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Abstract
The complete quantitative description of the structure of dense and supercooled liquids remains a notoriously difficult problem in 
statistical physics. Most studies to date focus solely on two-body structural correlations, and only a handful of papers have sought to 
consider additional three-body correlations. Here, we go beyond the state of the art by extracting many-body static structure factors 
from molecular dynamics simulations and by deriving accurate approximations up to the six-body structure factor via density 
functional theory. We find that supercooling manifestly increases four-body correlations, akin to the two- and three-body case. 
However, at small wave numbers, we observe that the four-point structure of a liquid drastically changes upon supercooling, both 
qualitatively and quantitatively, which is not the case in two-point structural correlations. This indicates that theories of the 
structure or dynamics of dense liquids should incorporate many-body correlations beyond the two-particle level to fully capture their 
intricate behavior.
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all research of the last decades focuses on the correlations of the positions between two particles. In this work we go beyond the state 
of the art and find that the three- and four-body structure reveal many features that the two-body one does not, especially at high 
densities over length scales of a few particle diameters. Moreover, we derive useful approximations for these complex correlation 
functions involving up to six particles, which are in good agreement with our measurements. These pave the way for the construction 
of more accurate theories of liquids and their microscopic dynamics.
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The computation of many-body correlation functions remains a 
central problem in statistical physics. Without them, providing a 
complete characterization of an interacting system is often im-
possible. Examples include the determination of spatial correla-
tions in liquids (1, 2) and charged plasmas (3), with the aim to 
fully characterize the probability distribution functions of finding 
a given set of particles at a given set of positions. Other examples 
include granular media (4), correlated electron systems (5, 6), and 
semiconductors, where quasi-particle excitations can develop 
highly complex correlations (7).

In most cases, the standard approach to unraveling spatial cor-
relations involves the construction of hierarchies of equations 
coupling an nth order probability distribution function to an 
(n + 1)th order one. For instance systems where quantum fluctua-
tions are negligible follow the famed Bogoliubov–Born–Green– 
Kirkwood–Yvon hierarchy (1, 8). Similarly, the many-body 
Green’s functions of a statistical field theory obey the Martin– 
Schwinger hierarchy (9). These hierarchies are generally trun-
cated using various approximations such that knowledge of the 

two-body correlations can be extracted. While this has led to piv-
otal insight in the behavior of interacting systems, two-body cor-
relations are not always sufficient to fully characterize the 
behavior of such systems. This is especially true in the strongly 
correlated regime, and it is therefore important to be able to char-
acterize or at least have working approximation schemes for cor-
relation functions beyond the two-body ones.

Specifically, unraveling the microstructure of dense disordered 
systems such as glasses and supercooled liquids remains a highly 
challenging, but also very important fundamental problem in liquid 
state theory (1, 10–13). In practice, the structure of these systems 
can be directly measured by scattering experiments in the form of 
the two-body static structure factor S(2)(k), where k is the wave vec-
tor at which structural correlations are probed (14–16). Precise 
knowledge of this function, which is also easily obtained from com-
puter simulations, gives access to a vast number of a system’s 
thermodynamic and macroscopic properties (1, 17, 18). Because of 
its prevalence in the experimental literature on the liquid state, 
the two-body static structure factor also has become one of the 
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main quantities used in theoretical development, not only to char-
acterize the structure of liquids but also to predict their dynamical 
behavior (19). However, from a formal standpoint the computation 
of the structure factor requires knowledge of the three-body correl-
ation function as expressed in the Born–Green–Yvon equation (20) or 
knowledge of the full form of the excess free energy (1), both of 
which pose incredibly difficult problems.

Moreover, a collection of recent results points towards the idea 
that two-body correlation functions such as S(2)(k) might not be 
sufficient to quantitatively describe the structure and the dynam-
ics of very dense liquids. For instance, the existence of a growing 
static length scale associated with amorphous order near the 
glass transition has been identified (21–24). This growing length 
scale is an inherently multibody one and hence is not captured 
in the canonical static structure factor. In addition, a plethora of 
locally preferred, higher-order structures have been identified in 
numerous glass-forming materials (25–27). For example, metallic 
glasses have a tendency to prefer localized icosahedral configura-
tions (28–30). Simpler model glass-formers such as Kob–Andersen 
mixtures also display short-to-medium-ranged ordering, often 
studied via bond-order parameter expansions (31–34). The pres-
ence of these ordered structures is impossible to extract from sim-
ple static structure factor measurements as they average out all 
local angular dependencies by construction. Furthermore, higher- 
order spatial correlation functions have also revealed preferential 
ordering of alternating layers with icosahedral and dodecahedral 
symmetries in Kob–Andersen mixtures (12), and preferential an-
gular distributions in hard (35) and soft (36) particle systems. 
More abstract advanced network clustering methods (37) and 
community inference techniques (38) also detect short-to-medium- 
ranged ordering in model glass-formers.

