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Abstract

The brain is the most sophisticated and complex information-processing system
that we know of. Consequently, mimicking the brains capabilities is in many
ways the ultimate goal of machine learning (ML). Yet the dominant ways in
which we design modern ML systems are skewed towards tools and algorithms
that are first and foremost designed to be efficiently implementable and scal-
able on GPUs. Predictably, even though much of the initial inspiration for ML
came from the brain, most ML systems end up functioning quite differently
from brains. This presents a bit of a conundrum: On the one hand, we know
that brains can do all the things we are trying to make our ML systems do. On
the other, we are building our ML systems using very different approaches to
how we believe the brain works.

The main idea explored in this dissertation is that if we wish to make artifi-
cial systems that mimic the brain, a good starting point is arguably to mimic
the brain. However to turn this rather vague statement into actionable re-
search questions, we need to operationalise what "mimicking the brain" actu-
ally means. To this end, we rely on the framework of Active Inference (AIF).
AIF is a theory from the field of computational neuroscience that proposes that
the brain is inherently generative in nature. From the point of view of AIF, the
brain entails a generative model of its environment and is constantly trying to
make sure that it can accurately predict the state of the world around it.

Crucially for our purposes, AIF can be formulated using equations which
makes it amenable to be run in silico. This provides our link between the world
of neuroscience and that of ML. If we can translate the theoretical neuroscience
of AIF to a form that can be simulated on computers, can we then design new
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ML systems that inherit the desirable qualities of the brain posited by AIF?
To accomplish this, we need to turn AIF into a practically viable engineer-

ing tool. This goal forms the central focus of the dissertation. We approach
the problem by first casting AIF as message passing (MP) on a factor graph
representation of a generative model. Once in this form, we are much more
free in the problems that can be addressed using AIF. We demonstrate this by
extending AIF to work with generative models already popular for practical ap-
plications such as linear Gaussian dynamical systems and Gaussian process clas-
sifiers. Once we have demonstrated that AIF can indeed be applied to practical
engineering problems, we propose a new interpretation of AIF that is specifically
targeted at engineering applications. This takes the form of a new type of factor
graph which provides accurate notation for AIF and associated MP update rules
that together provide a scalable, distributed algorithm for AIF. In doing so, we
provide a path forward for designing practical tools that can make AIF viable
for engineering as well as being a neuroscientific theory.
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1
Chapter 1
Introduction

”Since all models are wrong, the scientist must be alert to what is im-
portantly wrong. It is inappropriate to be concerned about mice when
there are tigers abroad.”

– George Box, 1976

1.1 Motivation

One of the few systems we know of that is (arguably) intelligent, is the hu-
man brain. Every minute of every day we juggle multiple, complicated tasks
without a second thought and with a very high level of mastery. Causal reason-
ing, parsing disparate sensory streams, controlling complicated locomotion, and
monitoring and maintaining homeostatic bounds are all handled effortlessly to
the point where they are taken for granted. At higher levels of abstraction, we
can navigate complicated interpersonal relationships, make long-term compli-
cated plans and execute them over timescales of multiple years, and perform
impressive feats of abstract reasoning. We can reason by analogy and gener-
alise across tasks in a remarkably data-efficient manner. When presented with
a novel task, we are able to draw on past experiences and quickly perform a
series of experiments to gather information about the new task efficiently. As an
example, think back to the last time you lost your way in an unfamiliar place.
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Most likely you were able to come up with a strategy for finding your way back
to familiar ground whether that was through looking for landmarks, making
use of the sun or relying on a learned sense of direction. The point being, that
brains are very efficient at gathering information and can quickly solve novel
tasks from very little data.

Modern deep machine learning (ML) systems share very few of these char-
acteristics. While ML has undoubtedly produced impressive results in all the do-
mains mentioned above, the models used generally require very large datasets
and do not necessarily generalise well outside of the specific task they were
trained on. Even recent large language models only start to show some cross-
domain capability once they have consumed quite literally the entire internet
and the training process has run for several days or weeks. All of this is very
unlike the way our everyday brains seem to work. This presents an interesting
question: How to make our ML systems behave more like brains?

Active Inference (AIF) is one avenue down which we find an answer to this
puzzle. AIF is a corollary of the Free Energy Principle (FEP) that provides a
theoretical framework describing the kinds of computations that a brain might
do. The core thesis is that a brain entails a generative model of the world
it inhabits and its core task is making sure that model is fit for purpose. In
essence, the claim is that we are in the business of making sense of the world
around us by constantly trying to predict what is going to happen next. A good
model is one that makes accurate predictions.

The brain accomplishes this task by minimising a variational free energy
(VFE) functional 1. The VFE is an objective that scores both the accuracy of the
model in predicting how the world is going to evolve as well as how complex
the model is. The ideal model is as simple as possible but not simpler — after
all, it should still make accurate predictions.

Brains are also housed in bodies, meaning we have ways of interacting with
the world around us. This means we are equipped with two distinct ways of
ensuring our model makes accurate predictions. The first is to simply change
our model when faced with evidence that it is insufficient. In everyday terms,
we know this as perception when it happens fast and learning when it happens
more slowly. The second way is to acknowledge that we are more than passive
observers of events around us and act on the world to make it conform to the
predictions of our model. If we change the data so it agrees with our model, it’s
almost a tautology to say the model is a good fit for the data.

As an example, we can consider a person on her way to an important ap-

1We are using VFE as a noun referring to a specific functional, to be defined in Section 1.2.1.
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pointment. With a route planned out, it is reasonable to assume her generative
model predicts that she will make her appointment on time. However, she now
learns that her bike has suffered a flat tire! Flat tires are not predicted by her
model and hence constitute an error that must be resolved through one of the
two pathways outlined.

First, we can examine how to resolve the situation by updating the model.
Updating the model in this case means changing the prediction. Faced with a
flat tire, her prediction that she is going to be on time for her appointment is no
longer accurate. She can resolve this prediction error by accepting that she will
be late and update her model accordingly.

However, she can also choose to resolve the prediction error by acting on
the world, for instance by calling a taxi. In this case, the prediction that she
will arrive on time is unaltered. Instead, she intervenes on the world to make it
conform to her predictions, regardless of the flat tire. A central feature of AIF
is that it allows us to place this second pathway front and centre and use it to
design systems that act on their environment in intelligent ways.

The previous example brings us to the central focus of this dissertation. At
a fundamental level, our machines are still very different from brains, yet many
of the qualities of the brain are highly desirable for machine learning systems.
Therefore, in order to bring the benefits of AIF to machine learning, we need
to find ways to translate the theoretical neuroscience of AIF to a form that is
amenable to running in software instead of wetware. We need to make the
theory practical so that it can move out of the ivory tower and into our ordinary
lives. AIF needs to become an engineering tool as much as a neuroscientific
theory. This task forms the core of this dissertation and can be stated as the
following, overarching research theme:

Theme: Can we develop a practical toolset for describing and constructing
artificial Active Inference agents?

So how can we go about making our ML systems function more like the per-
son in the above scenario? To properly set the stage for answering these ques-
tions, we need to delve deeper into the details of the FEP and AIF. The following
sections will introduce the necessary background material before moving on to
the concrete research questions that form the foundation for the work in this
dissertation.
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1.2 The Free Energy Principle

To introduce the Free Energy Principle, we can start with an observation. Namely
that most things in nature, if left alone, tend to disappear. Mountains erode,
stars collapse and living things perish. All of this can be thought of as the
thing in question - stars, mountains, life - settling into some kind of steady state
equilibrium with its environment. Once at this steady state, nothing further
happens. Once a star has collapsed in on itself, it will not spontaneously expand
and start shining bright again.

This phenomenon is a consequence of all things being made up of "stuff" that
needs to be in a very particular configuration for us to say that thing exists. A
mountain is only a mountain as long as all the "stuff" that makes it up is stacked
up high. If exposed to the elements for extended periods of time, the mountain
will wear down and all the "stuff" that used to be a mountain will become sand,
rocks, silicon chips, wedding rings, iron supplements, and a myriad of other
things.

When we consider biological systems from this point of view, we are faced
with a conundrum. If you look straight down, you will see a biological system
that, like the mountains and the stars, is made out of "stuff". Yet, in order for
you to persist, all of this "stuff" has to stay in a very particular configuration that
is consistent with you being you. This configuration is also very, very far from
being at an equilibrium. In other words, rather than settling into an equilibrium,
you persist as a non-equilibrium steady state (NESS) in stalwart defiance of
nature’s inherent tendency to break things down. You accomplish this through
interacting with the world around you, seeking out food and shelter so as to be
able to keep all of your "stuff" in a reasonable configuration.

From the point of view of the brain as a single, biological system, we can
start to carve up the world according to these ideas. On the one side, we have
the brain itself - the internal states of the system. Its objective is to maintain its
NESS and by extension stay alive. On the other side, we have the world at large
with everything in it - the external states. In between the two we have a bound-
ary - called a Markov blanket - made up of two types of channels. One type we
can call "sensory" in nature. They comprise all the pathways through which the
world can influence our system, for example, our eyes and ears and the touch
receptors in our skin. The other type, which we can call "active", comprises all
the pathways through which our system can influence the world, such as our
hands and feet. We illustrate this partitioning of the world in Fig. 1.1.

In Fig. 1.1 we have added arrows that indicate which states can influence
each other. For example, the arrow Active→ External states indicates that active
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External states

Active states

Sensory states

Internal states

Figure 1.1: The world partitioned according to the FEP, focusing on a single system.

states can influence external states but not vice versa.
With this partition in hand, we are now in a position to start formalising the

task of a system trying to maintain a NESS under the FEP. Concretely, the FEP
casts this idea of maintaining a NESS as a process of free energy minimisation.

1.2.1 Variational Free Energy Minimisation

"Free energy" in this context refers primarily to the variational free energy
(VFE), a construct originating in statistical physics that has since found appli-
cations within several adjacent fields such as neuroscience, machine learning,
and signal processing. To construct a VFE to minimise, we first need a model
which, for our purposes, is simply a positively valued function of some variables
f(s). The second ingredient we require is a probability distribution q(s) which
we will refer to as the variational distribution. With these two in hand, we can
define the VFE as

F [q] =

∫
q(s) log

q(s)

f(s)
ds . (1.1)

Throughout this section, we will work with continuous variables. For dis-
crete variables, integration can be replaced with summation. VFE minimisation
is then concerned with the problem of finding

q∗(s) = argmin
q∈Q

F [q] (1.2)
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with Q constraining the set of available candidates for q. The optimal solu-
tion is given by

q∗(s) = p(s) =
f(s)

Z
(1.3)

where Z =
∫
f(s)ds is a normalisation constant and p(s) is the exact poste-

rior. We use the term posterior to refer to the q∗(s) we obtain after minimising
some free energy functional. Unfortunately, calculating the normalisation con-
stant Z in (1.3) is often difficult or even intractable. To remedy this issue, we
can use Q to restrict the family of q’s we consider in order to make the problem
tractable again at the cost of obtaining an approximate solution instead of the
exact one. In this case, the solution becomes

F [q∗] =

∫
q∗(s) log

q∗(s)

f(s)
ds = KL[ q∗(s) || p(s) ]− logZ ≥ − logZ . (1.4)

where we are left with a Kullback-Leibler divergence (KL) between the exact
posterior p(s) and our best approximation q∗(s). Practically, this KL-term scores
the divergence between our approximation and the optimal solution. Since the
KL is non-negative, we see that Eq. (1.4) provides an upper bound to − logZ.
The term − logZ is then known as the negative log evidence or the surprisal.

To see how this procedure ties back to the ideas presented at the beginning
of Section 1.2, we can assume that the system we consider entails a model
of external states that is also consistent with it remaining at NESS and that the
variational distribution q is encoded by the systems internal states. One example
could be a model that consistently predicts a body temperature of 37 degrees
Celsius. In this case, VFE minimisation will ensure that as data arrives through
sensory states, the system can continually update its (approximate) posterior
over the state of the outside world in a manner that is also consistent with
remaining at NESS. Or in other words, if the system can keep q (its internal
states) close to f (a model of the world that is consistent with remaining at
NESS, we can understand "staying alive" as a process of (variational) free energy
minimisation. If your model predicts a body temperature of 37 degrees and you
start to feel cold, you put on a jacket to resolve the error. If the system makes
accurate predictions and predicts that it will stay alive, staying alive becomes a
self-fulfilling prophecy.

To get an idea of how this practically manifests, we can consider an example.
The goal of this exercise is to show how we can get Bayes rule as a special case of
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free energy minimisation when we update our beliefs following an observation.
Let us start with the model

p(x, z) = p(x|z)p(z) , (1.5)

where x is some observation and z is a latent variable. For instance, z could
be encoding body temperature and x the signals coming from cold receptors in
your skin. With this model, the corresponding VFE is

F [q] =
x

q(x, z) log
q(x, z)

p(x, z)
dxdz . (1.6)

Now we write q(x, z) = q(z | x)q(x), which gives us

F [q] =
x

q(z | x)q(x) log q(z | x)q(x)
p(x, z)

dxdz . (1.7)

Let us now assume that we have gathered an observation x̂ and wish to
incorporate this information into our model. To continue with our example,
this could represent a sensation of feeling cold. To incorporate this new piece
of information, we constrain q(x) to be equal to our observation x̂ by setting
q(x) = δ(x − x̂) where δ(·) denotes the Dirac-δ function. Plugging this into the
expression for the VFE in Eq. (1.6), we find

F [q] =
x

q(z | x)δ(x− x̂) log q(z | x)δ(x− x̂)
p(x, z)

dxdz . (1.8)

Now we can make use of the sifting property of the Dirac-δ to obtain

F [q] =

∫
q(z | x̂) log q(z | x̂)

p(x̂, z)
dz (1.9a)

=

∫
q(z | x̂) log q(z | x̂)

p(z | x̂)
dz − log p(x̂)︸ ︷︷ ︸

Surprisal

. (1.9b)

From Eq. (1.9b) we see that the solution that minimises our free energy is
q∗(z | x̂) = p(z | x̂). This solution corresponds exactly to applying Bayes rule to
update our beliefs when receiving an observation
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q∗(z | x̂) = p(z | x̂) = p(x̂ | z)p(z)
p(x̂)︸ ︷︷ ︸

Bayes rule

. (1.10)

Having Bayes rule as a special case means we can subsume Bayesian infer-
ence under the heading of free energy minimisation. For this reason, we will
also refer to free energy minimisation as inference moving forwards.

1.3 Forney-style Factor Graphs

As we just saw with the body temperature example, most of the time a model
is not just a model. The exact architecture of the model in question matters
when we want our theory to apply to the real world. When we need to know
the structure of a particular model, it is practically useful to have a concise,
graphical notation available for accurately specifying models. For the remain-
der of this dissertation, we will express models using the language of graphs
to accomplish this goal. More specifically, we will employ Forney-style factor
graphs (FFGs) as introduced in [25] with notational conventions adopted from
[69, 92]. FFGs visualize factorised functions as undirected graphs, where nodes
represent individual factors of the global function f(s and edges represent vari-
ables. A node is connected to an edge if and only if the corresponding variable
is an argument of that factor.

Formally, an FFG is a graph G = (V, E) with nodes V and edges E ⊆ V × V.
An FFG can represent a model of the factorised function

f(s) =
∏
a∈V

fa(sa), (1.11)

where fa(sa) denotes the set of factors indexed by a ∈ V and s denotes the
set of variables (indexed by i ∈ E when necessary). The variable sa represents
the set of all neighbouring variables of factor fa. In an FFG, a node can be
connected to an arbitrary number of edges, but edges are constrained to have
a maximum degree of two. When a variable is an argument of more than two
factors, this constraint can be satisfied by introducing equality factors. An equal-
ity factor is defined as f=(s, s′, s′′) = δ(s − s′)δ(s − s′′) with δ(·) being either
the Dirac or Kronecker δ-function. Here the variables s′ and s′′ are copies of
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s, whose posterior distributions are constrained to be identical by the equality
factor. For a more extensive overview of FFGs, we refer the interested reader to
[69, 70]. As an example, consider the factorised function

f(s1, s2, s3, s4, s5) = fa(s1)fb(s1, s2, s3)fc(s3, s4, s5)fd(s4). (1.12)

The FFG representation of this function is visualised in Fig. 1.2.

fa fb fc

fd

s1 s3

s4s2

s5

Figure 1.2: An FFG representation of the model given by Eq. (1.12). The edges are
arbitrarily labelled using arrowheads to distinguish between forward and
backward messages on the graph.

Sometimes, like in Fig. 1.2, we will use arrowheads to denote a "forwards"
and "backwards" direction on an edge in an FFG. This does not mean the graph
is directed. Instead, it is a pedagogical tool that allows us to talk about forwards
and backwards messages flowing on an FFG. To establish what a "message" is,
we need to marry the idea of free energy minimisation with that of model spec-
ification using graphs.

1.4 Inference on Graphs and Bethe Free Energy

Having introduced FFGs as a way to represent models, we can now start to
work with free energy minimisation on graphs. This approach will take us to
message passing (MP) algorithms which are the main tool used throughout this
dissertation. The first step is to introduce an approximation to the VFE so that
it distributes over the FFG. We can accomplish this by appealing to the Bethe
approximation [114, 116] which constrains our variational distribution to fac-
torise as
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q(s) =
∏
a∈V

qa(sa)
∏
i∈E

qi(si)
1−di (1.13)

where di is the degree of the i’th edge. qa(sa) denotes a local (to the a’th
node) variational distribution, similar for qi(si) and the i’th edge. Under the
Bethe approximation, the free energy becomes

F [q] =
∑
a∈V

∫
qa(sa) log

qa(sa)

fa(sa)
dsa︸ ︷︷ ︸

F [qa]

+
∑
i∈E

(1− di)
∫
qi(si) log

1

qi(si)
dsi︸ ︷︷ ︸

H[ qi ]

, (1.14)

which defines the Bethe free energy (BFE). Eq. (1.14) shows that the BFE
distributes over the FFG as a sum of node local free energies F [qa] and edge
local entropies H [ qi ]. Moving forwards we will omit repeated subscripts unless
necessary and let the argument indicate whether we are referring to an edge
or node local marginal, for example writing q(si) instead of qi(si). The Bethe
approximation is exact for tree-structured graphs, in which case the VFE and
BFE are equal. For our purposes, the BFE is especially useful since having the
free energy distributed over the graph opens the door to distributed free energy
minimisation algorithms in the form of MP. From the point of view of MP, the
BFE is special since stationary points of the BFE correspond to the celebrated
belief propagation (BP) algorithm [62, 84]. In turn, BP is unique among MP
algorithms since it provides exact inference on tree-structured graphs.

1.4.1 Belief Propagation

Solving Eq. (1.2) for the model in Eq. (1.11) results in the posterior given by
Eq. (1.3). However, computing this posterior exactly for any given qi(si) re-
quires integration over all other variables in the model. Often this leads to a
high dimensional integral which can be very difficult to solve.

However, due to conditional independencies in the model - following from
the factorisation of f - we can instead replace the difficult global integration
problem with a series of smaller, local computations. This approach leads to the
sum-product or belief propagation algorithm [62, 84].

The result of one such local computation is called a message and we denote
it by µ(·). The BP message ⃗µ(si) [62] flowing out of some node with factor
function fa and si ∈ sa is defined as
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⃗µ(si) ∝
∫
fa(sa)

∏
sj∈sa\i

µ⃗(sj)dsa\i, (1.15)

where the notation sa\i denotes the set of variables sa excluding the ele-
ment si and each µ⃗(sj) is an incoming message to the factor node. The arrows
optionally indicate whether the message is flowing in the forwards (generative)
µ⃗ or backwards ⃗µ direction.

Propagating such messages throughout the graph allows us to determine the
posterior marginal distributions of some variable si - performing inference - by
taking the product of messages colliding on the corresponding edge as

p(si) ∝ µ⃗(si) · ⃗µ(si) . (1.16)

As an example, suppose we wish to calculate the posterior marginal of s3
in the model given by Eq. (1.12). This distribution can be calculated (up to a
scaling constant) as

p(s3) =

∫
f(s) ds\3

∝
x

µ⃗(s1)︷ ︸︸ ︷
fa(s1) fb(s1, s2, s3) ds1 ds2︸ ︷︷ ︸

µ⃗(s3)

·
x

⃗µ(s4)︷ ︸︸ ︷
fd(s4) fc(s3, s4, s5) ds4 ds5︸ ︷︷ ︸

⃗µ(s3)

.

(1.17)

Here we see that the posterior marginal of s3 can be calculated as the prod-
uct of two terms that each summarise a different part of the model. We can
visualise this procedure using the FFG of Eq. (1.12) by drawing the necessary
messages on the FFG as shown in Fig. 1.3.

In this example, the prior distributions over s1 and s4 are treated as messages
themselves, meaning that µ⃗(s1) = fa(s1) and ⃗µ(s4) = fd(s4). Additionally, the
edges corresponding to the variables s2 and s5 are not terminated - they only
have a degree of 1. In this situation, messages in the backwards direction are
taken to be uninformative, ⃗µ(s2) = ⃗µ(s5) = 1. Since posterior marginals are
found by multiplication of messages, this ensures that the relevant posteriors
are fully determined by the respective forwards messages such that p(s2) ∝
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fa fb fc

fd

s1

µ⃗(s1)
→

s3

µ⃗(s3)
→

⃗µ(s3)
←

s4
⃗µ(s4)↑

s2

s5

Figure 1.3: An FFG representation of the model in Eq. (1.12). The indicated mes-
sages can be interpreted as summaries of the dashed boxes, used for solving
Eq. (1.17). Arrows indicate the flow of messages.

µ⃗(s2) ⃗µ(s2) = µ⃗(s2) · 1 = µ⃗(s2) and similar for s5. We will refer to edges of
degree 1 as half-edges or dangling edges moving forwards. Examples of dangling
edges can be seen in Fig. 1.3 for the variables s2 and s5.

1.4.2 Variational and Hybrid Message Passing

Belief propagation represents the ideal case of doing inference because we can
obtain the exact solution. Unfortunately, BP is not applicable outside of all
but the simplest models. When BP is not an option, we can instead resort to
variational inference and the corresponding MP algorithm: Variational message
passing (VMP) [23, 112].

To derive the VMP algorithm, we can once again start from the problem
statement given by Eq. (1.2). If we now employ the Bethe approximation and
add appropriate constraints onQ, we can obtain a constrained Bethe free energy
(CBFE). We can then use variational calculus to solve for stationary points of the
CBFE [116] to obtain a new MP algorithm. Predictably, changing the problem
also changes the solution, and hence we are now led to messages of the form

ν(si) ∝ exp

{∫
q(sa\i) log fa(sa)dsa\i

}
(1.18)

where q(sa\i) denotes the set of posterior marginals around the node a ex-
cluding q(si). To distinguish between VMP and BP messages, we use ν(·) for
VMP messages instead of µ(·). With messages in hand, we can then update
posterior marginals over the variables in our model sequentially as
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qi(si) ∝ ν⃗(si) · ⃗ν(si) , (1.19)

which corresponds to finding stationary points of the CBFE [116]. This pro-
cedure of iteratively calculating messages and posterior marginals is then re-
peated until convergence.

As an example, we can once again consider the task of inferring q(s3) in
Eq. (1.12). This requires two messages, one from each adjacent factor node.
Each message in turn depends on the set of marginals adjacent to that factor
node, as illustrated in Fig. 1.4. Notice that compared to Fig. 1.3, there are far
fewer messages flowing towards s3. Instead, we now indicate marginals as they
are involved in computing the messages through Eq. (1.18).

fa fb fc

fd

q(s1) q(s3)

ν⃗(s3)
→

⃗ν(s3)
←

q(s4)q(s2)

q(s5)

Figure 1.4: An FFG representation of the model in Eq. (1.12), with indicated VMP mes-
sages and relevant marginals used for inferring q(s3).

Here we wish to note that under the Bethe approximation, the constraint
set defining Q also factorises. In turn, this means that hybrid MP algorithms
that combine BP, VMP and potentially other MP schemes are possible. [116]
shows how to recover both the BP and VMP algorithms from CBFE optimisation
alongside a number of other MP schemes such as expectation propagation (EP)
[75] and Laplace propagation [104]. The full derivation of these algorithms
goes beyond the scope of this background chapter. Instead, we refer interested
readers to [116] for an extensive overview of hybrid MP algorithms and their
relation to constrained BFE optimisation.

1.5 Active Inference

So far we have covered how to perform inference by free energy minimisation
and, through the FEP, how this relates to systems persisting against the ravages
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of nature. We have seen different ways of updating beliefs through MP and
expressing these on FFGs. In the context of the FEP, we are now well equipped
to examine systems that take in data and update their beliefs about the world
accordingly.

However, thinking back to our original scenario in Section 1.1, we are still
missing a key ingredient: Action. Taking in data and changing our beliefs only
deals with one of the two pathways we introduced. In the context of our un-
fortunate biker on her way to a meeting, the methods outlined so far would
mainly allow her to accept that she will be late for her meeting. This is clearly
not satisfactory for our goal of designing ML systems that function more like
human brains. We need to endow our system with the ability to take action
upon the world in order to make it consistent with the system’s predictions and
by extension maintain a NESS. This takes us from the realm of just performing
inference to the world of Active Inference (AIF). AIF is what will allow our sys-
tem to pick up the phone and call a cab when faced with a flat tire. Systems
with the ability to act upon the world possess agency and accordingly, we refer
to them as agents moving forwards.

AIF agents are always embedded in an environment and separated from it
by a Markov blanket as indicated in Fig. 1.1. What is not shown in Fig. 1.1 is
the reciprocal flow of information between the agent and its environment.

Assuming a world that moves in discrete time steps2, at every time step the
agent will receive an observation from the environment and emit an action.
The environment then responds with a new observation and the cycle begins
anew. This reciprocal exchange is called the action-perception loop [22, 28, 34],
illustrated in Fig. 1.5.

The perception part of the loop can be handled through the VFE-minimising
machinery we have already covered. Any time our agent receives a new obser-
vation, it can update its beliefs through VFE minimisation. However, when it
comes to selecting which action to emit, we encounter a problem. To perform
VFE minimisation, we would require a new piece of information - an observa-
tion3. However, when selecting an appropriate action to emit, our agent has
to anticipate what the results of said action would be. This requires reasoning
about the future and, rather unhelpfully, the future is by definition not observed
since it has not happened yet. For our agent to emit sensible actions to the

2There exist continuous time formulations of AIF written in the form of (stochastic) differential
equations as well, see for instance [28, 61]. In this dissertation we will focus solely on the discrete-
time case

3In the absence of new information, our beliefs should not change. This is known as the Principle
of Minimum Updating [14]
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World Agent

Obs

Action

Figure 1.5: A schematic illustration of the action-perception loop. At every time step,
the agent receives an observation from the world it inhabits and emits an
appropriate action. The dashed box indicates the Markov blanket separating
the agent from the world.

world, we need to endow it with the ability to reason forwards in time. In collo-
quial terms, the agent needs to be able to ask "What would happen if I did that?"
or, more appropriately for a free energy minimising agent, "What would my free
energy be if I did that?". In other words, we need a quantity that measures what
the agent expects its free energy to be, given a particular course of action.

1.5.1 Expected Free Energy

For AIF agents, the solution to this apparent conundrum comes in the form of
the expected free energy (EFE). The EFE is an AIF specific construct originally
introduced by [33]. To write down the EFE, we first need to commit to a par-
ticular form of generative model. Given that we wish to model the future (up
to some known planning horizon T ), the model in question needs to include
a notion of time. It also needs to include observations (so that we can model
what we expect they might be) and actions (so we can reason about the conse-
quences of different sequences of actions). A generic formulation that satisfies
these desiderata is that of a state space model conditioned on a sequence of
actions. We can write this model as
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p(x, z | u) = p(zt)

T∏
k=t+1

p(xk | zk)p(zk | zk−1, uk) (1.20)

where x = xt+1:T denotes a sequence of observations, z = zt:T denotes a se-
quence of latent states and u = ut+1:T denotes a sequence of actions. Through-
out this dissertation, we will also refer to a sequence of actions as a policy. To
construct the EFE, we can now write what the form of the VFE would have been,
in case we had observations x̂ available.

F [q;u] =

∫
q(z | u) log q(z | u)

p(x, z | u)
dz . (1.21)

Since we do not have an observation x̂ available to us, Eq. (1.21) does not
evaluate to a scalar objective that we can optimise. To remedy this, we can take
the expectation of Eq. (1.21) under our predictive distribution over x. Taking
the expectation of the free energy gives us the expected free energy.

G[ q;u ] =
x

q(x | z)

F [q;u] if x̂ had been observed︷ ︸︸ ︷
q(z | u) log q(z | u)

p(x, z | u)
dz dx︸ ︷︷ ︸

Expected F [q;u] when x̂ is not observed

. (1.22)

The EFE has several desirable properties that we wish to incorporate into
our ML systems. The main feature we are interested in is that selecting policies
based on EFE-minimisation endows AIF agents with an epistemic, exploratory
drive to gather information about the world they inhabit. To see how this comes
about, we can decompose the EFE in Eq. (1.22) as
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G[ q;u ] =
x

q(x, z | u) log q(z | u)
p(x, z | u)

dxdz

=
x

q(x, z | u) log q(z | u)
p(z | x,u) p(x)︸︷︷︸

Goal prior

dxdz

=
x

q(x, z | u) log
[

q(z | u)q(z | x,u)
p(z | x,u)q(z | x,u)p(x)

]
dxdz

=
x

q(x, z | u) log
[
q(z | u)
q(z | x,u)

+
q(z | x,u)
p(z | x,u)

+
1

p(x)

]
dxdz

=
x

q(x, z | u) log
[
q(z | u)q(x | u)
q(z,x | u)

+
q(z | x,u)
p(z | x,u)

+
1

p(x)

]
dxdz

= I [x, z ]︸ ︷︷ ︸
Mutual

Information

+Eq(x|u)[ KL[ q(z | x,u) || p(z | x,u) ] ]︸ ︷︷ ︸
Expected divergence

+Eq(x|u)

[
log

1

p(x)

]
︸ ︷︷ ︸

Cross entropy

.

(1.23)

What Eq. (1.23) shows, is that the EFE can be decomposed into a mutual
information term that drives exploration, an expected KL-divergence4 and a
cross-entropy loss which is a popular objective function for ML systems. The
cross-entropy in question is between the predicted observations given a par-
ticular policy q(x | u) and a goal prior p(x). Intuitively, it tries to match the
predicted observations with desired the observation specified by the goal prior.
From the point of view of the FEP, the goal prior defines observations that are
consistent with remaining at NESS. On the other hand, from the point of view
of the engineer designing artificial agents, the goal prior provides a means to
encode tasks for AIF agents by specifying a set of desired observations instead
of a cost function. To relate this idea back to our body temperature example,
p(x) could specify a desired observation of having a body temperature of 37
degrees. q(x | u) would then encode what we would predict ("I’ll feel warm")
given a particular sequence of actions (- "If I put on a jacket").

The EFE is the subject of many of the upcoming analyses, so we defer a
deeper investigation to later chapters, in particular Chapters 2 and 3 and their
accompanying appendices. For now, we simply wish to emphasise that EFE,

4For many practical applications, this term is often assumed small enough to be negligible and
is therefore left out, see for instance [15, 33, 36, 76, 82]
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as an objective functional, endows AIF agents with both a goal-directed drive
(a cross-entropy loss) as well as an epistemic, information-seeking drive (the
mutual information term).

1.6 Research Questions

At this point, we have an idea of how the theory behind AIF works and what we
need to do on the way to our goal of developing a practical toolset for artificial
AIF. Practically, this means we need to overcome a series of obstacles. These
form our concrete research questions, the first of which is

Q1: How can factor graphs be used to accurately describe the model assumptions
and inference processes of an Active Inference agent?

If we wish to make tools for AIF using FFGs, we need to first define exactly
how the two are related. This turns out to be a surprisingly tricky task since
the theory is undergoing active development and has seen several different in-
carnations throughout its lifespan. While all of these are centered around the
themes covered in Section 1.2, several minor differences influence the details of
what a practical implementation should look like. This is especially true for EFE
computation and its role in planning out future policies. Additionally, given our
wish to use MP, we need to accurately state the problem using FFGs. Answering
this question for discrete-time AIF is the focus of Chapter 2.

Having established how to interpret AIF using FFGs in Chapter 2, the next
obstacle we need to overcome relates to the capabilities of AIF. Outside of
work relying heavily on deep learning, AIF has been closely tied to a partic-
ular choice of generative model - a discrete partially observed Markov decision
process (POMDP). Yet many tasks that we might wish to address as engineers
do not easily conform to a discrete state space representation and are much eas-
ier to approach using continuous variables. One example could be controlling
an autonomous vehicle or drone which necessitates navigating in continuous
coordinate spaces. Solving this problem becomes our second research question
which we can state as

Q2: Is a linear Gaussian dynamical system a useful generative model for an Active
Inference agent?

The linear Gaussian dynamical system (LGDS) is ubiquitous within engi-
neering and constitutes a simple, widely applicable model that we can use to
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expand the scope of AIF to include continuously varied state spaces. We tackle
this research question in Chapter 3.

In the end, the true litmus test for whether we can develop practical en-
gineering tools for AIF will always be practical engineering. In the words of
Richard Feynman - ”What I cannot create, I do not understand”. Only when AIF
can easily be used to develop applications and bring useful features to a con-
crete engineering problem, will we have truly practical tools. This need for a
practical engineering problem brings us to our third research question

Q3: How can an artificial Active Inference agent meaningfully support situated
personalisation of hearing aid algorithms?

We tackle this research question in Chapter 4. Chapter 4 details the design of
AIDA, the Active Inference Design Agent. AIDA is a system designed for tuning
hearing aid (HA) devices based on user feedback obtained in situ. Tuning HAs
is currently a time-consuming and highly personalised endeavour that involves
expert audiologists manually adjusting parameters. This is a difficult task at the
best of times and further complicated by the fact that very few natural auditory
environments resemble an audiologist’s office. As a consequence, the parame-
ter settings that are appropriate in the audiologist’s office might be sub-optimal
when for instance attending a concert or visiting a restaurant. In an ideal world,
HA parameters would instead be adjusted on the fly as the HA user goes about
her day, always applying highly personalised, context-dependent audio correc-
tions. AIDA aims to bring this ideal world about by allowing users to train their
own personalised HA algorithm through online feedback on HA performance.
The component of AIDA responsible for selecting the best HA parameters for
the user given the current auditory context, is powered by AIF.

As Chapter 4 demonstrates, bringing AIF to engineering is a laborious en-
deavour. In particular, every time we wish to utilise AIF with a new generative
model, we need to derive all the relevant quantities by hand. Having to do man-
ual derivations for every model takes time, is prone to human error, and leads
to unnecessarily long design cycles. In order to have a practical engineering
tool, we need to make AIF easy to apply, even for a non-expert. To accomplish
this, we need unambiguous, reusable descriptions that can be combined to form
full-fledged applications.

A framework that already possesses these qualities is that of FFGs. FFGs
allow engineers to build complex, interwoven systems out of simple building
blocks simply by writing down the FFG representation of their problem and
employing the associated message passing algorithm. For our tooling, we desire
a similar level of flexibility which motivates our final research question
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Q4: Can free energy minimisation in artificial Active Inference agents be formu-
lated as an automatable optimisation problem by message passing on a factor
graph?

To answer this question, in Chapter 5 we develop a new constrained Forney-
style factor graph (CFFG) notation that allows for writing down not just the
generative model, but also the exact variational inference problem to be solved.
This includes constraints on the variational distribution such as factorisation
and form constraints. Accurately specifying both the generative model and the
set of constraints in turn uniquely determines the MP algorithm that should be
applied to obtain a solution.

However, AIF also relies on several customised versions of the free energy
— such as the EFE— which have so far not been expressible using a graphi-
cal notation. Using CFFGs we demonstrate how this can be accomplished by
succinctly restating the core algorithms used for prior work on AIF.

Finally, we derive a version of the custom objective functionals used for AIF
that is local to a single node on a CFFG. With our new functional in hand, we
proceed to derive custom MP updates for finding stationary points of said func-
tional, using Lagrangian optimisation. By implication, we are then able to apply
AIF to arbitrary, free-form graphical models provided they can be specified us-
ing CFFGs. Notably our new MP updates interface with existing MP algorithms,
meaning we can leverage the power and flexibility of prior work while retaining
the desirable features of AIF.

1.7 Summary of Contributions

In summary, we make the following concrete contributions

• To address Q1, we summarise prior work on AIF using FFGs in Chapter
2, particularly focused on action selection and planning. The other core
piece of practical AIF modelling is state estimation which we review in
Chapter 3 in the context of Bayesian filtering. Together, perception and
action allow us to handle the entire action-perception loop which is the
foundation we need for practical AIF modelling.

