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Abstract
Polydispersity affects physical properties of polymeric materials, such as solubility in solvents. Most
biobased, synthetic, recycled, mixed, copolymerized, and self-assembled polymers vary in size and
chemical structure. Using solvent fractionation, this variety in molecular features can be reduced
and a selection of the sizes and molecular features of the polymers can be made. The significant
chemical and physical dispersity of these polymers, however, complicates theoretical solubility
predictions. A theoretical description of the fractionation process can guide experiments and
material design. During solvent fractioning of polymers, a part of the polydisperse distribution of
the polymers dissolves. To describe this process, this paper presents a theoretical tool using
Flory–Huggins theory combined with molecular mass distributions and distributions in the
number of functional groups. This paper quantifies how chemical and physical polydispersity of
polymers affects their solubility. Comparison of theoretical predictions with experimental
measurements of lignin in a mixture of solvents shows that multiple molecular features can be
described well using a single set of parameters, giving a tool to theoretically predict the selective
solubility of polymers.

1. Introduction

The worldwide production and use of polymeric materials increases, and without intervention, is predicted
to double by 2030 [1] and almost quadruple by 2050 [2]. Until the end of 2050, the total global cumulative
production since 1950 is expected to increase to, for example, 26Gt of resin, 6 Gt of polyphtalamide fibers,
and 2Gt of additives [3]. In that year, 20% of the total oil consumption is expected to be used by the plastics
sector, [2, 4] and 15% of the global annual carbon budget [2]. The use of fossil fuels to produce these
materials is not sustainable and has an undesirable contribution to global CO2 emissions.

At the same time, awareness of the environmental impact of plastics is growing, as reflected by an
increasing number of scientific publications [4] and media coverage [5]. Part of the solution to the problems
with fossil-fuel-based polymeric materials is the development of new bio-based polymeric materials. Carbon
dioxide is captured in bio-based feedstock, [6] and using bio-based polymers instead of fossil
feedstock-based polymers reduces greenhouse gas emissions [7]. However, despite the attention for the
environmental impact of plastics [4, 5] and the high substitution potential for bio-based alternatives, [8, 9]
polymeric materials are still largely based on fossil-feedstock [3].

Improving the understanding and tunability of bio-based materials and the processing of bio-based
materials can help implement these materials by providing options offering more desirable properties while
maintaining the environmental advantages. A challenge for many of these polymers is that they vary in
molecular features [10]. One example is the bio-based material lignin. Lignin is a structural material
consisting of aromatic subunits present in plants, that vary in microscopic composition depending on the
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source and used processing methods [11]. Reviews show the advantages of potential applications of lignin,
[12–14] including fibers, [15–18] composites, [19–21] and nanoparticles [22–24]. Despite its potential, lignin
is still hardly used to manufacture materials [12, 14, 25]. Reasons for this are lignin’s varying composition,
structure, and polydispersity, and as a result variable and mostly unpredictable material properties [26].

Like lignin-based materials, other applied polymeric materials are typically polydisperse. For example,
the degree of polydispersity and the shape of the molecular mass distributions of polystyrene affect its melt
rheology. [27–29] Also, widening the polydispersity improves the processability of polypropylene due to its
effect on shear thinning [30, 31]. Another effect of polydispersity is its influence on the glass transition
temperature of poly(methyl acrylate)[32] and polystyrene [29]. Moreover, dispersity also affects the
properties of copolymers, such as the order-disorder transitions of block copolymers [33, 34] and
self-assembly in bulk or solution [35]. These effects of polydispersity, together with the effects on many other
properties, indirectly affect the many applications of polymers in, for example, materials, coatings, food, and
health care. Each of these applications could benefit from more well-defined molecular features.

There are multiple ways to control the polydispersity of polymers. Copolymer polydispersity can be
controlled using catalysts, using reagents, or by regulation during the polymerization [35]. Polydispersity can
be increased by combining polymers with different distributions [33, 35]. Polydispersity can be decreased by
selectively obtaining a subset of polymers using the variation in their properties using for instance membrane
technology or chromatography. One can also take advantage of the differences in solubility, mobility, melting
point, or weight to fractionate polymers [36, 37]. Solvent fractionation is a technique used to optimize the
production and characterization of materials where a subset of polymers is selectively dissolved. The wide
variety of possible solvent combinations makes fractionation using solvents tunable and specific. Solvent
fractionation is beneficial for both analytical and preparative work, allows for large-scale fractionation, and
has a low cost compared to many other separation methods [36, 37].

Solvent fractionation has been studied experimentally and theoretically for lignin [38–41] and other
polymers [42–44]. Multiple studies [38–41] experimentally characterized lignin after various solvent
fractionation procedures, showing a decrease in variety and polydispersity and improving the reproducibility
of its properties. A theoretical framework quantifying the polymer fractionation guides the choice for
solvents in the solvent fractionation process. Theoretical studies have for instance focused on predicting
interactions of lignin with solvents using Hildebrand solubility parameters, [45–47] Hansen solubility
parameters, [48–51] or density functional theory [52, 53]. In these studies, theory is used to estimate
interaction parameters and their effect on solubility. Polydispersity and partial solubility were however not
included, although they reportedly significantly affect solvent fractionation [36, 54, 55].

