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Parametric Continuous-Time Blind System Identification

Augustus Elton1, Rodrigo A. González2, James S. Welsh1, Cristian R. Rojas3, Minyue Fu1

Abstract— In this paper, the blind system identification
problem for continuous-time systems is considered. A direct
continuous-time estimator is proposed by utilising a state-
variable-filter least squares approach. In the proposed method,
coupled terms between the numerator polynomial of the system
and input parameters appear in the parameter vector which
are subsequently separated using a rank-1 approximation. An
algorithm is then provided for the direct identification of a
single-input single-output linear time-invariant continuous-time
system which is shown to satisfy the property of correctness
under some mild conditions. Monte Carlo simulations demon-
strate the performance of the algorithm and verify that a model
and input signal can be estimated to a proportion of their true
values.

I. INTRODUCTION

System identification [1] considers the problem of obtain-
ing a mathematical model for a process using input and
output data. It is classified as blind system identification
(BSI) or blind equalisation (BE) when the user is blind to
the input, that is, they cannot take direct input measurements.
BSI and BE approaches have been used in fields such as com-
munications [2], [3], image processing [4], and biomedical
science [5]. Survey papers [6] and [7] provide an introduction
to BSI and a brief overview of some approaches.

In BSI, identifiability conditions are established so that
an appropriate model of the system can be realised. To
identify a system using a parametric transfer function it
is typical to assume that the numerator and denominator
polynomials are co-prime, and that the input excitation is
persistently exciting [1]. However, in the blind problem, extra
conditions formed from prior system or input knowledge are
required as the identification problem is ill posed in general.
As an example, an infinite impulse response model can be
recovered provided that the input is oversampled and applied
to the system using a zero-order hold (ZOH) [3]. Within the
area of BSI, a system is considered to be blindly identifiable
if the obtained model is an accurate representation of the
true system, up to a constant gain [6].

In this paper, we propose a direct blind continuous-time
(CT) method that allows the input to be described by a
linear combination of continuous-time functions and the
system as a rational transfer function of two polynomials.
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2Rodrigo A. González is with Department of Mechanical Engineering,
Eindhoven University of Technology, Eindhoven, The Netherlands

3Cristian R. Rojas is with Division of Decision and Control Systems,
KTH Royal Institute of Technology, Stockholm, Sweden

Directly identifying the system in CT allows the user to
consider systems with rapid or irregular sampling [8], [9].
Additionally, a CT model can provide physically meaningful
values of the system parameters.

To the best of the authors’ knowledge there are no blind
approaches for single-input single-output (SISO) systems
which establish a parametric CT model directly, i.e. without
the use of intermediate discrete-time models. In this paper
we broaden the underlying input assumption and produce the
CT estimate directly by using a least squares state variable
filter (LSSVF) approach [10]. Similar approaches to identify
the input sequence include subspace methods [3], [11]. In
summary, the main contributions of this paper are:

(C1) We derive a blind, direct CT estimator for a linear time-
invariant (LTI) SISO system, by

a) proposing a CT estimator of the denominator polyno-
mial and coupled parameters between the numerator
coefficients and input parameters using a state vari-
able filter least squares approach, and

b) separating the coupled terms to form an input and
transfer function estimate of the system.

(C2) We propose an algorithm where we
a) show that it satisfies the correctness property [15],

and
b) evaluate its performance numerically through Monte

Carlo simulations.
The remainder of this paper is organised as follows. Sec-
tion II introduces the problem formulation and blind system
identification. Section III provides the derivations for the
blind form of the least squares state variable filter approach
and states the algorithm. Section IV provides simulations
and results of the blind estimator. Conclusions are deduced
in Section V.