• In Chapter 3 we explore Q2 by deriving the necessary updates for AIF,
using a LGDS as our generative model. We particularly focus on the epis-
temic, information-seeking types of behaviour that are characteristic of
AIF agents and discover that they are largely absent in LGDSs.
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• To answer Q3 we develop AIDA in Chapter 4. AIDA is a fully Bayesian
system that performs both audio processing and in situ personalisation of
a HA device based on user feedback.

• Chapters 2, 3 and 4 all use variations of the same methodology which
follows from the FFG-based analysis conducted as part of addressing Q1.
In Chapter 5 we address Q4 and fully develop this methodology by intro-
ducing CFFGs and deriving an accompanying MP update that allows for
writing Lagrangian Active Inference (LAIF) purely as a MP algorithm.

1.8 Accountability, Outline and Suggested Reading
Orders

As any scientist knows, science is a collaborative effort. The days of the lone
genius are (with a few rare exceptions) in the past - and in either case I would
not claim to be either a genius or a loner by any stretch of the imagination.
Instead, the work presented in this dissertation was conducted as a series of
team efforts in which I played a central part.

This means that while I take full responsibility for every word of this disser-
tation, it is important to acknowledge that it necessarily includes the work of
collaborators to produce a coherent, readable document. To clearly give credit
where credit is due, when the content of a chapter includes significant contri-
butions from collaborators it is prefaced with a small attribution as to who was
the primus motor for each part of the work presented.

The remainder of the dissertation is structured as follows. In Chapter 2
we describe planning under AIF as message passing on a FFG. This perspective
forms the basis for the analyses following in Chapter 3 where we extend AIF to
work with LGDSs. In Chapter 4 we tackle an industry problem by developing a
fully Bayesian audio processing agent based on AIF. The core contribution here
is in a preference learning module that applies AIF to a Gaussian process clas-
sifier (GPC). Finally, in Chapter 5 we develop LAIF as a fully general version of
AIF that applies to arbitrary graphical models. To accurately write down the AIF
optimisation problem using a graphical syntax, we develop the CFFG notation
in Chapter 5. CFFGs are a general-purpose graphical syntax for writing con-
strained free energy optimisation problems on factorised models. Conclusions
and perspectives on future work can be found in Chapter 6.

Each chapter is written to be a self-contained unit, meaning some points
are repeated between chapters. The dissertation can therefore be read in any



1

28 Introduction

order. While the most comprehensive picture is obtained by reading the entire
dissertation back to back, we recognise that readers will pick up the document
for different purposes. To that end, we have designed three alternate reading
orders, tailored for readers with particular foci.

Readers who are new to AIF and intend on using the dissertation as a prin-
cipled introduction to the field should follow the Review Track. The Review
Track starts by establishing a foundation through Chapter 2, proceeds through
Chapter 3 with a particular focus on Sections 3.4 and 3.5 and ends with Section
5.8 of Chapter 5. For the notation used in Section 5.8, it is recommended to
take a slight detour through Section 5.5 first.

If one is mostly interested in applications of AIF, it is recommended to follow
the Applications Track instead. The applications track starts by covering the
entirety of Chapter 3 for LGDS models, following up with Chapter 4 for the
most involved practical application in the dissertation. Finally one can end with
the experiments on direct policy inference at the end of Chapter 5, specifically
Sections 5.9 and onwards. Again, Section 5.5 is recommended to familiarise
oneself with the notation used in 5.9

Finally, the reader whose interest is mainly piqued by the development of
tools for AIF should follow the Theory & Tools Track. Theory & Tools starts with
Chapter 2 as an alternate way of viewing EFE computation using FFGs. Cou-
pling the FFG view with the action selection mechanisms in Chapter 3, Section
3.5 constitutes the core method used for most of the dissertation. Finally, the
theoretician will find the most relevant content in Chapter 5 which should be
read in full. Additionally, we recommend that a reader on the Theory & Tools
Track also visits the appendices liberally as they often contain derivations that
were too unwieldy to be part of the main text. The suggested reading orders
are illustrated schematically in Fig. 1.6.
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Chapter 2 Chapter 3 Chapter 4 Chapter 5

Theory & Tools

Review

Applications

Figure 1.6: Suggested reading orders.
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Chapter 2
A Message Passing Perspective
on Planning under Active
Inference

”It’s a dangerous business, Frodo, going out your door. You step onto
the road, and if you don’t keep your feet, there’s no knowing where you
might be swept off to.”

– J.R.R. Tolkien on planning, 1954

This chapter presents a message passing (MP) interpretation of planning
under Active Inference (AIF). Specifically, we show how the AIF planning pro-
cedure can be broken into a (partial) message passing sweep over a graph,
followed by local computations of a cost functional, the Expected free energy
(EFE). Using Forney-style factor graphs (FFGs) we then proceed to show how
one can derive novel planning schemes by local changes to the underlying graph
and message passing schedule. We illustrate this by first isolating the “sophis-
ticated” aspect of Sophisticated inference (SI) [35] and then proposing a novel
planning algorithm by combining the sophisticated update mechanism with a
different message passing schedule. Our main contribution is a modular view
of planning under AIF that can serve as a framework for understanding existing
algorithms, deriving new ones, and extending the class of models amenable to
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AIF. Approaching AIF from a MP perspective also shows how it can be efficiently
implemented using off-the-shelf probabilistic programming software, broaden-
ing the class of models available to researchers and practitioners. This chapter is
based on the original work referenced below and foreshadows the methodology
we will use in Chapters 4 and 5.

Koudahl, M., Buckley, C.L., de Vries, B. (2023). A Message Passing Per-
spective on Planning Under Active Inference. In: , et al. Active Inference.
IWAI 2022. Communications in Computer and Information Science, vol
1721. Springer, Cham.

2.1 Introduction

AIF is a common modeling framework for studying decision-making and, in re-
cent years, also for designing synthetic agents. A key facet that sets AIF apart
from other approaches is the choice of planning objective. AIF uses the EFE,
which is a cost functional that promises a balanced trade-off between explo-
ration and exploitation.

In this paper, we present a particular interpretation of EFE-based planning
under AIF using known message passing-based inference methods on a FFG.
We show that the standard EFE planning algorithm is equivalent to performing
a forward pass using standard belief propagation (BP) messages, followed by a
separate computation phase based on the resulting marginals.

By explicitly writing planning under AIF as message passing on a graph, we
can clearly delineate the practical steps used for EFE computation. Doing so
means we can isolate parts of more complicated schemes such as the sophis-
ticated aspect of SI [35] and the backwards influence from future time steps
hinted at by [81]. It also allows us to propose new algorithms as variations
based on the common underlying theme and indicates a method for implement-
ing AIF in a broader class of models using efficient inference software.

2.2 Generative Model and Inference

Planning under AIF centers around a generative model of the future. The gen-
erative model traditionally used is a discrete partially observed Markov decision
process (POMDP) [33, 35, 44]. We let xt denote an observation, zt a latent
state, and ût a fixed control at time step t. Now we can write the model after
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having observed xt and conditioned on a fixed sequence of actions û1:T - which
we will refer to as a policy moving forwards - as

p(xt+1:T , zt:T︸ ︷︷ ︸
Future

| ût+1:T︸ ︷︷ ︸
Policy

,x1:t, û1:t︸ ︷︷ ︸
Past

)

= p(zt | x1:t, û1:t)︸ ︷︷ ︸
State Prior

T∏
k=t+1

p(xk | zk)︸ ︷︷ ︸
Likelihood

p(zk | zk−1, ûk)︸ ︷︷ ︸
State Transition

(2.1)

where

p(zt | x1:t, û1:t) = Cat(zt | d) (2.2a)

p(zk | zk−1, ûk) = Cat(zk | Buk
zk−1) (2.2b)

p(xk | zk) = Cat(xk | Azk) . (2.2c)

Here p(zt | x1:t, û1:t) represents the Bayesian filtering solution over observed
time steps 1 : t, which we summarise in the parameter vector d. Both zk, zt,
and xk are discrete variables following Categorical distributions, as for instance
described in [10, Ch. 2.]. Note that Eq. (2.1) extends into the future until some
known horizon T > t and is conditioned on a policy over the full trajectory
û1:T . We use Buk

to denote the transition matrix B corresponding to the action
ûk. Planning under AIF relies on comparing choices of Buk

which we emphasise
by this notation.

We can visualise Eq. (2.2) using FFG formalism. In an FFG, a node represents
a factor (function of variables) and an edge represents a variable. An edge
connects to a node if and only if the corresponding variable is an argument of
that factor. The FFG of the model described by Eq. (2.2) is shown in Fig. 2.1.
In Fig. 2.1, the T-nodes denote a discrete state transition (multiplication of a
variable with categorical distribution by a transition matrix). For pedagogical
purposes, we have also labelled T-nodes with the matching equation in Eq. (2.2)
and indicated the forward direction of the graph by arrowheads on edges. When
a variable is fixed (for example when we condition on a policy), we indicate this
by a small, black square.
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TCat =

T

T

Eq.(2.2b)

Eq.(2.2c)

=

T

· · ·
ztd

But+1

xt+1

A

⃗µ(zt+1)

zt+1

But+2

µ⃗(zt+2)

xt+2

A

zt+2

Figure 2.1: FFG of discrete POMDP as used for planning in standard AIF models.

To perform inference in this model, we can utilise BP [35, 70]. BP proceeds
by passing messages along the edges of a graph towards variables that we wish
to infer. We can illustrate this on our FFG by drawing arrows that outline the
messages we wish to pass, see Fig. 2.2. When two messages collide they are
multiplied (and normalized) to obtain a posterior marginal for the variable on
an edge. For the model given by Eq. (2.2), all variables are discrete and re-
lated by discrete state transitions. We therefore only need the forward µ⃗(·) and
backward ⃗µ(·) BP-messages around a T-node. For the variables zk, zk−1 and the
transition matrix Buk

, the messages are

µ⃗(zk) = Cat
(
zk

∣∣∣ 1
Z
Buk

zk−1

)
, ⃗µ(zk−1) = Cat

(
zk−1

∣∣∣ 1
Z
BT

uk
zk

)
, (2.3)

where we slightly abuse notation by having zk denote the parameter vector
of the incoming message on the edge zk (instead of the random variable zk),
similar for zk−1 and the edge zk−1. Z is a normalisation constant that we can
ignore when the columns of the transition matrix are normalised, which we
assume going forward. To illustrate, in Fig. 2.1 we have indicated the messages
flowing out of a T-node towards the variables zt+1 and zt+2.

2.3 Expected Free Energy

Planning under AIF involves first computing the EFE for each time step given
a policy and then summing the results over time steps. This procedure is re-
peated for a set of admissible policies. Based on the sum-total EFEs for each
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policy, one then constructs a categorical distribution over possible policies and
sample a course of action from there [22, 33, 60]. We explicitly appeal to a
recursive formulation of EFE computation here as put forward in [35]. While
the exposition given here will be in terms of the discrete POMDP described in
Section 2.2, similar steps can be performed for other generative models, see for
instance [60] for an example using linear Gaussian dynamical systems (LGDSs).
The EFE for a single time step k is defined as

G(ûk) =
∑
xk

∑
zk

p(xk | zk)q(zk | ûk) log
q(zk | ûk)

p(xk, zk | ûk,x1:t)
. (2.4)

Notably, EFE only depends on prior time steps and not on the full trajectory.
For computational purposes, the EFE for a single time step is often rewritten as
1

G(ûk) =
∑
zk

q(zk | ûk)H [xk | zk ]︸ ︷︷ ︸
Ambiguity

+KL[ q(xk | ûk) || p(xk)] ]︸ ︷︷ ︸
Risk

(2.5)

Here, we wish to note that all required quantities are written in terms of
xk, the observations. This means everything we need to compute Eq. (2.5) is
available around the likelihood node. With slight abuse of notation we find
q(zk | ûk) and q(xk | ûk) by using the forward message Eq. (2.3) as

zk = Bûk
zk−1 (2.6a)

xk = Azk . (2.6b)

Now, we are ready to compute Eq. (2.5). Following [22, Eq. D.2-3] we can
evaluate Eq. (2.5) for the model 2.2 as

G(ûk) = −diag
(
AT logA

)T
zk︸ ︷︷ ︸

Ambiguity

+xT
k (logxk − log ck)︸ ︷︷ ︸

Risk

(2.7)

where we have slightly adapted the original notation to be consistent with
our exposition. Here ck refers to the parameter vector of the goal prior p(xk)

1The equality is only correct when we can do exact inference, see [60] or Chapter 3 for details
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and the diag(·) operator takes as argument a matrix and returns its diagonal
entries as a column vector. In Eq. (2.7), the RHS is implicitly a function of ûk
through the choice of Bûk

in Eq. (2.6a). We see that the quantities used in
Eq. (2.7) can be obtained by applying a forward MP sweep on the generative
model. We can visualise this on the FFG as shown in the top panel of Fig. 2.2.
The boxed areas indicate where we obtain the quantities required for Eq. (2.7).
As we can see, EFE computation corresponds exactly to a forward MP sweep
followed by a secondary computation around the likelihood nodes.
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Figure 2.2: Comparison of MP schedules (shown with arrows) for standard EFE planning
(panel 1), SI (panel 2, including backward messages) and SI + smoothing
(panel 3, including a smoothing pass), shown on the FFG of the generative
model for a discrete POMDP Eq. (2.2). The boxed areas contain all the quan-
tities needed for calculating the EFE by Eq. (2.5). T-nodes indicate discrete
state transitions, Cat nodes a categorical distribution and = nodes an equal-
ity constraint. Small, black squares are used for variables with fixed values
and · · · indicate that the graph extends forward until an arbitrary planning
horizon T .
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2.4 Sophisticated Inference

Having established the MP view of EFE computation, we can use it to examine
algorithms for AIF planning. A recent development is SI [35] which better ac-
counts for future belief updates compared to the standard approach [33, 60].
There are several moving parts to the SI algorithm, such as the branching/prun-
ing of the policy search tree and recursive EFE evaluation, which we will not
cover here. We limit ourselves only to the innovation that lends the sophisti-
cated aspect and show how it can be interpreted as adding an additional, fixed
node to the FFG and passing an additional message.

To do so, we investigate what occurs when we fix a node on the graph.
Formally, fixing a node means adding a constraint to the optimisation problem
in the form of a δ-function that forces the variable on that edge to take on a
particular value [116]. For the SI algorithm, we fix the half-edges that denote
xk as if they had been observed, see Fig. 2.2, panel 2. This is equivalent to
enforcing the constraint [116]

q(xk) = δ(xk − x̂i
k) (2.8)

where x̂i
k is a one-hot encoded vector with 1 in the i’th position and zeros

everywhere else. δ(·) is the Kronecker δ-function which only evaluates to 1 if
x̂i
k = xk.

The index i represents a branching point of the algorithm and is evaluated
for all indices of zk that exceed a threshold, resulting in a forward search tree
[35] that branches for different choices of i. The details of the branching pro-
cedure and subsequent tree search are beyond the present exposition and we
refer interested readers to [35] for algorithmic details. The exposition given
here corresponds to a single path through the search tree for a fixed policy.

The next step is to pass a backward message towards zk. To pass the back-
ward message through the likelihood node, we use Eq. (2.3) and the fact that
the clamped node is one-hot encoded to obtain a message towards zk given by

⃗µ(zk) = Cat
(
zk | A∗i

)
(2.9)

where A∗i indicates the i’th column of A. In practice, this procedure is
equivalent to performing a filtering step given that x̂i

k was observed.
We can visualise the MP schedule used for the fixed policy SI algorithm on

the FFG as shown in Fig. 2.2, panel 2 which makes the sophisticated aspect read-
ily apparent: By passing the backward message, Eq. (2.9), zk now incorporates
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information from the simulated observation x̂i
k. x̂i

k is a simulated observation
since it is selected by the SI algorithm rather than generated by the agents en-
vironment.

In the case of a single pass through the search tree, the recursive EFE formu-
lation given by [35] reduces to the standard EFE expression given by Eq. (2.7).
A subtle note here is that Eq. (2.7) is still evaluated for the downward message
given by Eq. (2.6b) rather than the marginal given by the product of colliding
messages on the edge xk. In other words, information from the simulated ob-
servation at a particular time step is not considered when calculating the EFE of
that time step.

Interestingly, the simulated observations that give SI its sophisticated prop-
erties bear similarity to alternative approaches to epistemics using constrained
Bethe free energy (CBFE) instead of EFE [66]. In [66]. the authors were able
to induce exploration while only relying on standard MP procedures and point-
mass constraints (that can be interpreted as a different way of selecting obser-
vations) instead of the EFE.

2.5 Advantages of the Message Passing Perspective

Viewing EFE computation from a MP perspective provides several advantages of
which we will highlight three. First, it allows us to step back and work with up-
date equations in the abstract which in turn opens the avenue for working with
EFE in a broader class of models. The forwards sweep relies on off-the-shelf
MP equations which can be automated in software. Any efficient MP toolbox,
for example, [3], can therefore be used for performing inference. Finalising an
EFE implementation then only requires solving Eq. (2.5) around the likelihood
nodes. As an example, [60] used a similar approach to derive the EFE update
equations for linear Gaussian models, making EFE available in continuous state
spaces. Second, taking the MP perspective allows a unified perspective on dif-
ferent planning algorithms proposed under AIF. We have demonstrated this by
showing how a core aspect (the sophistication) of SI can be interpreted as fix-
ing a node on the FFG and subsequently passing a backward message. Third,
by casting the planning problem as MP we can extend upon current work and
derive new EFE-based planning algorithms by manipulating the underlying FFG
and MP schedule. As an example, we showed an extension to the standard al-
gorithm by incorporating a smoothing pass alongside the forwards pass. This
algorithm requires no updates to the EFE computation in Eq. (2.5) itself, uses
known MP rules as implemented in ex. [3] and can be combined with the
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SI backward message. We show this algorithm on the FFG in Fig 2.2, panel
3. The smoothing pass is closely related to the generalised free energy (GFE)
introduced in [81]. In [81], the authors also incorporate a smoothing pass,
however, they rely on custom update rules that are not immediately expressible
using known message passing schemes. We show how the GFE update rules are
amenable to an MP interpretation in Chapter 5.

2.6 Conclusions

The MP perspective on EFE-based planning is not new and has been touched
upon in for instance [15, 16, 35, 36, 60, 67]. Our contribution is to formalise
this notion by explicitly writing out the necessary steps for planning under AIF in
terms of the required messages, and to demonstrate that taking the MP perspec-
tive can yield new insights and potentially even new algorithms. An immediate
advantage of the MP perspective is that it becomes easy to understand which
computations are necessary for a particular planning algorithm, which proce-
dures may be combined to design new planning algorithms, and how to isolate
differences between planning algorithms. Additionally, we have only investi-
gated the simplest version of the EFE. Since [33], numerous extensions have
been proposed that for instance augment the EFE with additional epistemic
terms [100] or express goals in terms of p(zk) rather than p(xk) [22]. Inter-
preting these more recent developments in terms of MP is an interesting area
for future study. Finally, we have focused on the case where an explicit gen-
erative model is available, as is common for AIF studies, and have deliberately
eschewed discussions of deep AIF such as [72, 110, 115] When parameterising
the generative model using deep neural networks, one generally loses the ability
to utilise closed-form MP updates. Instead, deep AIF often relies on sampling-
based methods to approximate the messages, trading off interpretability and
speed for increased flexibility.
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Chapter 3
On Epistemics in Expected Free
Energy for Linear Gaussian
State Space Models

”The truth always turns out to be simpler than you thought.”

– Richard Feynman, 1985

Active Inference (AIF) is a framework that can be used both to describe in-
formation processing in naturally intelligent systems, such as the human brain,
and to design synthetic intelligent systems (agents). In this chapter we show
that expected free energy (EFE) minimisation, a core feature of the framework,
does not lead to purposeful explorative behaviour in linear Gaussian dynamical
systems (LGDSs).

We provide a simple proof that, due to the specific construction used for
the EFE, the terms responsible for the exploratory (epistemic) drive become
constant in the case of linear Gaussian systems. This renders AIF equivalent to
KL control. From a theoretical point of view this is an interesting result since it is
generally assumed that EFE minimisation will always introduce an exploratory
drive in AIF agents.

While the full EFE objective does not lead to exploration in LGDSs, the prin-
ciples of its construction can still be used to design objectives that include an
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epistemic drive. We provide an in-depth analysis of the mechanics behind the
epistemic drive of AIF agents and show how to design objectives for LGDSs that
do include an epistemic drive. Concretely, we show that focusing solely on epis-
temics and dispensing with goal-directed terms leads to a form of maximum en-
tropy exploration that is heavily dependent on the type of control signals driving
the system. Additive controls do not permit such exploration. From a practical
point of view this is an important result since LGDSs with additive controls are
an extensively used model class, encompassing for instance Linear Quadratic
Gaussian controllers. On the other hand, LGDSs driven by multiplicative con-
trols such as switching transition matrices do permit an exploratory drive.

This chapter is based on the original work referenced below. The approach
we take relies on the Forney-style factor graph (FFG) specification of AIF intro-
duced in Chapter 2. I conceived of the original idea and performed all analyses
and experiments. Derivations were performed by me in close cooperation with
W. M. Kouw.

Koudahl, M. T., Kouw, W. M., & de Vries, B. (2021). On Epistemics in
Expected Free Energy for Linear Gaussian State Space Models. Entropy,
23(12), 1565. MDPI AG.

3.1 Introduction

AIF is a mathematical description of information processing in intelligent sys-
tems. In brief, it states that agents, originally biological but in later years also
artificial, act to minimise their surprise by seeking out stimuli and states that
are compatible with their model of the world. AIF is an attractive framework
for designing artificial agents since AIF agents possess a well-balanced drive
towards both explorative (epistemic) and exploitative (pragmatic, goal-driven)
behaviour. These characteristics follow from choosing the EFE as the objective
function for planning.

In this chapter, we explicitly derive the equations for applying AIF in LGDSs
with the EFE objective. In doing so we uncover a novel result showing that,
in the case of linear models, the epistemic term of the EFE objective becomes
constant. This means that any application of EFE in LGDS will not lead to ex-
ploration and the resulting agents will engage in purely goal-driven behaviour.
The proof is given in Section 3.5.5.

The remainder of the chapter is structured as an in-depth analysis of the AIF
framework and the mechanisms driving its claims to epistemic behaviour. We
isolate the epistemic term of the EFE and identify it as a (bound on) mutual
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information (MI). We then show that, when considering epistemics in isolation
instead of the full EFE construct, it is still possible to generate an epistemic drive
using the machinery of AIF. Isolating epistemics corresponds to a special case of
EFE, where priors on future observations are left unspecified [34, 98]. We an-
alyze the behaviour of the resulting epistemic drive and show that, for the case
of additive controls, the epistemic drive is independent of state transitions and
only depends on the prior variance associated with the belief over the control
signal. On the other hand, LGDSs driven by multiplicative control signals do
exhibit a dependence between state transitions and the epistemic drive.

Prior work on AIF in LGDS such as [5, 6, 12, 29, 67], have focused mostly
on the goal-directed components of the AIF framework. The results, while im-
pressive, largely do not address questions of epistemics and exploration. This
means that in cases where AIF is applied to LGDSs, EFE and the resulting desir-
able exploratory drive have so far not been thoroughly investigated. Our results
show that, provided the model in question can be cast as a LGDS, incorporating
EFE does not lead to meaningful exploration.

The present chapter makes the following contributions:

• We derive the filtering and planning equations for AIF using EFE in LGDSs,
Sections 3.4 and 3.5.

• We consider the epistemic term of EFE in isolation and show that in the
case of additive controls actions become decoupled from state transitions
when computing the epistemic term of EFE, Section 3.5.3. Therefore, we
do not find meaningful exploration in this case.

• We show that in the case of multiplicative controls, meaningful exploratory
behaviour re-emerges when isolating the epistemic term of EFE, Section
3.5.4.

• We prove that when considering the full EFE construct, parts of the instru-
mental and epistemic value terms cancel each other out. This renders the
epistemic value constant. In turn, the EFE functional becomes equivalent
to KL control plus an additive constant, Section 3.5.5.

• We provide simulations that corroborate our claims. We first demonstrate
the differences in exploration when considering purely epistemic agents
using both additive and multiplicative control signals. Finally, we show
that LGDS agents optimising the full EFE do not exhibit epistemic drives
under any circumstances, Section 3.6.
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The core message is thus that translating AIF to the linear Gaussian case
presents unique challenges, specifically because the exploration/exploitation
trade-off that follows from EFE minimisation does not manifest. 1

3.2 Exploration and Exploitation

In this section, we aim to introduce the concepts of exploration and exploitation
on intuitive grounds before commencing with our formal analysis. Exploitation
refers to goal-directed behaviour. An agent that engages in exploitation per-
forms actions that are aimed at optimising some measure of preferences which
we will refer to as "Instrumental value". As an example, consider minimisation
of mean squared error, cross-entropy or a similar cost function. Exploration,
on the other hand, refers to behaviour directed at collecting information about
the environment in which the agent is embedded. An agent that engages in
exploration performs actions that are aimed at acquiring further information
about its environment. We will refer to any metric that quantifies the value of
gathering information as "Epistemic value". Optimising epistemic value biases
the agent towards actions that gather information. We will refer to this bias
in action selection as an "Epistemic drive". There are many candidates for the
epistemic value term. We will briefly consider two that are particularly relevant
for the present analysis. This will not be a formal comparison but an intuitive
introduction to the qualitative differences in behaviour that can be expected
from agents that employ different epistemic value terms.

First, we can consider agents that aim to maximise entropy (uncertainty).
For such an agent, the epistemic drive biases it towards seeking out areas of
state space where uncertainty is high. By repeatedly visiting uncertain areas of
state space, the agent collects observations in said areas which in turn reduces
uncertainty. As an example, we can consider an agent trying to navigate an
arena. The agent is equipped with a sensor and the arena is subject to strong
winds that induce sensor noise by pushing the agent around. In this case, max-
imising entropy drives the agent to seek out parts of the arena where the winds
(and corresponding sensor noise) are high. This means the agent collects infor-
mation primarily in areas where more observations are needed, due to increased
sensor noise.

Second, we can consider an agent that aims to maximise MI, also known
as Information Gain. We provide a formal treatment of MI in Appendix A.4.

1Code is available at github.com/biaslab/efe_lgds

github.com/biaslab/efe_lgds
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Intuitively, MI scores the reduction in uncertainty that the agent expects given
a particular observation. In the present example, an agent that optimises MI
might correctly identify that although windy areas are noisy, collecting infor-
mation in those areas is unlikely to reduce uncertainty because the winds will
remain high. Instead, the agent will prefer to move towards areas that have less
wind, to obtain more accurate measurements. This is the approach taken by AIF
agents when optimising EFE [33, 97].

Optimising both instrumental and epistemic value terms by selecting actions
necessarily entails a trade-off between short-term gains (exploitation) and gath-
ering information in order to perform better in the future (exploration). Having
agents that can optimally balance this trade-off is therefore desirable because it
allows for autonomous systems that can learn to navigate novel environments
to achieve desired goals. A core feature of the EFE is that it presents a single
objective functional that encompasses both instrumental and epistemic value
terms [33, 97].

In order to formally unpack how AIF manifests both instrumental and epis-
temic value terms, we now need to detail the LGDS model that specifies our
agent before deriving the equations for computing the EFE objective.

3.3 Generative Model

AIF is fundamentally a model-based approach [33, 41, 49]. As such, the core
part of an agent is given by a generative model. Given a generative model, the
agent engages in a perception-action loop with its environment. In practice,
this means the agent will, at any time step, absorb a new observation and emit
a new action. The first step is always perception, followed by action selection
and emission.

Letting x ∈ Rd denote observations, z ∈ Rn a latent state vector and u ac-
tions (we will use "actions" and "controls" interchangeably to refer to u through-
out), the generative model for an agent at a single time step, indicated by sub-
scripts t, has the form 2

p(xt, zt | ut, zt−1) = p(xt | zt)︸ ︷︷ ︸
Likelihood

p(zt | zt−1,ut)︸ ︷︷ ︸
State transition

. (3.1)

2This form can be extended, for example by including parameters θ.
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If applied recursively, this model corresponds to a discrete-time state space
model. A common approach when designing AIF agents is to work directly
with a policy defined as a particular sequence of actions ut+1:T [21, 33, 35,
81] where the subscript denotes discrete time steps ranging from the next time
step t + 1 to some known planning horizon T . In Eq. (3.1) we indicate this
by explicitly conditioning on ut. This sequence of actions is then considered
either as an explicit vector of control signals [26, 33, 35, 107] or amortised for
instance by neural networks [72, 108–110]. Proceeding in this way leads to a
particular scheme for action selection which we will detail in Section 3.5.

In this chapter, we consider the case of LGDS with multiplicative or additive
controls. To clarify the distinction between additive and multiplicative controls,
we define "multiplicative controls" as state transitions of the form

p(zt | zt−1,ut) = N (zt | B(ut)zt−1,Σz) , (3.2)

where zt ∈ Rn is a latent state vector, ut is a discrete control signal and
B(ut) is the transition matrix. We consider the case where the control signal
functions as a selector variable. Formally we define a vector of candidate tran-
sition matrices [B1,B2, · · ·BS ] and let

B(ut) =

S∏
s=1

Buts
s . (3.3)

Here ut is a one-hot encoded vector ut = [ut1, · · · , utS ] that takes values in
uts ∈ {0, 1} and where

∑S
s=1 uts = 1. Each Bs is raised to the power given

by uts, which means that only the selected Bs will be active. The control sig-
nal therefore influences state transitions by selecting the transition matrix B
directly.

We can visualise this model using the FFG formalism [25]. In an FFG, each
edge represents a variable and each node a factor. An edge is connected to a
node if and only if the corresponding variable is an argument of that factor. Each
edge connects at most two nodes. When a variable is an argument of more than
two factors, we can circumvent the two-node-per-edge limit by linking edges
together through equality factors. This effectively creates an auxiliary variable
(a new edge) for which the posterior beliefs are constrained to be equal to the
beliefs for the original variable. The new edge can also be attached to two fac-
tors, so by adding equality factors we can use the same variable as an argument
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Figure 3.1: FFG of the generative model of an agent with multiplicative control signals.

of multiple factors. Observed variables and clamped parameters are denoted by
a small black square and selected actions by a small black diamond. The se-
lection mechanism described by Eq. (3.3) is denoted by the multiplexer (MUX)
node. Instead of cluttering the graph by drawing the full set of [B1,B2, · · ·BS ]
candidate transition matrices as separate nodes, we denote them by a shaded
circle. The circle contains S nodes and their corresponding outgoing edges all
connect to the MUX node. For a further introduction to FFGs, see [69, 70]. The
FFG of the multiplicative model can be seen in Fig. 3.1.

For comparison, we now consider the case of additive controls. For the
additive case, the generative model is again given by Eq. (3.1). However exact
model specification is a little more involved. We consider transition models of
the form

p(zt | zt−1,ut) = N (zt | Bzt−1 + b(ut),Σz) , (3.4)

where B ∈ Rn×n is a known transition matrix and b(ut) ∈ Rn is a vector
function that adds to the latent state. To rigorously compare the multiplicative
and additive control cases, ut must remain a categorical selector variable. To
that end, we introduce an auxiliary variable bt. The purpose of bt is to allow ut
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to function as a categorical selector variable. Instead of selecting between tran-
sition matrices Bs, ut now selects the parameters Θs = {µs,Σs} of a Gaussian
input signal. Formally, we will write the generative model as

p(zt | zt−1,ut) =

∫
p(zt | zt−1,bt)p(bt | ut)dbt (3.5a)

=

∫
N (zt|Bzt−1 + bt,Σz)

S∏
s=1

N (bt|Θs)
utsdbt . (3.5b)

where we recognise a similar selection mechanism of Eq. (3.3) in the second
term of Eq. (3.5b). Selecting an action means fixing ut = ût which leads to se-
lecting one of the candidate Gaussian distributions. With only a single Gaussian
surviving, integration over bt becomes straightforward and yields

p(zt | zt−1, ût) = N (zt | Bzt−1 + µ̂ut
,Σz + Σ̂ut) , (3.6)

where Θ̂s = {µ̂ut
, Σ̂ut

} represent the parameters of the Gaussian distribu-
tion selected by ût.
The factor graph of the additive model is shown in Fig. 3.2 where the MUX node
now selects between Θ1:s. In both the multiplicative and additive settings, we
employ a likelihood term of the form:

p(xt | zt) = N (xt | Azt,Σx) , (3.7)

where A ∈ Rd×n is a known emission matrix and Σx represents measure-
ment or observation noise. Having established the relevant model structures,
we now examine the perception/action loop starting with perception.

3.4 Perception as Bayesian Filtering

The perception part of the action/perception loop involves performing inference
about observed data and can be cast as a Bayesian filtering problem. This part
of the process describes the agent inferring the hidden state of its environment
based on the sequence of actions taken so far, the resulting sequence of states
visited, and the accompanying observations.
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We can write the resulting inference problem in an intuitive way as a prediction-
correction process:

p(zt | x1:t)︸ ︷︷ ︸
posterior

=
p(xt | zt)

p(xt | x1:t−1)︸ ︷︷ ︸
correction

based on xt

× p(zt | x1:t−1)︸ ︷︷ ︸
prediction of zt
based on x1:t−1

. (3.8)

The above shows how the inference over states can be accomplished recur-
sively (due to the model obeying the Markov property) by first computing a
prediction for the next hidden state zt to generate a prior belief which is then
updated in a correction step based on the observed data point xt.

The Bayesian filtering problem is generic. To see how it translates to our
case, we can expand the prior predictive in terms of our generative model

× + + =

N

×

+

N

MUX

· · · · · ·

N

N

Θ1

ΘS

zt−1

Θs

bt

ut

zt

xt

Σz

Σx

B

A

Figure 3.2: FFG of the generative model of an agent with additive controls.
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p(zt | x1:t)︸ ︷︷ ︸
state posterior

=

likelihood︷ ︸︸ ︷
p(xt | zt)

p(xt | x1:t−1)︸ ︷︷ ︸
evidence

prior predictive p(zt | x1:t−1)︷ ︸︸ ︷x
p(zt | zt−1,ut)︸ ︷︷ ︸

state transition

δ(ut − ût)︸ ︷︷ ︸
control
signal

p(zt−1 | x1:t−1)︸ ︷︷ ︸
state prior

dzt−1dut ,

(3.9)

We use δ(ut− ût) where δ is the Dirac-δ to fix the value of ut to the selected
action ût for that particular time step. The particular value chosen for ût is the
result of the action selection procedure described in Section 3.5. The evidence
term is given by

p(xt | x1:t−1) =∫
p(xt | zt)

(x
p(zt | zt−1,ut)δ(ut − ût)p(zt−1 | x1:t−1)dzt−1dut

)
dzt .

(3.10)

For the LGDS models considered in this chapter, filtering can be performed
using the Kalman filtering equations. We will first work this out explicitly in the
multiplicative case and then in the additive. To show how to perform filtering
in the multiplicative model, we start by assuming that the agent has selected
an action ut = ût by the procedure described in Section 3.5. We can then
calculate the prior predictive distribution of Eq. (3.9) according to our model
specification Eq. (3.1) as



3

3.4 Perception as Bayesian Filtering 51

p(zt | x1:t−1) =
x

p(zt | zt−1,ut)δ(ut − ût)p(zt−1 | x1:t−1)dzt−1dut (3.11a)

=
x
N (zt | B(ut)zt−1,Σz)︸ ︷︷ ︸

State transition

× δ(ut − ût)︸ ︷︷ ︸
Selected

control signal

N (zt−1 | µzt−1
,Σzt−1

)︸ ︷︷ ︸
State prior

dzt−1dut (3.11b)

=

∫
N (zt | B(ût)zt−1,Σz)N (zt−1 | µzt−1

,Σzt−1
)dzt−1 (3.11c)

= N (zt | B̂tµzt−1︸ ︷︷ ︸
µ−

zt

, B̂tΣzt−1
B̂

T

t +Σz︸ ︷︷ ︸
Σ−

zt

) , (3.11d)

which we recognise as the prediction step of a Kalman filter [99]. We use
the superscript − notation to indicate that the variable in question is not based
on the full data set x1:t but instead on a smaller data set x1:t−1. In moving
from Eq. (3.11b) to Eq. (3.11c) we rely on the sifting property of the Dirac-δ
to substitute the selected value for ut in Eq. (3.3). Since B(ut) is a function of
ut and ut is now fixed to ût, we can directly substitute the selected parameter-
isation by setting B(ut) = B̂t where B̂t denotes the parameterisation given by
the selected Bs. This takes us from Eq. (3.11b) to Eq. (3.11c). Finally, we can
rely on standard results for linearly related and jointly Gaussian variables to go
from Eq. (3.11c) to Eq. (3.11d), see for example [99, Appendix A.1] for details
of this move in the context of Gaussian state space models or Appendix A.2 for
an abbreviated version.