Various publications [36, 54–60] discuss possible methods to account for variation in polymer length in
other polymeric systems. Accounting for polydispersity directly in numerical computations, using, for
example, successive substitution is sometimes possible, but often computations fail to converge [61].
Alternatively, a continuous mass distribution can be simplified to a finite number of lengths. However,
computation becomes unmanageable when a large number of lengths is used and introduces systematic
errors for a lower number of lengths [56]. A third option is to use perturbation methods, but these can only
be used if the width of the chain-length distribution is small [62]. Although each of these methods is useful
for some instances, they do not enable the calculations for the known high physical and chemical
polydispersities of solubilized lignin.

Here, we study solvent fractionation using Flory–Huggins theory [63, 64]. Huggins already compared the
solubility of polymers with different chain lengths in 1967 [65]. In this comparison, he, however, did not
account for the interplay between the different-sized polymers in polydisperse samples. Cantow [36] and
Krigbaum and Geymer [54] use extra correction terms in their expressions for the chemical potentials to
account for polydispersity. Although these chemical potentials with corrections can fit experimental data,
they cannot be used to predict solvency or explain its theoretical background. Chemical variation in
nonuniform and chemically heterogeneous copolymers have been considered by averaging, [55, 58, 59] or
assuming no interactions between polymers [60]. Furthermore, each of these methods do not account for the
fractionation effect in which smaller polymers dissolving at higher concentrations and larger polymers
dissolving at lower concentrations affect the solubility of polymers of a certain chain length.

Recently, we demonstrated theoretical predictions agree with measurements of the yield of solubilized
lignin as a function of the composition of a solvent mixture of methanol and ethyl acetate [66]. The second
application in the appendix of this publication provides extra support for the inclusion of physical and
chemical polydispersity to predict the solubility of a different lignin type in a different solvent mixture. This
paper presents the theoretical method used for these theoretical predictions. Here, we show how physical and
chemical polydispersity affects solubility and how this solubility affects the molecular features of the
dissolved polymer. Also, we provide detailed theoretical derivations and discuss their accuracy.
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2. Theory

The Hansen solubility parameters [67] and Flory–Huggins interaction parameters [63, 64] are measures for
the interaction between polymer segments and solvent molecules. In this paper, we relate these parameters to
compare theoretical and experimental yield of solubilized polymers. We define size dispersity as the variation
in the chain length of the polymers and chemical dispersity as the variation in the amount and types of
functional groups. The yield is here the percentage of polymers that dissolve relative to the total amount of
polymer.

The Hansen solubility parameters compare the interaction energies of polymers and solvents to estimate
miscibility. According to Hansen solubility theory, a polymer and solvent mix when the Hansen solubility
parameters of these components are similar enough. Hansen solubility parameters can be combined to
calculate a distance (Ra) in Hansen space [67]. For a mixture of polymer and solvent:

R2
a = 4

(
δdp − δds

)2
+
(
δpp − δps

)2
+
(
δhp − δhs

)2
. (1)

In this equation, δdp, δpp and δhp and δds, δps and δhs are the dispersion, polarity and hydrogen-bonding
energy of the polymer and the solvent respectively. The relative energy difference (RED) is defined as:

RED=
Ra

R0
. (2)

When the Hansen solubility parameters are similar, the location of the mixed components in Hansen space is
similar and the components mix. For infinitely long, monodisperse polymers in contact with a solvent, the
interaction radius (R0) denotes the maximal distance in Hansen space where the components are still
miscible. Using that these polymers dissolve if the RED≲ 1 and can phase separate if the RED≳ 1; R0 can be
determined using the solubility in different solvents.

The considered experimental system is lignin dissolved in a combination of methanol and ethyl acetate.
The used Hansen solubility parameters of methanol and ethyl acetate are respectively δdm = 15.1,
δpm = 12.3, and δhm = 22.3 and δde = 15.8, δpe = 5.3, and δhe = 7.2 [67]. The Hansen solubility parameters
of the mixture δis can be calculated from the volume average of the individual Hansen solubility parameters
δim and δie [67]. For lignin, we used δdl = 21.42, δpl = 8.57 and δhl = 21.80 and R0 = 13.56 in accordance
with Novo et al [49]. Other reported values for the Hansen solubility parameters of lignin are close to these
values [50, 51].

Within Flory–Huggins theory, [63, 64] the parameter χ is a measure of the interaction energy between
molecular entities. There is a strong parallel between the Hansen solubility parameters and the
Flory–Huggins theory parameters for infinitely long monodisperse polymers. To calculate the RED from χ,
we use:

RED=

√
χ

χc
, (3)

with χc the χ at the critical point. For infinitely long, monodisperse polymers in a solvent, a similar logic as
for the Hansen solubility parameters can be used [68]. These components mix at all concentrations if χ < χc

and phase-separate at all concentrations for χ > χc. Equations (3) follows directly from the quadratic
dependency χ∝ R2 (and χc ∝ R2

0). [69, 70] Variations in the dependency of χ on δ slightly modify
equation (3), for example when χ is split in an enthalpic and entropic part [71, 72]. Using such variations of
equation (3) in the theory presented below can for example be useful to account for temperature changes,
but we do not consider this here for simplicity.