II. PROBLEM STATEMENT

We consider a linear time-invariant, continuous-time,
single-input single-output system

S :

{
x(t) = B(p)

A(p)u(t)

y(t) = x(t) + v(t),
(1)

where u(t) is the input and x(t) is the noise-free output. The
output, y(t), is x(t) corrupted by an output measurement
noise v(t). The output measurement noise is assumed to
be a zero-mean Gaussian process, i.e. v(t) ∼ N(0, σ2).
The system B(p)/A(p) is assumed to be a rational transfer
function with numerator and denominator polynomial of
orders m and n, given by

B(p) = bmpm + bm−1p
m−1 + · · ·+ b0, (2)

A(p) = pn + an−1p
n−1 + · · ·+ a0, (3)



respectively, where the differentiation operator p = d/dt is
used to denote that the system is in continuous-time. The
system is assumed to be causal (n ≥ m) and the polynomials
of (2) and (3) are co-prime, i.e. there are no common pole
and zero pairs. The parameter vector used to describe the
true system (1) is

θ∗ := [a∗n−1, . . . , a
∗
1, a

∗
0, b

∗
m, . . . , b∗1, b

∗
0]

⊤. (4)

The true system is then given by

G∗(p) =
B∗(p)

A∗(p)
, (5)

where B∗(p) and A∗(p) are formed from (2) and (3) using
the parameter vector (4). The system and signals are shown
in Fig. 1, where data is acquired by sampling the output
signal at time instances t ∈ {t1, t2, . . . , tN}.

Fig. 1. Block diagram of the CT system. Note that the opaque grey box
indicates that the user does not have access to the input.

The goal of BSI is to obtain a model of the system, G(p),
and an accurate representation of the input, u(t), by only
using the sampled output data {y(tk)}Nk=1. Our aim is to
provide an estimate of the input sequence {u(tk)}Nk=1 and
an estimate of the parametric model in (5) up to a scalar
constant of the true system using a direct CT method. To
identify the system uniquely, we assume that the unknown
input can be described by a linear combination of continuous-
time functions which are known. For clarity, we denote θ∗

and θ̂ as the true and estimated parameter vector of the
model, respectively.

III. BLIND SYSTEM IDENTIFICATION

In BSI we do not have access to the input and, therefore,
common CT approaches in system identification are not
viable. In this section we propose a blind form of the
least squares state variable filter [12], that we denote as
the BLSSVF approach, which corresponds to contribution
(C1.a). Here, the input is assumed to be described by a
continuous-time function with the general form

u(t) =

M∑
i=1

γih(t− τi), for M ∈ N, (6)

where τi and γi are the ith translation and magnitude of a
fixed signal h(t), respectively. In the sequel, we state the
assumptions on the input that are necessary to develop the
proposed blind estimator.

Assumption 3.1: The specified translations {τi}i≥1 occur
regularly over a period of Tu seconds.

Assumption 3.2: The true input can be described by (6),
given the true values of γ for some functions of h(t) which
admit the true input intersample behaviour. The function h(t)
is provided by the user.
Using Assumption 3.1 and knowing the number of samples,
N , then M = NTs/Tu, where Ts is the output sampling

period. Typically, the input of the system undergoes a signal
reconstruction modelled by a digital to analog conversion.
This process is modelled where the exact intersample be-
haviour of the input is assumed [14]. The digital to analog
process can be used to set h(t). For example, consider that
the input, u(t), into the physical system is constructed by a
ZOH. Then, the input can be described by

u(t) =

M∑
i=1

γiµ(t− τi), (7)

where µ(t) is the unit step function and the parameters
[γ1, γ2, . . . , γM ] represent the change in magnitude between
each step. Given the relationship in (6), the model M for
the digital implementation of BLSSVF can be written as

M :

x(tk) =
{

B(p)
A(p) ·

∑M
i=1 γih(t− τi)

}
t=tk

,

y(tk) = x(tk) + ϵ(tk).
(8)

The underlying mechanism for determining a suitable estima-
tor is to form a regression equation from (8) given sampled
data {y(tk)}Nk=1. Inspired by the CT approaches in e.g, [14],
we can form a generalised error equation for the blind case
in (8),

ϵ(tk) = y(tk)− x(tk)

=
1

A(p)

(
A(p)y(tk)−B(p)

M∑
i=1

γih(tk − τi)

)
, (9)

which is used to create the input-output equation

(p(n)+an−1p
(n−1)+. . .+a0)yf (tk) =

(bmp(m)+bm−1p
(m−1)+b0)

M∑
i=1

γihf (tk − τi)+ϵ(tk), (10)

where

y
(l)
f (tk) =

p(l)

A(p)
y(tk), and h

(l)
f (tk) =

p(l)

A(p)
h(tk). (11)