For the additive control case, we can calculate the prior predictive distribu-
tion in a similar fashion. Starting from the model definition Eq. (3.1), we can
write
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p(zt | x1:t−1) =
y

p(zt | zt−1,bt)p(bt | ut)δ(ut − ût)

× p(zt−1 | x1:t−1)dutdbtdzt−1 (3.12a)

=
y
N (zt | Bzt−1+bt,Σz)

S∏
s=1

N (bt | µs,Σs)
uts

︸ ︷︷ ︸
State transition

δ(ut−ût)︸ ︷︷ ︸
Selected

control signal

×N (zt−1 | µzt−1
,Σzt−1

)︸ ︷︷ ︸
State prior

dutdbtdzt−1

(3.12b)

=
x
N (zt | Bzt−1 + bt,Σz)

S∏
s=1

N (bt | µs,Σs)
ûts

×N (zt−1 | µzt−1
,Σzt−1

)dbtdzt−1

(3.12c)

=
x
N (zt | Bzt−1 + bt,Σz)N (bt | µ̂ut

, Σ̂ut︸ ︷︷ ︸
Selected

parameters Θ̂s

)

×N (zt−1 | µzt−1
,Σzt−1)dbtdzt−1

(3.12d)

=

∫
N (zt | Bzt−1 + µ̂ut

,Σz + Σ̂ut
)N (zt−1 | µzt−1

,Σzt−1
)dzt−1

(3.12e)

= N (zt | Bµzt−1
+ µ̂ut︸ ︷︷ ︸

µ−
zt

,Σz + Σ̂ut
+BΣzt−1

BT︸ ︷︷ ︸
Σ−

zt

) . (3.12f)

We again denote the selected parameters for the additive control at the k-
th time step as µ̂uk

and Σ̂uk
. To proceed from Eq. (3.12b) to Eq. (3.12c) we

rely on the sifting property of the Dirac-δ and substitute the selected value for
ut. The move from Eq. (3.12c) to Eq. (3.12d) acknowledges that only the se-
lected parameterisation is active once we substitute ut = ût as covered in Sec-
tion 3.3. The final steps from Eq. (3.12d) to Eq. (3.12e) and from Eq. (3.12e)
to Eq. (3.12f) uses standard results for multiplication and marginalisation of
jointly Gaussian variables for which we again refer to [99, Appendix A.1] and
Appendix A.2. In summary, we see that when ut = ût the model specification
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given in Eq. (3.5b) reduces to a standard LGDS and can be updated using the
prediction step of the Kalman filtering equations.

Both the additive and multiplicative models use similar likelihood models,
meaning they can be updated using the same Kalman correction step. To per-
form the Kalman correction step, we need to apply Bayes rule

p(zt | x1:t)︸ ︷︷ ︸
posterior

p(xt | x1:t−1)︸ ︷︷ ︸
evidence

= p(xt | zt)︸ ︷︷ ︸
likelihood

p(zt | x1:t−1)︸ ︷︷ ︸
prior

, (3.13)

where the factors on the right-hand side (RHS) are given and the terms on
the left-hand side are the desired factors. This equation can be solved analyti-
cally. First, we evaluate the RHS as

p(xt | zt)p(zt | x1:t−1) = N (xt | Azt,Σx)N (zt | µ−
zt ,Σ

−
zt) (3.14a)

= N

([
zt
xt

] ∣∣∣∣∣
[
µ−

zt
Aµ−

zt

]
,

[
Σ−

zt Σ−
ztA

T

AΣ−
zt AΣ−

ztA
T +Σx

])
.

(3.14b)

Then if, for notational convenience, we rewrite the covariance matrix as

[
Σ11 Σ12

Σ21 Σ22

]
≜

[
Σ−

zt Σ−
ztA

T

AΣ−
zt AΣ−

ztA
T +Σx

]
, (3.15)

Eq. (3.14b) can be written as the product of the state posterior due to the
theorem for decomposing a multi-variate Gaussian into the product of a condi-
tional distribution [99, Appendix A.1],

p(zt | x1:t) = N (zt | µ−
zt +Σ12Σ

−1
22 (xt −Aµ−

zt),Σ11 −Σ12Σ
−1
22 Σ21) , (3.16)

and evidence

p(xt | x1:t−1) = N (xt | Aµ−
zt ,Σ22) . (3.17)

Finally, we can also calculate the conditional distribution p(xt | zt,x1:t−1)
[99, Appendix A.1]. While this is not required for solving the Bayesian filtering
problem, it will prove useful for deriving the epistemic value term in Appendix



3

54 On Epistemics in Expected Free Energy for Linear Gaussian State Space Models

A.4 used for the action selection procedure described in Section 3.5. We can
find it as

p(xt | zt,x1:t−1) = N (xt | Aµ−
zt +Σ21Σ

−1
11 (zt − µ−

zt),Σ22 −Σ21Σ
−1
11 Σ12) .

(3.18)

Having described perception as Bayesian filtering, we now turn our attention
to action selection under AIF.

3.5 Action Selection under Active Inference

When we are interested in constructing AIF agents, arguably the core task is
action selection. Under AIF we solve this task by first computing a prior over
future control signals. Technically, we seek to compute

p(ut+1:T ) ∝ exp(−G(ut+1:T )) , (3.19)

i.e., the prior on controls is a softmax function of G(ut+1:T ) [33, Eq. 7].
Here, G(ut+1:T ) denotes the EFE for a policy that extends into the future until
a known horizon T . We further discuss the computation of G(ut+1:T ) in Sec-
tion 3.5.1. To obtain the control prior at time t + 1, we can marginalise this
distribution as

p(ut+1) =

∫
· · ·
∫
p(ut+1:T )dut+2 · · · duT

∝
∫
· · ·
∫

exp(−G(ut+1:T ))dut+2 · · · duT .
(3.20)

If we assume independent control priors for each time step, that is, if we
assume p(ut+1:T ) =

∏T
k=t+1 p(uk), or equivalently,

exp(−G(ut+1:T )) =

T∏
k=t+1

exp(−G(uk)) , (3.21)

then the marginalisation Eq. (3.20) evaluates to
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p(ut+1) ∝ exp (−G(ut+1)) . (3.22)

Since the marginalisation procedure is identical for any other time step, we
can deduce that the total EFE for a policy is equal to the exponentiated sum of
EFEs at individual time steps. That is

p(ut+1:T ) ∝ exp (−G(ut+1:T )) =

T∏
k=t+1

exp(−G(uk)) = exp

(
−

T∑
k=t+1

G(uk)

)
.

(3.23)

This suggests a recursive scheme over time steps for computing policy priors,
similar to the proposal by [35].

In the AIF literature the executed action is then commonly sampled from
p(ut+1:T ) and emitted to the environment [33, 35]. Other action selection
approaches such as selecting the MAP estimate (the argmax or mode of the
distribution) are also possible. We now turn our attention to how the EFE is
computed.

3.5.1 Computing G - Expected Free Energy

The EFE is an AIF specific construct that attempts to model what the variational
free energy (VFE) would be at a future time step, conditioned on a particu-
lar sequence of actions. Of special interest is the decomposition of EFE into
an epistemic term and an instrumental (exploitative) term. It is due to this
decomposition that AIF claims an adaptive trade-off between exploration and
exploitation [33, 35].

Note that we provide the derivation here only for the simplest case. There
are extensions to the EFE such as [101] that include additional terms which
induce changes in the agent’s behaviour. Including these additional terms is
not necessary for our core argument so we omit them here and refer interested
readers to [22, 101].

To show how we arrive at our formulation for EFE, we first need to introduce
variational inference. While the filtering equations in Section 3.4 permit analyt-
ical solutions by applying Bayes rule directly, this is often not the case as solving
the required integrals can become intractable. In those cases, we can instead
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approximate the exact solution p(zt | x1:t) by a recognition density q(zt). For-
mally we accomplish this by minimising the Kullback-Leibler divergence (KL)
between the exact solution and our recognition density

KL[q(zt)||p(zt | x1:t)] =

∫
q(zt) log

q(zt)

p(zt | x1:t)
dzt (3.24)

If we now multiply and divide by p(xt | x1:t−1) inside the log-operator,

KL[q(zt)||p(zt | x1:t)] =

∫
q(zt)

[
log

q(zt)

p(xt, zt | x1:t−1)
+ log p(xt | x1:t−1)

]
dzt

(3.25)

=

∫
q(zt) log

q(zt)

p(xt, zt | x1:t−1)
dzt︸ ︷︷ ︸

VFE F [q]

+ log p(xt | x1:t−1)︸ ︷︷ ︸
log-evidence

(3.26)

we obtain the VFE F [q] by noting that log p(xt | x1:t−1) is not dependent
on z. Since the term p(xt, zt | x1:t−1) in the denominator of F [q] is given by
our generative model, we can choose constraints on q(zt) to make optimisa-
tion of Eq. (3.26) tractable. Minimising F [q] then constitutes an upper bound
on − log p(xt | x1:t−1), meaning we can optimise Eq. (3.26) to obtain an ap-
proximate solution to our original inference problem. We define the optimal
recognition density q∗ as the one that minimises F [q]:

q∗ = argmin
q∈Q

F [q] (3.27)

For further background on variational inference, we refer interested readers
to the seminal works by [11, 116]. Now we are ready to introduce the EFE. To
do so, we start by obtaining our best estimate of the time step k in question by
integrating out contributions from past time steps as

p(xk, zk | uk) =
∫
p(xk, zk | zk−1, uk)p(zk−1 | x1:t)dzk−1 , (3.28)
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where we write k instead of t to indicate that we are referring to an arbitrary
time step within the planning horizon t < k ≤ T . p(zk−1 | x1:t) denotes the pos-
terior state estimate at the previous time step given all available observations.
For notational brevity, we suppress the dependency on x1:t on the LHS. Unless
otherwise noted, all distributions are conditioned on prior observations moving
forward.

For LGDSs, p(zk−1 | x1:t) is available from recursive application of the filter-
ing equations described in Section 3.4. For k = t+1 it is given by Eq. (3.16) and
for k > t + 1, p(zk−1 | x1:t) is given by Eq. (3.11) in the case of multiplicative
controls and Eq. (3.12) in the case of additive controls. 3

Now we can write out the VFE conditioned on a particular action uk =
ûk and recognition density as F [q;uk]. Note that while F [q] is a functional (a
function of a function) of q, we also explicitly include conditioning on action
given by the parameter uk. To differentiate, we separate them with a semicolon
when writing F [q;uk].

Given the factorisation in Eq. (3.23), it is sufficient to consider a single time
step k since we can substitute any value for k. This gives us

F [q;uk] =

∫
q(zk | uk) log

q(zk | uk)
p(xk, zk | uk)

dzk . (3.29)

However, this expression includes observations xk which are not available,
since we are working with time steps in the future (t < k ≤ T ), and the fu-
ture is by definition not observed yet. To alleviate this issue, we can take the
expectation of this expression with respect to the data-generating distribution
over observations. When the data-generating distribution is available from the
generative model, we can equivalently write p(xk | zk) instead of q(xk | zk).
This gives the expression for the EFE at the k’th time step:

G[ q;uk ] =
x

q(xk | zk)

F [q;uk] if xk was observed︷ ︸︸ ︷[
q(zk | uk) log

q(zk | uk)
p(xk, zk | uk)

dzk

]
dxk︸ ︷︷ ︸

Expected F [q;uk] since xk is not yet observed

. (3.30)

3When p(zk−1 | x1:t) can not be obtained through application of Bayes rule (providing the
exact solution), one can resort to variational inference (providing an approximate solution). In that
case, derivations must instead proceed in terms of the approximate posterior q(zk−1 | x1:t).
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As with the VFE in Eq. (3.26), we are interested in the minimum of Eq. (3.30)
which once again entails finding q∗. For clarity of notation, we define the solu-
tion as

G(uk) = G[ q∗;uk ] = argmin
q∈Q

G[ q;uk ] , (3.31)

where G(uk) is used to compute the policy prior by plugging into Eq. (3.23).
Note that G(uk) is a scalar value that denotes the expectation of F [q∗;uk] under
a particular set of constraints on q and given a specific action uk. To get an
intuition for G(uk) it can be useful to think of the computation as a two-step
procedure consisting of an inner and an outer loop. The inner loop performs
variational inference and finds q∗ conditioned on an action uk. The outer loop
then computes the resulting EFE by taking the expectation of F [q∗;uk] under
the matching data generating distribution. A core property of EFE is that it in-
troduces an epistemic value term into the optimisation. This leads agents that
optimise EFE to seek out areas of state space that have high information gain un-
der the current model, allowing for a principled trade-off between exploration
and exploitation [97, 100]. To show how this comes about, we can decompose
the EFE into a cross-entropy loss and a MI term where the latter quantifies the
information gain (in nats or bits) about hidden states zk from observing out-
comes xk. For the following derivation, we will need a bound, the details of
which can be found in Appendix A.3. Starting from Eq. (3.30), we can factorise
the denominator as p(xk, zk | uk) = p(zk | xk, uk)p(xk), leading to

G(uk) =
x

q(xk | zk)
[
q(zk | uk) log

q(zk | uk)
p(zk | xk, uk)p(xk)

dzk

]
dxk

=
x

q(xk | zk)
[
q(zk | uk)

[
log

q(zk | uk)
p(zk | xk, uk)

− log p(xk)

]
dzk

]
dxk .

(3.32)

Now we apply the bound from Appendix A.3 to swap q for p in the denomi-
nator. Making use of this inequality is a standard move across the AIF literature
[21, 22, 33, 35, 73] 4. Instead of applying the bound, another option is to utilise
Eq. (3.30) as is, see [43] for an example. We proceed as

4The bound becomes exact when we perform exact inference. This is the case in the models we
consider here and the discrete partially observed Markov decision process (POMDP) models often
employed in AIF research, see for instance [22, 33]
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x
q(xk | zk)

[
q(zk | uk)

[
log

q(zk | uk)
p(zk | xk, uk)

− log p(xk)

]
dzk

]
dxk (3.33)

≥
x

q(xk | zk)
[
q(zk | uk)

[
log

q(zk | uk)
q(zk | xk, uk)

− log p(xk)

]
dzk

]
dxk .

Finally, we split the integral and integrate over zk to obtain

G(uk) ≥
x

q(xk, zk | uk) log
1

p(xk)
dzkdxk

−
x

q(xk, zk | uk) log
q(zk | xk, uk)
q(zk | uk)

dzkdxk (3.34a)

=

∫
q(xk | uk) log

1

p(xk)
dxk −

x
q(xk, zk | uk) log

q(zk | xk, uk)
q(zk | uk)

dzkdxk

(3.34b)

=

∫
q(xk | uk) log

1

p(xk)
dxk︸ ︷︷ ︸

cross-entropy

−
x

q(xk, zk | uk) log
q(zk, xk | uk)

q(zk | uk)q(xk | uk)
dzkdxk︸ ︷︷ ︸

Mutual Information, I [ xk, zk | uk ]

(3.34c)

In the last line, we multiply and divide by q(xk|uk) to make the MI term
explicit. Readers familiar with the broader AIF literature such as [33, 81, 97]
might not immediately recognise the form of Eq. (3.34c) as a common decom-
position of the EFE. The equivalence between Eq. (3.34c) and the EFE was orig-
inally noted in [33] where the move from Eq. (3.34b) to Eq. (3.34c) is done to
show the relation between AIF and InfoMax methods. An advantage of writing
the EFE as Eq. (3.34c) is that it cleanly shows how the EFE can be viewed as a
combination of two well-known and widely established objectives.

From Eq. (3.34c), we see that G(uk) decomposes into a (bound on a) cross-
entropy term minus an MI term. Maximising MI is a known way to induce
exploration (i.e., information gain about hidden states from observations) in
agents and has been employed in multiple settings both within the control the-
ory [4, 13] and reinforcement learning literature [8, 43, 72]. The cross-entropy
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loss is between a prior p(xk) and the posterior distribution q(xk|uk) over future
observations. This allows for interpreting p(xk) as a target/goal prior [22, 28].
It endows the agent with an instrumental value term that elicits goal-directed
behaviour from inferred policies.

Taking this view, G(uk) can be adequately viewed as scoring the behaviour
resulting from the action uk as a balancing act between MI-based explorative
and cross-entropy-based exploitative terms. We now examine each of these
terms separately to understand how they work in the linear Gaussian case before
considering them jointly. We begin by focusing on the MI and how it may drive
exploration when considered in isolation.

3.5.2 Mutual Information Computation

Epistemic behaviour in AIF agents can be considered to be driven by minimising
negative MI, as shown in Eq. (3.34c). MI is in general defined as

I [x, z ] =
x

p(x, z) log
p(x, z)

p(x)p(z)
dxdz = H [ z ]−H [ z | x ] = H [x ]−H [x | z ] .

(3.35)

Note that we can write Eq. (3.35) in terms of entropies of either x or z. We
can do this since MI is symmetric in its arguments.

In the LGDS models we consider, we can evaluate the MI component of
G(uk) as

I [xk, zk ] =
1

2
log |I+Σ−1

x AΣ−
zk
AT | . (3.36)

The detailed derivation of Eq. (3.36) can be found in Section A.4. To fa-
cilitate purely epistemic behaviour, AIF agents can optimise this quantity by
selecting appropriate control signals. We will therefore use optimisation of MI
as the basis from which to investigate purely epistemic behaviour.

3.5.3 Pure Exploration as a function of Additive Control Sig-
nals

To show the relation between exploration and controls in the additive case, we
now need to show how MI depends on the control signal uk. For clarity of nota-
tion we will do the derivation for the case k > t+ 1, i.e. we will write in terms
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of the prior predictive p(zk−1|x1:k−2) = N (zk−1|µ−
zk−1

,Σ−
zk−1

) obtained from
Eq. (3.12) instead of p(zk−1|x1:k−1) = N (zk−1|µzk−1

,Σzk−1
) from Eq. (3.16).

We do so since observations are not available for k > t, meaning we can not
perform a full filtering step for the prior time step k − 1 unless k = t + 1. For
the case k = t + 1, we can perform filtering for the state prior and can there-
fore substitute in parameters of p(zk−1|x1:k−1) where appropriate. We start the
derivation by generating a prediction from our model using Eq. (3.12). We can
find the relevant joint distribution at the k’th time step by plugging the result
into Eq. (3.14b) to obtain

p

([
zk
xk

])
=N

([
zk
xk

]∣∣∣∣∣
[

Bµ−
zk−1

+µ̂uk

A[Bµ−
zk−1

+µ̂uk
]

]
, (3.37)[

Σ̂uk
+Σz +BΣ−

zk−1
BT [Σ̂uk

+Σz +BΣ−
zk−1

BT ]AT

A[Σ̂uk
+Σz+BΣ−

zk−1
BT ] A[Σ̂uk

+Σz+BΣ−
zk−1

BT ]AT +Σx

])
,

where we see that the control signal contributes an additive term Σ̂uk
which

is the variance associated with the selected action. Interestingly, this means that
if we let Σ̂uk

go to 0, the covariance matrix becomes identical to the multiplica-
tive case detailed in Section 3.5.4. We plug the marginal over states zk into
Eq. (3.36) to get

I [xk, zk ] =
1

2
log |I+Σ−1

x A
[
BΣ−

zk−1
BT +Σz + Σ̂uk

]
︸ ︷︷ ︸

Σzk

AT | (3.38a)

=
1

2
log |I+Σ−1

x ABΣ−
zk−1

BTAT︸ ︷︷ ︸
Dynamics dependent

+ Σ−1
x AΣzA

T︸ ︷︷ ︸
Policy independent

+Σ−1
x AΣ̂uk

AT︸ ︷︷ ︸
Policy dependent

| .

(3.38b)

We notice that the MI decomposes into three terms. We label the first "Dy-
namics dependent" since it depends only on the transition matrix B, observation
noise Σx and the prior state variance Σ−

zk−1
. The second term is labeled "Policy

independent" since it only depends on the observation noise Σx and transition
noise Σz. Note that neither of the first two terms are influenced by the control
signal. The last term is the only one to include Σ̂uk

and is therefore "Policy
dependent".



3

62 On Epistemics in Expected Free Energy for Linear Gaussian State Space Models

Crucially, the policy dependent term only depends on the variance of the
selected control signal Σ̂uk

and the observation noise Σx. In other words, it
is independent of the latent state zk. Since both Σ̂uk

and Σx are available a
priori, we can precompute the effect of a policy on the epistemic value term
before receiving any observations. Further, the result is also independent of the
trajectory taken by the agent. Therefore in the case of additive controls, max-
imising MI does not produce targeted exploration. This necessitates the use of
a different model structure when epistemic behaviour is desired. A similar re-
sult to ours was obtained by [105] for the case of linear dynamics with additive
controls.

3.5.4 Pure Exploration as a function of Multiplicative Control
Signals

To show how epistemic behaviour re-emerges as a function of multiplicative
control signals, we now need to show how MI depends on the choice of transi-
tion matrix B̂k. We again proceed by generating a prediction from our model
using Eq. (3.11). Plugging this into Eq. (3.14b) gives us the joint distribution as

p

([
zk
xk

])
= N

([
zk
xk

] ∣∣∣∣∣
[

B̂kµ
−
zk−1

AB̂kµ
−
zk−1

]
, (3.39)[

Σz + B̂kΣ
−
zk−1

B̂
T

k [Σz + B̂kΣ
−
zk−1

B̂
T

k ]A
T

A[Σz + B̂kΣ
−
zk−1

B̂
T

k ] A[Σz + B̂kΣ
−
zk−1

B̂
T

k ]A
T +Σx

])
.

Plugging the above into (3.36) we find that

I [xk, zk ] =
1

2
log |I+Σ−1

x A
[
B̂kΣ

−
zk−1

B̂
T

k +Σz

]
︸ ︷︷ ︸

Σzk

AT | (3.40a)

=
1

2
log |I+Σ−1

x AB̂kΣ
−
zk−1

B̂
T

kA
T︸ ︷︷ ︸

Policy dependent

+ Σ−1
x AΣzA

T︸ ︷︷ ︸
Policy independent

| . (3.40b)

We see that MI now decomposes into two terms. The first term depends
on B̂k and can be controlled by selecting appropriate transition matrices. The
second is independent of policy as it only involves process (Σz) and observa-
tion noise (Σx). Note that similar terms also appear in the additive case. The
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difference between the additive and multiplicative cases is that the choice of
transition matrix B̂k is now under the control of the agent. To maximise MI,
the agent must therefore select the B̂k that maximises the entropy of its latent
states zk. Taking this view offers a nice intuitive explanation for the resulting
exploratory drive: To gain the most information, we must perform the actions
that lead to the most uncertain outcomes as described in Section 3.2. To learn
the most, we must sample where we know the least.

3.5.5 Instrumental Value and Expected Free Energy

We now turn our attention to the instrumental value term of G(uk), after which
we analyse the full EFE construct. Recall from Eq. (3.34c) that the instrumental
value term is a cross-entropy of the form

∫
q(xk|uk) log

1

p(xk)
dxk =

∫
q(xk|uk) log

q(xk|uk)
p(xk)q(xk|uk)

dxk

= KL[ q(xk|uk) || p(xk) ] + H [xk | uk ] .
(3.41)

In many cases, it is not trivial to obtain q(xk|uk) due to intractable integrals.
However, in the LGDS we are considering, which only involves linear Gaussian
relations, it has a tractable expression given by Eq. (3.17). The KL between two
Gaussian distributions is given by

KL[ q(xk | uk) || p(xk) ] =

1

2

(
log
|Σp|
|Σq|

+ n+ (µq − µp)
TΣ−1

p (µq − µp) + tr
(
Σ−1

p Σq

))
.

(3.42)

We use subscripts {p, q} to denote whether a term comes from p(xk) or
q(xk|uk) and use {µ,Σ} for the parameters of the corresponding distribution.
We can now consider both terms of Eq. (3.34c) jointly in the case of LGDS. Tak-
ing Eq. (3.35) and Eq. (3.41) together and making the conditioning on uk in
Eq. (3.35) explicit, we see the full objective comes out as
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G(uk) ≥ KL[ q(xk | uk) || p(xk) ] + H [xk | uk ]︸ ︷︷ ︸
Instrumental value

−H [xk | uk ] + H [xk | uk, zk ]︸ ︷︷ ︸
Negative MI

= KL[ q(xk | uk) || p(xk) ]︸ ︷︷ ︸
Risk

+H [xk | uk, zk ]︸ ︷︷ ︸
Ambiguity

,

(3.43)

where we recover the familiar risk and ambiguity terms. In the specific
case of LGDS the inequality becomes an equality when we perform exact infer-
ence following the equations laid out in Section 3.4. However note that when
combining the instrumental and epistemic terms instead of considering them
in isolation, we perform a seemingly innocuous cancellation and remove the
entropy H [xk | uk ] from the equation. Previously H [xk | uk ] appeared twice
since we considered the epistemic and instrumental terms separately. However
when considering the full EFE construct, this is no longer necessary and we are
left with just the ambiguity H [xk | uk, zk ]. Using the entropy expression for a
Gaussian distribution, we can write the ambiguity as

H [xk | zk,uk ] =
1

2

(
n log 2π + log |Σ22 −Σ21Σ

−1
11 Σ12|+ n

)
(3.44)

Recalling the form of the joint given in Eq. (3.14b), we can write each block
of the covariance matrix out and find

H [xk | zk,uk ] =
1

2

(
n log 2π + log |AΣzkA

T +Σx︸ ︷︷ ︸
Σ22

−AΣzk︸ ︷︷ ︸
Σ21

Σ−1
zk︸︷︷︸

Σ−1
11

ΣzkA
T︸ ︷︷ ︸

Σ12

|+ n
)

=
1

2

(
n log 2π + log |AΣzkA

T +Σx −AΣzkA
T |+ n

)
=

1

2
(n log 2π + log |Σx|+ n)

(3.45)

The cancellation that follows from using a cross-entropy term to drive goal-
directed behaviour means that we are left with only the conditional entropy
to drive exploration. The above derivation shows that this term is constant
and only depends on the observation noise variance Σx. This proves that EFE
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minimisation in LGDS does not lead to exploration. In fact, minimising a KL
between a predicted and desired state (the risk term) is the objective of KL
control [54] or message passing based simulations of AIF that minimise VFE
[67, 102]. We conclude that in the case of LGDS, the EFE objective is equivalent
to the objective of KL control plus an additive constant that depends only on the
observation noise variance.

3.6 Experiments

We investigate the proposed agents in three different settings. First, we inves-
tigate pure epistemics in the additive case and show that they do not manifest.
Second, we investigate pure epistemics in the multiplicative case and confirm
that the agent does indeed perform maximum entropy exploration. Finally, we
provide comparable experiments for full EFE and show that it indeed reduces
to a KL divergence plus a constant.

3.6.1 Pure Epistemics for Additive Controls

In this section, we investigate how the epistemic component of EFE behaves in
the additive case. In particular, we investigate the effects of different transitions
on the epistemic value assigned to a policy. For this experiment the transition
model is given by Eq. (3.4). We define the state prior as

p(zt−1|z1:t−1) = N
(
zt−1

∣∣∣∣∣
[
1
1

]
,

[
1 0
0 1

])
, (3.46)

and set both transition and observation noise to identity matrices. We allow
the agent a single action by setting T = t + 1, which will be the case for all
experiments. Further we define the transition matrix B, emission matrix A and
observation noise Σx as

A =

[
1 0
0 1

]
, B =

[
1 0
0 1

]
, Σx =

[
1 0
0 1

]
. (3.47)

Note that in the additive case, neither matrix has to be time-varying and so
we remove the subscripts. We will also use the same parameterization of Σx
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for all experiments. We compare 4 different candidate parameterisations of the
control signal

Θ1 =

{
µ1 =

[
1
1

]
, Σ1 =

[
1 0
0 1

]}
, Θ2 =

{
µ2 =

[
10
10

]
, Σ2 =

[
1 0
0 1

]}

Θ3 =

{
µ3 =

[
1
1

]
, Σ3 =

[
3 0
0 3

]}
, Θ4 =

{
µ4 =

[
10
10

]
,Σ4 =

[
3 0
0 3

]}
.

(3.48)

We choose Θ1 to function as a baseline. For comparison Θ2 shares the same
covariance matrix but offers a higher displacement of the mean. Θ3 shares the
mean parameter with Θ1 but has higher variance. Finally, Θ4 increases both the
mean and variance over Θ1. According to Eq. (3.38) varying the mean should
not affect the epistemic value since it does not enter into the MI computation.
On the other hand, we expect higher variance to affect the policy independent
term and lead to increased epistemic value. Consequently, we hypothesise that
Θ1 and Θ2 will lead to identical results in terms of epistemics even though they
result in very different posterior states. Following the same line of reasoning,
we hypothesise that Θ3 and Θ4 will lead to identical results. This in turn implies
that Θ1 and Θ3 will lead to different values even though the displacement is the
same and that a similar pattern will hold for Θ2 and Θ4. Results are shown in
Fig. 3.3, rounded to 3 digits.

We observe that as hypothesised, MI is not affected by the state transition
(Θ1 and Θ2 show identical values). We do find an effect of changing the vari-
ance which is again independent of the mean (Θ3 and Θ4 show identical val-
ues). This simple experiment confirms our hypotheses given by Eq. (3.38b):
Changing the mean of the control signal does not affect the epistemic term.
Changing the variance of the control signal does affect the epistemic term. We
conclude that when considering purely epistemic value and additive controls,
state transitions and exploration are decoupled. Any effect of the control sig-
nal on epistemics is only proportional to the variance of the control, can be
pre-computed and does not depend on the agent’s trajectory.

3.6.2 Pure Epistemics for Multiplicative Controls

For comparison, we now perform an analogous experiment for the case of mul-
tiplicative controls. We define all quantities in the same way as the additive
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Figure 3.3: Epistemic value for additive control signals given state transitions.

case. The only change we introduce is defining four transition matrices B1:4 to
replace Θ1:4. The four candidate transitions we consider are

B1 =

[
0.1 0
0 0.1

]
, B2 =

[
1 0
0 1

]
B3 =

[
10 0
0 10

]
B4 =

[
100 0
0 100

]
. (3.49)

Following Eq. (3.40), we hypothesise that larger transitions should lead to
higher MI by virtue of increasing the value of the policy dependent term. We
test this hypothesis across four orders of magnitude and show the results in
Fig. 3.4.

We observe that, as hypothesised MI increases as a function of the size of
the state transition. Larger transitions lead to higher MI although the exact
relationship is nonlinear in the size of the transition.

3.6.3 Lack of Epistemics for Expected Free Energy

To investigate the behaviour of AIF agents optimising the full EFE construct, we
now repeat both the additive and multiplicative experiments but introduce a
goal prior p(xt). We define the state prior and the goal as
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Figure 3.4: Epistemic value for multiplicative control signals given state transitions

p(zt−1|x1:t−1) = N
(
zt−1

∣∣∣∣∣
[
1
1

]
,

[
1 0
0 1

])
, p(xt) = N

(
xt

∣∣∣∣∣
[
3
3

]
,

[
3 0
0 3

])
.

(3.50)

Both the multiplicative and the additive agent employ the same emission
matrix A. For the multiplicative agent, we further define the set of candidate
transition matrices B1:4

A =

[
1 0
0 1

]
, B1 =

[
1 0
0 1

]
, B2 =

[
2 0
0 2

]
, B3 =

[
3 0
0 3

]
, B4 =

[
4 0
0 4

]
.

(3.51)

Here we choose B1 as the identity matrix to serve as a baseline. B2 moves
the agent towards the goal but stops short while B4 overshoots by the same
amount. This means that either transition puts the agent at the same distance
from the goal but with different variances and hence different values of the
policy dependent term. Finally, we allow B3 to move the agent directly to the
goal. For the additive case we set the transition matrix B = B1 and consider
the set of candidate parameterisations Θ1:4
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Θ1 =

{
µ1 =

[
0
0

]
, Σ1 =

[
1 0
0 1

]}
, Θ2 =

{
µ2 =

[
2
2

]
, Σ2 =

[
1 0
0 1

]}

Θ3 =

{
µ3 =

[
0
0

]
, Σ3 =

[
2 0
0 2

]}
, Θ4 =

{
µ4 =

[
2
2

]
,Σ4 =

[
2 0
0 2

]}
.

(3.52)

where we again vary the mean and variance parameters following a similar
logic as for the additive experiments. Notably, both Θ2 and Θ4 take the agent
directly to the goal but with different variances. We first examine results in the
multiplicative case, shown in Table 3.1.

Table 3.1: EFE for multiplicative controls

Transition KL Ambiguity G Instrumental Epistemic

B1 1.33 2.84 4.17 5.27 -1.10
B2 0.64 2.84 3.48 5.27 -1.79
B3 1.37 2.84 4.21 6.60 -2.40
B4 3.54 2.84 6.38 9.27 -2.89

Here the first column shows the KL between the posterior predictive distribu-
tion over observations q(xt|ut) and the goal prior p(xt) after the corresponding
transition. The second column show the additive constant that corresponds to
the ambiguity term. The full EFE is displayed in the third column marked G.
Finally, the last two columns display the cross-entropy and negative MI terms
as Instrumental and Epistemic value, respectively. From Table 3.1 we see that
the lowest KL, and consequently lowest G, is obtained when selecting the B2

transition matrix. Recall that B2 stopped short of the goal while B3 placed
the agent directly on top of it. However, because controls are multiplicative,
B3 also results in substantially larger variance which is penalised in the KL.
To show that KL is indeed the only driving factor, we can examine the second
column, containing the Ambiguity term. We see that it is constant since the ob-
servation noise is constant. In turn, we find that the EFE (third column, G) can
be written as the sum of the KL and Ambiguity columns. For completeness, we
have also calculated the cross-entropy (Instrumental value) and MI (Epistemic
value). Here we observe similar patterns as in the purely exploratory case;
larger transitions lead to lower negative MI. This is accurately balanced by the
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instrumental term though, highlighting an important point: Our result that EFE
does not lead to epistemics is only revealed when we consider a particular way
of writing EFE. If we had instead proceeded from the cross-entropy/MI decom-
position, the ambiguity constant would not have materialised. We can create a
similar table for the additive case, shown in Table 3.2.

Table 3.2: EFE for additive controls

Transition KL Ambiguity G Instrumental Epistemic

Θ1 3.05 2.84 5.88 7.27 -1.39
Θ2 0.38 2.84 3.22 4.60 -1.39
Θ3 3.16 2.84 5.99 7.60 -1.61
Θ4 0.49 2.84 3.33 4.94 -1.61

We observe that the lowest KL and G corresponds to the transition parame-
terised by Θ2 as it takes the agent directly to the goal with small variance. What
is interesting about Table 3.2 is the ambiguity column. We obtain the same addi-
tive constant as in the multiplicative case which corroborates our results. Even
though the dynamics are different and there are substantial differences in both
the instrumental and epistemic value terms, the EFE can still be decomposed as
a KL and an additive constant that only depends on the observation noise.

3.7 Discussion

Viewing EFE from the point of view of mutual information and cross entropy
allows for isolating the epistemic and instrumental value terms so they can be
investigated separately. This angle was originally taken in [33] and used as a
method of relating AIF to other frameworks. Recent work [97, 98] investigates
a similar decomposition in the discrete case to highlight how pure exploration
and exploitation manifest. Our results as well as [33, 98] all explore how the
EFE operates in specific model architectures. Additionally [33, 34, 98] also
note the equivalence between the mutual information term and the objective
of optimal Bayesian design. While work such as [43, 73, 74] have investigated
this link in the general case, deriving the specific equations for a wider class of
model architectures promises to be a fruitful area for further research. In those
cases, the approach followed in our analysis presents a straightforward way to
derive the form of the EFE objective by first decomposing it into a pair of known
objective functions and then deriving the expressions separately.



3

3.8 Conclusions 71

Because EFE can be written in terms of marginal/conditional distributions
over the latent states z, the analysis presented here applies to any model that
utilises a linear likelihood. The results do not depend on the transition model,
as demonstrated by our experiments showing similar behaviour for EFE min-
imisation using two different transition models. Our results are consequently
equally applicable for a large class of transition models such as auto-regressive
models, Gaussian process state space models or deep neural networks without
additional adaptation provided the observation model remains linear and Gaus-
sian.

