EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Unsupervised parallel machines scheduling with tool switches

Citation for published version (APA):

Dang, Q.-V., Herps, K., Martagan, T. G., Adan, |. J. B. F., & Heinrich, J. (2023). Unsupervised parallel machines
scheduling with tool switches. Computers and Operations Research, 160, Article 106361.
https://doi.org/10.1016/j.cor.2023.106361

Document license:
cCcBY

DOI:
10.1016/j.cor.2023.106361

Document status and date:
Published: 01/12/2023

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://doi.org/10.1016/j.cor.2023.106361
https://doi.org/10.1016/j.cor.2023.106361
https://research.tue.nl/en/publications/fecdb7f4-9a91-4b76-929a-84aa68012090

Computers & Operations Research 160 (2023) 106361

Contents lists available at ScienceDirect

Computers &
Operations

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

L)

Check for

Unsupervised parallel machines scheduling with tool switches e

Quang-Vinh Dang **, Koen Herps ", Tugce Martagan ?, Ivo Adan ?, Jasper Heinrich?

a Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
b KMWE Precision, BIC 1, P.O. Box 7930, 5605 SH Eindhoven, The Netherlands

ARTICLE INFO ABSTRACT
Keywords: This paper addresses the problem of scheduling jobs on identical parallel machines with tool switches in
Scheduling a high-mix, low-volume manufacturing environment. Inspired by the initiatives on “lights-out factory” at our

Tool switches

Unsupervised production

Genetic algorithm

Mixed-integer linear programming

industry partner, our problem setting involves several complex features. For example, we consider unsupervised
production hours (e.g., night shifts where operators are not available) in which tool switches cannot occur.
Moreover, motivated by current practice, tool switches in our problem setting cause costs instead of delays.
Also, a subset of jobs is prioritized to be completed within a scheduling horizon, and a job may consist of
ordered operations due to reentry to machines. The objective is to maximize the profit generated by the
manufacturing system, which is composed of revenue generated by the finished operations minus tool switching
costs and penalty costs of unfinished priority jobs. The decisions involve assigning operations to machines,
sequencing these operations, and determining a tool-switching plan. A mix-integer linear programming model
is first formulated. We then propose a genetic algorithm to solve industry-size problem instances, in which
tailored crossover and mutation mechanisms are introduced. We illustrate the performance of the proposed
GA with industry case studies using real-world data. We also make the anonymized data set publicly available.
Computational experiments reveal that approximately 26% profit improvement can be achieved by using the
proposed GA instead of the current way of scheduling at our industry partner. Moreover, we find that the
proposed GA brings higher benefits when the duration of the unsupervised shifts gets longer, and there is high
pressure on prioritizing jobs in the schedule.

1. Introduction flexibility in production scheduling to react to changes in customer
demand (Shivanand et al., 2006; Yadav and Jayswal, 2018; Florescu
Following the principles of smart industry and industry 4.0, many and Barabas, 2020). These CNC machines are equipped with tool

advanced manufacturing companies aim to have a “lights-out factory” magazines, marginalizing the internal tool switch time during process-
that automatically controls activities, operations, and material flow on ing. Appropriate planning of these machines can enable unsupervised
the shop floor, with minimal human interference. However, aside from running of jobs for extended periods, reducing the operator effort and
the enhanced focus on an improved automation level to increase pro- associated overhead costs for support services. Therefore, manufac-
ductivity, manufacturers face diversification in customer requirements. turing companies aim to improve system performance by increasing

Customers’ focus is moving towards customized products, resulting in
a higher product variety, commonly referred to as the high-mix, low-
volume (HMLV) industry. Although the use of automation equipment,
e.g., computer numerical control (CNC) machines, can assist in effi-
ciently and effectively processing production schedules, it is still crucial
to consider the collaboration between machines and labor resources to
optimize the production schedules (Qin et al., 2016; Lu, 2017).

CNC machines form the basis of flexible manufacturing systems
(FMSs) by performing a wide range of machining operations to produce
high-mix, low-volume job sets. Consequently, FMSs are capable of
processing a variety of different product types and offer the required

machine running hours while reducing the amount of direct supervision
required for operations (Noél et al., 2007).

A CNC machine can operate unsupervised for a period if all tools
required to satisfy the processing requirements for scheduled operations
are loaded to the tool magazine. If the number of needed tools exceeds
the tool magazine capacity, a tool switch will take place, in which
one tool is removed to free up a slot to insert a needed tool. When
multiple tool switches should occur at the same time to accommodate
all needed tools, they belong to a so-called tool switching instance.
According to Beezao et al. (2017), all activities associated with tool

* Corresponding author.
E-mail addresses: q.v.dang@tue.nl (Q.-V. Dang), k.herps@tue.nl (K. Herps), t.g.martagan@tue.nl (T. Martagan), i.adan@tue.nl (I. Adan),
j-heinrich@student.tue.nl (J. Heinrich).

https://doi.org/10.1016/j.cor.2023.106361

Received 17 October 2022; Received in revised form 6 June 2023; Accepted 21 July 2023

Available online 31 July 2023

0305-0548/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/cor
http://www.elsevier.com/locate/cor
mailto:q.v.dang@tue.nl
mailto:k.herps@tue.nl
mailto:t.g.martagan@tue.nl
mailto:i.adan@tue.nl
mailto:j.heinrich@student.tue.nl
https://doi.org/10.1016/j.cor.2023.106361
https://doi.org/10.1016/j.cor.2023.106361
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2023.106361&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Q.-V. Dang et al.

switches (i.e., removing existing tools and loading required ones) and
subsequent calibration represent about 25%-30% of the total fixed and
variable costs in FMSs. It is even more in the HMLV industry due to
its high product variety. This makes tool switches inevitable, and the
incorporation of tooling constraints in the scheduling practices plays a
vital role in enhancing the FMS productivity and utilization.

In this paper, we study a scheduling problem for a number of
identical parallel CNC machines that process a set of jobs/operations
while taking into account tool switches occurring in the machines. Our
problem is similar to those of Beezdo et al. (2017) and Dang et al.
(2021), where the former considers minimizing the makespan, and the
latter minimizes the total tardiness and tool setup time. Nevertheless,
we extend their problems by the following features, which constitute
the main novelties of our problem, to comply with industry needs.

(a) Unsupervised production shifts. CNC machines considered in our
paper can operate unsupervised for a specified duration each
day, but tool switches can only occur during supervised produc-
tion hours. Hence, all the required tools must be present in the
tool magazine before the beginning of unsupervised production
hours.

Costs related tool switches. Contrary to the existing literature,

tool switches in our paper do not inevitably cause a delay but

incur costs instead. The costs of tool switches are composed of

a fixed cost per tool switching instance (e.g., preparation and

measurement) and a variable cost dependent on the number of

tools switched (e.g., labor cost). In this setting, the tool switches
do not cause a delay due to several reasons. First, operators
order the required tools in advance at the tooling department,

ensuring timely delivery. In addition, the tool magazine of a

CNC machine allows the loading and unloading of tools while

running. In other words, operators can load the tools required

for the next operation while the machine is still processing the

current operation. An insignificant delay (i.e., less than 5 s)

compared to the total operation processing time might only

occur in an extreme case, where the last tool of the current
operation makes room for the first tool of the next operation.

However, the probability of encountering this case is practically

negligible.

(c) Profit maximization. Inspired by our industry partner, this paper
aims to maximize profit, i.e., the difference between the total
revenue of the operations finished within a scheduling horizon
and the total cost of executing these operations. The total cost
here consists of the costs of tool switches and the penalty costs
of the operations that are prioritized but not completed within
the scheduling horizon. In our paper, the maximization of profit
is relevant because it addresses an important industry charac-
teristic, the distinction between priority and regular jobs, where
each of the former incurs tardiness (resulting in a penalty cost)
if not finished by the end of the horizon, while still allowing
for maximum utilization of machines. Also, by considering the
costs of tool switches, we indirectly minimize the number of tool
switches and tool switching instances, which is well-known in
the relevant literature (see, e.g., Tang and Denardo, 1988a,b;
Keung et al., 2001b; Furrer and Torsten Miitze, 2017).

)

=

We will further elaborate on these distinguishing features in Sec-
tion 3. In this setting, we consider the decisions on the allocation of
operations to machines, the order in which operations are performed,
and the tool switching plan under consideration of unsupervised pro-
duction shifts and profit maximization. The main contributions of our
work are summarized as follows:

(i) We develop a mixed-integer linear programming (MILP) model
for our problem setting. As an important feature, the MILP model
is equipped to capture the production and tooling constraints
related to unsupervised hours (see Section 4).

Computers and Operations Research 160 (2023) 106361

(ii) We propose a genetic algorithm (GA), which can solve industry-
sized problem instances, to improve the results of a current
scheduling method being used in practice. In the proposed GA,
we introduce using two crossover operators in distinct search
phases to explore and exploit the solution space, where one of
them is a problem-oriented crossover concentrating on increas-
ing revenue (with more finished operations) while decreasing
costs (with fewer tool switches and fewer unfinished priority
operations). We also adapt a swap mutation operator to both
job and operation levels, taking into account the limited tool
magazine capacity (see Section 5).

(iii) We provide managerial insights based on a comprehensive nu-
merical analysis generated from industry data. In particular, we
analyze the impact of critical problem parameters on expected
profit, such as unsupervised ratio (the percentage of production
hours that operators are not available for tool switches), priority
ratio (the percentage of jobs that are prioritized to be completed
within a scheduling horizon), and tool ratio (the number of
unique tools required for a set of operations). Our numerical
results reveal that the proposed GA achieves high-quality so-
lutions for realistic problem sizes, which yields around 26%
improvement compared to the current industry practice.

(iv) The case study presented in this paper is provided by our in-
dustry partner, Klein Mechanisch Werkplaats Eindhoven (KMWE),
located at the Brainport Industries Campus in the Netherlands.
We make the anonymized data from KMWE publicly available
for further use. The outcomes of our research are generalizable,
and can be applied to settings where there is a central planner
that controls a group of machines in a high-mix low-volume
manufacturing environment.

The remainder of our paper is organized as follows. Related works
are discussed in Section 2. Section 3 describes the problem, followed
by a corresponding MILP formulation in Section 4. Section 5 proposes
a GA to solve industry-size instances, while Section 6 introduces a
practitioner heuristic used at the KMWE. Subsequently, we outline
industry case studies, conduct parameter tuning, and present results of
computational experiments in Section 7. Finally, conclusions and future
works are drawn in Section 8.

2. Related work

Job scheduling with tool switches in FMS has received much atten-
tion in the literature. Ahmadi et al. (2018) present the job sequencing
and tool switching problem (SSP) that focuses on sequencing a finite set
of jobs and switching tools in a tool magazine with limited capacity to
minimize the number of tool switches. The SSP is divided into the job
sequencing problem (JSeP) and the tool replacement problem (TRP).
The JSeP is a scheduling problem identifying the optimal sequencing
of jobs on a machine. The TRP deals with planning to install required
tools to enable processing a given sequence of jobs with the aim of
minimizing the number of tool switches eventually. This decomposition
of the SSP into the two sub-problems, JSeP and TRP, is also discussed
by Tang and Denardo (1988a). Crama et al. (1994) prove that the SSP is
NP-hard for all cases with any tool magazine capacity C > 2. The SSP is
then extended to the identical parallel machines problem with tooling
constraints (IPMTC), presented by Beezdo et al. (2017). Consequently,
the IPMTC is also NP-hard, since the SSP is seen as its special case (Dang
et al., 2021). Various approaches have been proposed to deal with
problems of these types, which the following paragraphs discuss in
some detail.

First, several researchers have presented exact methods to solve
the SSP considering a uniform tool switching time and uniform tool
size to minimize the number of tool switches. They formulate different
integer linear programs (ILP) to model the SSP as, e.g., a traveling
salesmen problem (Laporte et al., 2004), nonlinear least cost Hamil-
tonian cycle problem (Ghiani et al., 2010), or multicommodity flow

Q.-V. Dang et al.

model (da Silva et al., 2021). Branch-and-bound (BnB) and Branch-and-
cut (BnC) algorithms, together with various bounding techniques for
improving results, are also introduced to solve medium-sized problem
instances (Laporte et al., 2004; Ghiani et al.,, 2010; Karakayali and
Azizoglu, 2006; Catanzaro et al.,, 2015). Nevertheless, the results of
these exact approaches are limited due to the NP-hard nature of the
SSP, i.e., addressing only small and medium-sized instances with 25—
40 jobs and 25-30 tools. Tang and Denardo (1988a) introduce the
Keep Tool Needed Soonest (KTNS) policy to optimally solve the TRP
in polynomial time, given any job sequence. This policy states that
if a required tool for the next job must be inserted, the tools that
should not be removed are those needed the soonest in the sequence.
Variants of the SSP consider minimizing the number of switching
instances (i.e., the number of machine stops) besides minimizing the
number of tool switches. Tang and Denardo (1988b) propose a BnB
procedure, including a maximal intersection minimal union heuristic
and a sweeping heuristic, to minimize the number of tool switching
instances while creating sets of jobs that can be processed together
without incurring any tool switches. Furrer and Torsten Miitze (2017)
also introduce a BnB algorithm to minimize both objectives for random
and realistic problem instances. Another variant of the SSP is addressed
by Schwerdfeger and Boysen (2017) in sequencing orders from a crane-
supplied pick face, where orders and stock keeping units refer to jobs
and tools, respectively. Their work minimizes the maximum number of
switches between consecutive jobs by an adapted MILP from Tang and
Denardo (1988a) and a BnB algorithm.

Furthermore, heuristics and meta-heuristics are the common ap-
proaches to cope with the SSP. Several researchers propose job group-
ing and construction heuristics (e.g., Tang and Denardo, 1988b; Crama
et al.,, 1994; Hertz et al., 1998; Djellab et al., 2000; Salonen et al.,
2006a; Burger et al., 2015; Schwerdfeger and Boysen, 2017), while
others focus on developing meta-heuristics, for example, tabu search
(TS) (Al-Fawzan and Al-Sultan, 2003), iterated local search (ILS) (Paiva
and Carvalho, 2017), and adaptive large neighborhood search (ALNS)
combined with simulated annealing (SA) (Rifai et al., 2022). Especially,
population-based approaches have been implemented successfully for
this problem type, such as memetic algorithm (Amaya et al., 2011,
2012) and hybrid GA (Amaya et al., 2008; Chaves et al., 2016; Ahmadi
et al.,, 2016; Mecler et al.,, 2021). The SSP with multiple objectives
solved by meta-heuristic methods are also studied in the works of,
e.g., Keung et al. (2001b) using a GA to minimize tool switches and
switching instances, Solimanpur and Rastgordani (2012) with an ant
colony optimization and Baykasoglu and Ozsoydan (2017, 2018) with
SA frameworks to minimize tool switches and indexing time (i.e., the
time to rotate between two tool slots). In addition, several other
researchers propose heuristic methods to solve the SSP concerning
unequal tool sizes, where a tool may occupy more than one slot in
the tool magazine (Tzur and Altman, 2004; Raduly-Baka et al., 2005;
Van Hop, 2005). Calmels (2019) classifies the SSP and its variants,
concluding that further works should pay attention to more realistic
problems with multiple machines and multiple objectives.

The IPMTC extending the SSP with parallel machines, in contrast,
has not been much studied in the literature. Several works propose
exact methods to solve problems of this type, aiming to minimize
tool switches, switching instances, and/or makespan. Nonlinear pro-
grams are addressed by Sarmadi and Gholami (2011), Ghrayeb et al.
(2003), and Van Hop and Nagarur (2004) for machines having dif-
ferent magazine capacities. Ozpeynirci et al. (2016) and Gokgiir et al.
(2018) develop mathematical and constraint programming approaches
for unrelated parallel machines with limited tool copies. Beezdo et al.
(2017) formulate extensions of ILP models from the works of Tang
and Denardo (1988a) and Laporte et al. (2004) for the IPMTC. For
multi-objectives, Keung et al. (2001a) propose an ILP model for ma-
chines with different magazine capacities and a limited number of
tool copies. Calmels (2022) provides an MILP considering machine-
dependent processing and tool switching times to minimize three ob-
jectives, i.e., tool switches, makespan, and flow time. Nevertheless,

Computers and Operations Research 160 (2023) 106361

in general, their models can solve only small-sized instances with
around 15-20 jobs, 9-10 tools, and up to 3 machines. Therefore,
heuristic solutions have been favored for more industry-sized problems,
e.g., TS (Ozpeynirci et al., 2016), ILS (Calmels, 2022), ALNS (Beezio
et al.,, 2017), and GA (Keung et al., 2001a; Van Hop and Nagarur,
2004). Also, Khan et al. (2000) consider the IMPTC where each job
consists of several operations, each of which needs its own set of
cutting tools. However, their proposed method can only be applied to
two-machine instances with 22 operations and 37 tools. The main dif-
ferences between our problem and the IPMTC are the following. First,
we consider unsupervised production hours in which tool switches
cannot occur, while the IPMTC does not. In order to deal with this,
a tool-switching plan has to take into account the operations that are
scheduled to execute during unsupervised hours. It means all tools
required for those operations must be installed prior to the start of
these unsupervised hours. Second, the IPMTC considers setup time per
tool switch, which incurs idle time. However, in our problem, a tool
switch does not cause a delay but incurs tool-switching costs. This links
to the third difference, where our objective is to maximize the profit
in which the costs of tool switches are involved. Here we maximize
the profit by indirectly minimizing the number of tool switches and
tool switching instances on all machines, whereas the IPMTC minimizes
the makespan by minimizing the number of tool switches only on the
critical machine, i.e., the most time-consuming machine. Additionally,
we penalize prioritized operations if they are completed outside a
scheduling horizon. Overall, the combination of these features rises the
complexity of our problem over the IPMTC.

