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Undirected hyperbolic graph models have been extensively used as models of scale-free small-world networks
with high clustering coefficient. Here we presented a simple directed hyperbolic model where nodes randomly
distributed on a hyperbolic disk are connected to a fixed number m of their nearest spatial neighbors. We
introduce also a canonical version of this network (which we call “network with varied connection radius”),
where maximal length of outgoing bond is space dependent and is determined by fixing the average out-degree
to m. We study local bond length, in-degree, and reciprocity in these networks as a function of spacial coordinates
of the nodes and show that the network has a distinct core-periphery structure. We show that for small densities
of nodes the overall in-degree has a truncated power-law distribution. We demonstrate that reciprocity of the
network can be regulated by adjusting an additional temperature-like parameter without changing other global
properties of the network.

DOI: 10.1103/PhysRevE.108.054310

I. INTRODUCTION

Reference and recommendation networks are ubiquitous
[1,2]: Encyclopedia articles and scientific papers refer to each
other; people recommend each other books, films, and mu-
sic; online shops are full of “people who like this also like
that” recommendations. These recommendations constitute
directed links between objects organizing them into a directed
network. The resulting networks are substantially asymmetric:
The rules according to which a node becomes a source of
recommendation are different from those according to which
it gets recommended. In many cases the number of recom-
mendations given from a node is either strictly or effectively
bounded, while the number of recommendations towards a
node is unlimited. Accordingly, out-degree and in-degree dis-
tributions in such networks are very different: Out-degree is
relatively narrowly distributed, while in-degree distribution
typically has a wide, often power-law, tail.

A particular example of this type of network is a network
of free associations in a language [3–6]. Typically, it is con-
structed as follows [4,5]. Test subjects receive a set of words
(stimuli) and they are to provide a first. word which came to
their mind as a response to each of the stimuli. The results are
aggregated into a directed network of associations weighted
according to the frequency with which associations appear in
the dataset. The resulting networks have narrow out-degree
distributions but wide in-degree distributions with power-law
tails [6]. Another nice example of a directed network with
asymmetry between narrow in-degree and power-law out-
degree is the network of mathematical theorems studied in
Ref. [7]. Yet another example where natural asymmetry be-
tween in- and out-degree. distributions arises is the system
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of links in encyclopedia (see, e.g., Ref. [8]). However, typi-
cally in this case both distributions have power-law tails with
unequal exponents: It is less probable to have a very large
out-degree than a very large in-degree.

History of network science is full of examples of how
essential it is to have benchmark models of random graphs,
which are able to reproduce some of the properties of the
experimentally observed networks (see textbook presentation
in Refs. [9–14]). Emergence of the giant cluster was under-
stood by Flory [15] and Erdos and Renyi [16] based on a
minimalistic model. Watts-Strogatz model [17] is essential
for understanding the emergence of the small-world effect.
Barabasi-Albert [18] and other preferential attachment mod-
els [19] shed light on the emergence of power-law degree
distributions. Studying configuration [20] and exponential
graph models [21] is essential to separate the effects of var-
ious topological invariants (degree, motif distributions, etc.)
on the properties of networks. Hyperbolic network models,
also known as random hyperbolic graphs [22–24] explain
how power-law distributions, high clustering, and small-world
properties coexist with each other, which is often the case
in real-world networks. These models, as well as somewhat
similar Apollonian networks [25,26] and their generalizations
[27–30], are the first equilibrium models that unify these three
properties. However, up to now hyperbolic random graph
models have been confined to undirected networks (except for
two very recent papers [31,32], see Discussion).

Here we develop and study a simple model of a directed
network with asymmetric degree distribution: narrow distribu-
tion of the out-degree and wide distribution of the in-degree.
Our model is a hyperbolic generalization of nearest-neighbor
models [33–36] (see also reviews [37,38]) studied extensively
for the case of Euclidean metric spaces (interestingly, nearest-
neighbor graphs in high-dimensional Euclidean spaces are
an important intermediate step in the construction of popular
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dimension-reduction algorithms such as diffusion maps [39],
t-SNE [40], and UMAP [41]). We consider a disk in a hyper-
bolic space, drop a large number of points onto it uniformly
at random, and then connect each point by directed links to
a fixed number of its nearest neighbors. We study the limit
of large networks and show that the in-degree distribution of
such a network is a truncated power law, and by adjusting
parameters the power-law region can be made arbitrarily wide.
We also discuss how it is possible to regulate the structural
parameters of the network, most importantly, the reciprocity
of the network (i.e., fraction of bidirectional links in it) and
the exponent of the power-law distribution.

The presentation is organized as follows. In Sec. II we de-
fine the model, discuss it qualitatively, and formulate the main
results. We also define an auxiliary conjugate model, which
we call “network with varied connection radius” (VCR). This
model has properties similar to those of the nearest-neighbor
model but is more tractable analytically. In Sec. III we turn
to a more quantitative approach and provide analytical and
numerical calculations for the location-dependent bond length
and in-degree and show that the nearest-neighbor network has
a peculiar core-periphery structure. We end Sec. III with deriv-
ing the truncated power-law behavior of the overall in-degree
distribution.

In Sec. IV we recall the definition of network reciprocity
and calculate it for the nearest-neighbor and VCR networks.
We show how reciprocity can be regulated by introducing an
additional temperature-like parameter. Finally, in Sec. V we
summarize our results and discuss their possible applications
and generalizations, including the control of the exponent of
the in-degree distribution.

In what follows we assume some familiarity with the con-
cept of hyperbolic spaces with constant negative curvature
(see, e.g., Ref. [42] for an extended introduction). However,
all the concrete formulas needed to understand the result are
provided in the text to make it self-contained.

II. DEFINITION OF THE MODEL
AND QUALITATIVE DISCUSSION

A. The m-nearest-neighbor (m-NN) network model

In this section we give the definition of the nearest-
neighbor network model and qualitatively discuss the bond
length and the degree distribution in this network.

We start with a general definition of an m-nearest-neighbor
(m-NN) network. Consider a set V of N points x1, . . . , xN

in some normed vector space, so that distances ||xi − x j ||
are defined for all i, j. Call an m-NN network a graph G
consisting of vertices V and mN directed edges, connecting
each vertex to its m nearest neighbors, i.e., to m nodes, the
distance to which is smallest. Clearly, the result is a directed
graph with out-degree distribution Pout (k) = δk,m. The average
in-degree is also m, but the in-degree distribution may be quite
nontrivial.

Consider first a simple stochastic setting: Namely, let
points be distributed uniformly and independently at random
with a given density ν per unit volume in an infinite d-
dimensional space of constant curvature. This problem has
been studied extensively in the case of Euclidean (zero-
curvature) space [37,38]. In this case, the average network

properties are translationally invariant, and both the bond
length distribution and the in-degree distribution are rather
narrow. Indeed, although the exact distribution of in-degree
for arbitrary m, d is unknown (see Ref. [43] where Pin(k = 0)
is calculated for m = 1, d = 2), it is easy to show that the
probability of both a large bond length r and a large in-degree
k decays at least exponentially in both Euclidean and hyper-
bolic space.

Indeed, let A(r) be the volume of a ball of radius r
(henceforth all distances are assumed to be hyperbolic unless
mentioned otherwise; a ball is then defined, as usual, as a set
of points at distance no more than r from the center, and a disk
is a ball in two-dimensional space). Then define distance rm as
a solution of equation

νA(rm) = m, (1)

i.e., within the ball of radius rm there are on average m points.
The radius rm has a meaning of “typical distance” to the mth
nearest neighbor or typical bond length. Indeed, the proba-
bility that there are less than m points in the ball of radius r
(which is equal to the probability that the distance to the mth
neighbor is larger than r) is

Pm(r) = exp[−νA(r)]
m−1∑
k=0

[νA(r)]k

k!
. (2)

Note now that in the expression

exp[−νA(r)] =
∞∑

k=0

[νA(r)]k

k!
(3)

the maximal term in the right-hand side is located at νA(r) =
k and thus the distribution of the mth nearest neighbor
pm(r) = dPm(r)/dr is localized around rm. In what follows,
we use rm as a qualitative estimate of the distance to mth
nearest neighbor, since the more conventional estimate, mean
distance to mth nearest neighbor,

rmean
m =

∫ ∞

0
r pm(r)dr, (4)

is of the same order of magnitude but is a bit harder to
calculate and depends on a particular form of A(r) in a more
complicated way. Note also that big deviations of the bond
length from rm are extremely rare: A(r) ∼ rd in d-dimensional
Euclidean space and A(r) ∼ exp r for large r in hyperbolic
space, so in both cases Pm(r) given by (2) decays super-
exponentially, effectively limiting the possible values of r.
This also means that in the translationally invariant case the
in-degree of a node in the m-NN model is limited. Indeed, the
superexponential decay of (2) means that there are essentially
no bonds in the network longer than arm, where a is some nu-
merical constant of order 1. Then the in-degree is effectively
limited by

kmax
in ∼ νA(arm) =

{
mad−1 for Euclidean space;
mea for hyperbolic space.

