications of relying on
synthetic images. We perform the same analysis on utilizing syntheti-
cally generated images for augmentation, but we aim to determine the
optimal level of variation and the required amount of data necessary
to continually enhance the segmentation performance. By address-
ing these aspects, we aim to provide insights into the key factors
influencing the effectiveness of augmentation with synthetic images
for improving brain tumor segmentation. Moreover, we analyze the
impact of introducing tumor shape variations during the synthesis
process on the performance of the segmentation model and assess
whether additional variations improve training outcomes. The study
also delves into the effects of aligning the frequency components of
synthetic images with those of real images during model training.
Recent findings have indicated that low-level features, such as style,
and semantic information in images can be captured through the low-
frequency amplitude and phase components of the Fourier transform,
respectively (Yang and Soatto, 2020; Yang et al., 2020). Therefore, we
study whether conditional GANs effectively capture frequency-related
image characteristics and assess the implications for model training and
performance when using GAN-generated images.

2. Related work

Initial approaches focused on generating images using noise-to-
image structures, originating from the vanilla GAN (Goodfellow et al.,
2014) and its variants and synthesizing images from one-dimensional
vectors (Frid-Adar et al., 2018). However, these methods are not able to
perform a pixel-wise matching between two images, crucial for accurate
representation of varying image contrasts in MR imaging. A popular ap-
proach is to take advantage of image-to-image translation frameworks,
utilizing models such as pix2pix to generate the desired contrast (Isola
et al., 2017). However, pix2pix and similar models require paired data,
2

which is typically expensive to obtain for medical images. To overcome
this limitation, the cycleGAN (Lei et al., 2019; Zhu et al., 2017; Hiasa
et al., 2018) was developed for unpaired cross-modality synthesis and
translation. However, unpaired image-to-image translation approaches
still require the presence of two or more modalities during training.
This can be alleviated by methods that focus on learning a mapping
function between a semantic label and a specific modality (Mok and
Chung, 2018), whereby conditional GANs have become increasingly
popular.

Utilizing GAN-based synthetic images for the purpose of data aug-
mentation was first demonstrated in Shin et al. (2018) for brain tumor
segmentation using the pix2pix GAN model (Isola et al., 2017), con-
ditioned on brain and tumor masks with additional tumor variations
achieved by altering the input label maps. Qasim et al. (2020) used a
spatially-adaptive de-normalization (SPADE) GAN model (Park et al.,
2019) to synthesize tumor images for data augmentation, demonstrat-
ing an improved performance for tumor segmentation. The model
is conditioned on both the local and global information to mitigate
the global class imbalance problem. However, there is no additional
augmentation to increase variability in the synthetic data.

While generative adversarial models are now widely utilized to
synthesize images for a wide array of medical imaging modalities, we
rarely see such methods incorporated in clinical practice. Although
GANs enable us to incorporate invariance and robustness into the
training of deep learning-based models in regards to not only affine
transformations, but also variations in tissue shape and appearance,
the convergence of adversarial training and the existence of its equilib-
rium point are still unresolved issues (Nalepa et al., 2019). Moreover,
studies continuously show that generators tend to produce multiple
very similar examples, which cannot serve as means to improve the
generalization of downstream tasks, known as the mode collapse prob-
lem (Wang et al., 2017). A wide range of studies demonstrate that
synthetic images are still not of adequate quality to train models
that perform at the same level as their counterparts trained with real
medical images. This implies the existence of an intrinsic domain shift
between real and synthetic images. Recent studies report the evidence
of considerable distortions in frequency information of synthetic data,
especially at higher frequencies, despite the observed structural simi-
larities with real data (Dzanic et al., 2020; Singh et al., 2021). Some of
this discrepancy in Fourier components have been assigned to specific
architectural components of neural networks, such as regularization
strategies, up-sampling (Durall et al., 2020), as well as linear depen-
dencies in the filter spectrum of convolutional layers (Khayatkhoei and
Elgammal, 2022). A limited amount of studies (Tajmirriahi et al., 2022;
Singh et al., 2021; Mizutani et al., 2016) have addressed these issues
in the domain of medical imaging, where frequency components drive
the acquisition and reconstruction of images.

3. Material and methods

3.1. Data

To train and test the proposed pipeline, we make use of the
BraTS2020 dataset (Bakas et al., 2018), consisting of 369 clinically
acquired, pre-operative multi-modal MRI scans of HGG (N = 293) and
LGG (N = 76) tumors. A set of T1w, T2w, T2-FLAIR and T1ce contrasts
are acquired per subject across multiple institutions (19), scanners and
clinical protocols. Acquisition from variable sources resulted in images
with differences in intensities, contrast, acquisition resolution and
plane, artifacts and quality. All images are co-registered, interpolated
to the same 3D resolution and skull-stripped. The publicly available
training set is accompanied with manual, expert tumor annotations
of ET, ED and NCR/NET tissue. Due to the unbalanced tumor grade
distribution, we focus this work on HGG tumors only (N = 293). We
split the available training data into two sets, for training the synthesis
module and segmentation networks, respectively. In addition, we split
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Fig. 1. An overview of the proposed methodology consisting of a comprehensive label
generation part for conditional image synthesis using SPADE GANs for variable multi-
modal brain tumor MR image generation. Six class labels generated covering full brain
and HGG tumors along multi-modal MR tumor data are used for training along with
their respective T1w, T2w, FLAIR and T1ce sequences.

the latter set of data into training and testing, as neither the testing nor
the validation set is not publicly provided by the BraTS2020 challenge.

In total, we utilize 100 sequences per contrast to train each syn-
thesis module (four modules to generate four MRI contrasts), while we
allocate a separate set of 150 sequences for training all segmentation
models in this work. Ground truth labels from the same 150 sequences
are further deformed and used to generate additional synthetic se-
quences, for a total of 750 synthetic images per contrast. The remaining
43 sequence sets are allocated for testing of the trained segmentation
models.

3.2. Conditional image synthesis

In this study, we focus on the utilization and assessment of syn-
thetic images generated by conditional GANs. To be more precise, the
proposed synthesis approach is conditioned on auxiliary brain tissue
and tumor segmentation masks. Moreover, we stratify the training
of synthesis models per tumor grade and focus on training a GAN
model for HGG synthesis. Our previous experiments show that GANs
trained on mixed-grade images tend to generate unrealistic contrasts,
particularly when it comes to specific tumor regions (Khalil et al.,
2022). This is additionally emphasized by the imbalanced training set,
where examples of HGG tumors largely outnumber the LGG ones.

The overall synthesis pipeline consisting of label generation and
conditional image synthesis is shown in Fig. 1. We utilize a supervised,
mask-guided image generation technique that employs spatially adap-
tive denormalization (SPADE) layers (Park et al., 2019), reinforcing
semantically-consistent image synthesis. The main advantage of this
approach is provided by the utilization of SPADE layers, designed to
inject information from the available segmentation maps throughout
the network, guiding the generator to correctly learn the translation
between tissue classes and their realistic appearance in real MR images.
This is important for learning the textual features (style) of separate
tissue classes and preventing information loss when passed through
multiple convolutional layers. We opt for SPADE GANs as our previ-
ous work in Amirrajab et al. (2022) confirms the superiority of the
SPADE generator in synthesizing high quality contrast compared to
other popular models. Our experiments further show that utilizing
3

comprehensive tissue labels, i.e. obtaining segmentation maps of all
major structures in the image field of view (FOV) leads to improved
quality and realism of the generated images. This allows us to pro-
duce realistic and consistent tissue contrast not only across tumorous
regions, but also across all visible brain tissue, compared to similar
approaches available in the literature (Qasim et al., 2020). Thus, in
addition to expert annotations of tumor tissue (ET, ED and NCR/NET)
available in the BraTS2020 dataset, we obtain a set of whole-brain
labels of white matter (WM), gray matter (GM) and cerebrospinal fluid
(CSF). These labels are generated on BraTS2020 T1w MR images for
all HGG subjects, obtained using a model-based brain segmentation
approach (Wenzel et al., 2018) combined with a multi-scale fully
convolutional architecture for processing images at different scales and
FOVs (Brosch and Saalbach, 2018). The generated labels are combined
with the available tumor labels to obtain a six-class input label map per
subject.