Studies on job scheduling with unsupervised production constraints
are scarce. Agnetis et al. (2008) address an allocation of jobs to iden-
tical parallel machines for a fixed unsupervised period, where a job
that fails during processing blocks all subsequent jobs scheduled on the
allocated machine. Although rewards for completed jobs are consid-
ered, their work does not involve the tooling aspect. Noél et al. (2007)
address the decision to select cutting speeds for a given number of
tools that process some part types by an unsupervised metal cutting
flexible machine, aiming to improve machine uptime in lights-out
manufacturing. However, they do not consider tool switches, and the
machine in their work is set up to operate unsupervised for one specific,
finite duration only.

Our problem can be seen as an extension of the IPMTC, includ-
ing three sub-problems such as machine allocation (PM), operation
sequencing (JSeP), and tool replacement on machines (TRP). Our prob-
lem is also NP-hard, since a special case is the SSP, known as NP-
hard (Crama et al., 1994). However, our problem has distinctive fea-
tures from the literature, i.e., unsupervised production shifts, tool
switches causing costs instead of time delay in processing operations,
and profit maximization. To the best of our knowledge, the problem has
not been addressed in the literature with this combination of features.
We describe the problem in detail in the next section.

3. Problem description

This paper considers a parallel machine scheduling problem with
tool switches, unsupervised shifts, and job prioritization. We consider
a set of jobs J that is processed on a set of identical parallel machines
M in a work center by using a set of tools T. All the jobs in J are
released at the start of finite scheduling horizon H, thus scheduled
all at once. Each job j € J may have multiple operations that are
performed by revisiting the work center. We denote by O; = {(j, k), k =
1,2,...,n;} the set of operations of job j, where n; denotes the number
of operations of job j, and (j, k) can be interpreted as the kth operation
of job j. The order for processing the operations of job j must follow
index k, i.e., (j,k) - (j,k+ 1) for k = L2,....n; and n; > 1. In
other words, an operation of a job can only start when its preceding
operation of that job is completed. We also denote by O = u;¢,0;
the set of all operations of all jobs. Each operation is non-preemptable

Q.-V. Dang et al.

Table 1
Summary of parameters in Example 1.

Computers and Operations Research 160 (2023) 106361

Table 2
Tool set information in Example 1.

Job j Operation k Processing time pj; Tool set T, Job type

Tool set Tj, Tools 1 € Ty, Size |Tj|

Priority
Priority
Regular
Regular
Regular
Priority
Priority
Regular

o

Regular

NO U B WWN= =
N R SR N
U= 00O hooONUTW
=OA NN WWN ==

Priority

and has the sequence-independent setup time that is included in the
operation’s processing time, denoted as p;,.. In addition, a subset J, C J
is categorized as priority jobs, and all the operations of these jobs,
denoted by Op, are categorized as priority operations. This job prioriti-
zation adds practical relevance, where the priorities may be caused by a
variety of reasons, such as approaching deadlines, shifting requirements
of customers, or requiring crucial components for the assembly of an
entire product module. The other jobs, also the other operations, are
considered regular.

In practice, demand or demand forecasts creating jobs and opera-
tions may be known for a period greater than scheduling horizon H
(e.g., > a week). Nevertheless, since the length of H is finite, it may
happen that only part of all the operations in O can be completed
within H. Let O, where Oy C O, denote a subset of operations that
is finished within H. This subset can contain both priority and regular
operations. Each operation in Oy, either priority or regular, generates a
fixed revenue of r that is added up to the total revenue, denoted by R.
The remaining operations in O, which are not finished within H, may
also consist of both priority and regular ones. Nevertheless, in contrast
to those in O, they do not generate revenue in the scheduling horizon.
Instead, the unfinished priority operations, denoted by Oy, all incur a
total penalty cost of Cp with a cost rate of ¢, per operation, whereas
the unfinished regular ones do not. The remaining operations, together
with newly arrived demand, will be considered for the next horizon.

Each operation of a job can be carried out on any machine in the
work center. It means that different operations of the same job can
be processed on different machines or on the same machine. Each
machine m € M can process one operation (j,k) at the time, and
each operation (j, k) € O can only be processed by one machine m at
the time. Every machine has a tool magazine with the same limited
capacity T for holding tools employed in processing. A machine m
can only perform operation (j, k) when all tools t € T}, are present
in the magazine of machine m, where T, C T is the predefined tool set
used for operation (j, k). Each tool set T}, is a unique collection of tools
that has a size of |T},| indicating the number of tools in the tool set.
Different tool sets may contain some common tools that can be used for
processing different operations. Note that all operations of the same job
require the same tool set.

Example 1. Table 1 presents a problem containing 7 jobs. Three of
them have reentrant operations, thus a total of 10 operations. Also,
there are three priority jobs (five priority operations) among them.
All the operations are processed on 2 identical parallel machines and
require 5 unique tool sets. Each machine has a tool magazine capacity
Tc = 8. The composition and size of each tool set are presented in
Table 2. In this example, operations (1, 1), (2,1), and (3, 1) require tool
sets 1, 2, and 3, respectively. Here 7, and 5 are the common tools for
(1,1) and (3,1), while 7, and 7,53 are the common tools for (2,1) and
(3,1). We can also see that each of jobs 1, 3, 4 requires the same tool
set to process all its operations.

The machines can keep track of the tools present in their magazines,
thus indicating the missing tools from the required tool sets. Therefore,

{11,113, 14,15}
{t12:113: 114 1ys5a Lo 170 i)
(L7920 19 19 ST ST PN SRS
{15.16,17}

{t15: 1162117 11> 1195 120 }

g b wN =
AW o N w”

only the missing tools from tool set T}, need to be inserted for the start
of operation (j, k). In most practical cases, the insertion of a missing
tool may require the removal of a current tool in the magazine since
the limited capacity T cannot contain all tools at once. We can see an
example of this in Example 1. If operation (3, 1) is processed right after
(1, 1), tools ¢, 15, and 75 need to be removed before inserting the missing
tools of tool set 3 required for (3,1) into the machine’s magazine. It
indicates that a tool switch only happens when a tool required for an
operation is not present in the same machine processing the preceding
operation. Here one tool switch corresponds to one inserted tool that is
required for an operation (for example, to process (3, 1) after (1, 1), we
have to insert six tools (fg, ..., #;3), thus six tool switches counted).

Moreover, motivated by our industry partner, the machines in our
paper, while working, allow operators to switch tools in the magazines.
Consequently, tool switches do not incur any intermediate delay in the
schedule. Instead, costs are incurred for executing tool switches. At
any instance in which one or more tool switches occur simultaneously
(referred to as tool switching instance), we incur a fixed cost that has
a cost rate of ¢, per instance. In addition, each tool switch causes
a variable cost with a cost rate of ¢, per tool switch. The total tool
switching cost, denoted by C, is the sum of all the fixed and variable
costs. It can be seen that C; is proportional to the number of tool
switches and the number of tool switching instances. Therefore, the
decision to execute tool switches needs to be taken carefully into
account since removing a tool may cause additional fixed and variable
costs if that tool is required for any subsequent operation on the same
machine.

Furthermore, tool switches are influenced by unsupervised shifts
in which operator availability constrains the manufacturing. Namely,
tool switches are performed by operators and can only occur during
supervised shifts with the presence of the operators. As a result, the
operations requiring missing tools cannot start during unsupervised
shifts. These operations are delayed and begin in the next supervised
shift. Therefore, the decision for tool switching also affects how long
the work center can continue manufacturing without supervision each
day. The longer it can, or the more operations it can process during
the night, the more revenue it can generate. Without loss of generality,
all days are assumed to have a uniform unsupervised shift length of 7,
hours during the night, thus (24 — #;;) hours for each supervised shift.

In this paper, our goal is to obtain a schedule that determines
(a) to which machine operations are assigned, (b) in which sequence
operations are carried out on machines, and (c) a tool switching plan on
machines such that production constraints are satisfied. The objective
is to maximize the profit which is the difference between total revenue
R and total cost C, i.e., profit = R — C, where C = Cp + Cy. Here a
trade-off is made between total revenue R resulting from the finished
operations within the scheduling horizon and total cost C caused by
producing these operations. We visualize this trade-off in Fig. 1.

A scheduling horizon starts with a set of jobs (operations) contain-
ing both priority and regular ones. Each finished priority or regular
operation increases the profit by a revenue rate of r. On the other hand,
not finishing any priority operation reduces the profit by a penalty
rate of c,. Hence, priority operations should be produced within the
scheduling horizon if possible, while regular ones can be produced in
the horizon to increase the revenue, but could also be produced in
future periods without incurring penalty costs. However, finite time

Q.-V. Dang et al.

Computers and Operations Research 160 (2023) 106361

~

Regular Jobs

Priority Jobs

Profit maximization

Fixed scheduling horizon

~

Unfinished

Regular Jobs
(no penalty)

Priority jobs
(penalty)

Regular Jobs

~ Finished

Priority Jobs

Y

Start

Qan horizon

End

End horizon

/

Fig. 1. Profit maximization with penalty costs.

and resources limit the number of finished operations. Therefore, de-
termining which operations to be produced within the finite horizon
is crucial for maximizing the profit. Also, the profit is affected by the
costs associated with the tool switching plan. Finishing more operations
tends to gain more revenue but may cause more tool switches, thus
more tool-associated costs due to the diversity in processing require-
ments in the high-mix, low-volume, high-complexity manufacturing
environment. Further, the tool switching plan is constrained by lim-
ited operator availability. One can think of allocating and sequencing
operations in such a way that can prolong production in unsupervised
shifts to generate more revenue. Nevertheless, it may lead to a negative
influence on scheduling in supervised shifts, i.e., more tool switches.
Hence, a smart, holistic decision-making method is needed to cope with
this complex challenge to maximize profit.

In this paper, we take the following assumptions into account.
First, the size of any tool set Tj, is at most equal to the magazine
capacity, i.e., max{|T;|,VT; € T} < Tc. Otherwise, the machines
cannot be used, because the tool sets do not fit into their magazines.
Second, each tool has a sufficient number of copies for manufacturing
in practice, hence we do not consider its limitation. This assumption
implies that a tool’s copies can simultaneously be present in multiple
machines’ magazines. Third, no tool wear, tool fractures, or other
types of machine malfunctions that might lead to quality rejections of
processed items are considered. Hence, costs of electricity, depreciation
of machines, and other factors are not considered.

Example 2. We illustrate a feasible solution for the problem in
Example 1 with Fig. 2. Here, we consider an unsupervised shift of
12 h and a scheduling horizon of 48 h. As seen in this schedule,
five operations are processed on machine 1, and four are processed
on machine 2; each generates revenue at a rate of r. Operation (7, 1)
remains unfinished after 48 h, incurring a penalty cost of ¢, because
it is a priority operation. Also, it can be seen that several operations
are continued during unsupervised shifts, e.g., part of operation (2, 1)
is processed in hours 12-15. After machine 1 finishes operation (2, 1),
operation (3, 1) cannot start immediately and is delayed until the next
supervised shift, leaving machine 1 idle in hours 15-24. This is because
installing required tools for operation (3, 1) cannot happen during un-
supervised hours. In addition, this schedule has no delay caused by tool
switches, e.g., when machine 1 switches tool set 1 to 2, operation (2, 1)
can start right after operation (1,2). Instead, costs are incurred due to
tool-switching activities, e.g., the cost to switch from tool set 1 to 2 is
¢y +7¢, (fixed cost per instance + variable cost for inserting 7 individual
tools of tool set 2).

4, Mathematical formulation

In this section, a mathematical model is formulated based on the
problem description in Section 3. The model captures the objective
of maximizing profit with the production constraints on unsupervised
shifts and tool-switching requirements.

4.1. Decision variables

We introduce the following decision variables, in addition to the
notation presented in Section 3.

Sik starting time of operation (j, k)

€k ending time of operation (j, k)

x;,”kj, o equal to 1 if operation (j, k) is directly followed by
operation (j’, k") on machine m, 0 otherwise

/’?L equal to 1 if operation (j, k) is assigned to machine m, 0

otherwise

@y equal to 1 if operation (j, k) is completed within
scheduling horizon H, 0 otherwise

y;, " equal to 1 if tool 7 is present at the start of processing
operation (j, k), O otherwise

z; " equal to 1 if tool ¢ is inserted at the start of operation

(j, k), O otherwise
Lig equal to 1 if a tool switching instance occurs at the start
of operation (j, k), 0 otherwise

4.2. Mixed-integer linear programming model

We formulate a mathematical model for the described problem as
follows.

Objective (1) maximizes the profit = R — C» — Cr, where R =
rZ(700 Yk (the total revenue from finished operations), C, =
¢ Zu,k)eop(l — ay;) (the total penalty cost of unfinished priority op-
erations), and Cr = c; X yyco #ikljk + o 2 1)eo Lier ajkz;k (the total
tool switching cost).

max (r 2 ay—c, z (I=a;)—(cs z ajljt+e, Z Zajkz;.k))

(k)0 (.k)E0p (k)0 (jk)€0 1€ET
(€Y

A feasible solution must satisfy the following constraints:
2 2 X st V(i.k) € O @

meM (' k' eo
G K#G k)

Q.-V. Dang et al.

Computers and Operations Research 160 (2023) 106361

M AD] @2 [@) G] B2 :
Operations i i i
My [(41)] (4,2) B (5,1) [(6,1)! j
M 1 [: 2 | E] |
Tool sets | | | i
M, 12 \ 4 [‘ 5 \
Shift Supervised | Unsupervised i Supervised i Unsupervised i
Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Fig. 2. Gantt chart of a feasible schedule for Example 1. The chart consists of two parts. The upper part “Operations” presents the operations sequenced on the machines. The lower
part “Tool sets” indicates the tool sets present while processing the corresponding operations in the upper part. The vertical, blue-dashed lines separate supervised and unsupervised
shifts. The green bars [present finished operations, both priority and regular. The bold index (j, k) inside the green bars indicates those finished are priority operations. The grey
parts O indicate that part of operation processing is performed during unsupervised shifts. The white-dashed bars 1 represent machine idle time, resulting from unavailable tools

required for operations scheduled next in the sequence.

2 2 X st V('.K) €0 ©)
meM (j.keo
Uk#G! K
Z =1 V(j,k) € O 4
meM
2N S B B ¥, k) €0,

v(j', k') € O\{(j.k)},Vme M (5)
VYme M (6)

m m

22 gtz XA
(j.k)eO (' kHeo (j,k)eo

(! KD#G K

Constraints (2) and (3) make sure that each operation can only

be preceded and followed by at most one operation, respectively.

Constraints (4) impose that each operation is assigned to one machine

only. Constraints (5) and (6) enforce that two successive operations

must be carried out on the same machine.

ej = Sjk+ Pji V(j,k) € O)

S+ L1 - x:.",k,/.k) e V(.k) €0,Y(', k') € O\{(j.k)}.Vme M
(8

ek < Sijt Viel,j=1,...,n;—1),n;> 1)

Constraints (7) make sure that the ending time of an operation is
constrained by its starting time and processing time. Constraints (8)
guarantee that an operation can only start after its preceding operation
on the same machine is completed, where £ =}, \,c0 P« +g[H '2#4] isa
large number. Constraints (9) enforce the precedence relations between
two operations of the same job.

H—ej
L

ej—H

(10)

<ap<1-

V(j,k) €O

Constraints (10) ensure that if an operation is completed within
the scheduling horizon (i.e., e¢; < H, thus a; = 1), it accounts for
a revenue of R in Objective (1). Otherwise (i.e., e; > H, thus a;; = 0),
a penalty cost is incurred if that operation is a priority one.

DV <Tc ¥(j.k) € 0 an
teT
itV =Y SZp+ 1 VUK € 0.V K') € O\{(. b}

Vme M, VteT 12)
y;k =1 V(j.k) € OVt €T, 13)
z;k <l V(j,k)eOVteT a4
Le<)02, v(j,k) €O (15)

teT

Constraints (11) impose that the sum of all tools present at the start
of an operation does not exceed the tool capacity. Constraints (12)
states that a tool switch occurs (i.e., z;.k = 1) when tool 7 required
for operation (j,k) is not present in the tool magazine during the
processing of preceding operation (j’, k’). Constraints (13) ensure that

all required tools for operation (j, k) are present at the start of the

operation. Constraints (14) and (15) make sure that each tool switch
results in a tool switching instance, and vice versa, i.e., that at each
tool switching instance, one or more tools are switched.