(5)

The situation becomes more interesting for the case of a
nearest-neighbor network in a bounded domain, where trans-
lation invariance breaks up and average properties of nodes
are location dependent. Consider the simplest possible setting
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FIG. 1. Sketch of the overlap of two circles. If the circles in-
tersect, then the shaded ares A(r, x, R) is smaller than the area of
the small circle A(r). The angle φmax and distance Rmax(φ) are also
shown, see (18) and (19).

when points are distributed uniformly and independently at
random with a given density ν inside a ball O(R) of radius
R (here and in what follows whenever discussing hyperbolic
space we, without loss of generality, set the space curvature
ζ = 1, i.e., distance R in the hyperbolic space is measured
in the units of inverse space curvature and is therefore a
dimensionless variable). In this case, the average length of a
bond becomes dependent on the spatial position of its source,
and the in-degree of a node depends on its radial coordinate
(distance from the center of the ball). Indeed, consider the
overlap of a ball of radius r with center at radial coordinate
x and the ball O(R). For x + r > R the volume of this overlap
A(r, x, R) (gray area in the sketch Fig. 1) is smaller than the
volume of unrestricted ball A(r) (the area of the small circle
in Fig. 1). Thus, the number of points inside A(rm, x, R) is on
average smaller than m, and the typical distance to the mth
nearest neighbor becomes larger than rm. Similarly to (1) we
define this typical distance rm(x) as a solution of equation

νA(rm(x), x, R) = m. (6)

For brevity, we preserve notation rm without explicit x de-
pendence for the limiting value of rm(x) in the bulk, so that
rm = limR→∞ rm(x) for any fixed x.

Consider now how this spatial dependence of the bond
length influences in-degree. Points in the immediate vicinity
of a boundary have on average an in-degree smaller then m
because part of the points, which would normally connect
to them in the infinite domain case are now located outside
O(R). Conversely, points at a distance somewhat larger than
rm from the boundary have an increased average in-degree:
Apart from all the bonds of the length r < rm which they
attain similarly to the points in the bulk, they also get a certain
number of abnormally long incoming bonds from the points
in the close vicinity of the boundary. Thus, in-degree depends
on the spatial coordinate of the bond in a nonmonotonic way:

FIG. 2. Example of a directed nearest-neighbor network of
N = 1000 nodes on a hyperbolic disk. Each node is connected to
m = 3 nearest neighbors (in the colored version the source and target
ends of each bond are shown with blue and red, respectively, bidirec-
tional bonds are shown in purple). Note the core-periphery structure
of the network: In the periphery the bonds are directed predominantly
towards the center of the disk, and in the core there is no predominant
direction. The in-degree is maximal at the crossover from core to
periphery, in the vicinity of the dashed black circle.

It equals m when the distance from the boundary

ξ = R − x (7)

is much larger than rm, then increases to a larger number
somewhere around rm, and then drops to a value smaller than
m in the immediate vicinity of the boundary.

This boundary effect exists both in the Euclidean and the
hyperbolic space. In the Euclidean space it is relatively small
(numerically, in 2D we found a spatial variation of in-degree
by a factor of roughly 2), and, even more importantly, in
the thermodynamic limit R → ∞, ν = const it affects an in-
finitesimal fraction of nodes. Indeed, the fraction of volume
occupied by the boundary region tends to zero for large do-
mains in the Euclidean space. The situation is dramatically
different in the hyperbolic space (see Fig. 2) where volumes
of the ball A(r) and of its surface dA(r)/dr increase exponen-
tially with r. In this case the fraction of volume taken by the
boundary converges to a finite number of order

1 − exp(R − rm)

exp R
= 1 − exp(−rm). (8)

In turn, rm is a function of dimensionless density ν, and
becomes arbitrary large for small ν and arbitrary small for
large ν [see (1)]. Thus, by changing the density of points one
can cross over from the regime of bulk dominance for large
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ν to the regime of boundary dominance for small ν. As we
show below, in the boundary region the in-degree distribution
depends exponentially on ξ (compare to Ref. [23]), which,
combined with the exponential growth of the number of nodes
with a distance from the origin, leads, in full analogy with
Ref. [23], to a power-law distribution of the in-degree,

Pin(k) ∼ k−3, (9)

within the boundary region. Since the boundary region has
a finite width, this power-law remains truncated even in the
thermodynamic limit with kmax

in ∼ m/ν.

B. Network with VCR

Before proceeding further it is instructive to introduce an
auxiliary network model, which plays the role of a canonical
counterpart of the m-NN network model. Consider once again
a set of points distributed uniformly and independently at
random with a given density ν inside O(R), and for each
point with radial coordinate x add outgoing bonds to all points
at a distance no more then rm(x) from it, with rm(x) given
by Eq. (6). Note that this model bears some similarity with
Ref. [44], although here the rules governing connection of
nodes are inhomogeneous in space, not in time. Although
the out-degree of the m-NN network is Pout (k) = δk,m, this
auxiliary “network with varying connection radius” has a
Poisson out-degree distribution with coordinate-independent
mean equal to m:

PMF
out (k) = e−mmk/k! (10)

As we show below, the average in-degree of a node in
this network is relatively easy to calculate: It is deter-
mined simply by the geometry of the domain and does
not need averaging over simultaneous positions of sev-
eral randomly located particles. On the other hand, the
network with varied connection radius and the m-NN
network are dual in a way similar to duality between
canonical and microcanonical ensembles. Indeed, in m-NN
network the out-degree is strictly fixed, while the distance
to mth neighbor is fluctuating around its (position-dependent)
average rm(x) while in the network with varied connection ra-
dius the situation is inverted: The maximal length of the bond
is fixed and the total number of outgoing bond is fluctuating.
For large m the relative fluctuations are expected to be small

and models are expected to converge in complete analogy to
the canonical and microcanonical ensembles giving the same
result in thermodynamic limit.

In what follows we consider these two models in paral-
lel, leveraging the relative analytical simplicity of the model
with varied connection radius. In the next section we pro-
vide analytical and numerical calculations supporting and
expanding the qualitative analysis of the two models presented
above.

III. QUANTITATIVE ANALYSIS OF
THE NEAREST-NEIGHBOR MODEL

A. Circles overlap A(r, x, R)

We start with finding the explicit from of the function
A(r, x, R) and based on that study the asymptotic behavior of
the solution of (6).

In what follows we use polar coordinates centered in the
center of O(R). Recall that the infinitesimal area element dA
in hyperbolic polar coordinates is

dA = sinh ρdρdθ, (11)

and thus circumference and area of a disk of radius r are

	(r) = dA(r)/dr = 2π sinh r; A(r) = 2π (cosh r − 1),

(12)

respectively (recall that all the lengths are measured in the
units of inverse space curvature and are therefore dimension-
less). This allows us to solve equation (1) explicitly, getting
the following expression for the typical length of the bond to
mth nearest neighbor in the bulk

rm = cosh−1

[
m

2πν
+ 1

]
≈ ln

[
m

πν
+ 2

]
, (13)

where the last equality is valid in the small-density (m/ν � 1)
limit.

Recall also the hyperbolic cosine theorem

cosh a = cosh b cosh c − sinh b sinh c cos α, (14)

which connects the length of the sides of a triangle a, b, c and
the angle α opposite to the side a.

2 4 6 8 10

100

200

300

400

2 4 6 8 10

-2

2

4

6

1 2 3 4 5

5

10

50

100

r

r

r

AA
ln A

(a) (b) (c)

FIG. 3. The area of the overlap A(r, x, R) of two circles as a function of the radius of the inner circle r for R = 5 and various coordinates of
the center of smaller circle x: (from top to bottom) x = 0 (black), 1 (red), 2 (orange), 3 (green), and 4 (blue) plotted in linear (a) and logarithmic
(b) scale. (c) The area of the overlap A(r, x, R) as a function of the position of the center of the smaller circle x for R = 5 and (from bottom to
top) r = 1 (red), 2 (orange), 3 (green), and 4 (blue).
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These formulas are enough to explicitly calculate
A(r, x, R), the overlap of a disk with radius r and center at
x and the underlying disk O(R). Clearly, there are two simple
limiting cases. If r � R − x, then the small circle of radius r
is completely inside the disk, and thus

A(r, x, R) = 2π (cosh r − 1). (15)

If r � R + x, in turn, then the whole O(R) is inside the circle
of radius r and

A(r, x, R) = 2π (cosh R − 1). (16)

Meanwhile, for R − x < r < R + x the two disks intersect and
the area can be calculated as (see Fig. 1)

A(r, x, R) = 2π (cosh r − 1) − 2
∫ φmax

0
dφ

∫ Rmax(φ)

R
sinh zdz = 2π (cosh r − 1) + 2φmax cosh R − 2

∫ φmax

0
cosh Rmax(φ)dφ,

(17)

where the angle φmax, the angular coordinate of the intersection of the circles, can be calculated from the hyperbolic cosine
theorem,