Polymers that are not infinitely long and monodisperse, can have a RED-range with varying solubility.
Flory–Huggins theory has the advantage that this dependency can be predicted based on thermodynamic
properties. The maximal miscibility or solubility of polymers with a finite size can be described by the
binodal concentrations predicted using Flory–Huggins theory. Using the relation between the RED and χ in
equation (3), full miscibility is achieved when the RED< 1, whereas the solubility is limited for RED⩾ 1.
Also polydispersity affects the miscibility in multiple ways. The amount of variation in the polymer chain
lengths and the number of functional groups affect the mixing entropy and enthalpy, which affect the
miscibility. Furthermore, Ra and χc depend on the size and number of functional groups in the polymers.
For calculations including polydispersity, it can be asserted that components are fully miscible for RED< 1,
by using the least soluble polymers to determine R0 and χc. Since the least soluble polymer dissolves, it is
certain that all other polymers also dissolve. The least soluble polymer can be the polymer with the highest
length or the highest interaction energy of the present chemical entities. In this paper, we use two ways to
determine R0 and χc. In sections 3.1–3.3, we calculate R0 and χc in all computations using the limit of
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infinitely long monodisperse polymers, so polydisperse and monodisperse results can be compared. In
section 3.4, we use as a reference that the yield is 70% at RED= 1, such that the theoretical and experimental
results can be compared.

The equilibrium concentrations in coexisting phases α and β, which are in thermal and mechanical
equilibrium, can be calculated for each component k using that:

µα
k = µβ

k . (4)

In each of the phases the chemical potentials following from Flory–Huggins theory are given by: [63, 64]

µα
k

kBT
= lnϕα

k +
∑
i̸=k

(1− Mk

Mi

)
ϕα
i +Mkχki (1−ϕα

k )ϕ
α
i − 1

2
Mk

∑
j̸=k

χijϕ
α
i ϕ

α
j

 . (5)

Here,Mi is the chain length of component i, χij is the interaction parameter and ϕα
i =

MiN
α
i∑

jMjNα
j
is the volume

fraction of components of type i in phase α.
In Flory–Huggins theory, the chains with different chemical compositions and lengths can be considered

to be different polymers. With many molecular variations, in principle, many coexisting phases can coexist.
Due to the chemical similarity of the polymers, we assume here that there are only two coexisting phases, a
solvent-rich phase S, with a low volume fraction of polymer (ϕS

p) and a polymer-rich phase P, with a high
concentration of polymer (ϕP

p).
In the case of a (polydisperse) polymer and a solvent in two phases P and S, thermodynamic equilibrium

therefore requires:

log
ϕP
s

ϕS
s

=
∑
i̸=s

(1− Ms

Mi

)
ϕS
i +Msχsi

(
1−ϕS

s

)
ϕS
i −

1

2
Ms

∑
j ̸=s

χijϕ
S
i ϕ

S
j


−
∑
i̸=s

(1− Ms

Mi

)
ϕP
i +Msχsi

(
1−ϕP

s

)
ϕP
i −

1

2
Ms

∑
j̸=s

χijϕ
P
i ϕ

P
j

 ; (6a)

log
ϕS
k

ϕP
k

=
∑
i̸=k

(1− Mk

Mi

)
ϕP
i +Mkχki

(
1−ϕP

k

)
ϕP
i −

1

2
Mk

∑
j̸=k

χijϕ
P
i ϕ

P
j


−
∑
i̸=k

(1− Mk

Mi

)
ϕS
i +Mkχki

(
1−ϕS

k

)
ϕS
i −

1

2
Mk

∑
j ̸=k

χijϕ
S
i ϕ

S
j

 , (6b)

as follows from equations (4) and (5). In these expressions, i, j and k are the indices of the different molecular
variations. Because the number of phases is lower than the number of components, the concentrations are
not only determined by the chemical potentials but also by the amount of each component present. These
relations are used in the next section to derive expressions for the molecular features of dissolved,
polydisperse polymers. In mean-field theories, the effective interactions of polymers with homogeneously,
mean-field mixed polymers or solvents with different interaction parameters can be determined by taking an
effective average of surrounding polymeric groups [59]. In reality, this is, however, often not straightforward.
The number and location of functional groups vary for each polymer, and the interaction energies also
depend on the interaction energies of neighboring groups. For example in systems with random copolymers,
these parameters will never be exact. For the theoretical description of the solubility of lignin, we chose to
limit the number of parameters by assuming that there are pairs of different monomers with a set interaction
energy χf and indistinguishable monomers for which χ= 0. The total interaction parameter χ of a polymer
is the result of the mean-field averaging of the interactions of the different groups. For example, between i
and j:

χij

χf
= (1− θi)θj + θi

(
1− θj

)
− θi (1− θi)+ θj

(
1− θj

)
(7)

with θi the relative amount of monomers with functional groups in polymer i and θj the relative amount of
monomers with functional groups in polymer j. Interactions between differing polymers increase χij, while
the interactions between identical polymers decrease χij. The same logic is used for the interactions with the
solvent. Although neglecting the differences for the different χ’s of different functional groups neglects some
of the system’s complexity, it allows for the inclusion of the other often neglected system characteristics of
chain length and chemical polydispersity, and reduces the number of difficult-to-determine parameters.