Rearranging (10) in terms of y(n)f (tk) yields

y
(n)
f (tk) = −

n−1∑
i=0

aiy
(i)
f (tk)+

m∑
i=0

bic
⊤h

(i)
f (tk)+ϵ(tk), (12)

where
h
(i)
f (tk)=

[
h
(i)
f (tk−τ1), h(i)f (tk−τ2), . . . , h(i)f (tk−τM )

]⊤
, (13)

c = [γ1, γ2, . . . , γM ]⊤. (14)

It can be seen that (12) cannot be used to describe a residual
equation that is linear in the parameters, since coupled
products exist between the numerator polynomial coefficients
b = [bm, . . . , b1, b0]

⊤, and the input parameters, c. Now, let
us consider an extended parameter vector

θ = [a⊤, z⊤m, . . . , z⊤1 , z
⊤
0 ]

⊤ ∈ Rn+(m+1)M , (15)

where a = [an−1, . . . , a1, a0]
⊤, and

zi = [biγ1, . . . , biγM−1, biγM ]⊤.

Using the parameter vector (15) we have

y
(n)
f (tk) = φ⊤

f (tk)θ + ϵ(tk), (16)



where the regressor is constructed using (11) and (13)

φf (tk)=
[
−y(n−1)

f (tk),−y(n−2)
f (tk), . . . ,−y(0)f (tk),

h
(m)
f (tk),h

(m−1)
f (tk), . . . ,h

(0)
f (tk)

]⊤
. (17)

To form (16), (11) must be computed. The input and output
time derivatives are computed using a state variable filter [12]
F (p), i.e.

y
(l)
f (tk) =

p(l)

F (p)
y(tk), and h

(l)
f (tk) =

p(l)

F (p)
h(tk). (18)

The filter F (p) has the form

F (p, λSV F ) =

(
p

λSV F
+ 1

)n

, (19)

where λSV F is selected to ensure that F (p) has a larger
bandwidth than that of the system [10]. Utilising N output
data samples, minimising the squared error term in (16)
yields the least squares solution

θ̂=

[
1

N

N∑
k=1

φf (tk)φf (tk)
⊤

]−1[
1

N

N∑
k=1

φf (tk)y
(n)
f (tk)

]
. (20)

In matrix form we have

θ̂ = (φ⊤φ)−1φ⊤yf , (21)
where
φ=[φf (t1),φf (t2), . . . ,φf (tN )]⊤∈RN×(n+(m+1)M), (22)

and
yf = [y

(n)
f (t1), y

(n)
f (t2), . . . , y

(n)
f (tN )]⊤∈RN×1. (23)

To obtain θ̂, the normal matrix (φ⊤φ) must be nonsingular,
which requires N ≥ n + (m + 1)M . An issue arising
from (15) that needs to be addressed, concerns the coupled
products between b and c are contained in the vector z. To
address this issue, related to contribution (C1.b), we use a
rank-1 approximation. Consider the matrix

Z = [zm, zm−1, . . . , z0]
⊤ ∈ R(m+1)×M . (24)

The rank-1 approximation of b and c is then

[b̂, ĉ] = argmin
b∈R(m+1)×1,c∈RM×1

∥Z− bc⊤∥2F, (25)

where ∥ · ∥F denotes the Frobenius norm of a matrix. The
rank-1 approximation can be performed via the singular
value decomposition (SVD)

Z = UΣV⊤, (26)

where U ∈ R(m+1)×(m+1) and V ∈ RM×M contain the
left and right singular vectors of Z, respectively, with the
singular values

Σ =

σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...

 ∈ R(m+1)×M . (27)

The outer product of the first column vectors of the singular
matrices U and V, which are associated with the largest

singular value, σ1, are used to form a rank-1 approximation
of Z. These vectors correspond to the estimates

b̂ = U(:,1)σ1, and ĉ = V(:,1), (28)

where U(:,1) and V(:,1) denote the first column of the
matrices U and V, respectively. The fit of the approximation

R-1 Fit =
σ1∑min{m+1,M}

i=1 σi

, (29)

is used to assess how well the vectors b̂ and ĉ describe the
estimate of Z obtained from (21). Finally we can form the
estimates of the model and the input

Ĝ(p) =
b̂mpm + b̂m−1p

m−1 + . . . b̂0
pn + ân−1pn−1 + . . . â0

, (30)

û(t) =

M∑
i=1

γ̂ih(t− τi). (31)

A. The BLSSVF Algorithm
To estimate the model parameters and the input signal, we

propose Algorithm 1 which obtains an extended parameter
vector (20) and then uses a rank-1 approximation (25) to
separate the coupled parameters.