φmax = arccos

(
cosh x cosh R − cosh r

sinh x sinh R

)
, (18)

as well as the radial coordinate of the point at the outer part Rmax(φ) of the smaller circle for any given φ,

Rmax(φ) = arccosh

[
cosh x cosh r + sinh x cos φ

√
sinh2 r − sin2 φ sinh2 x

1 + sin2 φ sinh2 x

]
. (19)

The integral in (17) can be calculated explicitly:∫ φmax

0
cosh Rmax(φ)dφ = cosh r

{
π [1 − sign(tan φmax)]

2
+ arctan (cosh x tan φmax)

}
+

∫ sinh x sin φmax

0

√
sinh2 r − u2

1 + u2
du

= cosh r

{
π [1 − sgn(tan φmax)]

2
+ arctan (cosh x tan φmax)

}
− arctan

[
sinh x sinh R

cosh r cosh R − cosh x
sin φmax

]

+ cosh r arctan

[
cosh r

sinh x sinh R

cosh r cosh R − cosh x
sin φmax

]
. (20)

Equations (15)–(20) collectively define the overlap area. Figure 3 shows the A(r, x, R) as a function of r and x for given R = 5.
Note that in the overlap regime R − x < r < R + x the dependence of A on both x and r is roughly exponential (at least if radius
r is not too small). Since this regime is the most relevant one for the dependence of the length of the bond on location, let us
discuss it in more detail.

B. Asymptotic of the bond length

It is instructive to study asymptotic behavior of the expressions (17), (18), and (20) in several steps. First, consider the
thermodynamic limit R → ∞. In this case φmax becomes exponentially small in R:

φmax ≈ tan φmax ≈ sin φmax ≈ 2
√

2
√

cosh r − cosh ξ eξ/2e−R, ξ = R − x, (21)

which allows us to rewrite the expression for the area A(r, ξ ) in a simplified form,

A(r, ξ ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2π (cosh r − 1) for r � ξ,

2π (cosh r − 1) + 2
√

2(cosh r − cosh ξ ) eξ − 2 cosh r arctan[
√

2(cosh r − cosh ξ ) e−ξ ]

+ 2 arctan

[√
2(cosh r − cosh ξ ) e−ξ

cosh r − e−ξ

]
− 2 cosh r arctan

[
cosh r

√
2(cosh r − cosh ξ ) e−ξ

cosh r − e−ξ

]
for r > ξ.

+ O(e−R).

(22)

Introduce now u = r − ξ . If u is positive and ξ is sufficiently
large (i.e., if the circle does intersect with the boundary and
its center is not too close to it), then cosh r ≈ eξ+u/2 � e−ξ ,
which leads to a further simplification,

A(r, ξ ) ≈ eξ [2
√

eu − 1 + eu(π − 2 arctan
√

eu − 1 )] − 2π

≈ 4eξ+u/2 − 2π, (23)

where the last equality is valid in the eu � 1 limit. Thus, we
arrive at the following approximate solution of (6) giving the
typical distance to the mth nearest neighbor from the point at
distance ξ from the boundary of the disk,

rm(ξ ) = 2 ln

[
m

4ν
+ π

2

]
− ξ = 2rm − ξ + 2 ln(π/4), (24)
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FIG. 4. The length rm of a typical bond to mth nearest neighbor as a function of the distance ξ from the source of the bond to the boundary
of the disk, m = 3, ν = 0.1 (a) and 0.01 (b). Thick blue line corresponds to the solution of equation νA(rm, ξ ) = m in the limit of large R
[i.e., for A(r, m) given by (22)]; thin black line is the approximate solution given by (24). (c) The left-hand side of Eqs. (32) for ξmin (red, top)
and ξmax (blue, bottom) for m = 3, ν = 0.01. In the periphery, for ζ < rm(0) (lower dashed line), ξmin = 0, in the core, for ζ > 2rm(∞) (upper
dashed line), ξmin = ζ − rm(∞). There is a narrow intermediate region between these two regimes.

where rm is the limiting value of rm(ξ ) at a large distance from
the boundary and is given by (13). This very simple result
is valid up to exponentially small corrections if all relevant
exponents are simultaneously much larger than 1:

eR � 1, eξ � 1, erm (ξ )−ξ � 1, erm (ξ )−rm � 1, (25)

that is, if the disk is large, then the density of points is small,
and the position of point in question is not too close to the
boundary and not too close to the line separating the core
and periphery regions. Importantly, the solution is linear in
ξ . Figure 4 shows the numerical solution of (6) for A given
by (22) and the approximation (24). It is seen that while for
m/ν ∼ 1 the approximation (24) is off, it becomes better and
better for smaller densities, and for m/ν � 102 it works very
well for most of the region 0 < ξ < rm + 2 ln(π/4) except for
small deviations when ξ approaches the upper limit. These
deviations remain finite as ν approaches zero and rm diverges.

Summing up, the typical length of the bond to mth nearest
neighbor depends on the position of the source in the fol-
lowing way: (i) If the source is more than rm away from the
boundary, then it is constant and equal to rm; (ii) when the
source point approaches the boundary, the length of the bond
grows linearly with the distance ξ to the boundary, according
to (24); and (iii) there is a narrow region of finite width in
the vicinity of ξ = rm, which smoothly connects these two
regimes.

In what follows we discuss the implications of this varied
bond length on the in-degree of the nearest-neighbor network.

C. In-degree in the network with the varied connection radius

In the previous section we discussed how the typical length
of the bond depends on the position of its source point x =
(x, φ). In this section we are going to study the properties of
the bonds with a given position of the target point y = (y, ψ ).
It is easiest to consider first the auxiliary “model with varied
connection radius,” i.e., the model where a bond from x to y
exists if and only if

r = ||x − y|| � rm(x), (26)

where rm(x) is given by (6). Without loss of generality it is
convenient to set ψ = 0 and to introduce also the distance

from the target point to the boundary of the disk

ζ = R − y. (27)

Given that the points are distributed independently at random
with a given density ν, average in-degree of a point located at
y equals

k̄in(y) = νBm(y), (28)

where Bm(y) is the area of the domain Bm(y) defined as

x ∈ Bm(y) if and only if ||x − y|| � rm(||x||) and x ∈ O(R),
(29)

and for each given y the in-degree has a Poisson distribution
with average k̄in(y).

In the polar coordinates associated with the center of the
disk the area Bm(y) can be written formally as follows:

Bm(y) =
∫ xmax

xmin

∫ φmax

−φmax

sinh xdφdξ

= 2
∫ xmax

xmin

φmax(x, y) sinh xdξ, (30)

where φmax is the value of the angular coordinate φ for which
the distance between points (x, φ) and (y, 0) equals rm(x),
while xmin and xmax define the range of coordinates of the
source points from which the target at y is accessible (provided
the angular coordinates match). They are the solutions of
equations

y − xmin = rm(xmin); xmax − y = rm(xmax). (31)

In terms of distances ξ = R − x, ζ = R − y from the bound-
ary of the disk the equations (31) can be rewritten as

ζ = ξmin + rm(ξmin); ζ = ξmax − rm(ξmax). (32)

Figure 4(c) shows the behavior of the left-hand side of (32).
Clearly, with respect to ζ there are two different regimes,
corresponding to the core and the periphery of the network.

In the core part, when ζ � 2rm, the accessible region is x ∈
(y − rm, y + rm). In this case, the attachment radius is constant
and equal to rm throughout the whole accessible domain, so
Bm(y) is simply a circle of radius rm, so that one immediately
gets from the definition of rm (1) that k̄in(y) = m.
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FIG. 5. The reduced average in-degree k̄in (ζ )/m [(28), red, top] and bidirectional degree k̄�(ζ )/m [(52), blue, bottom] of the network with
varying connection radius as a function of the distance from the boundary ζ for (a) m/ν = 1, (b) m/ν = 102, and (c) m/ν = 104. Dashed line
indicates the approximate in-degree in the periphery region given by (36).

In the periphery, when ζ < 2rm the maximal length of the
incoming bonds is source dependent, so Bm(y) has a nontrivial
shape, and its area is to be calculated using (30). The angle
φmax is obtained from the hyperbolic cosine theorem (14),

cos φmax = cosh x cosh y − cosh rm(x)

sinh x sinh y
;

ψmax = 2
√

2e−R
√

eξ+ζ [cosh rm(ξ ) − cosh(ξ − ζ )]

+ O(e−2R), (33)

where we switched from x, y to ξ, ζ notation and used the
expansion in powers of e−R. Thus, in the leading order in e−R

one gets

Bm(ζ ) = 2
√

2
∫ ξmax

ξmin

√
eζ−ξ [cosh rm(ξ ) − cosh(ξ − ζ )]dξ

+ O(e−R), (34)

where rm(ξ ) is a solution of A(rm, ξ ) = m/ν, A(rm, ξ ) is given
by (22), and the limits of integration are

ξmax = ζ + rm,

ξmin =
{

0 for ζ � rm(0),

solution of A(ζ − ξmin, ξmin) = m/ν for rm(0) < ζ < 2rm.