We want to note that, by Constraints (14), we do not restrict
that a tool switch can only be performed when tool ¢ is required to
immediately process operation (j,k), as considered in the literature
(i.e., z;k =0, V(j,k) € O, Vt € T \ Tj;, (Beezdo et al., 2017; Dang et al.,
2021)). In order words, we can insert a tool into the magazine earlier
than the time the tool is needed to process a subsequent operation in the
schedule. By doing so, it can keep machines running in unsupervised
shifts when an operator is not present for tool switches.
sjx mod 24

T Y(,k) €0

Ly <2- (16)

Constraints (16) impose that tool switching instances can only occur
during supervised shifts, i.e., during the first (24 — ;) supervised hours
of each day, where (s % mod 24) is a modulo that determines the time
(hour) of a day at which operation (j, k) begins. For example, if s, = 30
and 7y = 12, then /;; < L5, which indicates that a tool switching
instance may happen at hour 30. Constraints (17)-(21) ensure valid
domains for all variables.

x;."kj,k, e {0,1} Y(j, k) € OV(', kK'ye O,Yyme M aa7)
e € 10,1} Y(j, k) € O,Yyme M 18)
Vi 2y €101} V(. k)€ OVt €T 19
@i € 10,1} V(j.k) € O (20)
Sjkseji 20 V(j.k) € O 21)

Since Objective (1) is nonlinear, it is linearized as follows. We define
two additional binary variables §;, and A}k, where:

V(j,k) €O
V(,k)€ONteT

(22)
(23)

5jk = ajkljk

Al = @y
Objective (1) is then rewritten as Objective (24).

ap—c, X (=ap)=(e; X bpte, Y, DA (24)

(j,k)eOp (j,k)eo (j,k)eo teT

max (r Z
(j,k)eo

Constraints (22) are replaced by Constraints (25)—(27) due to the
nonlinerization. Constraints (23) are also replaced in a similar manner.

S <aj v(j,k) €O (25)
S < i Vi.k) €0 (26)
S > oy 1 — 1 V(j,k) €O 27)

Moreover, since the parallel machines are identical, there exist
many alternative solutions that are similar but mirror the allocation
of operations over the machines. Hence, we exclude those alternatives
by adding symmetry-breaking constraints (28) (Sherali and Cole Smith,

Q.-V. Dang et al.

2001) to avoid searching for them, thus boosting the performance of the
MILP.

Xtz X B

(,k)eo (.k)eo

vme M\{1} 28)

We observe that the mathematical models proposed in several rele-
vant works start struggling even for a small set of operations (e.g., 15
and 25 operations for the works of Beezdo et al. (2017) and Dang
et al. (2021), respectively). Our problem, an NP-hard problem as dis-
cussed, is more complex than those, which implies that our MILP can
encounter a similar issue. It is demonstrated in our experiments (see
Section 7), where the MILP finds it hard to solve the problem from 25
operations onward. In addition, it requires a computational effort that
may increase exponentially in medium and large-sized problems with
more operations and machines. It reinforces the necessity of developing
another method. Therefore, a GA is presented in the next section.

5. Proposed genetic algorithm

In this section, we propose a GA, a population-based approach that
has been successfully employed in the literature for studies of job
scheduling with tool switches. Compared to alternative optimization
methods, GA is widely recognized for its effectiveness in conducting
global searches and reducing computational requirements. Also, GA
offers the flexibility to be combined with other approaches, enabling
the creation of more efficient implementations for various optimization
problems (Gen et al., 2008a). Specifically, in this paper, our GA is en-
hanced by applying a hybrid method of the job grouping and the KTNS
policy to reduce both tool switches and tool switching instances (Salo-
nen et al., 2006b). Let P,, C,, and C/ denote the parents, offspring
from crossover operations, and offspring from mutation operations
of generation k, respectively. Also, let f, and f,,, denote the best
(maximum) fitness value at generation « and the best fitness value
over generations until generation k, respectively. The pseudocode of
the proposed GA is presented in Algorithm 1.

Algorithm 1 Genetic algorithm

Require: set of operations O, set of machines M, set of tools T

1: k « 1, best « false

2: Initialize P, > Section 5.2

3: Evaluate P, > Section 5.8

4: fpesr < min{f, : chromosome v € P}

5: repeat

6: if best = true v g < Q then

7: Create C, from P_ using problem-oriented crossover > Section
5.3.2

8: else

9: Create C, from P_ using combined crossover > Section 5.3.1

10: end if

11: Create C/ from C, by swap mutation and uniform mutation> Section
5.4

12: Merge classes S to maximal classes for C! > Section 5.5

13: Evaluate C/. > Section 5.8

14: Generate P, from P, and C] by elitism and immigration > Section
5.6

15: f < min{f, : chromosome v € P}

16: if f,. > f., then

17: Frest < fr» best — true, g < 1

18: else

19: best « false, ¢ « g+ 1

20: end if

21: Kke—k+1
22: until termination criteria met

The proposed algorithm is initialized with the first generation of
parents P, that is created randomly and seeded with good initial
solutions from a practitioner heuristic presented in Section 6 and a BnB

Computers and Operations Research 160 (2023) 106361

grouping procedure described in Section 5.2.1 (line 2). This initial pop-
ulation is evaluated, and the best parent is recorded (lines 3-4). Next,
the algorithm processes the parents of generation x with crossover
operations. If a new best solution is found, it benefits from using a
problem-oriented crossover for the next Q generations to exploit the
search area around this best solution, where ¢ is the index to keep track
of the number of times the problem-oriented crossover is used (lines
6-7 and 16-20). On the other hand, a combined crossover consisting
of two-point and adapted partial-mapped crossovers is used to explore
the search space (lines 8-10). Afterward, swap and uniform mutations
are performed on offspring C, (line 11). The algorithm then merges
classes (each of which consists of a number of operations) in each
offspring C,. to maximal classes (see Section 5.2.1 for more details) to
prevent unnecessary tool switching instances (line 12). These resulting
offspring C/ are evaluated, and the next generation P, is created
from parents P, and offspring C/ using an elitism and immigration
mechanism to push the algorithm towards improved solutions (lines
13-14). The algorithm is terminated when it reaches the maximum
computational time maxTime or no best solution f,,, is found for G,
consecutive generations. More details about the respective components
of the algorithm are provided in the sections stated in comments in
Algorithm 1.

5.1. Genetic representation

Encoding solution plays a crucial role in GAs. In our paper, due to
the reentry of operations and the resulting precedence constraints, a
standard permutation encoding scheme may cause infeasible solutions.
Therefore, we adapt the encoding scheme presented by Gao et al.
(2008) to deal with this problem. A chromosome using this encoding
scheme consists of a vector of jobs in processing order (called job
vector) and another vector representing the machine allocation (called
machine vector). However, different from Gao et al. (2008), we use
a job vector to represent operations that are processed subsequently
without requiring a tool switching instance, referred to as maximal
classes S (Tang and Denardo, 1988b). Maximal classes S are groups
of operations requiring a set of tools that can fit together in the
tool magazine of a machine. This includes any operation that would
be added to this maximal class .S and is not yet added to another
maximal class, would require tool switches. Consequently, the total
number of tools required for producing the operations of each maximal
class is smaller than or equal to the tool magazine capacity, and tool
switches occur between maximal classes (see Section 5.2.1 for more
details of maximal class). The content of maximal classes within the job
vector is not fixed, i.e., operations may switch between maximal classes
throughout the GA process. One can note that constructing maximal
classes does not limit the heuristic’s ability to find optimal solutions but
prevents unnecessary tool switching instances by combining operations
that can be produced sequentially without requiring tool switches.

Accordingly, each chromosome v consists of n genes, with » being
equal to the number of maximal classes S. Each gene Vg (g=1,....n)
consists of two elements, i.e., a maximal class S, and a machine M,
processing this maximal class, so v, = {S,, M,}. Hence, a chromo-
some can be represented as a sequence of genes, i.e., (v(,...,v,) =
({S;, M},...,{S,, M,)). In each chromosome, let VS = {S;:1<g<
n} and Y M= {M, : 1 < g < n} denote the job vector and the machine
vector, respectively. In the maximal classes .S of the job vector, each
job j occurs exactly n; times, same as the number of operations of that
job. Here, the order of occurrences of index j can be interpreted as the
increasing order of the operations of job j. This handles the precedence
constraints between each job’s operations, thereby always resulting in
a feasible schedule.

Example 3. The encoding scheme is illustrated by a solution for
Example 1 in Fig. 4(a). In this figure, we add a layer of Operations O
representing the operations in the maximal classes of job vector V5.

Q.-V. Dang et al.

Then, job vector V° can be translated into the following operation
sequence: (1,1) > (1,2) > (2,1) > &4 1) > 4,2) > (3,1) > (3,2) >
(5,1) > (6,1) > (7, 1). Here the reentry of jobs is handled implicitly. For
example, job 1 has two operations represented by .S,. These operations
are subsequently interpreted as the first operation of job 1 (1,1) and
the second operation of job 1 (1,2). Additionally, we provide another
layer, i.e., Tool sets T, to indicate the tool set required for processing
the operations of maximal class .S, on machine M,.

5.2. Initialization

This section presents the initialization procedure generating the
initial population. Often randomly generating solutions is the most
common method to diversify the population and explore the search
space for better solutions. On the other hand, seeding the population
with potentially good solutions found by other heuristics may help GAs
to improve their performance (Gen et al., 2008b). Therefore, we employ
both methods to generate the initial population. First, we seed the
initial population with one solution from a practitioner heuristic (see
Section 6) and 5% number of solutions from a BnB grouping method
(see Section 5.2.1). Next, we complement the initial population by
adding randomly generated solutions until reaching the population size
N,. All initial solutions are generated with maximal classes to push the
proposed GA towards reducing tool switching instances.

5.2.1. Branch-and-bound method

One of the ways to initialize chromosomes is using a non-LP-based
BnB method proposed by Tang and Denardo (1988b). This BnB method
is a heuristic that partitions the set of operations O in the minimum
number of maximal classes . to minimize tool switching instances. It
solves the job grouping problem by combining the Maximal Intersection
Minimal Union (MIMU) and sweeping procedures, which are both
described as follows.

First, a set of operations S is defined as a class if it needs no more
than T, tools altogether. For any given set of operations O, a class of
operations .S, where S C O, is called a maximal class of set O if the
following properties are satisfied:

L Y mes Tl < Te
2. | U mesuiirary Tikl > Te, for any operation (j', k') & S

where Properties 1 shows that S is a class complying with the tool
magazine capacity, and Properties 2 indicates that S is a maximal class,
i.e., no operation from the remaining operations can be added to this
class without requiring tool switches.

Let .S; be a maximal class with respect to O;, where O; is the set
of operations obtained by removing the set {S; U --- U S;_;} from set
O, for i = 2,...,N. Here, a partition {S,..., Sy} of set O is called
a sequential maximal partition if S; is a maximal class of set O; that
contains operations (j, k) € O;, where O,; = O;\ S; fori=1,...,.N = 1.
Then, the MIMU heuristic finds an upper bound for the number of
maximal classes by constructing a sequential maximal partitioning of
operations O. The MIMU expands a class .S by selecting an operation
(j’, k") that maximizes the total number of common tools required by
operation (j', k') and class S, i.e., max{|Tjy N {U; hesTjx)Y, k') &
S. If there is a tie in this selection, an operation (j’, k") is selected
to minimize the number of tools required by operation (j, k) but not
by the operations in class S, i.e., min{|T;1;s = {U; hesTix 1}, VG, k') &
S. A pseudocode of the MIMU can be seen in Algorithm E.1 (see
Appendix E.1).

On the other hand, the sweeping procedure finds a lower bound for
the number of maximal classes. This procedure sweeps away operation
(j, k) compatible with the fewest number of operations and all other
operations that are compatible with this operation. Nevertheless, there
might be cases that every pair of operations is compatible. It leads to
the lower bound equal to 1, which indicates a not-tight lower bound.

Computers and Operations Research 160 (2023) 106361

Hence, this method is enhanced by checking a possibly better lower
bound for these cases, i.e., SW = max {[| U; yeo Tjxl/ Tc 1. L}, where
L is the lower bound computed by the sweeping procedure for a set
O. A pseudocode of this procedure can be seen in Algorithm E.2 (see
Appendix E.2).

Finally, the BnB method finds a partition of set O in the mini-
mum number of maximal classes by repeatedly executing the MIMU
and sweeping procedures. It starts with an initial upper bound ob-
tained from the MIMU and a lower bound obtained from the sweeping
procedure. Then, the gap between the upper and lower bound is
reduced throughout the loop. This method terminates when there are
no non-terminated branching nodes left in the search tree. The resulting
partition of set O with the minimum number of maximal classes §
prevents intra-class tool switches and reduces inter-class tool switches.
A pseudocode of the BnB method can be seen in Algorithm E.3 (see
Appendix E.3).

Example 4. The BnB method is demonstrated using the data from
Example 1 (see Tables 1 and 2).! According to the MIMU, operations are
sequentially grouped into maximal classes, resulting in the following
partitioning of operations: {5}, S,,S3,S,}, where .S, = {(3,1),(3,2)},
S ={2, 1,4 1,42}, 83 ={(6, D}, and S, = {(1,1),(1,2),(7, 1), (5, D}
. Then, the sweeping procedure is done by sequentially sweeping
away the minimum compatible operation together with the operations
compatible with this operation. This results in the following order of
sweeping operations: S; = {(6,1)}, S, = {(3,1),(3,2)}, S35 = {2, 1), 4, 1),
4,2)}, and S, = {(1,1),(1,2),(5,1),(7,1)}. Here, the current upper
bound U* found by the MIMU is equal to the current lower bound L*
from the sweeping procedure, i.e., U* = L* = 4. The BnB method is
terminated, and the resulting partition with the minimum number of
maximal classes is obtained.

5.3. Crossover

The GA performance is significantly influenced by crossover opera-
tors (Gen and Cheng, 1999). In this paper, crossover operates on two
chromosomes chosen using tournament selection. Tournament selec-
tion contains random and deterministic selection features by randomly
choosing a set of chromosomes from the set of parents in generation
P and picking the chromosomes with the best (highest) fitness values
from this set for reproduction. The randomly chosen set of chromo-
somes is chosen with a tournament selection rate of y,, where 0 < y; <
1, and S; = y; X N, is the size of the chosen set of chromosomes.
Tournament selection and crossover continue until N, offspring are
obtained. This section presents two crossover methods® used within
our GA: combined crossover (CX) (Section 5.3.1) and problem-oriented
crossover (POX) (Section 5.3.2). CX is used as a generic search method
to diversify the search, while POX is applied for a Q number of
generations after a new best solution is found before using CX again.
The main aim is to take advantage of two crossover types in distinct
phases to search more efficiently.

5.3.1. Combined crossover

CX consists of a two-point crossover (2X) and an adapted partial-
mapped crossover (APMX). The CX simultaneously operates on job
vector V¥ and machine vector V™ of selected parent chromosomes to
create offspring. Hence, maximal classes S, from the job vector remain
allocated to the same machine M, of the machine vector. First, the 2X
randomly selects two cutting points referring to the positions of genes

v, in the range [0, ...,n] of the parent chromosomes. The substring

1 Step-by-step illustration for the BnB method’s example can be seen at
https://github.com/vinhise/pmstsup.

2 Pretest of different crossover operators can be seen at https://github.com/
vinhise/pmstsup/.

https://github.com/vinhise/pmstsup
https://github.com/vinhise/pmstsup/
https://github.com/vinhise/pmstsup/

Q.-V. Dang et al. Computers and Operations Research 160 (2023) 106361
Chromosome v (gene v,) 3 vy U3 vy Vs Ug vy
Job vector VS ‘ S1 ‘ Sy ‘ Ss3 ‘ Sy ‘ S5 ‘ Se ‘ S7 ‘
Operations O ‘ 1 ‘ 1 ‘ 2 ‘ 4 ‘ 4 ‘ 3 ‘ 3 ‘ 5 ‘ 6 ‘ 7 ‘
Machine vector VM ‘ 1 ‘ 1 ‘ 2 ‘ 1 ‘ 2 ‘ 2 ‘ 2 ‘
Tool sets T 1 |2 | 2 | 3] 4 | 5 | 1|
Fig. 3. Encoding scheme of a solution for Example 1.
Chromosome v (gene vy) vy g v3 vy U5 Vg vy Chromosome v (gene vy) vy V2 U3 V4 Us Vo
Job vector VS S S, S5 Sy S5 Se Sr Job vector VS S S S Sy S5 So
Operations O 1 ‘ 1 2 A ‘ 41313 5 6 7 Operations O 4 ‘ 4 2 3131 ‘ 1157 6
Machine vector VM 1 1 2 1 2 2 2 Machine vector VM 1 2 2 1 2 1
Tool sets T' 1 2 2 3 4 5 1 Tool sets Tj; 2 2 3 1 4,1 5
(a) Chromosome P, (b) Chromosome Py,
Chromosome v (gene v,) vy vy vs vy V5 U vr Chromosome v (gene vy) vy V2 U3 U4 Us U6
Job vector VS Si S S Sy Ss Se S7 Job vector VS S Sy S Sy Ss Se
Operations O 1[1] 2 [3]8]1]1] 5 | 6 | 7 | OperationsO a4 2 JaJaJ3]3]5]7] o
Machine vector VM 1 2 2 1 2 2 2 Machine vector VM 1 1 2 1 2 1
Tool sets T;; 1 2 3 1 4 5 1 Tool sets Tj; 2 2 2 3 4,1 5
(c) Chromosome C\; (d) Chromosome C,,
Fig. 4. Offspring chromosomes after 2X ([Exchanged operations, O Duplicated operations).
Chromosome v (gene v,) v v v vs v v Chromosome v (gene v,) vy [U3 Uy V5 U
Job vector VS Sy Sy Ss Sy S5 Se Sy Job vector VS S Sy S3 Sy S5 Se
Operations O 4 ‘ 4 2 3 ‘ 301 ‘ 1 5 6 7 Operations O 1 ‘ 1 2 4 ‘ 413 ‘ 35|17 6
Machine vector VM 1 2 2 1 2 2 2 Machine vector VM 1 1 2 1 2 1
Tool sets Tj; 2 2 3 1 4 5 1 Tool sets Tj; 1 2 2 3 4,1 5

(a) Chromosome Cj,

(b) Chromosome Cl,

Fig. 5. Offspring chromosomes after APMX (O Exchanged operations, [J Replaced operations).

within these two points is exchanged between the parents. Second, the
APMX performs a mapping step on the resulting chromosomes to ensure
that all operations occur precisely once. This mapping of operations is
done by linking operations between the substrings and then replacing
the duplicate operations outside the substrings (Dang et al., 2021).