Separate 2D SPADE GANs are trained for HGG synthesis per modal-
ity, using multi-modal structural MR data along with the combined
six-class label maps. All images undergo pre-processing through in-
plane center cropping and removal of empty slices (in transversal
direction) lacking brain tissue. Moreover, we utilize a matrix size of
192 × 192 with 128 axial slices and an isotropic resolution of 1 mm for
both images and labels during training. All models are trained using the
Adam optimizer with a learning rate of 0.0002 and a batch size of 12
on three NVIDIA TITAN Xp GPUs, without any data augmentation. All
other training parameters, architecture and losses remain the same as
in Park et al. (2019). In total, four separate 2D SPADE GANs are trained
on axial slices of T1w, T2w, T1ce, and FLAIR brain tumor MR images,
respectively. At inference time, all models require a set of combined
tumor and brain tissue labels at the input. The same set of unseen labels
derived from a real MRI is fed to all four image synthesis networks
for obtaining T1w, T2w, T1ce, and FLAIR contrasts, representing the
provided tissue mask.

To increase synthetic image variability, we modify input label maps
by changing the tumor’s shape and size using three deformations: elas-
tic transformations, dilation, and erosion. Random elastic deformations
are applied using seven control points along each dimension of the
coarse grid, with a maximum displacement of 10 voxels for plausible
deformations. These deformations are applied to the complete set of
labels, including the whole brain and tumor. Morphological deforma-
tions, such as dilation and erosion, are only applied to tumor class
labels using spherical structuring elements of different diameters. This
results in the enlargement and shrinking of different tumor regions.
The deformed tumor class labels are then combined with the original
brain labels to create multiple plausible combinations, including the
enlarged NCR/NET, ET, and ED, as well as the shrunk ED with enlarged
ET. Additionally, elastic deformations are applied to NCR/NET, ED, ET,
GM, WM, and CSF.

Our primary goal is to generate realistic MR images with diverse
tumor shapes and sizes to enhance segmentation accuracy by capturing
textural and contrast changes in tumor regions. However, modeling the
intricate anatomy and appearance of various tumor tissues is challeng-
ing and not the main objective of our work. We recognize that elastic
and morphological deformations can result in highly unrealistic shapes,
so we ensure that the generated shapes align with volumetric variations
documented in the literature (Dang et al., 2022), thereby maintaining
plausibility. Additionally, we take into account the relationship be-
tween neighboring tissues, considering the structural changes observed
in different patients. For instance, we acknowledge that edema, which
is typically diffuse and less well-defined compared to the enhancing
tumor, often extends beyond the boundaries of the tumor itself, encom-
passing a larger area of the brain tissue. Furthermore, the NCR/NET
tumor can exhibit a wide range of sizes, spanning from small focal areas
to larger extensive regions. To capture this variability, we generate

both prominent non-enhancing regions that encompass a significant
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Fig. 2. (A) Range of volumes per tumor region and the whole tumor represented by
different subsets of generated synthetic data, where variation in tumor shape and size
is encouraged through transforming brain and tumor labels at the input of the synthesis
module. Examples of tumor and whole brain transformations for a single subject across
different contrasts, compared to the original tumor/brain shape, is shown in (B).

proportion of the tumor volume and small focal areas, ensuring that
our generated images reflect the full spectrum of tumor sizes.

Examples of different transformations applied to labels and the
generated synthetic images can be observed in Fig. 2. Fig. 2 also shows
the change in both brain tissue and shape volumes as various subsets
of generated synthetic data are selected for training. We observe a
trend of increasing tumor volume variation with larger datasets, but no
significant increase in shape and volume diversity is found for subsets
with over 600 images. Therefore, we experiment with different subsets
of training data to evaluate whether they contain sufficient variation to
support the training process.

3.3. Fourier domain adaptation

While we produce synthetic images of realistic contrast per modality
and tumor grade, there are several observed issues with the appearance
of the generated images compared to real MRIs. First, while GANs can
produce diverse samples capturing the statistical distribution inherent
to the training data, the generated images often exhibit reduced con-
trast and a narrower intensity range, resulting in a perceptually lower
dynamic range compared to real images. Secondly, GAN-based synthe-
sis methods, currently constrained to image space, face challenges in
accurately reproducing textures and fine details. This limitation largely
4

arises from a spectral bias favoring low-frequency signals over high-
frequency components, resulting in the loss of fine-grained information
and texture details in the generated images (Li et al., 2023).

Operating in k-space or on frequency components of images has
only recently been recognized as an efficient, but simple domain
shift adaptation strategy when tackling images coming from different
sources or domains (Kong and Shadden, 2020; Liu et al., 2021). Accord-
ingly, we adapt the Fourier domain adaptation (FDA) technique in Yang
and Soatto (2020) to 3D images and swap the low-frequency amplitudes
of synthetic images with those of real images belonging to the same
modality (see Fig. 3). As amplitudes of the low-frequency spectrum
components mostly contain the information about low-level image
characteristics, typically capturing the strength of global or large-scale
variations in overall brightness, intensity distribution, contrast and
texture, this approach helps with aligning the domain shift between
the distributions of synthetic and real images. GANs may struggle
to precisely capture the complexity and variability of these low-level
characteristics present in real images, leading to discrepancies between
the synthetic and real domains.

If real MR image counterparts are available for synthetic images
during synthesis, they can be directly used for the FDA. However, when
there is a limited number of image contrast examples compared to a
large set of brain tissue and tumor labels, caution should be exercised
when applying FDA. Randomly swapping spectral components between
images can lead to visual artifacts, particularly if the images differ sig-
nificantly in semantics. To ensure semantic similarity before applying
FDA, metrics like the spectral residual similarity index (SR-SIM) (Zhang
and Li, 2012) can be employed. In our approach, we carefully select
image pairs based on their shared brain tissue labels, prior to applying
any morphological or elastic deformations. In other words, the selection
of the original real image to which the synthetic image will be adapted
to using FDA is based on the fact that its brain tissue and tumor labels
were morphologically or elastically deformed to generate that specific
synthetic image. Here, we consider the corresponding synthetic images
the most similar semantically to real images from which the original
labels, prior to the deformation step, are extracted.

We perform the alignment in the Fourier domain as follows. For
simplicity, let 𝑎,𝑝 ∶ R𝐻𝑥𝑊 𝑥1 → R𝐻𝑥𝑊 𝑥1 be the amplitude and
phase components of the Fourier transform  of a 2D gray-scale, single
channel image 𝐼 :

 (𝐼)(𝑚, 𝑛) =
∑

ℎ,𝑤
𝐼(ℎ,𝑤)𝑒−𝑗2𝜋(

ℎ
𝐻 𝑚+ 𝑤

𝑊 𝑛), 𝑗2 = −1, (1)

implemented using the FFT algorithm (Frigo and Johnson, 1998). Using
the inverse Fourier transform, −1, image phase and amplitude can be
mapped back to image space. Furthermore, a low-frequency amplitude
cut-out window, 𝑀𝛽 , whose value is zero for the region where 𝛽 ∈ (0,1),
is defined as:

𝑀𝛽 (ℎ,𝑤) = 1(ℎ,𝑤) ∈ [−𝛽𝐻 ∶ 𝛽𝐻,−𝛽𝑊 ∶ 𝛽𝑊 ], (2)

where 𝛽 represent the size of the swapping window and does not
depend on image size and resolution. Thus, given two paired images
𝐼𝑠 ∈ 𝐷𝑠 and 𝐼 𝑡 ∈ 𝐷𝑡 from source and target domains, respectively, FDA
is defined as:

𝐼𝑠→𝑡 = −1([𝑀𝛽◦𝑎(𝐼 𝑡) + (1 −𝑀𝛽 )◦𝑎(𝐼𝑠),𝑝(𝐼𝑠)]), (3)

where the low frequency part of the source image amplitude 𝑎(𝐼𝑠) is
replaced by the one extracted from the target image, while its phase
component 𝑝(𝐼𝑠) remains unaltered. Such modified spectral represen-
tation is mapped back to image 𝐼𝑠→𝑡. The procedure is visualized in
Fig. 3.

