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A B S T R A C T

Staircases play an essential role in crowd dynamics, allowing pedestrians to flow across large
multi-level public facilities such as transportation hubs, shopping malls, and office buildings.
Achieving a robust quantitative understanding of pedestrian behavior in these facilities is a
key societal necessity. What makes this an outstanding scientific challenge is the extreme
randomness intrinsic to pedestrian behavior. Any quantitative understanding necessarily needs
to be probabilistic, including average dynamics and fluctuations. To this purpose, large-scale,
real-life trajectory datasets are paramount.

In this work, we analyze the data from an unprecedentedly high statistics year-long
pedestrian tracking campaign, in which we anonymously collected millions of trajectories
of pedestrians ascending and descending stairs within Eindhoven Central train station (The
Netherlands). This has been possible thanks to a state-of-the-art, faster than real-time, computer
vision approach hinged on 3D depth imaging, sensor fusion, and YOLOv7-based depth local-
ization. We consider both free-stream conditions, i.e. pedestrians walking in undisturbed, and
trafficked conditions, unidirectional/bidirectional flows. We report on Eulerian fields (density,
velocity and acceleration), showing how the walking dynamics changes when transitioning
from stairs to landing. We then investigate the (mutual) positions of pedestrian as density
changes, considering the crowd as a ‘‘compressible’’ physical medium. In particular, we show
how pedestrians willingly opt to occupy fewer space than available, accepting a certain degree
of compressibility. This is a non-trivial physical feature of pedestrian dynamics and we introduce
a novel way to quantify this effect. As density increases, pedestrians strive to keep a minimum
distance 𝑑 ≈ 0.6 m (two treads of the staircase) from the person in front of them. Finally,
we establish first-of-kind fully resolved probabilistic fundamental diagrams, where we model
the pedestrian walking velocity as a mixture of a slow and fast-paced component (both in
non-negligible percentages and with density-dependent characteristic fluctuations). Notably,
averages and modes of velocity distribution turn out to be substantially different. Our results,
of which we include probabilistic parametrizations based on few variables, are key towards
improved facility design and realistic simulation of pedestrians on staircases.

✩ This article belongs to the Virtual Special Issue on ‘‘Pedestrians & Crowds’’.
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1. Introduction

Staircases play an essential role in crowd dynamics, allowing pedestrians flows across large multi-level public facilities such
s transfer stations, airport terminals, shopping malls, and office buildings. These facilities also often represent a primary source
f crowd congestion and pedestrian accidents (Jackson and Cohen, 1995; Templer, 1995; ProRail, 2021; Feliciani et al., 2023).
stablished structural regulations, e.g. European Commitee for Standardization (2002), impose performance requirements on
acilities, e.g. in terms of capacity and safety, that need to be satisfied with a sufficiently high probability through the lifetime
f the facility (Augusti and Ciampoli, 2008). To achieve such performance-based design, a deep phenomenological understanding of
he crowd behavior within and around staircases, including averages, probabilities of fluctuations, and rare events is key. A profound
nderstanding of the probabilistic landscape can therefore empower facility managers to gauge the frequency of dangerous events,
.g. bottlenecks, and thus anticipate potential capacity reductions.

In the past decades, the study of the dynamics of pedestrian crowds has emerged as a multidisciplinary field across civil
ngineering (Vanumu and Tiwari, 2017), physics (Corbetta and Toschi, 2023), mathematical modeling (Cristiani et al., 2014),
omputer science (Van Toll et al., 2016), psychology (Drury, 2020), and more (Haghani, 2021). Alongside its immediate societal
elevance, the study of pedestrian crowds shares deep connections with the fundamental physics of active matter systems (Corbetta
nd Toschi, 2023). Traditionally, crowd dynamics have been studied via small-scale laboratory setups, simulation models and/or
urveys. Only during the last 10 years we established the technological capacity of performing measurement campaigns in real-life
onditions. Pedestrian tracking in real-life opens up the possibility to record and study the dynamics of pedestrians on a significantly
arger statistical scale, surpassing conventional (experimental) datasets by several orders of magnitude. High-statistics data is vital to
haracterize probabilities of fluctuations and quantify rare, potentially dangerous, events. However, in real-life contexts experimental
arameters, such as crowd density, are not subject to deliberate specification, so measurements are inherently confined to the
rowd dynamics manifested during the measurement campaign. Overhead depth sensing has emerged as an extremely robust option
o this purpose, allowing for accuracy and respect of individual privacy (Seer et al., 2014; Corbetta et al., 2014; Willems et al.,
020).

In the context of pedestrian traffic, the main phenomenological modeling elements are average macroscopic relationships among
rowd density and walking speed or flow. These average relations are generally dubbed fundamental diagrams (FDs, e.g., Vanumu
nd Tiwari (2017)). For flat grounds, fundamental diagrams have been extensively obtained in laboratory conditions considering,
mong others, uni- and multi-directional flows and entailing different populations (in terms, e.g., of age, geographical region,
ompetitiveness, Cao et al. (2018), Ren et al. (2019), Subaih et al. (2019) and Ye et al. (2021)). FDs are key for infrastructural
esign, supporting, e.g., the evaluation of the capacity of a system. Yet, the dynamics of pedestrians is highly random due to,
.g., inter-subject and intra-subject variability, routing variability, presence of groups. Fundamental diagrams simplify the highly
andom dynamics of pedestrians with a single average. This reduction is unavoidable when experimental data is limited to small-
cale datasets, for which statistical moments are far from convergence. On the other hand, recent depth-based large-scale real-life
ampaigns have allowed to integrate FDs with a resolved description of fluctuations (Gabbana et al., 2022; Brščić and Kanda, 2014),
nd even characterization of rare events happening, e.g., once in a thousand pedestrians (Corbetta et al., 2017, 2018). Research
n spatial distributions and relative distances in crowds, often referred to as proxemics, emerged with studies investigating the
elative distances between people in small, mostly stationary, social activities (Hall, 1966). This research expanded to include spatial
nalysis of the walking behavior of pedestrian social groups, as demonstrated by Moussaïd et al. (2012), and later studied in more
etail through the analysis of nearest neighbors in different flow types (Cao et al., 2021). These studies rely on experimental data,
ypically involving only a limited number of trajectories. While field studies do exist, e.g. Zanlungo et al. (2014) who studied
he spatial distribution in groups of 2 or 3 pedestrians, the extraction of pedestrian trajectories from the recordings is manual
nd labor-intensive. Large-statistics datasets open the possibility of systematic analyses of the crowd as a fluid (Hughes, 2003),
onsidering, e.g., how the space is filled or how geometry influences the dynamics. This knowledge is key towards a quantitative
hysical understanding of the crowd behavior and realistic predictive simulations.

Pedestrian dynamics on staircases is a profoundly studied topic, pioneered five decades ago by, among others (Fruin, 1971;
redtechenskii and Milinskii, 1978). They reported initial findings on the free flow velocity and established correlations between
alking speed and crowd density. Since then extensive research has been devoted into the definition of FDs and in the study of the
ifferent factors effecting them, such as type of infrastructures (considering slope, tread-depth, riser height, (Burghardt et al., 2013;
ang et al., 2021), or especially long staircases (Kretz et al., 2008; Ma et al., 2012; Ronchi et al., 2016; Chen et al., 2018)), flow

ompositions (unidirectional, bidirectional, ascending, descending (Chen et al., 2017; Ye et al., 2023)), and cultural and personal
eatures (age, gender, etc. (Fujiyama and Tyler, 2004)). Data has been collected via field studies with limited volunteers, surveys,
nd small-scale experiments (Hankin and Wright, 1958; Fruin, 1971; Lam and Cheung, 2000; Fujiyama and Tyler, 2004; Ye et al.,
008; Peacock et al., 2012; Qu et al., 2014; Shi et al., 2021). Leveraging on relatively limited datasets, of at most few hundred
ata points, all previous studies have unavoidably focused on deterministic average behaviors (Ye et al., 2023). Conversely, for
ovement on stairs a fully resolved characterization of fluctuations, complementing the studies for level ground by Gabbana et al.

2022), Brščić and Kanda (2014), remains completely outstanding. The field of proxemics is also represented in the literature that
tudied pedestrian dynamics on staircases. Burghardt et al. (2013), for example, reports a topographical examination based on
ulerian fields using an experimental dataset featuring young German student descending a staircase. Building on this work, Ye
t al. (2023) revisited the same dataset, delving deeper into spatial analyses by exploring lane formations and spatial distributions.
2

dditionally, Xie et al. (2023) conducted a field study focusing on parent–child pairs during a brief 505 s time interval. With this
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Table 1
Pedestrian dynamics on staircases in the literature. We report the horizontal walking speed (in free flow conditions) identified in previous studies, almost always
measured in laboratory conditions, together with the magnitude of the dataset acquired. In this work, thanks to a real-life dataset including over 3 millions
real-life trajectories we study at the statistical level pedestrian dynamics on staircases. Velocity distributions and fundamental diagrams turn out to have long
tails due to the presence of multiple populations moving at different speed. This yield a substantial difference between the modes and the averages of the
velocity distributions at all density levels. Besides, thanks to the large dataset we can investigate spatial fields of positions, velocities and accelerations and
compressibility effects.