Example 5. We illustrate the CX using Example 1 in Section 3 (see
Tables 1 and 2). Specifically, chromosome PK] in Fig. 4(a) (i.e., the
example solution presented in Fig. 3) and an additional chromosome
P, in Fig. 4(b) are selected for crossover. First, two cutting points are
randomly selected. In this example, v, and v, are chosen. Hence, the
substring with classes .S,, S5,and S, is exchanged from both chromo-
somes. This generates offspring chromosomes C,, and C,., as shown in
Figs. 4(c) and 4(d), respectively. In these offspring, the gray parts are
the exchanged parts of both solutions, and the red operations become
duplicate operations in these solutions. Then, the APMX is applied to
these offspring to ensure that each operation appears exactly once in
each solution. The resulting C,, and C,, after the APMX are presented
in Figs. 5(a) and 5(b), respectively, where the green parts are the
operations that are replaced using the APMX.

5.3.2. Problem-oriented crossover

The CX, composed of 2X and APMX, can be seen as generic
crossovers that do not consider specific characteristics of the problem
when generating offspring. While these generic crossovers aid in di-
versifying the search, they can also consume computational resources

by exploring unpromising regions. Therefore, in order to improve the
GA performance, we propose a problem-oriented crossover POX that is
initiated for Q iterations when a new best solution is found. This POX
supports exploring promising regions by further investigating the area
of the best solution using problem-specific features, i.e., tool require-
ments and job prioritization. Thereby, it can help the GA converge to
good solutions better. This POX consists of three sequential steps that
aim to reduce the number of unfinished priority operations Oy, reduce
tool switches, and increase the number of finished operations O.

The first step of the POX orders the maximal classes in the solution
based on the number of priority operations in each maximal class.
The maximal classes with the highest number of priority operations,
i.e., max{{(j,k) € S} n {(j,k) € Op}}, are brought forward in the
sequence. Then, the other maximal classes are arranged in decreas-
ing order of the number of priority operations in their classes. This
drives the GA towards solutions having more finished priority opera-
tions within the finite scheduling horizon. Consequently, it reduces the
penalty cost Cp incurred for unfinished priority operations.

The second step of the POX aims to employ common tools in the
required tool sets for operations, i.e., the overlap in tool sets, to reduce
variable costs of tool switches and machine idle time caused by tooling
constraints. All operations in a solution are checked for operations with
similar tool requirements, starting with operations in v;. Operations
requiring similar tool sets are inserted at the position of the first gene
that has those tool sets. By changing the operations’ positions and
placing them together with operations with similar tool requirements,
the GA is pushed towards minimizing the tool switching cost C;.

Q.-V. Dang et al.

Chromosome v (gene vy) vy) V3 vy U5 U6 vr
Job vector VS S Sy S Sy Sy S5 Ss
Operations O aJ4f1]1] 7 2 [3]3] 5 6
Machine vector VM 1 1 2 2 2 2 2
Tool sets Tj; 2 1 1 2 3 4 5

(a) Chromosome C,

Computers and Operations Research 160 (2023) 106361

Fig. 6. Offspring chromosomes after the first step (job prioritization) of POX ([Classes with priority operations).

Chromosome v (gene vy) v

Job vector V5 S Sy Sy S S Ss Se
Operations O 4 ‘ 4 2 111 7 313 5 6
Machine vector V¥ 1 1 2 2 2 2 1
Tool sets Tj; 2 2 1 1 3 4 5

(a) Chromosome C,,

Chromosome v (gene vy) [V3 vy U5 Vg
Job vector VS Sh Ss Ss Sy Sy Se
Operations O 1 ‘ 114 ‘ 41517 2 313 6
Machine vector VM 1 2 2 1 1 1
Tool sets Tj; 1 2 4,1 2 3 5
(b) Chromosome C',
Chromosome v (gene ’U_,,) vy Vo U3 vy Vs Vg
Job vector V¥ Sh Ss S3 Sy Sy Ss
Operations O 1[1]s]74]4] 2 [3]3] s
Machine vector VM 1 1 2 2 1 2
Tool sets T; 1 4,1 2 2 3 5

(b) Chromosome Cl.,

Fig. 7. Offspring after the second step (tool similarities) and the third step (constructive heuristic) of POX (O Tool similarities, 0 Constructive heuristic).

The third step adopts a constructive heuristic proposed by Dang
et al. (2021) (see Algorithm 2 in their work). This heuristic is used to
create machine vector VM of each solution based on the resulting job
vector V'S, It aims to allocate maximal classes to machines that already
hold a subset of the required tools for processing these maximal classes.
If no machine holds any of the required tools, the machine allocation
is done based on the least sum of processing times of all operations
already allocated to each machine. This workload balancing drives the
heuristic towards solutions with more finished operations and fewer
tool switches.

Example 6. The three steps of the POX are demonstrated by Figs. 6
and 7 in which the produced chromosomes result from those in Fig. 5
in Example 5. Fig. 6 illustrates the first step, where we, e.g., move
maximal classes S, and §; forward in the C, sequence since they
contain priority operations. Then, Fig. 7 illustrates the second and third
steps. In Fig. 7(a), maximal class .S, is inserted after class .S, since they
have similar tool requirements. Finally, the POX builds up the machine
vector by, e.g., allocating maximal classes S, in C,, to machine 1 since
this machine already holds the required tools. Also, as no machine
holds any required tools for .S,, machine 2 is allocated to this class
based on the least sum of processing times (i.e., 0 of machine 2 as
opposed to 20 of machine 1).

5.4. Mutation

In GAs, mutation is a genetic operator that makes spontaneous
random changes to various chromosomes in offspring. It serves the
crucial role of exploring the search space by diversifying the population
and trying out useful genes at random positions (Gen et al., 2008b).
Our GA adapts a swap mutation® for the job vector and makes use of a
uniform mutation for the machine vector as follows.

The swap mutation is performed on the job vector of a chromosome
by selecting each gene v, with a probability P, and swapping the
maximal class S, of that gene with the maximal class of another
randomly selected gene. In this way, the GA can try out different
orders of maximal classes within the chromosome. Also, the swap
is performed on the operational level by selecting each operation,
also with a probability P, and swapping this operation with another
operation randomly selected in the chromosome. Before exchanging an
operation to the maximal class of its new position, it is verified if the

3 Pretest of different mutation operators can be seen at https://github.com/
vinhise/pmstsup/.

10

sum of all required tools for the maximal class, including the exchanged
operation, exceeds the tool magazine capacity. If the tool magazine
capacity is exceeded, the operation is added to the first following
maximal class that is feasible, or a new maximal class is created for
the operation and added at the end of the chromosome. In the latter
case, an element M, with a randomly generated machine is added to
the machine vector to ensure that both job and machine vectors have
the same length. This second way of swapping can result in different
compositions of maximal classes, which enables a greater variety of
possible solutions.

Furthermore, the uniform mutation is performed on the machine
vector to attempt different machine allocations for the maximal classes.
The uniform mutation selects each element M, of the machine vector
with a probability P, and alters it by a randomly generated machine.

Example 7. The swap and uniform mutations are illustrated on the
chromosomes in Fig. 7. First, the swap mutation is performed on the
gene and operation levels of these solutions, resulting in Fig. 8. In
C',q’ maximal class S, is swapped with class S5, and operation (7,1)
is swapped with operation (6, 1). In C,’(z, no maximal class is swapped,
while operation (5, 1) is swapped with operation (2, 1). However, (2, 1)
cannot be exchanged to maximal class .S5 due to the tool magazine
capacity, thus added to .S;. Second, the uniform mutation is performed
on the machine vector, e.g., a machine is randomly generated for M,
in C| , as well as M3 and M; in C, .

5.5. Maximal classes

The crossover and mutation operations may generate solutions with
some classes that are no longer maximal classes. It results in unneces-
sary additional tool switching instances. Hence, the classes allocated to
the same machine are considered to be merged to a maximal class again
in order to prevent the GA from generating redundant genes, pushing it
towards better solutions. The merging can take place if the operations
within these classes require tools that together fit in the tool magazine
capacity. Here, subsequent classes in the job vector are merged at the
position of the first relevant class. Fig. 9 shows an example of recreating
maximal classes for chromosomes in Fig. 8. In this example, genes v,
and v, in Fig. 8(b) are merged into gene v, (colored gray) in Fig. 9(b).

5.6. Elitism selection and immigration
Elitism selection is applied to retain the best solutions of each

generation for the next generation, thereby increasing the GA’s ability
to learn from the history of the search (Gen et al., 2008b). First,

https://github.com/vinhise/pmstsup/
https://github.com/vinhise/pmstsup/

Q.-V. Dang et al.

Computers and Operations Research 160 (2023) 106361

Chromosome v (gene vy) vy Vg U3 n Vs Vg V7 Chromosome v (gene vy) [V3 vy U5 Vg
Job vector VS Sh Ss Sy S7 Sy S S Job vector VS S S5 S Sy Sy Se
Operations O aJ4] 5 J1]1] 6 [3]3] 2 7 | Operations O 11 7 [dfaf2] 5 [3[3] o
Machine vector VM 2 1 2 2 2 2 1 Machine vector VM 1 1 1 2 1 2
Tool sets Tj; 2 4 1 > 3 2 1 Tool sets Tj; 1 1 2 4 3 5

(a) Chromosome C;l

(b) Chromosome C;z

Fig. 8. Offspring chromosomes after swap mutation and uniform mutation ([0 Swapped classes, [0 Swapped operations, (] Mutated machines).

Chromosome v (gene v,) v Vg V3 vy V5 Ug v7

Job vector VS S, S 55 S S5 S, S Chromosome v (gene v,) = vy vy U3 vy v

Operations O 4 ‘ 4 5 111 6 313 2 7 Job vector V¢ Sy Ss Sy Sy Se

Machine vector VM 2 1 9 9 D D) 1 Operations O 1‘1‘ 7 /'1‘"1 2 5 313 6

Tool sets Tu 9 4 1 5 3 D) 1 Machine vector VM 1 1 2 1 2
Tool sets Tj; 1 2 4 3 5

(a) Chromosome C;l

(b) Chromosome C;2

Fig. 9. Offspring chromosomes after recreating maximal classes ([J Positions of genes merged to maximal classes).

all parents are ordered based on their fitness values. Subsequently,
an elitism rate y, (0 < y, < 1) determines the number of best
parent chromosomes, i.e., Sy = y, X N, that is retained for the next
generation. These S best parents replace Sy offspring chromosomes
with the worst (lowest) fitness values and then form the population
of the next generation together with the remaining offspring. Also, we
remove duplicate chromosomes in the next generation’s population and
replace them with solutions randomly generated as in the initialization
procedure in Section 5.2. This immigration and the elitism selection
maintain a balance between exploiting good solutions and exploring
the search space by population diversification (Gen et al., 2008b).

5.7. Tool switching method

As processing operations on machines, tool switches are inevitable
due to the limited tool magazine capacity. According to Tang and
Denardo (1988b), the tool switching problem with a known job se-
quence can be solved optimally in polynomial time by the KTNS policy.
Therefore, in this section, we apply the KTNS method to determine
the tool switching plan (i.e., which tools should be removed from
a tool magazine to insert required tools) for an operation sequence
generated using the genetic operators (i.e., initialization or crossover
and mutation). This method minimizes the number of tool switches
by counting subsequent operations for which present tools are used.
Then, if missing tools must be inserted, the present tools that are
needed the soonest are removed last. Naturally, the KTNS is employed
if there is insufficient remaining capacity to insert required tools into
the magazine. We also note that the KTNS is embedded in the fitness
evaluation in Section 5.8 for calculating variable costs of tool switching.

In our paper, the KTNS is applied for tool switches between maximal
classes on each machine. This method consists of three following steps:

Step 1. Let T,, denote the set of tools present on machine m. Also,
let T'S,, denote a subset of tools in T, that will be used later
for subsequent maximal classes on machine m, i.e., T'S,, C
T,,. Then, the method checks and determines 7'S,, for each
machine m.

Each tool + € TS, is scored based on the sequence of
subsequent maximal classes for which the tool is needed. Let
Q,, denote this sequence on machine m. Note that each tool
may be required by more than one class in Q,,. Therefore,
we consider a subsequence QS,, C Q,, that contains only
the first class requiring each tool t € T'S,, in Q,,. Afterward,
the score is calculated as follows: s¢, = |T'S,,| — (u— 1), with
u being the position of the class in Q.S,, that requires tool

Step 2.

11

t. Any tool not required for any subsequent maximal classes
gets a score of 0, i.e., s¢, =0, Vt € T,,\TS,,,.

The method decides which tools are removed from 7,, by
first defining the sufficient number of tool slots 4,, that
should be freed up to insert missing tools for operations in
maximal class S,, where 4, = |TR,| - (T¢c — |T,|), with
TR, ={t 1 1 € Ujpes, Tix A1 & Ty} Then, 4,, number
of tools are removed from the tool magazine in ascending
order of their scores sc, to free up capacity in machine m
for inserting the missing tools. The method repeats until
it is completed for the set of finished operations within
scheduling horizon H.

Step 3.

Example 8. We consider chromosome C,, from Fig. 9(b), where the
sequence of the maximal classes on machine 1 is checked, i.e., S; >
S5 > S,. In Step 1, machine 1 with T, = 8 can hold tool set 1 that
is required for processing operations (1, 1), (1,2), and (7, 1) in maximal
class S|, thus T} = {1,,1,,15,14,15}. Among these tools, ¢, and t5 are
still needed for processing subsequent maximal class S, containing
operations (3,1) and (3,2), so T'S; = {#,.t5}. Next, in Step 2, scores
are determined for tools ¢, and 75 in T'S; based on the order they are
needed in the sequence of subsequent maximal classes O, = {S3,.5,}.
Here, tools 7, and t5 are first used by maximal class S, in Q;, thus
0S; = {S4}. Then, since S, is the first maximal class in Q.S requiring
the tools in TS, we have sc, = scs = 2—(1-1) = 2. Tools 7, 1,, and t; are
not required for any subsequent maximal classes, so s¢; = sc, = sc3 = 0.
Finally, in Step 3, we determine T R; = {15,113, 14,115 16 17 13} thus
ITR,| =7. It results in 4, = 7—(8—5) = 4, which means four tools need
to be removed. In this case, we remove tools ¢, t,, t3, and #, (or t5)
from T according to the ascending order of the tools’ scores. The tools
in the magazine are now updated to T} = {ts5,15,113,t14- 115 16 175 118) -

5.8. Fitness evaluation

Fitness evaluation is performed to compute the fitness value of each
chromosome, i.e., the objective value of each solution. We employ
chromosomes’ fitness values for their ranks in the tournament selection
(Section 5.3) and elitism selection (Section 5.6). With the presented
genetic representation, each chromosome contains all operations in
O. However, only the operations finished within the finite scheduling
horizon H should be evaluated. Therefore, we let Si , Op , and Op
denote the sets of finished maximal classes, finished operations, and
finished priority operations on machine m, respectively. Note that a
maximal class is considered “finished” if any operation in this class is
completed. Consequently, we let S;Z denote a maximal class containing

Q.-V. Dang et al.

finished operations. The pseudocode of the fitness evaluation procedure
is shown in Algorithm 2.

Algorithm 2 Fitness evaluation

Require: chromosome v, set of priority operations O, scheduling horizon H,
unsupervised hours 7,

1: SE, < @, O < @, Op < @, a, < 0 (Vme M)

2: for g=1to n do

3: me M,

4 8, < sortPriority (S,), Sl

5 if a,, < H then

6 if a, (mod 24) > 24 — 1, then
7: a,, < a, + (24 — a, (mod 24))
8: end if

9: for (j, k) € S, do

10: P < @y + Dy

11: if p,, < H then

12: [

13: Sé<—S;U(j,k)

14: Op, <« Op UG.K)

15: 0p < 0p U{(.K) : (k) € Op}
16: end if

17: end for

18: Sp, < Sp U,

19: end if

20: end for

21: for me M do

22: for S, €Sy do

23: if TR, |> T, —1T,| then >TR, ={t:t€ UUMGS;T,,(At &T,}
24: T, < T,\{t : KINSteT,)} > See Section 5.7
25: end if

26: T, < T,UTR,

27: Ty < Ty + |TR,|

28: end for

29: end for

30: Tr < X,cp max(|Sp | = 1,0)
31: |0yl < 10p] = X,eu 105 |
32: f, <1 Yem |Op | —¢, 10yl = (¢ - Tp +c, - Ty)

The procedure starts with initializing sets Sy, , O, , and Op , as well
as the available time of each machine g,, (line 1). Then, chromosome
v is decoded from gene v, to v, to update these sets (lines 2-20). The
operations in each maximal class S, are sorted based on their priorities
(line 4). This way, when only part of a maximal class can be completed
within scheduling horizon H, we may finish priority operations in this
class first to reduce the total penalty cost C,. While iterating through
maximal classes S, the starting time of operation (j, k) requiring tool
switches during an unsupervised shift is postponed until the start of
the next supervised shift (lines 6-8), where the starting time of the
operation is the available time a,, of machine m to which it is allocated.
Next, the procedure calculates the machine’s ending time p,, involving
operation (j, k) (line 10). If this ending time is still within H, it will
update the machine’s available time a,,, class S}, and sets O and Op,_
(lines 12-15). The set of finished maximal classes Sk, is also updated
with class S; (line 18).