On a similar note, a clear limitation of the present work is the strong reliance
on linear observation models. We chose to focus on this case since it allows for
an analytical expression of the MI term. However, in general, MI is a difficult
quantity to compute and one often has to rely on approximations. When ap-
proximations are involved, the present analysis is not necessarily applicable,
since the decoupling of control signals and epistemics is only demonstrated for
the linear case.

In special cases, one can also approximate the joint covariance matrix in-
stead of the mutual information - this is the case for extended Kalman filters
for example. In these cases, the present analysis can still apply. Investigating
different methods for handling non-linearities is an interesting area for future
work on AIF in Gaussian state space models (both linear and non-linear), that
can prove useful for neuroscientists and engineers alike.

3.8 Conclusions

In this chapter, we have shown how to apply AIF in linear Gaussian state space
models. We have derived the expressions for EFE in the linear Gaussian case
and investigated how the epistemic value terms function. In particular, we have
shown that in the case of LGDS, EFE reduces to a KL divergence and an additive
constant that only depends on observation noise. We therefore conclude that, in
the linear Gaussian case, EFE minimisation does not lead to epistemic behaviour.

Additionally, we have provided an analysis of the epistemic value term con-
sidered in isolation, since the cancellation that leads to an absence of epistemic
drive for the full EFE is not present when the instrumental term is not included.
Our analysis showed that using additive control signals renders the epistemic
value term independent of state transitions. This in turn means that any contri-
bution to the epistemic value term is only dependent on the variance associated
with the control signal. In other words, it is independent of any observations the
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agent might receive and any states it may visit, as was previously demonstrated
by [105].

Finally, we have shown that utilising multiplicative controls, i.e. selecting
from a set of candidate transition matrices, circumvents this problem in the
purely epistemic case and provides a meaningful interpretation of controls as
inducing epistemic behaviour. The resulting setup is reminiscent of the classical
POMDP that is commonly seen in AIF. Future work can investigate this link by
applying recent advances for the discrete case such as [35] to continuous state
spaces with multiplicative control signals.
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Chapter 4
AIDA: An Active
Inference-based Design Agent
for Audio Processing
Algorithms

”To err is human, to really foul things up requires a computer.”

– Paul Ehrlich, 1986

In this chapter, we present AIDA, an Active Inference (AIF)-based agent that
iteratively designs a personalised audio processing algorithm through situated
interactions with a human client. The target application of AIDA is to propose
on-the-spot the most interesting alternative values for the tuning parameters of
a hearing aid (HA) algorithm, whenever a HA client is not satisfied with their
HA performance. AIDA interprets searching for the "most interesting alterna-
tive" as an issue of optimal (acoustic) context-aware Bayesian trial design. In
computational terms, AIDA is realised as an AIF-based agent with an expected
free energy (EFE) criterion for trial design. This type of architecture is inspired
by neuro-economic models on efficient (Bayesian) trial design in brains and im-
plies that AIDA comprises generative probabilistic models for acoustic signals
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and user responses. We propose a novel generative model for acoustic signals
as a sum of time-varying auto-regressive (AR) filters and a user response model
based on a Gaussian process classifier (GPC). The full AIDA system has been
implemented using Forney-style factor graphs (FFGs) for the generative model
and all tasks (parameter learning, acoustic context classification, trial design,
etc.) are realised by variational message passing (VMP) on the factor graph. All
verification and validation experiments and demonstrations are freely accessible
at our GitHub repository.

The following chapter is based on the original work referenced below. Con-
tributions are split evenly among the first three authors with the original idea,
simulations, and text being created in close collaboration.

I focused primarily on designing the preference learning agent and extend-
ing AIF to work with GPCs. This is another example of extending AIF to a new
class of models in order to solve a practical problem in industry.

Albert Podusenko, Bart van Erp, Magnus Koudahl, Bert de Vries,
AIDA: An Active Inference-Based Design Agent for Audio Processing Algo-
rithms, Special issue on Advances in Speech Enhancement using Audio
Signal Processing Techniques, Frontiers in Signal Processing, 2022

4.1 Introduction

HAs are often equipped with specialised noise reduction algorithms. These algo-
rithms are developed by teams of engineers who aim to create a single optimal
algorithm that suits any user in any situation. Taking a one-size-fits-all approach
to HA algorithm design leads to two problems that are prevalent throughout to-
day’s hearing aid industry. First, modeling all possible acoustic environments is
simply infeasible. The daily lives of HA users are varied and the different en-
vironments they traverse even more so. Given differing acoustic environments,
a single static HA algorithm cannot possibly account for all eventualities - even
without taking into account the particular constraints imposed by the HA it-
self, such as limited computational power and allowed processing delays [55].
Secondly, hearing loss is highly personal and can differ significantly between
users. Each HA user consequently requires their own, individually tuned HA
algorithm that compensates for their unique hearing loss profile [2, 65, 78] and
satisfies their personal preferences for parameter settings [91]. Considering that
HAs nowadays often consist of multiple interconnected digital signal processing
units with many integrated parameters, the task of personalising the algorithm



4

4.1 Introduction 75

requires exploring a high-dimensional search space of parameters, which of-
ten do not permit a clear physical interpretation. The current most widespread
approach to personalisation requires the HA user to physically travel to an audi-
ologist who manually tunes a subset of all HA parameters. This is a burdensome
activity that is not guaranteed to yield an improved listening experience for the
HA user.

From these two problems, it becomes clear that we need to move towards
a new approach to HA algorithm design that empowers the user. Ideally, users
should be in control of their own HA algorithms and should be able to change
and update them at will instead of having to rely on teams of engineers that
operate with long design cycles, separated from the users’ lived experiences.

The question then becomes, how do we move HA algorithm design away
from engineers and into the hands of the user? While a naive implementation
that allows for tuning HA parameters with sliders on, for example, a smart-
phone is trivial to develop, even a small number of adjustable parameters gives
rise to a large, high-dimensional search space that the HA user needs to learn
to navigate. This puts a large burden on the user, essentially asking them to be
their own trained audiologist. Clearly, this is not a trivial task and this approach
is only feasible for a small set of parameters, which carry a clear physical inter-
pretation. Instead, we wish to support the user with an agent that intelligently
proposes new parameter trials. In this setting, the user is only asked to cast
(positive or negative) appraisals of the current HA settings. Based on these ap-
praisals, the agent will autonomously traverse the search space with the goal of
proposing satisfying parameter values for that user under the current environ-
mental conditions in as few trials as possible.

Designing an intelligent agent that learns to efficiently navigate a param-
eter space is not trivial. In the solution approach in this paper, we rely on a
probabilistic modeling approach inspired by the Free Energy Principle (FEP)
[30]. The FEP is a framework originally designed to explain the kinds of com-
putations that biological, intelligent agents (such as the human brain) might be
performing. Recent years have seen the FEP applied to the design of artificial
agents as well [64, 67, 72, 109]. A hallmark feature of FEP-based agents is
that they exhibit a dynamic trade-off between exploration and exploitation [22,
33, 35], which is a highly desirable property when learning to navigate a HA
parameter space. Concretely, the FEP proposes that intelligent agents should be
modeled as probabilistic models. These types of models do not only yield point
estimates of variables but also capture uncertainty through modeling full poste-
rior probability distributions. Furthermore, user appraisals and actions can be
naturally incorporated by simply extending the probabilistic model. Taking a
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model-based approach also allows for fewer parameters than alternative data-
driven solutions, as we can incorporate domain-specific knowledge, making it
more suitable for computationally constrained hearing aid devices. The novelty
of our approach is rooted in the fact that the entire proposed system is framed
as a probabilistic generative model in which we can perform (active) inference
through (expected) free energy minimisation.

In this paper we present AIDA1, an active inference-based design agent for
the situated development of context-dependent audio processing algorithms,
which provides the user with her own controllable audio processing algorithm.
This approach embodies an FEP-based agent that operates in conjunction with
an acoustic model and actively learns optimal context-dependent tuning pa-
rameter settings. After formally specifying the problem and solution approach
in Section 4.2 we make the following contributions:

1. We develop a modular probabilistic model that embodies situated, (acous-
tic) scene-dependent, and personalised design of its corresponding HA al-
gorithm in Section 4.3.1.

2. We develop an EFE-based agent (AIDA) in Section 4.3.2, whose proposals
for tuning parameter settings are well-balanced in terms of seeking infor-
mation about the user’s preferences (explorative agent behaviour) versus
seeking to optimise the user’s satisfaction levels by taking advantage of
previously learned preferences (exploitative agent behaviour).

3. Inference in the acoustic model and AIDA is elaborated upon in Sec-
tion 4.4 and their operations are individually verified through represen-
tative experiments in Section 4.5. Furthermore, all elements are jointly
validated through a demonstrator application in Section 4.5.4.

We have intentionally postponed a more thorough review of related work
to Section 4.6 as we deem it more relevant after the introduction of our solu-
tion approach. Finally, Section 4.7 discusses the novelty and limitations of our
approach and Section 4.8 concludes this paper.

1Aida is a girl’s name of Arabic origin, meaning “happy”. We use this name as an abbreviation
for an "Active Inference-based Design Agent" that aims to make an end-user “happy”.
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4.2 Problem Statement and Proposed Solution Ap-
proach

4.2.1 Automated Hearing Aid Tuning by Optimisation

In this chapter, we consider the problem of choosing values for the tuning pa-
rameters u of a HA algorithm that processes an acoustic input signal x to output
signal y. In Fig. 4.1, we sketch an automated optimisation-based approach to
this problem. Assume that we have access to a generic “signal quality” model
which rates the quality of a HA output signal y = f(x,u), as a function of the
HA input x and parameters u, by a rating r(x,u) ≜ r(y). If we run this system
on a representative set of input signals x ∈ X , then the tuning problem reduces
to the optimisation task

u∗ = argmax
u

∑
x∈X

r(x,u) . (4.1)

Unfortunately, in commercial practice, this optimisation approach does not
always result in satisfactory HA performance, because of two reasons. First, the
signal quality models in the literature have been trained on large databases of
preference ratings from many users and therefore only model the average HA
client rather than any specific client [7, 17, 46, 56, 95, 106]. Secondly, the
optimisation approach averages over a large set of different input signals, so
it will not deal with acoustic context-dependent client preferences. By acoustic
context, we consider signal properties that depend on environmental conditions
such as being inside, outside, in a car or at the mall. Generally, client prefer-
ences for HA tuning parameters are both highly personal and context-dependent.
Therefore, there is a need to develop a personalised, context-sensitive controller
for tuning HA parameters u.

4.2.2 Situated Hearing Aid Tuning with the User in-the-loop

In this paper, we develop a personalised, context-aware design agent, based on
the architecture shown in Fig. 4.2. In contrast to Fig. 4.1, the outside world
(rather than a database) produces an input signal x under situated conditions
that is then processed by a HA algorithm to produce an output signal y. A
particular human HA client listens to the signal y and is invited to cast binary
appraisals r ∈ {0, 1} at any time about the current performance of the HA
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optimizer

data base group model

Figure 4.1: A schematic overview of the conventional approach to HA algorithm tuning.
Here the parameters of the HA u are optimised with respect to some generic
user rating model r(y) for a large database X of input data x.

algorithm, where 1 and 0 correspond to the user being satisfied and unsatis-
fied respectively. Context-aware trials for HA tuning parameters are provided
by AIDA. Rather than an offline design procedure, the whole system designs
continually under situated conditions. The HA device itself houses a custom HA
algorithm, based on state inference in a generative acoustic model. The acoustic
model contains two sub-models: 1) a source dynamics model and 2) a context
dynamics model.

Inference in the acoustic model is based on the observed signal x and yields
the output y and context o. Based on the inferred context o and previous user
appraisals r, AIDA will actively propose new trial parameters u with the goal of
making the user happy, operationalised as providing positive feedback. Techni-
cally, the objective of AIDA is to expect fewer negative appraisals in the future,
relative to not making parameter adaptations, see Section 4.3.2 for details.

Designing AIDA itself is not a trivial task. For instance, since there is a priori
no personalised model of HA ratings for a specific user, AIDA will have to build
such a model on-the-fly from context o and user appraisals r. Since the system
operates under situated conditions, we want to impose as little burden on the
end user as possible. As a result, most users will only occasionally cast an
appraisal which complicates the learning of a personalised HA rating model.
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acoustic model

source dynamics

context

dynamics

AIDA

user response

model

Figure 4.2: A schematic overview of the proposed situated HA design loop containing
AIDA. An incoming signal x enters the HA and is used to infer the present
context o. Based on the context and previous user appraisals, AIDA proposes
a new set of parameters u for the HA algorithm. Based on the input signal,
the proposed parameters, and the current context, the output y of the HA
is determined. The parameters u are actively optimised by AIDA, based on
the inferred context o and appraisals r. All individual subsystems represent
parts of a probabilistic generative model as described in Section 4.3, where
the corresponding algorithms follow from performing probabilistic inference
in these models as described in Section 4.4.

As an example of the kinds of lightweight interactions we aim for, we now
sketch how we envision a typical interaction between AIDA and a HA client.
Assume that the HA client is engaged in conversation with a friend at a restau-
rant. In this case, the signal of interest is the friend’s speech signal while the
background environment produces a troublesome babble noise signal. The HA
algorithm first separates the input signal x into its constituent speech and noise
source components, then applies gains u to each source component and finally
sums the weighted source components to produce the output signal y. If the
HA client is satisfied with the performance of her HA, she will not cast any ap-
praisals - she is in the middle of a conversation and has no imperative to change
the behaviour of her HA. However, if she cannot properly hear her conversation
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partner, the client may covertly tap her watch or make another gesture to in-
dicate that she is not happy with her current HA settings. In response, AIDA,
which may for example be implemented as a smartwatch application, will reply
by sending a tuning parameter update u to the HA algorithm in an effort to fix
the client’s current hearing problem. Since the client’s preferences are context-
dependent, AIDA needs to incorporate information about the acoustic context
from HA input x. As an example, the HA user might leave the restaurant for a
walk outside, presenting a different type of background noise and consequently
requiring different parameter settings.

Crucially, we would like HA clients to be able to tune their HA aids without
interrupting any ongoing activities. Therefore, we will not demand that the
client focus visual attention on interacting with AIDA, for instance through a
smartphone app. At most, we want the client to apply a tap or make a simple
gesture that does not force attention away from ongoing activities.

A second criterion is that we do not want a potential conversation partner to
notice that the client is interacting with the agent. The client may for example
be in a situation (for instance a business meeting) where it is not appropriate to
demonstrate that her priorities have shifted to tuning her HAs. In other words,
the interaction must be very lightweight and covert.

A third criterion is that we want the agent to learn from as few appraisals as
possible. If a HA has 10 tuning parameters each taking one of 5 possible values
(very low, low, middle, high, very high), then there are 510 (about 10 million)
possible parameter settings. We do not want the client to get engaged in an
endless loop of disapproving new HA proposals as this will lead to frustration,
discomfort, and distraction. Clearly, this means that each update of the HA
parameters cannot be selected randomly: We want the agent to propose the
most interesting values for the tuning parameters, based on all observed past
information and certain goal criteria for future HA behaviour. In Section 4.4.2,
we will quantify exactly what most interesting means in this context.

In short, the goal of this paper is to design an intelligent agent that supports
the user-driven situated design of a personalised audio processing algorithm
through a very lightweight interaction protocol.

To accomplish this task, we will draw inspiration from the way human brains
design algorithms (e.g., for speech and object recognition, riding a bike, etc.)
solely through environmental interactions. Specifically, we base the design of
AIDA on the AIF framework. Originating from the field of computational neu-
roscience, AIF proposes a view of the brain as a prediction engine that models
sensory inputs. Formally, AIF accomplishes this by specifying a probabilistic gen-
erative model of incoming data. Performing (approximate) Bayesian inference
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in this model by minimising free energy then constitutes a unified procedure for
both data processing and learning. To select actions, in our case choosing tuning
parameter trials for a client, an AIF agent predicts the expected free energy of
the near future, given a particular choice of parameter settings. In this way, AIF
provides a single, unified method for designing all components of AIDA. The
design of a HA system that is controlled by an AIF-based design agent involves
solving the following tasks:

1. Classification of acoustic context

2. Selecting acoustic context-dependent trials for the HA tuning parameters.

3. Execution of the HA signal processing algorithm (that is controlled by the
trial parameters).

Task 1 (context classification) involves determining the most probable cur-
rent acoustic environment. Based on a dynamic context model (described in
Section 4.3.1), we infer the most probable acoustic environment as described in
Section 4.4.1.

Task 2 (trial design) encompasses proposing alternative settings for the HA
tuning parameters. Sections 4.3.2 and 4.4.2 describe the user response model
and execution of AIDA’s trial selection procedure based on expected free energy
minimisation, respectively.

Finally, task 3 (HA algorithm execution) concerns performing variational
free energy minimisation with respect to the state variables in a generative prob-
abilistic model for the acoustic signal. In Section 4.3.1 we describe the acoustic
generative model underlying the HA algorithm and Section 4.4.3 describes the
corresponding inference procedure.

Crucially, in the AIF framework, all three tasks can be accomplished by vari-
ational free energy (VFE) minimisation in a generative probabilistic model for
observations. Since we can automate VFE minimisation by probabilistic pro-
gramming, the only remaining task for the human designer is to specify the
requisite generative models. The next section describes the model specification
used for the various components of AIDA.

4.3 Model Specification

In this section, we present the generative model of the AIDA-controlled HA
system, as illustrated in Fig. 4.2. In Section 4.3.1, we describe a generative
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model for the HA input and output signals x and y respectively. In this model,
the actual HA algorithm follows from performing probabilistic inference, as will
be discussed in Section 4.4. In Section 4.3.2 we introduce a model for the agent
AIDA that is used to infer new parameter trials. A concise summary of the
generative model is also presented in Appendix B.1.

Throughout this section, we will make use of factor graphs for visualisation
of probabilistic models. We focus on FFGs, as introduced in [25] with notational
conventions adopted from [69].

FFGs represent factorised functions by undirected graphs, whose nodes rep-
resent individual factors of the global function. Nodes are connected by edges
representing mutual arguments of the connected factors. In an FFG, a node
can be connected to an arbitrary number of edges, but edges are constrained to
have a maximum degree of two.

4.3.1 Acoustic Model

Our acoustic model of the observed signal and HA output consists of a model
of the source dynamics of the underlying signals and a model for the context
dynamics.

Model of Source Dynamics

We assume the observed acoustic signal x consists of a speech signal (or more
generally, a target signal that the HA client wishes to focus on) and an additive
noise signal (that the HA client is not interested in), as

xt = zt + nt (4.2)

where xt ∈ R represents the observed signal at time t, i.e. the input to the
HA. Speech and noise signals are denoted by zt ∈ R and nt ∈ R, respectively.
Now we need to specify the source dynamics of zt and nt. We model the speech
signal by a time-varying auto-regressive (TVAR) model and the noise signal by
a context-dependent AR model. The remainder of this subsection will elaborate
on both of these source models and how the HA output is generated. The FFG
of the acoustic model is depicted in Fig. 4.3.

Historically, AR models have been widely used to represent speech signals
[53, 80]. As the dynamics of the vocal tract exhibit non-stationary behaviour,
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speech is usually segmented into individual frames that are assumed to be quasi-
stationary. Unfortunately, the signal is often segmented without any prior infor-
mation about phonetic structure. Therefore the quasi-stationarity assumption
is likely to be violated and time-varying dynamics occur within the segmented
frames [111]. To address this issue, we employ a time-varying prior for the
coefficients of the AR model, leading to a TVAR [96]

p(θt | θt−1) = N (θt | θt−1, ωI) (4.3a)

p(zt | zt−1) = N (zt | A(θt)zt−1, V(γ)) (4.3b)

where θt = [θ1t, θ2t, ..., θKt]
T ∈ RK , zt = [zt, zt−1, ..., zt−K+1]

T ∈ RK are
the coefficients and states of an K-th order TVAR model for the speech signal
zt = eT1 zt. We use N (x | µ,Σ) to denote a Gaussian distribution over x with
mean µ and covariance matrix Σ. In this model, the AR coefficients θt are
represented by a Gaussian random walk with process noise covariance ωI, with
Ik denoting the K × K identity matrix, scaled by ω ∈ R>0. γ ∈ R>0 repre-
sents the process noise precision of the AR process. Here, we have adopted the
state-space formulation of TVAR models as in [86], where V(γ) = (1/γ)e1e

T
1

creates a covariance matrix with a single non-zero entry. We use ei to denote an
appropriately sized Cartesian standard unit vector, i.e. a column vector of zeros
where only the i’th entry is 1. A(θ) denotes the M ×M companion matrix,
defined as

A(θ) =

[
θT

I 0

]
. (4.4)

Multiplication of a state vector by the companion matrix, A(θt)zt−1, is
equivalent to performing two operations: an inner product θT

t zt−1 and a shift
of zt−1 by one time step to the past.

The acoustic model also encompasses a model for background noise, such
as the sounds of a bar or train station. Many of these background sounds can
be represented by coloured noise [88], which in turn can be modeled by a low-
order AR model [40, 42]

p(nt | ϕk,nt−1, τk) = N
(
nt | A(ϕk)nt−1,V(τk)

)
, for t = t−, t− + 1, . . . , t+

(4.5)
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where ϕk = [ϕ1k, ϕ2k, ..., ϕNk]
T ∈ RN , zt = [zt, zt−1, ..., zt−N+1]

T ∈ RN are
the coefficients and states of an AR model of order N ∈ N+ for the noise signal
nt = eT1 nt. τk ∈ R>0 denotes the process noise precision of the AR process. In
contrast to the speech model, we assume the processes ϕk and τk are stationary
when the user is in a particular acoustic environment or context. To make clear
that contextual states change much slower than raw acoustic data signals, we
index slower parameters at a time index k, which is related to index t by

k =

⌈
t

W

⌉
. (4.6)

Here ⌈·⌉ denotes the ceiling function that returns the largest integer smaller
or equal to its argument, while W is the window length. Intuitively, the above
equation makes sure that k is aligned with segments of length W , i.e. t ∈ [1,W ]
corresponds to k = 1. To denote the start and end indices of the time segment
corresponding to context index k, we define t− = (k − 1)W + 1 and t+ = kW
as implicit functions of k.

However, abrupt changes in the dynamics of background noise may still
occasionally occur. For example, if the user moves from a quiet street to the
inside of a bar, the parameters of the AR model that are attributed to the street
inadequately capture the background noise of the new environment. To deal
with these changing acoustic environments, we introduce context-dependent
priors for the background noise, using a Gaussian and Gamma mixture model:

p(ϕk | ok) =

L∏
l=1

N (ϕk | µl,Σl)
clk (4.7a)

p(τk | ok,α,β) =

L∏
l=1

Γ(τk | αl, βl)
clk (4.7b)

The context at time index k, denoted by ok, comprises a 1-of-L binary vector
with elements clk ∈ {0, 1}, which are constrained by

∑
l clk = 1. Γ(τ | α, β)

represents a Gamma distribution over τ with shape and rate parameters α and
β. The hyperparameters µl, Σl, αl and βl define characteristics of the different
background noise environments.
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Figure 4.3: An FFG representation of the acoustic source signals model as specified by
(4.3)-(4.11) at time index t. The observation xt is given as the sum of a
latent speech signal zt and a latent noise signal nt. The speech signal is
modeled by a TVAR process, where the coefficients θt are modeled by a
Gaussian random walk. The noise signal is a context-dependent AR process,
modeled by Gaussian mixture models (GMMs) and Gamma mixture models
(ΓMMs) for the parameters ϕk and τk, respectively. The selection variable
of both mixture models represents the context ok. The model for the context
dynamics is enclosed by the dashed box. The composite AR factor node
represents the auto-regressive transition dynamics specified by (4.3b). The
output of the HA yt is modeled as the weighted sum of the extracted speech
and noise signals.

Having specified the acoustic model of the environment, we now extend
it in order to obtain a HA algorithm. The principal goal of a HA algorithm
is to improve audibility and intelligibility of acoustic signals. Audibility can be
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improved by amplifying the received input signal. Intelligibility can be improved
by increasing the Signal-to-Noise Ratio (SNR) of the incoming signal. Assuming
that we can infer the constituent source signals zt and nt from received signal
xt, the desired HA output signal can be modeled by

yt = uzke
T
1 zt + unke

T
1 nt for t = t−, t− + 1, . . . , t+ (4.8)

where uk = [uzk, unk]
T ∈ [0, 1]2 represents a vector of 2 tuning parameters

or source-specific gains for the speech and background noise signal, respectively.
In Eq. 4.8, the output of the HA is modeled by a weighted sum of the constituent
source signals.

The gains uk control the amplification of the extracted speech and noise sig-
nals individually, allowing the user to perform source-specific filtering or sound-
scaping [24]. Because of imperfections during inference of the source signals
(see Section 4.4), the gains simultaneously reflect a trade-off between residual
noise and speech distortion.

Finding good values for the gains uk can be a difficult task because the ideal
parameter settings depend both on the individual listener and acoustic context.
Next, we describe the acoustic context model that will allow AIDA to make
context-dependent parameter proposals.

Model of Context Dynamics

As HA clients move through different acoustic background settings (such as
driving in a car, doing groceries, watching TV at home, etc.) the preferred
parameter settings for HA algorithms vary. The context signal allows the HA to
distinguish between different acoustic environments.

The hidden context state variable ok at time index k is a 1-of-L encoded
vector with elements olk ∈ {0, 1}, constrained by

∑
l olk = 1. The context is

responsible for the operations of the noise model in (4.7). Context transitions
are supported by a dynamic model

p(ok | B,ok−1) = Cat(ok | Bok−1), (4.9)

where the elements of transition matrix B, are defined as Bij = p(oik = 1 |
oj,k−1 = 1), constrained by Bij ∈ [0, 1] and

∑L
j=1 Bij = 1. We model individual

columns of B by a Dirichlet distribution as
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p(Bj | αj) = Dir(Bj | αj), (4.10)

where αj denotes the vector of concentration parameters corresponding to
the j’th column of B. The context state is initialized by a categorical distribution
as

p(o0 | π) = Cat(o0 | π) =
L∏

l=1

πcl0
l such that

L∑
l=1

πl = 1, (4.11)

where the vector π = [π1, π2, . . . , πL]
T contains the event probabilities,

whose elements can be chosen as πl = 1/L if the initial context is unknown.
An FFG representation of the context dynamics model is shown in the dashed
box in Fig. 4.3.

4.3.2 AIDA’s User Response Model

The goal of AIDA is to continually provide the most “interesting” settings for the
HA tuning parameters uk, where interesting is operationalised as minimising
EFE. But how does AIDA know what the client wants? In order to learn the
client’s preferences, she is invited to cast an appraisal rk ∈ {∅, 0, 1} of current
HA performance at any time. To keep the user interface very light, we assume
that appraisals are binary, encoded by rk = 0 for disapproval and rk = 1 indi-
cating satisfaction. If a user does not cast an appraisal, we will record a missing
value, i.e., rk = ∅. The subscript k for rk indicates that we record appraisals at
the same rate as the context dynamics.

If a client submits a negative appraisal rk = 0, AIDA interprets this as an ex-
pression that the client is not happy with the current HA settings uk in the cur-
rent acoustic context ok (and vice versa for positive appraisals). To learn client
preferences from these appraisals, AIDA holds a context-dependent generative
model for predicting user appraisals and updates this model after observing ac-
tual appraisals. In this chapter, we opt for a GPC model as the generative model
for binary user appraisals. A Gaussian process (GP) is a very flexible probabilis-
tic model and GPCs have successfully been applied to preference learning in a
variety of tasks before [18, 47, 50]. For an in-depth discussion on GPs, we refer
the reader to [90]. The context-dependent user response model is defined as
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p(vk(·) | ok) =

L∏
l=1

GP(ml(·),Kl(·, ·))olk (4.12a)

p(rk | vk,uk)) = Ber(Φ(vk(uk))) , with rk ∈ {0, 1} (4.12b)

In (4.12a), vk(·) is a latent function drawn from a mixture of GPs with mean
functions ml(·) and kernels Kl(·, ·). Evaluating vk(·) at the point uk provides an
estimate of user preferences. Without loss of generality, we can set ml(·) = 0.
Since ok is one-hot encoded, raising to the power olk serves to select the GP
that corresponds to the active context. Φ(·) denotes the Gaussian cumulative
distribution function, defined as Φ(x) = 1√

2π

∫ x

−∞ exp
(
−t2/2

)
dt. This map in

(4.12b) casts vk(uk) to a Bernoulli-distributed variable rk.

4.4 Solving Tasks by Probabilistic Inference

This section elaborates on our solution for the three tasks of Section 4.2.2:

1. Context classification.

2. Trial design.

3. HA algorithm execution.

All tasks can be solved through probabilistic inference in the generative
model specified by Eq. (4.2)-(4.12b) in Section 4.3. In this section, the infer-
ence goals are formally specified based on the previously proposed generative
model.

To perform inference we employ VMP in a factor graph representation of
the generative model. Message passing (MP)-based inference is highly efficient,
modular, and scales well to large inference tasks [19, 70]. With MP, inference
tasks in the generative model reduce to automatable procedures involving only
local computations on the corresponding FFG.

4.4.1 Inference for Context Classification

The acoustic context ok describes the dynamics of the background noise model
through Eq. (4.5) and Eq. (4.7). To determine the current acoustic environment
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of the user, we need to infer the current context based on preceding observa-
tions. Technically, we are interested in determining the marginal distribution
p(ok | x1:t+), where the index range over t of x takes into account the rela-
tion between t and k as defined in Eq. (4.6). In the online setting, we wish to
calculate this marginal distribution by iteratively solving

p(ok | x1:t+)︸ ︷︷ ︸
posterior

∝
∫
p(st−:t+ ,Ψk,xt−:t+ | st−−1,ok)︸ ︷︷ ︸

observation model

p(ok,T | ok−1)︸ ︷︷ ︸
context dynamics

· p(ok−1, st−−1 | x1:t−−1)︸ ︷︷ ︸
prior

dst−−1:t+ dΨk dok−1 dT ,

(4.13)

where st and Ψk denote the sets of dynamic states and static parameters
st = {θt, zt,nt} and Ψk = {γ, τk,ϕk}, respectively. The observation model
is given by the model specification in Section 4.3, similar for the context dy-
namics. The prior distribution is a joint result of the iterative execution of both
Eq. (4.13) and Eq. (4.18), where the latter refers to the HA algorithm execu-
tion from Section 4.4.3. Calculation of this marginal distribution is intractable
and therefore exact context inference is not possible. This issue stems from two
sources:

• Intractability of the autoregressive model. We further elaborate on this in
Section 4.4.3.

• Intractability as a result of performing message passing with mixture mod-
els.

In Eq. (4.7), the model contains both a Gaussian and Gamma mixture model
for the AR-coefficients and process noise precision, respectively. Exact infer-
ence through message passing with these mixture models quickly becomes in-
tractable, especially when multiple background noise models are involved. There-
fore, we need to resort to a variational approximation where output messages
of the mixture models are constrained to be within the exponential family.

Although variational inference with mixture models is feasible [10, 63, 87],
it is prone to converge to local minima of the Bethe free energy (BFE) for more
complicated models. The variational messages originating from the mixture
models are constrained to be either Gaussian or Gamma distributions, possibly
losing important multi-modal information, and as a result, they can lead to sub-
optimal inference of the context variable. Because the context is vital for the
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underdetermined source separation stage, we wish to limit the amount of (vari-
ational) approximations during context inference. At the cost of increased com-
putational complexity, we can remove the variational approximation around
the mixture models and instead expand the mixture components into a series
of distinct models. This means each distinct model now contains the mixture
component for a given context, resulting in exact messages originating from
the priors of ϕk and τk. Therefore we only need to resort to a variational ap-
proximation for the AR node. By expanding the mixture models into a series of
distinct models to reduce the number of variational approximations, calculation
of the posterior distribution of the context p(ok | x1:t+) reduces to an approxi-
mate Bayesian model comparison problem, similarly to the procedure described
in [24].

Appendix B.2.1 gives a more in-depth description of how we use Bayesian
model comparison to solve the inference task in Eq. (4.13).

4.4.2 Inference for Trial Design of HA Tuning Parameters

The goal of proposing alternative HA tuning parameter settings (task 3) is to
receive positive user responses in the future. Free energy minimisation over de-
sired future user responses can be achieved through a procedure called expected
free energy (EFE) minimisation [33, 98].

EFE as a trial selection criterion induces a natural trade-off between explo-
rative (information seeking) and exploitative (reward seeking) behaviour. In
the context of situated HA personalisation, this is desirable because soliciting
user feedback can be burdensome and invasive, as described in Section 4.2.2.
From the agent’s point of view, this means that striking a balance between gath-
ering information about user preferences and satisfying learned preferences is
vital. The EFE provides a way to tackle this trade-off, inspired by neuro-scientific
evidence that brains operate under a similar protocol [33, 83]. The EFE is de-
fined as [33]

G[ q;u ] = Eq(r,v|u)

[
log

q(v | u)
p(r, v | u)

]
, (4.14)

Note that Eq. (4.14) is a functional of q but a function of trial parameters u.
We indicate this difference by separating them with a semicolon. The EFE can
be decomposed into [33]



4

4.4 Solving Tasks by Probabilistic Inference 91

G[ q;u ] ≈ −Eq(r|u)

[
log p(r)

]
︸ ︷︷ ︸

Utility drive

−Eq(r,v|u)

[
ln
q(v | u, r)
q(v | u)

]
︸ ︷︷ ︸

Information gain

, (4.15)

which contains an information gain term and a utility-driven term. Min-
imisation of the EFE reduces to maximization of both these terms. Maximising
the utility drive pushes the agent towards matching predicted user responses
q(r | u) to a goal prior over desired user responses p(r) that we wish to observe.
Setting the goal prior to match positive user responses then drives the agent
towards parameter settings that it believes will make the user happy in the
future. The information gain term in Eq. (4.15) on the other hand, drives EFE-
minimising agents to seek out responses that are maximally informative about
latent states v, where v represents the users inferred preferences. To select the
next set of gains u to propose to the user, we need to find

u∗ = argmin
u

(
argmin

q∈Q
G[ q;u ]

)
. (4.16)

where Q denotes the family of candidate variational distributions. Intu-
itively, one can think of Eq. (4.16) as a two-step procedure with an inner and
an outer loop. The inner loop finds the optimal approximate posterior q using
(approximate) Bayesian inference, conditioned on a particular action parameter
u. The outer loop evaluates the resulting EFE as a function of u and proposes
a new set of gains to bring the EFE down. For our experiments, we consider a
candidate grid of possible gains. For each candidate, we compute the resulting
EFE and then select the lowest-scoring proposal as the next set of gains to be
presented to the user.

The probabilistic model used for AIDA is a mixture GPC indexed by context
ok. For simplicity, we will restrict inference to the GP corresponding to the MAP
estimate of ok. Between trials, the corresponding GP needs to be updated to
adapt to new data gathered from the user. Specifically, we are interested in
finding the posterior over the latent user preference function

p(v∗ | u1:k, r1:k−1) =

∫
p(v∗ | u1:k−1,uk, v)p(v | u1:k−1, r1:k−1)dv . (4.17)

where we assume AIDA has access to a dataset consisting of previous param-
eter settings u1:k−1 and appraisals r1:k−1 and we are querying the model at uk.
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While this inference task in the GPC is also intractable, there exist several tech-
niques for approximate inference, such as variational Bayesian methods, expec-
tation propagation (EP), and the Laplace approximation [90]. Appendix B.2.2
describes the exact details of the inference realisation of AIDA.

4.4.3 Inference for Executing the Hearing Aid Algorithm

The main goal of the proposed HA algorithm is to improve audibility and in-
telligibility by re-weighing inferred source signals in the HA output signal. In
our model of the observed signal in Eq. (4.2)-(4.7) we are interested in itera-
tively inferring the marginal distribution over the latent speech and noise sig-
nals p(zt,nt | x1:t). This inference task is also referred to as informed source
separation [58] in prior work. Inferring the latent speech and noise signals
tries to optimally disentangle each signal from the observed signal, based on
the sub-models of the speech and noise source.

This requires us to compute the posterior marginal distributions associated
with both speech and noise signals. To do so, we perform probabilistic inference
by MP in the acoustic model of Eq. (4.2)-(4.7). The posterior distributions can
be calculated in an online manner using sequential Bayesian updating by solving
the Chapman-Kolmogorov equation [99]

p(st,Ψk | x1:t)︸ ︷︷ ︸
posterior

∝ p(xt | st)︸ ︷︷ ︸
observation∫

p(st | st−1,Ψk)︸ ︷︷ ︸
state dynamics

p(st−1,Ψk | x1:t−1)︸ ︷︷ ︸
prior

dst−1, for t = t−, t− + 1, . . . , t+ .