For 𝛽 = 0, the adapted image 𝐼𝑠→𝑡 will remain the same as the
original source image 𝐼𝑠. On the other hand, with 𝛽 = 1, the amplitude
of 𝐼𝑠 will be completely replaced by that of 𝐼 𝑡. Moreover, as the value of
𝛽 increases to 1, the amount of visible artifacts tends to increase. Thus,
for each of the four sequences used in this study, we experimentally
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Fig. 3. Fourier domain adaptation (FDA) applied to synthetic images to address the distortions in the frequency spectrum.
determine the value of 𝛽 that produces images similar in appearance
to the real target MR images, while avoiding the generation of extreme
artifacts (see Appendix C, Table 1). In particular, the values of 𝛽 for the
adaptation of T1w, T2w, FLAIR and T1ce images are chosen to be 0.1,
0.001, 0.03 and 0.001, respectively. We generally observe that higher
values of 𝛽 distort the T2w and T1ce sequences significantly in some
cases, while they work better for T1w and FLAIR images.

Note that before FDA, all images are normalized to intensities
from [0,1], as well as resampled to an isotropic resolution of 1 mm.
After FD adaptation, we apply contrast stretching, rescaling the image
intensity levels to include all intensities that fall within the 2nd and
98th percentile.

3.4. Segmentation

3.4.1. Network architecture and training
To perform the experiments in this study, we adapt a 3D nnU-

Net (Isensee et al., 2021) model for a multi-class and multi-channel
segmentation task with several modifications to improve the general-
ization of the model to a variety of sequences utilized in this study. We
replace the standard instance normalization layers of the baseline nnU-
Net with batch normalization, use Leaky ReLUs and introduce heavier
data augmentation compared to the standard pipeline. These include
image scaling (𝑝 = 0.3) with a scaling factor in the range of [0.7–1.4],
random rotations within ±60 degrees (𝑝 = 0.7), random horizontal and
vertical flips (𝑝 = 0.3) and elastic transformations (𝑝 = 0.3). Moreover,
we apply intensity transformations in the form of gamma correction
(𝑝 = 0.3) with the gamma factor ranging within [0.5–1.6], additive
brightness transformations (𝑝 = 0.3) with the brightness factor varying
within [0.7–1.3] and multiplicative brightness (𝑝 = 0.3) with a mean of
0 and standard deviation of 0.3.

Each imaging sequence is fed separately per channel, forming an
input of size 4 × H × W × D, where 4 denotes the number of
channels or sequences used, while H, W, D stand for image height,
weight and depth, respectively. The input patch size is selected to be
96 × 160 × 128 with a batch size of 2. We modify the data-loader to
ensure that each batch consists of one synthetic and one real image, to
avoid over-fitting on synthetic images. A total of five down-sampling
operations are performed, with an initial number of convolutional
kernels set to 32. We use a combination of Dice and cross-entropy loss,
optimized using Adam for stochastic gradient descent, with an initial
learning rate of 10−3 and a weight decay of 3e−5. The loss operates on
the three target labels — edema, necrosis and enhancing tumor. During
5

training, the learning rate is reduced by a factor of 5 if the validation
loss has not improved by at least 5 × 10−3 for 50 epochs. We train all
models for a maximum of 1000 epochs, where early stopping is applied
when the learning rate drops below 10−6. Moreover, all models are
optimized and trained under a 5-fold cross-validation set-up using all
training data.

3.4.2. Post-processing
As a post-processing step, we remove the false positive predictions

of the enhancing tumor in cases when the predictions are below a
certain threshold and replace them by the necrotic tissue. The optimal
threshold is selected using the training set cross-validation approach,
according to the best mean Dice score of the enhancing tumor region.
This is followed by a connected component analysis on the predicted
labels, where we remove all but the largest connected component per
class.

3.5. Evaluation

To quantitatively assess the quality of synthesized images and the
effect of FDA on synthetic data, we utilize reference-based image
quality metrics, which include the structural similarity index (SSIM),
peak signal-to-noise ratio (PSNR) and the mean squared error (MSE).
We additionally include a measurement of SR-SIM, which uses spectral
residual visual saliency maps as a feature to compute the local similar-
ity maps between two images (Zhang and Li, 2012). SR-SIM is designed
based on the assumption that an image’s visual saliency map has a close
relationship with its’ perceptual quality. The quantitative assessment
of image quality is done on a small subset of 50 synthetic images
generated using the original labels from real multi-modal images from
the segmentation training set (see Section 3.1), which serve as reference
images during the computation of image quality metrics. The selected
synthetic images are adapted using the FDA approach to one of the
remaining 100 original real images from the assigned segmentation
training set, whereby we use SR-SIM to match the most structurally
and semantically similar images.

To assess the performance of the proposed approach, we perform a
quantitative evaluation in terms of the standard segmentation metrics
reported in the literature — Dice score, Hausdorff distance (HD), sen-
sitivity and specificity. To understand the impact of augmentation and
training with synthetic data on model confidence and prediction qual-
ity, we utilize Monte Carlo (MC) dropouts for uncertainty mapping (Gal
and Ghahramani, 2016). We add ‘‘infer-dropouts’’ to each trained
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model during inference and insert them after each contraction and
expansion block with dropout rates of {0.01, 0.025, 0.05, 0.1, 0.2, 0.5}.
Along with the standard inference without any dropout, this results in
six tests per model, using the specified dropout rates on the same test
data, without changing any model weights or parameters. From the
predicted softmax probabilities, we compute a final uncertainty map
as a pixel-wise variance across all predictions.

4. Experiments

This study aims to evaluate the efficacy of multi-modal synthetic
brain MR images in localizing and segmenting high-grade gliomas
in real MR sequences, while exploring the impact of the number
of synthetic images and diversified tumor shapes during training on
segmentation performance. The second major aspect of the proposed
study is addressing the perceived gap between the frequency spectrum
of real images and those produced by GANs, as discussed in 3.3.

We utilize 150 multi-modal sequences per patient, synthesized from
the BraTs training set, and an additional 150 sequences per deformation
strategy (see Section 3.2), for a total of 750 images with varying tumor
shapes. Our investigation focuses on the following aspects:

1. We evaluate the segmentation performance of models trained
on synthetic sequences, whereby multiple models for whole-
tumor detection and segmentation are trained on a gradually
increasing number of synthetic sequences generated from de-
formed tumor shapes. These models are then compared to a
baseline model trained on 150 real multi-modal MR sequences.

2. We explore the effects of Fourier domain adaptation (FDA) on
the performance of models trained with synthetic images.
FDA is applied to all generated images, followed by re-training
the aforementioned models using the adapted images.

3. We additionally evaluate the quality of synthetic images with
and without the application of FDA using several different
computational metrics that reflect their perceptual and struc-
tural quality compared to their multi-modal real image counter-
parts.

4. We assess the impact of utilizing synthetic multi-modal im-
ages for augmentation. This involves gradually augmenting
150 real multi-modal sequences with an additional set of 750
sequences, which exhibit diverse tumor shapes. We investigate
the role of frequency components in addressing the domain shift
between real and synthetic data.

5. Results

Training with synthetic data: Fig. 4(a) and (b) show the segmentation
performance of multi-modal segmentation models trained on synthetic
sequences generated in this work in terms of Dice and 95th percentile
Hausdorff Distance (HD95), respectively, whereby the amount of data
is gradually increased during training. As the amount of data increases,
we note an improvement in model performance, which saturates at
around 600 synthetic images used for training. Further expansion of
the training set does not lead to additional gains in performance, as
observed by the Dice and HD95 scores. We hypothesize that enlarging
the training set further does not offer any additional variation in shape
or contrast for the network to uncover and learn new information.
The findings in Fig. 2 A indicate that training sets comprising more
than 600 synthetic images exhibit restricted diversity in the shapes and
sizes of various tumor regions. Consequently, this limited diversity may
not yield a substantial increase in valuable information for networks
to capture, resulting in negligible performance improvements. This
limitation could be partly influenced by the availability of real data
with annotations for training the synthesis model and manipulating
the anatomy through spatial transformations. Additionally, the nature
of the transformations used, such as morphological and elastic trans-
formations, constrains the number of plausible anatomical shapes that
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Fig. 4. Change in segmentation performance when training with a progressively
increasing number of synthetic images in terms of the (a) Dice and (b) 95th percentile
Hausdorff Distance. All scores are calculated across three different tumor regions:
necrotic and non-enhancing tumor (NCR/NET), peritumoral edema (ED) and enhancing
tumor (ET).

can be generated. Finally, utilizing a large number of synthetic images
may lead to overfitting due to the presence of highly similar examples,
negatively impacting the training process.