Source Free flow mean speed (m/s) Riser height Tread depth Slope # Trajectories

Ascent Descent (mm) (mm) (◦)

Fruin (1971) 0.57 0.77 152 305 27.0 (103)
Fruin (1971) 0.51 0.67 178 286 32.0 (103)
Frantzich (1996) 0.51 ± 0.10 0.71 ± 0.27 205 225 42.3 (103)
Lam and Cheung (2000) 0.42 0.57 163 271 31.0 (103)
Fujiyama and Tyler (2004) 0.68 − 0.77 0.80 − 0.91 152 332 24.6 (10)
Kretz et al. (2008) 0.65 0.71 150 367 22.2 (102)
Peacock et al. (2012) – 0.45 186 238 38.0 (103)
Ma et al. (2012) – 0.55 150 280 28.2 (102)
Qu et al. (2014) – 0.63 300 140 25.0 (102)
Qu et al. (2014) 0.55 – 330 157 26.1 (102)
Ronchi et al. (2016) 0.62 − 0.75 – 180 267 34.7 (102)
Chen et al. (2018) 0.50 ± 0.17 0.61 ± 0.14 160 260 32.0 (102)
Köster et al. (2019) 0.59 0.64 − 0.69 165 295 29.2 (10)

This work 167 290 30.0 (106)

Free flow speed - average 0.63 0.73
Free flow speed - mode 0.48 ± 0.08 0.58 ± 0.1
Probabilistic fundamental diagrams Fig. 10a Fig. 10b

Eq. (22) and Eq. (23) Eq. (22) and Eq. (24)
Eulerian fields (positions/velocity/accelerations) Fig. 5
Space occupation and compressibility effects Figs. 7–9

work we aim to expand the literature with an in-depth spatial analysis of a truly unbiased and high-statistics trajectory dataset
providing fundamental insights into pedestrian behaviors and interactions.

In this work, we perform a thorough phenomenological analysis of the statistical behavior of pedestrians moving on a staircase
ithin Eindhoven Central Train Station (The Netherlands). To this purpose, we collect an unprecedented dataset consisting of over
millions trajectories, during a year long real-life pedestrian tracking campaign. We employ an anonymous depth-based overhead

racking system (cf. previous works by the authors (Corbetta et al., 2017, 2018; Gabbana et al., 2022)) that, for the first time, we
eneralize to operate in all three dimensions.

We study both microscopic and macroscopic features of crowd flows observed from data: we analyze density patterns and
nterpersonal distance of pedestrians in diverse flow configurations, ranging from dilute up to highly dense conditions. We analyze
ow pedestrians fill the available space as their number increases: considering the physics concept of compressibility factor, we
how how pedestrians fill the space, behaving differently from an ideal gas that would expand occupying all the available space.
n particular, at variance with an ideal gas, we model how pedestrians operate filling all the available space. Moreover, we
nvestigate the relationship between density and velocity under diverse flow conditions, including comparisons with experimental
nd theoretical literature data (cf. Table 1). Thanks to our high statistics dataset we are able to present a complete parametrization
f the probability distribution function of the velocity, as a function of density.

This work is structured as follows: in Section 2 we describe our data acquisition campaign and measurement process. We detail
he environmental setup and our depth sensors installation in Section 2.1. In Section 2.2, we report the processing pipeline which
ields anonymous high-quality pedestrian trajectories based on a stream of depth images. This combines perspective corrections,
ensor-fusion, state-of-the-art machine-learning-based pedestrian localization and Lagrangian tracking. We leverage specifically on
machine-learning based tracking algorithm (YOLOv7, Wang et al. (2022)) which enables us to achieve high quality localization

ven in the most crowded scenarios. In Section 2.3, we discuss the definition and computation of macroscopic variables, such
s velocity and density, from trajectory data. In Section 3 we present the results of our analysis which are further organized as
ollows:

• In Section 3.1, we provide an overview of the data, detailing the most common flow conditions on the staircase. We also
evaluate spatial (Eulerian) distributions of positions, velocities and accelerations to quantify the usage. We then provide a
quantitative modeling of the free-stream velocity probability distribution function.

• In Section 3.2, we analyze interactions between pedestrians, discussing crowd compressibility effects and the relative
positioning of nearest neighbors at increasingly large values of the local density.

• In Section 3.3 we establish a probabilistic fundamental diagram, where we describe the parametrization of the probability
distribution function of the velocity, as a function of the local density.
3

inally, in Section 4 we discuss and summarize main findings and future developments.
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Fig. 1. Schematic representation of the pedestrian measurement setup at Eindhoven Central Station (NL). (a) Top view of the staircase (yellow) and escalators
(blue) from the perspective of the four depth sensors (orange dots). Escalator on the side of track 4 descending towards the tunnel, escalator on the side of
track 3 ascending towards the platform. A staircase landing (green) is located halfway up the staircase. (b) Close-up picture of the staircase with two treads of
the staircase. Each tread has rise ℎ = 167 mm and run 𝑟 = 290 mm (c,d) Pictures of the staircase–escalator system in (c) ascending direction, and (d) descending
direction. (e) Vertical cross-section of the escalator and staircase. The depth sensors (black rectangles) are mounted to trusses on the ceiling of the train station.
The sensor view cones are highlighted with a red color. The staircase and escalator both have a inclination of 𝜃 = 30◦. For clarity, we applied in the image a
small offset to the cross-section of the staircase.

2. Pedestrian sensing at large scales: from depth maps to pedestrian trajectories

2.1. Measurement setup at Eindhoven Train Station (NL)

The data presented in this work has been collected during a 1-year period between April 2021 and May 2022. Eindhoven Central
Station (CS) is the fifth-largest train station in the Netherlands with 3 platforms and 6 train tracks. During this period of time, the
station has been used on average by 46k travelers per day (Spoorwegen, 2023), a number dimmed by the COVID pandemics as shown
by the 77k daily users reported for the year 2019. We have continuously recorded all the movements of pedestrians traversing a
highly trafficked staircase and escalator during the operational hours of the train station (6 am–22 pm). The staircase–escalator
system, Fig. 1, is the main entry point to train tracks 3 and 4. This means that its usage is highly correlated with the train schedule.
Typically, boarding passengers arrive at the platform relatively scattered around the train arrival time. On the other hand, alighting
passengers reach the staircase in large compact groups as soon as they leave their train.

To perform our recordings, we have developed and employed a custom system composed of a grid of four overhead depth
sensors. These sensors are controlled via dedicated software performing depth recording, sensor fusion, pedestrian localization and
Lagrangian tracking. The measurement campaign allowed to acquire a dataset boasting about 3 million trajectories: an average of
10 thousand per day during weekdays and 3 thousand per day during weekends. The observed staircase has a relatively narrow
width of 𝑤stairs = 3.2 m. This makes it a notorious bottleneck for the pedestrian flow through the train station. The stairs span a
total elevation change of ℎ𝑠𝑡𝑎𝑖𝑟𝑠 = 5.3 m and a horizontal distance of 𝑙𝑠𝑡𝑎𝑖𝑟𝑠 = 10.5 m with a slope of 𝜃 = 30◦. The staircase consists
of two flights of stairs separated by a flat staircase landing halfway up the stairs, and with length 𝑙𝑙𝑎𝑛𝑑𝑖𝑛𝑔 = 1.5 m. The individual
treads have standard dimensions (rise ℎ = 167 mm, run 𝑟 = 290 mm), which are comparable to those from previous studies present
in the literature (cf. Table 1), making the dynamics on such staircase representative for a general case. The escalators are located
on either side of the staircase with a right-hand orientation. They have standard escalator dimensions rise ℎ = 220 mm, and run
𝑟 = 400 mm. The escalator has a slope of 30◦ and a horizontal velocity of 𝑣 = 0.6 m∕s.

2.2. High-accuracy pedestrian tracking via depth-based 3D computer vision

We summarize here technical and algorithmic aspects of our pedestrian tracking system. We acquire raw data through a grid of
overhead depth sensors recording at 30 frames per second. We employ Stereolabs Zed 2 sensors (Stereolabs, 2021), driven by Nvidia
Jetson TX2 GPUs (NVidia, 2021). The sensors are mounted on horizontal trusses above the staircase–escalator system as presented
in Fig. 1. Depth sensors measure the so-called depth (or distance) field, i.e. they probe the distance between each observed point and
the sensor plane. This signal is typically represented and memorized in terms of gray scale images which, in our case, have resolution
640 × 360 px2 (cf. Fig. 2). The gray level encodes distance with shades that become brighter (Fig. 2a-f) as distance increases. Zed
sensors measure depth through a stereo vision approach: they acquire two simultaneous color views of the same scene from CCD
sensors having a lateral offset of 12 cm. Similarly to the human brain, the two images are used to estimate distance. This distance
reconstruction, generally referred to as stereo matching, is performed in real-time through the Zed API running on the local Nvidia
4
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Fig. 2. Depthmap images at different stages of the image processing. (a–d) Raw recordings of the four depth sensors. Each depth image is imposed with two
regions of interest (ROI), one on the staircase (dark hue) and one on the escalator (light hue). (e, f) Depth images after perspective correction and sensor merging.
From the ROIs we observe the overlapping parts of the sensor domains. We report for the pedestrian localizations in this frame together with the Lagrangian
trajectories over the previous 10 seconds. (e) Without background subtraction and (f) with background subtraction. (g) 3D pointcloud of the perspective corrected
and stitched depth images. The background is colored with blue tones and the foreground is colored with red tones. (h) Recorded trajectories across the staircase.
Ascending trajectories are colored with a red hue and descending trajectories with a blue hue.

Jetson TX2 card. We design our system in such a way that no color image (possibly privacy infringing) is explicitly downloaded
from the sensors. We position the sensors in such a way that their view cone is partially overlapping. This configuration enables
continuous coverage of the whole staircase area and of a volume that spans from the stairs up to the ground level plane.

Streams of depth maps are at the base of our trajectory measurement approach. The processing pipeline, applied to approximately
400 GB of depth images per day, is summarized in Fig. 3 and involves six main stages. Some of these stages have been described in
previous works by the same authors (Corbetta et al., 2017, 2018; Willems et al., 2020). For the sake of completeness we report in
what follows on all stages.