(4.18)

Recall that st = {θt, zt,nt} and Ψk = {γ, τk,ϕk}. Here, the states and
parameters correspond to the latent AR and TVAR models of Eq. (4.3) and
Eq. (4.5). We further assume that the context does not change during infer-
ence, i.e. k is fixed. When the context does change Eq. (4.18) will need to be
extended by integrating over the time-varying parameters. Unfortunately, the
solution of Eq. (4.18) is not analytically tractable. This happens due to

• Integration over large state spaces.

• The non-conjugate prior-posterior pairing.
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• The absence of a closed-form solution for the evidence factor [85].

To circumvent these issues, we resort to a hybrid message passing algorithm
that combines (structured) VMP and loopy belief propagation (BP) for the min-
imisation of the BFE [116].

For further details of the (S)VMP and BP algorithms, we also refer the reader
to Section 1.4 and [23, 116].

Due to the modularity of FFGs, the necessary MP update rules can be tab-
ulated and hence only need to be derived once for each of the included factor
nodes. The derivations of the BP update rules for elementary factor nodes can
be found in [70] and the derived structured variational rules for the composite
AR node can be found in [85]. The variational updates in the mixture models
can be found in [63, 87]. The required approximate marginal distribution of
some variable z can be computed by multiplying the incoming and outgoing
variational messages on the edges corresponding to the variables of our interest
as q(z) ∝ ν⃗(z) · ⃗ν(z).

Based on the inferred posterior distributions of zt and nt, these signals can
be used for inferring the hearing aid output through Eq. (4.8) to produce a
personalised output which compromises between residual noise and speech dis-
tortion.

4.5 Experimental Verification and Validation

In this section, we verify our approach to the three design tasks of Section 4.2.2.
Section 4.5.1 evaluates our approach to context inference by reporting the clas-
sification accuracy our algorithm on simulated signals. In Section 4.5.2 we
evaluate the performance of our intelligent agent AIDA on the task of actively
online HA tuning and preference learning from a simulated user. We examine
the HA algorithm in Section 4.5.3 by evaluating performance on a source sepa-
ration task intended to simulate the parsing of incoming audio data into signal
and noise components. To conclude, we present a demonstrator for the entire
system in Section 4.5.4.

All algorithms have been implemented in the scientific programming lan-
guage Julia [9]. Probabilistic inference in our model is automated using the
open source Julia package ReactiveMP2 [3]. All experiments presented in
this section can be found in the AIDA GitHub repository available at https:
//github.com/biaslab/AIDA.

2ReactiveMP [3] is available at https://github.com/biaslab/ReactiveMP.jl.

https://github.com/biaslab/AIDA
https://github.com/biaslab/AIDA
https://github.com/biaslab/ReactiveMP.jl
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4.5.1 Context Classification Verification

To verify that context is appropriately inferred through Bayesian model selec-
tion, we first generated a synthetic dataset from the following generative model:

p(ok | B,ok−1) = Cat(ok | Bok−1) (4.19)

with priors

p(o0 | π) = Cat(o0 | π)
p(Bj | αj) = Dir(Bj | αj)

(4.20)

where oo is chosen to have length L = 4. The event probabilities π and
concentration parameters αj are given by π = [0.25, 0.25, 0.25, 0.25]T and αj =
[1.0, 1.0, 1.0, 1.0]T , respectively. We generated a sequence of 1000 frames, each
containing 100 samples, for a total of 100.000 data points. Each frame is as-
sociated with one of 4 different contexts. Each context corresponds to an AR
model with the parameters presented in Table 4.1.

AR order ϕ τ−1

1 -0.308 1.0
2 0.722 -0.673 2.0
3 -0.081 0.079 -0.362 0.5
4 -1.433 -0.174 0.757 0.466 1.0

Table 4.1: Parameters of the AR processes used for generating time series data with sim-
ulated context dynamics.

To validate our context classification procedure, we need to demonstrate
that it can adequately identify which model best approximates the generated
dataset. For this experiment, we employed 4 models with the same specifica-
tions as were used to generate the dataset. We used informative priors for the
coefficients and precision of the AR models. Additionally, we extended our set of
candidate models with an AR (5) model with weakly informative priors as well
as a Gaussian i.i.d. model that can also be viewed as an AR model of zero’th
order, AR (0). Individual frames containing 100 samples each were processed
separately and the resulting BFE computed for each model. If we approximate
the true model evidence using the BFE as described in Appendix B.2.1, we can
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perform approximate Bayesian model selection by selecting the model with the
lowest BFE. This model then corresponds to the most likely context for the frame
at hand. The results of our experiment are shown in Fig. 4.4.

Figure 4.4: True and inferred evolution of contexts from frames 200 to 300. Each frame
consists of 100 data points. Circles denote the active contexts that were used
to generate the frame. Crosses denote the model that achieves the lowest
BFE for a specific frame.

We evaluate the performance of our context classification procedure by com-
puting the categorical accuracy metric defined as

acc =
tp+ tn

N
(4.21)

where tp, tn are the number of true positive and true negative values, re-
spectively. N corresponds to the number of total observations N = 1000. In this
context classification experiment, our method achieves a categorical accuracy
of acc = 0.94.

4.5.2 Trial Design Verification

Evaluating the performance of the intelligent agent is not trivial. Because the
agent adaptively trades off exploration and exploitation, accuracy is not an ade-
quate metric. There are reasons for the agent to veer away from what it believes
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Figure 4.5: Simulated user preference function p(rk = 1 | u∗,uk,Λuser). The colouring
corresponds to the probability of the user giving a positive appraisal for the
search space of gains uk = [usk, unk]

T .

is the optimum in order to obtain more information. As a verification experi-
ment, we can therefore investigate how the agent interacts with a simulated
user. Our simulated user samples binary appraisals rk based on the HA param-
eters uk as

p(rk | u∗,uk,Λuser) = Ber
(
rk

∣∣∣∣ 2

1 + exp
(
(uk − u∗)TΛuser(uk − u∗)

)) , (4.22)

where u∗ denotes the optimal parameter setting, uk is the set of parameters
proposed by AIDA at time k, Λuser is a diagonal weighting matrix that controls
how quickly the probability of positive appraisals decays with the squared dis-
tance to u∗. The constant 2 ensures that when uk = u∗, the probability of pos-
itive appraisals is 1 instead of 0.5. For our experiments, we set u∗ = [0.8, 0.2]T

and the diagonal elements of Λuser to 0.004. This results in the user preference
function p(rk = 1 | u∗,uk,Λuser) as shown in Figure 4.5.

The kernel used for AIDA is a squared exponential kernel, given by
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K(u,u′) = σ2 exp

{
−∥u− u′∥22

2l2

}
, (4.23)

where l and σ are hyperparameters. Intuitively, σ is a static noise parameter
and l encodes the smoothness of the kernel function. Both hyperparameters
were initialised to σ = l = 0.5, which is uninformative on the scale of the exper-
iment. We let the agent search for 80 trials and update hyperparameters every
5’th trial using conjugate gradient descent as implemented in Optim.jl [52].
We constrain both hyperparameters to the domain [0.1, 1] to ensure stability of
the optimisation procedure. As we will see, for the majority of each experi-
ment, AIDA only receives negative appraisals. The generative model of AIDA is
fundamentally a classifier and unconstrained optimisation can therefore lead to
degenerate results when the data set only contains examples of a single class.
For all experiments, the first proposal of AIDA was a randomly sampled param-
eter from the admissible set of parameters, because AIDA is assumed to have no
apriori knowledge of the user preference function. This random initial proposal
leads to distinct behaviour for all simulated agents.

We provide two verification experiments for AIDA. First, we will thoroughly
examine a single run to investigate how AIDA switches between exploratory and
exploitative behaviour. Secondly, we examine the aggregate performance of an
ensemble of agents to test the average performance.

To assess the performance for a single run, we can examine the evolution of
the separate terms of the EFE decomposition in Eq. (4.15) over time. We expect
that when AIDA is primarily exploring, the utility drive is relatively low while
the information gain is comparatively high. When AIDA is primarily engaged in
exploitation, we expect the opposite pattern. We show these terms separately
in Fig. 4.6.

Figure 4.6: Evolution of the utility drive and negative information gain after throughout
a single experiment.
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Fig. 4.6 shows that there are distinct phases to the experiment. In the be-
ginning (k < 5) AIDA sees a sharp decrease in utility drive and information
gain terms. This indicates a saturation of the search space such that no points
present good options. This happens early due to uninformative hyperparam-
eter settings in the GPC. After trial 5, hyperparameters are optimised and the
agent no longer believes it has saturated the search space, which manifests as
the jumps in Figure 4.6 from trial 5 to 6. From trials 6 through 15 we observe
a relatively high information gain and relatively low utility drive, meaning that
the agent is still exploring the search space for parameter settings that yield a
positive user appraisal. The agent obtains its first positive appraisal at k = 16,
as evidenced by the jump in utility drive and drop in information gain. This first
positive appraisal is followed by a period of oscillations in both terms, where
the agent is refining its parameters. Finally, AIDA settles down to predomi-
nantly exploitative behaviour starting from the 41’st trial. To examine the first
transition, we can visualize the EFE landscape at k = 5 and k = 6, the upper
row of Fig. 4.7.
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Figure 4.7: Snapshots of EFE landscape at different time points as a function of gains uz

and un, G(u). The black dot denotes the current parameter settings and the
green dot denotes u∗.
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Since AIDA minimises EFE, it seeks out low values corresponding to blue
regions and avoids high values corresponding to red regions. Between k =
5 and k = 6 we perform the first hyperparameter update, which drastically
changes the EFE landscape. This indicates that initial parameter settings were
not informative, as we did not cover the majority of the search space within the
first 5 iterations. The yellow regions at k = 6 indicate regions corresponding to
previous proposals of AIDA that resulted in negative appraisals.

We can visualize snapshots of the exploration phase starting from k = 6 in
a similar manner. The second row of Fig. 4.7 displays the EFE landscape at
two different time instances during the exploration phase. It shows that over
the course of the experiment, AIDA gradually builds a representation over the
search space. In trial 16 this takes the form of patterns of connected regions
that denote areas that AIDA believes are unlikely to result in positive appraisals.

Once AIDA receives its first positive appraisal at k = 16, it switches from
exploring the search space to focusing only on the local region. If we examine
Fig. 4.6, we see that at this time the information gain term is still reasonably
high. This indicates a subtle point: Once AIDA receives a positive appraisal, it
engages in local exploration around where the optimum might be located. How-
ever, AIDA was unfortunately located near the boundary of the optimum and
next received a negative appraisal. Therefore in trials 18 to 22, AIDA queries
points throughout the search space that it deems informative. At trial 23, the
position of AIDA in the search space (black dot in the third row of Fig. 4.7)
returns to the edge of the user preference function in Fig. 4.5. This causes AIDA
to receive a mixture of positive and negative appraisals in the following trials,
leading to the oscillations seen in Fig. 4.6. Finally, we can examine the land-
scape after AIDA has confidently located the optimum and switched to purely
exploitative behaviour. This happens at k = 42 where the utility drive goes to 0
and the information gain concentrates around -1.

The last row of Fig. 4.7 shows that once u∗ is confidently located, AIDA
disregards the remainder of the search space in favour of providing good pa-
rameter settings. Finally, if the user continues to supply data to AIDA, it will
gradually extend the potential region of samples around the optimum, indicat-
ing that if a user keeps requesting updated parameters, AIDA will once again
perform local exploration around the optimum. This further shows that AIDA
accommodates gradual retraining as the user’s hearing loss profile changes over
time.

Having thoroughly examined an example run and investigated the types of
behaviour produced by AIDA, we can now turn our attention to aggregate per-
formance over an ensemble of agents. To that end we repeat the experiment
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80 times with identical hyperparameters, but with different initial proposals.
The metric we are most interested in is how quickly AIDA is able to locate the
optimum and produce a positive appraisal.

Figure 4.8: (Left) Heatmap showing ensemble performance over 80 agents. Positive and
negative responses are indicated with yellow and black squares, respectively.
(Right) Histogram showing time indices where agents receive their first pos-
itive response. The right-most column indicates agents that failed to obtain
a positive appraisal. In total, 66/80 agents solve the task, corresponding to
a success rate of 82.5%.

Fig. 4.8 shows a heatmap of when each agent obtains positive responses.
Positive responses are indicated by yellow squares and negative responses by
black squares. Each row contains results for a single AIDA agent and each
column indicates a time step of the experiment. Consistent with the results for
a single agent, we see that each experiment starts with a period of exploration.
A large number of rows also show a yellow square within the first 35 trials,
indicating that the optimum was found. Interestingly, no agents receive only
positive responses, even after locating the optimum. This follows from AIDA
actively trading off exploration and exploitation. When exploring, AIDA can
select parameters that are sub-optimal with respect to eliciting positive user
responses in order to gather more information. Fig. 4.8 also shows a histogram
indicating when each agent obtains its first positive appraisal. The right-most
column shows agents that failed to locate the optimum within the designated
number of trials. In total, 66/80 agents correctly solved the task, corresponding
to a success rate of 82.5%. Disregarding unsuccessful runs, on average, AIDA
obtains a positive response in 37.8 trials with a median of 29.5 trials.
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4.5.3 HA Algorithm Execution Verification

To verify the proposed inference methodology for the execution of the HA al-
gorithm, we synthesised a dataset by sampling from the following generative
model:

p(θt | θt−1, ω) = N
(
θt | θt−1, ωI

)
(4.24a)

p(zt | zt−1,θ, τ) = N
(
zt | A(θt)zt−1,V(γ)

)
(4.24b)

p(nt | nt−1,ϕ, τ) = N
(
nt | A(ϕ)nt−1,V(τ)

)
(4.24c)

xt = eT1 zt + eT1 nt, (4.24d)

with priors

p(θ0 | ω) = N (θ0 | 0, ωI) (4.25a)

p(ϕ) = N (ϕ | 0, I) (4.25b)

p(γ) = Γ(γ | 1.0, 1e− 4) (4.25c)

p(τ) = Γ(τ | 1.0, 1.0) (4.25d)

ω = 1e− 4 (4.25e)

We use an uninformative prior for the output of the HA yt as in Fig. 4.3 to
prevent unwanted interactions from that part of the graph. We generated 1000
distinct time series of length 100. For each generated time series, the (TV)AR
orders K and N were sampled from the discrete domains [4, 8] and [1, 4]. Priors
that resulted in unstable AR or TVAR processes were resampled.

The generated time series were used in the following experiment. We first
created a probabilistic model with the same specifications as the generative
model in Eq.(4.24) however, we used non-informative priors for the states and
parameters of the model that corresponds to the TVAR process in Eq.(4.24b).
To ensure identifiability of the separated sources, we used weakly informative
priors for the parameters of the AR process in Eq.(4.24c). Specifically, the mean
of the prior for ϕ was centered around the real AR coefficients that were used
in the data generation process. The goals of the experiment are

• To verify that the proposed inference procedure recovers the hidden states
θt, zt and nt for each generated dataset.

• To verify convergence of the BFE. Since the graph contains loops, this is
not guaranteed [77].
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For a typical realisation, inference results for the hidden states zt and nt are
shown in the top row of Fig. 4.9

h

Figure 4.9: (Top) Inference results for the hidden states zt and nt of coupled (TV)AR
process on dataset 999. (left) The generated observed signal xt with un-
derlying generated signals zt and nt. (center) The latent signal zt and its
corresponding posterior approximation. (right) The latent signal nt and its
corresponding posterior approximation. The dashed lines correspond to the
mean of the posterior estimates. The transparent regions represent the cor-
responding remaining uncertainty as +/− one standard deviation from the
mean. (Bottom) Inference results for the coefficients θt of dataset 999. The
solid lines correspond to the true latent AR coefficients. The dashed lines
correspond to the mean of the posterior estimates of the coefficients and
the transparent regions correspond to +/− one standard deviation from the
mean of the estimated coefficients.

The bottom row of Fig. 4.9 shows the tracking of the time-varying coeffi-
cients θt. Fig. 4.9 does not show the correlation between the inferred coeffi-
cients, whereas this actually contains vital information for modeling an acoustic
signal. Namely, the coefficients together specify a set of poles, which influence
the characteristics of the frequency spectrum of the signal.

A different kind of interesting behaviour is shown in Fig. 4.10. Here we see
that inference results for the latent states zt and nt are swapped with respect to
the true underlying signals. This type of behaviour is undesirable in standard
algorithms when the output of the HA is based on hard-coded gains. However,
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due to the gains being decided by the intelligent agent, we can still find optimal
gains in this situation.

Figure 4.10: Inference results for the hidden states zt and nt of coupled (TV)AR process
on dataset 42. In this particular case, the inferred states are swapped with
respect to the true underlying signals. However, the accompanying intelli-
gent agent is able to cope with these kinds of situations, such that the HA
clients do not experience any problems as a result.

As seen from Fig. 4.11, the BFE averaged over all generated time series
monotonically decreases. Note that even though the proposed hybrid MP algo-
rithm results in a stationary solution, it does not provide convergence guaran-
tees.

Figure 4.11: Evolution of the BFE for the coupled AR model averaged over all generated
time series. The iteration index specifies the number of marginal updates
for all edges in the graph.
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4.5.4 Validation Experiments

For the validation of the proposed HA algorithm and AIDA, we created an in-
teractive web application3 to demonstrate the joint system. Fig. 4.12 shows the
interface of the demonstrator.

3A web application of AIDA is available at https://github.com/biaslab/AIDA-app/.

https://github.com/biaslab/AIDA-app/
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Figure 4.12: Screenshot of the interactive web application of AIDA. The dashboard con-
sists of four distinct cells. The top cell Environment allows the user to
change between an artificially generated and a real noise signal. It also
contains a reset button for resetting the application. The HA cell provides
an interactive plot of the input, separated speech and noise, and generated
output waveform signals. Each waveform can be played when the corre-
sponding button is pressed. The NEXT button loads a new audio file for
evaluation. The thumbs-up and thumbs-down buttons provide AIDA with
positive and negative appraisals. The brain button optimises hyperparam-
eters of the GPC. The EFE Agent cell reflects the agent’s beliefs about opti-
mal parameters for the user as an EFE heatmap. The Classifier cell shows
the BFE score for different models corresponding to different contexts.
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The user listens to the output of the HA algorithm by pressing the output
button. The buttons speech and noise correspond to AIDA’s beliefs about the
constituent signals of the HA input. Note that in reality the user would not have
access to this information and can only listen to HA output. After listening to
the output signal, the user can assess the performance of the current HA setting.
The user can send positive and negative appraisals by pressing the thumbs up
or thumbs down buttons respectively. Once an appraisal is sent, AIDA updates
its beliefs about the parameter space and provides new settings for the HA al-
gorithm, in an attempt to make the user happy. As AIDA models user appraisals
using a GPC, we provide an additional button that initiates optimisation of the
hyperparameters of said GPC.

The demonstrator works in two environments: synthetic and real. The syn-
thetic environment allows the user to listen to a spoken sentence with two ar-
tificial noise sources, either interference from a sinusoidal wave or a power
drill. In the synthetic environment, the HA algorithm exploits knowledge about
acoustic contexts by using informative priors for the AR noise model. The real
environment uses data from the NOIZEUS speech corpus4. Concretely the real
environment consists of 30 sentences spoken in two different noise environ-
ments - either the background noise of a train station or babble noise. In the
real environment, the HA algorithm instead uses weakly informative priors for
the background noise which naturally influences the performance of the HA al-
gorithm. Both the HA algorithm and AIDA determine acoustic context based on
the BFE score, also shown in the demonstrator. The context with the lower BFE
score corresponds to the selected acoustic context.

4.6 Related Work

The problem of HA personalisation has been explored in various works. In [78],
HA parameters are tuned according to pairwise user assessment tests, during
which the user’s perception is modelled using GPs. The intractable posterior
distribution corresponding to the user’s perception is then computed using a
Laplace approximation with Expected Improvement as the acquisition function
used to select the next set of gains. Our agent improves upon [78] in two
concrete ways. Firstly, AIDA places a lower cognitive load on the user by not
requiring pairwise comparisons. This means the user does not need to keep in
her memory what the HA sounded like at the previous trial but only needs to

4The NOIZEUS database is available at https://ecs.utdallas.edu/loizou/speech/noizeus/.

https://ecs.utdallas.edu/loizou/speech/noizeus/
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consider the current HA output. AIDA accomplishes this without requiring more
trials for training. In fact, since AIDA does not require pre-training but can be
trained fully online under in-situ conditions, AIDA requires overall less data to
locate optimal gains. Secondly, AIDA can be continually trained and retrained.
In case the user’s preferences change over time, for instance by a change in
the hearing loss profile, AIDA can smoothly accommodate the user as long as
she continues to provide the agent with feedback. Using EFE as the acquisition
function means the agent will engage in local exploration once the optimum is
located, leading the agent to naturally learn shifts in the user’s preferences by
balancing exploration and exploitation.

In [2], personalisation of the HA compression algorithm is framed in terms
of deep reinforcement learning. Our work instead takes inspiration from the
AIF framework where agents act to maximise model evidence of their underly-
ing generative model. Importantly, this does not require us to explicitly specify a
loss function that balances explorative and exploitative behaviour. In the recent
work of [51], the HA preference learning algorithm is implemented through
sequential Bayesian optimisation with pairwise comparisons. Their HA system
comprises two subsystems representing a user with their preferences and an
agent that guides the learning process. However, [51] focuses only on explo-
ration through maximising information gain with a parametric model. The EFE
additionally adds a goal-directed term that ensures the agent will stay near
the optimum once located, even if other parameter settings provide more in-
formation. Extending the model of [51] to employ the full EFE is an exciting
potential direction for future work. Finally neither [78] nor [51] takes context
dependence into account.

[38] introduces Active Listening, which performs speech recognition based
on the principles of AIF. In [38], they regard listening as an active process
that is largely influenced by lexical, speaker, and prosodic information. [38]
distinguishes itself from conventional audio processing algorithms because it
explicitly includes the process of word boundary selection before word classifi-
cation and recognition, and treats this as an active process. Word boundaries are
selected from a group of candidate word boundaries through Bayesian model
selection by choosing the word boundary that optimises the VFE during classi-
fication. In the future, we see potential improvements from incorporating the
Active Listening approach into AIDA.

The audio processing components of AIDA essentially perform informed
source separation [58], where sources are separated based on prior knowledge.
Even though blind source separation approaches [68, 113] always use some
degree of prior information, we have elected not to focus on this direction and
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instead actively try to model the underlying sources based on variations of AR
processes. For audio processing applications, source separation has often been
performed in the log-power domain [27, 93, 94]. However, the interaction of
the signals in this domain is no longer linear, resulting in intractability issues.
The intractability that results from performing exact inference in this model is
often resolved by simplifying the interaction function [45, 89]. Although this
approach has shown to be successful in the past, its performance is limited be-
cause it neglects phase information.

4.7 Discussion

We have introduced AIDA, an Active Inference Design Agent that is capable of
tuning context-dependent parameters of a HA algorithm by incorporating user
feedback. Throughout the paper, we have made several design choices whose
implications we shortly review in this section.

The audio model introduced in Section 4.3.1 describes the dynamics of a
speech signal perturbed by coloured noise. Even though the proposed inference
algorithm allows for the decomposition of acoustic input signals into speech and
noise components, it has limitations that must be highlighted. First, identifiabil-
ity of the coupled AR model depends on the choice of priors. Non-informative
priors can lead to poor source estimation [48, 57]. To tackle the identifiability
issue, we used informative context-dependent priors for our experiments. In
other words, for each context, we use a different set of priors that better cap-
ture the dynamics of the acoustic signal in that context. Second, throughout our
experiments, we used fixed orders of both TVAR and AR models. In real-world
applications, we do not have access to apriori information about the actual or-
der of the underlying signals. Therefore, to continuously update our models of
the underlying sources we would need to perform active order selection, which
can be realized using Bayesian model reduction [31, 32]. Third, our model
assumes that the HA device only has access to a monaural input, meaning the
observed signal originates from a single microphone. As a result, we do not use
any spatial information about the acoustic signal that could have been obtained
using multiple microphones. This assumption is mostly influenced by our de-
sire to focus on the concept of designing a novel class of HA algorithms rather
than building a real-world HA engine. Fortunately, the proposed framework al-
lows for easy substitution of source models with more versatile ones that might
be better suited for speech. For instance, one can use several microphones, as
commonly done in beamforming [79], or use a frequency decomposition for im-
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proving source separation performance [27, 93, 94]. However, a more complex
model is likely to result in a higher computational burden which will pose a new
set of challenges when working on embedded devices.

The power of the intelligent agent comes from the choice of the objective
function. Since the objective is independent of the generative model, a straight-
forward approach to improving the agent is to adapt the generative model. In
particular, a GPC is a non-parametric model with very few assumptions on the
underlying function. Placing constraints on the preference function, such as was
done in [20, 51], is likely to improve the data efficiency of the agent. Arguably,
a core move of [20, 51] is to acknowledge that user preferences are likely to be
peaked around one or a few optima. Even if the true preference function has
multiple modes, assuming a single peak for the agent is safe since it only needs
to locate one of the modes to provide good parameter settings. Making this
assumption allows the authors to work with a parametric model over user pref-
erences. In turn, working with a less flexible model predictably leads to higher
data efficiency, which can aid the agent’s performance. Given that the target
demographic for AIDA consists of HA users, it is of paramount importance that
the agent is able to learn an adequate representation of user preferences in as
few trials as possible to avoid inconveniencing the user.

During model specification in Section 4.3.2, we make a number of assump-
tions on the control variable uk and user appraisals rk. First, we set the domain
of the elements of control variable uk to [0, 1]. This is an arbitrary constraint
that we use for illustrative purposes. The domain can be easily rescaled without
loss of generality. For example, our demonstrator uses the default domain of
uk ∈ [0, 2]2. Secondly, we opt for binary user appraisals, i.e. rk ∈ {∅, 0, 1}. This
design choice follows from the desire to allow users to communicate covertly
with AIDA since binary user appraisal can more easily be linked to for example
covert wrist movements when wearing a smartwatch. With continuous user ap-
praisals, e.g. rk ∈ [0, 1], or pairwise comparison tests, the convergence of AIDA
can be greatly improved as these appraisals yield more information per trial.
However, providing AIDA with these appraisals requires more user attention,
which can be undesirable in certain circumstances.

Real-world testing of AIDA has not been included in our work. Performance
evaluation with human HA clients is not straightforward. To evaluate the perfor-
mance of AIDA, we would need to conduct a randomised controlled trial, where
HA clients are randomly assigned to either an experimental group or a control
group. While the intelligent agent AIDA can interact with users in real-time, the
source separation framework is currently limiting actual, real-time deployment
of the system. Given the current model assumptions - two AR filters under a
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variational approximation - we obtain good source separation performance at
the cost of computational complexity. As a consequence, the complete system is
not yet suitable for a proper randomised controlled trial setting. Nonetheless,
we provide a demo that simulates AIDA and can be tested freely. In future work,
we will focus on specifying source models that only require cheap computations,
allowing us to run the source separation algorithms in real-time.

4.8 Conclusions

This chapter has presented AIDA, an active inference design agent for novel
situation-aware personalised HA algorithms. AIDA and the corresponding HA
algorithm are based on probabilistic generative models that model both user
preferences and the underlying speech and context-dependent background noise
signals of an observed acoustic signal. Through probabilistic inference by means
of MP, we perform informed source separation and use the separated signals to
perform source-specific filtering. AIDA then learns personalised source-specific
gains through user interaction, depending on the environment that the user is
currently in. Users can at any time provide a binary appraisal after which the
agent will make an improved proposal, based on EFE minimisation, balancing
both exploitative and explorative behaviour.

Experimental results indicate that hybrid MP procedures are capable of cor-
rectly inferring hidden states of the coupled AR model that are associated with
speech and noise components of the observed acoustic signal. Moreover, Bayesian
model selection has been demonstrated adequate for the context inference prob-
lem when each source is modelled by an AR process. The experiments on pref-
erence learning showed the potential of applying EFE minimisation for finding
optimal settings of the HA algorithm. Although real-world implementations still
present challenges, this novel class of audio processing algorithms provides an
alternative to leading approaches to HA algorithm design.

Data Availability Statement

The datasets used in this study can be found at the AIDA-data repository5.

5The datasets used in this study can be found at the AIDA-data repository at https://github.
com/biaslab/AIDA-data.

https://github.com/biaslab/AIDA-data
https://github.com/biaslab/AIDA-data
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Chapter 5
Realising Synthetic Active
Inference Agents

”Such is the advantage of a well constructed language that its simplified
notation often becomes the source of profound theories. ”

– Pierre Simon Laplace

The Free Energy Principle (FEP) is a theoretical framework for describing
how (intelligent) systems self-organise into coherent, stable structures by min-
imising a free energy functional. Active Inference (AIF) is a corollary of the
FEP that specifically details how systems that can plan for the future (agents)
function by minimising particular free energy functionals that incorporate in-
formation seeking components. In this chapter, we derive a local version of the
free energy functionals used for AIF. This enables us to construct a version of
AIF that applies to arbitrary graphical models and interfaces with prior work on
message passing algorithms. We derive the required message passing updates
as well and demonstrate an algorithm for direct policy inference on the classic
T-maze task. A key advantage of performing direct policy inference is that it cir-
cumvents a long standing scaling issue that has so far hindered the application
of AIF in industrial settings.

We also identify a gap in the graphical notation used for factor graphs. While
factor graphs are great at expressing a generative model, they have so far been
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unable to specify the full optimisation problem including constraints. To solve
this problem we develop constrained Forney-style factor graph (CFFG) notation
which permits a fully graphical description of variational inference objectives.
We proceed to show how CFFGs can be used to reconstruct prior algorithms for
AIF as well as derive new ones.

The present chapter is based on the twin original works referenced below.
The contents of both papers were established in close collaboration with T. W.
van de Laar. The present chapter focuses mainly on Part I and includes content
from Part II where necessary to form a complete document.

Koudahl, M. T., van de Laar, T. W., & de Vries, B. (2023). Realising
Synthetic Active Inference Agents, Part I: Epistemic Objectives and Graphi-
cal Specification Language arXiv:2306.08014
van de Laar, T. W., Koudahl, M. T., & de Vries, B. (2023). Realis-
ing Synthetic Active Inference Agents, Part II: Variational Message Passing
Updates arXiv:2306.02733

5.1 Introduction

Active Inference (AIF) is an emerging framework for modelling intelligent agents
interacting with an environment. Originating in the field of computational neu-
roscience, it has since been spread to numerous other fields such as modern
machine learning. At its core, AIF relies on variational inference techniques
to minimise a free energy functional. A key differentiator of AIF compared to
other approaches is the use of custom free energy functionals such as Expected
and Generalised free energies (expected free energy (EFE) and generalised free
energy (GFE), respectively). These functionals are specifically constructed so as
to elicit epistemic, information seeking behaviour when used to infer actions.

Optimisation of these functionals have so far relied on custom algorithms
that require evaluating very large search trees which has rendered upscaling of
AIF difficult. Many recent works, such as Branching Time AIF [16] and sophis-
ticated inference [35] have investigated algorithmic ways to prune the search
tree in order to solve this problem.

In this chapter, we take a different approach and formulate a variation of the
GFE optimisation problem using a custom Lagrangian derived from constrained
Bethe free energy (CBFE) on factor graphs. Using variational calculus we then
derive a custom message passing (MP) algorithm that can directly solve for fixed
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points of local GFE terms, removing the need for a search tree. This allows
us to construct a purely optimisation-based approach to AIF which we name
Lagrangian Active Inference (LAIF).

LAIF applies to arbitrary graph topologies and interfaces with generic MP
algorithms which allow for scaling up of AIF using off-the-shelf tools. We ac-
complish this by constructing a node-local GFE on generic factor graphs.

The present chapter is structured as follows: In Section 5.2, we review rel-
evant background material concerning Forney-style factor graphs (FFGs) and
Bethe free energy (BFE). In Section 5.3 we formalise what we mean by "epis-
temics" and construct an objective that is local to a single node on an FFG and
possesses an epistemic, information-seeking drive. This objective turns out to
be a local version of the GFE which we review in Section 5.3.2.

Once we start modifying the free energy functional, we recognise a problem
with current FFG notation. FFGs visualise generative models but fail to display
a significant part of the optimisation problem, namely, the variational distribu-
tion and the functional to be optimised. To remedy this, we develop the CFFG
graphical notation in Section 5.5 as a method for visualising both the variational
distribution and any adaptations to the free energy functional that are needed
for AIF. These tools form the basis of the update rules derived in Appendix C.3.

With the CFFG notation in hand, in Section 5.8 we then proceed to demon-
strate how to recover prior algorithms for AIF as message passing on a CFFG.
AIF is often described as message passing on a probabilistic graphical model,
see [22, 33, 59, 103] for examples. However, this relationship has not been
properly formalised before, in part because adequate notation has been lacking.
Using CFFGs it is straightforward to accurately write down this relation. Fur-
ther, due to the modular nature of CFFGs it becomes easy to devise extensions
to prior AIF algorithms that can be implemented using off-the-shelf MP tools.

Finally, Section 5.9 demonstrates a new algorithm for policy inference using
LAIF that scales linearly in the planning horizon, providing a potential solution
to a long-standing barrier for scaling AIF to larger models and more complex
tasks.

5.2 The Lagrangian Approach to Message Passing

In this section, we review the Bethe free energy along with FFGs. These con-
cepts form the foundation from which we will build towards local epistemic,
objectives.
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As a free energy functional, the BFE is unique because stationary points of
the BFE correspond to solutions of the belief propagation algorithm [84, 114,
116] which provides exact inference on tree-structured graphs.

Furthermore, by adding constraints to the BFE using Lagrange multipliers,
one can form a custom Lagrangian for an inference problem. Taking the first
variation of this Lagrangian, one can then solve for stationary points and obtain
MP algorithms that solve the desired problem. Prior work [114, 116] have
shown that adding additional constraints to the BFE allows for deriving a host
of different message passing algorithms including variational message passing
(VMP) [112] and expectation propagation (EP) [75] among others. We refer
interested readers to [116] for a comprehensive overview of this technique and
how different choices of constraints can lead to different algorithms.

Constraints are specified at the level of nodes and edges, meaning this pro-
cedure can produce hybrid MP algorithms, foreshadowing the approach we are
going to take for deriving a local, epistemic objective for AIF.

5.2.1 Bethe Free Energy and Forney-style Factor Graphs

Throughout the remainder of this chapter, we will use FFGs to visualise proba-
bilistic models. In Section 5.5 we extend this notation to additionally allow for
specifying constraints on the variational optimisation objective. Following [116]
we define an FFG as a graph G = (V, E) with nodes V and edges E ⊆ V ×V. For
a node a ∈ V, we denote the connected edges by E(a). Similarly for an edge
i ∈ E , we denote the connected nodes by V(i).

An FFG can be used to represent a factorised function (model) over variables
s, as

f(s) =
∏
a∈V

fa(sa) , (5.1)

where sa collects the argument variables of the factor fa. Throughout this
chapter, we will use cursivebold font to denote collections of variables. In the
corresponding FFG, the factor fa is denoted by a square node, and connected
edges E(a) represent the argument variables sa.
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fb fcfa

fd fe

s1 s2

s3 s4

Figure 5.1: Example of an FFG

As an example, we can consider the FFG shown in Fig. 5.1 which corre-
sponds to the model

f(s1, s2, s3, s4) = fa(s1)fb(s1, s2, s3)fc(s2, s4)fd(s3)fe(s4) (5.2)

In Fig. 5.1, the vertex set is V = {a, . . . , e} and the edge set is E = {1, . . . , 4}.
As an example, the neighbouring edges of the node c are given by E(c) = {2, 4}.
In this way, FFGs allow for simple visualisation of the factorisation properties of
a high-dimensional function.

The problem we will focus on concerns the minimisation of a free energy
functional over a generative model. More formally, given a model (5.1) and a
"variational" distribution q(s), the variational free energy (VFE) is defined as

F [q] ≜
∫
q(s) log

q(s)

f(s)
ds . (5.3)

Variational inference concerns minimising this functional, leading to the so-
lution

q∗ = argmin
q∈Q

F [q] , (5.4)

with Q denoting the admissible family of functions q. The optimised VFE
upper-bounds the negative log-evidence (surprisal), as

F [q∗] =

∫
q∗(s) log

q∗(s)

p(s)
ds︸ ︷︷ ︸

Posterior divergence

− logZ︸ ︷︷ ︸
Surprisal

, (5.5)
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with Z =
∫
f(s)ds is the model evidence and the exact posterior is given by

p(s) = f(s)/Z.
The BFE applies the Bethe assumption to the factorisation of q which yields

an objective that decomposes into a sum of local free energy terms, each lo-
cal to a node on the corresponding FFG. Each node local free energy will in-
clude entropy terms from all connected edges. Since an edge is connected to
(at most) two nodes, that means the corresponding entropy term would be
counted twice. To prevent overcounting of the edge entropies, the BFE includes
additional terms entropy terms that cancel out overcounted terms.