Algorithm 1 BLSSVF approach
1: Input: data {y(tk)}Nk=1, model {n,m}, SVF cutoff

λSV F , CT function h(t), translations {τi}i≥1.
2: Construct y(i)f (tk)← p(i)

F (p)y(tk) ▷ Compute filtered
time derivatives ∀tk ∈ {t1, . . . , tN}

3: Compute h
(i)
f ← L−1

(
p(i)

F (p)L(h)
)

▷ L is the Laplace
transform

4: Form regressor matrix structure from (17)
5: Compute (21) to obtain θ̂
6: Construct â← θ̂1:n
7: Form Z from using (24)
8: Obtain [b̂, ĉ] using (28)
9: Output: Model Ĝ(p) and input û(t) estimates using (30)

and (31)

To provide theoretical support for Algorithm 1 we show
that it satisfies the property of correctness [15]. We define
correctness for a BSI algorithm (to take into account an
estimate of the system up to a constant gain) as follows:

Definition 3.1: In BSI, an algorithm satisifies the property
of correctness if the true model is estimated for v(t) = 0,
given a finite amount of data N , that is, there exists some
N0 <∞ such that

αĜN (p) = G∗(p) ∀N ≥ N0, (32)

where α ̸= 0 is a constant gain. Additionally, the input
estimate û(t) must satisfy

1

α
û(t) = u∗(t). (33)

The following theorem provides proof that the proposed
BLSSVF approach satisfies Definition 3.1. This relates to
contribution (C2.a).



Theorem 3.1: Consider the continuous-time system (5).
Let ĜN (p) denote the estimate of the true system G∗(p) for
known numerator and denominator polynomials of orders
n and m, respectively. Provided that the input is a linear
combination of known functions h(t), F (p) = A∗(p), the
normal matrix (φ⊤φ) is nonsingular and N0 > n + (m +
1)M , for a constant gain α then for all N > N0,

αĜN (p) = G∗(p). (34)

Consequently, the input estimate û(t) satisfies
1

α
û(t) = u∗(t). (35)

Proof: See Appendix VI-A.
Remark 3.1: The nonsingularity of (φ⊤φ) depends on the

persistence of excitation of the input, as well as the sampling
period of the output. A formal treatment of these conditions
will be investigated in future work.

IV. SIMULATIONS

In this section the performance of the proposed estimator
using Algorithm 1 is demonstrated via Monte Carlo simu-
lations for contribution (C2.b). The system under study has
the CT transfer function

G(p,θ∗) =
b1p+ b0

p2 + a1p+ a0
, (36)

where the true coefficients of the system are b∗ = [1, 14]⊤

and a∗ = [8, 15]⊤. The true input parameters, c∗, are
generated randomly from a normal distribution to persistently
excite the system, and remain the same in all simulations.
The simulation time was set to 24.6 seconds, where two
data sets of N = 1000 and N = 10000 output samples were
taken to identify the system, shown in Fig. 2 for one of the
simulations.

Fig. 2. Input-output data with u and y being the unknown input and
measured output with a SNR of 20dB, from the system in (36).

The period Tu was set to 1.23 seconds which creates
twenty equally spaced changes in the input signal, shown
in Fig. 2. The simulation was repeated for output signal to
noise ratios (SNRs) of 10, 20 and 40 dB, where different
realisations of measurement noise were used for each simu-
lation. Note that the input is shown here but it is not used in
the estimation. As the input is assumed to be generated from
a ZOH, h(t) in Algorithm 1 is set to be a step function. Violin
plots were utilised to display the results, as they convey the
probability density of the data as well as standard statistical
measures such as the mean, median, and outliers. As a result
of Theorem 3.1, the estimates of b and c are scaled by a
constant α and 1/α, respectively, so that the algorithm’s
performance could be assessed using violin plots. In the
following experiments the effect of decreasing the number of

samples N whilst keeping the number of parameters constant
is investigated. An output fit score [11], defined as

Output Fit Score = 1− ∥ŷ − x∥2
∥x− x̄∥2

,

where ŷ and x are the predicted and noise-free outputs, and x̄
is the mean of x, is used with the R-1 Fit (29) to demonstrate
the performance of the algorithm.
A. Experiment 1: N = 10000

This experiment shows the performance of BLSSVF when
N = 10000. At each SNR 100 Monte Carlo runs are
conducted. The violin plots in Fig. 3 reveal that the blind
approach performs well with the limited number of samples
when the output SNR level is 40 dB, and performance
decreases with lower SNRs. The R-1 Fit of Z improves as
the output SNR increases as shown in Fig. 4.