Effects of FDA: Considering the best performance is obtained using
600 synthetic images for training, we select this model for further
analysis. Table 1 outlines the performance of the segmentation model
trained solely on synthetic data in comparison to the baseline model,
trained on real images. While across a number of tissues and perfor-
mance metrics, the baseline model produces significantly better results
(p-value < 0.01), the performance of the model trained on synthetic
data can be comparable to training with real data, as well as to other
results reported in the literature (Tiwari et al., 2020; Soomro et al.,
2022). However, applying FDA to all synthetic images and retraining
the model leads to significant performance improvements compared to
training on unadapted synthetic data. The average Dice and precision
scores are improved by 2%–3% compared to training without FDA,
while we note an improvement of up to 12% in recall. In addition, the
results of the model trained with FDA post-processed synthetic images
do not significantly differ from those of the baseline model (p-value
> 0.01) across most metrics. These results suggest that the frequency
spectrum’s domain shift is a contributing factor to why synthetic images
generated through standard GAN-based methods cannot fully replace
real data during training. This is in addition to the already extensively
studied domain shift in the image domain.

While the above experiment suggests that FDA has a positive impact
on a downstream segmentation task, it does not indicate whether FDA
also improves the perceptual and structural quality of synthetic images.
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Table 1
Segmentation performance of multi-modal segmentation whole-tumor networks trained on a varying number of synthetic sequences, with and without the application of FDA. All
models are compared to the baseline, M𝐵 , trained on original 150 training sequences in the BraTS dataset. We report the average Dice, 95th percentile Hausdorff distance (HD95),
sensitivity and precision scores, along with standard deviation. Bold values indicate the best performing values per metric.

Methods Dice HD95

WT NCR/NET ED ET WT NCR/NET ED ET

Baseline (N = 150) 0.921 (0.02) 0.793 (0.21)* 0.872 (0.12) 0.882 (0.11) 9.37 (6.31)* 5.53 (5.08) 5.31 (4.89)* 2.87 (2.67)
M_Syn (N = 600) 0.897 (0.06) 0.745 (0.22) 0.831 (0.13) 0.846 (0.11) 12.03 (9.32) 7.29 (6.51) 10.13 (8.95) 3.16 (2.91)
M_Syn + FDA 0.933 (0.04)* 0.774 (0.18) 0.863 (0.11) 0.872 (0.09) 9.87 (8.21) 5.36 (5.31) 7.81 (6.93) 2.55 (2.43)

Precision Recall

Baseline (N = 150) 0.971 (0.02) 0.745 (0.25) 0.848 (0.16) 0.972 (0.02)* 0.934 (0.03) 0.842 (0.15) 0.911 (0.07)* 0.819 (0.17)
M_Syn (N = 600) 0.932 (0.05) 0.789 (0.26) 0.837 (0.17) 0.918 (0.06) 0.887 (0.07) 0.742 (0.27) 0.828 (0.12) 0.809 (0.18)
M_Syn + FDA 0.963 (0.03) 0.833 (0.21)* 0.862 (0.16)* 0.954 (0.04) 0.931 (0.04) 0.834 (0.12) 0.861 (0.11) 0.872 (0.11)

* Indicates any statistically significant result with respect to other models, according to the Wilcoxon signed-rank test for 𝑝 < 0.01.
Thus, we randomly select a subset of 50 multi-modal images is from a
training set of 150 images allocated for segmentation network training,
comparing them with their synthetic counterparts with and without the
application of FDA, derived from original brain tissues and tumor la-
bels, ensuring a straightforward structural similarity assessment. In this
experiment, the Fourier domain adaptation (FDA) has been performed
by aligning the selected 50 images to one of the remaining 100 images
from the training set using the SR-SIM measure.

We choose a realistic approach in the experiment by using available
real images for FDA adaptation, instead of directly applying it to
original real MRI counterparts of synthetic images. To mitigate the
detrimental effects of spectral component swapping, source and target
images are chosen based on semantic similarity using SR-SIM. Although
SR-SIM is primarily for 2D images, we adapt it for a 3D context by
calculating average similarity scores between scan slices. We repeat
this selection and adaptation process across various MR modalities,
allowing images from the same patient to match with different targets
based on modality. We then compare the adapted to real MR images
using standard measures like MSE, SSIM, and PSNR, assessing the
FDA’s efficacy in enhancing image quality. In addition, we report the
SR-SIM as an indicator of spectral component similarity. This com-
prehensive process, including comparisons for non−adapted synthetic
images, offers a valuable insights into FDA′s influence on perceptual
and structural image quality. The summarized results are available
in Table 2, focusing primarily on brain-related structures. The results
indicate significant improvements across all metrics for T1w synthetic
images after the application of FDA, while T2w and T1ce exhibit signif-
icant improvements according to SSIM and PSNR scores. Notably, the
derived SR-SIM values of synthetic images reveal substantial distortions
in their spectral components. Applying FDA is shown to significantly
reduce these distortions across all modalities, whereby a higher SR-
SIM value signifies enhanced structural and spectral similarity with
reference to the original real image.

Augmentation with synthetic images: In Table 3, we can observe the
results of augmenting the allocated training set of real multi-modal MR
sequences with synthetic images, with and without the application of
FDA post-processing before training. We report the best results across
models trained with varying amounts of synthetic data (see Appendix
A, Fig. A.1), which are obtained for a total of N = 600 synthetic
sequences added to the available 150 real sequences. While we already
achieve considerable improvement in the segmentation performance
by augmentation with synthetic images (model M_Aug), utilizing FDA
(M_Aug + FDA) leads to further improvements. In fact, across some
tissues, such as NCR/NET and ED, we note significant (p-value < 0.01)
improvements in Dice and precision scores, while similar results are
also observed for the segmentation of the whole tumor across HD95
and recall values. Visual observation confirms that the application
of FDA helps with the segmentation of smaller structures, such as
the tumor core, necrotic region or the boundary areas of the peritu-
moral edema. Examples of segmentation maps derived from differently
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trained models are available in Fig. B.1 (Appendix B).
Fig. 5. Confidence or uncertainty maps of model predictions across different tumor
regions plotted as normalized pixel-wise variance of infer-dropout predictions per
model. We compare the baseline model, trained on all available real MR sequences
to models trained entirely using synthetic data with and without FDA, as well as
to a model augmented with FDA post-processed synthetic data. All variance values
range between 0 and 1, where higher values (yellow) indicate an increase in prediction
confidence of the model. Lower values (close to 0) indicate regions where the model
is uncertain.

To further understand the impact of synthetic images on training,
we plot uncertainty maps of pixel-wise prediction variance obtained
from infer-dropouts described in Section 3.5. Fig. 5 displays uncertainty
maps for various tumor regions, indicating the models’ confidence
levels when trained solely on synthetic data with and without FDA,
as well as when using synthetic data in augmentation. We present only
a small subset of examples, mainly those in which models trained on
synthetic data display high uncertainty in predictions. The examples in
Fig. 5 demonstrate a substantial decrease in model confidence when
trained on synthetic data without FDA post-processing. However, ap-
plying FDA significantly improves model confidence, reducing under-
or over-segmentation in these areas. Using FDA post-processed syn-
thetic sequences for augmentation results in significant improvement
over the baseline model trained solely on real sequences. Notably, there
are significant gains in confidence at the tumor region borders and
smaller structures, which are often challenging to delineate visually.
Fig. 6 illustrates the probability distribution of certainty scores per
tumor region for models trained on synthetic data with and without
FDA, as well as for augmentation, evaluated across the entire test-
ing set. Models trained on synthetic data without FDA exhibit the
lowest certainty in predicting tumor regions, as supported by our
previous observations and quantitative results. However, incorporating
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Table 2
Mean, standard deviation, max and min of image quality metrics of HGG synthesized multi-modal MR images with and without FDA compared to real MRI. Mean values of any
statistically significant improvements in the derived scores of Fourier domain adapted (FDA) synthetic images with respect to synthetic images without FDA are indicated in bold,
according to the Wilcoxon signed-rank test for 𝑝 < 0.01.