Further, the resulting set Sy is used for computing tool switches
between finished maximal classes on each machine m (lines 21-29).
Suppose the number of missing tools TR,, is larger than the remaining
magazine capacity. In that case, the procedure employs the KTNS,
presented in Section 5.7, to determine which tools should be removed
from the magazine to insert the missing tools (lines 23-25). Then,
the set of present tools on each machine 7,, and the number of tool
switches Ty, are updated (lines 26-27). The number of tool switching
instances Ty is derived from the number of sets of finished maximal
classes .S I3 which also contain finished operations O I3 (line 30). Here
minus one is owing to the assumption that the tools required by the first
maximal class processed on each machine are ready at the start of H.
In addition, the number of unfinished priority operations Oy, is derived

12

Computers and Operations Research 160 (2023) 106361

from the sets of finished priority operations Op obtained earlier (line
31). Finally, the fitness value of chromosome v is calculated from
the revenue of finished operations Of, , the penalty cost of unfinished
priority operations O, and the total tool switching cost involving Tr
and Ty, (line 32).

6. Practitioner heuristic

This section describes the manufacturer’s current way of schedul-
ing, henceforth referred to as the practitioner heuristic (PH). The
PH allocates and schedules operations to machines based on logical
decision-making. The PH consists of two phases. The first phase al-
locates operations into groups based on production characteristics, of
which similar methods can be found in grouping technology literature.
Subsequently, these newly created groups are allocated to machines
(Section 6.1). The second phase creates a production schedule based
on this group and machine allocation (Section 6.2). The PH serves as
a benchmark for performance comparison with the proposed GA (see
Section 7).

6.1. Phase 1: Allocate operations to groups/machines

In the first phase, all operations are allocated to machines. This
allocation procedure is described in Algorithm 3. In practice, parts
(jobs) with similar tooling requirements can be considered part fam-
ilies. Minor setups within the same family can be included in the part
processing times. Nevertheless, major setups between part families are
explicit and should be minimized to obtain a good schedule. First, the
PH groups operations (j, k) using identical tool set i € O, (i.e., i = T},
holds) into technological family F; (lines 3-10), where © denotes the
set of all tool sets. Next, we calculate the total processing time of
operations that are grouped into family F;, denoted by &;, see line
7. Subsequently, we allocate these technological families to machines
M using the shortest processing time (SPT) policy. Specifically, the
PH selects a machine m’ having the shortest total processing time and
allocates a family F; with the smallest @; to this machine (lines 11-16),
where A,, and ¥,, denote the set of families and their total processing
time allocated to machine m, respectively.

Further, we balance the workloads among the machines to prevent
them from “starving” (lines 19-26). This is done by iterating over the
machines and reallocating product families until (1) the differences
in workload of all machines is less than benchmark B, and (2) the
workload per machine is equal or greater than Benchmark B,. In each
iteration, the product family with the smallest &@; from the machine m"”
with the highest workload w”, is transferred to machine m’ with the
lowest workload w'. Ultimately, this reduces the difference in the sum
of processing times among machines. The benchmark levels are selected
based on practitioners’ experience and characteristics of the high-mix,
low-volume, high-complexity manufacturing environment. Here, the
maximum workload difference B, is set to 10% of all available hours
in horizon H (e.g., a horizon H of 7 days results in a BenchMark B, of
24 x7x 10% = 16.8 h). On the other hand, the minimal workload B, on
every machine is set to 80% of all available hours for manufacturing
within the time horizon H.

Example 9. We illustrate the first phase of the PH using the data
from Example 1 (see Tables 1 and 2) and Example 2 (H = 48 h) in
Section 3. First, we group all operations into technological families with
identical tool sets, i.e., F; = {(1,1),(1,2),(7,)}, F, = {(2,1),(4,1),(4,2)},
F; = {3,1),3,2)}, F, = {(5.1)}, Fs = {(6,1)}. Second, we allocate
these families to the set of machines using the SPT policy. The new
ordered set of families based on their sum of processing times is
{F4, Fs, F|, F5, F,}. We obtain the following allocation after assigning
these ordered sets to machines: A; = {F,, F|,F,} and A, = {F;, F;}.
Third, we check whether one of the benchmark levels can be achieved
for the workload balancing. It can be calculated that the difference in

Q.-V. Dang et al.

Algorithm 3 Phase 1: Allocate operations to machines

Require: set of operations O, set of machines M, set of tool sets ©
1: F, <0, ®, <0 (Vi€ O)

2: A, < 0,¥,<0WmeM)

3: for i € © do

4 for (j, k) € O do

5 if i =T}, then

6: F, « F,U(j.k)
7. D, — D, + Pjk

8 end if

9 end for

: end for

1O« (i€ sort(d,))

: for i € 6 do

m' « argmin{¥,, : Yme M}
A, <A, UF

Y, W+,

: end for

: m" < argmax{¥, : Vme M}, w' < max{¥,, : Vme M}
: m' < argmin{¥,, : Yme M}, w' < min{¥,, : Vme M}

: while w” —w' > B, Aw' < B, do

s « argmin{®, : VF, € A, }

Ay — Ay \ F,

Y, ¥, —®,

Ay < A, UF,

W, W, +®,
do lines 17-18
: end while

> sort based on SPT rule

workload between the two machines is higher than B, (i.e., 39 — 24 =
15 > 10%x48), and the minimal workload on machine 2 is lower than B,
(i.e., 24 < 80%x48). Consequently, the workload balancing is performed
by reallocating F, (with @, = 6) from machine 1 to machine 2. It results
in the following allocation: A, = {F,,F,} and A, = {F,, Fs, F;}. This
allocation satisfies benchmark B, (i.e., 3330 = 3 < 10% x48) and thus
is the result of Phase 1.

6.2. Phase 2: Create schedule

In the second phase, the PH creates a production schedule based on
the machine allocation’s results from phase 1. First, the PH sequences
all the priority operations allocated to each machine. We insert a
priority operation right after the position of the last operation in the
sequence having similar tool requirements, if possible. Otherwise, this
operation is added at the end of the sequence. Second, the PH considers
the non-priority operations allocated to each machine. It inserts a non-
priority operation into the sequence right after the position of the last
operation with similar tool requirements, if possible. If there are no
operations in the sequence with similar tool requirements, this non-
priority operation is added at the end of the sequence. Consequently,
all operations from a technological family are sequenced subsequently
to maintain the benefit of similar tool requirements, which reduces
tool switches and machine idle time. Finally, the resulting sequence is
transformed into a schedule using a similar procedure as Algorithm 2,
taking into account unsupervised shifts.

Example 10. From Example 9, we consider A, = {F,,F,} and
A, = {Fy4, Fs, F;}. First, we sequence the operations that are allocated to
machine 1. We start by inserting priority operations at the position of
operations with similar tool requirements, i.e., {(1,1),(1,2),(7,1),(4, 1),
(4,2)}. Afterward, we insert the regular operations in a similar manner,
ie.,

{(1,1),(1,2),(7,1),(4,1),(4,2),(2,1)}. We process the same steps for ma-
chine 2 (where A, has no priority operations), resulting in the following
sequence: {(5,1),(6,1),(3,1),(3,2)}. Last, the operation sequences on
machines 1 and 2 are transformed into the schedule as presented in

13

Computers and Operations Research 160 (2023) 106361

Fig. 10. One may notice that this schedule is superior to the schedule
from Fig. 2 since it finishes an additional priority operation (7,1)
instead of regular operation (2, 1). This reduces the penalty cost C; and
requires less tool switching cost Cj.

7. Computational experiments

This section presents the experimentation process for evaluating the
performance of the MILP, PH, and proposed GA. First, we introduce
three industry case studies in Section 7.1, followed by tuning the
proposed heuristic’s parameters in Section 7.2. Finally, we study the
performance of the three methods. This consists of the comparison of
the three methods and sensitivity analysis to demonstrate the proposed
heuristic’s effectiveness and derive managerial insights in Section 7.3
and Section 7.4, respectively.

7.1. Base cases: industrial case studies

We introduce three industry base cases, shown in Table 3, to test
the performance of the presented approaches. We denote the base
cases |M|M|O|, where | M| is the number of machines within the work
center, and |O| is the number of operations (e.g., 2M376 is the base
case with two machines processing 376 operations). The number of
reentrant operations, i.e., operations of which the start is constrained
by a previous operation that belongs to the same job, is denoted by
|Og|. The reentrant ratio, denoted by pp, varies per base case and can
be calculated as follows: pg = |Og|/|O|. In addition, the number of
reentries per job is limited to one, which indicates that a job consists
of at most two operations. The priority ratio pp of the base cases,
where pp = |0p|/|O|, is around 0.5, implying that about half of all
operations are prioritized. In addition, the tool ratio, denoted by p,
where p; = |T|/|O|, represents the number of unique tools that are
required for processing all operations. The tool ratio acts as an indicator
of the tool heterogeneity where, generally speaking, a higher value for
pr implies more tool switches, reducing the profit and vice versa.

Moreover, the scheduling horizon H is set to 7 days based on the
company’s weekly planning policy. Each day within the scheduling
horizon holds an unsupervised shift 7;; of 12 h. The tool magazine
capacity T, of every machine is 80 tool slots. Also, the revenue and
cost rates are set, in consultation with our industry partner, as follows:
r = $30 per operation, c, = $30 per operation, ¢, = $10 per instance,
and ¢, = $1 per tool switch. Lastly, the operations’ processing times
(with ¢ = 91 min, ¢ = 51 min) are derived from empirical data. The
base cases originate from three different machine groups (i.e., with
homogeneous machines per group) within the milling department of
the manufacturer, and they represent the typical problem sizes that
frequently happen in practice. Also, other case parameters (i.e., reen-
trant operations and priority operations) are generated from real-world
scenarios. Due to confidentiality restrictions, all data is anonymized.*

All experiments in this section use the same stopping criteria for the
proposed GA, i.e., maxTime = 3600s and G, = 20 (see Appendix A.3 for
details of setting G,). In practice, the manufacturer has approximately
6 h overnight to generate schedules. Nevertheless, this paper restricts
the maximum computational time to one hour, because of limited
computational resources and providing flexibility for rescheduling. In
addition, all experiments are run on a computer with Intel® Core i5-
7300U, @ 2.60 GHz CPU, and 8 GB RAM with Windows 10 operating
system. The PH and GA are programmed in Python v3.6, while the
MILP is written in the Gurobi Python package. Representative results
of the experiments are discussed through case 6M1201 in Sections 7.3
and 7.4. In addition, to illustrate the generalizability and broader
applicability of the proposed GA, Appendix D presents additional nu-
merical experiments based on other problem instances obtained from
the literature (Beezio et al., 2017).

4 Anonymized data set is available on https://github.com/vinhise/pmstsup.

https://github.com/vinhise/pmstsup

Q.-V. Dang et al.

Computers and Operations Research 160 (2023) 106361

Mm@y @2 [(71 (4,2) |
Operations i |
M, G] 61) [(32)
M, 1 | 12 |
Tool sets | | | |
M, 4 [; 5 \ '3 |
Shift Supervised | Unsupervised | Supervised | Unsupervised |
Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 30 40 41 42 43 44 45 46 47 48

Fig. 10. Gantt chart of a schedule generated using the PH ([Finished operations, Bold index (j, k): priority operations, O Processing time during unsupervised shifts, =1 Machine

idle time).
Table 3
Information on cases studies.
Base cases 2-machine 6-machine
2M376 6M1201 6M1401
Ratio No. Ratio No. Ratio No.
Jobs (|J]) - 250 - 750 - 1000
Operations (|0|) - 376 - 1201 - 1401
Reentrant operations (pg, |Og|) 0.50 188 0.60 720 0.40 560
Priority operations (pp, |Op|) 0.53 198 0.51 611 0.49 685
Tools (py, |T]) 1.73 650 1.27 1520 1.00 1398
Unsupervised hours/day (py, ty) 0.50 12 0.50 12 0.50 12
Table 4 mean objective values found by two respective methods, either the GA
Factors and levels for parameter tuning. and MILP or the GA and PH.
Factor Name Low () High (+) Table 5 shows that the proposed GA obtains equal or better results
Q Number of iterations with POX 1 10 than the MILP and PH for all instances in terms of the objective
N, Population size 100 400 value within the time limit. All three methods can find the optimal
7 Tournament selection rate 0.05 0.20
" . solutions for the instances with up to 25 operations. Nevertheless, for
72 Elitism selection rate 0.10 0.90 X . 3 R K
P, Probability of uniform mutation 0.01 0.20 larger instances, the MILP is not able to find any feasible solutions,
P, Probability of swap mutation 0.01 0.20 whereas the PH and GA can find feasible solutions for all instance

7.2. Parameter tuning

The parameters of the GA have a significant impact on its ef-
fectiveness. Therefore, these parameters are tuned to improve the
performance of the proposed GA. The parameter tuning is carried out
using a factorial design of experiments (DOE) that shows the effect of
parameters and assists in selecting appropriate parameters’ values (Box
et al., 2005). It also helps enhance the understanding of parameter
interactions. In this section, the DoE considers six parameters at two
levels, low (-) and high (+) values, as given in Table 4. In total, there
are 64 (2°) different combinations of parameter settings that are tested.
Also, four (tuning) cases are used to tune the six parameters. Informa-
tion on these cases is summarized in Appendix A.1 (see Table A.1).
For each case and each combination of the parameter settings, the
proposed GA is run 10 times. The detailed tuning steps are presented in
Appendix A.2, and their results are summarized as follows: Q = 1, Np
=400, y, = 0.2, y, = 0.1, P, = 0.01, and P, = 0.01. These parameter
values will be used for the GA in the remaining of Section 7.

7.3. Comparison of MILP, PH, and GA

In this section, we investigate the performance of the MILP and GA.
The results of the proposed GA are also evaluated with respect to the
PH, the current way of scheduling at our industry partner KMWE. The
three methods’ performance is studied on case 6M1201, from which
13 problem instances are generated by subsequently increasing the
number of operations from 5 to 1020. Their results are presented in
Table 5 (see Tables B.1 and B.2 in Appendix B for the other base cases’
results). To assure fair comparisons, the maximum computational time
of 36005 is set to all the three methods. Also, the mean and standard
deviation of the objective value and computational time are calculated
from those obtained in 10 runs. A percentage gap is derived from the

14

sizes. Also, there is an improvement, up to 27%, in the objective value
gained by GA over PH when having more than 80 operations. The
standard deviation of the objective value of the GA is significantly small
compared to the mean. We can also observe a similar trend of results
in the other base cases (see Appendix B). Generally, the proposed GA
shows its outperformance relative to the other methods, especially the
current way of scheduling employed at the company in a reasonable
computational time.

7.4. Sensitivity analysis

The sensitivity analysis provides more insights and will help man-
agers to understand the outcomes of the base case. In this section, we
test the proposed methods in different scenarios which might occur
due to future changing requirements. Specifically, the performance of
the GA is compared to the PH to quantify the potential room for
improvement in current practice. The MILP is not considered in this
analysis as this method was not able to find solutions for industry-size
instances. The following three scenarios for the sensitivity analysis are
considered.

+ Unsupervised ratio (py): this ratio indicates the percentage of pro-
duction hours in which tool switches cannot occur. An increase in
the unsupervised ratio indicates a move towards lights-out manu-
facturing. Varying the unsupervised ratio provides information on
its impact on the performance of the GA and PH when a company
aims for less labor-dependent production processes.

Priority ratio (pp): this ratio acts as a parameter that shows the
number of jobs prioritized to be completed within the scheduling
horizon. An increase in this ratio exerts more pressure on the
production schedule. Therefore, this ratio is varied in the base
cases to examine how both methods would react to different
pressure levels, a common factor within the HMLV industry.
Tool ratio (py): this ratio dictates the number of unique tools that
are required for a set of operations. An increase in the tool ratio

Q.-V. Dang et al.