(35)

This expression is easy to calculate numerically, the results are
shown in Fig. 5. In the core in-degree equals m, while in the
periphery it grows exponentially with the distance from the
boundary, spanning three orders of magnitude for m/ν = 104,
in between, there is a narrow crossover region where in-degree
drops drastically with increasing ζ .

The exponential asymptotic in the periphery can easily be
extracted by substituting approximation (24) for rm(ξ ). One
gets

Bm(ζ ) ≈ 2
∫ ξmax

0

√
eζ−ξ

[
π2

16
e2rm−ξ − cosh(ξ − ζ )

]
dξ

≈ 2
∫ ∞

0

π

4
erm−ξ+ζ/2dξ = π

2
erm+ζ/2 ≈ 1

2

m

ν
eζ/2, (36)

where we used the fact that the integral is controlled by its
lower bound, that e2rm−ξ � cosh(ξ − ζ ) in its vicinity, and
that m/ν = 2π (cosh rm − 1) ≈ π exp rm. This asymptotic is
shown with a dotted line in Fig. 5.

The in-degree of the points located exactly at the bound-
ary is m/2. The maximal in-degree of a network is reached
at ζm = 2rm − a where a numerically is close to 1. Thus,
the maximal in-degree of the network scales in the leading
order as

kmax
in ≈ meζm/2 = C × merm = C2 × m2

ν
(37)

with the constant C2 ≈ (2π )−1 exp(−a) ≈ 0.06.

D. In-degree distribution of the m-NN network

The network with varied connection radius described
above has an advantage of being relatively easy to treat an-
alytically. The analysis of the in-degree in the m-NN network
is a bit more cumbersome. However, the result is qualitatively
very similar.

The average in-degree of a point located at y = (R − ζ , 0)
in the m-NN network can be formally written down as follows.
For each pair of nodes define mi j , the position of node i in the
ordered list of neighbors of the node j; that is, mi j = 1 if i
is the nearest neighbor of j, mi j = 2 if it is second nearest
neighbor of j, etc. Then the in-degree of node i

k(i)
in =

∑
j 	=i

I(mi j � m), (38)

where I(x) is the indicator function. Now fix the position of
ith node at y and take the average of in-degree. One gets

k̄in(ζ ) =
∑
j 	=i

∑
k�m

	(k, j|ζ ) =
∫

O(R)
ν

∑
k�m

πk (x|ζ )dx, (39)

where 	(k, j|ζ ) is the probability that the node at y = (R −
ζ , 0) is exactly the kth nearest neighbor of the jth node,
πk (x|ζ ) is the similar probability for a node located at x, and
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we took into account that nodes are distributed uniformly at
random within O(R) with density νdx. The probability πk

is the same as the probability that there are exactly k − 1
points within the area A(||x − y||, x, R) and is thus given by
the Poisson distribution

πk (y, x, ν, R) = [νA(||x − y||, x, R)]k−1

(k − 1)!

× exp(−νA(||x − y||, x, R)), (40)

where the function A(r, x, R) is defined by (15)–(20), and (39)
can be rewritten as:

k̄in(y, m, ν, R) =
∫ R

0

∫ π

−π

ν sinh xdxdψ
∑
k�m

πk (y, x, R, ν)

=
∫ R

0

∫ π

−π

ν sinh xdxdψ

× (m, νA(||x − y||, x, R))

m!
, (41)

where (k, x) is the upper incomplete gamma function.
For large R the integrand in the right-hand side is localized

in the vicinity of the position of the target node. This allows
us to rewrite in the limit R → ∞,

k̄in(y, m, ν) = lim
R→∞

k̄in(y, m, ν, R)

=
∫ ∞

0
e−ξ dξ

∫ ∞

−∞
dω

ν(m, νA(||x − y||, ξ ))

m!
.

(42)

where we introduced linear coordinate along the boundary,
ω = ψ sinh R, and the function A(r, ξ ) is given by (22).

Figure 6 shows the behavior of (42) for varying m and
fixed m/ν, as well as the results of corresponding numerical
simulations (see Appendix for the details of the simulation
procedure). Qualitatively the behavior of the in-degree of m-
NN networks given by (42) is, indeed, similar to that of the
VCR network given by (34): There are still the core region
with k̄in = m and the periphery region with exponential de-
pendence of the in-degree on the distance to the boundary
k̄in(ζ ) = (m/2) exp(ζ/2). The only difference is in the width
of the crossover region, connecting these two asymptotic be-
haviors: It is wider for smaller m due to the fluctuations in the
bond length. In the m/ν → ∞ limit the behavior of the m-NN
network converges, as expected, to that of the network with
varying connection radius, provided that the ratio m/ν is the
same.

Figure 7 shows how the behavior of the in-degree changes
with changing ν and fixed m. Similarly to the VCR networks,
the width of the periphery region and the maximal in-degree
of the network increase with decreasing ν, with the maximal
in-degree scaling according to (37).

E. Global in-degree distribution of the m-NN network

In order to understand the global in-degree distribution of
the m-NN network (i.e., summed over all nodes with vari-
ous spatial positions) let us first discuss how the nodes of
the network are distributed between the core and periphery

FIG. 6. Average in-degree of a node in the m-NN network as
a function of the distance to the boundary ζ for m/ν = 40. Thin
red line corresponds to the result (34) for the VCR network, thick
blue (right) and orange (left) lines - to the m-NN networks with
m = 2, ν = 0.05 and with m = 20, ν = 0.5, respectively. The lines
are obtained by numerical evaluation of (41), and the blue circles
and orange squares are the results of numerical simulations averaged
over 100 networks of 104 nodes (significant fluctuations for large ξ

are due to the fact that fraction of nodes with large ξ decays as e−ξ ).

regions. The fraction of nodes with a given distance ζ to the
boundary is

f (ζ )dζ = sinh(R − ζ )

sinh R
dζ = e−ζ dζ + O(e−R). (43)

FIG. 7. In-degree distribution of the m-NN network with m = 2
and ν changing from 0.5 (leftmost curve) to 0.001 (rightmost curve),
ν ′s at adjacent curves differ by a factor of 2, curves are colored
from red to purple in the rainbow order. The points are obtained
by averaging over 100 independent networks of N = 10 000 nodes
for individual values of in-degree, continuous curves correspond to
logarithmic binning with 25 bins per curve. The slope of the thin
straight line is −3.
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Thus, in the limit R → ∞ the fraction of the nodes in the core
of the network is

fcore =
∫ ∞

2rm

f (ζ )dζ = e−2rm

= [y + 1 −
√

y(y + 2)]2, y = m

2πν
. (44)

Thus, in the large-density limit fcore converges to 1

fcore ≈ 1 − 2
√

2
√

y + O(y) for y � 1, (45)

while in the small-density limit

fcore ≈ 1

4(y + 1)2
for y � 1 (46)

and the core constitutes a negligibly small fraction of the
nodes. The fraction of nodes belonging to the crossover re-
gion, where the in-degree increases with radial coordinate, is
of the same order of magnitude, fcross ≈ fcore(ea − 1), where
a is, once again, the width of that region.

Thus, in terms of the overall distribution of in-degree
there are two regimes. For y = m/(2πν) � 1 the network is
dominated by the core where the in-degree distribution is ap-
proximately Poisson with average m. For y � 1 the network
is dominated by the peripheral region where

f (ζ ) = e−ζ , k̄in(ζ ) ≈ m

2
eζ/2, (47)

where 0 � ζ � ln 2(y + 1) − a. For each ζ true in-degree k
is narrowly distributed around k̄in(ζ ). This allows us to obtain
the distribution of in-degree by replacing k with k̄in for each
ζ :

Pin(k)dk = f (ζ )dζ ≈
(

2k

m

)−2

d

(
2 ln

2k

m

)

= m2

2k3
dk; m < k < kmax

in , (48)

where kmax
in is given by (37). Thus, the in-degree distribu-

tion in the y � 1 is a truncated power law with exponent
−3 spanning values from kmin

in ≈ m to kmax
in ≈ 0.06 m2/ν.

Figure 7 shows the results of numerical simulations of the in-
degree for networks with m = 2 and varying ν confirming this
prediction.

IV. STRUCTURE BEYOND DEGREE DISTRIBUTION:
RECIPROCITY

In this section we go beyond the discussion of the degree
distribution and discuss the simplest nonlocal structural char-
acteristic of the network models introduced above. In directed
networks the simplest nontrivial metric characterizing link-to-
link interaction is called network reciprocity. It is related to the
probability that, given that there is a link i → j there is also a
link j → i and is conventionally defined [45,46] as

r = N�
Nb − N�

, (49)

where Nb is the total number of bonds in the network (Nb =
mN for the m-NN network) and N� is the total number of
pairs of bidirectional links. Note that in the usual definition

of reciprocity [45,46] a bidirectional link is considered as a
single link, while in our definition it corresponds to two links
in different directions, thus the denominator of the reciprocity
should be Nb − N� in our notation. For the network with no
bidirectional links r = 0, and r = 1 if all links are bidirec-
tional (N� = Nb/2 in this case).