We can formalize a depth image with the field (x, 𝑑(x)), which maps each pixel, x, in the image with its distance 𝑑(x) from the
camera. Streams of depth images undergo the following six stages:

1. Height calibration We observe that depth measurements present noise that affects the depth field uniformly and in a
multiplicative way. In other terms, we measure the field 𝐴𝑑(x), where 𝐴 is a constant changing in time in dependence on
the global scene illumination. We use a fixed spatial reference (depth of the platform) to normalize away the multiplicative
constant 𝐴 and obtain 𝑑(x). This correction appears to be necessary with Zed sensors. Other sensors used by the same authors,
e.g., Microsoft Kinects, did not need it.

2. Perspective correction We perform an axonometric transformation of the depth image, conceptually equivalent to bringing
the sensor to an infinite altitude. This turns the view from conical to cylindrical and renders all the sight rays vertical and
mutually parallel. For an ideal pinhole view, and up to a multiplicative constant 𝐶, this transformation re-projects a point x
5
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Fig. 3. Synthetic examples of the processing steps for pedestrian tracking on inclined planes. (a) Height calibration, establishing agreement on the depth
measurements. (b) Perspective correction. (c) Background subtraction. The foreground will reveal all (new) objects removing all terrain/ flattening the ground.
(d) Merging all sensor images thereby creating one shared coordinate system. (e) Pedestrian localization. (f) Lagrangian time tracking.

in image space as

(x, 𝑑(x)) → (𝐶x𝑑(x), 𝑑(x)). (1)

This transformation would ensure that points that are vertically aligned in space get mapped to the same location 𝐶x𝑑(x).
We observed, however, that the ideal model in Eq. (1) is still insufficient for a precise mapping of the space. This holds
especially when the distance to the sensor (depth) changes significantly (i.e. moving across the stairs). To compensate on
this, we consider a second order correction model:

(x, 𝑑(x)) → (x, 𝑐1 ⋅ 𝑑(x)2 + 𝑐2 ⋅ 𝑑(x) + 𝑐3), (2)

with 𝑐1, 𝑐2 and 𝑐3 free parameters. We estimated the parameters by moving calibration targets on the scene (cardboard boxes
of known size), and ensuring that the railings of the escalator, once projected with Eq. (2), remain mutually parallel.
We generate an axonometric depth image retaining for each vertically aligned point the one closest to the sensor.

3. Background subtraction To reduce localization artifacts, we retain the foreground of each depth signal. That is, only the
pixels that are sufficiently closer to the sensor plane than a background estimated in absence of crowding. This transformation
operates as follows:

(x, 𝑑(x)) → (x, 𝑑(x) − min
𝛥𝑡

𝑑(x)), (3)

with min𝛥𝑡 𝑑(x̃) the minimum depth value in the image over a small time window 𝛥𝑡. Typically, this time window is chosen in
very dilute conditions to ensure the absence of crowding. In our case the background was recorded at night when the facility
is closed.

4. Depth data fusion Having defined an axonometric view for the four depth streams, it is then possible to juxtapose them to
generate a single depth image covering the entire area. In the overlapping regions, pixels with depth closest to the camera
are retained. The merging is performed such to ensure that the reference cardboard boxes preserve their shape and area
throughout the entire fused depth image.

5. Localization We perform localization using the YOLOv7 localization algorithm (Wang et al., 2022). YOLO (You Only Look
Once) has recently emerged as a widespread adopted algorithm for real-time object detection. Unlike traditional methods
that employ multi-stage pipelines, YOLO takes a unified approach by performing object detection in a single pass. In short,
a given input image gets divided into a grid and the algorithm simultaneously make predictions for bounding boxes and
class probabilities for each grid cell by leveraging deep neural networks (NNs). We have trained a NN from scratch by hand-
annotating depth images in an active learning fashion. In other terms, after a first annotation session (about 15 frames),
we proceeded correcting the output of the localization to improve the training dataset. This has allowed for high quality
tracking, outperforming previous approaches (Pouw et al., 2022), specially in highly dense conditions. In Table 2, we report
the performance achieved by the YOLO algorithm using as test data two hours of hand-annotated depth images. We report
precision, recall, and F1-score for different values of the local density. We refer the reader to Appendix A for further details.

6. Tracking We perform Lagrangian tracking of bounding box centroid via the Trackpy library (Allan et al., 2023). We
cross-validate the obtained trajectories against the optical flow aiming at detecting false positives and tracking errors.
6
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Table 2
Performance of our YOLO-based pedestrian localization algorithm against about 1000 hand-annotated frames. We report standard quality
metrics: precision, recall, and F1 score. For details about the algorithm and its validation, and formal definitions of the performance
metrics, see Appendix A.
Density range (ped/m2) True positive False positive False negative Precision Recall F1 score

0.55–0.75 373 0 2 1.0 0.9947 0.9973
0.75–0.95 1301 6 18 0.9954 0.9864 0.9909
0.95–1.15 2012 13 80 0.9936 0.9618 0.9774
1.15–1.35 2735 27 174 0.9902 0.9402 0.9646
1.35–1.55 3140 20 197 0.9937 0.9410 0.9666

2.3. Pedestrian velocity and density: operational definitions

In this section, we define the notation and a few useful quantities, akin to those used by Saberi and Mahmassanip (2014),
oogendoorn et al. (2018), to guide the reader through the analysis presented in Section 3. In what follows, we will refer to the

rajectory dataset, obtained following the procedure described in the previous section, with the symbol  .
We consider a coordinate system x = (𝑥, 𝑦) such that the 𝑥 and 𝑦 axes are, respectively, transversal and longitudinal with respect

o the ascending/descending direction (cf. Fig. 2). In other terms, we consider a projection of the staircase on the horizontal
lane. We denote with v(𝑡) = (𝑣𝑥(𝑡), 𝑣𝑦(𝑡)) the instantaneous velocity of a pedestrian, which we compute applying Savitzky-
olay filtering (Savitzky and Golay, 1964) on trajectory data, and likewise for the instantaneous acceleration 𝐚(𝑡) = (𝑎𝑥(𝑡), 𝑎𝑦(𝑡)).
dditionally, we define the frame-average walking velocity, 𝑣𝑡, , at frame, 𝑡, for a trajectory subset,  :

𝑣𝑡, = 1
𝑁𝑡,

𝑁𝑡,
∑

𝑖=1
𝑣𝑖, (4)

with 𝑣𝑖 the velocity of pedestrian 𝑖 and 𝑁𝑡, the number of pedestrians in frame 𝑡 part of subset  . Due to the subset being almost
obviously deductible from the context, for ease of notation we shall indicate the average velocity simply with 𝑣.

We will distinguish trajectories in our dataset,  , based on two criteria:

• Direction, either downstairs or upstairs. We determine the direction by setting a threshold on the average longitudinal velocity
of each trajectory, ⟨𝑣𝑦⟩𝛾 . We indicate respectively with ↓ and ↑ the sets of trajectories in downstairs and upstairs direction.
In formulas, it holds

↓ =
{

𝛾 ∈  ∣ ⟨𝑣𝑦⟩𝛾 < −𝑉𝑡
}

↑ =
{

𝛾 ∈  ∣ ⟨𝑣𝑦⟩𝛾 > 𝑉𝑡
}

, (5)

with the threshold 𝑉𝑡 = 0.2 m∕s.
• Movement mode, either via the stairs or via the escalators. We distinguish between the movement modes based on the position.

We define the subsets esc and stairs as the sets consisting of trajectories with all coordinate observations located either on the
escalators or on the staircase area, respectively. In formulas, these read

esc =
{

𝛾 ∈  ∣ 𝐱 ∈ 𝑆esc
}

stairs =
{

𝛾 ∈  ∣ 𝐱 ∈ 𝑆stairs
}

. (6)

These criteria yield four disjoint subsets

• 𝑠𝑡𝑎𝑖𝑟𝑠↑ = 𝑠𝑡𝑎𝑖𝑟𝑠 ∩ ↑, trajectories going in upstairs direction via the staircase;
• 𝑠𝑡𝑎𝑖𝑟𝑠↓ = 𝑠𝑡𝑎𝑖𝑟𝑠 ∩ ↓, trajectories going in downstairs direction via the staircase;
• 𝑒𝑠𝑐↑ = 𝑒𝑠𝑐 ∩ ↑, trajectories going in upstairs direction via the escalators;
• 𝑒𝑠𝑐↓ = 𝑒𝑠𝑐 ∩ ↓, trajectories going in downstairs direction via the escalators;

Note that this categorization excludes rare cases such as pedestrians inverting their trajectories, which will be neglected from our
analysis.

We conclude this section discussing the frame by frame estimation of the density, which is crucial for the computation of
the fundamental diagrams. Within the literature on pedestrian dynamics, numerous methods have been introduced to estimate
pedestrian density. For a comprehensive comparison of these methods, we refer to Steffen and Seyfried (2010), Zhang et al. (2011)
and Duives et al. (2015). Traditionally, the pedestrian density 𝜌 has been computed using the hydrodynamic definition:

𝜌 = 𝑁
𝑆̄
, (7)

where 𝑁 is the number of pedestrians in the observation area 𝑆̄ (e.g., Steffen and Seyfried (2010), Fruin (1971)). This definition
provides robust estimates in case of spatially uniform flows over surfaces much larger than the pedestrian diameter (i.e. as
the continuum limit approximation becomes accurate). On the other hand, this definition strongly depends on the size of the
measurement area, 𝑆̄, (Zhang et al., 2011), while averaging out local density fluctuations. These issues have been circumvented
considering a Voronoi tessellation centered in the pedestrians position (e.g. Steffen and Seyfried (2010)), enabling a local definition
7
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of the density field as the reciprocal of the local Voronoi cell area. This method provides robust, although computationally expensive,
density estimates in the bulk of the flow and at sufficiently high density levels. On the other hand, in the absence of neighboring
pedestrians, the Voronoi cells result unbounded with local density degenerating to zero. This issue can be mitigated by limiting
the size of the cells to the boundaries of the observed geometry (hence all cells result closed) and/or by thresholding each cell (to
prevent density underestimation).