Under the Bethe approximation q(s) is given by

q(s) =
∏
a∈V

qa(sa)
∏
i∈E

qi(si)
1−di (5.6)

with di the degree of edge i. As an example, on the FFG shown in Fig. 5.1
this would correspond to a variational distribution of the form

q(s1, . . . , s4) =
qa(s1)qb(s1, s2, s3)qc(s2, s4)qd(s3)qe(s4)

q1(s1)q2(s2)q3(s3)q4(s4)
(5.7)

where we see terms for the edges in the denominator and for the nodes in
the numerator. With this definition, the free energy factorises over the FFG as

F [q] =
∑
a∈V

∫
qa(sa) log

qa(sa)

fa(sa)
dsa︸ ︷︷ ︸

F [qa]

+
∑
i∈E

(1− di)
∫
qi(si) log

1

qi(si)
dsi︸ ︷︷ ︸

H[ qi ]

. (5.8)

Eq. (5.8) defines the BFE. Note that F defines a free energy functional which
can be either local or global depending on its arguments. More specifically, F [q]
defines the free energy for the entire model, while F [qa] defines a node local (to
the node a) BFE contribution of the same functional form.

Under optimisation of the BFE- solving Eq. (5.4) - the admissible set of func-
tions Q enforces consistent normalisation and marginalisation of the node and
edge local distributions, such that
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∫
qi(si) dsi = 1 for all i ∈ E∫
qa(sa) dsa = 1 for all a ∈ V∫

qa(sa) dsa\i = qi(si) for all a ∈ V, i ∈ E(a) .

(5.9)

Because we always assume the constraints given by Eq. (5.9) to be in effect,
we will omit the subscript on individual q’s moving forwards and instead let the
arguments determine which marginal we are referring to, for example writing
q(sa) instead of qa(sa).

A core aspect of FFGs is that they allow for easy visualisation of MP algo-
rithms. MP algorithms are a family of distributed inference algorithms with the
common trait that they can be viewed as messages flowing on an FFG.

As a general rule, to infer a marginal for a variable, messages are passed
on the graph toward the associated edge for that variable. Multiplication of
colliding (forwards and backwards) messages on an edge yields the desired
posterior marginal. We denote a message on an FFG by arrows pointing in the
direction that the message flows.

fb fcfa

fd fe

s1

→
s2

→←

s3↑ s4↑

Figure 5.2: Example of messages flowing on an FFG

We show an example in Fig. 5.2 of inferring a posterior marginal for the
variable s2. In this example, messages are flowing on the FFG of Fig. (5.1)
towards the variable s2 where we see two arrows colliding. The exact form of
the individual messages depends on the algorithm being used.
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5.3 Defining Epistemic Objectives

Now we move on to the central topic of AIF, namely agents that interact with
the world they inhabit. Under the heading of AIF, an agent entails a generative
model of its environment and is engaged in the process of achieving future
goals (specified by a target distribution or goal prior) through actions. This task
can be cast as a process of free energy minimisation [28, 35, 37]. A natural
question to ask is then, what should this free energy functional look like and
why? Here we wish to highlight a core feature of AIF that sets it apart from
other approaches: Systematic information gathering by targeted exploration of
an environment. Whatever the form of our free energy functional, it should lead
to agents that possess an exploratory drive consistent with AIF.

While it is tempting to default to a standard VFE, prior work [102] has
shown that directly optimising BFE or VFE when inferring a sequence of actions
(which we will refer to as a policy) does not lead to agents that systematically
explore their environment. Instead, directly inferring a policy by minimising a
VFE/BFE leads to Kullback-Leibler divergence (KL)-control [54] 1. This means
that VFE/BFE is not the correct choice when we desire an agent that actively
samples its environment with the explicit purpose of gathering information.

Instead a hallmark feature of AIF is the use of alternative functionals in place
of either the VFE or the BFE, specifically for inferring policies. The goal of these
alternative functionals is often specifically to induce an epistemic, explorative
term that drives AIF agents to seek out information.

Epistemics, epistemic behaviour or "foraging for information" are commonly
used terms in the AIF literature and related fields. While we have used the term
colloquially until this point, we now clarify formally how we use the term in
the present paper and how it relates to the objective functionals we consider. A
core problem is that epistemics is most often defined in terms of the behaviour
of agents ("what does my agent do?") rather than from a mathematical point of
view. Prior work on this point includes [43, 74].

We take the view that epistemics arise from the optimisation of either an mu-
tual information (MI) term or a bound thereon. The MI (between two variables
x and z) is defined as [71]

I [x, z ] =
x

p(x, z) log
p(x, z)

p(x)p(z)
dxdz . (5.10)

1Other works will sometimes use π as a symbol to denote a policy
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To gain an intuition for why maximising MI leads to agents that seek out
information, we can rewrite MI as

I [x, z ] =
x

p(x, z) log
p(z | x)
p(z)

dxdz

= H [ z ]−H [ z | x ] = H [x ]−H [x | z ]
(5.11)

Since MI is symmetric in its arguments, Eq. (5.11) can equally well be writ-
ten in terms of x rather than z. Eq. (5.11) shows that MI decomposes as the
difference between the marginal entropy z and the expected entropy of z con-
ditional on x.

If we let z denote an internal state of an agent and x an observation and
allow our agent to choose x - for instance through acting on an environment
- we can see why maximising Eq. (5.10) biases the agent towards seeking our
observations that reduce entropy in z. Maximising Eq. (5.10) means the agent
will prefer observations that provide useful (in the sense of reducing uncer-
tainty) information about its internal states z. For this reason MI is also known
as Information Gain.

Actually computing Eq. (5.10) is often intractable and in practice, a bound
is often optimised instead.

5.3.1 Constructing a Local Epistemic Objective

At this point, we have seen that the BFE is defined over arbitrary FFG’s, yet does
not lead to epistemic behaviour. On the other hand, maximising MI leads to
the types of epistemic behaviour we desire, yet is not distributed like the BFE.
The question becomes whether there is a way to merge the two and obtain a
distributed functional - like the BFE- that includes an epistemic term?

We will now show how to construct such a functional. Our starting point
will be the BFE given by Eq. (5.8). We will focus on a single node a and its
associated local energy term and partition the incoming edges into two sets, x
and z. This gives the node local free energy

F [qa] =
x

q(x, z) log
q(x, z)

f(x, z)
dxdz (5.12)

Now we need to add on an MI term to induce epistemics. Since we are
minimising our free energy functional and want to maximise MI, we augment
the free energy with a negative MI term as
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G[ qa ] =

Variational free energy︷ ︸︸ ︷
x

q(x, z) log
q(x, z)

f(x, z)
dxdz+

Negative mutual information︷ ︸︸ ︷
x

q(x, z) log
q(x)q(z)

q(x, z)
dxdz (5.13a)

=
x

q(x, z) log
����q(x, z)

f(x, z)
dxdz +

x
q(x, z) log

q(x)q(z)

����q(x, z)
dxdz (5.13b)

=
x

q(x, z) log
q(x)q(z)

f(x, z)
dxdz (5.13c)

which we can recognise as a node-local GFE [81]. In Section 5.3.2 we re-
view the results of [81] to expand upon this statement. Eq. (5.13a) provides a
straightforward explanation of the kinds of behaviour that we can expect out of
agents optimising a GFE. Namely, minimising BFE with a goal prior corresponds
to performing KL-control [54] while the MI term adds an epistemic, informa-
tion seeking component. Viewed in this way, there is nothing mysterious about
the kind of objective optimised by AIF agents: It is simply the sum of two well
known and established objectives that are each widely used within the control
and reinforcement learning communities.

5.3.2 Generalised Free Energy

The objective derived in Eq. (5.13) is a node local version of the GFE originally
introduced by [81]. In this section we review the GFE as constructed by [81]
in order to relate our construction to prior work on designing AIF functionals.
In Section 5.8 we show how to reconstruct the exact method of [81] using the
tools we develop in this paper. Prior to [81], the functional of choice was the
expected free energy (EFE) [22, 33]. [81] identified some issues with the EFE
and proposed the GFE as a possible solution.

We show how to reconstruct the original EFE-based algorithm of [33] using
our local objective in Section 5.8. We also provide a detailed description of the
EFE in Appendix. C.1 since it is still a popular choice for designing AIF agents.

A core issue with the EFE is that it is strictly limited to planning over future
time steps. This means that AIF agents that utilise the EFE functional need
to maintain two separate models: One for inferring policies (using EFE) and
one for state inference (using VFE/BFE) that updates as observations become
available. The key advantage of EFE is that it induces the epistemic drive that
we desire from AIF agents.
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The goal of [81] was to extend upon the EFE by introducing a functional
that could induce similar epistemic behaviour when used to infer policies while
at the same time reducing to a VFE when dealing with past data points. In this
way an agent would no longer have to maintain two separate models and could
instead utilise only one.

The GFE as introduced by [81] is tied to a specific choice of generative
model. The model introduced by [81] is given by

p(x, z | û) ∝ p(z0)
T∏

k=1

p(xk|zk)p(zk|ûk, zk−1)p̃(xk) (5.14)

where x denotes observations, z denotes latent states and û denotes a fixed
policy. Throughout this paper we will use t to refer to the current time step in
a given model and denote fixed values by a hat, here exemplified by û. Further,
we also use z to denote vectors.

Given a current time step t, we have that for future time steps k > t, p̃(xk)
defines a goal prior over desired future observations. For past time steps k ≤ t,
we instead have p̃(xk) = 1 which makes it uninformative 2. Writing the model
in this way allows for a single model for both perception (integrating past data
points) and action (inferring policies) since both past and future time steps are
included. GFE is defined as [81]

G[ q; û ] =

T∑
k=1

x
q(xk|zk)q(zk|ûk) log

q(xk|ûk)q(zk|ûk)

p̃(xk)p(xk, zk|ûk)
dxkdzk (5.15)

where

q(xk|zk) =

{
δ(xk − x̂k) if k ≤ t
p(xk|zk) if k > t

. (5.16)

and x̂k denotes the observed data point at time step k. p(xk, zk | ûk) can be
found recursively by Bayesian smoothing, see [60, 99] for details. To see how
the GFE reduces to a VFE when data is available, we refer to Appendix C.2.

The GFE introduced by [81] improves upon prior work utilising EFE but still
has some issues. The first lies in tying it to the model definition in Eq. (5.14).

2[81] writes this as the prior being flat to achieve a similar effect
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Being committed to a model specification apriori severely limits what the GFE
can be applied to since not all problems are going to fit the model specifica-
tion. Additionally, a more subtle issue lies in the commitment to a hard time
horizon. If t denotes the current time step, at some point time will advance
to the point t > T . When this happens Eq. (5.14) loses the capacity to plan
and becomes static since all observations are clamped by virtue of Eq. (5.16).
A further complication arises from û being a fixed parameter and not a random
variable. Being a fixed parameter means it is not possible to perform inference
for û which in turn makes scaling difficult. Moving to a fully local version of
the GFE instead means we can construct a new approach to AIF that addresses
these issues.

5.4 LAIF - Lagrangian Active Inference

Armed with the node local GFE derived in Eq. (5.13), we can construct a La-
grangian for AIF. The goal is to adapt the Lagrangian approach to MP sketched
in Section 5.2 to derive a MP algorithm that optimises local GFE in order to have
a distributed inference procedure that incorporates epistemic terms. Naively ap-
plying the method of [116] to Eq. (5.13) does not yield useful results because
the numerator differs from the term we take the expectation with respect to. To
obtain a useful solution we need that

q(x, z) = q(x | z)q(z) (5.17)

and add the original assumption in [81], given by Eq. (5.16)

q(x | z) ≜ p(x | z) . (5.18)

With these additional assumptions, we can obtain meaningful solutions and
derive a MP algorithm that optimises a local GFE and induces epistemic be-
haviour which we demonstrate in Section 5.9. The detailed derivation of these
results can be found in Section 5.6.

At this point, we will instead show a different way to arrive at the local GFE.
This approach is more "mechanical" but has the advantage that it can more
easily be written in terms of constraints on the BFE. Our starting point will once
again be a free energy term local to the node a
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F [qa] =

∫
q(sa) log

q(sa)

f(sa)
dsa (5.19)

To turn Eq. (5.19) into a local GFE we need to perform two steps. The first is to
enforce a mean field factorisation

q(sa) =
∏

i∈E(a)

q(si) (5.20)

The second is to change the expectation to obtain

∫
q(sa) log

q(sa)

f(sa)
dsa =⇒

∫
p(si|sa\i)q(sa\i) log

q(sa)

f(sa)
dsa (5.21)

where i ∈ E(a). This partitions the connected variables into two sets: A set
of variables where the expectation is modified and any remainder that is not
modified. p(si | sa\i) denotes a conditional probability distribution. We write
p here instead of f to emphasise that the conditional needs to be normalised in
order for us to be able to take the expectation.

We refer to this move as a P-substitution. Once the mean field factorisation
is enforced, we can recognise Eq. (5.21) as a node local GFE G[qa].

As an example of constructing a node local GFE with this approach, we can
consider a node with two connected variables, {x, z}.

The local free energy becomes

F [qa] =
x

q(x, z) log
q(x, z)

p(x, z)
dxdz (5.22)

Now we apply a mean field factorisation

F [qa] =
x

q(x)q(z) log
q(x)q(z)

p(x, z)
dxdz (5.23)

And finally, perform P-substitution to obtain a node local GFE

x
q(x)q(z) log

q(x)q(z)

p(x, z)
dxdz =⇒

x
p(x | z)q(z) log q(x)q(z)

p(x, z)
dxdz (5.24)



5

126 Realising Synthetic Active Inference Agents

We denote the set of nodes for which we want to perform P-substitution with
P ⊆ V. When performing P-substitution, we are replacing a local variational
free energy F [qa] with a local generalised free energy G[ qa ]. Armed with P-
substitution, we can now write the simplest instance of a Lagrangian for Active
Inference

L[q] =
∑
a∈P
G[ qa ]︸ ︷︷ ︸

P-substituted subgraph
w / naive mean field

+
∑

b∈V\P

F [qb]︸ ︷︷ ︸
Node local

free energies

+
∑
i∈E

(1− di) H [ q(si) ]︸ ︷︷ ︸
Edge entropy

+
∑
a∈V

∑
i∈E

∫
λia(si)

[
q(si)−

∫
q(sa)dsa\i

]
dsi︸ ︷︷ ︸

Marginalisation

+
∑
a∈V

λa

[∫
q(sa)dsa − 1

]
︸ ︷︷ ︸

Normalisation of node marginals

+
∑
i∈E

λi

[∫
q(si)dsi − 1

]
︸ ︷︷ ︸
Normalisation of edge marginals

.

(5.25)

With the Active Inference Lagrangian in hand, we can now solve for station-
ary points using variational calculus and obtain MP algorithms for LAIF. The
key insight is that messages flowing out of P derived from stationary points of
Eq. (5.25) will correspond to stationary points of the local GFE rather than BFE,
meaning the result will include an epistemic component. This paves the way
for a localised version of AIF that applies to arbitrary graph structures, does not
suffer from scaling issues as the planning horizon increases, and can be solved
efficiently and asynchronously using MP.

5.5 Constrained Forney-style Factor Graphs

While FFGs are a useful tool for writing down generative models, we have by
now established the importance of knowing the exact functional to be min-
imised. This requires specifying not just the model f but also the family Q
through constraints and any potential P-substitutions. This is important if we
want to be able to succinctly specify not just the model but also the exact infer-
ence problem we aim to solve.
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We will now develop just such a new notation for writing constraints directly
as part of the FFG. We refer to FFGs with added constraints specification as
CFFGs.

Figure 5.3: An example FFG.

Fig 5.3 shows a model comprised of five edges and six nodes. FFGs tradition-
ally represent the model f using squares connected by lines as shown in Fig. 5.3.
The squares represent factors and the connections between them represent vari-
ables. Connecting an edge to a square node indicates that the variable on that
edge is an argument of the factor it is connected to.

The notation for CFFGs adheres to similar principles when specifying f .
However, we augment the FFG with circular beads to indicate the constraints
that define our familyQ. Each factor of the variational distribution in q will cor-
respond to a bead and the position of a bead indicates to which marginal it refers
- a bead on an edge denotes an edge marginal q(si) and a bead inside a node
denotes a node marginal q(sa). An empty bead will denote the default normal-
isation constraints while a connection between beads indicates marginalisation
constraints following Eq. (5.9). These beads form the basic building blocks of
our notation.

To write the objective corresponding to the model in Fig. 5.3 given the de-
fault constraints of Eq. (5.9), we add beads for every term and extend edges
through the node boundary to connect variables that are under marginalisation
constraints as shown in Fig. 5.4.

Figure 5.4: Example CFFG with normalisation and marginalisation constraints.
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5.5.1 Factorisation Constraints

We will now extend our notation with the most common types of constraints
used for defining Q. A common choice is factorisation of the variational distri-
bution with the most well-known example being the naive mean field approx-
imation. Under a naive mean field factorisation all marginals are considered
independent. Formally this means we enforce

q(sa) =
∏

i∈E(a)

q(si) . (5.26)

To write Eq. (5.26) on a CFFG we need to replace the joint node marginal
with the product of adjacent edge marginals.

fa
fa

Figure 5.5: Changing a local joint factorisation to a naive mean field assumption on a
CFFG.

To do this we can replace the bead indicating the joint marginal with a bead
for each edge marginal in Eq. (5.26) as shown in Fig. 5.5.

The naive mean field is the strongest factorisation possible. It is possible
to utilise less aggressive factorisations by appealing to a structured mean field
approximation instead. The structured mean field constraint takes the form

q(sa) =
∏

n∈l(a)

qn(sna) (5.27)

where l(a) denotes a set of one or more edges connected to the node a such
that each element in E(a) can only appear in l(a) once [116]. For example if
E(a) = {i, j, k} corresponding to variables {x, y, z}, we can factorise q(x, y, z)
as q(x)q(y, z) or q(z)q(x, y) but not as q(x, y)q(y, z) since y appears twice. The
naive mean field is a special case of the structured mean field where every
variable appears only by itself.
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To write a structured mean field factorisation on a CFFG we can apply a sim-
ilar logic and replace the single bead denoting the joint with beads that match
the structure of l(a). Each set of variables that are factorised together corre-
sponds to a single bead connected to the edges in the set that factor together.

fa

fa

fa

Figure 5.6: Changing a local joint factorisation to structured mean field on a CFFG.

Fig. 5.6 shows two example factorisations. The first option factorises the four
incoming edges into two sets of two while the second partitions the incoming
edges into two sets of one and a single set of two. Using these principles it
is possible to specify complex factorisation constraints as part of the CFFG by
augmenting each node on the original FFG.

The final situation we need to consider is the case when a single node has
a variable or very high number of incoming edges. An example could be a
Gaussian Mixture Model with a variable number of mixture components. On a
CFFG we indicate variable or large numbers of identical edges by drawing two
of the relevant edges and separating them with dots (· · · ) as shown in Fig. 5.7.
To indicate factorisation constraints we can write either a joint or a naive mean
field factorisation between the two edges, letting the dots denote that a similar
factorisation applies to the remaining edges.
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fa fa

Figure 5.7: Mean field (left) and joint (right) factorisation constraints for variable num-
bers of edges on a CFFG.

5.5.2 Form Constraints

We will now extend CFFG notation with constraints on the functional form of
nodes and edges. Form constraints are used to enforce a particular form for a
local marginal on either an edge or a node. For an edge si they enforce

∫
q(sa)dsa\i = q(si) = g(si) (5.28)

where g(si) denotes the functional form we are constraining the edge marginal
si to take. Form constraints on node marginals take the form

q(sa) = g(sa) . (5.29)

Conventionally FFGs denote the form of a factor by a symbol inside the node.
We adopt a similar convention to denote form constraints on q by adding sym-
bols within the corresponding beads. For instance, we can indicate a Gaussian
form constraint on an edge as shown in Fig 5.8

N

Figure 5.8: Notation for enforcing a Gaussian form constraint on an edge.

Note that this is not dependent on the form of the neighbouring factors. This
is a subtle point as it allows us to write approximations into the specification of
Q. As an example, the unconstrained marginal in Fig. 5.8 might be bimodal
or highly skewed but by adding a form constraint, we are enforcing a Gaussian
approximation. Outside of a few special cases, enforcing form constraints on
edges is rarely done in practice since the functional form of q most often follows
from optimisation [116].
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A special case of form constraints is the case of dangling edges (edges that
are not terminated by a factor node). Technically these would not warrant a
bead since they would not appear explicitly in the BFE due to having degree
1. Intuitively this means that the edge marginal is only counted once and we
therefore do not need to correct for overcounting. However without a bead,
there is nowhere to annotate a form constraint which is problematic.

The solution for CFFG notation is to simply draw the bead anyway, in case
a form constraint is needed. This is formally equivalent to terminating the dan-
gling edge by a factor node with the node function fa(sa) = 1. Terminating the
edge in this way means the edge in question now has degree 2 and therefore
warrants a bead. This is always a valid move since multiplication by 1 does not
change the underlying function [116].

We can denote form constraints on node marginals in the same manner as
edge marginals. We show an example in Fig. 5.9 where we enforce a Gaussian
form constraint on one node marginal and a Wishart on the other. Again it is
important to note that these are constraints on q and not part of the underlying
model specification f .

N W

Figure 5.9: Notation for enforcing form constraints on nodes.

Two kinds of form constraints warrant extra attention: δ-constraints and
moment matching. We will now deal with these in turn.

5.5.3 δ-constraints and Data Points

δ-constraints are the most commonly used form constraints because they allow
us to incorporate data points into a model. A δ-constraint on an edge defines
the function g(si) in Eq. (5.28) to be

g(si) = δ(si − ŝi) (5.30)

What makes the δ-constraint special is that ŝi can either be a known value
or a parameter to optimise [116]. In the case where ŝi is known, it commonly
corresponds to a data point. We will refer to this case as a data constraint and
denote it with a filled circle as shown in Fig 5.10
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δ δ

Figure 5.10: Terminating and non-terminating notation for data constraints.

Data constraints are special because they denote observations. They also
block any information flow across the edge in question [116]. Because they
block information flow, CFFG notation optionally allows data constraints to ter-
minate edges.

Here we wish to raise a subtle point about prior FFG notation. Previous
work has used small black squares to denote data constraints following [92].
In keeping with our convention, a small black square on a CFFG denotes a
δ-distributed variable in the model f rather than the variational distribution
q. Being able to differentiate data-constrained variables in q and apriori fixed
parameter of the model f allows us to be explicit about what actually constitutes
a data point for the inference problem at hand [14].

In the case where ŝj is not known, it can be treated as a parameter to be
optimised. We refer to this case as a δ-constraint or a pointmass constraint and
notate it with an unfilled circle as shown in Fig 5.11

δ

Figure 5.11: Notation for δ-constraints.

Unlike data constraints, the δ-constraint allows messages to pass and is
therefore not allowed to terminate an edge. Optimising the value of ŝi under a
δ-constraint leads to EM as message passing [116].

5.5.4 Moment Matching Constraints

Moment matching constraints are special in that they replace the hard marginal-
isation constraints of Eq. (5.8) with constraints of the form

q(si) =

∫
q(sa)dsa\i =⇒

∫
q(sa)Ti(si)dsa =

∫
q(si)Ti(si)dsi (5.31)

where Ti(si) are the sufficient statistics of an exponential family distribu-
tion. This move loosens the marginalisation constraint by instead only requiring
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that the moments in question align. When taking the first variation and solving,
one obtains the expectation propagation (EP) algorithm [75].

For notational purposes, moment matching constraints are unique in that
they involve both an edge- and a node-marginal. That means the effects are not
localised to a single bead. To indicate which beads are involved, we replace the
solid lines between them with dashed lines instead.

We denote moment matching constraints by an E inside the corresponding
edge-bead as shown in Fig 5.12. Choosing the edge-bead over the node-bead is
an arbitrary decision made mainly for convenience.

E E

Figure 5.12: Notation for moment matching with a single-sided (left) and double-sided
(right) node/edge pairs.

The left side of Fig. 5.12 shows notation for constraining a single node/edge
pair by moment matching. If both nodes connected to an edge are under mo-
ment matching constraints, the double-sided notation on the right of Fig. 5.12
applies.

Given the modular nature of CFFG notation it is easy to compose different lo-
cal constraints to accurately specify a Lagrangian and by extension an inference
problem. Adding custom marginal constraints to a CFFG is also straightforward
as it simply requires defining the meaning of a symbol inside a bead.

5.5.5 P-substitution on CFFGs

The final piece needed to represent the Active Inference Lagrangian on a CFFG
is P-substitution. Being able to represent LAIF on a CFFG is the reason for
constructing the local GFE using a meanfield factorisation and P-substitution.
This construction is much more amenable to the tools we have developed so far
as we will now demonstrate.

Recall that P-substitution involves substituting part of the model p for q in
the expectation only. To write P-substitution on a CFFG, the logical notation
is therefore to replace a circle with a square. Fig. 5.13 shows an example of
adding a P-substitution to a meanfield factorised node marginal
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fa

x

y

z
fa

x

y

z

Figure 5.13: P-substitution on a CFFG with naive mean field factorisation.

The square notation for P-substitution on CFFGs implies a conditioning of the
P-substituted variable on all other connected variables that are not P-substituted.
For example, in Fig. 5.13 the P-substitution changes local VFE to a GFE by

y
q(y)q(x)q(z) log

q(y)q(x)q(z)

p(y, x, z)
dydxdz

=⇒
y

p(y | x, z)q(x)q(z) log q(y)q(x)q(z)
p(y, x, z)

dydxdz

(5.32)

Here the P-substituted variable is y and the remainder are {x, z}.

5.5.6 CFFG Compression

The value of CFFG notation is measured by how much it aids other researchers
and practitioners in expressing their ideas accurately and succinctly. We envi-
sion two main groups for whom CFFGs might be of particular interest. The first
group is comprised of mathematical researchers working on constrained free
energy optimisation on FFGs For this group we expect that the notation devel-
oped so far will be both useful and practically applicable since work is often
focused on the intricacies of performing local optimisation. Commonly an FFG
in this tradition is small but a very high level of accuracy is desired in order to
be mathematically rigorous.

However there is a second group composed of applied researchers for whom
the challenge is to accurately specify a larger inference problem and its solution
in order to solve an auxiliary goal - for instance controlling a drone, transmitting
a coded message or simulating some phenomenon using AIF. For this group of
researchers in particular, CFFG notation as described so far might be too verbose
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and the overhead of using it may not outweigh the benefits gained. To this end,
we now complete CFFG notation by a mandatory compression step.

The compression step is designed to remove redundant information by en-
forcing an emphasis on deviations from a default BFE. By default, we mean no
constraints other than normalisation and marginalisation and with a joint fac-
torisation around every node. Recall that default normalisation constraints are
denoted by empty, round beads and marginalisation by connected lines. A joint
factorisation means all incoming edges are connected and the node only has a
single, internal bead.

To provide a recipe for compressing a CFFG, we will need the concept of a
bead chain. A bead chain is simply a series of beads connected by edges. In the
following recipe, a bead will only be summarised as part of a chain if it contains
no additional information, meaning if it is round and empty. To compress a
CFFG, we follow a series of four steps:

1. Summarise every bead chain by their terminating beads.

2. For nodes with no factorisation constraints, remove empty, internal beads.

3. For nodes with no factorisation constraints, remove all internal edges.

4. For all factor nodes, push the remaining internal beads to the border of
the corresponding factor node.

After performing these steps, we are left with a compressed version of the
original CFFG where each node can be much smaller and more concise. To
exemplify, we apply the recipe to the CFFG in Fig. 5.14.
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fa fbfc

fd fe

δ

=

ff fg

Eδ

Figure 5.14: Initial CFFG before compression.

Fig. 5.14 is a complicated graph with loops, dangling edges, and multiple
different factorisations in play. As a result, Fig. 5.14 covers a lot of special cases
that one might encounter on a CFFG. We will now apply the steps in sequence,
starting by removing empty beads on chains. This removes most of the beads in
the inner loop as shown in Fig. 5.15
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fa fbfc

fd fe

δ

=

ff fg

Eδ

fa fbfc

fd fe

δ

=

ff fg

Eδ

Figure 5.15: Step 1: Removing empty beads from chains. Affected beads are highlighted
in red.

Note that the dangling edge extending from fa is treated as terminated by a
bead and the bead on the edge is removed. Next, we remove any internal beads
for nodes with no factorisation constraints. We show this step in Fig. 5.16

fa fbfc

fd fe

δ

=

ff fg

Eδ

fa fbfc

fd fe

δ

=

ff fg

Eδ

Figure 5.16: Step 2. Removing beads on nodes with default factorisation. Affected nodes
are highlighted in red.
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The next step is to remove any internal edge extensions for nodes with no
factorisation constraints. We demonstrate this step in Fig. 5.17. Note that the
internal edge of the node fd does not get cancelled since one of the connected
edges is a pointmass in the model and therefore not present in q, meaning fd
does not have a default factorisation.

fa fbfc

fd fe

δ

=

ff fg

Eδ

fa fbfc

fd fe

δ

=

ff fg

Eδ

Figure 5.17: Step 3. Removing internal edges. Affected edges are highlighted in red.

Finally, we can push any remaining internal beads to their node border, illus-
trated in Fig. 5.18. This step allows for writing the CFFG much more compactly,
as we can see in Fig. 5.19.
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fa fbfc

fd fe

δ

=

ff fg

Eδ

fa fbfc

fd fe

δ

=

ff fg

Eδ

Figure 5.18: Step 4. Pushing beads to node borders. Affected beads are highlighted in
red.

At this point, we have removed most of the beads and edges and still retain
most of the relevant information around all nodes. What is left is only what
deviates from a default BFE specification. The goal here is as stated initially to
make it easier to work with CFFG’s for larger models which necessitate working
with smaller nodes.
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fa fbfc

fd fe

δ

=

ff fg

Eδ

fa fbfc

fd fe

δ

=

ff fg

Eδ

Figure 5.19: Compression allows for much more compact CFFG’s which in turn are better
suited for larger inference problems.

From Fig. 5.19 it is clear that compression allows for much more compact
CFFG’s which in turn are more amenable to larger CFFG’s. This is especially
true in the absence of any factorisation or form constraints and P-substitutions
in which case the compressed CFFG and underlying FFG are identical. We see
this with nodes fc, ff , fg and = in Fig. 5.19.

5.6 General GFE-Based Message Updates

Having defined a node-local GFE as well as the necessary notation for express-
ing the constrained free energy optimisation problem graphically, we are now
ready to derive the message update rules required to solve said optimisation
problem. To adequately reproduce the behaviour of the original GFE formula-
tion in Eq. 5.15, we define a generalised goal and observation model, which
simultaneously impose dual constraints on the observation variable x. The ob-
servation model p(x | z,θ) consists of states z and parameters θ. The goal prior
extends to a goal model p̃(x | w,ϕ), with states w and parameters ϕ.

The CFFG of Fig. 5.20 draws the observation and goal model as two facing
nodes. Crucially, from the perspective of the CFFG the role of these nodes in the
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bigger model is irrelevant, expanding the range of applicability beyond observa-
tion and goal models. The facing nodes are contained by a composite structure
that acts as a Markov blanket for communication with the remaining graph.

p

p̃

. . .
z

...θ

x

. . .
w

...ϕ

2
↑

1↓

Figure 5.20: CFFG of two facing nodes with indicated p-substitution and messages.

The CFFG of Fig. 5.20 then defines the free energy objective,

F [q] = Eq(x,z,θ,w,ϕ)

[
log

q(x, z,θ,w,ϕ)

p(x | z,θ)p̃(x | w,ϕ)

]
, (5.33)

under local normalisation and marginalisation constraints, the imposed fac-
torisation

q(x, z,θ,w,ϕ) ≜ q(x)q(z)q(θ)q(w)q(ϕ) , (5.34)

and p-substitution of

q(x)→ p(x | z,θ) , (5.35)

in the expectation term.
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5.6.1 Local Lagrangian

After substitution of the factorisation and applying the p-substitution to the local
VFE objective, we obtain the local GFE,

G[ q ] = Ep(x|z,θ)q(z)q(θ)q(w)q(ϕ)

[
log

q(x)q(z)q(θ)q(w)q(ϕ)

p(x | z,θ)p̃(x | w,ϕ)

]
. (5.36)

To find local stationary solutions to this GFE, we introduce Lagrange multi-
pliers that enforce the normalisation and marginalisation constraints in Q. The
node-local Lagrangian then becomes

L[q] = G[ q ] +
∑
a∈V

ψa

(∫
q(sa) dsa − 1

)
+
∑
i∈E

ψi

(∫
q(si) dsi − 1

)
+

∑
a∈V

∑
i∈E(a)

∫
λia(si)

(
q(si)−

∫
q(sa) dsa\i

)
dsi , (5.37)

with si ∈ {x, z,θ,w,ϕ} a generic variable. This Lagrangian is then opti-
mised under a free-form variational density

q∗ = argmin
q∈Q

L[q] , (5.38)

for all individual factors in the variational distribution factorisation.

5.6.2 Local Stationary Solutions

We are now prepared to derive the stationary points of the node-local Lagrangian
Eq.(5.37). We start by considering the node-local Lagrangian as a functional of
the variational factor qx.

Lemma 1. Stationary points of L[q] as a functional of qx,

L[qx] = G[ qx ] + ψx

[∫
q(x) dx− 1

]
+ Cx , (5.39)

where Cx collects all terms independent from qx, are given by
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q∗(x) = Eq(z)q(θ)[ p(x | z,θ) ] . (5.40)

Proof. The proof is given by Appendix C.3.1.

Next, we derive the stationary points of Eq.(5.37) as a functional of qz. Note
that, by symmetry, a similar result applies to qθ.

Lemma 2. Stationary points of L[q] as a functional of qz,

L[qz] = G[ qz ] + ψz

[∫
q(z) dz − 1

]
+
∑

i∈E(z)

∫
λip(zi)

[
q(zi)−

∫
q(z) dz\i

]
dzi + Cz , (5.41)

where Cz collects all terms independent from qz, are given by

q∗(z) =
f̃(z)

∏
zi∈z µ⃗(zi)∫

f̃(z)
∏

zi∈z µ⃗(zi) dz
, (5.42)

with

f̃(z) = exp

(
Ep(x|z,θ)q(θ)

[
log

p(x | z,θ)f̃(x)
q(x)

])
(5.43a)

f̃(x) = exp
(
Eq(w)q(ϕ)[ log p̃(x | w,ϕ) ]

)
. (5.43b)

Proof. The proof is given by Appendix C.3.2.

Finally, we derive the stationary points of Eq.(5.37) with respect to qw.
Again, by symmetry, a similar result follows for qϕ.

Lemma 3. Stationary points of L[q] as a functional of qw,
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L[qw] = G[ qw ] + ψw

[∫
q(w) dw − 1

]
+

∑
i∈E(w)

∫
λip̃(wi)

[
q(wi)−

∫
q(w) dw\i

]
dwi + Cw , (5.44)

where Cw collects all terms independent from qw, are given by

q∗(w) =
f̃(w)

∏
wi∈w µ⃗(wi)∫

f̃(w)
∏

wi∈w µ⃗(wi) dw
, (5.45)

with

f̃(w) = exp
(
Eq(x)q(ϕ)[ log p̃(x | w,ϕ) ]

)
. (5.46)

Proof. The proof is given by Appendix C.3.3.

5.6.3 Message Updates

In this section, we show that the stationary solutions of Section 5.6.2 corre-
spond to the fixed points of a fixed-point iteration scheme. The corresponding
messages are shown in Fig. 5.20. We first derive the update rule for message 1
on wj ∈ w. By symmetry, a similar result applies to ϕj ∈ ϕ.

Theorem 1. Given the stationary points of the node-local Lagrangian L[q],
the stationary message ⃗µ(wj) corresponds to a fixed point of the iterations

⃗µ(n+1)(wj) =

∫
f̃(w)

∏
wi∈w
wi ̸=wj

µ⃗(n)(wi) dw\j , (5.47)

with n an iteration index, and f̃(w) given by Eq.(5.46).

Proof. The proof is given by Appendix C.4.1.
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We now derive the update rule for message 2 on zj ∈ z (Fig. 5.20), where
we apply the same procedure as before. By symmetry, a similar result applies to
θj ∈ θ.