All these results indicate that we should expect many-body cor-
relation functions to display highly complex behavior as one de-
scends in the supercooled regime. It is therefore not unthinkable 
that these play a large, yet mostly unstudied role in liquid dynamics 
near vitrification (35, 39, 40). Most studies on static many-body cor-
relation functions so far have focused on triplet correlations, and 
various factorization approximations thereof, in both real space 
(41–45) and reciprocal space (46–50). With the notable exception 
of the work of Zhang and Kob (12), who have studied orientationally 
averaged four-body correlations in real space, no work on higher- 
order spatial correlation functions is known to us. Having accurate 
measurements or at least valid approximations for many-body 
structural correlation functions is essential for a fundamental 
understanding of the dense liquid state.

Here, we present for the first time the four-body structural cor-
relations of dense simple liquids in reciprocal space using both 
theory and computer simulations. We numerically extract the 
many-body static structure factors of simulated hard spheres up 
to fourth order and compare the results with convolution approx-
imations obtained from a density functional theoretic approach 
(1, 51). This work, which can be generalized to even higher orders, 
provides an important step forward in the full quantitative de-
scription and prediction of liquid structure.

Theory of liquid structure
We consider a classical multicomponent interacting fluid of N 
particles at bulk number density ρ0. The microscopic density of 
particle species α at position r is denoted by ρα(r) and the n-body 
density probability distribution by ρ(n)

α1 ···αn (r1, . . . , rn) (51). The static 
n-body density correlation functions of interest follow from the 
generalized Ornstein–Zernike integral equations, which can be 

derived from classical density functional theory (1). In a transla-
tionally invariant system, these functions are defined as correla-
tions of density fluctuations of species α, denoted 
ρ̂α(r) ≡ ρα(r) − ρ0, α, in which ρ0, α is the bulk density of species α:

H(n)
α1 ···αn

(r1, . . . , rn) ≡ 〈ρ̂α1
(r1) × · · · × ρ̂αn

(rn)〉

=
δn ln (Ξ)

δ ln (zα1 (r1)) · · · δ ln (zαn (rn))
,

(1) 

where 〈 · · · 〉 denotes the ensemble average, Ξ is the grand-canonical 
partition function, and z(r) is the local activity. Formally, the grand- 
canonical partition function is the cumulant generating functional 
for the correlation functions H(n)

α1 ...αn . We also define the functional in-
verse to H(n)

α1 ...αn above as K(n)
α1 ...αn (r1, . . . , rn) (51). The inverse functions 

K(n)
α1 ...αn naturally define the many-body direct correlation functions 

c(n)
α1 ...αn from the excess part of the free-energy functional (1). 

Details of this derivation are given in the Supplementary Material.
Since the structure of disordered systems is generally studied 

using scattering techniques, it is useful to work in Fourier space, 
where the n-body density correlation function is proportional to 
the n-body static structure factor S(n) probed at different wave vec-
tors. More precisely, for an isotropic system we write 
H(n)

α1 ···αn (k1, . . . , kn−1) = ρ0S(n)
α1 ···αn (k1, . . . , kn−1) (51) where S(n)

α1 ···αn (k1, 
. . . , kn−1) = N−1〈ρ̂α1

(k1) · · · ρ̂αn−1
(kn−1)ρ̂αn

(kn)〉 is the generalized 
n-body structure factor and kj is the jth wave vector satisfying ki ≠ 
kj for all allowed i, j. This is a necessary condition for the equiva-
lence of the cumulant S(n) with the canonical average of density 
fluctuations. We impose momentum conservation by requiring 
n

j=1 kj = 0, simplifying the notation for n-point functions in terms 
of (n − 1) arguments.