T1w T1w + FDA T2w T2w + FDA FLAIR FLAIR + FDA T1ce T1ce + FDA

SSIM

Mean 0.747 0.823 0.841 0.857 0.797 0.832 0.842 0.855
Std 0.075 0.039 0.023 0.017 0.027 0.056 0.037 0.028
Max 0.905 0.919 0.879 0.898 0.846 0.921 0.881 0..893
Min 0.598 0.647 0.749 0.782 0.641 0.671 0.613 0.697

PSNR

Mean 15.643 18.908 20.122 23.192 20.906 22.121 22.893 25.818
Std 3.025 2.004 1.717 1.271 1.694 1.682 1.763 1.801
Max 21.456 27.542 23.937 26.322 24.359 27.571 25.861 27.921
Min 9.159 12.811 16.926 18.541 15.138 16.381 15.482 18.754

MSE

Mean 0.033 0.014 0.007 0.006 0.009 0.005 0.006 0.004
Std 0.016 0.012 0.003 0.003 0.004 0.003 0.003 0.002
Max 0.121 0.059 0.021 0.011 0.031 0.018 0.031 0.014
Min 0.007 0.002 0.004 0.002 0.004 0.002 0.003 0.002

SR-SIM

Mean 0.333 0.679 0.492 0.741 0.473 0.723 0.512 0.759
Std 0.068 0.128 0.239 0.167 0.231 0.116 0.321 0.183
Max 0.483 0.879 0.756 0.913 0.692 0.893 0.873 0.912
Min 0.169 0.356 0.203 0.493 0.218 0.431 0.347 0.592
Table 3
Effect of augmentation using synthetic MR sequences (N = 600) with and without the application of FDA, compared to the baseline model trained on 150 real MR sequences of
brain tumor images. The average DSC, HD95, precision and recall scores, along with their respective standard deviation values, are reported across the whole tumor (WT) and
different tumor regions (NCR/NET, ED and ET). Bold values indicate statistically significant improvement w.r.t to the baseline.

Methods Dice HD95

WT NCR/NET ED ET WT NCR/NET ED ET

Baseline (N = 150) 0.921 (0.02) 0.791 (0.21) 0.874 (0.12) 0.881 (0.11) 9.37 (6.31) 5.53 (5.08) 5.31 (4.89) 2.87 (2.67)
M_Aug (N = 750) 0.945 (0.03) 0.808 (0.17) 0.897 (0.07) 0.892 (0.09) 8.11 (7.39) 4.26 (4.08) 2.93 (2.72) 1.85 (1.73)
M_Aug + FDA 0.952 (0.03) 0.821 (0.15)* 0.911 (0.06)* 0.903 (0.07) 7.85 (6.83)* 3.39 (3.11)* 2.52 (2.11) 1.61 (1.52)

Precision Recall

Baseline (N = 150) 0.965 (0.02) 0.753 (0.25) 0.853 (0.16) 0.971 (0.02) 0.925 (0.03) 0.841 (0.15) 0.912 (0.08) 0.819 (0.17)
M_Aug (N = 750) 0.971 (0.02) 0.846 (0.18) 0.883 (0.12) 0.978 (0.02) 0.947 (0.03) 0.865 (0.12) 0.922 (0.06) 0.898 (0.08)
M_Aug + FDA 0.978 (0.01) 0.865 (0.11)* 0.906 (0.08)* 0.983 (0.01) 0.953 (0.02)* 0.871 (0.11) 0.934 (0.04)* 0.907 (0.06)*

* Marks significant improvements achieved by applying FDA compared to M_Aug, according to the Wilcoxon signed-rank test for p < 0.01.
FDA improves model performance, and using synthetic images for aug-
mentation further increases model confidence compared to the baseline
trained on real data only.

Effect on other segmentation architectures: In order to evaluate the
consistency of the effects that the utilization of synthetic images with
and without FDA has on the performance of segmentation networks in
general, we compare the performance of the 3D nnU-Net models used
in this study to other 3D state-of-the-art (SOTA) architectures proposed
for multi-modal brain tumor segmentation. We perform the comparison
under the same setup as reported in Tables 1 and 3, whereby a total
of 600 synthetic images with and without FDA are utilized for training
each network solely(Syn and Syn + FDA, respectively), as well as for
training data augmentation (Aug and Aug + Syn, respectively). The
total number of images used in the augmentation scenario is always
750, where the remaining 150 multi-modal images belong to real MRI
segmentation training data. All baseline networks are trained only with
this set of 150 multi-modal real images.

In order to provide a fair comparison, we try to train all networks in
a consistent manner, minimizing the differences as much as possible be-
tween the training parameters and procedure. All networks are trained
in a multi-modal manner, consisting of 4 96 × 160 × 128 input channels
for each modality. If both synthetic and real images are used during
training (augmentation experiments), the data-loader is modified to
ensure that each batch consists of an equal number of synthetic and
real images, to avoid over-fitting. Unless otherwise specified, all net-
works utilize a combination of Dice and cross-entropy loss, optimized
using Adam with variable learning rates and weigh decay, as well as
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Fig. 6. Probability distribution plots of certainty scores per tumor region for models
trained using synthetic data only with and without FDA, as well as the model
augmented with FDA-processed images, compared to the baseline trained with real
data. Regions evaluated include (a) the whole tumor (WT), (b) peritumoral edema
(ED), (c) necrotic and non-enhancing tumor region (NCR/NET) and (d) the enhancing
tumor (ET).

learning rate reduction based on the validation loss in a 5-fold cross-
validation set-up. We further utilize a consistent data augmentation
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set-up, as described in Section 3.4.1. Finally, early stopping is used
for all models when the learning rate drops below 10−6. The following
SOTA architectures are evaluated:

• 3D U-Net (Çiçek et al., 2016): a simple implementation of a 3D
U-Net, trained end-to-end from scratch with a total of 4 encoder–
decoder layers and a batch size of 2, the initial learning rate of
0.001 and a weight decay of 1e−5;

• V-Net (Milletari et al., 2016): an end-to-end fully convolutional
3D neural network with residual layers and the replacement of
max-pooling operations with convolutional ones, trained using a
batch size of 2, an initial learning rate of 0.0001 and a weight
decay of 10−5;

• Autoencoder regularization (AE Reg) (Myronenko, 2019): a
3D encoder–decoder architecture with a variational autoencoder
(VAE) added to the network to reconstruct the input images
jointly with segmentation in order to regularize the shared en-
coder, trained using a combination of the Dice loss, L2 loss on the
VAE branch and a VAE penalty term based on the KL divergence
with an Adam optimizer and an initial learning rate of 0.0001,
progressively decreased (as described in Myronenko, 2019) for a
total of 300 epochs and a batch size of 1.

• Hi-Net (Qamar et al., 2021): a hyper-dense inception 3D U-Net
trained using a combination of cross-entropy and Dice loss with
an Adam optimizer, an initial learning rate of 3 × 10−5, a batch
size of 2 and a weight decay of 1e−5;

• TransBTS (Wang et al., 2021): a transformer-based encoder–
decoder network trained with a batch size of 16 on 8 NVIDIA
Titan Xp GPUs (12 GB) for 6000 epochs using a combination of
Dice and cross-entropy loss with an Adam optimizer, an initial
learning rate of 0.0004 and a weight decay rate of 10−5, without
any test time augmentation applied as in the original work.