4
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By considering variations in the chain size and number of functional groups in polymers as different
polymer types i, polymer chain length and distributions in functional groups can be considered in the
calculation of the equilibrium concentrations in the polymer- and solvent-rich phases. The resulting binodal
concentrations can be transformed to the yield by dividing the total amount of dissolved polymer with the
total amount of polymer. In the next sections, we use this concept to derive equations for the yield as a
function of the RED and apply those equations to quantify lignin dissolution in solvent-mixtures.

3. Results and discussion

Many polymers are disperse in chain length and chemical composition [10]. This polydispersity can be
included directly in numerical computations. However, solving these equations becomes extremely
challenging for wide chain-length and chemical distributions. Sections 3.1–3.3 discuss our general approach
of including the size and chemical polydispersity in the calculations of the equilibrium yield of a complex
mixture of polymers in a solvent. The derivation of these yield equations consists of three steps. First, we
derive approximate analytical expressions for the equilibrium concentrations of the different species of
polymers in the coexisting phases, giving upper- and lower-bounds for these concentrations. Two limiting
results are derived. In section 3.2, these individual concentrations are combined and used to calculate the
total dissolution yield. Finally, examples are given of distributions in polymer chain length and functional
groups and their effect on the dissolved fractions in section 3.3. The theory derived in these sections is
applied to lignin in section 3.4.

3.1. Solubility limits of polydisperse polymers
The first step in finding the yield as a function of the RED based on Flory–Huggins theory is finding the
equilibrium concentrations of the coexisting phases. When a polydisperse polymer partially dissolves in a
solvent, two phases will form: one phase with mostly polymer compounds and some solvent and another
phase with mostly solvent and a bit of polymeric material. To find the relative amount of polymer that
dissolves, we need the polymer concentrations in both phases. When a mixture consists of a limited number
of components, binodal concentrations can be found directly numerically. However, when there are more
components in a system, numerical determination of the equilibrium concentrations becomes increasingly
challenging due to the high number of variables and equations that must be satisfied. Polydisperse samples
have the same problem because polymers with different chain lengths and functional groups have to be
treated as distinct polymers. To solve this problem, we determine the equilibrium concentrations by
combining assumptions in two limits in which the equations can be solved, giving a range of possible values
for the concentrations.

In the considered system, a small amount of polymer is added to a large amount of solvent (ϕs ≫ ϕp).
Even if all polymer dissolves, the concentration ϕS

p of polymer in the solvent is small. The range of possible
concentrations in equilibrium of polymer in the solvent is 0< ϕS

p < ϕp. This can be used to determine the
range of possible binodal concentrations of each polymer variation as a function of the RED. First, the
maximal concentration as dictated by the considered system is combined with the chemical potentials from
Flory–Huggins theory to estimate ϕP

s . In this limit, the polymers that are on the verge of being or not being
dissolved can be described withMmax and χmax

ps ; the chain length and interaction energy with the solvent of
the least soluble polymers. So the polymer-rich phase in this limit consists of only two components. As long
as the total amount of polymer is small compared to the amount of solvent, ϕP

s can be approximated with a
expansion of the logarithmic-term in equation (6b) around the maximal concentration. Our earlier
publication [73] gives additional information on the validity and derivations of this approximation. Using the
upper limit of ϕS

p,M
max, χmax

ps , ϕp and a single, numerical computation of equation (4) in equation (6) gives:

log
ϕp

1−ϕP
s num

=

[(
1− Mmax

Ms

)
ϕP
s +Mmaxχmax

ps ϕP
s
2
]

−
[(

1− Mmax

Ms

)(
1−ϕS

p

)
+Mmaxχmax

ps

(
1−ϕS

p

)2]
; (8a)

log
ϕP
s num

1−ϕp
=

[(
1− Ms

Mmax

)
ϕS
p +Mpχ

max
ps ϕS

p
2
]

−
[(

1− Ms

Mmax

)(
1−ϕP

s

)
+Msχ

max
ps

(
1−ϕP

s

)2]
. (8b)
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Figure 1. The maximal expected solvent concentration ϕP
s max obtained from equation (9) and computed numerically for a two

component system as a function of χps (a) andMp (b). The plot of equation (9) usesMmax
p = 104 and ϕp = 0.03. The chain

length of polymers doubles with every next numerical curve in (a), while χps is varied in (b). On the right-side of figure (b), the
red lines indicate the limit used in the equations, which are correct for higher chain lengths. For smallerMp, concentrations
approach the critical concentration (purple triple-dotted-dashed curve), which is the highest possible concentration for smallMp.