The correlation functions H(n), K(n) allow for the derivation of 
generalized Ornstein–Zernike integral equations which become 
algebraic equations in reciprocal space. These relations are ex-
pressed in terms of S(n)(k1, . . . , kn−1) and the many-body direct cor-
relation functions c(n)(k1, . . . , kn−1) (see Supplementary Material
for a detailed discussion). For n = 3, it is relatively straightforward 
to show that the triplet static structure factor is defined as

S(3)
αβγ(k1, k2) = S(2)

αα′ (k1)S(2)
ββ′ (k2)S(2)

γγ′ (|k1 + k2|)

×
δα′β′δα′γ′

x2
α′

+ ρ2
0c(3)

α′β′γ′ (k1, k2)
 

,
(2) 

in which ki = |ki|, and xα is the partial fraction of species α. We fol-
low Einstein summation convention, summing over repeated in-
dices. Similarly the four-body static correlation function is given 
by the following equation:

S(4)
αβγσ(k1, k2, k3)

=
δα′β′δα′γ′

x2
α′

+ ρ2
0c(3)

α′β′γ′ (k1, k2)
 

× S(2)
αα′ (k1)S(3)

β′βσ(k1 + k2, k3)S(2)
γ′γ (k2)

+
δα′β′δα′σ′

x2
α′

+ ρ2
0c(3)

α′β′σ′ (k1, k3)
 

× S(2)
αα′ (k1)S(3)

β′βγ(k1 + k3, k2)S(2)
σ′σ(k3)

+
δα′γ′δα′σ′

x2
α′

+ ρ2
0c(3)

α′γ′σ′ (k2, k3)
 

× S(3)
αα′β(k2 + k3, k1)S(2)

γ′γ (k2)S(2)
σ′σ(k3)

−
2δα′β′δα′γ′δα′σ′

x3
α′

− ρ3
0c(4)

α′β′γ′σ′ (k1, k2, k3)
 

× S(2)
αα′ (k1)S(2)

β′β(|k1 + k2 + k3|)S
(2)
γ′γ (k2)S(2)

σ′σ(k3).

(3) 
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Both Eq. (2) and (3) are formally exact results. By dropping all indices, 
we obtain the single-component versions of these equations.

An often invoked approximation for such correlation functions 
is the so-called convolution approximation (52, 53). This approxi-
mation is obtained by neglecting all contributions from direct correl-
ation functions c(n)(k1, . . . , kn) beyond the two-point one. This is 
essentially equivalent to neglecting all true n-body structural correla-
tions and retaining only those mediated via two-body correlations. 
This yields

S(3)
conv(k1, k2) = S(k1)S(k2)S(|k1 + k2|) (4) 

and

S(4)
conv(k1, k2, k3) ≈ S(k1)S(k2)S(k3)S(|k1 + k2 + k3|)

× (S(|k1 + k2|) + S(|k1 + k3|) + S(|k2 + k3|) − 2)
(5) 

for monodisperse systems where, following convention, we omit the 

superscript for the two-body structure factor and denote S(2)(k) by 

S(k). Although the convolution approximation for S(3) is usually as-
sumed to be reasonable for systems with relatively weak attracting 
interaction potentials (46), a recent mode-coupling theory study has 

revealed that including c(3)(k1, k2) can qualitatively change the glass 
transition diagram even for simple hard-sphere mixtures (54). 
Moreover, the convolution approximation provides even less accur-
acy for systems such as silica (46). Indeed, silica is part of a family 
of network forming glasses (55) which tend to have strongly aniso-
tropic and attractive interaction potentials due to coordinated bond-
ing. We expect that the failure of the convolution approximation for 
silica glasses generalizes to other anisotropic glass-forming materials, 
where the three- (and higher)-body contributions to the excess free 
energy become important.

For completeness, we also present in the Supplementary 
Material the convolution expressions for the five-body structural 
correlation function S(5)(k1, . . . , k4) and the six-body structural 
correlation function S(6)(k1, . . . , k5) for single-component sys-
tems, which contain 26 and 236 terms upon full expansion, re-
spectively. While testing their validity is beyond the scope of 
this study (and beyond the scope of current computational ef-
forts), we believe that they might be of utility for physically moti-
vated factorizations of many-body structure factors in 
first-principles theories of supercooled liquid dynamics.

Comparison with simulations
To perform a comprehensive test of the convolution approximation 
for S(4)(k1, k2, k3), we extract the four-body static structure factors 
directly from numerical simulations. To this end, we perform 
Monte Carlo simulations of a system of weakly polydisperse hard 
spheres of averaged diameter D, at volume fraction φ introduced 
by Weysser et al. (56) (see Materials and Methods). We compare 
the four-point static structure factor obtained from simulations 
with its convolution approximation using the following convention. 
The isotropy of our system allows us to rotate the coordinate system 
such that the z-axis coincides with k1, and k2 lies in the xz-plane, de-
fining the angle between k1 and k2 as θ12. The third vector k3 is now 
determined by the angle θ13 it makes with k1, and the azimuthal an-
gle ϕ23 which denotes the angle that the projection of k3 on the xy- 
plane makes with that of k2. The latter angle can be expressed as