Fig. 7 outlines the mean Dice scores and standard deviation per
brain region across all networks, trained under five different set-ups.
We observe a similar pattern as reported in Tables 1 and 3, where
training with synthetic images incurs a drop in performance across
all networks. However, applying FDA partially alleviates this decrease
in performance, as evidenced also in the augmentation experiments.
While both Hi-Net and TransBTS outperform other methods, the results
obtained by utilizing the 3D nnU-Net optimized in this work consis-
tently yield the highest results. Nevertheless, it is important to note
that most methods in this experiment were utilized as-is, with limited
time invested in optimization.

6. Discussion

In this work, we demonstrate the viability of utilizing fully synthet-
ically generated brain MR sequences for brain tumor segmentation. We
achieve this through a conditional architecture based on SPADE GANs,
guided by fully semantic labels of the brain and tumor regions, trained
to generate corresponding T1w, T2w, FLAIR and T1ce images per input
label. Since the content pathway of the generative model is completely
separated from the style pathway, we are able to condition the GANs
on any labels, which we utilize to generate a large number of data
with variations in tumor shape and size using elastic and morphological
transformations. We further demonstrate that such highly variable
GAN-based synthetic data can be used to train segmentation models
with reasonable performance on the target distribution composed of
real data. However, we still note a discrepancy in performance between
models trained with synthetic data compared to training with real
MR sequences, and show that it can be attributed to the disparity
between the frequency spectra of images. More importantly, this dispar-
ity negatively impacts models augmented with synthetic data, limiting
their performance on unseen real data. By utilizing Fourier domain
adaptation and adjusting the low-frequency amplitudes of synthetic
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Fig. 7. Effect of utilizing synthetic multi-modal images for brain tumor segmentation
with and without FDA for training and augmentation of different 3D segmentation
architectures. All results are reported in terms of mean Dice scores and standard
deviation across four different brain regions.

images to those of real images, we are able to partly account for this dis-
crepancy and improve the performance of models trained on synthetic
data. This is further confirmed through the experiments on uncertainty
analysis using the MC dropout technique, demonstrating that using FDA
post-processing on synthetic images improves the confidence in model
predictions.

Similar to other findings (Zhang et al., 2022; Dzanic et al., 2020;
Schwarz et al., 2021; Tajmirriahi et al., 2022), we confirm there is a
considerable shift in both the image and frequency domain between
synthetic and real images, which affects the overall realism of such
images and may lead to the generation of insufficient surrogates for
training. In fact, current state-of-the-art generative adversarial models
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used for medical image synthesis fail to transfer low-level and higher
frequency components accurately during generation. We demonstrate
that even a simple post-processing step, which considers the transfer of
frequency components, plays a vital role in generating realistic images
and improving the performance of DL-based neural networks trained
with synthetic data for segmentation tasks. Similar results are observed
when utilizing synthetic images for augmentation.

Our experiments further demonstrate that using synthetic images for
training segmentation models requires a significantly larger number of
images to achieve similar performance compared to using real images,
even with diverse variations in tissue shape and appearance. Similar
observations are noted for augmentation purposes, whereby adding a
significantly higher number of variable synthetic images is required to
achieve statistically significant improvements. This could be attributed
to the overall domain shift between synthetic images and real images
but also implies that conditional models still produce highly-correlated
images with insufficient variation to enhance the network’s discrimina-
tive ability. Nevertheless, creating these images demands considerably
fewer resources than obtaining data through a proper MR acquisition
procedure, particularly for tumor data that depend on the limited
number of patients available at a particular hospital or site. We also
observe that networks augmented with synthetic images particularly
struggle with small structures of irregular shapes, as well as areas at
the border between different tumor regions (see Fig. B.1 of Appendix
B). This is typically a side-effect of blurred edges and low contrast in
these regions, commonly found in synthetic images. Despite attempting
to address this by considering the low-level Fourier image components,
it continues to be a significant source of prediction errors.

Although the proposed work demonstrates improvement, it has
some limitations. Firstly, the experiments are conducted on a relatively
small dataset, particularly for inference evaluation. Additionally, the
dataset only includes HGG tumors, while it would be valuable to
investigate the impact of the method on LGG and other tumor types.
The overall method should further be tested in a clinical environment
to assess the true benefit of both the synthesis and FDA in the clin-
ical practice, as well as validate the generalization of the approach
to other segmentation architectures. Finally, while we uncover the
potential problems of image synthesis methods in medical imaging and
emphasize the importance of considering the spectral characteristics of
generated images, further studies are needed to uncover the extent to
which both low- and high-frequency components influence the realism
of synthetic data, as well as the training and segmentation performance
of DL-based networks. By leveraging methods like FDA, we can partially
address challenges related to the generation of appropriate spectral
image characteristics during synthesis. However, alterations in the
Fourier spectra can potentially introduce artifacts in the image domain.
In the current approach, we try to mitigate the artifacts by selecting the
source and target images based on their structural similarity, which can
also be done through visual saliency and spectral similarity indices such
as SR-SIM. Careful control of parameters influencing the FDA process
is also critical, such as the size of the component swapping window 𝛽
that requires balancing between smoothing out frequency discrepancies
and preserving the original spectral information. However, complete
artifact removal may not always be feasible. Future research should
focus on methods addressing these discrepancies, potentially combining
synthesis in both image and frequency domains for results resembling
real clinical images.

Synthetic medical data has the advantage of preserving patient
privacy, as it incorporates variations into the original anatomy that
eliminate all traceability. However, future research should investigate
how much variation conditional GAN models like SPADE GAN intro-
duce into the training data and how much of the original information
is retained. To enhance the realism of synthetic images and address
discrepancies in imaging and frequency domains, we aim to explore
the effectiveness of integrating frequency translation and learning into
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the standard GAN paradigm. Fourier transform can be utilized in the
training process to improve the quality of synthesized images and
overcome existing domain shifts. Finally, Fourier methods could be
used to measure the quality of generated images and aid in developing
strategies to improve the realism of synthesized data used for neural
network training.

7. Conclusion

In this work, we study the feasibility of synthetic MR images for
the replacement of real MR sequences when training multi-modal brain
tumor segmentation networks. We demonstrate that utilizing a condi-
tional GAN for synthesizing multi-modal brain MRI sequences, guided
by detailed semantic label maps of both brain and tumor tissue, has a
good potential to effectively address such limitations. Through the ap-
plication of morphological and elastic transformations to the semantic
maps of the entire brain and tumor tissue, we can create an extensive
synthetic dataset comprising diverse brain tumors. This dataset has the
potential to train segmentation models without relying heavily on a
large volume of real annotated multi-modal data.

However, we experimentally confirm that there exists a discrepancy
between GAN-based synthetic and real images, which is partly due to
an existing domain shift between frequency components of two image
types. By adapting the low-level amplitude information of synthetic
images to those of real images, per MR modality, we obtain images
of more realistic appearance and partially tackle the existing domain
shift. Such images are not only shown to significantly improve the
performance of the model trained with an entire set of synthetic data,
but also improve the ability of synthetic images to aid with augmen-
tation. Our findings offer a promising approach to addressing data
scarcity in medical imaging segmentation and highlight the importance
of considering image frequency in generative approaches for medical
image synthesis.

CRediT authorship contribution statement

Yasmina Al Khalil: Conceptualization, Methodology, Software,
Validation, Formal analysis, Investigation, Writing – original draft.
Aymen Ayaz: Conceptualization, Methodology, Software, Validation,
Investigation. Cristian Lorenz: Writing – review & editing, Supervi-
ion. Jürgen Weese: Writing – review & editing, Supervision. Josien
luim: Writing – review & editing, Supervision. Marcel Breeuwer:

Conceptualization, Writing – review & editing, Supervision, Funding
acquisition, Project administration.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Yasmina Al Khalil and Aymen Ayaz report financial support was pro-
vided by Marie Curie Innovative Training Networks (ITN) fellowship
program under project No. 764465. Marcel Breeuwer reports a relation-
ship with Philips Healthcare that includes: employment. Cristian Lorenz
and Jürgen Weese report a relationship with Philips GmbH Innovative
Technologies that includes: employment.

Data availability

Data will be made available on request.

Acknowledgments

This research is a part of the openGTN project, supported by the
European Union in the Marie Curie Innovative Training Networks

(ITN), The Netherlands fellowship program under project No. 764465.