For undirected networks the simplest nontrivial metric of
the relative position of the edges involves not two but three
edges. It is the clustering coefficient of a node ci [11,13],
defined as the fraction of node pairs adjacent to it which have
a link between them, and the average clustering coefficient
of a networks C = N−1 ∑

ci. To characterize clustering in
directed networks the average clustering coefficient of the
corresponding undirected network (i.e., the network obtained
from the original one by replacing all directed links with
undirected ones) is often used. Note, however, that such an
approach leaves out the distribution of directed motifs in the
original network, which is known to contain plenty of impor-
tant information about its structure and function [47,48].

In geometrical random networks, where edge formation
is based on distance between nodes (which is a symmetric
function of node positions and obeys the triangular inequal-
ity), edges are spatially correlated. As a result both reciprocity
and clustering coefficient remain of order 1 even in the limit
of large networks. In what follows, we use the reciprocity as
the main metric characterizing these correlations in the m-NN
and VCR networks. We also provide numerical results for the
average clustering coefficient of the corresponding undirected
network. Study of the full distributions of directed motifs in
these networks is of obvious interest but goes beyond the
scope of the paper.

A. Reciprocity of the VCR network

We start with the simpler case of the network with varied
connection radius. In this network a link x → y exists if
distance ||x − y|| is smaller than rm(ξ ) while y → x exists
if ||x − y|| is smaller than rm(ζ ), where ξ, ζ are distances
from points x, y to the boundary of O(R). Thus the link is
bidirectional if

||x − y|| � min(rm(ξ ), rm(ζ )) = rm(max(ξ, ζ )), (50)

where we used that rm(ξ ) is a monotonically decreasing func-
tion of ξ . Note that this means that outward-directed bonds
(i.e., bonds for which ζ < ξ ) in VCR are always reciprocated,
while inward-looking ones not necessarily so. Therefore, in
this case reciprocity r has also the meaning of the ratio of the
numbers of outward and inward-directed bonds.

The mean number of bidirectional links from node x can
be written as

k̄�(x) = k̄�(ξ ) =
∫

O(R)
dyν�[rm(max(ξ, ζ )) − ||x − y||]

=
∫ R

ξ

∫ π

−π

ν sinh(R − ζ )dζdφ �[rm(ζ ) − ||x − y||]

+
∫ ξ

0

∫ π

−π

ν sinh(R − ζ )dζdφ �[rm(ξ ) − ||x − y||],
(51)
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FIG. 8. (a) Network reciprocity r and (b) average clustering coefficient C of m-NN and VCR networks as functions of m/ν. Numerical
results for m-NN networks with (from bottom to top) m = 1 (red), 2 (orange), 3 (green), 5 (cyan), 8 (blue), and 20 (purple) are shown, as well
as for the VCR network (topmost, black, m = 32). Dots are results of simulations average over 100 realizations of networks of 104 nodes. The
lines are but a guide to the eye. Note that VCR reciprocity converges to r = 1/2 (thin horizontal line) for large m/ν. Clustering coefficient for
the m-NN network with m = 1 is equal to 0.

where �(x) is the Heaviside theta function. Using (14) one gets in the large-R limit

k̄�(ξ ) = 2ν

∫ ζmax

ξ

dζ
√

2[cosh(rm(ζ )) − 1]eξ−ζ − (eξ−ζ − 1)2 + 2ν

∫ ξ

ζmin

dζ
√

2[cosh(rm(ξ )) − 1]eξ−ζ − (eξ−ζ − 1)2, (52)

where
ζmin = max[0, ξ − rm(ξ )]
ζmax is the solution of ζmax = ξ + rm(ζmax). (53)

Given that rm(ξ ) � rm for all ξ and rm(ξ ) = rm for ξ � rm,
this further simplifies to

ζmin = max[0, ξ − rm]

ζmax = ξ + rm. (54)

In Fig. 5 the results of numerical integration of (52) for
m/ν = 1, 100, 104 are shown with blue lines. For ξ >

rm k̄�(ξ ) ≡ m, i.e., all out-bonds are simultaneously in-
bonds. For smaller ξ the number of bidirectional bonds is
smaller than m, obviously

min(k̄in(ξ ), m) � k̄�(ξ ). (55)

Reciprocity can be easily expressed in terms of mean number
of bidirectional bonds k̄�. Indeed, the expected total number
of such bonds is

N� = N

2

∫ ∞

0
f (ξ )k̄�(ξ )dξ, (56)

where N is the total number of nodes in the network, f (ξ )dξ

is the fraction of nodes with spatial coordinate ξ , f (ξ ) =
exp(−ξ ) for large R, see (43). In the small-density limit
m/ν � 1 one gets in the leading order in μ

cosh rm(ξ ) ≈ 1

32

(m

ν

)2
e−ξ . (57)

Substituting this into (53) one gets in the leading order in m/ν

N� = Nm

4

( ∫ ∞

0
e−ξ dξ

∫ ξ

0
e−ζ/2dζ

+
∫ ∞

0
e−ξ/2dξ

∫ ∞

ξ

e−ζ dζ

)
= Nm

3
. (58)

Thus, r converges to 1/2 for large densities. In turn, in the
small-m/ν regime the network is dominated by the core where
all bonds are bidirectional, and r converges to 1 for m/ν → 0.
This predictions are confirmed by numerical simulations of
large VCR networks as shown in Fig. 8.

B. Reciprocity of the m-NN network

Consider now the reciprocity of the m-NN networks. Most
notably, it is clear that reciprocity of the m-NN network
is smaller than that of the corresponding VCR network.
In particular, in the VCR all bonds far from the bound-
ary are bidirectional and all outward-directed bonds are
reciprocated, while in the m-NN they are not. Indeed, for
example, for VCR the condition to connect two nodes in
the core is ||x − y|| < rm which has a x � y symmetry,
while the relation “x is mth nearest neighbor of y” is not.
However, one expects the reciprocity of the m-NN net-
works to approach that of the VCR network in the limit
of m → ∞, m/ν = const.

We have not been able to calculate reciprocity explicitly
in the general case of an m-NN network. However, here we
provide some estimates for the case of 1-NN network. Given
that VCR network corresponds to the m → ∞ limit, it is
natural to expect that reciprocity for arbitrary m to lie between
these two limiting cases (these expectations are confirmed by
numerical simulations, see Fig. 8).

Let x be a position of a node and y the position of its nearest
neighbor at distance r = ||x − y||. This means that there are
no other nodes inside the light gray area in the sketch Fig. 9.
In turn, for node at x to be the nearest neighbor of the node
at y there should be no nodes closer to y than r, i.e., there
additionally should be no nodes in the dark gray figure in the
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0
x

y

FIG. 9. A sketch illustrating the calculation of the probability of
a bidirectional link in a 1-NN network. Thick line is the boundary of
O(R), the thin circles have radius ||x − y||. y is the nearest neighbor
of x if there are no nodes in the light-gray area, and y is simultane-
ously the nearest neighbor of x if additionally there are no nodes in
the dark-gray area.

sketch. The area of this figure can be written formally as

A�(x, y, R) =
∫

�(R − z)�(r − ||y − z||)

�(||x − z|| − r)dz, (59)

where we keep using the notation ||z|| = z. The probability
of there being no nodes in this area is exp(−νA�) and the
overall probability that bond from x to its nearest neighbor is
bidirectional is obtained by integrating over possible position
of the node y,

p�(x, ν, R) =
∫

O(R)
νdy π1(x, y, ν, R) exp(−νA�(x, y, R))

=
∫

O(R)
νdy exp {−ν[A(x, y, R) + A�(x, y, R)]},

(60)

where π1 is given by (40). Total number of bidirectional bonds
N� can be integrating (60) over the spatial distribution of the
nodes. Notably,∫

π1dy =
∫

O(R)
νdy exp(−ν(A(x, y, R)) = 1 − O(e−R)

(61)

(i.e., every node has a single nearest neighbor provided the
network has at least two nodes), so p� < 1 as soon as
A� > 0. Explicit calculation of (59) is very cumbersome.
Here we limit ourselves to the study of the core of the network
where max(x, y) � R − ||x − y|| and one can therefore omit
the first �-function in (59). In this case explicit calculation
gives

A�(||x − y|| = r) = 4 cosh r arctan

(
cosh r√

1 + 2 cosh r

)

+ 4 arctan
√

1 + 2 cosh r − 2π, (62)

which asymptotically behaves as

2π + 3
√

3

6
r2 + O(r4) for r � 1,

2π cosh r − 8 cosh(r/2) + O(e−r ) for r � 1,

(63)

and thus the fraction of bidirectional bonds in the core of the
network is

P(core)
� = π

∫ ∞

0
ν sinh rdr exp{−ν[A(r) + A�(r)]}

= 1

2

∫ 1

0
e−νA�d

(
e−νA

)

r (core) =
[

1

P(core)
�

− 1

]−1

. (64)

This integral is easy to calculate numerically, and one gets the
following limits for reciprocity in the core for large and small
ν:

r (core) =

⎧⎪⎪⎨
⎪⎪⎩

3π

5π + 3
√

3
≈ 0.4509... for ν → ∞,

1

3
for ν → 0.