Fig. 3. Violin plot containing the estimation of â for the Monte Carlo
simulations where the output SNR is 10, 20, and 40 dB. N=10000

Fig. 4. Violin plot of the R-1 Fit computed in (29). The averages are
94.02%, 99.11% and 99.93% for output SNR’s of 10, 20 and 40 dB.
N=10000

Inevitably, as the rank-1 approximation improves so does
the estimation of b and c, shown in Figs. 5 and 6. Note that
Fig. 6 shows the estimation error in c. It is worth noting that
forty-two parameters are estimated in step (5) of Algorithm
1 for this experiment with ten-thousand output data samples,
which may not be enough to obtain a good model especially
in the case of low output SNR’s.

Fig. 5. Violin plot containing the estimation of b̂ for the Monte Carlo
simulations for output SNR’s of 10, 20 and 40 dB. N=10000.



The effects of applying the normalisation are shown in
Fig. 6, where the first input parameter γ1 has zero error as
the estimates of b and c have been adjusted accordingly.
These results show that an accurate system estimates can be
obtained up to a scalar gain for high output SNR’s.

Fig. 6. Violin plot containing the estimation error of ĉ for the Monte
Carlo simulations for output SNR’s of 10, 20 and 40dB. Each ith x-axis
tick indicates the estimation error for γ̂i. N=10000.

It is important to analyse the parameter estimates and not
just the output fit scores. It is shown in Fig. 7 that even
though the BLSSVF estimates are poor at 10 dB, the output
fit score indicates a good fit.

Fig. 7. Violin plot of output fit scores for output SNR’s of 10, 20 and
40dB. The averages are 96.86%, 99.53% and 99.96% for output SNR’s of
10, 20 and 40 dB. N=10000.

B. Experiment 2: N = 1000
This experiment is similar to that in Section IV-A, how-

ever, only one-thousand output data samples are now col-
lected due to increasing the sampling period by a factor of
ten whilst keeping the same duration of the experiment. In
comparison to Figs. 3 and 5, Figs. 8 and 9 show that the pa-
rameter estimates of the model deteriorate with the decrease
of samples, as would be expected. A similar observation can
be made regarding Figs. 6 and 10, where the residual error
between the true input parameters and ĉ from the output of
Algorithm 1 are shown.

Fig. 8. Violin plot containing the estimation of â for the Monte Carlo
simulations where the output SNR is 10, 20, and 40 dB. N=1000.

Fig. 9. Violin plot containing the estimation of b̂ for the Monte Carlo
simulations for output SNR’s of 10, 20 and 40 dB. N=1000.

Fig. 10. Violin plot containing the estimation error of ĉ for the Monte
Carlo simulations for output SNR’s of 10, 20 and 40 dB. N=1000. Notice
the change of scale compared to Fig. 6

V. CONCLUSION

This paper presented a novel approach to blindly iden-
tify a LTI SISO system in a direct continuous-time form.
Due to identifiability issues concerning blind identification
problems, assumptions on the input were made where it
is modelled by a linear combination of continuous-time
functions. The proposed algorithm was proven to satisfy the
correctness property given a sufficient number of data output
samples under some mild conditions. The performance of
the estimation improved as the output SNR increased as
expected. Increasing the number of samples also reduced the
error and the variation of the estimates.