Computerized Medical Imaging and Graphics 112 (2024) 102332Y.A. Khalil et al.
Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.compmedimag.2024.102332.

References

AlBadawy, E.A., Saha, A., Mazurowski, M.A., 2018. Deep learning for segmentation of
brain tumors: Impact of cross-institutional training and testing. Med. Phys. 45 (3),
1150–1158.

Amirrajab, S., Al Khalil, Y., Lorenz, C., Weese, J., Pluim, J., Breeuwer, M., 2022.
Label-informed cardiac magnetic resonance image synthesis through conditional
generative adversarial networks. Comput. Med. Imaging Graph. 101, 102123.

Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., Shinohara, R.T.,
Berger, C., Ha, S.M., Rozycki, M., et al., 2018. Identifying the best machine learning
algorithms for brain tumor segmentation, progression assessment, and overall
survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629.

Brosch, T., Saalbach, A., 2018. Foveal fully convolutional nets for multi-organ segmenta-
tion. In: Medical Imaging 2018: Image Processing. Vol. 10574, International Society
for Optics and Photonics, p. 105740U. http://dx.doi.org/10.1117/12.2293528.

Chen, R., Smith-Cohn, M., Cohen, A.L., Colman, H., 2017. Glioma subclassifications
and their clinical significance. Neurotherapeutics 14 (2), 284–297.

Chen, Y., Yang, X.-H., Wei, Z., Heidari, A.A., Zheng, N., Li, Z., Chen, H., Hu, H.,
Zhou, Q., Guan, Q., 2022. Generative adversarial networks in medical image
augmentation: a review. Comput. Biol. Med. 105382.

Chlap, P., Min, H., Vandenberg, N., Dowling, J., Holloway, L., Haworth, A., 2021.
A review of medical image data augmentation techniques for deep learning
applications. J. Med. Imaging Radiat. Oncol. 65 (5), 545–563.

Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O., 2016. 3D U-Net:
learning dense volumetric segmentation from sparse annotation. In: Medical Image
Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International
Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II 19. Springer,
pp. 424–432.

Dang, K., Vo, T., Ngo, L., Ha, H., 2022. A deep learning framework integrating MRI
image preprocessing methods for brain tumor segmentation and classification. IBRO
Neurosci. Rep. 13, 523–532.

Durall, R., Keuper, M., Keuper, J., 2020. Watch your up-convolution: Cnn based
generative deep neural networks are failing to reproduce spectral distributions.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 7890–7899.

Dzanic, T., Shah, K., Witherden, F., 2020. Fourier spectrum discrepancies in deep
network generated images. Adv. Neural Inf. Process. Syst. 33, 3022–3032.

Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., Greenspan, H., 2018.
GAN-based synthetic medical image augmentation for increased CNN performance
in liver lesion classification. Neurocomputing 321, 321–331.

Frigo, M., Johnson, S.G., 1998. FFTW: An adaptive software architecture for the FFT.
In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP’98 (Cat. No. 98CH36181). Vol. 3, IEEE, pp. 1381–1384.

Gal, Y., Ghahramani, Z., 2016. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In: International Conference on Machine
Learning. PMLR, pp. 1050–1059.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y., 2014. Generative adversarial nets. Adv. Neural Inf.
Process. Syst. 27.

Hiasa, Y., Otake, Y., Takao, M., Matsuoka, T., Takashima, K., Carass, A., Prince, J.L.,
Sugano, N., Sato, Y., 2018. Cross-modality image synthesis from unpaired data
using CycleGAN. In: International Workshop on Simulation and Synthesis in
Medical Imaging. Springer, pp. 31–41.

Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H., 2021. nnU-Net: a
self-configuring method for deep learning-based biomedical image segmentation.
Nature Methods 18 (2), 203–211.

Işın, A., Direkoğlu, C., Şah, M., 2016. Review of MRI-based brain tumor image
segmentation using deep learning methods. Procedia Comput. Sci. 102, 317–324.

Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A., 2017. Image-to-image translation with
conditional adversarial networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 1125–1134.

Khalil, Y.A., Ayaz, A., Lorenz, C., Weese, J., Pluim, J., Breeuwer, M., 2022. A
stratified cascaded approach for brain tumor segmentation with the aid of multi-
modal synthetic data. In: MICCAI Workshop on Data Augmentation, Labelling, and
Imperfections. Springer, pp. 92–101.

Khayatkhoei, M., Elgammal, A., 2022. Spatial frequency bias in convolutional gener-
ative adversarial networks. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 36, pp. 7152–7159.

Kong, F., Shadden, S.C., 2020. A generalizable deep-learning approach for cardiac
magnetic resonance image segmentation using image augmentation and attention
U-Net. In: International Workshop on Statistical Atlases and Computational Models
of the Heart. Springer, pp. 287–296.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521 (7553), 436–444.
11
Lei, Y., Harms, J., Wang, T., Liu, Y., Shu, H.-K., Jani, A.B., Curran, W.J., Mao, H.,
Liu, T., Yang, X., 2019. MRI-only based synthetic CT generation using dense cycle
consistent generative adversarial networks. Med. Phys. 46 (8), 3565–3581.

Li, Z., Xia, P., Rui, X., Li, B., 2023. Exploring the effect of high-frequency components
in GANs training. ACM Trans. Multimed. Comput. Commun. Appl. 19 (5), 1–22.

Li, J., You, J., Wu, C., Dai, Y., Shi, M., Dong, L., Xu, K., 2018. T1–T2 molecular
magnetic resonance imaging of renal carcinoma cells based on nano-contrast agents.
Int. J. Nanomedicine 13, 4607.

Liu, Q., Chen, C., Qin, J., Dou, Q., Heng, P.-A., 2021. Feddg: Federated domain
generalization on medical image segmentation via episodic learning in continuous
frequency space. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 1013–1023.

Magadza, T., Viriri, S., 2021. Deep learning for brain tumor segmentation: a survey of
state-of-the-art. J. Imaging 7 (2), 19.

Milletari, F., Navab, N., Ahmadi, S.-A., 2016. V-net: Fully convolutional neural
networks for volumetric medical image segmentation. In: 2016 Fourth International
Conference on 3D Vision. 3DV, Ieee, pp. 565–571.

Mizutani, R., Saiga, R., Takekoshi, S., Inomoto, C., Nakamura, N., Itokawa, M., Arai, M.,
Oshima, K., Takeuchi, A., Uesugi, K., et al., 2016. A method for estimating spatial
resolution of real image in the Fourier domain. J. Microsc. 261 (1), 57–66.

Mok, T.C., Chung, A., 2018. Learning data augmentation for brain tumor segmenta-
tion with coarse-to-fine generative adversarial networks. In: International MICCAI
Brainlesion Workshop. Springer, pp. 70–80.

Myronenko, A., 2019. 3D MRI brain tumor segmentation using autoencoder regular-
ization. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain
Injuries: 4th International Workshop, BrainLes 2018, Held in Conjunction with
MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers, Part
II 4. Springer, pp. 311–320.

Nalepa, J., Marcinkiewicz, M., Kawulok, M., 2019. Data augmentation for brain-tumor
segmentation: a review. Front. Comput. Neurosci. 13, 83.

Park, T., Liu, M.-Y., Wang, T.-C., Zhu, J.-Y., 2019. Semantic image synthesis with
spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 2337–2346. http://dx.doi.org/10.
1109/CVPR.2019.00244.

Qamar, S., Ahmad, P., Shen, L., 2021. HI-Net: Hyperdense inception 3D UNet for
brain tumor segmentation. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and
Traumatic Brain Injuries: 6th International Workshop, BrainLes 2020, Held in
Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Revised Selected
Papers, Part II 6. Springer, pp. 50–57.

Qasim, A.B., Ezhov, I., Shit, S., Schoppe, O., Paetzold, J.C., Sekuboyina, A., Kofler, F.,
Lipkova, J., Li, H., Menze, B., 2020. Red-GAN: Attacking class imbalance via
conditioned generation. Yet another medical imaging perspective. In: Medical
Imaging with Deep Learning. PMLR, pp. 655–668.

Schwarz, K., Liao, Y., Geiger, A., 2021. On the frequency bias of generative models.
Adv. Neural Inf. Process. Syst. 34, 18126–18136.

