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Abstract—One major challenge for autonomous attitude takeover
control for on-orbit servicing of spacecraft is that an accurate
dynamic motion model of the combined vehicles is highly nonlinear,
complex and often costly to identify online, which makes traditional
model-based control impractical for this task. To address this issue,
a recursive online sparse Gaussian Process (GP)-based learning
strategy for attitude takeover control of noncooperative targets with
maneuverability is proposed, where the unknown dynamics are online
compensated based on the learnt GP model in a semi-feedforward
manner. The method enables the continuous use of on-orbit data
to successively improve the learnt model during online operation
and has reduced computational load compared to standard GP
regression. Next to the GP-based feedforward, a feedback controller
is proposed that varies its gains based on the predicted model
confidence, ensuring robustness of the overall scheme. Moreover,
rigorous theoretical proofs of Lyapunov stability and boundedness
guarantees of the proposed method-driven closed-loop system are
provided in the probabilistic sense. A simulation study based on
a high-fidelity simulator is used to show the effectiveness of the
proposed strategy and demonstrate its high performance.

Index Terms—Attitude takeover control, Gaussian process,
machine learning, noncooperative space target, on-orbit servicing.
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I. INTRODUCTION

IN recent years, there has been a rapid development
in on-orbit servicing (OOS) applications such as on-
orbit refueling, on-orbit maintenance, on-orbit assembly,
orbit transfer, and active space debris removal [1]. An
entire OOS mission consists of the following four distinct
phases: long-range guidance, final approaching, on-orbit
capture, and post-capture. In the post-capture phase, a
combined spacecraft is formed through the connection of
the servicing spacecraft (referred to as the “servicer”) and
the target using robot manipulators or tethers. The servicer
is supposed to “take over” the attitude control of the target,
such that the control torque for the combined spacecraft
is completely provided by the servicer. This autonomous
attitude takeover control for the combined spacecraft plays
a key role in the subsequent tasks (such as refueling and
debris removal) and has become an important component
to ensure the success of OOS missions.

Capture and post-capture control for cooperative targets
have significantly matured and have been applied in some
executed OOS missions [2], [3]. However, for other OOS
missions, such as on-orbit maintenance and debris removal,
the targets are usually noncooperative and the mission
needs to be conducted under the following specs: 1)
sufficient knowledge of the structure of the target, mass
properties, and state of motion is not a priori available;
2) no communication link can be established to send
messages between the servicer and target; 3) no pre-
designed capture interface is present on the target. With
the increasing diversity of OOS missions, the targets can
also display partial failure characteristics, i.e., still have
weak attitude controllability despite the failure of actuators.
Hence, for upcoming OOS missions, the attitude control
for the post-capture combined spacecraft is likely be more
challenging. First, noncooperative characteristics of the
target in terms of 2) necessitate robustness and disturbance
rejection capabilities of the servicer. Furthermore, in view
of 1) and 3), no accurate model can be assumed to be
available for the dynamics of the combined spacecraft.
Hence, traditional model-based control methods can suffer
from the unknown uncertainties and unmodeled dynamics
that can be encountered during such missions, and can
result in significant loss of performance or even stability.
Additionally, it is not feasible to effectively identify the
mass properties of the combined spacecraft in real-time
due to the external unmeasured input caused by the attitude
maneuverability of the target.

In scientific literature, already promising studies have
been obtained for post-capture attitude takeover control.
The pioneering work in this field has mainly concentrated
on designing model-based controllers on the basis of an
accurately identified model. For this purpose, Bergmann et
al. in [4] have proposed an online inertia identification al-
gorithm, where the mass properties of a rigid spacecraft are
estimated by the analytic solution of the motion equation
under free rotation. In [5], Murotsu et al. have developed a
parameter identification method based on the conservation
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of momentum. Ma et al. in [6] have further extended this
work to scenarios under unknown spacecraft systems by
a two-step identification method. Christidi-Loumpasefski
et al. in [7], [8] have proposed momentum-conservation-
based methods to fully identify the parameters of free-
flying system dynamics with unmeasurable sloshing states.
In recent years, visual CCD cameras [9] and deep learning
[10] have also been proposed for estimation of inertia
parameters of the combined spacecraft. However, these
methods are not applicable to scenarios where the target
still has attitude maneuverability.

In contrast to parameter identification and model-
based control approaches, an effective alternative approach
to deal with the unknown dynamics of the combined
spacecraft is adaptive control. In [11], a backstepping-
based robust adaptive controller has been proposed for
attitude stabilization of a tumbling tethered combined
spacecraft. By involving an improved adaptive sliding
mode controller to reduce the total angular momentum
of the system, Zhang et al. in [12] have presented a
coordinated control approach for the combined spacecraft
without precise inertia information. Kang et al. in [13]
have considered the situation of non-cooperative body
attachment, and designed an adaptive control strategy for
rapid stabilization with high precision in different scenarios.
A hybrid controller has been derived in [14] for a flexible
combined spacecraft in the presence of model uncertainties,
input constraints, external disturbances, and actuator faults.
Moreover, to further improve the adaptability of the
controller, neural network (NN) and fuzzy logic-based
control approaches have attracted great attention recently
(see, e.g., [15]–[17]). However, it is usually essential
for adaptive control approaches to make assumptions on
the existence of upper bounds on the model uncertainty,
external disturbances, etc. to ensure the stability of the
closed-loop system, which can be conservative for an
attitude takeover task. On the other hand, parametric
modeling methods such as NN and fuzzy logic inherently
have the disadvantages of being complex and fragile in
terms of their generalization capability beyond the training
region, and can be sensitive in terms of the selected
network structure, activation functions, hyperparameter
tuning, initialization, and signal normalization.