Next, eliminating ϕS
p from the equations and solving for ϕP

s provides the expression for ϕP
s :

ϕP
s max =

1

4χmax
ps

2+ log
(

ϕP
s num

1−ϕp

)
Ms

−
2+ log

(
ϕp

1−ϕP
s num

)
Mmax

+

1+ Mmax

Ms

log
(

ϕP
s num

1−ϕp

)
log

(
ϕp

1−ϕP
s num

)
−1

. (9)

Figure 1 shows how the dependency for the maximal solvent concentration in the polymer-rich phase
(equation (9)) compares to numerical computation for multiple values of χps andM for a two-component
system. As expected, as long as polymers are not too small, ϕP

s is close to the numerical values (right-side of
figure 1(b)). Closer to the critical point (lower χmax

ps orMp), the numerical values can be higher, but this is
anyway outside of the considered range of ϕS

p values. As long asM
max is chosen high enough, the effect of

only using one value forMmax
p is small, even when the resulting concentrations are used for smallerMp.

The maximal value of ϕP
s determined above can be used to determine ϕS

p. Again, equation (6) can be
simplified to an expression directly giving the ratio of the concentrations of each of the polymer variants k.
For systems with large polydispersity, each individual polymer concentration ϕP

k is small in comparison to
the total amount of polymer. For small ϕP

k , the summations
∑

m̸=k can be replaced with
∑

m without a large
effect on the calculations, due to the relatively small effect of the small concentration of polymer type k. This
makes it possible to approximate equation (6b) as:

log
ϕS
k

ϕP
k

≃
∑
i

(1− Mk

Mi

)
ϕP
i +Mkχki

(
1−ϕP

k

)
ϕP
i −

1

2
Mk

∑
j

χijϕ
P
i ϕ

P
j


−
∑
i

(1− Mk

Mi

)
ϕS
i +Mkχki

(
1−ϕS

k

)
ϕS
i −

1

2
Mk

∑
j

χijϕ
S
i ϕ

S
j

 .

(10)

The summations are now independent of k, making it possible to simplify equation (10) further. For the
effective masses, we used the approximation of Enders, [55] ⟨Mp⟩−1 =

∑
i
Θi
Mi
, withΘi =

Vi
Vp

the relative

volume of polymer i in proportion to the total volume of all polymer. The effective interaction energies
between polymer k and the other polymers is assumed to be ⟨χkp⟩=

∑
i χkiΘi and the effective interaction

energies between all polymers is assumed ⟨χpp’⟩=
∑

i

∑
jχijΘiΘj. Using these approximations for the

summations in equation (10) gives:

6



J. Phys. Mater. 7 (2024) 015005 S H M van Leuken et al

log
ϕS
k

ϕP
k

≃ qk =

[(
1− Mk

Ms

)
ϕP
s +Mkχks

(
1−ϕP

pΘk

)
ϕP
s −Mk⟨χps⟩ϕP

pϕ
P
s

]
−
[(

1− Mk

Ms

)
ϕS
s +Mkχks

(
1−ϕS

pΘk

)
ϕS
s −Mk⟨χps⟩ϕS

pϕ
S
s

]
+

[(
1− Mk

⟨Mp⟩

)
ϕP
p +Mk⟨χkp⟩

(
1−ϕP

pΘk

)
ϕP
s −

1

2
Mk⟨χpp’⟩ϕP

p
2
]

−
[(

1− Mk

⟨Mp⟩

)
ϕS
p +Mk⟨χkp⟩

(
1−ϕS

pΘk

)
ϕS
p −

1

2
Mk⟨χpp’⟩ϕS

p
2
]
.

(11)

Equation (7) defines χki and χij.
The advantage of this approximation is that the right-hand side of the equation is now independent of

the concentrations ϕS
k and ϕP

k . As a result, the ratio of the concentrations ϕ
S
k/ϕ

P
k can be determined directly

from the equations, for a given ϕP
s and ϕS

p. The problem here is that these concentrations are yet unknown.
We do, however, have a range of possible concentrations. Above, we showed that the maximal concentration
of polymer in the solvent-rich phase is ϕS

pmax
= ϕp = Vp/

(
Vp +Vs

)
and the maximal concentration of

solvent in the polymer-rich phase ϕP
s is given by equation (9). Concentrations cannot be negative, so the

minimal concentrations are ϕS
pmin

≡ 0 and ϕP
s min ≡ 0. Using these limits in the calculations, gives two

limiting dependencies for the concentrations as a function of the RED.
Combining equations (9) and (11) and the effective parameters results in an analytically solvable range of

possible ratios ϕS
k/ϕ

P
k . These concentrations are used as input in the next section to derive the equilibrium

polymer solubility.

3.2. Calculating the yield of solubilized polymer
When polymer is added to a solvent, they mix completely or form two or more coexisting phases. In
section 3.1, we derived expressions for the equilibrium volume fractions of the polymer in the polymer-rich
phase and in the solvent-rich phase. Here we convert these concentrations to the yield; the fraction of
polymer that dissolves relatively to the total amount of polymer. This yield can be compared directly to the
experimentally measured yield. First we derive the dissolving fraction ηk of a single polymer variation k.
Using equation (11) to eliminate ϕP

k in Vk gives:

Vk = ϕS
kV

S +ϕP
kV

P

= ϕS
kV

S +ϕS
k e

−qkVP; (12a)

ϕS
k =

Vk

VS + e−qkVP
, (12b)

with VP and VS the volumes of the polymer-rich and solvent-rich phase, which depend on the yield η, which
is yet to be determined. With the volume fraction ϕS

k now known, the fraction dissolved of a specific species
ηk can be determined:

ηk =
VS
k

Vk

=
ϕS
kV

S

Vk

=
1

1+ VP

V S e−qk
.