cos ϕ23 =
k2

1(k2 · k3) − (k1 · k2)(k1 · k3)
�������������������

k2
1k2

2 − (k1 · k2)2
 �������������������

k2
1k2

3 − (k1 · k3)2
 , (6) 

where ki is the length of the vector ki. The wave vectors are now giv-
en by

k1

k1
=

0
0
1

⎛

⎝

⎞

⎠,
k2

k2
=

sin θ12

0
cos θ12

⎛

⎝

⎞

⎠,
k3

k3
=

sin θ13 cos ϕ23
sin θ13 sin ϕ23

cos θ13

⎛

⎝

⎞

⎠ (7) 

in Cartesian coordinates.
We show a sample of the results for the four-point structure 

factor in Figs. 1 and 2, in which we show both 
S(4)(k1, k2, k3, θ12, θ13, ϕ23) measured from simulations and 
S(4)

conv(k1, k2, k3, θ12, θ13, ϕ23) obtained from the convolution ap-
proximation (5) for low- and high-density liquids at different 
sets of wave vectors. For purposes of visualization, we choose to 
fix the vectors k1 and k2 and the length k3, thereby only varying 
the angles θ13 and ϕ23. In this way, the vector k3 traces out the sur-
face of a sphere which we color according to the corresponding 
value that S(4) takes. Results for different wave vectors are shown 
in the Supplementary Material. In order to make a quantitative 
comparison, we show in Fig. 2a to c the same data for the super-
cooled case plotted along the dotted contours in Fig. 1. We stress 
that since we are visualizing a function of six scalar variables, it 
is inevitable that we make arbitrary choices for which wave vec-
tors to analyze. We have inspected the four-body correlations 
for many other combinations of wave vectors (some of which pre-
sented in Figs. S2 and S3 of the Supplementary Material), which 
support all our main conclusions.

At intermediate densities in the normal (nonsupercooled) 
liquid regime (φ = 0.45), we find that the convolution approxima-
tion captures both qualitatively and semi-quantitatively 
the measured four-body correlation function. It manages to re-
produce the nontrivial angular dependence, which gives infor-
mation about the preferred local structure in the liquid (48). 
Furthermore, we observe the presence of negative correlations 
in both S(4) and S(4)

conv depending on the choice of wave vectors. 
We can provide a mathematical reason as S(4)

conv(k1, k2, k3) < 0 im-
plies that (S(|k1 + k2|) + S(|k1 + k3|) + S(|k2 + k3|)) < 2 which is for 
instance satisfied if the wave vectors have similar moduli and 
their angular separation is large. Indeed, comparing Fig. 1a and 
c, we see that near-antiparallel k1 and k2 lead to substantially 
more negative contributions to the four-body correlation func-
tion for a fixed k3D = 7.2, since they ensure that |k1 + k2| and 
thereby also S(|k1 + k2|) is small. Overall it is clear that in normal 
liquids, the information contained within the two-body structure 
is sufficient to quantitatively describe many-body structural 
correlations at least up to the four-body level.

At higher densities (φ = 0.58), where the system display supercooled 
dynamics, we observe no qualitative changes in the four-body correl-
ation functions for length scales of the order of a particle diameter 
(k3D = 7.2). We have verified that this also remains true for larger 
wave numbers, i.e. k3D > 7.2 (see Supplementary Material). 
However, we remark that the correlations already present at low 
density get amplified by over an order of magnitude at higher 
density. Previous studies on three- and two-body correlation func-
tions report similar, yet less pronounced, behavior in the super-
cooled regime (48, 57). This amplification can also be seen in the 
functional form of the four-body convolution approximation (5), 
which scales as the fourth power of the two-body structure factor, 
while S(3) only scales as its third power. This results in a markedly 
sharper peak of the four-point structure factor as a function of 
wave number, shown in Fig. 2d, than is present in the two-point 
structure factor.

A strikingly different picture emerges for longer wave lengths 
in the supercooled regime. For instance if k3D = 2.0, we see that 
the four-point structure qualitatively changes with respect to 
that of a normal liquid, while the convolution approximation 
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does not predict such a change. This means that in supercooled 
liquids, “true” four-body contributions encapsulated in c(4), are 
sufficiently dominant in the four-body structure that they qualita-
tively change the four-body structure at real-space wave lengths 
of a few particle diameters. This failure of the convolution ap-
proximation is also noticeable, albeit less pronounced, for k3D = 
4.0 (see Supplementary Material). We speculate that the marked 
change of the four-body structure found when supercooling a li-
quid is caused by the emergence of local structures with some de-
gree of four-fold symmetry, perhaps related to growing four-point 
dynamic length scales (58–60).