Theorem 2. Given the stationary points of the node-local Lagrangian L[q],
the stationary message ⃗µ(zj) corresponds to a fixed point of the iterations

⃗µ(n+1)(zj) =

∫
f̃(z)

∏
zi∈z
zi ̸=zj

µ⃗(n)(zi) dz\j , (5.48)

with n an iteration index, and f̃(z) given by Eq.(5.43),

Proof. The proof is given by Appendix C.4.2.

5.6.4 Convergence Considerations

While direct application of Eq.(5.48) works well in some cases, this message
update may also yield algorithms for which the GFE actually diverges over iter-
ations. This perhaps counter-intuitive effect then has major implications for the
practical implementation of Eq.(5.48).

This divergence issue relates to a subtlety about what is actually proven by
our theorems. While our theorems prove that the stationary messages corre-
spond to fixed-points of the node-local Lagrangian, the theorems do not guar-
antee that iterations of the fixed-point equations actually converge to said fixed-
points. In order to guarantee that updates approach the fixed-points, we derive
an alternative message update rule for message 2 in Fig. 5.21.

Corollary 1. Given the stationary points of the node-local Lagrangian L[q],
the stationary message ⃗µ(zj) corresponds to

⃗µ(zj) ∝
∫
q(z; ν∗) dz\j

µ⃗(zj)
, (5.49)

with ν∗ a solution to
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q(z; ν)
!
=

f̃(z; ν)
∏

zi∈z µ⃗(zi)∫
f̃(z; ν)

∏
zi∈z µ⃗(zi) dz

, (5.50)

where qz is parameterised by statistics ν, and where f̃(z; ν) is given by
Eq.(5.43), with

q(x; ν) = Eq(z;ν)q(θ)[ p(x | z,θ) ] , (5.51)

which is parameterised by ν through a recursive dependence on qz.

Proof. The proof is given by Appendix C.4.3.

The result of Corollary 1 avoids the possibly diverging fixed-point iterations
of Theorem 2. For example, the optimal parameters ν∗ can now be found
through Newton’s method.

5.7 Application to a Discrete-Variable Model

In this section, we apply the general message update rules of Section 5.6.3 to
a discrete-variable model that is often used in AIF practice. Using the general
results we derive messages for this specific model.

5.7.1 Goal-Observation Submodel

We consider a discrete state z ∈ Z and observation variable x ∈ X . To con-
veniently model these variables with categorical distributions, we convert them
to a one-hot representation, with x = ei, the standard unit vector on X with
xi = 1 at the index for x, and 0 otherwise (and similar for z). The notation
Cat(x | ρ) =

∏
i ρ

xi
i then represents the categorical distribution on x (one-hot)

with probability vector ρ. We relate the state and observation variables by tran-
sition probability matrix A ∈ X × Z. The columns of A are normalised such
that Az represents a probability vector. With notation in place, we define the
observation model and goal prior for the constrained submodel,
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p(x | z,A) = Cat(x | Az) (5.52a)

p̃(x | c) = Cat(x | c) , (5.52b)

as shown in Fig. 5.21 (left).

5.7.2 GFE-Based Message Updates

The CFFG of Fig. 5.21 (left) defines the local GFE objective, with an incoming
message µ D (z) = Cat(z | d). We denote by

h(A) = −diag(AT logA) , (5.53)

the vector of entropies of the columns of the conditional probability matrix
A.

As a notational convention in this context, we use an over-bar shorthand to
denote an expectation, z = Eq(z)[ z ]. The table in Fig. 5.21 (right) summarises
the resulting message updates and average energy, with

ξ(A) = AT
(
log c− log

(
Az
))
− h(A) (5.54a)

ρ = A
T(

log c− log
(
Az
))
− h(A) . (5.54b)

The full derivations are available in Appendix C.5.
Fig. 5.21 shows the message updates towards all connected variables as well

as the average energy term (Ux) for the composite node. d denotes the param-
eters of the incoming message µ D (z). Interestingly, the energy term Ux corre-
sponds exactly to the expected free energy as used in standard AIF [22, 33].

The message 3 does not follow a standard exponential family distribution
as a function of A. To circumvent this problem, we can pass on the logpdf
directly as a message. When we need to compute the marginal q(A), we can
then use sampling procedures to estimate the necessary expectations [1].

5.8 Classical AIF and the Original GFE Algorithm
as Special Cases of LAIF

An integral part of working with MP algorithms is the choice of schedule - the
order in which messages are passed. Many MP algorithms are iterative in na-
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T

Cat

z

A

x

c1 ↓

2↑

3
←

D↓

µ 1 (c) ∝ Dir(c | Az+ 1)

µ 2 (z) ∝ Cat(z | σ(ρ))

Solve: z !
= σ(ρ(z) + logd)

µ 2 (z) ∝ Cat(z | σ(log z∗ − logd))

logµ 3 (A) = zTξ(A)

Ux = −zTρ

Figure 5.21: CFFG of the discrete-variable submodel (left) and message updates (right),
with σ a softmax function. Updates for message two indicate the direct and
indirect computation respectively.

ture and can therefore be sensitive to scheduling. LAIF is also an iterative MP
algorithm and might consequently be sensitive to the choice of schedule.

A particularly interesting observation is that we can recover both the classi-
cal AIF planning algorithm of [33] and the scheme proposed by [81] as special
cases of LAIF by carefully choosing the schedule and performing model com-
parison. This result extends upon prior work by [59] who reinterpreted the
classical algorithm through the lens of MP on an FFG.

With our newly derived messages for the goal-constrained composite node in
hand, we can now restate prior work unambiguously using CFFGs, starting with
the classical algorithm of [33]. To reconstruct the algorithm of [33], we start
by defining the generative model. The generative model is a discrete partially
observed Markov decision process (POMDP) over future time steps given by

p(xt+1:T , zt:T︸ ︷︷ ︸
Future

| ût+1:T︸ ︷︷ ︸
Policy

,x1:t,u1:t︸ ︷︷ ︸
Past

)

∝ p(zt | x1:t,u1:t)︸ ︷︷ ︸
State Prior

T∏
k=t+1

p(xk | zk)︸ ︷︷ ︸
Likelihood

p(zk | zk−1, ûk)︸ ︷︷ ︸
State Transition

p̃(xk)︸ ︷︷ ︸
Goal prior

(5.55)

where
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p(zt | x1:t,u1:t) = Cat(zt | d)
p(zk | zk−1, ûk) = Cat(zk | Bûk

zk−1)

p(xk | zk) = Cat(xk | Azk)

p̃(xk) = Cat(xk | ck) .

(5.56)

Here we let xk denote observations, zk latent states, and ûk a fixed control,
with the subscript k indicating the future time step in question. The initial state
zt represents the filtering solution given the agents trajectory so far which we
summarise in the parameter vector d. Control signals correspond to particular
transition matrices Bûk

where we use the subscript to emphasise that each B
matches a particular control ûk. The observation model is given by the known
matrix A. Note that Eq. (5.55) is not normalised as it includes goal priors over
x. The CFFG of (5.55) is shown in Fig 5.22.

TCat =

T

T =

T

Cat Cat

· · ·
ztd

Bût+1

xt+1

A

ct+1

zt+1

Bût+2

xt+2

A

ct+2

zt+2

Figure 5.22: CFFG of discrete POMDP as used for planning in standard AIF models.

where T nodes denote a discrete state transition (multiplication of a cate-
gorical variable by a transition matrix). Given a generative model with a fixed
set of controls, the next step is to compute the EFE [22, 33, 59, 60]. We provide
a brief description here and refer to Appendix C.1 and [22, 59, 60, 97] for more
detailed descriptions. The EFE is given by
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G(ût+1:T ) =

T∑
k=t

x
p(xk | zk)q(zk | ûk) log

q(zk | ûk)

p(xk, zk | ûk)
dxkdzk (5.57)

With a slight abuse of notation, we can compute EFE by first applying tran-
sition matrices to the latent state and generating predicted observations as

zk = Bûk
zk−1

xk = Azk .
(5.58)

In Eq. (5.58) we slightly abuse notation by having zk (resp. xk) refer to
the prediction after applying the transition matrix Bûk

(resp. A) instead of the
random variable as we have done elsewhere.

We can recognise these operations as performing a forwards MP sweep using
BP messages. With this choice of generative model, the EFE of a policy ût+1:T

is found by [22, Eq. D.2-3].

G(ût+1:T ) =

T∑
k=t+1

−diag
(
AT logA

)T
zk + xT

k (logxk − log ck) (5.59)

where ck denotes the parameter vector of a goal prior at the k’th time step.
To select a policy we simply pick the sequence ût+1:T that results in the lowest
numerical value when solving Eq. (5.59).

To write this method on the CFFG in Fig. 5.22, we can simply add messages
to the CFFG and note that the sum of energy terms of the P-substituted compos-
ite nodes in Fig. 5.21 matches Eq. (5.59). We show this result in Fig. 5.23.
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TCat =

T

T =

T

Cat Cat

· · ·→→

↓

→

↓

→

→

→

↓

→

↓

→

→

→

Figure 5.23: Classical EFE computation on the corresponding CFFG.

Comparing different policies (choices of ût+1:T ) and computing the energy
terms of the P-substituted composite nodes is then exactly equal to the EFE-
computation detailed in [33].

5.8.1 Reconstructing the Original GFE Method

We can further exemplify the capabilities of CFFG notation by recapitulating the
update rules given in the original GFE paper [81]. To recover the procedure of
[81], we need to extend the generative model to encompass past observations
as

p(x1:T , z0:T | û1:T )

∝ p(z0)
t∏

l=1

p(xl | zl)p(zl | zl−1, ûl)︸ ︷︷ ︸
Past

T∏
k=t+1

p(xk | zk)p(zk | zk−1, ûk)

Goal prior︷ ︸︸ ︷
p̃(xk)︸ ︷︷ ︸

Future

(5.60)

where
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p(z0) = Cat(z0 | d)
p(zt | zt−1, ût) = Cat(zt | Bût

zt−1)

p(xt | zt) = Cat(xt | Azt)

p̃(xk) = Cat(xk | ck) .

(5.61)

For past time steps, we add data constraints and for future time steps we
perform P-substitution. We also apply a naive mean field factorisation for every
node. The final ingredient we need is a schedule that includes both forwards
and backwards passes as hinted at in [59]. For t = 1 the corresponding CFFG is
shown in Fig. 5.24 with messages out of the P-substituted nodes highlighted in
red. These messages are given by µ 2 (z) in Fig. 5.21.

TCat =

T

δ

T =

T

Cat

T =

T

Cat

· · ·→
←

↑

↓

→
←

↑

↑

→

→
←

↓

→
←

↓ ↑

→

→

zt
→
←

↓

→
←

↓ ↑

→

→

→
←

Figure 5.24: GFE computation on the CFFG.

With these choices, the update equations become identical to those of [81].
Indeed, careful inspection of the update rules given in [81] reveals the com-
ponent parts of the P-substituted message. However, by using CFFGs and P-
substitution, we can cast their results as MP on generic graphs which immedi-
ately generalises their results to free form graphical models.

Once inference has converged, we note that [81] shows that GFE evaluates
identically to the EFE, meaning we can use the same model comparison pro-
cedure to select between policies as we used for reconstructing the classical
algorithm. This shows how we can obtain the algorithm of [81] as a special
case of LAIF.
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5.9 LAIF for Policy Inference

The tools presented in this chapter are not limited to restating prior work. In-
deed, LAIF offers several advantages over prior methods, one of which is the
ability to directly infer a policy instead of relying on a post hoc comparison of
energy terms. To demonstrate, we solve two variations of the classic T-maze
task [33]. This is a well-studied setting within the AIF literature and therefore
constitutes a good minimal benchmark. In the T-maze experiment, the agent
lives in a maze with four locations as depicted in Fig. 5.25. The agent (,)
starts in position 1 and knows that a reward is present at either position 2 or
3, but not which one. At position 4 is a cue that informs the agent which arm
contains the reward. The optimal action to take is therefore to first visit 4 and
learn which arm contains the reward before going to the rewarded arm. Be-
cause this course of action requires delaying the reward, an agent following a
greedy policy behaves sub-optimally. The T-maze is therefore considered a rea-
sonable minimal example of the epistemic, information-seeking behaviour that
is a hallmark of AIF agents. We implemented our experiments in the reactive
MP toolbox RxInfer [3]. The source code for our simulations is available at
https://github.com/biaslab/LAIF.

1

32

4

,

Figure 5.25: The T-maze environment

5.9.1 Model Specification

The generative model for the T-maze is an adaptation of the discrete POMDP
used by [33, 81]. We assume the agent starts at some current time step t and

https://github.com/biaslab/LAIF
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wants to infer a policy up to a known time horizon T . The generative model is
then

p(x, z,u) ∝ p(zt)︸ ︷︷ ︸
Initial
state

T∏
k=t+1

p(xk | zk)︸ ︷︷ ︸
Observation

model

p(zk | zk−1,uk)︸ ︷︷ ︸
Transition

model

p(uk)︸ ︷︷ ︸
Control

prior

p̃(xk)︸ ︷︷ ︸
Goal
prior

(5.62)

where

p(zt) = Cat(zt | d)
p(xk | zk) = Cat(xk | Azk)

p(zk | zk−1,uk) =
∏
n

Cat(zk | Bnzk−1)
unk

p(uk) = Cat(uk | bk)

p̃(xk) = Cat(xk | ck) .

(5.63)

The notation unk picks the n’th entry of uk. We show the corresponding
CFFG in Fig. 5.26.
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Cat TM = TM

B1 B4· · · B1 B4· · ·

T T

Cat Cat

Cat Cat

d zt zt+1

ut ut+1

bt bt+1

At At+1

ct ct+1

Figure 5.26: CFFG for the T-maze experiment

Eq. (5.63) defines a mixture model over candidate transition matrices in-
dexed by uk. We give the details of this node function and the required mes-
sages in Appendix C.6. The MP schedule is shown in Fig. 5.27 with GFE-based
messages highlighted in red

Following [33] we define the initial state and control prior as

d = (1, 0, 0, 0)T ⊗ (0.5, 0.5)T

bk = (0.25, 0.25, 0.25, 0.25)∀k
(5.64)

with ⊗ denoting the Kronecker product. The transition mixture node re-
quires a set of candidate transition matrices. The T-maze utilises four possible
transitions, given below
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B1 =


1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

⊗ I2 ,B2 =


0 1 1 0
1 0 0 1
0 0 0 0
0 0 0 0

⊗ I2

B3 =


0 1 1 0
0 0 0 0
1 0 0 1
0 0 0 0

⊗ I2 ,B4 =


0 1 1 0
0 0 0 0
0 0 0 0
1 0 0 1

⊗ I2

(5.65)

where I2 denotes a 2× 2 identity matrix. Note that these differ slightly from
the original implementation of [33]. In [33] invalid transitions are represented
by an identity mapping where we instead model invalid transitions by sending
the agent back to position 1. The likelihood matrix A is given by four blocks,
corresponding to the observation likelihood in each position.

Cat TM = TM

↑ ↑· · · ↑ ↑· · ·

T T

Cat Cat

Cat Cat

→ →
←

→
←

→
←

→

↑ ↓ ↑ ↓

→ →

↑ ↓ ↑

→ →

→ →

Figure 5.27: MP schedule for the T-maze experiment
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A =


A1

A2

A3

A4

 , (5.66)

with everything outside the blocks being set to 0. The blocks are

A1 =


0.5 0.5
0.5 0.5
0 0
0 0

 , A2 =


0 0
0 0
α 1− α

1− α α



A3 =


0 0
0 0

1− α α
α 1− α

 , A4 =


1 0
0 1
0 0
0 0

 , (5.67)

with α being the probability of observing a reward. The goal prior is given
by

ck = σ
(
(0, 0, c,−c)T ⊗ (1, 1, 1, 1)T

)
∀k (5.68)

with c being the utility ascribed to a reward and σ(·) the softmax function.
Inference for the parts of the model not in P can be accomplished using BP.
We follow the experimental setup of [33] and let c = 2, α = 0.9. For inference,
we perform two iterations of our MP procedure and use 20 Newton steps for
obtaining the parameters of the outgoing message from the P-substituted nodes.

We show the results in Fig. 5.28. The number in each cell is the posterior
probability mass assigned to the corresponding action, with the most likely ac-
tions highlighted in red.
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0.25

0.200.20

0.35

Controls at time step 1

0.13

0.300.30

0.26

Controls at time step 2

Figure 5.28: Posterior controls for the T-maze experiment

Fig. 5.28 shows an agent that initially prefers the epistemic action (move to
state 4) at time t + 1 and subsequently exhibits a preference for either of the
potentially rewarding arms (indifferent between states 2 and 3). This shows
that LAIF is able to infer the optimal policy and that our approach can reproduce
prior results on the T-maze.

Since CFFG’s are inherently modular, they allow us to modify the inference
task without changing the model. To demonstrate, we now add δ-constraints
to the control variables. This corresponds to selecting the MAP estimate of the
control posterior [116] and results in the CFFG shown in Fig. 5.29. The schedule
and all messages remain the same as our previous experiment - however now
the agent will instead select the most likely course of action instead of providing
us with a posterior distribution.
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Cat TM = TM

B1 B4· · · B1 B4· · ·

T T

Cat Cat

Cat Cat

δ δ

Figure 5.29: CFFG for the T-maze model with additional δ-constraints

Performing this experiment yields the policy shown in Fig. 5.30
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0.0

0.00.0

1.0

Controls at time step 1

0.0

0.01.0

0.0

Controls at time step 2

Figure 5.30: Posterior controls for the T-maze experiment with δ-constraints

Fig. 5.30 once again shows that the agent is able to infer the optimal policy
for solving the task. For repeated runs, the agent will randomly select to move to
either position 2 or 3 at the second step due to minute differences in the Monte
Carlo estimates used for computing the messages. The δ-constraint obscures
this since it forces the marginal to put all mass on the MAP estimate.

The point of repeating the experiments with δ-constraints is not to show that
the behaviour of the agent changes dramatically. Instead, the idea is to demon-
strate that CFFG’s allow for modular specification of AIF agents by adapting
parts of the model without having to touch the rest. In this case, the only parts
of the inference procedure that change are those involving the control marginal.
This means all messages out of the P-substituted composite nodes are unaffected
since the δ-constraints are only applied to the control marginals.

5.10 Conclusions

In this chapter, we have proposed a novel approach to AIF based on Lagrangian
optimisation which we have named Lagrangian Active Inference (LAIF). We
demonstrated LAIF on a classic benchmark problem from the AIF literature and
found that it inherits the epistemic drive that is a trademark feature of AIF. LAIF
presents three main advantages over previous algorithms for AIF.
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Firstly, an advantage of LAIF is the computational efficiency afforded by be-
ing able to pass backward messages instead of needing to perform forwards
rollouts for every policy. While LAIF is still an iterative procedure, the compu-
tational complexity of each iteration scales linearly in the size of the planning
horizon T instead of exponentially.

A second advantage is that LAIF allows for directly inferring posteriors over
control signals instead of relying on a model comparison step based on EFE/GFE.
This means that LAIF unifies inference for perception, learning, and actions into
a single procedure without any overhead - everything becomes part of the same
inference procedure.

Thirdly, LAIF is inherently modular and consequently works for freely defin-
able CFFGs, while prior work has focused mostly on specific generative models.
Extensions to hierarchical or heterarchical models are straightforward and only
require writing out the corresponding CFFG.

We have also introduced CFFG notation for writing down constraints and
P-subtitutions on an FFG. CFFGs are useful not just for AIF but for specifying
free energy functionals in general. CFFGs accomplish this through a simple and
intuitive graphical syntax. Our hope is that CFFGs can become a standard tool
similar to FFGs when it is desirable to write not just a model f but also a family
of approximating distributions Q. Specifically in the context of AIF we have
also introduced P-substitution as a way to modify the underlying free energy
functional. In doing so we have formalised the relation between AIF and MP on
a CFFG, paving the way for future developments.

In future work, we plan to extend LAIF to more node constructions to further
open up the scope of available problems that can be attacked using AIF.
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Chapter 6
Conclusions and Future
Outlook

”It’s not about the money, it’s about sending a message.”

– The Joker, 2008

So far, AIF has largely been developed in the field of neuroscience and more
recently reinforcement learning. Throughout this dissertation, we have worked
towards bringing AIF to engineering more generally as a viable methodology
for designing intelligent systems. The overall theme has been the following:

Theme: Can we develop a practical toolset for describing and constructing
artificial Active Inference agents?

Under this heading, we formulated a series of research questions to guide
the concrete projects we embarked on. The resulting work makes up the body
of this dissertation. At this point, it is prudent to take a step back and critically
assess what we have learned and what open questions remain. The first research
question we addressed was:

Q1: Can factor graphs be used to accurately describe the model assumptions and
inference processes of an Active Inference agent?
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We approached this question in Chapter 2 and to a lesser degree 3. The main
challenge we faced was that AIF uses a custom free energy functional — the
EFE— the computation of which requires special considerations. We translated
EFE computation to a two-step algorithm on an FFG. This work resulted in a
method that we employed for Chapters 3 and 4.

The idea behind this method is to express EFE computation on the FFG of
the generative model we are working with. From there, we can derive an ex-
pression for EFE given a particular likelihood model. Since EFE is a function of
a particular policy, we can then evaluate a set of candidate policies in our model
and select the one resulting in the lowest EFE value.

However, just like with any other technical piece of work, the devil is in the
details. The details in question for Chapter 2 lie with what is not included in the
analysis. Specifically, the results of Chapter 2 rely on a particular version of the
EFE where goals are expressed in terms of observations rather than states. While
this is practically how most software implementations work and is accurate for
the models covered in both Chapters 2 and 3, there exist alternate ways of
writing the EFE that express goals over states instead [22, 35, 115]. Further,
expressing goals as observations leads to an additional term as we explore in
Appendix A.3. For the two formulations to be equal, that term has to go to
zero which requires being able to perform exact inference. The fully generic
version requires expressing the EFE natively on a factor graph, which we only
accomplish by Chapter 5.

Nevertheless, we used this method as an entry point for our second research
question:

Q2: Is a linear Gaussian dynamical system a useful generative model for an Active
Inference agent?

To answer this question, in 3 we formulated AIF on the FFG of an linear
Gaussian dynamical system (LGDS) model. We then derived the required ex-
pressions for EFE computation and the resulting planning algorithm. In doing
so, we uncovered the unexpected result that epistemics are absent in the lin-
ear Gaussian case. Concretely this means that an AIF agent based on an LGDS
model does not possess the information-seeking properties that are often touted
as a hallmark feature of AIF agents.

In terms of Q2, we are left with an ambivalent answer. Extending AIF to the
case of LGDS undoubtedly makes it more practical for engineering applications.
When designing engineering applications, we often have to deal with systems
that are most conveniently described using a linear Gaussian generative model.
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However, the absence of epistemics raises the question as to what advantages
AIF presents over other, more established approaches like KL-control in this
particular case.

On the topic of engineering applications, Chapter 4 addresses our third re-
search question:

Q3: Can an artificial Active Inference agent meaningfully support situated per-
sonalisation of hearing aid algorithms?

Our answer to Q3 comes in the form of AIDA, the Active Inference Design
Agent. AIDA is a complex, interwoven system composed of multiple interact-
ing models that handle audio processing in a hearing aid (HA) device. A core
feature of AIDA is the ability to learn in situ from user feedback through the
use of AIF. The generative model employed was a Gaussian process classifier
(GPC) and the method used was similar to Chapters 2 and 3. Using AIF with a
GPC gave AIDA the capability to adaptively search the space of user preferences
while trading off exploration (learning what the user prefers) and exploitation
(satisfying user preferences). The key to a successful application here is to bal-
ance this trade-off. HA users are often elderly and providing feedback to the
HA system is an annoying and distracting task. This means data efficiency is
key and balancing the need for informative data with correctly tuning the HA
device becomes the core challenge. AIDA handles this trade-off through the
balance of epistemic and goal-directed drives afforded by the EFE.

However for AIDA to be a viable practical solution still requires addressing
at least two core challenges. The first lies with processing time. The system as it
currently stands does not achieve real-time audio processing on a laptop which
makes it unsuitable for practical application. In order to provide a seamless in-
terface between the user and her environment, AIDA needs to process incoming
audio fast enough that the user does not experience a disconnect with her other
senses. The loopy belief propagation algorithm that was used for inference in
the audio-processing system is simply too slow for real-time performance at the
time of writing. The second challenge that needs to be addressed lies with the
performance of the preference learning agent. Binary feedback signals convey
very little information in the present setting since the first positive appraisal
generally means that the task is complete and AIDA has found a good enough
set of parameters to satisfy the user’s preferences. Practically this means AIDA
is primarily trying to learn a classifier from only negative examples which is an
exceedingly difficult task. These issues mean that AIDA still requires 80 trials to
reliably tune a two-parameter HA which is still too much - especially given that
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actual HAs are much more complex and requires tuning many more parame-
ters. A possible solution lies in letting the user provide a continuous feedback
signal. Instead of asking "Are these parameters good enough?" the question then
becomes "How good are these parameters on a scale from 1-10?". A continuous
feedback signal would provide a gradient that AIDA can then follow in order to
search for parameters that are better than the current proposal instead of need-
ing to find the optimal parameters in one go. Developing AIDA V2 by addressing
these challenges constitutes an exciting potential research project.

Finally, we focused on the methodology of AIF itself when addressing Q4:

Q4: Can free energy minimisation in artificial Active Inference agents be formu-
lated as an automatable optimisation problem by message passing on a factor
graph?

Free energy minimisation for AIF by design requires optimising both a vari-
ational and an Expected or Generalised free energy, the latter of which turned
out to be the key to Q4.

To address Q4 we first developed a new graphical notation for writing not
just the generative model but also the exact free energy functional to be op-
timised. We based our notation on FFGs and augmented them with a set of
constraints on the implied (Bethe) free energy. This new constrained Forney-
style factor graph (CFFG) notation allowed us to identify a new way of writing
the GFE as a node-local functional on a factor graph.

Starting from a constrained free energy functional on a CFFG, we con-
structed a node-local version of the GFE. We then solved for node-local sta-
tionary points of the resulting Lagrangian and derived the necessary message
updates for integrating local GFE optimisation into generic, hybrid MP algo-
rithms. The result is a form of Lagrangian Active Inference (LAIF) where GFE is
optimised directly, rather than evaluated for a set of candidate policies. Classical
AIF algorithms are recoverable as special cases of LAIF, meaning our proposed
method is strictly more general.

Practically, LAIF still requires some implementational details to be practically
useful in the discrete case we use for our experiments. These are documented in
Chapter 5 but should be reiterated here. The first is that finding a stable solution
to the backwards message requires running a Newton scheme. This inherently
slows down inference since every round of MP passing now requires solving an
optimisation problem per backwards message. Given the wide-reaching sim-
plicity of the FEP proper, there should be a simpler and more elegant solution
to this problem. The lack of elegance is further exacerbated when we examine
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the message towards the parameters of our composite node construction. This
message is not even a known exponential family distribution and to properly
infer marginals we have to rely on sampling-based approximations. Again, this
is not a particularly elegant solution and we hope that there exists a more beau-
tiful way out of this conundrum. Finding these elegant solutions is still in the
domain of future work.

On the other hand, being a pure MP passing technique, LAIF allowed us
to do direct policy inference rather than evaluating EFE/GFE as a function of
a specific policy and choosing the candidate policy with the lowest numerical
value. In terms of efficiency, this puts AIF on the same level as KL-control when
the latter is treated as a variational inference problem. Concretely, each itera-
tion of LAIF scales linearly in the planning horizon, rather than exponentially.
LAIF is therefore a potential solution to the scaling problem that has been a core
obstacle for industry adoption of AIF so far.

As a welcome side-effect, CFFGs allow for writing generic inference prob-
lems on arbitrary graphical models that include GFE terms. Since LAIF is a
local operation on a CFFG this extends the scope of AIF to include any gen-
erative model that is expressible as a CFFG- including for example the LGDS
considered in Q2. In fact, the techniques used in Chapters 2, 3 and 4 are all
expressible as instances of LAIF on a CFFG.

6.1 Future Outlook

Throughout this dissertation, we have concerned ourselves with AIF from the
point of view of engineering, specifically using factor graphs. Our goal has
been to work towards developing the requisite tooling to make AIF a practical
engineering approach - and the true measure of the value of a tool is whether
it is useful. Assessing whether we have succeeded in our endeavour is therefore
not up to us, but is to be judged by the AIF community at large. Simply put,
if the work presented in this dissertation ends up being used for research and
industrial applications of AIF, we have succeeded in what we set out to do. To
conclude this dissertation, we will therefore muse on the possible opportunities
and obstacles for adoption that we see in the future.

Paradoxically, a potential obstacle to wider adoption is our choice to ap-
proach the problem from the angle of engineering. Donning the hat of the en-
gineer means that we have not concerned ourselves with neurobiology and any
related features of AIF. Since AIF is still primarily a neuroscientific endeavour,
initial adoption of our work is likely to largely come from neuroscientists whose
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objectives might be different from ours. Where we have focused on designing
tools for practical applications, a neuroscientist might be more concerned with
biological plausibility which we have not made a primary concern — instead
we have operationalised our original question of "what the brain does" as AIF
and proceeded to focus on implementations using MP. We do however note that
there is a reasonable body of work supporting the idea that the brain performs
some version of MP which would be compatible with the work presented in this
dissertation.

In terms of developing tooling, our main contribution lies in the introduc-
tion of CFFGs and Lagrangian Active Inference in Chapter 5 with prior chapters
forming the foundation for this development. CFFGs are a new, concise way
of accurately specifying AIF problems - including prior work such as [33] and
[81]. A notable omission from the analyses in Chapter 5 is sophisticated infer-
ence (SI) [35]. This is important because SI is the state-of-the-art method for
AIF at the time of writing. As alluded to in Chapter 2, SI does not easily con-
form to a pure MP description due to a number of algorithmic moves made in
order to both prune and expand the forward search tree. We hope to be able to
address this shortcoming as part of future research.

Still, writing AIF agents in terms of their CFFG allows for a syntax that is both
flexible, easily interpretable, has a low barrier of entry, and is mathematically
precise. All of these are desirable qualities that we wish to bring to the broader
AIF community.

As with any body of scientific work, we have found that the insights gained
throughout writing this dissertation have raised more questions than they have
answered. While future work is still needed to build the necessary tools for
the widespread adoption of AIF, we believe that CFFGs provide the requisite
foundational work for designing just such a class of tools. Only once such tools
become widely adopted and field-tested on industrial applications and cutting-
edge research, will we know the answer to our original, overarching question.

For now, thanks for staying with us to the end,
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Appendices for Chapter 3

A.1 Perception as Bayesian filtering

To derive the filtering equations in Section 3.4, we need to infer p(zt | x1:t). We
consider a model of the form

p(xt, zt, ut | zt−1) = p(xt | zt)p(zt | zt−1, ut)p(ut) . (A.1)

We can write the inference task as

p(zt | x1:t) = p(zt | xt,x1:t−1) (A.2a)

=
1

p(xt | x1:t−1)
p(xt, zt | x1:t−1) (A.2b)

=
1

p(xt | x1:t−1)
p(xt | zt)p(zt | x1:t−1) (A.2c)

=
1

p(xt | x1:t−1)
p(xt | zt)

x
p(zt, zt−1, ut | x1:t−1)dzt−1dut (A.2d)

=
1

p(xt | x1:t−1)︸ ︷︷ ︸
Evidence

p(xt | zt)︸ ︷︷ ︸
Likelihood

×
x

p(zt | zt−1, ut)︸ ︷︷ ︸
State transition

p(ut)︸ ︷︷ ︸
Control

prior

p(zt−1 | x1:t−1)︸ ︷︷ ︸
State prior

dzt−1dut . (A.2e)
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Now assuming that observations x1:t = x̂1:t are available and the state prior
is available from the last time step, we can select a control by setting

p(ut) = δ(ut − ût) . (A.3)

The inference problem becomes

p(zt | x̂1:t) =
1

p(x̂t | x̂1:t−1)
p(x̂t | zt)

×
x

p(zt | zt−1, ut)δ(ut − ût)p(zt−1 | x̂1:t−1)dzt−1dut

(A.4a)

=
1

p(x̂t | x̂1:t−1)
p(x̂t | zt)

∫
p(zt | zt−1, ût)p(zt−1 | x̂1:t−1)dzt−1 .

(A.4b)

The likelihood is then available from the generative model and the state
prior is available from the previous time step. We can find the evidence by
marginalising out zt as

p(x̂t | x̂1:t−1) =

∫
p(x̂t | zt)

∫
p(zt | zt−1, ût)p(zt−1|x̂1:t−1)dzt−1dzt . (A.5)

Solving these equations amount to performing Bayesian filtering, synony-
mous with perception.

A.2 Linearly Related Gaussian variables

In this section we show how to obtain a posterior marginal, given linearly re-
lated and jointly Gaussian variables. We use this result throughout our deriva-
tions in 3.4, for instance when moving from Eq. (3.11c) to Eq. (3.11d). Using x
and z for generic variables, the goal is to obtain the posterior

p(x) =

∫
p(x | z)p(z)dz (A.6)

where
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p(z) = N (z | µz,Σz) (A.7a)

p(x | z) = N (x | Az+ b,Σx) (A.7b)

We can view the problem of obtaining p(x) as first applying a linear trans-
form (Az + b) and then adding Gaussian noise with mean 0 and variance Σx.
We will deal with each of these steps in turn, starting with the linear transform.
The posterior mean µ is given by

µ = E
[
Az+ b

]
= AE[z] + b = Aµz + b (A.8)

where E denotes the expectation operation. Here we first factor the terms
that do not depend on z out of the expectation and then identify E[z] = µz as
z is Gaussian. To find the covariance matrix Σ we can proceed by plugging the
terms we know into the definition of covariance

Σ = E
[
(x− µ) (x− µ)

T
]

(A.9a)

= E

(Az+ b︸ ︷︷ ︸
x

−Aµz − b︸ ︷︷ ︸
µ

)(
Az+ b︸ ︷︷ ︸

x

−Aµz − b︸ ︷︷ ︸
µ

)T (A.9b)

= E
[
(Az⃗ −Aµz) (Az−Aµz)

T
]

(A.9c)

Now we can factor A out of the expectation

= E
[
A (z− µz) (z− µz)

T
AT
]

(A.10a)

= AE
[
(z− µz) (z− µz)

T
]

︸ ︷︷ ︸
Σz

AT (A.10b)

= AΣzA
T . (A.10c)

In the last line we recognise the definition of the prior covariance matrix
Σz. To obtain our final result we now need to add Gaussian noise with mean 0
and variance Σx. We know that if two Gaussian variables are independent, the
variance of their sum is the sum of their variances. We can use this to write the
final covariance matrix as



7

172 Appendices for Chapter 3

Σ = AΣzA
T +Σx (A.11)

Which gives the result utilised in the main text as

p(x) = N (x | Aµz + b,AΣzA
T +Σx) (A.12)

A.3 Mutual Information Bound

In this section, we examine the result of substituting q for p in Eq. (3.32). We
see that the substitution turns Eq. (3.32) into a bound on the expected free
energy that becomes exact when we can do exact inference. We can show this
by writing

x
q(xk, zk | uk) log

q(zk | uk)
q(zk | xk, uk)

dxkdzk

=
x

q(xk, zk | uk) log
q(zk | uk)

q(zk | xk, uk)
p(zk | xk, uk)
p(zk | xk, uk)

dxkdzk (A.13a)

=
x

q(xk, zk | uk) log
q(zk | uk)

p(zk | xk, uk)
p(zk | xk, uk)
q(zk | xk, uk)

dxkdzk (A.13b)

=
x

q(xk, zk | uk) log
q(zk | uk)

p(zk | xk, uk)
dxkdzk

−
x

q(xk, zk | uk) log
q(zk | xk, uk)
p(zk | xk, uk)

dxkdzk︸ ︷︷ ︸
Eq(xk|zk)

[
KL[ q(zk|xk,uk) || p(zk|xk,uk) ]

] (A.13c)

≤
x

q(xk, zk | uk) log
q(zk | uk)

p(zk | xk, uk)
dxkdzk , (A.13d)

where we recognise the upper bound since the expected Kullback-Leibler
divergence (KL) is non-negative. When the expected KL goes to 0, which is
the case when we do exact inference, the bound becomes exact. That is the
case for all models considered in Chapter 3 since all relations are linear and all
distributions Gaussian.
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A.4 Mutual information derivation

In this section, we derive the expression for mutual information in detail. We
restate the definition given in Eq. (3.35) here as a starting point

I [x, z ] =
x

p(x, z) log
p(x, z)

p(x)p(z)
dxdz = H [ z ]−H [ z | x ] = H [x ]−H [x | z ] .

(A.14)

Note that we can write Eq. (3.35) in terms of entropies of either x or z since
mutual information is symmetric in its arguments.