(65)

For large ν the network is dominated by the core and one
expects r ≈ r (core), which is confirmed by numerical results
shown in Fig. 8(a) (the red line corresponds to m = 1). In
the boundary-dominated regime the reciprocity is larger than
the low-density core value of 1/3 but still smaller than the
reciprocity of the small-ν network.

C. Regulating reciprocity with changing temperature

Reciprocity varies widely in the experimentally observed
directed networks [31,45]. For example, citation networks
[49] and mathematical proof networks [7] have zero or es-
sentially zero reciprocity. Trade networks have reciprocity
close to 1 [45]. However, large classes of networks have
intermediate reciprocities. For example, the free association
networks we mentioned in the Introduction as a proxy of a
more general reference network typically have reciprocity of
order 0.1 [6,45], which is, on the one hand, much larger than
one would expect in a random network, but, on the other
hand, significantly smaller than what is expected in the m-NN
network with similar out-degree (m ≈ 30).

This gives rise to a question whether it is possible to modify
the definition of m-NN and VCR models in a way that the
value of reciprocity becomes adjustable. This can be done by
introducing some form of stochastisity in the formation of the
links in the network. Start once again with the VCR. Recall
that there is a bond from a node at x to a node in y if and only
if ||x − y|| < rm(x), where rm(x) is the solution of (6), i.e.,
putting it more formally, the probability that a bond is formed
between two points is

px→y = P(||x − y||, rm(x)) = �[rm(x) − ||x − y||], (66)

where rm(x) is determined by∫
O(r)

P(||x − y||, rm(x))dy = m/ν. (67)

Formulated like this, it is clear that VCR model can be
naturally generalized to an arbitrary non-negative kernel
P(||x − y||, σ (x)) describing the probability of bond forma-
tion, σ being some set of governing parameters. If these
parameters are chosen according to normalization rule (67),
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then the resulting network has a position-independent average
out-degree m. One possible natural choice is a Gaussian ker-
nel,

P(||x − y||, σ (x)) = exp

[
−||x − y||2

σ (x)2

]
, (68)

which is used, for example, as a measure of point similarity in
t-SNE [40] and to estimate the probability of bond formation
in polymer physics (see, e.g., Refs. [50,51]). It is, however,
not convenient for our purposes since it has only a single
governing parameter σ (x), which is to be fixed by (67). As a
result, it is not possible to regulate out-degree and reciprocity
independently in this case. We consider instead the Fermi-
Dirac kernel

P(||x − y||, rm, T ) =
{

1 + exp

[ ||x − y|| − rm(x, T )

T

]}−1

,

(69)

which was suggested in a similar context in Ref. [23] (note
also that it is a natural regularization of the truncated ex-
ponential kernel used for the probability of nearest-neighbor
bonds in Ref. [41]). The kernel (69) has two parameters—
temperature of bond formation T > 0 and typical connection
radius rm(x, T )—and it converges to the VCR in the limit
T → ∞ [the normalizaion condition (67) converges to (6) in
this case]. In the model with the Fermi-Dirac kernel the forma-
tion of bonds is stochastic, and one expects the reciprocity of
the network to decrease with increasing T without changing
of other essential properties of the networks such as the in-
and out-degree distributions.

In order to understand how the structure of the network
depends on T , rewrite the equation (67) in the form∫

dr
∂A(r, x, R)

∂r

{
1 + exp

[
r − rm(x, T )

T

]}−1

= m/ν,

(70)

where A(r, x, R) is collectively defined by (15)–(20) and study
the large-r tail of the integrand in the left-hand side. Im-
portantly, for large radii (er � 1) the area A(r, x, R) grows
exponentially, so that

dA(r, x, R)

dr
∼

{
exp r for r < R − x

exp[(r + R − x)/2] for R − x < r < R + x

(71)

[see (22) and (23)]. In particular, for x in the center and on the
boundary of the disk we get, respectively,

dA(r, 0, R)/dr ∼ exp r, dA(r, R, R)/dr ∼ exp(r/2). (72)

The large-r behavior of the integrand in (70) is con-
trolled by the competition between the exponential growth
of dA(r, x, R)/dr and the exponentially decaying factor
exp[−r/T ], coming from the Fermi-Dirac kernel. If the prod-
uct of these two factors is decaying for large r, then the typical
bond length is close to rm as it is in the zero-temperature
case (we call this case “the short bonds regime”). In turn,
if the product is growing for large r, then the typical bond
length decouples from rm and is, in fact, close to the maximal
possible value R + x (we call this “the long bonds regime,”

rm in this case plays a role of R-dependent normalization
constant).

Thus, depending on temperature, one expects the following
three regimes.

If T < 1, then all bonds are short, with their length con-
trolled by rm(x, T ). For example, for bonds starting in the
center of the disk it is easy to estimate the mean bond length
by approximating the Fermi-Dirac factor (69) with

P(r, rm, T ) =
{

1 for r < rm

exp[−(r − rm)/T ] for r > rm
, (73)

which gives

〈l〉 ≈ rm − 1 + T/(1 − T ). (74)

As a result, the structure of the network in this regime is
qualitatively similar to that at T = 0: The network has a core
region, where properties (in-degree, reciprocity, etc.) do not
“feel” the boundary of the disk, and peripheral region with
roughly exponential dependence of the in-degree on the dis-
tance to the boundary.

For T > 2 all bonds are long, the nodes predominantly
connect to nodes which are very far from them: There are
exponentially many such nodes, and Fermi-Dirac decay is not
strong enough to prevent formation of the long bonds. As a
result, in the thermodynamic limit bonds become completely
uncorrelated and the reciprocity converges to zero.

The most interesting situation arises for T ∈ (1, 2). In this
case nodes close to the center of the disk predominantly are
sources of long bonds (i.e., they typically connect not to their
neighbors but to random nodes close to the periphery of the
disk), while peripheral nodes are sources of short bonds, con-
necting them mostly to their neighbors. As a result, network
does not have a core-periphery structure anymore. However,
since the global properties of the network are mostly con-
trolled by peripheral nodes, the overall in-degree remains a
power law.

In Fig. 10 we present the results of numerical simula-
tions of temperature-dependent VCR with the Fermi-Dirac
kernel. Figure 10(a) shows the behavior of the connection
radius rm(ξ, T ) for different temperatures and m/ν and fixed
N = 10 000. It is seen that for low temperatures (upper curves
in the series) the behavior is qualitatively similar to that of
zero-temperature VCR: There is clear distinction between the
core of the network where rm is independent of the coordinate
and periphery with linear dependence of rm on ξ . However, the
core shrinks with growing temperature and ceases to exist for
T > 1. In the T > 1 regime rm actually can become negative.
Note, however, that in this regime the length of bonds is close
to R + x = 2R − ξ and rm plays just a role of normalization
constant in (70).

Figure 10(b) shows the behavior of the average in-degree
of a node as a function of coordinate,

kin(ζ ) =
∫

O(R)
P(||x − y||, rm(x, T ), T )νdx, (75)

where P(r, rm, T ) is given by (69) and the integral, although
formally a function of the target node position y in fact
depends only on the distance to the boundary ζ = R − y.
Interestingly, the plateau of the in-degree distribution in the
core of the network exists only up to T = 0.5. However, up
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(a) (b)

(c) (d)

FIG. 10. Structural properties of temperature-dependent VCR networks. (a) The dependence of rm(ξ, T ) defined by (70) on the distance
from the boundary ξ for networks of N = 10 000 nodes with m = 16 and (from bottom to top) ν = 1/2 (blue), 1/16 (orange), 1/128 (green)
(the corresponding disk radii are R ≈ 8.76, 10.83, 12.90, respectively) and various temperatures. In each series of curves temperature grows
from T = 0 (top curve) to T = 2 (bottom curve) with step 0.1. (b) The dependence of average in-degree of the node on its distance ξ from the
boundary; dots are results for simulated networks of N = 10 000 nodes with m = 16, ν = 1/2, R ≈ 10.83 and temperatures T = 0, 0.5, 1, 1.5
and 2, colored from purple to red in the rainbow order; curves are results of numerical integration of (75), points correspond to average of 100
independent model networks; (c) global in-degree distribution for the same networks as in panel (b); (d) reciprocity and (in the inset) average
clustering coefficient as functions of temperature for networks with N = 10 000, m = 16 and ν = 1/2 (blue diamonds), 1/8 (green triangles),
1/32 (orange squares), and 1/128 (red circles).

to T = 1 the in-degree dependence on ζ is nonmonotonic,
exponential increase for small ζ is followed by decrease at
larger ζ similarly to the low-temperature limit. For T > 1 the
in-degree keeps slowly increasing up to the center of the disk.
However, given that the majority of the nodes are located in
the peripheral region where exponentially increasing kin(ζ )
dependence persists for all temperatures T ∈ [0, 2), it is not
surprising that the global in-degree distribution remains a
power law with exponent −3 [see Fig. 10(c)]. In fact, erosion
of the core regime with growing temperature leads to the
cutoff of the power law being shifted to higher in-degrees.