In order to obtain a quantitative measure of the error of the 
convolution approximation, which quantifies the degree to which 
our results are not captured by two-point correlations, we calcu-
late a normalized, angularly averaged difference between the 
measured S(4) and its convolution approximation. More precisely, 
we define

δ(k1, k2, k3) ≡
〈|S(4)(k1, k2, k3) − S(4)

conv(k1, k2, k3)|2〉ang.
〈|S(4)(k1, k2, k3)|2〉ang.

(8) 

in which 〈 . . . 〉ang. denotes an average over the angles cos θ12, 

cos θ13, and ϕ23. We show δ(k1, k2, k3) for fixed k1D = k2D = 7.2 in 
Fig. 3. The trend found in the particular cases above seems to be 
general. Firstly we note that in the low density regime, the error 
δ is significantly smaller than in the denser regime considered, 
corroborating the expectation that the convolution approxima-
tion works better in low density cases. Furthermore, we see that 
at wave numbers smaller than the first peak of the structure fac-
tor (k3D < 7.2), that is for larger length scales, the error grows sig-
nificantly. This indicates that on intermediate length scales of a 
few particle diameters, the convolution approximation fails to 
correctly capture the microscopic structure. The error δ, as pre-
sented in Fig. 3, comprises both the actual error between the four- 
point correlation function and its convolution approximation as 
well as the inevitable statistical noise present in our data. In order 
to show to what extent the latter is present, we have performed 
the calculation of δ from the trajectories of two fully independent 
simulations (full and dashed lines in Fig. 3). We note that the dif-
ference between the two lines, and thus the statistical noise in our 
computation, increases as k decreases. This is caused by the fact 

Fig. 1. Comparison of simulation results and convolution approximations of the four-point structure factors in normal (left) and supercooled liquids 
(right). The three rows show S(4)(k1, k2, k3, θ12, θ13, ϕ23) plotted for different values of its arguments, which are specified on the left. In each row, we choose 
k1D = k2D = 7.2, corresponding to the main peak of the two-point structure factor. The colors denote the value of the four-point structure factor, which are 
normalized such that each S4 and its corresponding convolution approximation use the same color scheme.
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that the number of allowed sets of wave vectors (k1, k2, k3) at 
which we can probe the correlations scales proportional to 

k2
1k2

2k2
3, meaning that we have significantly worse statistics at 

low k3 than at high k3, for constant k1 = k2. This also causes the vis-
ible noise in Fig. 1e and f.

To establish to what degree our observations in the four-point 
structure are also present in the three-body correlations, we con-
duct a comprehensive analysis of the triplet structure factor 
S(3)(k1, k2) as a function of k1, k2, and θ12. We show a selection of 
the results in Fig. 4, and a more complete set of results in Fig. S1
(Supplementary Material). Indeed, we find a similar phenomen-
ology in the triplet function as we do in the four-body case. That 
is, at wave numbers around and higher than the first peak of the 
structure factor, we find that the convolution approximation 
works well and we see no qualitative changes of the structure 

upon supercooling. When we probe longer wave lengths, however, 
both these statements break down. Although less clear than in the 
four-body case, evidence of a structural transformation can be 
seen in the lower right panel of Fig. 4 for wave numbers below 
k2D ≤ 4.2, with the emergence of a negative dip not observed in 
the corresponding low density system (lower left panel). This 
highlights the importance of these high-order density correlations 
for understanding the supercooled liquid state. Concomitantly, 
the convolution approximation fails, because it spuriously asserts 
that all structural information is contained within two-body cor-
relations. Even though we study a slightly different model system, 
our results qualitatively match those of Coslovich, who reports 
S(3)(k1, k2) and its convolution approximation for the case that 
k1 = k2 in binary systems (48). It is plausible that these quantita-
tive changes in the direct triplet correlation function contribute 
to the qualitative structural transformation we report here since 
S(4) depends on c(3) (see Eq. (3)).