Note that the above references involve system models
to facilitate the controller design, i.e., model-based con-
trol. In contrast, there are some results of “model-free”
control for the combined spacecraft. In [18], a model-
free prescribed performance adaptive attitude controller
has been proposed for the flexible combined spacecraft
dynamics. In [19], a low-complexity model-free control
strategy has been presented based on the prescribed
performance technique. In [20], an inertia-free control
approach has been derived for the combined spacecraft
which facilitates “appointed-time” stability of the system.
However, it should be mentioned that these model-free
control strategies are implicitly dependent on the assumed
inertia of the system through their hyperparameter choices.
Hence, the parameters in these model-free control laws

need to be tuned based on model information and practical
experience, which makes the “model freeness” of these
methods questionable.

In view of all the aforementioned developed approaches
and the identified challenges, the current shortcomings in
the area of combined spacecraft attitude takeover control
are summarized as:

(i) General identification-based control approaches
are not applicable to the task scenario where the target
still has attitude maneuverability (low frequent unknown
excitation).

(ii) Performance of adaptive control methods is highly
sensitive to hyperparameter choices. Inadequate selection
may lead to degradation of the overall control performance
and even loss of stability.

To address these issues, the emerging approaches of
machine learning-based control offer better capabilities
for capturing unmodeled dynamics and achieving superior
performance over the existing methods. As one of the
promising tools, GP [21] has been increasingly successful
in the field of nonparametric modeling. It is a flexible
function estimator that also provides a characterization
of the uncertainty of the estimate in a computationally
efficient manner compared to NNs and fuzzy logics.
Powerful results have been achieved for GP-based learning
control for robot arms [22], quadrotors [23], race cars [24],
etc. However, there are still some technical barriers to
the design of GP-based learning control for the attitude
takeover problem: (a) The standard GP is not suitable
for large training data sets, which will lead to high
computational load for the onboard computer. (b) Most
GP-based learning control methods do not perform online
updating which is needed to address the time-varying
disturbances during the system operation. To solve this
issue, various online GP approaches have been developed
to update the GP model during control operation. A
sparse online GP (SOGP) method has been first proposed
in [25], which efficiently approximates the Kullback-
Leibler divergence, i.e., the distance, between the current
GP model and the new data pair and updates the GP
estimate based on this distance. This work has been
further extended and applied in model reference adaptive
control [26], [27], incremental backstepping control [28],
etc. Similarly, another online GP approach is evolving
GP [29], [30], which updates the training data set online
using various types of information criteria, and has been
utilized in model predictive control [31]. However, both
of the above methods still involve a “dictionary” update
and re-computation of the Gram matrix at each time step,
which is a computationally costly operation.

To overcome the aforementioned challenges, this paper
proposes an innovative GP-based online learning strategy
for post-capture attitude takeover control with unknown
dynamics and attitude maneuverability of the target, as
an extension of our previous work presented in [32]. The
main contributions of this paper are as follows:



1) A novel GP-based learning control strategy for
attitude takeover that is applicable even under attitude
maneuverability of the target.

2) A novel recursive online sparse form of the GP esti-
mator that facilitates efficient continuous learning of
unknown time-varying uncertainties during operation.
A crucial advantage of the approach is that no online
re-tuning of the hyperparameters, nor update of the
data-dictionary is required at every time-moment,
which ensures low online computational cost.

3) Proven stability guarantee of the closed-loop oper-
ation with the proposed method, ensuring that the
attitude orientation error remains ultimately bounded
around the origin with high probability.

4) Verification of the proposed method in a high-fidelity
simulation study.

The remainder of this paper is organized as follows.
Section II covers the problem formulation and control
objectives. The proposed recursive online sparse GP
regression algorithm is detailed in Section III. The GP-
based adaptive learning control procedure and its rigorous
stability analysis are presented in Section IV. Numerical
simulation results are provided in Section V, followed by
the conclusions in Section VI.