Finally, Fig. 10(d) shows the numerical results for depen-
dence of reciprocity and clustering coefficient on temperature
for various m/ν and N = 10 000. As expected, both decrease
with increasing temperature. The fact that reciprocity at T = 2
remains small but finite is a finite-size effect: It is easy to show
that r(T = 2) should decrease logarithmically with the size of
the network.

To conclude, note that it is possible to generalize the idea of
stochastic temperature-controlled bond formation to the case
of m-NN networks in this case the probability of forming a

bond from node i to node j can be defined as

pi→ j =
{

1 + exp

[
mi j − μ(T )

T

]}−1

, (76)

where mi j is the order of j in the list of nearest neighbors of
i, as defined above (38) (mi j =1 for the nearest neighbor of i,
2 for the next-nearest neighbor, etc.), and μ(T ) is defined in a
way to make the mean out-degree fixed:

∞∑
k=1

{
1 + exp

[
k − μ(x, T )

T

]}−1

= m (77)

or in some other similar way.
We expect the qualitative behavior of such a network to be

similar to that of the T-VCR: the reciprocity of the network to
decrease with growing temperature while in-degree distribu-
tion remaining a truncated power law.
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(a) (b)

FIG. 11. (a) Connection radius rm as a function of the distance ξ of the source node from the boundary for networks with quasiuniform
distribution of nodes (78), α = 0.75 (red, the curve decreases inside the core, i.e., for large ξ ), 1 (green, uniform case, constant in the core),
1.25 (blue, increases in the core); numerical results for m = 10, N = 50 000 and radius of disk R defined by equation rm(ξ = 0) = R. It is seen
that quasiuniform distribution violates the translation invariance in the core but in the periphery the dependence rm(ξ ) = rm(0) − ξ still holds;
(b) cumulative in-degree distributions of the same networks with (from top to bottom) α = 0.75 (red), 1 (green, uniform case), 1.25 (blue),
and the corresponding straight lines indicate the corresponding power-law behavior given by (80).

V. VARIATION OF THE EXPONENT
OF THE IN-DEGREE DISTRIBUTION

The exponent of the in-degrees distribution in the power-
law (boundary-dominated) regime is fixed at −3 for both VCR
and m-NN models. Here we briefly discuss how to relax this
constraint. To do this, following Ref. [23], we introduce a
“quasiuniform” distribution of nodes, so that the density of
nodes at distance r from the origin behaves as

ν(r) = ν
sinh αr

sinh r
(78)

with some constant parameter α. This distribution of nodes
breaks the translation invariance of the properties in the core
of the network (e.g., the mean in-degree becomes slightly co-
ordinate dependent) but in the periphery regime the resulting
behavior is quite simple: the fraction of nodes with a given
distance to the boundary becomes

fα (ζ )dζ = e−αζ dζ (79)

instead of (43), which, after substitution into (48) gives

Pα (kin ) ∼ k−1−2α
in , Fα (kin ) ∼ k−2α

in , (80)

for the pdf an the cumulative degree distribution, respectively
(compare Ref. [23]) and one needs α � 2 for the whole
network to stay in the boundary-dominated regime in the
thermodynamic limit.

In Fig. 11 we show the numerical results for the connection
radius rm(ξ ) and for the cumulative in-degree distribution of
the VCR networks with various α, showing that for networks
with small-enough node density, despite the violation of the
translation invariance in the core, the in-degree distribution
indeed does have a power-law tail (80).

VI. GENERATING NETWORKS WITH GIVEN
PROPERTIES USING THE NEAREST-NEIGHBOR MODELS

In this section we briefly discuss how to use network mod-
els introduced above to generate directed networks with given
properties. Recall that out-degree in the models considered
here is fixed by construction,

Pout (k) =
{
δk,m for the m-NN model;
mke−m/k! for the VCR model,

(81)

while other properties of the networks, such as the slope
and width of the in-degree distribution and the reci-
procity can be tuned by adjusting the parameters of the
models.

As an example, consider constructing a network whose
in-degree has a purely power-law tail with slope −3. We
also demand that the network has a given average degree m,
number of nodes N , and reciprocity r. For definiteness, let us
construct it based on the VCR model.

In the large-N limit the in-degree distribution of a VCR net-
work is, for any given ν, a truncated power law. However, for
any final N it is possible to choose density of nodes in a way
that only the power-law part of the distribution is observed.
Indeed, the truncation of the power law is caused by the
existence of the core part of the network where the expected
degree does not depend exponentially on the distance to the
boundary. Thus, if one chooses the density of points in a way
that the width of the boundary region becomes equal to the
radius of the disk, then the truncated part of the distribution
ceases to exist. Using (12) for the area of hyperbolic circle
and (24) for the connection radius at the boundary rm(0)
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one gets

N = 2πν(cosh R − 1) ≈ πνeR

rm(0) = 2 ln

[
m

4ν
+ π

2

]
rm(0) = R

→ ν0 ≈ π

16

m2

N
, R0 ≈ 2 ln

(
4N

πm

)
, (82)

where N/m � 1 is assumed. Equation (82) gives the value
of R0 (ν0) for which the in-degree distribution of the resulting
networks is the closest to a true power law. If R < R0 is chosen
(which means that ν is larger than ν0), then the network has
a core which is unreachable from the boundary and has bulk
properties, including position-independent average in-degree
m, while if R > R0 is chosen, then an “inverse core” of radius
rm(0) − R is formed in the center of the network, the nodes
in this inverse core get connected to all peripheral nodes,
attaining in-degree of order N . Note, however, that if radius is
close to R0, then the actual number of nodes in core (reverse
core) is small [it is of order N exp(−rm(0))] for the core and
N exp[−2R + rm(0)] for the reverse core).

The second step of the network construction is to distribute
N points at random in the hyperbolic disk of the chosen
radius R0 and calculate the distances between them. It can
be done in a standard way: The coordinates (ρi, θi ) of the
nodes (i = 1, . . . , N) are chosen independently at random
from probability distributions,

prad(ρ) = sinh ρ/(cosh R0 − 1) ρ ∈ [0, R0]

pang(θ ) = 1/2π θ ∈ [0, 2π ). (83)

The distance di j between each pair of points can be calculated
according to the hyperbolic cosine theorem (14) as

di j = arccosh[cosh ρi cosh ρ j − sinh ρi sinh ρ j cos(θi − θ j )].

(84)

Third step is to determine the value of temperature T
corresponding to the desired value of reciprocity r. Note [see
Fig. 10(d)] that for large values of m/ν the r/T dependence
rapidly converges to the master curve, so for m/ν � 102

for practical purposes the curve is universal [compare red
and orange curves in Fig. 10(d)]. The limiting curve for
N = · · · is tabulated in the Appendix. There is a slow (log-
arithmic) dependence on N of this limiting curve. However,
a first estimate of T based on the tabulated values turns
out to be rather precise (see results of computer simulation
below), and it is easy to improve the estimate iteratively if
needed.

Fourth, one should find the dependence rm(ξ ) for the cho-
sen values of m, ν, R, T . In the first approximation one can
[compare Fig. 10(a)] use a simple piecewise linear fit

rm(ξ ) = max[rm(0) − ξ, rm(R)], (85)

where the values at the boundary rm(0) and at the center of the
disk rm(R) can be approximated by solutions of the following
equations:

2F1(1, T/2; 1 + T/2; − exp{[2R − rm(0)]/T }) = πm

4N
,

2F1(1, T ; 1 + T ; − exp{[R − rm(R)]/T }) = m

N
, (86)

where 2F1(a, b; c; d ) is the ordinary hypergeometric func-
tion and (86) is obtained from (70) by replacing hyperbolic
functions with respective exponents in the expressions for
A(r, x, R). Finally, a directed bond between each pair of points

FIG. 12. (a) Out-degree distribution of models with m = 15, r = 0.2, and N = 104 (red circles), 3 × 104 (green squares), and 105 (blue
triangles) compared with the corresponding Poisson distribution (solid line); (b) cumulative in-degree distribution for the same networks, the
straight line has a slope −2 and is a guide for the eye.

054310-15



I. A. KASYANOV et al. PHYSICAL REVIEW E 108, 054310 (2023)

is formed independently at random with probability given
by (69).