A special case: diagonal four-point 
correlations
In microscopic theories of liquid dynamics, the four-point struc-
ture factor commonly appears in its diagonal form (19, 61, 62). 
This is a special case of the four-body static structure factor which 
is obtained when the structure is probed at k3 = −k1 and k4 = −k2. 
We refer to the resulting quantity as the diagonal four-point struc-
ture factor S(4)

diag(k1, k2). Note that this is a function only of two in-
dependent wave vectors (i.e. two wave numbers and one angle), 
and therefore may be written as S(4)

diag(k1, k2, cos θ12). In order to 
approximate it, the convolution approximation discussed in the 
above section cannot be applied directly. In fact, we find that 
the diagonal four-point correlation function very accurately 
agrees with the so-called Gaussian factorization approximation 
S(4)

diag(k1, k2) = NS(2)(k1)S(2)(k2) +O(1). Note that within this defin-
ition, S(4)

diag scales linearly with the system size, and thus in the 
thermodynamic limit, the O(1) term can be neglected. In finite sys-
tems, however, this term is measurable and can be approximated 
by the four-point convolution approximation

S(4)
diag(k1, k2) − NS(k1)S(k2) ≈ S(4)

conv(k1, k2)

= S(k1)2S(k2)2(S(0) + S(|k1 + k2|) + S(|k1 − k2|) − 2)
(9) 

as Fig. 5 shows.
To better understand the nature of these diagonal correlation 

functions, lets us recall that the many-body structure factors 
S(n) emerge from the cumulant generating functional ln (Ξ), where Ξ 
is the grand-canonical partition function. Machta et al. (62, 63) de-
veloped an ordering scheme to identify dominating contributions 
to cumulant averaged quantities which we use to explain behav-
ior along diagonals in wave vector space. Essentially, they find 
that a cumulant average of a product of n linear Fourier trans-
formed densities should scale as O(N(ξ/a)d(n−1)) where ξ is a two- 
body correlation length, a an average interatomic separation, 
and d the spatial dimension. Far from critical points we expect 
ξ/a ≈ 1, and it is therefore safe to presume that each cumulant 
of some product of density modes scales as O(N). Since there is a 
formal relation between cumulant averages and standard aver-
ages, we can use this information to describe the many-body 
structure factors. For instance, the cumulant expansion 
of the pair correlation reads 〈ρ̂(k1)ρ̂(k2)〉δk1+k2,0 = 〈〈ρ̂(k1)〉〉〈〈ρ̂(k2)〉〉 
δk1,0δk2,0 + 〈〈ρ̂(k1)ρ̂(k2)〉〉δk1+k2,0 where we denote cumulant aver-
ages with 〈〈 · · · 〉〉 to contrast the standard canonical averages 
with single-angular brackets. The Kronecker deltas are present 

a b

c d

Fig. 2. The four-body structure factor and its convolution approximation 
shown along different contours. Panel a) shows it along the black dotted 
contour drawn in Fig. 1b, panel b) along that of Fig. 1d, and panel c) shows 
it along the contour in Fig. 1f. Panel d) shows the four-point correlator as a 
function of k for k1 = k2 = k3 = k, cos θ12 = 1/4, cos θ13 = 1/2, and ϕ23 = 4π/5.

Fig. 3. A quantitative measure for the difference between the true 
four-body structure factor and its convolution approximation at low 
(φ = 0.45) and high (φ = 0.58) volume fraction. For both volume fractions, 
the result from two independent simulations are plotted in full and 
dashed lines in order to show the degree to which statistical noise 
contributes to this error.
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Fig. 4. Three-body structure factor compared with its convolution approximation. (Top) For low (φ = 0.45) and high (φ = 0.58) densities the triplet 
correlation function compared with its approximation as a function of the wave numbers k1 and k2 at two different angles cos θ12 = ±1, corresponding to 
parallel and antiparallel configurations. For the sake of comparison, the color scheme is the same in the case of the correlation function and the 
convolution approximation. (Bottom) For low and high densities the triplet correlation function compared with its approximation as a function of the 
angle between the wave vectors at k1D = 7.2 for varying k2D. The dashed lines denote the convolution approximation and the full lines indicate the direct 
measurements.

Fig. 5. Difference between the diagonal four-point correlation function and the Gaussian factorization approximation Δ(k1, k2, θ12) = S(4)(k1, k2) − 
NS(2)(k1)S(2)(k2) compared with the convolution approximation as a function of k1 and k2 for different values of θ12 in different rows. The left two columns 
compare simulation results and the convolution approximation for normal liquids, whereas the right compare them for supercooled systems.
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to enforce translation invariance in these expressions. In this ex-
pression, the first term scales as O(N2) while the second one scales 
as O(N). If neither wave vector is zero, the canonical average of a 
pair of density modes coincides with its cumulant average: 
〈ρ̂(k1)ρ̂∗(k1)〉 = 〈〈ρ̂(k1)ρ̂∗(k1)〉〉. Similarly, the canonically averaged 
four-body correlation (which is the quantity that we measure in 
our computer simulations) can be expanded as