(13)

When the volume of polymer added to a solvent is low compared to the solvent volume, the volume fraction
in the solvent is low even when all the polymer dissolves. As a result, the range of yields where the
approximation is accurate can be larger than the range of concentrations where the approximation is
accurate. Figure 2 gives some examples of this effect. This figure shows that the smaller polymers dissolve
completely before reaching a concentration close to the critical concentration. For longer polymers, the
critical concentration is lower than the assumed maximal concentration, so this maximal concentration is
never reached and the approximation is correct for all concentrations and all yields.
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Figure 2. Volume fraction (a) and yield (b) of a monodisperse polymer when 3 vol% of polymer is added to a solvent. The
different dashed curves represent polymers with different chain lengths. The colored regions represent the range of possible values
following from the approximations in the maximal and minimal limit as discussed in section 3.1. The curve forMp =∞ is the
dependency obtained directly from the Hansen solubility parameters (η= 1 for RED< 1 and η= 0 for RED> 1), which is valid
in the limit of infinitely long polymers. The gray curves represent the numerical results of the Flory–Huggins theory equations (4)
and (5).

The fraction of polymer dissolving of all types (yield) can be found by summation over all the different
species:

η =
VS
p

Vp

=
∑ VS

k

Vp

=
∑

Θkηk,

(14)

withΘk =
Vk
Vp
. The amount of polymer relative to the amount of solvent in the system is small, so VP and ϕP

s

are small. Thus we can assume VP

VS is not affected by solvent entering the polymer-rich phase, or
VP ≈ (1− η)Vp and VS ≈ Vs + ηVp, giving:

ηk =
1

1+ 1−η
Vs
Vp

+η
e−qk

; (15a)

η =
∑

Θk
1

1+ 1−η
Vs
Vp

+η
e−qk

. (15b)

If dk is small enough, this can be converted to an integral:

η =

ˆ
Θk

1

1+ (1−η)
Vs
Vp

+η
e−qk

dk. (16)

The analytical limits for the concentrations can be used in equation (15) or equation (16) to obtain a solvable
relation for η. Whether the solution can be solved analytically or only numerically depends on howΘk,Mk,
χsk and χkm depend on k. To find the yield of solubilized polymer, we solved equation (15) numerically.

3.3. Distributions in polymer chain lengths and functional groups
The final step in the calculation of the polymer yield is the inclusion of the variation in chemical groups and
chain lengths of the polymers. We demonstrate this procedure with a couple of examples. As a first example,
for a monodisperse system with polymers with an interaction energy corresponding to a functional group
concentration of θ1 (resulting in the same χps for all polymers) and chain lengthM1:

Θk = δ (θk − θ1,Mk −M1) with bothMk and θk independent of k. (17)

In this case, the molecular massMk and number of functional groups per segment θk are independent of the
index of the polymer k. Insertion ofΘk = 1, χps andM1 in to equation (11) gives the expected dependency

8
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Figure 3. Yield as a function of the RED, for log-normal distributed chain length polydisperse polymers (a) and polymers with a
normal distribution in the number of functional groups per segment (b). The average polymer chain length (⟨M⟩= 100) and
interaction energy (⟨θ⟩= 1

3
) are kept constant, while the width of the (log-)normal distribution σ is varied. The top and bottom

curves give the solutions in the theoretical limits and
Vp

Vtot
= 3

100
.

for monodisperse polymers in a solvent in the limit of small concentrations. Using equation (17) in
equation (16) gives the yield for monodisperse polymers dissolved in a solvent.

Secondly, we apply a more realistic log-normal distribution in chain length:

Θk =
1√
2πσk

exp

[
− (logk−µ)

2

2σ2

]
withMk = akand θk independent of k. (18)

Constant a converts the measured molecular mass to the chain length of theoretical, dimensionless beads.
The quantities σ and µ are constants directly related to the molecular mass distribution of the polymers,
which can, for example, be obtained using a fit through such a distribution. Figure 3(a) gives an example of
the effect of chain length polydispersity. Here, we used an average polymer size ⟨M⟩ of 100 monomers and
varied σ. Smaller polymers have a higher entropy per segment than longer polymers, resulting in a higher
yield at higher RED for more polydisperse solutions. At the same time, longer polymers have a lower entropic
contribution per segment on the other side of the distribution. They will only dissolve for lower RED than
polymers with the average chain length.

Similarly, variations in the number of functional groups per segment can be included. As an example, we
will consider here dissolving of polymers for which there is a normal distribution in the number of
functional groups per segment:

Θk =
1√
2πσ

exp

[
− (k−µ)

2

2σ2

]
with θk =

k

kmax
andMk independent of k. (19)

Each functional group increases χf with∆χ = 2. The average number of functional groups per segment is in
these calculations θ = 1

3 and the width of the distribution around this value is varied. The variables σ and µ
can be obtained from a fit through distribution in functional groups from experimental measurements.
Figure 3(b) gives examples of the effect of a distribution in the number of functional groups per segment. It
should be noted that for each of the distributions, the RED is normalized using the monodisperse
distribution (andM=∞) to be able to compare these graphs. If the least soluble polymer had been used for
the normalization in each calculation, η would reach 100% at RED= 1 for all σ, but the RED would
correspond to different solvents at this value.

