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Abstract - Convolutional neural networks (CNNs) represent one of the most effective 

methods for image classification. The de-facto approach for performing the required 2D 

convolutions is to run an iterative algorithm consisting of point wise multiplication and 

kernel shifting on a graphical processing unit (GPU) or tensor processing unit (TPU). 

However, the computational complexity of this algorithm is O(n2k2) for convolution of an 

(n × n) image and a (k × k) kernel, suggesting that 2D convolutions scale poorly for large 

matrices, leading to high power consumption and long execution times. A possible 

solution is a 4F optical correlator, which can, using Fourier optics, perform the 

convolutions in parallel and is not bound by conventional electronic limitations. In this 

paper we implement a 4F optical correlator using off-the-shelf components (Fig. 1) 

including spatial light modulators (SLMs) and a camera, while a PC is used to interact 

with the computing system. We experimentally demonstrate that a CNN utilizing such 

optical correlator has a best-case classification accuracy of 91% for the MNIST 

handwritten digit dataset and we show that the processing speed of the optical correlator 

can be in the same order of magnitude as a conventional GPU if maximum parallelism is 

exploited. 

 

Introduction  

In the last decade, convolutional neural networks (CNN) have proven to be one of the 

most effective deep learning methods for image classification [1]. CNNs are deep neural 

networks that rely on at least one convolutional layer for the computations. When the 

dataset is a large 2D matrix, such as an image, these convolution computations are done 

in parallel on graphical processing units (GPUs) and tensor processing units (TPUs), 

which consist of hundreds to thousands of compute cores. However, the convolutional 

layers in CNN architectures are computationally complex: The computational complexity 

of the most used iterative convolution algorithm is O(n2k2) for a convolution of an (n×n) 

image and a (k×k) kernel [2], which shows that the convolution algorithm scales poorly 

with higher input dimensions in terms of power usage and computation time.  

A potential solution to improve computation speed and decrease power usage is to use a 

4F optical correlator to perform the convolution operations by exploiting Fourier 

transforming properties of lenses, reducing the computational complexity of any matrix 

convolution from O(n2k2) to O(1) [3]. This means that, in theory, a convolution operation 

will always consume a constant amount of time and power, regardless of the sizes of the 

input and kernel matrix. The convolution theorem describes that convolution between an 

input image 𝑓(𝑥, 𝑦) and a kernel 𝑘(𝑥, 𝑦) in the spatial domain is equivalent to their product 

in the spectral domain:  
 ℎ(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) ∗ 𝑘(𝑥, 𝑦) = ℱ−1 (ℱ(𝑓(𝑥, 𝑦)) ⋅ ℱ(𝑘(𝑥, 𝑦))) (11) 

where ℱ refers to the Fourier transform and ℱ−1 refers to the inverse Fourier transform, 

thus the 4F correlator can perform 2D spatial convolutions optically. In this paper we 



 

 

implement the 4F optical correlator to perform optical convolution for the MNIST dataset 

recognition problem.  

Methods 

The 4F optical correlator is implemented as shown in Fig. 1, left side. A 633nm He-Ne 

laser beam is expanded by a Keplerian beam expander (lenses L1 and L2) to cover the 

active area of the first spatial light modulator (SLM1) where an image is encoded. The 

light then enters L3, after which the spatial Fourier transform appears at one focal distance 

behind the lens. At the Fourier plane, SLM2 with polarizer P2 is placed, acting as a 

programmable filter where during inference the Fourier transform of different kernels are 

displayed. The light then passes through L4 after which the inverse Fourier transform 

appears at the focal plane of L4, where a camera is placed to transform the image from 

the optical back to the electronic domain. To compare both accuracy and speed of a GPU-

based CNN to the optical CNN, a simple CNN architecture (including Convolution, Batch 

Normalization, Max Pooling, Flatten, FC layer and Relu) was implemented using the 

open-source machine learning library PyTorch [4]. To train the CNN, a custom 

(electronic) Fourier convolution function was programmed which ensures that the kernels 

are initialized and trained in the Fourier domain [5], which saves computation time since, 

during inference, there is no more need for Fourier transformation of the kernel. Testing 

showed that this custom function had similar accuracy results in a CNN as PyTorch’s 

built-in 2D convolution function. Furthermore, we train only the positive half of the 

kernel. Since the kernel must be Hermitian symmetric, we can unfold the kernel to get a 

square matrix which can be displayed on SLM2 (see Fig. 1, right side). To boost the 

amount of light passing through SLM2, an undesirable but necessary compression 

function is applied. Finally, both the input image and the squared symmetric kernel are 

scaled and zero-padded so that the images are displayed on the centers of the light 

modulators.  