〈ρ̂(k1)ρ̂(k2)ρ̂(k3)ρ̂(k4)〉δk1+k2+k3+k4,0

= 〈〈ρ̂(k1)〉〉〈〈ρ̂(k2)〉〉〈〈ρ̂(k3)〉〉〈〈ρ̂(k4)〉〉δk1,0δk2,0δk3,0δk4,0

+ 〈〈ρ̂(k1)ρ̂(k2)〉〉〈〈ρ̂(k3)〉〉〈〈ρ̂(k4)〉〉δk1+k2,0δk3,0δk4,0 + p.

+ 〈〈ρ̂(k1)ρ̂(k2)ρ̂(k3)〉〉〈〈ρ̂(k4)〉〉δk1+k2+k3,0δk4,0 + p.

+ 〈〈ρ̂(k1)ρ̂(k2)〉〉〈〈ρ̂(k3)ρ̂(k4)〉〉δk1+k2,0δk3+k4,0 + p.

+ 〈〈ρ̂(k1)ρ̂(k2)ρ̂(k3)ρ̂(k4)〉〉δk1+k2+k3+k4,0,

(10) 

where the terms on each line are of order O(N4), O(N3), O(N2), 

O(N2), and O(N), respectively, and all permutations of the wave 
numbers are denoted as “p.” It is clear that the dominating terms 
in this expansion depend on which of the Kronecker deltas 
survive, which depends on the choice of wave vectors. In the com-
pletely off-diagonal contributions, where no subsets of wave vec-
tors sum to the zero vector, only the last term contributes and we 
recover equivalence between cumulant and canonical averages. 
However, in the diagonal case where k1 = −k3, k2 = −k4, the dom-

inating term is of order O(N2), with at next-leading order the last 
term. Hence, in this specific case it is more accurate to approxi-

mate S(4)
diag(k1, k2) = NS(k1)S(k2) +O(1), where we have used the 

fact that 〈〈ρ̂(k1)ρ̂∗(k1)〉〉 = 〈ρ̂(k1)ρ̂∗(k1)〉 = NS(k1). This is the com-
monly used Gaussian approximation to the four-point function 
(19, 61). We can then define

Δ(k1, k2) ≡ S(4)
diag(k1, k2) − NS(|k1|)S(|k2|), (11) 

which, according to Eq. (10), can be approximated by the four- 
point convolution approximation like the fully off-diagonal four- 
point structure factor.

To verify this we compare Δ(k1, k2) and the convolution ap-
proximation (5) in Fig. 5. We first note that both quantities are 
symmetric under the transformation cos θ12 → − cos θ12, where 
θ12 is the angle between k1 and k2, and therefore we only present 
results for positive cos θ12. Similar to the case of the off-diagonal 
four-point function, we find that Δ has a very strong angular de-
pendence, both at high and low densities. As expected we see 
that it is a quantity of order unity, and we have verified that it 
does not scale with system size. We remark that there is semi- 
quantitative agreement between the measured and predicted 
magnitude of the correlations at low densities, but marked quali-
tative deviations at higher packing fractions, even at wave num-
bers around the peak of the structure factor. We believe that 
this discrepancy should be attributed to the neglect of the direct 
correlation functions of third and fourth order. We stress, how-
ever, that in the thermodynamic limit Δ vanishes in comparison 
to the Gaussian factorization, and hence is not needed for a 
good description of the behavior of bulk liquids.

Conclusion
We have provided the first comprehensive study of four-body 
structural correlations in reciprocal space for dense liquids. By 
generalizing the two-body static structure factor to higher orders, 
our work quantifies the structure of disordered systems in terms 
of two-, three-, and four-body density correlations in the system. 
We have extracted the many-body structure factors up to fourth 

order directly from Monte Carlo simulations of dense quasi-hard 
spheres, and we have derived explicit convolution approxima-
tions for them up to sixth order. In principle, these efforts may 
be generalized up to arbitrary order.

For normal liquids, we find that the measured three- and four- 
point structural correlation functions agree very accurately with 
the results from the convolution approximations for all wave vec-
tors we studied. Notably, the convolution approximation man-
ages to successfully reproduce the strong angular dependence of 
the four-body correlation function, which demonstrates that two- 
body correlations are sufficient to describe the structure of dilute 
to moderately dense hard-sphere liquids.