We have evaluated this procedure for 27 different com-
binations of parameters N = 104, 3×104, 105; m = 5, 15, 40;
and r = 0.1, 0.2, 0.4. The comparison between the seed val-
ues of the parameters and the corresponding parameters in
the constructed networks are provided in the Appendix. The
results are mostly satisfactory: parameters of the constructed
models are within 1–2% of the desired seed values. Two minor
problems are (i) notable discrepancy between constructed and
seed value of resiprocity for small value of seed r and (ii)
a small systematic error in the average degree. Both effects
are especially notable for smaller N and seem to decline with
growing N . The discrepancy in r is due to the aforementioned
nonuniversal behavior of the r(T ) curve for large T and can
be corrected by iteratively changing the value of temperature
used in simulations. The discrepancy in the average degree
is due to the fact replacement of the true behavior of rm(ξ )
with a piecewise linear approximation (85) and, if needed, can
be alleviated by using a more sophisticated approximation for
rm(ξ ), e.g.,

rm(ξ ) = rm(R) + [|X | − X + a exp(−|X |/a)]/2,

X = ξ − rm(0) − rm(R) (87)

with a properly adjusted numerical parameter a [note that for
a → 0 (87) converges to (85)]. Moreover, in Fig. 12 we show
the resulting in- and out-degree distributions for several of
the networks proving that out- and in-degree distributions of
the generated networks are indeed Poison and power law with
exponent 3, respectively.

VII. DISCUSSION

In this paper we studied the properties of the nearest-
neighbor model and a dual model with varied connection
radius on a hyperbolic disk. We have shown that the properties
of these networks change dramatically with the change of
dimensionless (per unit of inverse curvature squared) density
of nodes.

If density of nodes is large (effective space curvature
is small), then the resulting networks are similar to the
nearest-neighbor networks in Euclidean space: both out- and
in-degree are narrowly distributed around their mean value
m and the reciprocity of the network is very large, between
r = (5/3 + √

3/π )−1 ≈ 0.4509 for 1-NN networks and r = 1
for the VCR networks, which correspond to the m → ∞ limit
of m-NN.

In turn, if density of nodes is small (conversely, space
curvature is large), then the networks can be thought of as
directed analogs of undirected hyperbolic networks studied in
Refs. [23,24]. Let us point out the important generality of this
result: Although m-NN and VCR networks are 3-parametric
(m, ν, R) classes of networks, in the limit of large network size
their behavior is remarkably universal. Indeed, the in-degree
distribution is always a power law with exponent −3, for
kin/m from 1 to m/ν, i.e., the only relevant parameter is m/ν,
which controls the position of the cutoff. Reciprocities of large
networks converge to finite values for ν → 0. For VCR this
value is m independent, for m-NN it weakly depends on m
and converges to the VCR value for m → ∞. In Table I we
summarize the properties of all the networks studied in this
paper in the limit N → ∞ and for large but finite m/ν.

TABLE I. Summary of the behavior of the model studied in this paper in the limit of large network size (N ∼ νeR → ∞).

m-NN/VCR
Temperature- with

dependent quasi-uniform
Model m-NN VCR VCR distribution

Parameters m, ν, R m, ν, R m, ν, R, T m, ν, R, α

out-degree delta-
distribution functional Poisson Poisson delta/Poisson
in-degree
exponent −3 −3 −3 −1-2α

in-degree
cutoff ∼m/ν ∼m/ν ∼m/ν ?
kmax/m

of order 1 of order 1 for decreases
all m/ν, all m/ν, with T from a

reciprocity converges to converges to value of order ?
finite limit 1/2 for 1 for T = 0 to

less than 1/2 m/ν → ∞ that of order
for m/ν → ∞ 1/R for T = 2
of order 1 for of order 1 for decreases

Average all m/ν, all m/ν, with T from a
clustering converges to converges to value of order
coefficient a finite limit a finite limit 1 for T = 0 to ?

for m/ν → ∞ for m/ν → ∞ that of order
1/R for T = 2
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TABLE II. Numerically calculated values of reciprocity r for
various values of temperatures T (N = 50 000).

T r

0.0 0.50133
0.1 0.49449
0.2 0.48011
0.3 0.45954
0.4 0.43477
0.5 0.40725
0.6 0.37806
0.7 0.34797
0.8 0.31756
0.9 0.28723
1.0 0.25728
1.1 0.22797
1.2 0.19955
1.3 0.17234
1.4 0.14669
1.5 0.12297
1.6 0.10154
1.7 0.08262
1.8 0.06632
1.9 0.05257
2.0 0.04122

This behavior comes from the peculiar core-periphery
structure of the network, where in the core network prop-
erties are translation invariant and qualitatively similar to
those of Euclidean nearest-neighbor networks, while in the
boundary region the degree and local reciprocity are strongly
position dependent, which, after integration over the spatial
distribution of nodes gives rise to the scale-free behav-
ior. In the thermodynamic limit R → ∞, ν = const both
core and periphery regions are present for all m and ν.
However, distribution of the nodes between two regions de-
pends on m/ν giving rise to core-dominated behavior for
large densities and boundary-dominated behavior for small
densities.

We believe that the novel class of networks studied here
will be useful as a reference model for scale-free directed
networks. Notably, another model of directed hyperbolic net-
works was proposed recently in Ref. [31]. There each node
attains two intrinsic popularities (akin to radial coordinates
in the hyperbolic disk representation), with respect to in-
and out-degree, respectively. By regulating the distributions
of these popularities and the correlations between them the
authors of Ref. [31] are able to generate directed networks
with arbitrary in- and out-degree distributions and arbitrary
correlation between them. In turn, our model is less suitable to
fitting arbitrary degree distributions: indeed, out-degree distri-
bution here is fixed. However, it is more naturally geometric,
in a sense that it is a natural generalization of well-studied
Euclidean m-nearest-neighbor graphs [33–38], and it might
be a more natural fit to model the cases when one of the two
distributions is fixed to be delta-functional or Poisson. One
possible way of using these models is to study embedding of
directed networks in hyperbolic space. The analogous task for
the case of undirected networks is well developed [52–54] but

TABLE III. The results of generating of VCR networks with
predefined properties. N , m, and r are the target values of the number
of nodes, average out-(in-)degree and reciprocity, respectively. R and
T are the values of disk radius and temperature used for simulations.
�m/m and �r/r and relative discrepancies between target values of
m and r and their observed values in simulated networks.

N m r R T �m/m �r/r

10 000 5 0.1 15.685 1.612 −0.013 −0.011
10 000 5 0.2 15.685 1.198 −0.012 0.020
10 000 5 0.4 15.685 0.524 −0.002 0.006
10 000 15 0.1 13.488 1.612 −0.039 0.051
10 000 15 0.2 13.488 1.198 0.019 −0.013
10 000 15 0.4 13.488 0.524 −0.012 0.002
10 000 40 0.1 11.526 1.612 −0.026 0.101
10 000 40 0.2 11.526 1.198 −0.022 0.020
10 000 40 0.4 11.526 0.524 −0.017 0.022
30 000 5 0.1 17.882 1.612 0.011 −0.024
30 000 5 0.2 17.882 1.198 0.003 0.002
30 000 5 0.4 17.882 0.524 0.014 −0.024
30 000 15 0.1 15.685 1.612 −0.015 0.033
30 000 15 0.2 15.685 1.198 −0.015 0.008
30 000 15 0.4 15.685 0.524 −0.005 0.016
30 000 40 0.1 13.723 1.612 −0.014 0.046
30 000 40 0.2 13.723 1.198 0.010 −0.002
30000 40 0.4 13.723 0.524 −0.005 0.004

100 000 5 0.1 20.290 1.612 −0.012 −0.037
100 000 5 0.2 20.290 1.198 −0.003 0.007
100 000 5 0.4 20.290 0.524 0.003 −0.003
100 000 15 0.1 18.093 1.612 −0.013 −0.008
100 000 15 0.2 18.093 1.198 0.010 −0.013
100 000 15 0.4 18.093 0.524 −0.005 0.001
100 000 40 0.1 16.131 1.612 −0.004 0.002
100 000 40 0.2 16.131 1.198 −0.010 0.009
100 000 40 0.4 16.131 0.524 −0.003 0.005

generalization to the directed case is in it infancy (although
note the recent paper [32]). Using the discrepancy between
embedded directed networks and m-NN networks as a loss
function characterizing the quality of the embedding seems to
be a very exciting perspectives, although it goes beyond the
scope of this paper.
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APPENDIX

In this Appendix we provide reference data to be used for
the generation of directed networks with given characteristics.
In Table II we tabulate the dependence of the network reci-
procity on temperature, i.e., the master curve to which curves
on Fig. 10(d) converge. Table III summarizes the results of
our numerical generation of 27 networks with target val-
ues of parameters N = 104, 3×104, 105; m = 5, 15, 40; and
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r = 0.1, 0.2, 0.4. Here R and T are the values of the disk
radius and temperature calculated from (82) and from Table II,
respectively, while �m/m and �r/r are the relative discrep-
ancies between generated and target values of average degree

and reciprocity:

�m/m = (mgen − mtarget )/mtarget;

�r/r = (rgen − rtarget )/rtarget. (A1)
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