To evaluate the system accuracy, the MNIST dataset of handwritten digits [6] was used 

to train the CNN electronically using the custom Fourier convolution function. Then, with 

a subset of 300 images, inference was performed using the 4F correlator. Each input 

image was sequentially convolved with the 16 different Fourier kernels. The 16 resulting 

output images were skewed, cropped and scaled accordingly and then fed through the 

  
Fig. 1 – Left: The optical correlator. (Top) Schematic view of the 4F optical correlator. The character “A” 

is displayed as an example input image. (Bottom) Photo of the realized 4F optical correlator using off-

the-shelf components. Polarizers P1 and P2 are added since liquid crystal on silicon (LCOS) SLMs are 

used as light modulators. Right: Procedure to perform inference on the optical correlator. All images 

shown in this figure are from the actual inference procedure on the optical correlator. 

 

 



 

 

fully connected (FC) layers of the CNN. The predicted labels were then compared to the 

correct labels of the input images to get the prediction accuracy. 

Results 

Fig. 2, left side, shows a comparison between the result of electronic convolution (using 

the custom Fourier convolution function) and convolution using the optical correlator. 

Both convolution methods highlight the same areas of the picture, which indicates that 

the optical correlator is working properly.  

Fig. 2, right side, shows the confusion matrix of the CNN inference with a subset of 

roughly 300 images of the MNIST dataset. The overall accuracy is 81.01% which is lower 

than the accuracy of an electronic CNN (98.2%). Subsequent tests using the same MNIST 

subset resulted in similar overall accuracies (±1%). The matrix shows that most digits 

were correctly identified with high accuracy. A clear exception is the digit 1, which only 

has an accuracy of 14.0%: This may be caused by misalignment of the camera which 

causes normally inactive neurons in the FC layers to be activated for this few-feature 

digit. Also the chance of FC layer overfitting is high, since they are only trained with 

‘perfect’ electronic convolution. Furthermore, the lower overall accuracy might be caused 

by flickering, which is caused by the asynchronous refresh rate of the camera and SLMs. 

If we disregard the entries of the 1-row, assuming that these are inaccurate due to 

misalignment or flickering, the accuracy is 91.57%. This is similar to what other papers 

have presented [7]. Due to the lack of light intensity and to minimize flickering, the 

exposure time of the camera, and thus the convolution time of the correlator was fixed to 

a rather high 0.3s, but this time could be reduced significantly by using faster, more 

sensitive cameras. For reference, a single convolution operation on a Quadro M1200 GPU 

took 2.911 ∙ 10−4s, much faster than the correlator. Massive parallelism could be 

exploited by displaying a grid of images on SLM1. In total up to 1444 input images could 

be displayed on SLM1 and convolved with the same kernel simultaneously without 

increasing convolution time, greatly increasing throughput. Performing 1444 

convolutions on a Quadro M1200 GPU takes 0.1328s, which is in the same order of 

magnitude as the 0.3s convolution time of the setup. The correlator could be orders of 

magnitude faster if a faster camera is used. 

   
Fig. 2 – Left: The result of electronic Fourier-based convolution and the result of the convolution on the 

optical correlator. a), b), c) show the number 7 when different filters are applied. d) shows the number 2 

with a filter applied. The overall tone of the convolution results of the 4F correlator is darker, most likely 

because the camera captures the irradiance rather than the amplitude of the light. Right: Confusion matrix 

of the inference on the optical correlator, showing accuracy. To limit the run time, a random subset of 

roughly 300 images was selected to be validated on the optical correlator. The overall accuracy is 81.01%. 

 



 

 

Discussion  

Only a small subset of roughly 300 images was used for inference due to the low 

throughput of the setup, limited mostly by the exposure time of the camera. To increase 

throughput the camera should be replaced with a proper high-speed camera and the light 

modulators could be replaced with high-speed DMDs which have a much higher refresh 

rate. Furthermore, it would be interesting to see what accuracy could be achieved while 

exploiting maximum parallelism by displaying a grid of input images on SLM1. 

Additionally, the accuracy that was achieved in this paper is likely lower than the 

electronic accuracy because of misalignment, flickering and optical aberration. In future 

work, after electronic training, the FC layers could be trained with the outputs of the 

optical correlator so that the network can adjust to slight misalignments in the optical 

correlator. Flickering can be countered in future work by utilizing a camera and SLMs 

which support generator locking (Genlock). Finally, future work should take into account 

the diffraction orders of the used light modulators when choosing their lenses, since the 

diffraction orders can result in unwanted interference for large input matrices. 

Conclusions 

This paper experimentally demonstrated the implementation of a 4F amplitude only 

optical correlator which can perform convolutions optically. A CNN, that uses the optical 

correlator for its convolutional layer, has classified a subset of the MNIST dataset with 

an accuracy of 81.01% (or 91.57% excluding the ‘1’-row). The main sources of error are 

likely misalignment, flickering and optical aberration. The speed of the optical correlator 

for single MNIST convolutions is much lower than the M1200 GPU, but if maximum 

parallelism were to be exploited the speed of the optical correlator is in the same order of 

magnitude as the speed of the Quadro M1200 GPU. Considering that there are much, 

much faster cameras and light modulators available on the market today, it is very likely 

that an optical correlator such as the one presented in this paper can greatly surpass the 

processing speed of a conventional GPU.  
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