In dense (hard-sphere) liquids, however, we do observe qualita-
tive disagreement between the measured three- and four-point 
structure factors and their convolution approximations beyond 
length scales of a few particle diameters. This indicates that 
genuine many-body structural correlations emerge in the dense 
regime, which may be related to the emergence of locally pre-
ferred crystal structures and perhaps to growing four-point 
dynamic length scales (58–60). These changes in the liquid struc-
ture induced upon supercooling might be suggested for use as a 
probe to distinguish a supercooled state from a liquid one based 
on structural aspects alone. In future work, we intend to link these 
observations to changes in locally preferred structures of amorph-
ous systems.

The incorporation of many-body structural correlations is a ne-
cessary step in the development of accurate first-principles theor-
ies for the dynamics of dense liquids. This work provides 
appropriate and rigorously derived approximations for these cor-
relations which can be expressed terms of two-body ones only. 
While we discuss that this is not sufficient for a complete descrip-
tion, expressing many-body correlations in terms of two-body 
contributions should be preferred over neglecting them altogether 
(1, 19). In order to go beyond the convolution approximations, 
frameworks that allow the calculation of the direct correlation 
functions c(n) could be employed (13, 64, 65). We speculate that 
theories describing glassy dynamics need to properly take such 
many-body correlations into account to improve their flawed pre-
dictions in the low-k regime (66).

Materials and methods
We simulate a set of N = 103 particles in a periodic cubic simula-
tion box with volume L3, such that the number density is given 
by ρ0 = N/L3. In order to approximate hard-sphere behavior, we 
let the particles interact according to a strongly repulsive power- 
law potential Uij(r) = εkBT(

Dij

r )36, where kBT = 1 is the thermal 
energy, ε = 1/3 the interaction strength, r the center-to-center dis-
tance between the particles, and Dij = [Di + Dj]/2 is the average 
diameter of the particles, in which Di is the diameter of particle i. 
Particle dispersions interacting with this potential have been ex-
tensively studied before, see Refs. (56, 67), and have been shown 
to reproduce hard-sphere behavior. Since monodisperse hard 
spheres are known to crystallize at high densities, we choose the 
particle diameters from a uniform distribution Di ∈ (D − s, D + s), 
where we set the polydispersity parameter to s = 0.1D. We monitor 
crystallization using averaged four- and six-fold local order pa-
rameters, terminating a simulation run if it displays crystalline 
structure (31, 68). The degree of crowding in this system can be 
quantified by a single order parameter for the effective density 
Γ = D3ρ0ε1/12 (67), which we vary by changing the volume fraction, 
defined by φ = πρ0D3(1 + s2)/6, while keeping the interaction 
strength ε fixed. To gather statistics, we perform 107 Monte 
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Carlo sweeps, which for the highest volume fraction considered 
corresponds to roughly 102τα, in which τα is the structural relax-
ation time of the intermediate scattering function at kD = 7.2. 
Every Monte Carlo sweep includes one attempted displacement 
move for each particle in the system. Every 104 sweeps, we save 
the particle positions to disk which we later use to compute the 
many-body structure factors.

The many-body structure factors are most conveniently 
calculated from their definition in terms of density modes 
ρ̂(k, t) =

N
j=1 exp (ik · rj(t)) − (2π)3ρ0δ(k). For the purposes of clarity 

and tractability, we treat our system as a single-component mix-
ture, thereby neglecting the existence of cross-component corre-
lations. Since the degree of polydispersity is relatively small in 
our system, we believe that this approximation does not introduce 
large errors (56). Hence, we use the monodisperse relations (4) and 
(5) for the evaluation of the convolution approximation of the 
three- and four-body structure factors.

Since we simulate a finite system of particles, there is a funda-
mental limit on the resolution with which we can choose the 
k-vectors at which we want to probe the density modes. 
Specifically, the set of allowed k-vectors is constrained to 
2π
L [nx, ny, nz], with nx, ny, and nz integers. All many-body static 
structure factors can straightforwardly be calculated from the 
density modes as tensor contractions; more details are given in 
the Supplementary Material. In order to properly probe the 
n-body structure factor, we exclude all sets of n wave vectors of 
which any subset adds to the zero vector, since those cases effect-
ively probe lower order correlations instead, see Eq. (10). To find 
the convolution approximations, we first obtain the two-point 
structure factor S(2) from simulations, and subsequently use 
that to evaluate the convolution approximation (5). The procedure 
for extracting the three-body and diagonal four-body structure 
factors is similar.

Supplementary material
Supplementary material is available at PNAS Nexus online.
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