In order to deal efficiently with high statistics data and prevent unbounded cells, we consider here an approach that builds on
ounding individual areas from the start, echoing the concept of personal space. The personal space is defined as the space a walking
edestrian tries to maintain around the body. While it is understood to be elliptical (axes: 2 m in longitudinal and 0.5 m in lateral
irection according to Gérin-Lajoie et al. (2008)), we approximate the individual personal space of the pedestrian, 𝑖, as a circular
egion with radius 𝑅 = 0.75 m and area 𝜋𝑅2 = 1.86 m2. In level-of-service terms, this is at the interface between level A (free-flow)
nd B (slightly restricted flow), as defined by Fruin (1971). We compute the instantaneous density as the ratio between the number
f observed pedestrians and the union of all the personal spaces,

𝑆̂𝑠𝑡𝑎𝑖𝑟𝑠 = Area
( 𝑁
⋃

𝑖=1
𝑆𝑖 ∩ 𝑂𝑟𝑒𝑔𝑖𝑜𝑛

)

≤ Area(𝑂𝑟𝑒𝑔𝑖𝑜𝑛) = 𝑆̄ ≈ 25 m2, (8)

.e.

𝜌̂ = 𝑁
𝑆̂𝑠𝑡𝑎𝑖𝑟𝑠

, (9)

where 𝑂𝑟𝑒𝑔𝑖𝑜𝑛 indicates the observation region, that is used as outer limit of the personal areas. Note that according to Eq. (9), the
density has the following lower and upper bounds:

max
{

1
𝜋 ⋅ 𝑅2

, 𝑁
𝑆̄

}

≤ 𝜌̂ ≤ 𝑁
𝜋 ⋅ 𝑅2

. (10)

The lower bound entails the maximum between two components. The constant 1∕(𝜋𝑅2) = 0.56 m2 is attained when personal spaces
do not overlap. Moreover, due to 𝑆̂𝑠𝑡𝑎𝑖𝑟𝑠 ≤ 𝑆̄ (Eq. (8)), our density definition is always larger than the hydrodynamic definition
(Eq. (7), that for small 𝑁 can get arbitrarily close to zero; see also Appendix B). The density value 𝜌̂ increases as personal spaces
overlap (mutual distances 𝑑 < 2⋅𝑅), reducing the union in Eq. (8). This yields a theoretical upper bound corresponding to the case in
which all the personal areas perfectly overlap. This is clearly a non-physical upper bound due to necessary volume exclusions. More
realistically, for the case of 𝑁 very large, personal areas will fill the available surface 𝑂𝑟𝑒𝑔𝑖𝑜𝑛. This assumption enables to provide a
more realistic asymptotic behavior to 𝜌̂, which approaches the hydrodynamic density (see also trends in Fig. 15(b)).

. Results

.1. Average dynamics: pedestrian flux and free-stream velocity

We start our analysis by providing an overview of the overall usage of the stairs–escalator system in terms of typical daily fluxes,
luxes distribution, directionality and velocities.

lux and flow partition. In Fig. 4a we provide an example of pedestrian fluxes recorded during a typical working day (2022-04-12),
or the four different subset of trajectories (𝑠𝑡𝑎𝑖𝑟𝑠↑, 𝑠𝑡𝑎𝑖𝑟𝑠↓, 𝑒𝑠𝑐↑, 𝑒𝑠𝑐↓) previously defined in Section 2. We observe high fluxes during

rush hours, with average peaks of 50 ped∕m in the morning (7 am–9 am) where the majority of commuters descend from the platform
to the train station (blue and green curves), and in the afternoon (16 pm–18 pm) where flows in the opposite direction (orange and
red curves) play a more relevant role, with average peaks of 20 ped∕m. We shall remark that the asymmetry between morning and
afternoon is specific to the train platform considered in our study, and is due to the train schedule.

In Fig. 4b we show aggregated flux statistics, in terms of pedestrians per hour, for each one of the trajectory subsets. The data
highlights a strong preference towards the usage of the escalator. The average flux for 𝑒𝑠𝑐↑ (𝑒𝑠𝑐↓) is 276 ped∕h (180 ped∕h), while
for the staircase we report 46 ped∕h and 131 ped∕h, respectively for 𝑠𝑡𝑎𝑖𝑟𝑠↑ and 𝑠𝑡𝑎𝑖𝑟𝑠↓. The overall fraction of people choosing the
escalator over the staircase is 0.72, which becomes 0.86 when considering only the subset of people going upstairs, and 0.58 when
considering only people going downstairs.

While the staircase is prominently used in downstairs direction, bidirectional flows also occur. In Fig. 4d we report the probability
distribution of the flow compositions as a function of the pedestrian occupation on the stairs. We consider 5 categories with different
direction ratios, respectively: (1,2) unidirectional flow i.e. pedestrians all move downstairs 100% 𝑠𝑡𝑎𝑖𝑟𝑠↓ or all pedestrians move
upstairs 100% 𝑠𝑡𝑎𝑖𝑟𝑠↑; (3) balanced bidirectional [40 − 60]% 𝑠𝑡𝑎𝑖𝑟𝑠↑↓, i.e. an almost equal number of people are simultaneously going
upstairs and downstairs; (4,5) unbalanced bidirectional flow, i.e. the majority of pedestrians is going downstairs [60 − 99]% 𝑠𝑡𝑎𝑖𝑟𝑠↓
or the majority of pedestrians is going upstairs [60 − 99]% 𝑠𝑡𝑎𝑖𝑟𝑠↑. We rarely observe a balanced bidirectional flow, especially for
high crowd densities. Considering the primarily unidirectional flow, the aforementioned asymmetry between morning and afternoon
8

does not influence our study.
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Fig. 4. (a) Pedestrian flux, 𝐽 , across the staircase ascending 𝑠𝑡𝑎𝑖𝑟𝑠↑ (red) and descending 𝑠𝑡𝑎𝑖𝑟𝑠↓ (green) or using the escalators to ascend 𝑒𝑠𝑐↑ (yellow) and
escend 𝑒𝑠𝑐↑ (blue) per 10-minute time window for a typical working day. We observe a morning rush hour at 08:00-09:00 and afternoon rush hour 16:00-18:00.
he morning is dominated by people going down to the tunnel using the stairs (green) or the escalator (blue), and the afternoon by pedestrians in the other
irection going towards the platform using the escalator (orange). (b) Boxplots of the pedestrian flux, 𝐽 , per movement mode in pedestrians per hour. (c)
robability distribution of the free-flow walking velocity on the staircase ascending (green) and descending (red). For comparison we also report the free-flow
alking velocity on level ground, 𝑙𝑒𝑣𝑒𝑙→ (purple). We annotate with arrows the most probable walking velocities i.e. 𝑣𝑠𝑡𝑎𝑖𝑟𝑠↑ = 0.48 m∕s, 𝑣𝑠𝑡𝑎𝑖𝑟𝑠↓ = 0.58 m∕s
nd 𝑣𝑙𝑒𝑣𝑒𝑙→ = 1.23 m∕s. (d) Probability distribution of the flow dynamics as a function of the stairs occupation 𝑁 . We report five possible flow dynamics: (1)
nidirectional flows descending 100% 𝑠𝑡𝑎𝑖𝑟𝑠↓ (green) and (2) ascending 100% 𝑠𝑡𝑎𝑖𝑟𝑠↑ (red) (3) unbalanced bidirectional flows dominated by descending pedestrians
60 − 99]% 𝑠𝑡𝑎𝑖𝑟𝑠↓ (light green) and (4) dominated by ascending [60 − 99]% 𝑠𝑡𝑎𝑖𝑟𝑠↑ (light red), and (5) balanced bidirectional flow (brown) with a [40 − 60]% ratio
etween ascending and descending. We observe on the staircase mainly unidirectional and unbalanced bidirectional flows in the descending direction. We employ
second 𝑦 axis on the right side of the figure with the recording times in minutes to indicate the size of the data for each of the five possible flow dynamics.
dditionally, we impose two horizontal lines signaling thresholds for 10 min and 1 h of recordings respectively. For descending motions we have significant
ecordings (>10 min) for pedestrian occupancy up to 𝑁 < 35. For descending motion however we have few recordings for values of 𝑁 > 20 pedestrians.

ree-stream velocity. We now take into consideration the free-stream dynamic, i.e. we consider configurations in which only one
edestrian at a time moves on the staircase in either direction. The average walking speed in upstream direction is ⟨𝑣⟩𝑠𝑡𝑎𝑖𝑟𝑠↑ ≈
.63 m∕s, with ⟨𝑣⟩𝑠𝑡𝑎𝑖𝑟𝑠↓ ≈ 0.73 m∕s for the downstream direction. The observed 0.1 m∕s speed difference between ascending and
escending well compares with the 10% difference in speed reported by Fruin (1971), and with previous figures from literature
Table 1). However, thanks to the vast collection of trajectories gathered during our tracking campaign, in this work we can take
ur analysis beyond the average case. In Fig. 4c we report the probability distributions of the free-stream velocity. The red curve
epresents the case 𝑠𝑡𝑎𝑖𝑟𝑠↑, while the green one the case 𝑠𝑡𝑎𝑖𝑟𝑠↓. For comparison, we also present a distribution of the walking
peed on the train platform (brown curve), which was obtained from pedestrian trajectories measured by a commercial pedestrian
racking setup installed in front of the staircase — similar to the setup used in Pouw et al. (2020, 2022). The walking speed
n the staircase exhibits a skewed distribution, with a pronounced right tail, representing cases of fast walking/running people.
s a result, average speed values are significantly higher than the modal ones, with respectively mode(𝑣)𝑠𝑡𝑎𝑖𝑟𝑠↑ ≈ 0.48 m∕s and
ode(𝑣)𝑠𝑡𝑎𝑖𝑟𝑠↓ ≈ 0.58 m∕s for ascending and descending. On the platform, we observe the opposite behavior, with a left-tailed
istribution, where due to pedestrian waiting for their train the modal value (mode(𝑣)platform ≈ 1.23 m∕s) is significantly higher
han the average (⟨𝑣⟩platform ≈ 1.02 m∕s). In order to quantify the ratio between slow and fast walkers, we take into consideration
Gaussian-mixture modeling for the probability distribution of the free-stream velocity for the different cases presented in Fig. 4c.
his modeling approach is aligned with the findings of Saberi et al. (2015) which demonstrated that a mixture of two Gaussian
istributions provides a robust fit for pedestrian bidirectional velocity data. In order to allow for a simple physical interpretation,
e consider a 2-component model:

𝑃 (𝑣) ∼ 𝜙𝑠 (𝜇𝑠, 𝜎𝑠) + 𝜙𝑓 (𝜇𝑓 , 𝜎𝑓 ), 𝜙𝑠 + 𝜙𝑓 = 1, (11)

here  is a Gaussian distribution with mean 𝜇𝑖, variance 𝜎𝑖 and weight 𝜙𝑖, and where the subscript 𝑠 (or 𝑓 ) is used to refer to the
arameters for slow (or fast) walkers. In Fig. 6 we show the fit for the data shown in Fig. 4c using Eq. (11). For the descending case
9
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Fig. 5. (a) Overhead image of the staircase considered. Our sensors covered area within the orange rectangle. We consider here the staircase region 𝑂𝑟𝑒𝑔𝑖𝑜𝑛
bounded by the dashed red line. (b) Probability distribution function of pedestrian position represented as a heatmap. We observe three walking lanes across the
staircase. (c, d) The distributions of velocity and acceleration across the staircase–escalator system. We observe a higher walking velocity on the flat staircase
landing. Both images are imposed with flow vectors indicating the direction of the flow. We observe that pedestrians walk on the right side of the staircase
following the direction of the escalators. (e, f) Cross-sections of the velocity (e) and acceleration (f) on the staircase. All distributions are computed by considering
the entire dataset  .

Fig. 6. Probability distribution of the free-stream walking velocity for (a) downstairs and (b) upstairs motion. We fit a mixture of two Gaussian distributions
(Eq. (11)) representing the slow (blue dash-dotted line) and fast (yellow dashed line) walking dynamics.
10
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Fig. 7. (a) Personal space union, 𝑆̂𝑠𝑡𝑎𝑖𝑟𝑠, as a function of the number of pedestrians on the staircase. The average is represented with black dots and we show
the 80th, 90th, and 95th percentiles with different shades of blue. This provides insight in how the area is filled, with pedestrians accepting to occupy less
than the available space, allowing for a compression. We superimpose the theoretical bounds to the occupied area, respectively 𝑓1(𝑁) = 𝜋𝑅2𝑁 (blue line; all
individual spaces do not intersect and are sufficiently far from the boundary) and the area of the staircase 𝑓2(𝑁) = 𝑆̄ ≈ 25 m2 (red line). While having initially a
linear trend, 𝑆̂𝑠𝑡𝑎𝑖𝑟𝑠 departs immediately from 𝑓1(𝑁) and, for large 𝑁 , the area approaches the global area. We report in yellow our model 𝑆̂𝑚𝑜𝑑𝑒𝑙

𝑠𝑡𝑎𝑖𝑟𝑠 (𝑁) (Eq. (15)),
hat through the single parameter 𝑝 = −2.5 models the willingness of people of using less the space than available. In this respect, in the inset we report the
ompressibility factor 𝑍 (Eq. (14)) (b) Frame averaged mutual distance between closest neighbors ⟨𝑑𝑛𝑛⟩ as a function of the stairs occupation 𝑁 . We observe a
ecrease in the mutual distance as the area gets filled with more pedestrians, converging to a minimal frame averaged mutual distance 𝑑𝑛𝑛 ≈ 0.6 m.

e fit a Gaussian-mixture model with parameters 𝑃 (𝜙𝑠 = 0.35, 𝜇𝑠 = 0.58 𝜎𝑠 = 0.1, 𝜙𝑓 = 0.65𝜇𝑓 = 0.8, 𝜎𝑓 = 0.27). For the ascending
ase, instead, the results of the fit yields 𝜙𝑠 = 0.48, 𝜇𝑠 = 0.49 m∕s, 𝜎𝑠 = 0.08 m∕s, 𝜙𝑓 = 0.52, 𝜇𝑓 = 0.75 m∕s, 𝜎𝑓 = 0.25 m∕s.

ulerian fields. The stairs–escalator system has relatively narrow side boundaries (about 5 body diameters). In combination with the
ntermediate landing, this yields dynamics that are not spatially uniform. We consider this in terms of floor usage and of walking
elocity field. As pedestrians ascend or descend the stairs, and as they traverse the landing, they adjust their speed accelerating and
ecelerating. Here, we report Eulerian fields of space occupancy (position probability distribution), average speed, and acceleration,
omputed on the entire dataset  .

In Fig. 5b, we report the probability distribution of pedestrian positions, P(x) (colormap: probability iso-contour). Consistently
ith Fig. 4b, the escalators area feature the highest occupancy probability, peaking on the ascending escalator. A clear lane on the

ight-hand side of each escalator is observable. This is generated by pedestrians standing on escalators on the right while leaving
he left side to people that overtake.

In the bulk of the staircase area, trajectories align along three main lanes. These lanes are especially pronounced along the
scending/descending region, while they are dimmer in the landing area. This can be explained considering the average walking
peed field (Fig. 5c), The average in 𝑥 direction of the speed field is reported as a function of 𝑦 in Fig. 5(e). We observe that the
verage speed on the staircase is around 0.6 m∕s, but in the landing zone it increases up to 1 m∕s. This velocity growth renders
he average permanence time on the landing smaller thus the lower probability. In Fig. 5d, we report the field of acceleration
n 𝑦 direction, 𝑎𝑦 (transversal average in Fig. 5e). Consistently with the speed field, we observe a strong acceleration about half
eter before the landing and, symmetrically, a deceleration that starts almost immediately after the person sets foot on the landing.

inally, a net increase in velocity is observable at the end of the ascending escalator, as people start to walk when they are close to
he surface.

.2. Density patterns and interpersonal distance: crowd compressibility

In the previous section, we have highlighted the heterogeneous composition of flow patterns from data, showing how throughout
he day one can observe high density clusters alternating with low density to free-stream configurations. We discuss here how density
ffectively scales with the number of observed pedestrians and, as such, how the available area is filled.

In Fig. 7a we report the size of the occupied area (Eq. (8)) as a function of the number of pedestrians. This shows how the
urface area on the staircase gets filled due to how pedestrians choose to position themselves (see also examples in Fig. 8). The area
̂𝑠𝑡𝑎𝑖𝑟𝑠 is formed by the union of personal space spheres from single individuals. Therefore, 𝑆̂𝑠𝑡𝑎𝑖𝑟𝑠 admits an upper bound given by
he maximum between 𝑁 disjoint personal space spheres (scaling as 𝜋𝑅2𝑁 , blue line in Fig. 7a), and the total (horizontal) surface
f the area of interest (𝑆̄ = Area(𝑂𝑟𝑒𝑔𝑖𝑜𝑛) ≈ 25 m2, red line in Fig. 7a). In formulas this reads

⎧

⎪

⎨

⎪

𝑆̂𝑠𝑡𝑎𝑖𝑟𝑠(𝑁) ≤ 𝑆̂max
𝑠𝑡𝑎𝑖𝑟𝑠(𝑁) = min{𝑓1(𝑁), 𝑓2(𝑁)}

𝑓1(𝑁) = 𝜋𝑅2𝑁
̄

(12)
11
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Fig. 8. (a–d) Overhead images of the staircase showing examples of the four increasing levels of stair occupation with respectively 4, 10, 15, and 21 pedestrians.
Pedestrians located on the inclined plane of the staircase are colored in red, pedestrians located on a flat part of the staircase in white, and pedestrians on the
escalators in blue. We indicate the occupied area from Eq. (8) with an orange color. On top of each panel we show the pedestrian density as calculated using
Eq. (9). (e–h) Spatial probability distribution of nearest neighbor positions for the four increasing levels of stair occupation. We split our data set based on the
stairs occupation in four evenly-sized bins with sides at 𝑁 = {1, 7, 13, 19, 25} pedestrians. A red color indicates high probability and a yellow color low probability.
We report the average distance to nearest neighbors in a certain direction using a black dashed line. We observe an elliptical shape for low crowd density i.e.
people allow others to be close in lateral direction but not in longitudinal direction. As the crowd density increases the shape becomes more circular and the
radius decreases. To provide a sense of scale we impose two dotted black lines separated by 𝑤 = 3.2 m, indicating the width of the staircase. Additionally, we
impose an ellipse to indicate the typical body size.