Shin, H.-C., Tenenholtz, N.A., Rogers, J.K., Schwarz, C.G., Senjem, M.L., Gunter, J.L.,
Andriole, K.P., Michalski, M., 2018. Medical image synthesis for data augmentation
and anonymization using generative adversarial networks. In: Simulation and
Synthesis in Medical Imaging: Third International Workshop, SASHIMI 2018,
Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018,
Proceedings 3. Springer, pp. 1–11.

Singh, H., Saini, S.S., Lakshminarayanan, V., 2021. Real or fake? Fourier analysis of
generative adversarial network fundus images. In: Medical Imaging 2021: Imaging
Informatics for Healthcare, Research, and Applications. Vol. 11601, SPIE, pp.
103–109.

Soomro, T.A., Zheng, L., Afifi, A.J., Ali, A., Soomro, S., Yin, M., Gao, J., 2022. Image
segmentation for MR brain tumor detection using machine learning: A review. IEEE
Rev. Biomed. Eng..

Tajmirriahi, M., Kafieh, R., Amini, Z., Lakshminarayanan, V., 2022. A dual-discriminator
Fourier acquisitive GAN for generating retinal optical coherence tomography
images. IEEE Trans. Instrum. Meas. 71, 1–8.

Takahashi, S., Takahashi, M., Kinoshita, M., Miyake, M., Kawaguchi, R., Shinojima, N.,
Mukasa, A., Saito, K., Nagane, M., Otani, R., et al., 2021. Fine-tuning approach
for segmentation of gliomas in brain magnetic resonance images with a machine
learning method to normalize image differences among facilities. Cancers 13 (6),
1415.

Tiwari, A., Srivastava, S., Pant, M., 2020. Brain tumor segmentation and classification
from magnetic resonance images: Review of selected methods from 2014 to 2019.
Pattern Recognit. Lett. 131, 244–260.

Wadhwa, A., Bhardwaj, A., Verma, V.S., 2019. A review on brain tumor segmentation
of MRI images. Magn. Reson. Imaging 61, 247–259.

Wang, W., Chen, C., Ding, M., Yu, H., Zha, S., Li, J., 2021. Transbts: Multimodal brain
tumor segmentation using transformer. In: Medical Image Computing and Computer
Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg,
France, September 27–October 1, 2021, Proceedings, Part I 24. Springer, pp.
109–119.

Wang, K., Gou, C., Duan, Y., Lin, Y., Zheng, X., Wang, F.-Y., 2017. Generative
adversarial networks: introduction and outlook. IEEE/CAA J. Autom. Sin. 4 (4),
588–598.

https://doi.org/10.1016/j.compmedimag.2024.102332
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb1
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb1
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb1
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb1
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb1
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb2
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb2
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb2
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb2
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb2
http://arxiv.org/abs/1811.02629
http://dx.doi.org/10.1117/12.2293528
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb5
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb5
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb5
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb6
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb6
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb6
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb6
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb6
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb7
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb7
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb7
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb7
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb7
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb8
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb8
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb8
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb8
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb8
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb8
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb8
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb8
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb8
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb9
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb9
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb9
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb9
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb9
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb10
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb10
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb10
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb10
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb10
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb10
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb10
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb11
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb11
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb11
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb12
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb12
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb12
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb12
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb12
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb13
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb13
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb13
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb13
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb13
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb14
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb14
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb14
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb14
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb14
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb15
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb15
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb15
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb15
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb15
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb16
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb16
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb16
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb16
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb16
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb16
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb16
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb17
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb17
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb17
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb17
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb17
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb18
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb18
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb18
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb19
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb19
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb19
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb19
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb19
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb20
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb20
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb20
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb20
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb20
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb20
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb20
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb21
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb21
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb21
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb21
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb21
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb22
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb22
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb22
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb22
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb22
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb22
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb22
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb23
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb24
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb24
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb24
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb24
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb24
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb25
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb25
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb25
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb26
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb26
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb26
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb26
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb26
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb27
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb27
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb27
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb27
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb27
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb27
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb27
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb28
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb28
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb28
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb29
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb29
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb29
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb29
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb29
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb30
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb30
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb30
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb30
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb30
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb31
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb31
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb31
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb31
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb31
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb32
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb32
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb32
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb32
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb32
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb32
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb32
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb32
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb32
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb33
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb33
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb33
http://dx.doi.org/10.1109/CVPR.2019.00244
http://dx.doi.org/10.1109/CVPR.2019.00244
http://dx.doi.org/10.1109/CVPR.2019.00244
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb35
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb35
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb35
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb35
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb35
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb35
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb35
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb35
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb35
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb36
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb36
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb36
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb36
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb36
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb36
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb36
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb37
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb37
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb37
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb38
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb38
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb38
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb38
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb38
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb38
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb38
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb38
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb38
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb38
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb38
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb39
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb39
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb39
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb39
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb39
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb39
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb39
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb40
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb40
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb40
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb40
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb40
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb41
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb41
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb41
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb41
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb41
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb42
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb42
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb42
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb42
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb42
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb42
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb42
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb42
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb42
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb43
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb43
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb43
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb43
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb43
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb44
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb44
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb44
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb45
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb45
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb45
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb45
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb45
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb45
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb45
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb45
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb45
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb46
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb46
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb46
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb46
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb46


Computerized Medical Imaging and Graphics 112 (2024) 102332Y.A. Khalil et al.
Wang, G., Li, W., Ourselin, S., Vercauteren, T., 2019. Automatic brain tumor segmenta-
tion based on cascaded convolutional neural networks with uncertainty estimation.
Front. Comput. Neurosci. 13, 56.

Wenzel, F., Meyer, C., Stehle, T., Peters, J., Siemonsen, S., Thaler, C., Zagorchev, L.,
Initiative, A.D.N., et al., 2018. Rapid fully automatic segmentation of subcortical
brain structures by shape-constrained surface adaptation. Med. Image Anal. 46,
146–161.

Yang, Y., Lao, D., Sundaramoorthi, G., Soatto, S., 2020. Phase consistent ecological
domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 9011–9020.

Yang, Y., Soatto, S., 2020. Fda: Fourier domain adaptation for semantic segmentation.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 4085–4095.
12
Zhang, L., Li, H., 2012. SR-SIM: A fast and high performance IQA index based on
spectral residual. In: 2012 19th IEEE International Conference on Image Processing.
IEEE, pp. 1473–1476.

Zhang, Z., Li, Y., Shin, B.-S., 2022. C2-GAN: Content-consistent generative adversarial
networks for unsupervised domain adaptation in medical image segmentation. Med.
Phys..

Zhao, J., Meng, Z., Wei, L., Sun, C., Zou, Q., Su, R., 2019. Supervised brain tumor
segmentation based on gradient and context-sensitive features. Front. Neurosci. 13,
144.

Zhou, T., Ruan, S., Canu, S., 2019. A review: Deep learning for medical image
segmentation using multi-modality fusion. Array 3, 100004.

Zhu, J.-Y., Park, T., Isola, P., Efros, A.A., 2017. Unpaired image-to-image translation us-
ing cycle-consistent adversarial networks. In: Proceedings of the IEEE International
Conference on Computer Vision. pp. 2223–2232.

http://refhub.elsevier.com/S0895-6111(24)00009-0/sb47
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb47
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb47
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb47
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb47
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb48
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb48
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb48
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb48
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb48
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb48
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb48
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb49
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb49
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb49
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb49
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb49
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb50
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb50
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb50
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb50
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb50
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb51
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb51
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb51
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb51
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb51
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb52
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb52
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb52
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb52
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb52
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb53
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb53
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb53
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb53
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb53
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb54
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb54
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb54
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb55
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb55
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb55
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb55
http://refhub.elsevier.com/S0895-6111(24)00009-0/sb55

	Multi-modal brain tumor segmentation via conditional synthesis with Fourier domain adaptation
	Introduction
	Related work
	Material and methods
	Data
	Conditional image synthesis
	Fourier domain adaptation
	Segmentation
	Network architecture and training
	Post-processing

	Evaluation

	Experiments
	Results
	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References