The results show that the interactions of some of the polymers result in a total fraction of polymer that
dissolves that is higher at higher RED, while lower at lower RED. The polymers with more attractive
interaction energies than the average interaction energy will dissolve already at a higher RED, while the ones
with more repulsive interactions with the average interaction energy dissolve at lower RED than their more
monodisperse equivalents. Comparing the effect of physical and chemical polydispersity shows that both
increase η for high RED, due to the smaller and less repulsive polymers. A difference between the two effects
on the η/RED-dependency is that chemical group polydispersity reduces η more for lower RED, due to the
larger effect of higher χk on the enthalpy than the effect of higherMk on entropy for polymers that have a
high average chain length. The fractionation of physical polydispersity in figure 4(a) could for example be

9
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Figure 4. Distributions of the dissolved and undissolved fraction of polymer at four RED values. Parameters correspond to the
parameters used for figure 3, with for the log-normal chain length distributions σ= 1.00 (a) and for the normal interaction
energy distributions σ/µ= 0.30 (b).

applied to reduce the width of the distributions in molecular mass of the earlier mentioned polystyrene,
polypropylene or poly(methyl acrylate), [27–32] or other physical polydisperse polymers. The fractionation
of chemical polydispersity in figure 4(b) could be applied in the preparation of the earlier mentioned
copolymers [33, 34] or polymers for self-assembly, [35] or other chemically polydisperse polymers.

The different predictions of how η dependents onMk and θk can be used to learn about the properties of
the dissolved and undissolved polymer fractions. Using η in equation (15a) for ηk, makes it possible to
directly calculate the fractions of dissolved polymer for each polymer variation. Figure 4 shows the resulting
distributions in each of the phases of the log-normal distribution in chain lengths (a) and normal
distribution in the number of functional groups per segment (b). For example the steepness of the boundary
between dissolved and undissolved polymers in a chemically polydisperse sample depends on the chosen
solvents via the interactions between the polymers and solvents. Using these distributions and average
features of the dissolved and undissolved polymer, fractionation steps can be optimized. Furthermore,
resulting distributions in chain length, functional groups, or other varying molecular features of polymers
can be included in the same manner for subsequent steps in a production process. In the next section, we
combine a distribution in polymer chain lengths and the number of functional groups per segment for a
system consisting of lignin dissolved in various solvents.

3.4. The modeling of the solubility of lignin
In the previous section, we applied extensions of Flory–Huggins theory, including size and chemical
dispersity, to hypothetical systems containing only variation in polymer size or the number of functional
groups per segment. These computations can be applied to polymers that are physically and/or chemically
polydisperse. Here, we apply these methods to the practical example of lignin dissolved in a range of solvents,
using experimental measurements of the molecular mass distribution and number of functional groups per
segment.

The theoretical calculations in this section use input from earlier work [66]. These experiments used 94%
pure Protobind 1000 lignin and a mixture of methanol and ethyl acetate. Molecular masses were measured
using GPC and the concentrations of functional groups using NMR For more details we refer to [54]. Based
on the mass and functional groups distributions, we expect a log-normal distribution for the sizes of the
lignin molecules and propose an exponentially decreasing volume fraction of functional groups with the
chain length of the functional groups. This can be described by:

Θk =
1√
2πσk

exp

[
− (logk−µ)

2

2σ2

]
withMk = akand θk = b1 exp

(
− k

b2

)
+ b3. (20)

Since θk decreases exponentially with k andMk scales linearly with k, this also suggests that the number of
functional groups per polymer segment decreases exponentially with the polymer chain length. A correlation
between the number of functional groups per segment and the molecular size was earlier already observed by
Sevastyanova et al [74]. The dependency of θk on k in equation (20) describes how functional groups are
distributed over polymers with different lengths. The fitting procedure to find the fitting parameters is
discussed in our earlier paper [66]. The fitting parameters in equation (20) are eµ ≈ 2.7 · 103, eσ = 1.2,
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Figure 5. The weight average molecular mass and weight average number of functional groups per segment from equations (20)
and (21) (curves) and experimental data [66]. The solid curves show the features of the dissolved lignin and the dashed curves of
the undissolved lignin. The error bars for the experimental data in the presented figures are standard deviations, with each
experiment performed twice.

b1 = 0.18, b2 = 5000, and b3 = 0.245. Bead sizes are a= 210 Da, based on estimations of the effective size of
Flory–Huggins monomers and χf = 1.5 in equation (7). The parameter χf represent here the interaction
energy between each hydrophilic/hydrophobic connection, between polymer segments, solvent molecules
and polymer segments and solvent molecules.