In Fig. 7a, we report the average observed value of 𝑆̂𝑠𝑡𝑎𝑖𝑟𝑠(𝑁), ⟨𝑆̂𝑠𝑡𝑎𝑖𝑟𝑠⟩(𝑁), and some percentiles. The average occupied area
⟨𝑆̂𝑠𝑡𝑎𝑖𝑟𝑠⟩(𝑁) grows linearly at small 𝑁 (𝑁 < 6), yet with a smaller slope than the upper bound: Eq. (12)

⟨𝑆̂𝑠𝑡𝑎𝑖𝑟𝑠⟩(𝑁) ≈ 𝑐𝑓1(𝑁) 𝑐 ≈ 0.8, 𝑁 < 6. (13)

The constant 𝑐 < 1 is a consequence of multiple potential factors: on one hand, we expect people to not strictly maintain a distance
𝑑 > 2𝑅 even at small density — thus, yielding overlapping personal spaces. This can be due, e.g., to small social groups, whose
individuals opt to walk in close proximity (see, e.g., Zanlungo et al. (2014)); note that in a similar Dutch train station we measured
about 15%–20% of the people to be in a group (Pouw et al., 2020). Secondly, the definition itself of the personal radius, 𝑅, has
some degree of arbitrariness. As 𝑁 grows, the occupied area smoothly approaches the available surface. Thirdly, our definition
of occupied area is bounded by the observation region 𝑂𝑟𝑒𝑔𝑖𝑜𝑛. This means that pedestrians close to the boundaries experience a
personal area smaller than the limit 𝜋𝑅2. Later in the section, considering the dependencies on mutual distances, we shall partially
disentangle the roles of these factors.

The key observation here is that people willingly accept to occupy less than full available area, accepting a ‘‘compression’’.
Occupying the full area available would mean having 𝑆̂ (𝑁) growing linearly at small 𝑁 (accounting for possible arbitrariness
12
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Fig. 9. (a) We consider a nearest neighbor to be positioned on the side if the transversal distance between the considered pedestrian and the neighbor is larger
than the longitudinal direction (|𝛥𝑥𝑖𝑗 | > |𝛥𝑦𝑖𝑗 |, purple region). We consider a pedestrian in the front/back otherwise (|𝛥𝑥𝑖𝑗 | < |𝛥𝑦𝑖𝑗 |, blue region). (b,c) Walking
velocity, 𝑣, as a function of the frame averaged distance between closest neighbors restricting to a closest neighbor in transversal direction (b) and longitudinal
direction (c). In (c) we fit for ⟨𝑑𝑛𝑛⟩ > 1.5 m a constant, 𝑣(⟨𝑑𝑛𝑛⟩) = 0.75 m∕s, with a red line and for ⟨𝑑𝑛𝑛⟩ < 1.5 m a linear fit otherwise (orange line, cf. Eq. (19)).

e observe from (b) that a high lateral density does not impact the flow velocity and from (c) that the flow velocity decreases as the longitudinal distance
etween pedestrians gets less than ⟨𝑑𝑛𝑛⟩ = 1.5 m. The velocity fluctuations decrease until ⟨𝑑𝑛𝑛⟩ ≈ 0.8 m, for smaller closest neighbor distances (typically higher
ensity) the fluctuation increase again. This likely connects with the necessity of avoidance/overtake maneuvers.

n 𝑅), up to the saturation at 𝑆̄ that is reached with a kink point. Note that this happens even though in diluted crowds pedestrians
re free to reposition themselves and, for instance, are able to overtake slower walking pedestrians.

Conversely, the average (as well as high percentiles) of the occupied area depart rapidly from the theoretical bound and from
linear growth. We quantify this in terms of compressibility factor (see, e.g., for the definition of compressibility factor for

asses (Zucker and Biblarz, 2019))

𝑍 =
𝑆̂𝑠𝑡𝑎𝑖𝑟𝑠
𝑓1(𝑁)

, (14)

i.e. the ratio between the occupied area and the maximum 𝑓1(𝑁) assuming no overall geometric boundaries (inset in Fig. 7a). The
bserved compressibility factor rapidly decreases from 1 as to indicate the presence of attractive interactions, which lower the area
sage.

We further model this compressibility effect in terms of a power 𝑝 < 0 of the 𝑝-norm between the two functions 𝑐𝑓1(𝑁) and
𝑓2(𝑁):

𝑆̂𝑚𝑜𝑑𝑒𝑙
𝑠𝑡𝑎𝑖𝑟𝑠 (𝑁) =

[

(𝑐𝑓1(𝑁))𝑝 + 𝑓2(𝑁)𝑝
]
1
𝑝 . (15)

Note that Eq. (15), in the limit 𝑝 → −∞, converges to the theoretical bound (i.e. a linear trend connected with a kink to the saturated
capacity, Eq. (12) - this is a well known property of 𝑝-norms). As 𝑝 grows from −∞, the transition between 𝑐𝑓1 and 𝑓2 becomes
increasingly smoother (e.g. 𝑝 = −1 yields their harmonic mean). Considering 𝑐 ≈ 0.8 (cf. Eq. (13)), we found 𝑝 = −2.5. We stress that
this 𝑝 number encodes for a non-trivial crowd dynamics effect, specifically the willingness of pedestrians to accept a compression.
We expect that the 𝑝-value will in principle depend on cultural differences, habits, geometry and crowd flow conditions.

We conclude the section by considering the dynamics from the perspective of single individuals analyzing how pedestrians
arrange in space and how this influences the dynamics. Our key parameter is the average distance to the nearest neighbor.
Specifically, for every pedestrian, 𝑖, we measure on a frame-by-frame basis the distance to their closest peer 𝑗:

𝑑𝑖,𝑛𝑛 = min
𝑗

{

|𝐱𝑖 − 𝐱𝑗 |
}

. (16)

We then retain the frame-by-frame averages values of 𝑑𝑖,𝑛𝑛:

⟨𝑑𝑛𝑛⟩ =
1

𝑁frame

𝑁frame
∑

𝑖=1
𝑑𝑖,𝑛𝑛. (17)

In Fig. 7b, we report the frame-averaged distance ⟨𝑑𝑛𝑛⟩ as a function of stairs occupation 𝑁 . For 𝑁 ≤ 3 the average nearest neighbor
distance remains well above 2𝑅 with, however, large fluctuations. This supports the presence of social groups (⟨𝑑𝑛𝑛⟩ ≈ 𝑅), but also
the fact that pedestrians opt to walk close to boundaries even at low densities (in fact this yields a reduction 𝑆̂𝑠𝑡𝑎𝑖𝑟𝑠 from the upper
bound 𝑓1(𝑁) due to the fact that only personal areas within 𝑂𝑟𝑒𝑔𝑖𝑜𝑛 are considered). On the other hand, as the density increases, the
average distance approaches a limiting value ⟨𝑑𝑛𝑛⟩ ≈ 0.6 m. Note that two treads of the staircase measure 0.6 m.

We conclude the section by considering how nearest neighbors arrange in space and how this affects the dynamics. For each
pedestrian 𝑖, we measure frame-by-frame the relative position of the nearest neighbor. In Fig. 8, we present heatmaps of the spatial
distribution for the location of nearest neighbors for increasingly large values of the local density. In diluted conditions we observe
low probabilities for finding the nearest neighbor aligned with the direction of traveling. On the other hand the probability is
maximum along the lateral direction, for a distance 𝑑 ≈ 0.9 m. In the Figure we report with a black dotted line the iso-contour given
13

by the most probable value ⟨𝑑𝑛𝑛⟩ ≈ 0.6 m.
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Fig. 10. Fundamental diagrams for (a) unidirectional flow descending, 100% ↓, and (b) unidirectional flow ascending, 100% ↑ reporting the walking velocity
as a function of the crowd density. We use a colormap to show the confidence intervals in our data set. We include the average walking speed of slow walkers
𝜇𝑠𝑙𝑜𝑤 (circles) with a hatched domain to show one standard deviation to the mean of slow walkers 𝜎𝑠𝑙𝑜𝑤. Additionally, we report the average walking speed of
fast walkers 𝜇𝑓𝑎𝑠𝑡 (upward pointing triangles), and for comparison the FD reported by Fruin (1971) (right pointing triangles) and by Predtechenskii and Milinskii
(1978) (diamonds).

In Fig. 8(bottom panels), we present heatmaps of the spatial distribution for the location of nearest neighbors for increasingly
large values of the local density (examples of pedestrians distribution at the related density values are in the top panes). We report
with a black dotted line the 1d-manifold given by the most probable location of nearest neighbors in every direction. This yields
an elliptical shape, with major axis aligned along the pedestrian walking direction, but with decreasing eccentricity as the local
density is increased. In diluted conditions, we observe that closest neighbors have maximum probability to be located along the
sides (𝑑𝑠𝑖𝑑𝑒 ≈ 0.9 m), conversely plenty of headway (𝑑ℎ𝑒𝑎𝑑𝑤𝑎𝑦 > 2.5 m) is left in frontal direction. As density increases the manifold
of the average nearest neighbor position contracts approaching the 𝑑 ≈ 0.6 m, consistently with the asymptotic trend of Fig. 7.

As one can expect (e.g., Subaih et al. (2022)), the position of the closest neighbor influences pedestrians in an anisotropic way.
To conclude the section, in Fig. 9, we report the frame-averaged walking velocity (Eq. (4)) as a function of the average distance
between nearest neighbors (Eq. (17)). Note that here we make no distinction between pedestrians ascending and descending the
stairs. We separate the condition in which the nearest neighbor is positioned on the side (|𝛥𝑥𝑖𝑗 | > |𝛥𝑦𝑖𝑗 |, cf. Fig. 9a), and in the
front/back (|𝛥𝑥𝑖𝑗 | < |𝛥𝑦𝑖𝑗 |). To avoid confusion, we indicate these distances as ⟨𝑑↔𝑛𝑛⟩ and ⟨𝑑↕𝑛𝑛⟩, and report the velocity in dependence
on these quantities respectively in Figs. 9b and 9c. From Fig. 9b, we observe that a closest neighbor on the lateral side has practically
no influence on the average velocity, i.e.