Recall that Eq. (3.34c) optimises mutual information between expected ob-
servations xk and latent states zk. This means that we need the marginal and
conditional distributions of xk in order to calculate the requisite entropies. The
marginal is given by Eq. (3.17) and the conditional by Eq. (3.18). Since both
distributions are Gaussian, their entropies are available in closed form as

H [xk ] =
1

2
(n log 2π + log |Σ22|+ n) (A.15a)

H [xk | zk ] =
1

2

(
n log 2π + log |Σ22 −Σ21Σ

−1
11 Σ12|+ n

)
, (A.15b)

where n denotes the dimensionality. Before we proceed, we need the gener-
alised matrix determinant lemma which can be written as

|A+UVT | = |I+VTA−1U| |A| , (A.16)

where I denotes the identity matrix and A is invertible. By setting V = U =
I we obtain a form which will be convenient moving forwards

|A+UVT | = |A+ I| = |I+ ITA−1I| |A| (A.17a)

= |I+A−1| |A| , (A.17b)

which also implies

|I−A−1| = |I−A|
−|A|

. (A.18)
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Now we can write the MI as

I [xk, zk ] = H [xk ]−H [xk | zk ] (A.19a)

=
1

2
log |Σ22| −

1

2
log |Σ22 −Σ21Σ

−1
11 Σ12| (A.19b)

= −1

2
log |Σ22|−1|Σ22 −Σ21Σ

−1
11 Σ12| (A.19c)

= −1

2
log |I−Σ−1

22 Σ21Σ
−1
11 Σ12| (A.19d)

= −1

2
log |I− [AΣzkA

T +Σx]
−1︸ ︷︷ ︸

Σ−1
22

AΣzk︸ ︷︷ ︸
Σ21

Σ−1
zk︸︷︷︸

Σ−1
11

ΣzkA
T︸ ︷︷ ︸

Σ12

| (A.19e)

= −1

2
log |I− [AΣzkA

T +Σx]
−1AΣzkA

T | (A.19f)

= −1

2
log |I− [[AΣzkA

T ]−1AΣzkA
T︸ ︷︷ ︸

Evaluates to I

+[AΣzkA
T ]−1Σx]

−1| (A.19g)

= −1

2
log |I− [I+ [AΣzkA

T ]−1Σx]
−1|| . (A.19h)

Using Eq. (A.18) we can rewrite Eq. (A.19h) as

−1

2
log |I− [I+ [AΣzkA

T ]−1Σx]
−1| = −1

2
log

 |I−
[
I+ (AΣzkA

T )−1Σx

]
|

−|I+ (AΣzkA
T )−1Σx|


(A.20a)

= −1

2
log

(
−|(AΣzkA

T )−1Σx|
−|I+ (AΣzkA

T )−1Σx|

)
(A.20b)

= −1

2
log

(
|(AΣzkA

T )−1Σx|
|I+ (AΣzkA

T )−1Σx|

)
.

(A.20c)

Applying Eq. (A.17a) in the denominator, we now rewrite Eq. (A.20c) as
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−1

2
log

(
|(AΣzkA

T )−1Σx|
|I+ (AΣzkA

T )−1Σx|

)
= −1

2
log

 |(AΣzkA
T )−1Σx|

|I+
[
(AΣzA

T )−1Σx

]−1

||(AΣzkA
T )−1Σx|


(A.21a)

= −1

2
log

 (((((((((
|(AΣzkA

T )−1Σx|

|I+
[
(AΣzA

T )−1Σx

]−1

|(((((((((
|(AΣzkA

T )−1Σx|


(A.21b)

= −1

2
log

 1

|I+
[
(AΣzA

T )−1Σx

]−1

|


(A.21c)

=
1

2
log

(∣∣∣∣I+ [(AΣzA
T )−1Σx

]−1
∣∣∣∣)

(A.21d)

=
1

2
log |I+Σ−1

x AΣzkA
T | , (A.21e)

which gives the expression found in Eq. (3.36).
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Appendix B
Appendices for Chapter 4

B.1 Probabilistic Model Overview

This appendix gives a concise overview of the generative model of the acoustic
model and AIDA. The prior distributions are uninformative unless stated other-
wise in Section 4.5.

B.1.1 Acoustic Model

The observed signal xt is the sum of a speech and noise signal as

xt = zt + nt (B.1)

The speech signal zt = eT1 zt is modeled by a time-varying auto-regressive
(TVAR) process as

p(zt | zt−1) = N (zt | A(θt)zt−1, V(γ)) (B.2)

The auto-regressive (AR)-coefficients of the speech signal are time-varying with
dynamics given by

p(θt | θt−1) = N (θt | θt−1, ωI) (B.3)



8

178 Appendices for Chapter 4

The noise signal nt = eT1 nt is also modeled by an AR process

p(nt | ϕk,nt−1, τk) = N
(
nt | A(ϕk)nt−1,V(τk)

)
, for t = t−, t− + 1, . . . , t+

(B.4)

The parameters of the noise model are dependent on context through

p(ϕk | ok) =

L∏
l=1

N (ϕk | µl,Σl)
olkp(τk | ok,α,β) =

L∏
l=1

Γ(τk | αl, βl)
olk (B.5)

where the context ok evolves over a different time scale indexed by k as

p(ok | B,ok−1) = Cat(ok | Bok−1), (B.6)

Each column of the context transition matrix is modeled as

p(Bj | αj) = Dir(Bj | αj), (B.7)

Finally, the output of the hearing aid algorithm yt is formed as the weighted
sum of the speech and noise signals as

yt = uzke
T
1 zt + unke

T
1 nt for t = t−, t− + 1, . . . , t+ (B.8)

B.1.2 AIDA’s User Response Model

The user responses are modeled by a Bernoulli distribution parameterised by
a Gaussian cumulative probability function that enforces the output vk(uk) ∈
[0, 1] as

p(rk | vk,uk)) = Ber(Φ(vk(uk))) , with rk ∈ {0, 1} (B.9)

vk(uk) encodes our beliefs about the user response function (evaluated at
uk), modeled by a mixture of Gaussian processes as
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p(vk(·) | ok) =

L∏
l=1

GP(ml(·),Kl(·, ·))olk (B.10)

whose kernel function is defined as

K(u,u′) = σ2 exp

{
−∥u− u′∥22

2l2

}
(B.11)

where σ denotes noise and l the length scale of the kernel.

B.2 Inference Realisation

This appendix describes in detail how the inference tasks of Sections 4.4.1 and
4.4.2 are realized. The inference task of Section 4.4.3 is performed by message
passing (MP) using the update rules of [85].

B.2.1 Realisation of Inference for Context Classification

The inference task for context classification of Eq. (4.13) is intractable as dis-
cussed in Section 4.4.1. To circumvent this problem, we will instead approach
this task as a Bayesian model comparison problem.

In a Bayesian model comparison problem, we are interested in calculating
the posterior probability p(ml | x) of some model ml after observing data x.

The posterior model probability p(ml | x) can be calculated using Bayes rule
as

p(ml | x) =
p(x | ml)p(ml)∑
j p(x | mj)p(mj)

, (B.12)

where the denominator represents the weighted model evidence p(x), i.e.
the model evidence obtained for the individual models p(x | ml), weighted by
their priors p(ml).

To formulate our inference task as a Bayesian model comparison task, the
distinct models ml first have to be specified. In order to do so, we first note that
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we obtain the priors of ok−1 and st−−1 in Eq. (4.13) separately, and therefore
we implicitly assume a factorisation of our prior p(ok−1, st−−1 | x1:t−−1) as

p(ok−1, st−−1 | x1:t−−1) = p(ok−1 | xt−−1) p(st−−1 | x1:t−−1). (B.13)

As a result Eq. (4.13) can be rewritten as

p(ok | x1:t+) ∝
∫
p(ok,B | ok−1)p(ok−1 | x1:t−−1)dBdok−1︸ ︷︷ ︸

µ⃗(ok)

·
∫
p(st−:t+ ,Ψk,xt−:t+ | st−−1,o)p(st−−1 | x1:t−−1)dst−−1:t+dΨk︸ ︷︷ ︸

p(xt−:t+ |x1:t−−1,ok)

.

(B.14)

The first term µ⃗(ok) can be regarded as the forward message towards the
context ok originating from the previous context. It gives us an estimate of the
new context solely based on the context dynamics as stipulated by the transition
matrix B. The second term p(xt−:t+ | x1:t−−1,ok) can be regarded as the incre-
mental model evidence under some given context ok. Comparison of Eq. (B.14)
and Eq. (B.12) allows us to formulate our inference problem in Eq. (4.13) into
a Bayesian model comparison problem by defining

p(ml) = µ⃗(ok = el), (B.15a)

p(x | ml) = p(xt−:t+ | x1:t−−1,ok = el). (B.15b)

We can therefore define a model ml by clamping the context variable in
generative model as ok = el. This means that each model only has one active
component for both the Gaussian and Gamma mixture nodes and therefore the
messages originating from these nodes are exact and do not require a variational
approximation.

Despite the expansion of the mixture models, the incremental model evi-
dence p(xt−:t+ | x1:t−−1,ok = el) cannot be computed exactly as the AR source
models lead to intractable inference.

Instead, we approximate the model evidence in Eq. (B.15b) using the Bethe
free energy (BFE), as defined in Eq. (1.14)
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p(x | ml) ≈ exp{−F [q,ml]}, (B.16)

where F [q,ml] denotes the BFE observed after convergence of the inference
algorithm for model ml. Similarly the calculation of Eq. (B.15a) is intractable.
Therefore we will approximate the model prior with the variational message
towards ok instead as

p(ml) ≈ ν⃗(ok = el). (B.17)

B.2.2 Realisation of Inference for Trial Design

Probabilistic inference in AIDA encompasses 2 tasks: 1) optimal proposal selec-
tion and 2) updating of the Gaussian process classifier (GPC). Here we specify
how these inference tasks are executed in more detail.

Optimal proposal selection

A closed-form expression of the expected free energy (EFE) decomposition in
Eq. (4.15) can be obtained for the Gaussian process classifier (GPC) using re-
sults from [47].

The first term in the decomposition, the negative utility drive, is a cross en-
tropy loss between our goal prior and posterior marginal. Since user responses
are binary, the resulting cross-entropy term has a closed-form expression as [47]

−Eq(r|u) [log p(r)] =

Φ

 µu,D√
σ2
u,D + 1

 logEp(r)[ r ] +

1− Φ

 µu,D√
σ2
u,D + 1

 log
(
1− Ep(r)[ r ]

)
,

(B.18)

where µu,D and σ2
u,D denote the posterior mean and variance returned by

the GPC when queried at the point u given some data set D = {u1:k−1, r1:k−1},
respectively. More concretely, the GPC returns a Gaussian distribution from
which the posterior mean and variance are extracted as v(u) = N (µu,D, σ

2
u,D).

Φ(·) denotes the standard Gaussian cumulative distribution function. p(r)
denotes the Bernoulli goal prior over desired user feedback. h is the binary



8

182 Appendices for Chapter 4

entropy function and C =
√

π ln 2
2 . For brevity, we denote the data set of param-

eters and matching user responses collected so far as D.
The second term in the decomposition, the (negative) information gain, de-

scribes how much information we gain by observing a new user appraisal. This
information gain term (I [ r, v |D,u ]) can be expressed in a GPC as [47]

I [ r, v |D,u ] ≈ h

Φ

 µu,D√
σ2
u,D + 1

− C√
σ2
u,D + C2

exp

− µ2
u,D

2
(
σ2
u,D + C2

)
 ,

(B.19)

where the constant C is defined as C =
√

π log 2
2 and where h(·) is defined

as h(p) = −p log(p)− (1− p) log(1− p).

Inference in the Gaussian Process Classifier

To perform inference in the GPC for our experiments, we use the Laplace ap-
proximation as described in [90, Chapter 3.4]. The Laplace approximation is a
two-step procedure, where we approximate the posterior distribution by a Gaus-
sian distribution. We first find the mode of the exact posterior, which resembles
the mean of the approximated Gaussian distribution. Then we approximate the
corresponding precision as the negative Hessian around the mode. Finding the
exact posterior p(v |D) amounts to calculating

p(v |D) =
p(r1:k−1 | v)p(v | u1:k−1)

p(r1:k−1 | u1:k−1)
(B.20a)

∝ p(r1:k−1 | v)p(v | u1:k−1) . (B.20b)

Taking the logarithm of Eq. (B.20b) and differentiating twice with respect to
v gives

∇v log p(v |D) = ∇v log p(r1:k−1 | v)−K−1v (B.21a)

∇v∇v log p(v |D) = ∇v∇v log p(r1:k−1 | v)−K−1 = −W −K−1 (B.21b)

where ∇v denotes the gradient with respect to v, K = K(u1:k−1,u1:k−1) is
the kernel matrix over the queries u1:k−1 and W = −∇v∇v log p(r1:k−1 | v) is a
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diagonal matrix since the likelihood factorises over independent observations.
At the mode v∗ Eq. (B.21a) equals zero which implies

v∗ = K∇v log p(r1:k−1|v∗) . (B.22)

Directly solving Eq. (B.22) is intractable, because of the recursive non-linear
relationship. Instead we can estimate v∗ using Newton’s method, where we
perform iterations with an adaptive step size. We omit the computational and
implementation details here and instead refer to [90, Algorithm 3.1]. We deter-
mine the step size using a line search as implemented in Optim.jl [52]. Having
found the mode v∗, we can construct our posterior approximation as

p(v |D) ≈ N
(
v∗,
(
K−1 +W

)−1
)
, (B.23)

where W is evaluated at v = v∗. If we now recall that evaluating a Gaus-
sian process (GP) at any finite number of points results in a Gaussian, we see
that under the Laplace approximation the solution can now be obtained using
standard results for marginalisation of jointly Gaussian variables. We define the
shorthand K(uk,u1:k−1) = K1:k and K(uk,uk) = Kk and find the posterior
mean µu as [90, p. 44]

µu,D = KT
1:kK

−1v∗ = KT
1:k∇ log p(r1:k−1 | v∗) . (B.24)

The posterior covariance σ2
u,D is given by [90, p. 44]

σ2
u,D = Kk −KT

1:k

(
K+W−1

)−1
K1:k . (B.25)
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Appendix C
Appendices for Chapter 5

C.1 Expected Free Energy

This section will focus on the the most common alternative functional used for
AIF, the Expected Free Energy (EFE).

EFE is the standard choice for AIF models and is what is found in most AIF
focused software such as SPM [39] and PyMDP [44]. In this section we will
cover the details of how EFE is commonly treated.

EFE is defined specifically over future time steps and on a particular choice
of generative model. The model in question is a state space model (SSM) of the
form

p(x, z | û) = p(zt)︸ ︷︷ ︸
State
prior

T∏
k=t+1

p(xk|zk)︸ ︷︷ ︸
Observation

model

p(zk|zk−1, ûk)︸ ︷︷ ︸
Transition

model

(C.1)

where ûk denotes a particular control parameter which is known apriori and
fixed. Note that Eq. (C.1) does not include a prior over actions u and is instead
conditional on a fixed policy û = ût+1:T . We use theˆnotation on u to indicate
that it is treated as a known value instead of a random variable.

The EFE is evaluated as a function of a particular policy. The EFE is defined
as [33]
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G[q; û] =

T∑
k=t+1

x
p(xk|zk) q(zk|ûk) log

q(zk|ûk)

p(xk, zk|ûk)︸ ︷︷ ︸
VFE conditioned on ûk

dxkdzk (C.2a)

=

T∑
k=t+1

x
p(xk|zk)q(zk|ûk) log

q(zk|ûk)

p(zk|xk, ûk)
− log p(xk)dxkdzk

(C.2b)

where p(xk) denotes a goal prior over preferred observations. Note that
p(xk) is not part of the generative model in Eq. (C.1). To compute Eq. (C.2) we
also need

p(xk, zk | ûk) =
∫
p(xk | zk)p(zk | zk−1, ûk)q(zk−1)dzk−1 (C.3)

meaning we use the forward prediction from the previous time step to com-
pute p(xk, zk | ûk). If we further we assume that

q(xk, zk | ûk) = p(xk | zk)q(zk | ûk) (C.4)

It can be shown [22, 33, 60, 97] that (C.2) can be decomposed into a bound
on a mutual information term and a cross-entropy loss between predicted ob-
servations and the goal prior.

C.2 VFE and GFE

In this section, we walk through how the formulation of generalised free energy
(GFE) given by [81] reduces to the variational free energy (VFE) when observa-
tions are available. To show how this comes about, we note that [81] assumes
that

q(xk | zk) =

{
δ(xk − x̂k) if k ≤ t
p(xk | zk) if k > t

. (C.5)
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where t is the current time step and x̂k denotes the observed data point at
time step k. This is a problematic move since q(xk | zk) is no longer a function
of zk for k ≤ t. However if we do take Eq. (5.16) as valid and further assume

q(xk, zk | ûk) = q(xk | zk)q(zk | ûk) (C.6a)

p̃(xk) = 1 if k ≤ t (C.6b)

and note that

q(xk | ûk) =

∫
q(xk | zk)q(zk | ûk)dzk . (C.7)

We can plug this result into Eq. (5.15) and obtain for k ≤ t

t∑
k=1

x
q(xk | zk)q(zk | ûk) log

q(xk | ûk)q(zk | ûk)

p(xk, zk | ûk)p̃(xk)
dxkdzk

=

t∑
k=1

x
q(xk | zk)q(zk | ûk) log

∫
[q(xk | zk)q(zk | ûk)] dzkq(zk | ûk)

p(xk, zk | ûk)
dxkdzk

(C.8)

where the last line follows from Eq. (C.6b). Then by Eq. (5.16) we have

=

t∑
k=1

x
δ(xk − x̂k)q(zk | ûk) log

∫
[δ(xk − x̂k)q(zk | ûk)] dzkq(zk | ûk)

p(xk, zk | ûk)
dxkdzk

(C.9)

Now we pull δ(xk − x̂k) out of the integral and solve to find

=

t∑
k=1

x
δ(xk − x̂k)q(zk | ûk) log

δ(xk − x̂k)

Integrates to 1︷ ︸︸ ︷[ ∫
q(zk | ûk)dzk

]
q(zk | ûk)

p(xk, zk | ûk)
dxkdzk

(C.10a)

=

t∑
k=1

∫
q(zk | ûk) log

q(zk | ûk)

p(x̂k, zk | ûk)
dzk (C.10b)
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which we can recognise as a VFE with data constraints.

C.3 Proofs of Local Stationary Solutions in Section 5.6.2

This section derives the stationary points of a local GFE constrained objective,
as defined by Fig. 5.20.

C.3.1 Proof of Lemma 1

Proof. Writing out the terms in the Lagrangian and simplifying, we obtain

L[qx] = Ep(x|z,θ)q(z)q(θ)[ log q(x) ] + ψx

[∫
q(x) dx− 1

]
+ Cx . (C.11)

The functional derivative then becomes

δL
δqx

=
Eq(z)q(θ)[ p(x | z,θ) ]

q(x)
+ ψx

!
= 0 . (C.12)

Solving this equation for qx results in Eq.(5.40).

C.3.2 Proof of Lemma 2

Proof. Writing out the Lagrangian, we obtain

L[qz] = Ep(x|z,θ)q(z)q(θ)q(w)q(ϕ)

[
log

q(x)

p(x | z,θ)p̃(x | w,ϕ)

]
+ Eq(z)[ log q(z) ]

+ ψz

[∫
q(z) dz − 1

]
+
∑

i∈E(z)

∫
λip(zi)

[
q(zi)−

∫
q(z) dz\i

]
dzi + Cz .

(C.13)

The functional derivative then becomes
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δL
δqz

= Ep(x|z,θ)q(θ)q(w)q(ϕ)

[
log

q(x)

p(x | z,θ)p̃(x | w,ϕ)

]
+ log q(z) + 1 + ψz −

∑
i∈E(z)

λip(zi) (C.14)

= Ep(x|z,θ)q(θ)

[
log

q(x)

p(x | z,θ)f̃(x)

]
+ log q(z)−

∑
i∈E(z)

λip(zi) + Zz

(C.15)

= − log f̃(z) + log q(z)−
∑

i∈E(z)

λip(zi) + Zz , (C.16)

where Zz absorbs all terms independent of z, and with f̃(z) and f̃(x) given
by Eq.(5.43a) and Eq.(5.43b) respectively. Setting to zero and solving for qz,
we obtain

log q∗(z) = log f̃(z) +
∑

i∈E(z)

λip(zi)− Zz . (C.17)

Exponentiating on both sides, identifying µ⃗(zi) = expλip(zi), and normaliz-
ing then results in Eq.(5.42).

C.3.3 Proof of Lemma 3

Proof. Writing out the Lagrangian, we obtain

L[qw] = Ep(x|z,θ)q(z)q(θ)q(w)q(ϕ)

[
log

q(x)

p(x | z,θ)p̃(x | w,ϕ)

]
+ Eq(z)[ log q(z) ] + ψw

[∫
q(w) dw − 1

]
+

∑
i∈E(w)

∫
λip̃(wi)

[
q(wi)−

∫
q(w) dw\i

]
dwi + Cw .

(C.18)

The functional derivative then becomes
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δL
δqw

= Ep(x|z,θ)q(z)q(θ)q(ϕ)

[
log

q(x)

p(x | z,θ)p̃(x | w,ϕ)

]
+ log q(w) + 1 + ψw −

∑
i∈E(w)

λip̃(wi) (C.19)

= −Ep(x|z,θ)q(z)q(θ)q(ϕ)[ log p̃(x | w,ϕ) ] + log q(w)−
∑

i∈E(w)

λip̃(wi) + Zw

(C.20)

= −Eq(x)q(ϕ)[ log p̃(x | w,ϕ) ] + log q(w)−
∑

i∈E(w)

λip̃(wi) + Zw (C.21)

= − log f̃(w) + log q(w)−
∑

i∈E(w)

λip̃(wi) + Zw (C.22)

where Zw absorbs all terms independent of w, the second-to-last step uses
the result of Eq.(5.40), and where f̃(w) is given by Eq.(5.46).

Setting to zero and solving for qw, we obtain

log q∗(w) = log f̃(w) +
∑

i∈E(w)

λip̃(wi)− Zw . (C.23)

Exponentiating on both sides, identifying µ⃗(wi) = expλip̃(wi), and normal-
izing results in Eq.(5.45).

C.4 Proofs of Message Update Expressions in Sec-
tion 5.6.3

C.4.1 Proof of Theorem 1

Proof. Firstly, Lemma 3 provides us with the stationary solutions to L[q] as a
functional of qw. Secondly, the stationary solution of L[q] as a functional of the
edge-local variational distribution qj(wj), defined as
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L[qj ] = H [ qj ] + ψj

[∫
q(wj) dzj − 1

]
+
∑

a∈V(j)

∫
λja(wj)

[
q(wj)−

∫
q(w) dw\j

]
dwj + Cj , (C.24)

where Cj absorbs all terms independent of qj , directly follows from [116,
Lemma 2], as

q∗(wj) =
µ⃗(wj) ⃗µ(wj)∫
µ⃗(wj) ⃗µ(wj) dwj

. (C.25)

We then apply the marginalisation constraint on the edge- and node-local
variational distributions

q∗(wj) =

∫
q∗(w) dw\j . (C.26)

Substituting the stationary solutions we can directly apply [116, Theorem 2].
It then follows that fixed points of Eq.(5.47) correspond to stationary solutions
of L[q].

The notation µ 1 (wj) = ⃗µ(n+1)(wj) then conveniently represents the recur-
sive message update schedule.

C.4.2 Proof of Theorem 2

Proof. We follow the same procedure as before. Firstly, Lemma 2 provides us
with the stationary solutions of L[q] as a functional of zj . Secondly, the La-
grangian as a functional of qj(zj) is then constructed as

L[qj ] = H [ qj ] + ψj

[∫
q(zj) dzj − 1

]
+
∑

a∈V(j)

∫
λja(zj)

[
q(zj)−

∫
q(z) dz\j

]
dzj + Cj , (C.27)
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where Cj absorbs all terms independent of qj . The stationary solution again
follows from [116, Lemma 2],

q∗(zj) =
µ⃗(zj) ⃗µ(zj)∫
µ⃗(zj) ⃗µ(zj) dzj

. (C.28)

From the marginalisation constraint

q∗(zj) =

∫
q∗(z) dz\j , (C.29)

we can again directly apply [116, Theorem 2], from which it follows that
fixed points of Eq.(5.48) correspond to stationary solutions of L[q].

In the schedule, the fixed-point iteration is then represented by µ 2 (zj) =

⃗µ(n+1)(zj).

C.4.3 Proof of Corollary 1

Proof. From the marginalisation constraint we obtain Eq.(5.49). We then pa-
rameterise qz with statistics ν and substitute Eq.(5.42), Eq.(5.43) and Eq.(5.40)
to obtain a recursive dependence on ν.

C.5 Derivations of Message Updates in Figure 5.21

Here we derive the message updates for the discrete-variable submodel of Fig. 5.21.
To streamline the derivations, we first derive some intermediate results.

C.5.1 Intermediate Results

First we express the log-observation model,

log p(x | z,A) = log Cat(x | Az) (C.30a)

=
∑
j

∑
k

xj log (Ajk) zk (C.30b)

= xT log(A)z , (C.30c)
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where the final logarithm is taken element-wise. Then, from Eq.(5.40)

log q(x) = log
(
Eq(z)q(A)[ p(x | z,θ) ]

)
(C.31a)

= log
(
Eq(z)q(A)[ Cat(x|Az) ]

)
(C.31b)

≈ log Cat
(
x | Az

)
(C.31c)

= xT log
(
Az
)
, (C.31d)

Where we used a tentative decision approximation to compute the expecta-
tions with respect to q(A)

!
= δ(A−A). Next, from Eq.(5.43),

log f̃(x) = Eq(c)[ log p̃(x | c) ] (C.32a)

= Eq(c)[ log Cat(x | c) ] (C.32b)

= Eq(c)

[
xT log c

]
(C.32c)

= xTlog c . (C.32d)

Combining these results, from Eq.(5.43),

log f̃(z) = Ep(x|z,A)q(A)

[
log

p(x | z,A)f̃(x)

q(x)

]
(C.33a)

= Ep(x|z,A)q(A)

[
xT log(A)z+ xT log c− xT log

(
Az
) ]

(C.33b)

= Eq(A)

[
(Az)T log(A)z+ (Az)T log c− (Az)T log

(
Az
) ]

(C.33c)

= Eq(A)

[
zT diag

(
AT logA

)
+ (Az)T log c− (Az)T log

(
Az
) ]
(C.33d)

= Eq(A)

[
−zTh(A) + (Az)T log c− (Az)T log

(
Az
) ]

(C.33e)

= −zTh(A) + (Az)T log c− (Az)T log
(
Az
)

(C.33f)

= zTρ , (C.33g)

with

ρ = A
T (

log c− log
(
Az
))
− h(A) , (C.34)
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and

h(A) = −diag
(
AT logA

)
, (C.35)

the entropies of the columns of matrix A. With these results we can derive
the local GFE and messages.

C.5.2 Average Energy

Ux[q] = Ep(x|z,A)q(z)q(A)q(c)

[
log

q(x)

p(x | z,A)p̃(x | c)

]
(C.36a)

= −Ep(x|z,A)q(z)q(A)

[
log

p(x | z,A)f̃(x)

q(x)

]
(C.36b)

= −Eq(z)

[
log f̃(z)

]
(C.36c)

= −zTρ , (C.36d)

with ρ given by Eq.(C.34).

C.5.3 Message 1

We apply the result of Theorem 1 and express the downward message,

logµ 1 (c) = log f̃(c) (C.37a)

= Eq(x)[ log p̃(x | c) ] (C.37b)

= Eq(x)

[
xT log c

]
(C.37c)

= (Az)T log c . (C.37d)

Exponentiation on both sides then yields

µ 1 (c) ∝ Dir
(
c | Az+ 1

)
. (C.38)
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C.5.4 Direct Result for Message 2

Here we apply the result of Theorem 2 to directly compute the backward mes-
sage for the state. As explained before, this update may lead to diverging FE for
some algorithms.

logµ 2 (z) = log f̃(z) (C.39a)

= zTρ , (C.39b)

with ρ given by Eq.(C.34). Exponentiation on both sides then yields

µ 2 (z) ∝ Cat(z | σ(ρ)) , (C.40)

with σ the softmax function.

C.5.5 Indirect Result for Message 2

Here we apply the result of Corollary 1. We set the statistic ν = z, assume
message D (proportionally) Categorical, and use Eq.(5.50) to express

log q(z; z) = log f̃(z; z) + log µ D (z) + Cz (C.41a)

= zTρ(z) + zT logd+ Cz , (C.41b)

with ρ(z) given by Eq.(C.34), where the circular dependence on z has been
made explicit.

Exponentiating on both sides and normalizing, we obtain

q(z; z) = Cat(z | z) , with

z = σ(ρ(z) + logd) , (C.42)

and σ the softmax function. We then approach this equation as a root-finding
problem, and use Newton’s method to find an z∗ that solves for Eq.(C.42). We
can then compute the backward message through Eq.(5.49), as

µ 2 (z) ∝ q(z; z∗)/µ D (z) (C.43a)

= Cat(z | z∗) /Cat(z | d) (C.43b)

∝ Cat(z | σ(log z∗ − logd)) . (C.43c)
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C.5.6 Direct Result for Message 3

Here we apply the result of Theorem 2 and use the symmetry between z and A
to directly compute the backward message for the state, as

logµ 3 (A) = Ep(x|z,A)q(z)

[
log

p(x | z,A)f̃(x)

q(x)

]
(C.44a)

= Ep(x|z,A)q(z)

[
xT log(A)z+ xT log c− xT log

(
Az
) ]

(C.44b)

= Eq(z)

[
(Az)T log(A)z+ (Az)T log c− (Az)T log

(
Az
) ]

(C.44c)

= Eq(z)

[
zT diag(AT logA) + (Az)T log c− (Az)T log

(
Az
) ]
(C.44d)

= Eq(z)

[
−zTh(A) + (Az)T log c− (Az)T log

(
Az
) ]

(C.44e)

= zTξ(A) , (C.44f)

with

ξ(A) = AT
(
log c− log

(
Az
))
− h(A) . (C.45)

C.6 The Transition Mixture Node

In this section we derive the message passing rules required for the Transition
Mixture node used in our experiments on policy inference. Before doing so, we
first establish some preliminary results for the categorical distribution and the
standard transition node. In this section we will also on occasion use an overbar
to indicate an expectation, Eq(x)[g(x)] = g(x) The categorical distribution is
given by

Cat(x | z) =
I∏

i=1

zxi
i (C.46a)

=

I∑
i=1

xizi (C.46b)
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where x and z are both one-hot encoded vectors. The move Eq. (C.46a) to
Eq. (C.46b) is possible only because x is one-hot encoded. Similarly, we have
for the standard Transition node that

Cat(x | Az) =

I∏
i=1

I∏
j=1

[
Aij

]xizj (C.47a)

=

I∑
i=1

I∑
j=1

xizjAij (C.47b)

and again, since x and z are one-hot encoded

log Cat(x | Az) = log

[
I∏

i=1

I∏
j=1

[
Aij

]xizj

]
(C.48a)

=

I∑
i=1

I∑
j=1

log

[
A

xizj

ij

]
(C.48b)

=

I∑
i=1

I∑
j=1

xizj logAij (C.48c)

Now we are ready to start derivations for the transition mixture node. The
transition mixture node has the node function

f(x,y, z,A) =
∏
k

Cat
(
x | Akz

)yk (C.49a)

=
∏
k

[∏
i

∏
j

[
Ak

]zixj

ij

]yk

(C.49b)

=
∏
i,j,k

A
zixjyk

ijk (C.49c)

Where we use i to index over columns, j to index over rows and k to index
over factors. A is a 3-tensor that is normalized over columns. In other words,
each slice of A corresponds to a valid transition matrix and slices are indexed
by k. We assume a structured mean field factorisation such that
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q(x,y, z,A) = q(x,y, z)
∏
k

q(Ak) (C.50)

The constrained Forney-style factor graph (CFFG) of the transition mixture
node is shown in Fig. C.1

TM

z

x

y

A1

Ak

Figure C.1: The transition mixture node

We now define

log fA(x,y, z) = Eq(A)

[
log f(x,y, z,A)

]
(C.51a)

= Eq(A)

[∑
ijk

zixjyk logAijk

]
(C.51b)

=
∑
k

ykEq(Ak)

[∑
ij

zixj logAijk

]
(C.51c)

=
∑
k

yk

∑
ij

zixj

[
logAk

]
ij

(C.51d)

which implies that



9

C.6 The Transition Mixture Node 199

fA(x,y, z) = exp

(∑
k

yk

∑
ijk

zixj

[
logAk

]
ij

)
(C.52a)

=
∏
ijk

exp
(
logAk

)zixjyk

(C.52b)

=
∑
ijk

zixjyk exp
(
logAk

)
ij︸ ︷︷ ︸

Ãijk

(C.52c)

Now we are ready to derive the desired messages. The first message ν(·)
will be towards x. If we use µ(y) to denote the incoming message on the edge
y (similar for µz), then the message towards x is given by

ν(x) =
∑
z

∑
y

µ(z)µ(y) exp
(
Eq(A) log f(x,y, z,A)

)
(C.53a)

=
∑
z

∑
y

µ(z)µ(y)fA(x,y, z)
)

(C.53b)

=
∑
z

∑
y

µ(z)µ(y)
∑
ijk

zixjykÃijk (C.53c)

Assuming the incoming messages are Categorically distributed, we can con-
tinue as

= ECat(z|πz)ECat(y|πy)

∑
ijk

zixjykÃijk (C.54a)

=
∑
ijk

πziπykxjÃijk (C.54b)

=
∏
j

[∑
ik

πziπykÃijk

]xj

(C.54c)

where the last line follows from x being one-hot encoded. At this point, we
can recognise the message

ν(x) ∝ Cat(x | ρ) where ρj =

∑
ik πziπykÃijk∑
ijk πziπykÃijk

(C.55)
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By symmetry, similar results hold for messages ν(z) and ν(y). ν(z) is given
by

ν(z) =
∑
x

∑
y

µ(x)µ(y)fA(x,y, z) (C.56a)

∝ Cat(z | ρ) where ρi =

∑
jk πxjπykÃijk∑
ijk πxjπykÃijk

, (C.56b)

and ν(y) evaluates to

ν(y) =
∑
x

∑
z

µ(x)µ(z)fA(x,y, z) (C.57a)

∝ Cat(y | ρ) where ρk =

∑
ij πx,jπz,iÃijk∑
ijk πx,jπz,iÃijk

. (C.57b)

To compute the message towards the n’th candidate transition matrix An,
we will need to take an expectation with respect to q(x,y, z). It is given by

q(x,y, z) = µ(y)µ(x)µ(z)fA(x,y, z) (C.58a)

=
∏
ijk

π
xj

xjπ
zi
ziπ

yk

yk Ã
xjziyk

ijk (C.58b)

=
∏
ijk

[
πxjπziπykÃijk

]xjziyk

(C.58c)

∝ Cat(x,y, z | B) (C.58d)

where B is a three-dimensional contingency tensor with entries

Bijk =
πxjπziπykÃijk∑
ijk πxjπziπykÃijk

(C.59)

Now we can compute the message towards a transition matrix An as
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log ν(An) = Eq(Ak\n)q(x,y,z)

[
log f(x,y, z,A)

]
(C.60a)

= Eq(Ak\n)q(x,y,z)

[∑
ijk

xjziyk logAijk

]
(C.60b)

= Eq(Ak\n)

[∑
ijk

Bijk logAijk

]
(C.60c)

=
∑
k\n

[∑
ijk

Bijk logAijk

]
︸ ︷︷ ︸

Constant w.r.t An

+
∑
ij

Bijn logAijn (C.60d)

∝ tr
(
Bijn logAijn

)
(C.60e)

which implies that

ν(An) ∝ Dir(An | Bn + 1) . (C.61)

We see that messages towards each component in A are distributed accord-
ing to a Dirichlet distribution with parameters Bn + 1. The final expression we
need to derive is the average energy term for the transition mixture node. It is
given by

Ux[q] = −Eq(A)q(x,y,z)

(
log f(x,y, z,A)

)
(C.62a)

= −Eq(x,y,z)

(
fA(x,y, z)

)
(C.62b)

= −Eq(x,y,z)

[∑
ijk

xjziyk

[
logAk

]
ij

)
(C.62c)

= −
∑
ijk

Bijk

[
logAk

]
ij

(C.62d)

= −
∑
k

tr
(
BT

k logAk

)
(C.62e)
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