Computers and Operations Research 160 (2023) 106361

Table 5
Performance comparison of MILP, PH, and GA for case 6M1201.
n MILP PH GA GAP in Obj. (%)
Obj. C.T. Obj. CT. Obj. C.T. GA vs. GA vs. PH
MILP
M c Vi o] c M c U c Vi c
5 2150.00 0.00 0.00 0.00 150.00 0.00 1.63 0.10 150.00 0.00 123.19 0.57 0.00 0.00
10 2300.00 0.00 0.94 0.00 300.00 0.00 1.39 0.07 300.00 0.00 16.87 0.12 0.00 0.00
15 2450.00 0.00 28.27 0.03 450.00 0.00 1.41 0.07 450.00 0.00 19.08 0.21 0.00 0.00
20 2600.00 0.00 210.32 0.24 600.00 0.00 1.47 0.02 600.00 0.00 22.23 0.15 0.00 0.00
25 2750.00 0.00 3600.00 0.00 750.00 0.00 1.40 0.05 750.00 0.00 25.84 0.17 0.00 0.00
30 - - - - 900.00 0.00 1.42 0.06 900.00 0.00 33.26 038 - 0.00
50 - - - - 1500.00 0.00 1.57 0.10 1500.00 0.00 57.10 0.43 - 0.00
80 - - - - 2400.00 0.00 1.39 0.08 2400.00 0.00 120.12 3.89 - 0.00
130 - - - - 3853.00 0.00 1.46 0.06 3900.00 0.00 276.32 474 - 1.22
210 - - - - 6234.00 0.00 1.47 0.03 6300.00 0.00 41216 412 - 1.06
340 - - - - 9852.00 0.00 1.57 0.04 10127.40 3.10 809.96 12.40 - 2.80
630 - - - - 15720.00 0.00 1.76 0.03 17772.00 76.06 1874.46 41.14 - 13.05
1201 - - - - 14323.00 0.00 2.23 0.04 18099.90 221.74 3477.08 83.43 - 26.37
Obj.: objective value, C.T.: computational time (seconds), y: mean, o: standard deviation.
20ptimal value.
Table 6
Performance comparison of GA and PH when varying unsupervised ratio on 6M1201.
Py ty PH GA % Gap in
Obj.
Obj. C.T. Obj. C.T.
H o H c H o H o
0.00 0 16410.00 0.00 2.29 0.12 17954.20 274.53 3600.07 0.08 9.41
0.25 6 15634.00 0.00 2.18 0.16 18202.90 170.50 3600.19 0.35 16.43
20.50 12 14323.00 0.00 2.23 0.04 18099.90 221.74 3477.08 83.43 26.37
0.75 18 13555.00 0.00 2.28 0.06 17501.70 348.61 2752.79 64.38 29.12
1.00 24 12164.00 0.00 2.30 0.09 16403.10 321.12 2481.28 40.60 34.85

Obj.: objective value, C.T.: computational time (seconds), u: mean, o: standard deviation.

2Base case.

indicates a shift towards the HMLV manufacturing environment.
It means a similar number of jobs requires more different tools,
complicating scheduling further. Hence, the tool ratio is varied to
analyze the potential effect it exercises on the performance of the
GA relative to the PH.

The results of these scenarios are demonstrated for case 6M1401 in
Sections 7.4.1-7.4.3. The results of the other base cases are presented
in Appendix C.

7.4.1. Unsupervised ratio

The impact of varying unsupervised ratios is analyzed with five
levels ranging from O to 1 (with steps of 0.25), i.e., from none to 24
unsupervised production hours per day. Consequently, Table 6 presents
five different instances generated from case 6M1201. For each problem
instance, each method is run 10 times to calculate the mean and
standard deviation of the objective value and computational time. The
results of case 6M1201 when varying p, are shown in Table 6 and
Fig. 11 (see Table C.1 in Appendix C for this scenario’s results of the
other base cases).

Fig. 11 shows a decreasing tendency in the objective value for both
GA and PH when the unsupervised ratio increases. This is expected
since an increase in this ratio imposes a constraint on the moments a
tool switch instance can occur. When a tool switch instance is required
during an unsupervised shift, it is delayed until the next supervised
shift starts. This induces idle time, which ultimately harms the profit.
Moreover, the higher objective values of the GA and an increase in
the percentage gap illustrate that the GA can better cope with higher
unsupervised ratios relative to the PH, with an average improvement
of 23.2%. Note that even without unsupervised time (z;; = 0), the GA is
still superior to the PH by about 10%. These arise from the capability
of the genetic operators to change the order of maximal classes and
swap operations between maximal classes. It helps to process more

15

operations during unsupervised shifts. These results prove the potential
of the proposed GA that assists practitioners in creating better produc-
tion schedules with a higher profit than their current approach when
moving towards lights-out manufacturing. In addition, practitioners can
further interpret the magnitude of the decrease in profit to determine
their roadmap towards longer unsupervised shifts.

7.4.2. Priority ratio

This scenario assesses the performance of the GA relative to the PH
as changing priority ratio pp. We vary the priority ratio from 0.25 to
0.75 with steps of 0.125, thus including the instance of pp = 0.5 as in
the base case. Each method also runs 10 times for each instance in this
experiment. The results of five instances of case 6M1201 are presented
in Table 7 and visualized in Fig. 12 (see Table C.2 in Appendix C for
the other base cases’ results in this scenario).

An increase in the priority ratio has a negative impact on the ob-
jective value since each unfinished priority operation incurs a penalty
cost, so more priority operations increase the risk of a higher total
penalty cost. The percentage gap between the two methods tends to
rise, implying that the GA can better mitigate the risk of penalty costs.
We observe that these gaps result mainly from our POX operator that
sequences maximal classes in each solution in order of most priority to
least priority operations. Consequently, it brings the maximal classes
with many priority operations forward in the solution, thus increasing
the probability of completing these operations within the scheduling
horizon. In contrast, the PH first sequences priority operations and
then inserts regular operations requiring similar tool sets. This makes
the PH less capable of managing high priority ratios combined with a
high workload since it finishes significantly fewer priority operations
than the GA. In general, the results provide evidence of significant
improvement gained by our GA as facing higher priority ratios. This
ability of the GA to especially excel in (time) pressure increases its
relevance for systems with tight deadlines or “hot” jobs, which are
common in the high-tech manufacturing industry.

Q.-V. Dang et al. Computers and Operations Research 160 (2023) 106361
19000
& PH
—&- GA
17500 -
]
= 16000 A RN
g -
y
= RN
& 14500 1 ‘\‘\
~.
.
13000 A \~\\
\\
S
»
11500 T T T T T
0.00 0.25 0.50 0.75 1.00
Unsupervised ratio
Fig. 11. Objective value when varying unsupervised ratio.
Table 7
Performance comparison of GA and PH when varying priority ratio on 6M1201.
op 10,1 PH GA % Gap in
Obj.
Obj. C.T. Obj. C.T.
" o " c " o " c
0.25 300 17360.00 0.00 7.03 0.14 19949.90 483.35 3600.90 1.13 14.92
0.38 450 17106.00 0.00 5.62 0.06 19424.20 230.39 3601.04 1.32 13.55
20.51 12 14323.00 0.00 2.23 0.04 18099.90 221.74 3477.08 83.43 26.37
0.63 751 9408.00 0.00 5.84 0.06 16005.10 302.72 3554.73 80.79 70.12
0.75 897 5992.00 0.00 5.57 0.06 12626.20 544.26 3601.47 1.65 110.72

Obj.: objective value, C.T.: computational time (seconds), y: mean, o: standard deviation.
2Base case.

21000 A

19000

17000

15000 -

13000 +

Objective value

11000

9000 ~

7000 -

5000 T
0.25

0.38

0.51

Priority ratio

Fig. 12. Objective value when varying priority ratio.

7.4.3. Tool ratio

This scenario focuses on varying the tool ratio p;, thus evaluating
the effect of changing the tool diversity. For this analysis, the tool
ratio py is varied from 1.0 to 2.0, with steps of 0.25, resulting in five

16

instances. This range is selected because these values are, in consider-
ation with practitioners at our manufacturer, reasonable possibilities
forced by changing customer requirements in the HMLV manufac-
turing environment. Also, our manufacturer standardizes their tool

Q.-V. Dang et al. Computers and Operations Research 160 (2023) 106361
Table 8
Performance comparison of GA and PH when varying tool ratio on 6M1201.
or IT| PH GA % Gap in
Obj.
Obj. C.T. Obj. C.T.
" o " c m o m o
1.00 1202 16528.00 0.00 7.46 0.13 19007.30 199.76 2806.36 45.48 15.00
41.27 1520 14323.00 0.00 2.35 0.07 18099.90 221.74 3477.08 83.43 26.37
1.50 1801 14667.00 0.00 6.14 0.11 18027.00 135.46 3600.39 0.47 22.91
1.75 2101 14013.00 0.00 6.47 0.08 16924.70 265.96 3600.14 0.10 20.78
2.00 2401 13060.00 0.00 7.30 0.15 16105.50 255.55 3600.18 0.08 23.32

Obj.: objective value, C.T.: computational time (seconds), y: mean, o: standard deviation.

2Base case.

20000

19000

18000 -

17000 -

16000 -

Objective value

15000 A

14000

13000 A

12000

1.00 1.25

1.50 1.75 2.00

Tool ratio

Fig. 13. Objective value when varying tool ratio.

requirement/usage per operation as much as possible to prevent a
higher tool ratio. Hence, from a practical point of view, a higher
tool ratio is not likely to be considered. The results of case 6M1201
are presented in Table 8 and visualized in Fig. 13 (see Table C.3 in
Appendix C for the results of the other base cases in this scenario).

It can be seen that an increase in the tool ratio leads to lower
objective values in both methods (due to the increase in tool switching
costs) and vice versa. Here, the GA provides significantly better profit
than the PH, with approximately 21%-22% on average. Also, the gap
between them seems to fluctuate but tends upwards. The results show
the outperformance of the GA regardless of changes in the tool ratio,
which makes its use more appealing to practitioners as the company
shifts toward HMLV manufacturing. In addition, these results recom-
mend that practitioners should consider keeping their tool ratio as low
as possible to reduce tool switching costs, hence increasing profit. This
may be achieved by standardization of tools, thus creating general tools
used for a variety of operations.

A similar trend of results can also be observed for each scenario of
the other base cases (see Fig. C.1), as seen in the corresponding scenario
of case 6M1201. In general, the proposed GA helps to gain, on average,
20%-60% more profit across all the base cases, compared to the PH
within an acceptable computational time in practice. Although the PH
takes much less time to generate solutions, it is still worth spending an
hour of computational time for the proposed GA due to the significant
profit improvement it can bring to the manufacturer. In particular,
when there is more time pressure with “hot” jobs (due to high priority
ratios), the manufacturer can even double the profit achieved using
the proposed GA (see Tables 7 and C.2, the instances of pp = 0.75).
Conclusively, the use of the proposed GA is more profitable in case of

17

longer unsupervised shifts, more pressure related to prioritizing jobs in
the schedule, or more complex processing requirements concerning tool
diversity.

8. Conclusions

In this paper, we study the problem of scheduling parallel identical
machines with tool switches in the context of light-out manufactur-
ing, inspired by a real-world manufacturer in the HMLV industry. In
addition to the HMLV nature of the product portfolio, the complexity
rises since our problem considers unsupervised production shifts within
which no operators are available to switch tools in the machines. In
addition, tool switches in our problem do not induce delay but costs.
Also, we aim to maximize profit that comprises revenue minus the costs
concerning tool switches and prioritized jobs unfinished within the
scheduling horizon. To tackle this problem, we propose an MILP model
and a GA. The computational experiments on the industry case studies
show that while the MILP could only solve small-sized instances (i.e., up
to 25 operations), the proposed GA could obtain good quality solutions
for industry-sized instances within a realistic computational time. Addi-
tionally, a sensitivity analysis of various scenarios regarding different
unsupervised, priority, and tool ratios indicates approximately 20%-—
60% improvement on average by using the proposed GA as opposed to
the current practice. The results provide manufacturers in the HMLV
industry with convincing evidence to investigate the applicability of the
proposed GA, or other evolutionary algorithms, in their own practice.

Future research can consider several interesting directions. First,
tools may be subjected to wearing and their maximum lifetime. Hence,
a new approach, considering these aspects, should be developed to

Q.-V. Dang et al.

allow practitioners to fully utilize manufacturing resources. Second,
additional resources such as fixtures (i.e., work-holding or support
devices) are worth considering because different jobs may require
different fixture types, constraining job assignment and sequencing
decisions. Finally, automating manufacturing for unsupervised shifts
could be restricted by finite-capacity buffers storing unfinished prod-
ucts, which adds comprehensiveness and applicability to the HMLV
production industry.

Nomenclature
Shop floor settings

M set of all machines

J set of all jobs

O set of all operations of all jobs
T set of all tools

H finite scheduling horizon

0,

nj

(j,k) kth operation of job j

J, set of priority jobs (J, C J)

set of operations of job j

number of operations of job j

set of priority operations (O,, c0)
set of (priority and regular) operations finished within H (O, C O)
set of priority operations not finished within H (Oy C 0,)
predefined tool set used for operation (j, k) (Ty € T)
processing time of operation (j, k)
duration of an unsupervised shift (hours)
tool magazine capacity of every machine
reentrant ratio
priority ratio
tool ratio

Revenue, costs, and profit

R total revenue

Cp total penalty cost

C; total tool switching cost

C total cost (C =Cp +Cy)

¢, cost rate per unfinished priority operation
¢, fixed cost rate per tool switch instance

¢, variable cost rate per tool switch

r revenue rate per finished (priority or regular) operation
Genetic algorithm

index of generation

index of chromosome

index of gene in a chromosome
number of genes in a chromosome

S S o A

gth gene of chromosome v

~

. parent chromosomes of generation x

a

' offspring chromosomes, generated by crossover, of generation «

!
CK'
f, minimum fitness value of all chromosomes of generation «
fres: current best fitness value

offspring chromosomes, generated by mutation, of generation x

S maximal class
S, maximal class of gene g

M, machine processing maximal class of gene g

VS job vector of a chromosome (V5 ={S, : 1 <g <n})

18

Computers and Operations Research 160 (2023) 106361

VM machine vector of a chromosome (VM = {M, : 1 <g <n})
N, population size

y; tournament selection rate

Sy number of chromosomes chosen in tournament selection

7, elitism selection rate

Sy number of chromosomes chosen in elitism selection

P, probability of uniform mutation

P, probability of swap mutation

G, number of consecutive generations that no new best solution is
found
Sy, set of finished maximal classes on machine m

Oy, set of finished operations on machine m
Op,
!
S

set of finished priority operations on machine m
maximal class of gene g containing finished operations
a,, available time of machine m (to start an operation)

Pm
Ty
Tr

ending time of machine m (after processing an operation)
number of tool switches
number of tool switching instances

Tool switching method

T,, set of tools present in machine m

TS, subset of tools in 7,, used later for subsequent maximal classes on
machine m

Q,, sequence of subsequent maximal classes on machine m

0S,, subsequence of QS,, that contains only the first maximal class
requiring each tool in 'S,

sc, score of tool ¢ required for a maximal class in OS,,

4,, sufficient number of tool slots that should be freed up to insert
missing tools
TR, set of tools required for insertion

Practitioner heuristic

F; product family using tool set i

@, total processing time of family F;

O set of all tool sets

A,, set of families allocated to machine m

@, total processing time of families allocated to machine m
B, maximum difference in workload of all machines

B, minimum workload of each machine

CRediT authorship contribution statement

Quang-Vinh Dang: Conceptualization, Methodology, Validation,
Writing — original draft, Writing — review & editing. Koen Herps: In-
vestigation, Software, Data curation, Writing — review & editing. Tugce
Martagan: Conceptualization, Validation, Writing — review & editing.
Ivo Adan: Conceptualization, Funding acquisition. Jasper Heinrich:
Software, Visualization.

Data availability

I have shared the link to my data in the manuscript.
Acknowledgments

This research work has been funded by a grant provided by Provin-

cie Noord-Brabant, the Netherlands for the project “Advanced Manu-
facturing Logistics”.

Q.-V. Dang et al. Computers and Operations Research 160 (2023) 106361

Appendix A. Parameter tuning

A.1. Information of cases for parameter tuning

Table A.1

Information of parameter tuning cases.
Tuning cases 6M1249 6M1121 6M1333 6M751
Number of operations (|O|) 1249 1121 1333 751
Number of jobs (|J]) 960 700 740 500
Number of reentrant operations (|Og|) 289 421 593 251
Number of priority operations (|Op|) 620 540 688 367
% Reentrant operations (pg) 0.23 0.38 0.44 0.33
% Priority operations (pp) 0.50 0.48 0.52 0.49
Number of tools (|T|) 1820 1547 1275 1875
Tool ratio (p;) 1.46 1.38 0.96 2.50

A.2. Tuning steps

Table A.2 presents each factor’s effect on the performance of the proposed GA in the base case scenario 6M12. The effect is determined by
E} =34 — Vo) where y,, and y_, are the average responses of objective value b for the set of parameters with factor a at the low (=) or high
(+) level, respectively. Due to the maximization nature of the problem, a higher value of b is preferable to a lower one, indicating that it is more
beneficial to set a factor to the high level (+) with a positive effect and vice versa.

In Table A.2, the number of iterations applying POX O and elitism selection rate y, produce distinctive effects in comparison to the other factors.
For both Q and y,, setting their values to the low level increases the objective value. Thus, we set Q and y, to 1 and 0.1, respectively. Afterward,
the interactions between the remaining factors and the chosen levels of Q and y, are investigated, as shown in Table A.3. Here, when Q and y, are
at the low level, swap mutation probability P; has the most considerable effect, and setting this factor to the low level is preferable. Hence, the
parameter settings at this stage are: Q, y, = 0.1, and P, = 0.01. Similarly, the interactions between the tuned parameters and the remaining ones
are subsequently presented in Tables A.4 and A.5. In summary, the parameters’ values are set as follows: Q =1, N, = 400, y; = 0.2, y, = 0.1, P,
=0.01, and P, = 0.01.