𝑣
(

⟨𝑑↔𝑛𝑛⟩
)

≈ 0.75 m/s ∀⟨𝑑↔𝑛𝑛⟩. (18)

Conversely, 𝑣 shows strong variations when the closest neighbor approaches in longitudinal direction reducing the headway (Fig. 9c).
In particular, the velocity 0.75 m/s (cf. Eq. (18)) holds only for ⟨𝑑↕𝑛𝑛⟩ < 1.5 m, and decreases otherwise. Overall, we observe the
following piece-wise approximated dependency

𝑣
(

⟨𝑑↕𝑛𝑛⟩
)

≈

⎧

⎪

⎨

⎪

⎩

0.75 m/s ⟨𝑑↕𝑛𝑛⟩ > 1.5 m ≈ 2𝑅
0.16 ⋅ ⟨𝑑↕𝑛𝑛⟩ + 0.5 ⟨𝑑↕𝑛𝑛⟩ < 1.5 m
Units 𝑣 ∶ [m∕s] ⟨𝑑↕𝑛𝑛⟩ ∶ [m].

(19)

Notice that the transition around 1.5 m ≈ 2𝑅 supports our scale for the definition of the size of the personal space (Section 2.3).
In Fig. 9b, we further notice that the velocity fluctuation decreases until ⟨𝑑↕𝑛𝑛⟩ ≈ 0.8 m, to then increase substantially. This likely

connects with the fact that as the pedestrian in front gets too close, evasive maneuvers become necessary.

3.3. Probabilistic fundamental diagrams

In this section, we employ our trajectory dataset to report and compare fundamental diagrams (FD) (density–velocity relations)
for pedestrians ascending and descending our staircase. We specifically consider probabilistic counterparts of fundamental diagrams,
that include average (and modal) velocities, common fluctuations (fractions of one standard deviation), and rare fluctuations
(percentiles of the speed distributions conditioned to the density). It is clear that only very high statistics datasets can serve to
this purpose. In Fig. 10 we present the fundamental diagram for the walking velocity, as function of the pedestrian density on the
staircase. We restrict our analysis to unidirectional flows, showing in panel (a) the case where all pedestrians descend the staircase,
with the ascending case shown in panel (b). In each plot, we show with a colormap the confidence intervals of our data for given
14

densities i.e. the percentage of recordings at that density that falls within the interval. For comparison, we also include in the plot
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Fig. 11. (a,b) Probability distribution function of the walking velocity on the staircase at crowd densities 𝜌 = [0.56, 0.82, 1.13, 1.43] ped∕m2 for (a) descending and
b) ascending pedestrian movement. Every distribution is fitted with a Gaussian mixture with equal weights (Eq. (22)). (c,d) the Gaussian mixture fit parameters

and 𝜎 across the observed density range for the slow and fast (c) downstairs and (d) upstairs walking movements. We employ a linear fit to 𝜇𝑠𝑙𝑜𝑤, 𝜎𝑠𝑙𝑜𝑤
nd 𝜎𝑓𝑎𝑠𝑡 and a quadratic fit to 𝜇𝑓𝑎𝑠𝑡. We include the fundamental diagram by Fruin (1971) and Predtechenskii and Milinskii (1978) (Eqs. (20) and (21)) for
omparison.

he FD by Fruin (1971) and Predtechenskii and Milinskii (1978), which can be parametrized with the following expressions (from
hen et al. (2018))

𝑣(𝜌)f ruin = −0.097 ⋅ 𝜌 + 0.65, 𝑣(𝜌)predtechenskii = 0.009 ⋅ 𝜌2 − 0.125 ⋅ 𝜌 + 0.73 (20)

Units 𝜌 ∶ [ped∕m2] 𝑣 ∶ [m∕s]

for the descending case, and

𝑣(𝜌)f ruin = −0.077 ⋅ 𝜌 + 0.57, 𝑣(𝜌)predtechenskii = 0.003 ⋅ 𝜌2 − 0.08 ⋅ 𝜌 + 0.57 (21)

Units 𝜌 ∶ [ped∕m2] 𝑣 ∶ [m∕s]

for the ascending case.
Finally, we report in the diagram the average values of the parametrization of the velocity distribution function (for a fixed

density value), which was established in Eq. (11), and which allows to treating the average walking speed of slow and fast walkers
separately.

From Fig. 10a, we observe that average walking speed of slow walkers 𝜇𝑠𝑙𝑜𝑤 falls in between the two curves in Eq. (20), taking
an average value of ≈ 0.6 m∕s, almost independent with respect to the local density. On the other hand, for fast walkers (𝜇𝑓𝑎𝑠𝑡), we
bserve a significant decreasing trend, starting from a free-flow value of ≈ 1.0 m∕s which converges to 𝜇𝑠𝑙𝑜𝑤 for larger values of the
ocal density (i.e. in this case we cannot really distinguish fast and slow walkers). This pattern emerges also looking at fluctuations
round the mean, which decrease at large density values, as shown by the colormap.
15
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Similar considerations apply to Fig. 10b, where we consider, instead, the case of pedestrians walking in ascending direction.
ere, the difference between slow and fast walkers is more pronounced at large density values, although fewer data is available in

his case (see Fig. 4d).
We conclude by providing a compact parametrization of the data presented in Fig. 10, to aid future comparisons, and especially,

o allow using the information reported here in realistic simulations of pedestrian flows on staircases. We consider once again
q. (11), this time for simplicity we use equal weights for the Gaussian distribution associated to slow and fast walkers, i.e.:

𝑃 (𝑣) ∼ 1
2
(

 (𝜇𝑠, 𝜎𝑠) + (𝜇𝑓 , 𝜎𝑓 )
)

. (22)

Next, we use Eq. (22) to fit the (empirical) distribution function of pedestrian walking velocity for fixed values of density. We
report a few examples in Figs. 11a and 11b, for flows in descending and ascending direction respectively, which show that the
approximation 𝜙𝑠 = 𝜙𝑓 = 1∕2 allows for an excellent fit of the PDFs. We conclude taking a further step, which consists in fitting
the parameters of the two Gaussian distributions as function of the local density 𝜌. The results of the fit, reported in Fig. 11c–d,
delivers the following expressions:

𝜇𝑓 = 0.33𝜌2 − 1.02𝜌 + 1.39, 𝜎𝑓 = −0.11𝜌 + 0.29
𝜇𝑠 = −0.08𝜌 + 0.67, 𝜎𝑠 = −0.06𝜌 + 0.14

(23)

Units 𝜌 ∶ [ped∕m2] 𝜇𝑠∕𝑓 ∶ [m∕s] 𝜎𝑠∕𝑓 ∶ [m∕s]

for the descending case, and

𝜇𝑓 = 0.18𝜌2 − 0.55𝜌 + 1.02, 𝜎𝑓 = −0.14𝜌 + 0.35
𝜇𝑠 = 0.01𝜌 + 0.48, 𝜎𝑠 = −0.02𝜌 + 0.10

(24)

Units 𝜌 ∶ [ped∕m2] 𝜇𝑠∕𝑓 ∶ [m∕s] 𝜎𝑠∕𝑓 ∶ [m∕s]

for the ascending case.

4. Discussion

In this work, we investigated with unprecedented statistical resolution the dynamics of pedestrians as they ascend or descend a
large staircase in a railroad station (Eindhoven Central Station, The Netherlands). By employing a state-of-the-art pedestrian tracking
system based on a grid of overhead depth sensors and hinging on the latest computer vision algorithms, we have recorded over 3
million individual trajectories under various flow conditions (unidirectional and bi-directional with various level of mixing), in an
unbiased and privacy-respectful manner. The dataset that we collected is at least three orders of magnitude larger in terms of data
volume than datasets currently considered in the literature. This is key in order to study pedestrian dynamics beyond the averages
in terms of fluctuations. Our experimental dataset is characterized by extremely high accuracy, with an F1 Score on localization
always above 96% and above 99% for less than 0.95 ped/m2, thanks to a dedicated hand-annotated training set and effective data
augmentation. Due to its real-life nature the dataset is limited to crowd densities not exceeding 1.5 ped/m2.

We provided a phenomenological analysis of pedestrian dynamics considering various key components. First, we investigated
spatial fields of positions, velocity and accelerations. For a staircase as ours, pedestrians would arrange with the highest probability
along three parallel lanes. These lanes, partially diffuse on the intermediate landing due to speed changes. The velocity and
acceleration fields show that the walking velocity is non-uniform on the staircase. In free flow, we observed velocities, on average,
of 0.63 m∕s in ascending direction and 0.73 m∕s while descending. These readings have an increment larger than 50% (reaching
1.1 m∕s) when people step on the intermediate landing. The walking velocity on the landing remains however significantly lower
than what observed on the rest of the platform (mode: 1.23 m∕s). This is likely due to the short length of the landing (1.5 m) that
does not allow for reaching a comfortable speed.

Secondly, we have investigated how pedestrians fill the available space. We considered a definition of density hinged on assigning
to each pedestrian a personal space (circular, with radius 𝑅 = 0.75 m). We considered the total occupied area as the union of these
personal spaces. We defined as density the ratio between the number of observed people and such area. Our choice of 𝑅 yields
a level-of-service for well separated pedestrians at the interface between level A (free-flow) and B (slightly restricted flow). This
choice of 𝑅 is however consistent with the sudden velocity reduction that we observe as a closest neighbor in front gets to a distance
smaller than 2𝑅.