VI. APPENDIX

A. Proof of Theorem 3.1

Proof: To prove that an algorithm blind to the input
satisfies the correctness property, we must show that

αĜ(p) = G∗(p), and
1

α
û(t) = u∗(t). (37)

As the system and input are described by a parameter vector
it is sufficient to show that

θ̂ − θ∗ = 0. (38)

Let us consider the matrix form of (16) for when v(t) = 0,
i.e. yf = φ∗θ∗, then the noiseless estimate of parameter
vector in (15) is

θ̂ = (φ⊤φ)−1(φ⊤φ∗)θ∗. (39)

To satisfy (38) we must show that φ = φ∗. Firstly, consider
the true continuous-time model (8)



y(t) =
B∗(p)

A∗(p)

M∑
i=1

γ∗
i h(t− τi), (40)

where the noise v(t) = 0 and γ∗
i is the ith true input param-

eter. To find the true regressor we form θ∗ by multiplying
(40) by A∗(p)/F (p) and then expanding

y
(n)
f (t) +

n−1∑
i=0

a∗i y
(i)
f (t)=

m∑
i=0

b∗i u
(i)
f (t). (41)

We rearrange (41) into matrix form

y
(n)
f (t) = φ⊤

f (t)θ
∗, (42)

where

φf (t) =
[
−y(n−1)

f (t),−y(n−2)
f (t), . . . ,−y(0)f (t),

h
(m)
f (t),h

(m−1)
f (t), . . . ,h

(0)
f (t)

]⊤
,

θ∗ = [a∗⊤, z∗⊤m , z∗⊤m−1, . . . , z
∗⊤
0 ]⊤. (43)

In relation to (22) and (23) we see in order to achieve θ∗ in
(39) we must satisfy{

y
(l)
f (t)

}
t=tk

= y
(l)
f (tk), (44){

p(l)A∗(p)

F (p)
y(t)

}
t=tk

=
p(l)A∗(p)

F (p)
y(tk), (45)

which depends on the interpolation of the input and output.
Given that F (p) = A∗(p) and Assumption 3.2; then, (45)
holds true when l = 0. For l ≥ 0, y

(l)
f (tk) becomes an

approximate of the true sampled filtered output derivative.
However if we rearrange (16) in terms of ϵ(tk) to yield the
equivalent expressions

y
(n)
f (tk)−φ⊤

f (tk)θ = y(tk)−
B(p)

A(p)

M∑
i=1

γih(tk−τi), (46)

we see that the output intersample behaviour will not affect
the overall estimation of θ̂. Hence we have obtained

θ̂ = (φ∗⊤φ∗)−1(φ∗⊤φ∗)θ∗. (47)

If we assume that the normal matrix (φ∗⊤φ∗)−1 is nonsin-
gular, i.e. N > n + (m + 1)M , then (47) yields the true
parameter under no noise. From (47) we thus obtain

â = a∗ (48)
ẑi = z∗i , for i = 0, 1, . . .m. (49)

Now, we must also show that the numerator coefficients b̂
can be extracted from the components of z up to a scalar gain
α ∈ R. From (24) we have the relationship Ẑ = Z∗. The
estimated parameter vectors b̂ and ĉ can be obtained from
Z∗. As Z∗ is constructed from a row and column vector from
the true parameters vector b∗ and c∗ then it has a rank of 1.
Thus Z∗ can be factorised up to a proportionality constant of
the true parameter vectors. We can show this using a SVD,
as the singular value matrix of rank-1 will have the form

Σ =

σ1 0 . . . 0
0 0 . . . 0
...

...
. . .

...

 ∈ R(m+1)×M . (50)

Then U(:,1), V(:,1) and σ1 only need to be used to describe
Z∗, which are proportional to b∗ and c∗, respectively. Then

b̂ = U(:,1)σ1V(1,1), and γ̂ =
V(:,1)

V(1,1)
. (51)

If we consider that the proportional constant between the
estimated and true vector is α = γ̂1 (which is non-zero) we
obtain

b̂i = b∗i γ̂1, and γ̂j = γ∗
j

1

γ̂1
, (52)

where i = 1, 2, . . . ,m and j = 1, 2, . . . ,M . Thus b̂i and γ̂
are proportionally equal to the true vectors up to a constant
gain γ̂1. Substituting â and b̂ into a transfer function form
yields a scaled version of the true system

Ĝ(p) = γ̂1
b∗mpm + b∗m−1p

m−1 + . . . b∗0
pn + a∗n−1p

n−1 + . . . a∗0
. (53)

The estimate of the input is then

û(t) =
1

γ̂1

M∑
i=1

γ̂∗
i h(t− τi). (54)
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