Table A.2
Factorial design analysis of parameters.
Factor Q N, 7 7 P, P

P

Obj. CT. Obj. CT. Obj. CT. Obj. CT. Obj. CT. Obj. CT.

Low (-) 13617.34 1903.54 12665.02 1012.79 12651.27 2048.38 13415.63 1655.99 12892.12 2082.64 13154.40 1737.17
High (+) 12055.20 2151.20 13007.52 3041.95 13021.27 2006.36 12256.91 2398.75 12780.42 1972.10 12518.14 2317.57
Effect -1562.13 342.49 369.99 —1158.72 -111.70 —636.26

Obj.: objective value, C.T.: computational time (s).

Table A.3
Analysis of parameters with low-level 8, y,.
Factor N, 71 P, P,
Obj. CT. Obj. C.T. Obj. CT. Obj. CT.
Low (=) 13988.52 653.65 14180.61 1587.51 14676.88 1549.50 15060.06 1044.63
High (+) 14890.92 2464.22 14698.83 1530.36 14202.56 1568.38 13819.38 2073.24
Effect 902.41 518.22 —474.31 -1240.69

Obj.: objective value, C.T.: computational time (s).

Table A.4
Analysis of parameters with low-level g,7,, P,.
Factor N, 7 P,
Obj. C.T. Ob;j. C.T. Obj. C.T.
Low (-) 14527.50 406.84 14807.56 1100.95 15400.94 1025.72
High (+) 15592.63 1479.94 15312.56 988.32 14719.19 1063.54
Effect 1065.13 505.00 —-681.75

Obj.: objective value, C.T.: computational time (s).

Table A.5
Analysis of parameters with low-level f,y,, P, and high-level N,.
Factor 71 P,
Obj. C.T. Obj. CT.
Low (-) 15459.13 1774.50 16030.56 1645.65
High (+) 15726.13 1583.37 15154.69 1712.23
Effect 267.00 —875.88

Obj.: objective value, C.T.: computational time (s).

19

Q.-V. Dang et al. Computers and Operations Research 160 (2023) 106361

A.3. Tuning G, (the number of non-improvement consecutive generations)

The stopping criterion G, is set empirically to prevent unnecessarily long computational time in, e.g., small problem instances. As an example,
we show the effect of G, on tuning case 6M1121 with 630 operations in Table A.6. We vary G, from 5 to 25 with a step of 5, which results in the
five levels of G.. The numbers in the table show the percentage of improvement (in the mean objective value) when increasing from one level to
another. We observe that there is only a small improvement of about 0.05% (compared to the others) when G, is increased from 20 to 25 with
over 400s of additional computational time. Therefore, we set G, to 20 generations.

Table A.6

Varying G, for case 6M1121, |O| = 630.
G, 5 10 15 20 25 C.T.
5 - 655.01
10 1.23 - 1125.02
15 1.48 0.24 - 1596.70
20 1.72 0.48 0.23 - 2055.68
25 1.77 0.53 0.28 0.05 - 2423.42

C.T.: computational time (s).

Appendix B. Performance of the approaches for other cases

Table B.1
Performance comparison of MILP, PH, and GA for 2-machine case: 2M376.
n MILP PH GA GAP in Obj. (%)
Obj. C.T. Obj. C.T. Obj. C.T. GA vs. GA vs. PH
MILP
U o] o U c U c U c U c
5 2150.00 0.00 0.01 0.00 150.00 0.00 1.84 0.09 150.00 0.00 9.18 1.87 0.00 0.00
10 2300.00 0.00 0.53 0.00 300.00 0.00 1.34 0.06 300.00 0.00 15.28 0.13 0.00 0.00
15 2450.00 0.00 113.17 0.75 450.00 0.00 1.34 0.09 450.00 0.00 16.82 0.23 0.00 0.00
20 587.00 0.00 3600.00 0.24 600.00 0.00 1.34 0.11 600.00 0.00 19.96 0.26 2.21 0.00
25 - - - - 750.00 0.00 1.58 0.08 750.00 0.00 24.01 0.25 - 0.00
30 - - - - 900.00 0.00 1.35 0.07 900.00 0.00 28.53 0.32 - 0.00
50 - - - - 1500.00 0.00 1.37 0.08 1500.00 0.00 61.80 1.10 - 0.00
80 - - - - 2309.00 0.00 1.36 0.06 2400.00 0.00 169.41 1.13 - 3.94
130 - - - - 3727.00 0.00 1.47 0.04 3783.40 0.84 472.34 6.35 - 1.51
210 - - - - 5862.00 0.00 1.45 0.02 6040.00 2.58 852.56 31.61 - 3.04
376 - - - - 5276.00 0.00 1.50 0.04 7200.90 395.50 1063.48 72.35 - 36.48
Obj.: objective value, C.T.: computational time (seconds), y: mean, o: standard deviation.
aOptimal value.
Table B.2
Performance comparison of MILP, PH, and GA for 6-machine case: 6M1401.
n MILP PH GA GAP in Obj. (%)
Obj. C.T. Obj. C.T. Obj. C.T. GA vs. GA vs. PH
MILP
U o U o U o U o u o U o
5 4150.00 0.00 0.00 0.00 150.00 0.00 1.79 0.08 150.00 0.00 13.80 0.75 0.00 0.00
10 2300.00 0.00 2.65 0.00 300.00 0.00 1.47 0.05 300.00 0.00 17.02 0.14 0.00 0.00
15 2450.00 0.00 64.8 0.14 450.00 0.00 1.41 0.02 450.00 0.00 20.15 0.18 0.00 0.00
20 2600.00 0.00 455.95 0.65 600.00 0.00 1.46 0.05 600.00 0.00 24.19 0.14 0.00 0.00
25 728.00 0.00 3600.00 0.00 750.00 0.00 1.43 0.07 750.00 0.00 31.95 0.31 3.02 0.00
30 - - - - 900.00 0.00 1.43 0.08 900.00 0.00 40.57 0.50 - 0.00
50 - - - - 1500.00 0.00 1.43 0.09 1500.00 0.00 73.58 1.10 - 0.00
80 - - - - 2378.00 0.00 1.46 0.02 2400.00 0.00 140.25 2.13 - 0.93
130 - - - - 3872.00 0.00 1.50 0.02 3900.00 0.00 220.45 432 - 0.72
210 - - - - 6037.00 0.00 1.49 0.02 6300.00 0.00 422.77 563 - 4.36
340 - - - - 9571.00 0.00 1.56 0.03 10097.90 7.81 962.57 43.80 - 5.51
630 - - - - 15296.00 0.00 1.81 0.02 18297.70 26.25 224325 9333 - 19.62
1401 - - - - 12577.00 0.00 275 0.12 19167.60 438.61 3602.10 1.75 - 52.40

Obj.: objective value, C.T.: computational time (seconds), y: mean, o: standard deviation.
a0ptimal value.

20

Q.-V. Dang et al. Computers and Operations Research 160 (2023) 106361

Appendix C. Results of three scenarios of other cases

Table C.1
Performance comparison of GA and PH as varying unsupervised ratio on 2M376 and 6M1401.
Case Pu ty PH GA % Gap in
Obj.
Obj. CT. Obj. CT.
] o " o " c " o
2M376 0.00 0 6436.00 0.00 1.59 0.11 7490.70 278.33 1534.09 76.37 16.39
0.25 6 6216.00 0.00 1.58 0.11 7322.00 370.21 1369.19 81.16 17.79
20.50 12 5276.00 0.00 1.50 0.04 7200.90 395.50 1063.48 72.35 36.48
0.75 18 4926.00 0.00 1.62 0.02 7369.00 250.76 771.39 47.35 49.59
1.00 24 4456.00 0.00 1.63 0.11 6777.70 326.93 666.57 63.38 52.10
6M1401 0.00 0 14771.00 0.00 2.43 0.12 17661.70 403.23 3600.13 0.08 19.57
0.25 6 12989.00 0.00 2.43 0.07 18821.40 311.42 3600.51 1.33 44.90
%0.50 12 12577.00 0.00 2.75 0.12 19167.60 438.61 3602.10 1.75 52.40
0.75 18 10815.00 0.00 2.43 0.11 17909.70 585.55 3601.22 2.35 65.60
1.00 24 9014.00 0.00 2.46 0.14 16293.30 630.43 3601.14 1.43 80.76
Obj.: objective value, C.T.: computational time (seconds), y: mean, o: standard deviation.
2Base case.
Table C.2
Performance comparison of GA and PH when varying priority ratio on 2M376 and 6M1401.
Case Pp [Op] PH GA % Gap in
Obj.
Ob;j. C.T. Obj. C.T.
H o] c M c M c
2M376 0.25 100 6297.00 0.00 1.84 0.11 7895.70 154.15 1125.57 31.88 25.39
0.38 146 6340.00 0.00 1.56 0.06 7797.70 105.73 1107.48 46.42 22.99
“0.53 183 5276.00 0.00 1.62 0.09 7200.90 395.50 1063.48 72.35 36.48
0.63 232 5249.00 0.00 1.72 0.08 6660.30 87.07 1017.68 38.41 26.89
0.75 277 2740.00 0.00 1.79 0.08 6365.30 102.96 1036.11 41.91 132.31
6M1401 0.25 351 16968.00 0.00 2.45 0.11 20608.30 530.59 3601.40 1.71 21.45
0.38 527 15525.00 0.00 2.44 0.10 19205.10 584.37 3600.65 0.96 23.70
20.49 698 12577.00 0.00 2.40 0.08 19167.60 438.61 3602.10 1.75 52.40
0.63 874 8526.00 0.00 2.39 0.08 15738.30 795.33 3600.87 1.10 84.59
0.75 1050 6441.00 0.00 2.39 0.09 14034.70 716.41 3600.69 1.18 117.90
Obj.: objective value, C.T.: computational time (seconds), y: mean, o: standard deviation.
2Base case
Table C.3
Performance comparison of GA and PH when varying tool ratio on 2M376 and 6M1401.
Case pr |T| PH GA % Gap in
Obj.
Ob;. C.T. Ob;j. C.T.
" o " c " c " c
2M376 1.00 376 6487.00 0.00 1.74 0.09 7197.50 222.67 548.55 26.69 10.95
1.25 470 6210.00 0.00 1.59 0.05 6964.20 222.29 698.27 32.39 12.14
1.50 564 6143.00 0.00 1.54 0.05 6948.30 277.89 877.03 71.94 13.11
21.66 650 5276.00 0.00 1.57 0.07 7200.90 395.50 1063.48 72.35 36.48
2.00 752 5525.00 0.00 1.56 0.05 7301.60 168.69 1427.81 66.34 32.16
6M1401 21.00 1398 12577.00 0.00 2.51 0.09 19167.00 582.88 3601.48 1.60 52.40
1.25 1750 9539.00 0.00 2.53 0.10 14880.20 662.47 3600.81 1.07 55.99
1.50 2101 8620.00 0.00 2.78 0.09 14183.80 518.88 3600.72 1.48 64.55
1.75 2451 8884.00 0.00 2.90 0.08 12766.40 414.50 3605.89 3.37 43.70
2.00 2801 6555.00 0.00 3.20 0.07 11172.80 639.85 3600.42 0.35 70.45

Obj.: objective value, C.T.: computational time (seconds), y: mean, o: standard deviation.
2Base case.

21

Q.-V. Dang et al.

Objective value

Objective value

Objective value

(o2}

o

o

o
1

Computers and Operations Research 160 (2023) 106361

2M376 6M1401
20000 A
17000 -
>
B 3 *
R 14000 ~
~ ~,
\\\ ‘— _____ _‘\\
> S~s
“~-e. 11000 VY
S~o \\\\\
e -
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Unsupervised ratio

Unsupervised ratio

0.25 0.38 0.53 0.63 0.75
Priority ratio

22000

0.25

0.38 0.49 0.63 0.75
Priority ratio

(o))

wv

o

o
1

5750 A

.
iat T
*\
\
AY
\\
N *
»--
1.00 1.25 1.50 1.66 2.00
Tool ratio
& PH % GA

12000 A

9000 ~

1.25 1.50 1.75 2.00
Tool ratio

Fig. C.1. Objective value when varying unsupervised, priority, and tool ratios for base cases 2M376 and 6M1401.

Appendix D. Results on benchmark instances

To illustrate the generalizability and broader applicability of our proposed GA, we conduct an additional numerical experiment based on the
Beezdo instances® from the literature (Beezdo et al., 2017). Their instances contain the number of machines, jobs, and required tools. However,
Beezao’s instances does not contain information about unsupervised hours, priority jobs, and a fixed scheduling horizon. Therefore, in order to
experiment Beezdo’s instances in our paper, we provided some modifications. We first set the unsupervised shift ratio p;; = 0 (no unsupervised
hours), which means we only consider supervised hours in which tool switches can always occur. Second, we set the priority ratio pp = 1, meaning
that all jobs have the same priority. Also, since Beezao et al. (2017) does not provide revenue and cost rates, we set » = 0 and ¢, = 0, while keeping
¢, = 1 and ¢, = 30 as in our paper. Finally, we set a fixed scheduling horizon H to the obtained makespan by Beezdo et al. (2017), excluding
the idle time caused by the tool switches (i.e., time of completing all jobs without tool switching time; let denote it by 4*, so H = 4*).% This is
because our problem setting does not consider delay caused by tool switches. Among the largest Beez&o instances, we selected 12 instances, with
6 machines, 200 jobs, and 40 tools.

5 Beezdo instances are available from https://github.com/vinhise/pmstsup.
© The results of Beezdo instances are available from https://ars.els-cdn.com/content/image/1-s2.0-S0377221720301995-mmc]1.xls.

22

https://github.com/vinhise/pmstsup
https://ars.els-cdn.com/content/image/1-s2.0-S0377221720301995-mmc1.xls

Q.-V. Dang et al. Computers and Operations Research 160 (2023) 106361

Table D.1

Results on Beezdo’s instances.
Instance name ALNS (Beezdo et al., 2017) GA

4 Ty (my) Ty Ty (my)

931 1068.80 105 745 124
932 1160.90 102 684 121
933 1101.10 109 718 122
946 998.70 101 725 127
947 967.70 102 718 124
948 1001.20 117 666 121
952 1113.80 104 736 129
953 1024.40 104 696 122
954 1085.50 117 715 126
958 982.80 104 713 130
959 960.40 103 713 119
960 983.40 117 699 120

A*: time of completing all jobs without tool switching time, Ty,: the total number of tool switches, Ty,(m,): the number of tool
switches on the critical machine (the most time-consuming machine)

The results of this experiment are shown in Table D.1. We report A* and the number of tool switches on the critical machine (7y,(m,)) from
the work of Beezdo et al. (2017). For our GA, we present the total number of tool switches (7),) and the number of tool switches on the critical
machine (Ty,(m,)). Also, we run our GA for 144005 for each instance, and 10 runs per instance, as done in Beezdo et al. (2017).

Appendix E. BnB grouping method

E.1. Maximal Intersection Minimal Union (MIMU)

For each class S, let R(.S) be the set of tools required by the operations in class S, i.e.,
R(S) =Y esTjk
In addition, let L(S) be the set containing each operation (j, k) ¢ S such that S U {(j.k)} is a class, i.e.,
L(S)={(,k) : (,k) €O\ S, |R(SHVUT | < C}

The MIMU heuristic is presented in Algorithm E.1 as follows.

Algorithm E.1 Maximal Intersection Minimal Union (MIMU)

Require: set of operations O, set of tools T

Step 1. Seti=1

Step 2. Set S; =0

Step 3. Pick an operation (j, k) € O that maximizes |T;,| over the set O. Set S; = {(j,k)} and O = O\ {(j, k)}.
Stop if O = fJ; else continue.

Step 4. If L(S;) =¥ then set i =i+ 1 and go to Step 2.

Step 5. Select an operation (j, k) € O that maximizes [|R(S) N Ty, |, —|R(S) U T}, |] lexicographically over the
set L(S;). Set S, = S, U{(j,k)}, O =0\ {(j,k)}. Stop if O = @; else go to Step 4.

E.2. Sweeping procedure

For a set of operations O, operation (j, k) is compatible with operation (j’, k') if the set {(j, k), (j’, k")} is a class, i.e., |Tj Ty | < Tc. Each
operation is compatible with itself since no operation requires more than 7 tools. The set O has the |O| x |O| compatibility matrix C(O), where
((j,k),(j', k")) entry is equal to 1 if operation (j, k) is compatible with operation (j/, k"), and 0 otherwise. Let B(j, k) denote the set of operations that
are compatible with operation (j, k), thus B(j,k) = {(j’, k') : C(O); s xy = 1}. The sweeping procedure is presented in Algorithm E.2 as follows.

Algorithm E.2 Sweeping procedure

Require: set of operations O, set of tools T
Step 1. Seti=1
Step 2. Set S; = . Compute the compatible matrix O.
Step 3. Select an operation (j, k) € O that minimizes [|B(j, k)|, | U xnep(x) Tyw 1] lexicographically over
the set O. Set O = O\ B(j, k) and S; = B(j, k).
Step 4. Stop if O = @J; else set i =i+ 1 and go to Step 2.

E.3. Bnb procedure
The BnB method, proposed by Tang and Denardo (1988b), creates a search tree whose the root node is labeled n. Each node i is associated with
a maximal class ;. For each node i, let D(i) denote the depth of node i, i.e., the number of nodes in the path from node 7 to node i. In addition,

TS(i) is the total set of operations associated with the nodes from node » to node i, i.e., the operations that have been placed in classes are those

23

Q.-V. Dang et al.