The total occupied area admits an upper bound defined by the (minimum between) the area of 𝑁 disjoint personal areas (linear
growth) and the total surface of the observed region. Notably pedestrians opt not to fill all the available space (differently, e.g., from
a ideal gas) and even at relatively low density levels they occupy a smaller area than the concept of personal space would predict. It
is interesting to notice that the occupied area immediately departs from a linear growth and approaches the total area of the facility
only smoothly, as the number of pedestrians 𝑁 grows. This is due to an interplay of different elements, including the presence of
social groups (yielding people walking in proximity). We interpret this in terms of a compressibility factor, 𝑍, of the crowd being
smaller than 1 to represent attractive interactions (in analogy with similar effects in non-ideal gases). Most importantly we introduce
a novel parameter, 𝑝-value, that allows to quantitatively model the way pedestrians fill the available space. In the specific setting
studied here we find that the area gets filled consistently with a value 𝑝 = −2.5. This quantity expresses how smoothly the saturation
capacity is reached (note that 𝑝 = −∞ would yield an ideal gas-like behavior for which all the available space is used and pedestrians
16
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do not accept to compress until needed). In general we expect the 𝑝-value to correlate at least with cultural preferences, with the
specific geometry, with the crowd composition and with the specific flow conditions. We believe that a deeper understanding of the
𝑝-value and its usage in crowd simulations will be key to reproduce realistic crowd dynamics scenarios and risk assessments.

Considering how the distance to the closest neighbors changes with density we observed that pedestrians strive to maintain a
distance to their closest neighbor that is quasi elliptical in shape. We observed besides that the presence of pedestrians on closed
proximity on the side would not influence the walking speed, that instead starts to diminish as the person in front gets closer than
approximately 2𝑅. As a consequence, during our year-long measurement campaign we rarely observe configurations with density
values larger than 1.5 ped/m2, at variance with data from lab experiments and evacuation drills. We stress that the data collected
during this period accurately reflects the typical traffic at a train station in the busiest railway network of Europe.

Finally, we have investigated the relationship between density and velocity under diverse flow conditions exploring complete
probability distributions. We have shown that a key component for an accurate modeling of the probability, due to the presence
of a significant tail at high velocity, is the consideration of a mixture of two Gaussian distributions. In both cases of ascending and
descending pedestrians we have provided a linear parametrization of how the mean and the variance of these two components scale
with density. We deem these parametrizations as key reference towards more accurate crowd simulation models and facility design.

Probabilities are vital in performance-based engineering, guiding the design of infrastructures to withstand potential extreme
events. Our study facilitates the evaluation of staircase performance indicators, such as pedestrian flux, across a spectrum of
probabilities. For instance, at probability 1%, 5%, and 10%, we expect flux reductions of 50%, 35%, and 30%, respectively. Capacity
reductions of this kind can raise safety concerns with potential financial implications. This type of insights, attainable only through
extensive real-life studies, underline the significance of high-statistics real-world measurements in engineering.

In future works, we plan to investigate the formation of queues at the top of escalators and staircase, which originate as people
try to establish a comfort zone in order to safely descent in crowded configurations, and to establish stochastic quantitative models
for the individual and ensemble dynamics.
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Appendix A. YOLO for pedestrian localization on depth images

To the best of our knowledge, there are currently no publicly available datasets containing overhead pedestrian depth images
suitable for our specific use case. Consequently, we constructed our own dataset to train the YOLO model. In this section we describe
the process used to create and validate this dataset.

A.1. Dataset creation

We generate the dataset using an active learning cycle (Settles, 2009). Initially, we manually annotated approximately 100
pedestrians in 15 frames with low global densities. We crop the annotations at the edge of the bounding box and store these
annotations as references. Subsequently, we insert a randomized quantity of these references into frames with existing annotations
using a CutMix-like approach, allowing for a slight overlap (cf. Yun et al. (2019)). By allowing this slight overlap, we aim to
generate new and distinctive shapes that are similar to people being in proximity to each other, effectively augmenting our dataset.
An example of this process can be seen in Fig. 12. On this basis, we generate about 16000 images covering a range of density levels.
These images serve as the training data set for the first training iteration of our YOLOv7 model.

We utilize the resulting model to aid in the annotation of the next data set. The model generates initial annotations for new
frames outside the existing dataset. We conduct a comprehensive review of these annotations, wherein we approve the correct
annotations, add any missed annotations, and correct any erroneous annotations. The typical corrections that are made during the
review process can be divided into three categories. The first category are straightforward false positives (Fig. 13a,d), in which the
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Fig. 12. Example of an image in our CutMix-like approach to create an image for our training dataset. The green bounding boxes represent the original
annotations, while the red bounding boxes represent the inserted reference annotations. (a) Original image with annotations. The non-annotated gray spots is
noise that is present in the data. (b) Image with inserted reference annotations.

model incorrectly annotates a non-pedestrian as a pedestrian. The second category are straightforward false negatives (Fig. 13b,e),
this involves instances where the model fails to detect pedestrians that are present in the frame. The final category represents a
more intricate scenario where the model mistakenly identifies multiple pedestrians walking in proximity of each other as a single
pedestrian (Fig. 13c,f), resulting in a false positive and multiple false negatives.

The iterative process of utilizing the previous model to assist in the creation of the next data set increases the efficiency at which
we can create new annotations. We use the same CutMix-like approach to create the next dataset with the new annotations. A new
model is trained on this dataset using transfer learning. We repeat this process until the model is sufficiently accurate. The final
dataset consists of approximately 3700 annotations distributed across 819 images. Notably, this last dataset encompasses frames that
capture a wider range of global density compared to the initial iteration of the data set.

A.2. Pedestrian localization model validation

During the validations process, we quantify the accuracy of the model considering 500 frames outside the training dataset.
To ensure a thorough evaluation, we select frames covering a diverse range of local densities. These frames are then divided into
equally sized density bins, with each bin containing 100 images. We conduct a thorough review of the model-generated annotations,
following the same correction process as during the dataset generation. In this validation, any erroneous annotations are considered
false positives, while additional annotations are considered false negatives.

We assess the quality of the model by the precision (𝑃𝑒), recall (𝑅𝑒) and F1 score (𝐹1) of the model using the reviewed frames,
defined as follows:

𝑃𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 𝑅𝑒 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, 𝐹1 = 2
𝑃𝑒𝑅𝑒

𝑃𝑒 + 𝑅𝑒
, (25)

where 𝑇𝑃 is the number of true positives, 𝐹𝑃 is the number of false positives and 𝐹𝑁 is the number of false negatives. Precision
indicates the fraction of correct detections with respect to the total number of detections, offering a measure of the quality of the
detections. Recall denotes the fraction of correct detections with respect to the total number of expected detections, providing a
measure of the quantity of relevant detections. The F1 score represents the harmonic mean of the precision and recall. In the ideal
case of a perfect model all these parameters are equal to 1. We visualize the quality of the model through a precision–recall curve
in Fig. 14. This curve, represented by (𝑃[0.55−1.55]), illustrates the relationship between recall and precision for the evaluated local
density domain, which ranges from 0.55 ped/m2 to 1.55 ped/m2. Additionally, the mean precision–recall, 𝑃[0.55−1.55], for this entire
density domain is plotted, along with the means (𝑃 ) of the different density bins. Finally, the number of occurrences per indicated
precision–recall bin is displayed in the plot, showcasing the significant number of frames with both good precision and good recall.

Fig. 14 and Table 2 provide an overview of the performance of our model across various precision and recall levels. It
demonstrates that our model exhibits exceptional accuracy for densities below 0.95 ped/m2 and still performs extremely well for
densities up to 1.55 ped/m2, which is close to the maximum local density recorded.

Appendix B. Fundamental diagrams based on hydrodynamic density

Traditionally, the fundamental diagram is computed by employing the hydrodynamic definition from Eq. (7) to calculate the
pedestrian density. In this work however, we estimate the pedestrian density as the ratio between the number of pedestrians and
the union of all the personal spaces as defined in Eq. (9) for reasons elaborated in Section 2.3. This appendix provides a comparison
between the classical method and the method employed in this work. In Fig. 15a we provide an example of a frame with 𝑁 = 14
pedestrians where the global area 𝑆 = 25 m2 is indicated by the orange colored domain. This example yields a hydrodynamic density
18
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Fig. 13. Typical corrections made during the model assisted annotations. Global density of the scenes are indicated at the top of each image. The bounding
boxes are not displayed to improve readability. (a,d) Straightforward false positive. (b,e) Straightforward false negative. (c,f) Multiple pedestrians detected as a
single pedestrian, resulting in a false positive and multiple false negatives.
19



Transportation Research Part C 159 (2024) 104468C.A.S. Pouw et al.
Fig. 14. Precision–recall curve (𝑃[0.55−1.55]) of our model, along with the mean precision–recall 𝑃[0.55−1.55], and the number of occurrences per indicated precision–
recall bin for the entire evaluated local density domain, ranging from 0.55 ped/m2 to 1.55 ped/m2 in 500 frames. The plot also includes the means (𝑃 ) of the
different evaluated density bins. Showcasing the exceptional accuracy of our model for densities below 0.95 ped/m2, while still performing commendably up to
1.55 ped/m2.

Fig. 15. Fundamental diagram using the classical method to compute the crowd density. (a) Illustration of a frame with, 𝑁 = 14 pedestrians. Global surface
area used to calculate the density indicated with an orange color. (b) Comparison of the global density calculated using the classical method from Eq. (7) (red
dots) with 𝐴 = 25 m2, and the local density calculation method from Eq. (9) (blue dots) (c) Classical fundamental diagram for unidirectional flow of descending
pedestrians , 100% ↓, and (d) for ascending pedestrians, 100% ↑.
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t

𝜌 = 14∕25 ≈ 0.56 ped/m2. In Fig. 15b we provide a comparison between the pedestrian density employed in this work 𝑁∕𝑆̂𝑠𝑡𝑎𝑖𝑟𝑠 and
he classical density 𝑁∕𝑆 for increasing number of pedestrians 𝑁𝑠𝑡𝑎𝑖𝑟𝑠. We observe that our method has a lower bound determined

by not intersecting personal spaces 1∕(𝜋𝑅2) = 0.56 m2. For increasing number of pedestrians we observe that our method converges
to the classical approach. For comparison with the fundamental diagram from Fig. 10 we report the classical fundamental diagram
in Fig. 15c,d.
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