Both forms of polydispersity are described with distributions, each with accompanying parameters. Most
parameters are either from literature, related to specific measurements, or related to chemical features of
lignin. Also, the number of properties described simultaneously provides extra confidence for the values of
the parameters. At least one measurement of the molecular mass and function group distribution is
necessary to make predictions for the solvent fractionation of a polymer sample. Though estimating or
measuring these parameters requires effort, once these parameters are determined, they can be applied to a
wide variety of situations in combination with readily available Hansen solubility parameters of solvents in
the literature. A prediction of the solubility of a different type of lignin in a different solvent mixture is
possible with only minimal changes in these parameters [66].

The theoretical average molecular mass and number of functional groups per segment of the dissolved
lignin, can be determined using:

⟨M⟩=
ˆ

ΘkηkMk dk; (21a)

⟨θ⟩=
ˆ

Θkηkθk dk. (21b)

Using the undissolved fractions, the average features of the residue can be determined. In the
experiments, [66] NMR was used to measure the concentration of aliphatic, aromatic, carboxylic hydroxyl
content. Only the total hydroxyl content was used for the theory. This neglects some of the complexity of the
system, but reduces the number of fitting parameters.

In figure 5, the resulting theoretical predictions (curves) are compared with experimental data. Using
these parameters, the trend in both the weight average molecular mass and the average number of functional
groups per segment are close to the experiments. The minimum weight average molecular mass for the
undissolved lignin and the maximum weight average molecular mass for the dissolved lignin match the total
average molecular mass. At the same time, the maximum hydroxyl content of the undissolved lignin and the
minimum hydroxyl content of the dissolved lignin are equal to the average total hydroxyl content. Only a
small amount of lignin dissolves for large RED, minimally affecting the average values. When the RED is
smaller than the RED where all lignin dissolves, the average dissolved molecular mass and hydroxyl content
do not change anymore. The average molecular mass for the undissolved lignin approaches infinity at this
value.

Also the experimentally observed and theoretically described yield of solubilized lignin can be compared.
This yield can be calculated as a function of the RED using equation (15). In this equation, equation (11) is
used as input for q. In equation (11), we use both limits and the averaging equation (7) and the equation for
θs from equation (7). Finally, we inserted the parameters in the resulting form of equation (15) and solved
the equation. With η known, equation (13) can be used at values for k while varying the RED to find the
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Figure 6. Theoretical individual and total dissolved amounts and experimental dissolved amounts of lignin as a function of the
RED. The individual curves represent the amounts dissolved of individual species k, with k increasing with 50% for every next
curve (rounded up, starting with k= 1). The area between the theoretical curves gives the range of possible values following from
the minimal and maximal assumptions in equation (11).

Figure 7. Theoretical and experimental molecular mass distributions of dissolved lignin in varying solvents. The experimental
curves correspond with the experimental data shown in figures 5 and 6. The equally colored curves in both figures correspond to
the same RED-values.

dissolution curves of individual chain lengths of lignin, or varying k while keeping the RED constant to
determine the theoretical molecular mass distributions.

Figure 6 shows the individual amounts of lignin dissolved and the total fraction of lignin that dissolves as
a function of the RED. For individual polymer chain lengths, the amount of polymer dissolving increases
from close to zero to its maximal value in a small range of RED-values. The combination of all these curves
results in a much wider range of RED-values, that corresponds better to the experimentally measured
dependency. The agreement between theory and experiment for the solubility for a different type of lignin in
a different solvent mixture provides extra support for this correspondence [66]. The addition of the
predictions for the average molecular features presented here shows that using the theory described in the
previous sections simultaneously predicts the RED-dependency of the yield, weight average molecular mass,
and hydroxyl content of the dissolved lignin.

Figure 7 shows the theoretical and experimental molecular mass distributions of the dissolved part of
lignin. The intensities are normalized using the maximal measured intensity of the measurement with the
highest yield. Although the shapes are not exactly equal, there are trends in the shape that can be observed in
both the theoretical and experimental results. In both the theoretical and experimental results, the maxima
of the distribution shift to smaller dissolved fractions. Also, both results suggest that mainly the higher
molecular mass polymers stop dissolving at higher RED. Together with the results for the yield, average
molecular mass, and hydroxyl content, this supports that the theory can be used to include size and chemical
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variation distributions in Flory–Huggins theory calculations to describe multiple characteristics of dissolving
polymers simultaneously.

4. Conclusions

In this paper, it is shown that adaptations of Flory–Huggins theory can be used to describe solvent
fractioning of polymers. A complication in using bio-based or recycled feedstock for polymeric materials is
the variation in material properties due to the variation in the molecular features of the involved polymers.
Comparing monodisperse and polydisperse calculations shows that the degree of polydispersity in chain
length and the variation of functional groups affect the characteristics of polymer samples. Solvent
fractionation improves the reproducibility of these properties by selecting a subset of molecular features. It is
demonstrated here how the molecular features of solubilized lignin can be described using polydisperse
Flory–Huggins theory relations. The presented relations make it possible to predict how chemical and
physical dispersity affect polymer fractionation in different solvents. Comparisons with experiments shows
simultaneous quantitative agreement for the yield, average molecular mass, and hydroxyl content and
qualitative agreement for the molecular mass distributions, by including polydispersity in the calculations.
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