Computers and Operations Research 160 (2023) 106361

in T'S(i). For each node i, it defines O(i) = O \ T S(i), so O(i) is the set of operations that must yet be placed in classes. Each node i also adjusts the

number of tool slots: T = Te —| U, persa Tikl-

Let SW (i) be the lower bound corresponding to set O(i), i.e., SW (i) = max{[| U; y)eou) Tjx|/C1, L}, where L is the lower bound derived from
the sweeping procedure for set O(i). Also, let /b(i) denote the lower bound associated with node i, where /b(i) = D(i) + SW (i). Similarly, let ub(i)
denote the upper bound associated with node i, where ub(i) = D(i) + Ul(i), and UI(i) is the number of subsets in the partition of O(i) derived from

the MIMU procedure.

The BnB method is presented in Algorithm E.3. Initially, at root node n, T.S(n) =@, L* = SW (n), and U* = Ul(n), where L* and U* denote the

current lower and upper bounds, respectively.

Algorithm E.3 BnB procedure

Require: set of operations O, set of tools T

Step 0. (Initialization) Set U* = Ul(n) and L* = SW(n). Set i =n and S; = @.
Step 1. (Branching) Compute O(i). Choose the operation (j, k) € O(i) compatible with the fewest number
of operations in O(i). Create a new node 4 for each maximal class of O(i) containing operation (j, k)
Create an arc from node i to the new node 4 and compute C for this new node. Set D(h) = D(i) + 1.

Step 2. (Bounding) For each of this new node &, compute /b(h) and ub(h).

(a) If the partition found by the sweeping procedure at node # is a feasible partition, set ub(h) = Ib(h).
(b) If ub(h) < U*, set U* = ub(h) and record the corresponding partition.
Step 3. (Pruning) Terminate a node h in the tree whenever one of the following conditions holds.

(@) Ib(h) = ub(h).
(b) Ib(h) > U*.

Step 4. (Stopping) If there is no non-terminated branching node in the tree, then STOP. U* is the optimal

value and the optimal partition is the one recorded currently.

Step 5. (Node selection) Select / as the branching node / that minimizes [SW (j, k), UI(j, k)] lexicographically
over the set of non-terminated branching nodes. Set i =/ and go to Step 1.

References

Agnetis, A., Detti, P., Pranzo, M., Sodhi, M.S., 2008. Sequencing unreliable jobs on
parallel machines. J. Sched. 12 (1), 45.

Ahmadi, E., Goldengorin, B., Siier, G.A., Mosadegh, H., 2018. A hybrid method of 2-TSP
and novel learning-based GA for job sequencing and tool switching problem. Appl.
Soft Comput. 65 (January), 214-229.

Ahmadi, E., Zandieh, M., Farrokh, M., Emami, S.M., 2016. A multi objective optimiza-
tion approach for flexible job shop scheduling problem under random machine
breakdown by evolutionary algorithms. Comput. Oper. Res. 73, 56-66.

Al-Fawzan, M., Al-Sultan, K., 2003. A tabu search based algorithm for minimizing the
number of tool switches on a flexible machine. Comput. Ind. Eng. 44 (1), 35-47.

Amaya, J.E., Cotta, C., Ferndndez, A.J., 2008. A memetic algorithm for the tool switch-
ing problem. In: Blesa, M.J., Blum, C., Cotta, C., Fernandez, A.J., Gallardo, J.E.,
Roli, A., Sampels, M. (Eds.), Hybrid Metaheuristics. In: Lecture Notes in Computer
Science, vol. 5296, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 190-202.

Amaya, J.E., Cotta, C., Ferndndez-Leiva, A.J., 2011. Memetic cooperative models for
the tool switching problem. Memetic Comput. 3 (3), 199-216.

Amaya, J.E., Cotta, C., Fernandez-Leiva, A.J., 2012. Solving the tool switching problem
with memetic algorithms. Artif. Intell. Eng. Des. Anal. Manuf. 26 (2), 221-235.
Baykasoglu, A., Ozsoydan, F.B., 2017. Minimizing tool switching and indexing times
with tool duplications in automatic machines. Int. J. Adv. Manuf. Technol. 89 (5),

1775-1789.

Baykasoglu, A., Ozsoydan, F.B., 2018. Minimisation of non-machining times in operat-
ing automatic tool changers of machine tools under dynamic operating conditions.
Int. J. Prod. Res. 56 (4), 1548-1564.

Beezdo, A.C., Cordeau, J.-F., Laporte, G., Yanasse, H.H., 2017. Scheduling identical
parallel machines with tooling constraints. European J. Oper. Res. 257 (3),
834-844.

Box, G.E.P., Hunter, W.G., Hunter, J.S., 2005. Factorial designs at two levels. In:
Statistics for Experimenters: Design, Innovation, and Discovery, second ed. John
Wiley & Sons, Inc., pp. 173-222.

Burger, A.P., Jacobs, C.G., van Vuuren, J.H., Visagie, S.E., 2015. Scheduling multi-
colour print jobs with sequence-dependent setup times. J. Schedul. 18 (2),
131-145.

Calmels, D., 2019. The job sequencing and tool switching problem: State-of-the-
art literature review, classification, and trends. Int. J. Prod. Res. 57 (15-16),
5005-5025.

Calmels, D., 2022. An iterated local search procedure for the job sequencing and tool
switching problem with non-identical parallel machines. European J. Oper. Res.
297 (1), 66-85.

Catanzaro, D., Gouveia, L., Labbé, M., 2015. Improved integer linear programming
formulations for the job Sequencing and tool Switching Problem. European J. Oper.
Res. 244 (3), 766-777.

Chaves, A., Lorena, L., Senne, E., Resende, M., 2016. Hybrid method with CS and
BRKGA applied to the minimization of tool switches problem. Comput. Oper. Res.
67, 174-183.

24

Crama, Y., Kolen, A.W., Oerlemans, A.G., Spieksma, F.C., 1994. Minimizing the number
of tool switches on a flexible machine. Int. J. Flexible Manuf. Syst. 6 (1), 33-54.

da Silva, T.T., Chaves, A.A., Yanasse, H.H., 2021. A new multicommodity flow model
for the job sequencing and tool switching problem. Int. J. Prod. Res. 59 (12),
3617-3632.

Dang, Q.V., van Diessen, T., Martagan, T., Adan, I., 2021. A matheuristic for parallel
machine scheduling with tool replacements. European J. Oper. Res. 291 (2),
640-660.

Djellab, H., Djellab, K., Gourgand, M., 2000. A new heuristic based on a hypergraph
representation for the tool switching problem. Int. J. Prod. Econ. 64 (1), 165-176.

Florescu, A., Barabas, S.A., 2020. Modeling and simulation of a flexible manufacturing
system—A basic component of industry 4.0. Appl. Sci. 10 (22), 8300.

Furrer, M., Torsten Miitze, T., 2017. An algorithmic framework for tool switching
problems with multiple objectives. Eur. J. Oper. Res. 259, 1003-1016.

Gao, J., Sun, L., Gen, M., 2008. A hybrid genetic and variable neighborhood descent
algorithm for flexible job shop scheduling problems. Comput. Oper. Res. 35 (9),
2892-2907.

Gen, M., Cheng, 1999. Genetic Algorithms and Engineering Optimization. John Wiley
& Sons, Inc., p. 512.

Gen, M., Cheng, R., Lin, L., 2008a. Network Models and Optimization: Multiobjective
Genetic Algorithm Approach. Springer, London.

Gen, M., Cheng, R., Lin, L., 2008b. Multiobjective Genetic Algorithms. In: Network
Models and Optimization: Multiobjective Genetic Algorithm Approach. Springer,
London, pp. 1-48.

Ghiani, G., Grieco, A., Guerriero, E., 2010. Solving the job sequencing and tool
switching problem as a nonlinear least cost Hamiltonian cycle problem. Networks
55 (4), 379-385.

Ghrayeb, O.A., Phojanamongkolkij, N., Finch, P.R., 2003. A mathematical model and
heuristic procedure to schedule printed circuit packs on sequencers. Int. J. Prod.
Res. 41 (16), 3849-3860.

Gokgiir, B., Hnich, B., Ozpeynirci, S., 2018. Parallel machine scheduling with tool
loading: A constraint programming approach. Int. J. Prod. Res. 56, 5541-5557.
Hertz, A., Laporte, G., Mittaz, M., Stecke, K.E., 1998. Heuristics for minimizing tool
switches when scheduling part types on a flexible machine. IIE Trans. 30 (8),

689-694.

Karakayali, I., Azizoglu, M., 2006. Minimizing total flow time on a single flexible
machine. Int. J. Flexible Manuf. Syst. 18 (1), 55-73.

Keung, K.W., Ip, W.H., Lee, T.C., 2001a. A genetic algorithm approach to the multiple
machine tool selection problem. J. Intell. Manuf. 12 (4), 331-342.

Keung, K.W., Ip, W.H., Lee, T.C., 2001b. The solution of a multi-objective tool selection
model using the GA approach. Int. J. Adv. Manuf. Technol. 18 (11), 771-777.
Khan, B.K., Gupta, B.D., Gupta, D.K.S., Kumar, K.D., 2000. A generalized procedure for
minimizing tool changeovers of two parallel and identical CNC machining centres.

Prod. Plan. Control 11 (1), 62-72.

Laporte, G., Salazar-Gonzalez, J.J., Semet, F., 2004. Exact algorithms for the job
sequencing and tool switching problem. IIE Trans. 36 (1), 37-45.

Lu, Y., 2017. Industry 4.0: A survey on technologies, applications and open research
issues. J. Ind. Inf. Integr. 6, 1-10.

http://refhub.elsevier.com/S0305-0548(23)00225-3/sb1
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb1
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb1
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb2
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb2
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb2
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb2
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb2
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb3
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb3
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb3
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb3
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb3
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb4
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb4
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb4
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb5
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb5
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb5
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb5
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb5
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb5
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb5
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb6
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb6
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb6
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb7
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb7
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb7
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb8
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb8
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb8
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb8
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb8
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb9
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb9
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb9
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb9
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb9
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb10
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb10
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb10
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb10
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb10
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb11
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb11
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb11
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb11
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb11
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb12
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb12
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb12
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb12
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb12
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb13
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb13
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb13
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb13
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb13
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb14
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb14
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb14
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb14
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb14
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb15
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb15
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb15
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb15
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb15
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb16
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb16
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb16
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb16
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb16
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb17
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb17
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb17
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb18
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb18
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb18
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb18
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb18
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb19
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb19
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb19
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb19
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb19
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb20
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb20
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb20
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb21
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb21
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb21
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb22
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb22
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb22
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb23
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb23
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb23
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb23
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb23
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb24
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb24
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb24
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb25
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb25
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb25
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb26
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb26
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb26
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb26
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb26
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb27
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb27
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb27
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb27
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb27
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb28
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb28
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb28
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb28
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb28
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb29
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb29
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb29
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb30
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb30
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb30
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb30
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb30
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb31
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb31
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb31
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb32
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb32
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb32
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb33
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb33
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb33
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb34
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb34
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb34
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb34
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb34
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb35
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb35
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb35
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb36
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb36
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb36

Q.-V. Dang et al.

Mecler, J., Subramanian, A., Vidal, T., 2021. A simple and effective hybrid genetic
search for the job sequencing and tool switching problem. Comput. Oper. Res.
127, 105153.

Noél, M., Sodhi, M.S., Lamond, B.F., 2007. Tool planning for a lights-out machining
system. J. Manuf. Syst. 26 (3—-4), 161-166.

Ozpeynirci, S., Gokgiir, B., Hnich, B., 2016. Parallel machine scheduling with tool
loading. Appl. Math. Model. 40, 5660-5671.

Paiva, G.S., Carvalho, M.AM., 2017. Improved heuristic algorithms for the job
sequencing and tool switching problem. Comput. Oper. Res. 88, 208-219.

Qin, J., Liu, Y., Grosvenor, R., 2016. A categorical framework of manufacturing for
industry 4.0 and beyond. Procedia cirp 52, 173-178.

Raduly-Baka, C., Knuutila, T., Nevalainen, O.S., 2005. Minimising the Number of Tool
Switches with Tools of Different Sizes. TUCS Technical Reports 690, Turku Centre
for Computer Science.

Rifai, A.P., Windras Mara, S.T., Norcahyo, R., 2022. A two-stage heuristic for the
sequence-dependent job sequencing and tool switching problem. Comput. Ind. Eng.
163, 107813.

Salonen, K., Raduly-Baka, C., Nevalainen, O.S., 2006a. A note on the tool switching
problem of a flexible machine. Comput. Ind. Eng. 50 (4), 458-465.

Salonen, K., Smed, J., Johnsson, M., Nevalainen, O., 2006b. Grouping and sequencing
PCB assembly jobs with minimum feeder setups. Robot. Comput.-Integr. Manuf. 22
(4), 297-305.

Sarmadi, H., Gholami, S., 2011. Modeling of tool switching problem in a flexible
manufacturing cell: with two or more machines. In: Xie, Y. (Ed.), International
Conference on Mechanical and Electrical Technology, 3rd, Vol. 1-3. ICMET-China
2011, ASME Press, pp. 2345-2349.

25

Computers and Operations Research 160 (2023) 106361

Schwerdfeger, S., Boysen, N., 2017. Order picking along a crane-supplied pick face:
The SKU switching problem. European J. Oper. Res. 260 (2), 534-545.

Sherali, H.D., Cole Smith, J., 2001. Improving discrete model representations via
symmetry considerations. Manage. Sci. 47 (10), 1396-1407.

Shivanand, H., Benal, M., Koti, V., 2006. FMS Introduction and Description. In: Flexible
Manufacturing System. New Age International (P) Ltd., Publishers, New Delhi, pp.
1-17.

Solimanpur, M., Rastgordani, R., 2012. Minimising tool switching and indexing times
by ant colony optimisation in automatic machining centres. Int. J. Oper. Res. 13
(4), 465-479.

Tang, C.S., Denardo, E.V., 1988a. Models arising from a flexible manufacturing
machine, part I: minimization of the number of tool switches. Oper. Res. 36 (5),
767-777.

Tang, C.S., Denardo, E.V., 1988b. Models arising from a flexible manufacturing
machine, part II: minimization of the number of switching instants. Oper. Res.
36 (5), 778-784.

Tzur, M., Altman, A., 2004. Minimization of tool switches for a flexible manufacturing
machine with slot assignment of different tool sizes. IIE Trans. 36 (2), 95-110.

Van Hop, N., 2005. The tool-switching problem with magazine capacity and tool size
constraints. IEEE Trans. Syst. Man Cybern. - A 35 (5), 617-628.

Van Hop, N., Nagarur, N.N., 2004. The scheduling problem of PCBs for multiple
non-identical parallel machines. European J. Oper. Res. 158 (3), 577-594.

Yadav, A., Jayswal, S.C., 2018. Modelling of flexible manufacturing system: a review.
Int. J. Prod. Res. 56 (7), 2464-2487.

http://refhub.elsevier.com/S0305-0548(23)00225-3/sb37
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb37
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb37
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb37
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb37
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb38
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb38
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb38
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb39
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb39
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb39
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb40
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb40
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb40
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb41
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb41
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb41
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb42
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb42
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb42
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb42
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb42
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb43
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb43
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb43
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb43
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb43
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb44
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb44
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb44
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb45
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb45
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb45
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb45
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb45
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb46
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb46
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb46
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb46
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb46
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb46
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb46
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb47
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb47
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb47
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb48
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb48
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb48
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb49
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb49
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb49
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb49
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb49
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb50
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb50
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb50
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb50
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb50
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb51
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb51
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb51
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb51
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb51
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb52
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb52
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb52
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb52
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb52
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb53
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb53
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb53
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb54
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb54
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb54
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb55
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb55
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb55
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb56
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb56
http://refhub.elsevier.com/S0305-0548(23)00225-3/sb56

	Unsupervised parallel machines scheduling with tool switches
	Introduction
	Related work
	Problem description
	Mathematical formulation
	Decision variables
	Mixed-integer linear programming model

	Proposed genetic algorithm
	Genetic representation
	Initialization
	Branch-and-bound method

	Crossover
	Combined crossover
	Problem-oriented crossover

	Mutation
	Maximal classes
	Elitism selection and immigration
	Tool switching method
	Fitness evaluation

	Practitioner heuristic
	Phase 1: Allocate operations to groups/machines
	Phase 2: Create schedule

	Computational experiments
	Base cases: industrial case studies
	Parameter tuning
	Comparison of MILP, PH, and GA
	Sensitivity analysis
	Unsupervised ratio
	Priority ratio
	Tool ratio

	Conclusions
	Nomenclature
	Shop floor settings
	Revenue, costs, and profit
	Genetic algorithm
	Tool switching method
	Practitioner heuristic

	CRediT authorship contribution statement
	Data availability
	Acknowledgments
	Appendix A. Parameter tuning
	Information of cases for parameter tuning
	Tuning steps
	Tuning Gc (the number of non-improvement consecutive generations)

	Appendix B. Performance of the approaches for other cases
	Appendix C. Results of three scenarios of other cases
	Appendix D. Results on benchmark instances
	Appendix E. BnB grouping method
	Maximal Intersection Minimal Union (MIMU)
	Sweeping procedure
	BnB procedure

	References