Notation: R, Z, N, and Q3 denote the sets of real num-
bers, integers, nonnegative integers, and unit quaternions,
R+

0 corresponds to nonnegative real numbers, while Sn×n

is the set of real symmetric matrices of dimension n× n.
The 2-norm of a vector or a matrix is denoted as ∥ · ∥,
while, for a given Hilbert space H, the corresponding
norm is denoted by ∥ · ∥H. λmin(·) and λmax(·) are
the minimum and maximum eigenvalues of a matrix,
respectively. vec(x1, ...,xn) = [x⊤

1 · · · x⊤
n ]

⊤ denotes the
column-wise composition of vectors. Additionally, In is a
n× n identity matrix and the projection �× : R3 → R3×3

gives a skew-symmetric matrix, ensuring that a×b = a×b
for all a, b ∈ R3 where × corresponds to the cross-product
operator. IjI = {s ∈ Z | i ≤ s ≤ j} denotes an index set.

II. Problem Formulation

A. Uncertain System Model

After successful docking to the target, the combined
spacecraft, as considered in this paper, contains three parts:
the servicer, the target, and the manipulators. As shown
in Fig. 1, the servicer can capture the interface ring on
the target by using its two manipulators. To describe the
motion dynamics of the combined spacecraft, first assume
that it can be described as a single rigid body, which
also means that the manipulator arms do not introduce
additional dynamics. This simplified motion dynamics of
the combined spacecraft are given by [33]

q̇ =
1

2
(q0I3 + q×)ω, q̇0 = −1

2
q⊤ω, (1)

where Q = [q0 q⊤]⊤ ∈ Q3 denotes the unit quaternion
describing the attitude of the spacecraft in terms of rotation

of the body frame FB w.r.t. the inertial frame FI, while
ω ∈ R3 is the angular velocity of the spacecraft expressed
in FB.

In this paper, the problem of attitude orientation control
is considered, i.e., the combined spacecraft is required
to realize a commanded desired orientation. Let Qd =
[qd0 q⊤

d ]
⊤ ∈ Q3 denote the desired attitude, corresponding

to a desired body frame FD, and ωd ∈ R3 the desired
angular velocity, respectively. Thus, the attitude error Qe =
[qe0 q⊤

e ]
⊤ of FB w.r.t. FD can be calculated by Qe =

Q∗
d⊗Q, where Q∗

d = [qd0 −q⊤
d ]

⊤ denotes the conjugate of
Qd, and the symbol “⊗” refers to the product operator for
any two quaternions Qi = [qi0 q⊤

i ]
⊤ and Qj = [qj0 q⊤

j ]
⊤:

Qi ⊗Qj =

[
qi0qj0 − q⊤

i qj
qi0qj + qj0qi + q×

i qj

]
.

The attitude error kinematics can be derived as:

q̇e =
1

2
(qe0I3 + q×

e )ωe, q̇e0 = −1

2
q⊤
e ωe (2)

where ωe = ω − C(Qe)ωd, and the rotation matrix is
C(Qe) = I3 − 2qe0q

×
e + 2q×

e q
×
e . Because the problem of

set point control of the attitude is studied in this paper, the
desired angular velocity is set as ωd = 0, giving ωe = ω.
Hence, the attitude error kinematics (2) can be written as:

q̇e =
1

2
(qe0I3 + q×

e )ω, q̇e0 = −1

2
q⊤
e ω. (3)

Furthermore, the attitude dynamics are given by:

Jcω̇ = −ω×Jcω + u+ τd, (4)

where Jc ∈ R3×3 is the positive-definite symmetric inertia
matrix, u ∈ R3 is the control torque, while τd ∈ R3 is an
external torque expressed in FB representing time-varying
disturbances. Note that τd can be seen as a collection
of additional unconsidered dynamics such as manipulator
arm dynamics, rotating solar panels, solar pressure, gravity
gradient, etc. Obviously, if τd = 0 and Jc is accurately
known or identified, global asymptotic stability can be
easily guaranteed by model-based control, ensuring that
the closed-loop trajectory (Qe,ω) converges to the stable
equilibrium (1,0).

However, the true value of Jc is hard to determine
accurately by online parameter identification when the
servicer is executing an OOS mission, particularly under
maneuvering capability of the target. Similarly, τd can
be partly reconstructed by space environment models, but
some residual uncertainties always remain.

To be able to express some known baseline dynamics
w.r.t. the real dynamics of the spacecraft, introduce
Jc = Jc0 + J̃c, where Jc0 ∈ R3×3 represents the
nonsingular symmetric nominal inertia matrix of the
combined spacecraft, and J̃c ∈ R3×3 denotes the inertia
deviation resulting from the capture and non-nominal
characteristics of the target. The inverse of Jc can be
computed as:

J−1
c = J−1

c0 + J̃c
∗

(5)

where J̃∗
c = −(I3 + J−1

c0 J̃c)
−1J−1

c0 J̃cJ
−1
c0 .



Servicer

Target

The Right Manipulator

The Left Manipulator

Interface Ring

Fig. 1: A snapshot of the combined spacecraft

Thus, the attitude error dynamics of combined space-
craft with uncertainties can be fomulated as{

q̇e = 1
2 (qe0I3 + q×

e )ω
ω̇ = −J−1

c0 ω×Jc0ω + J−1
c0 u+ J−1

c0 d(ω,u)
(6)

where d(ω,u) = −Jc0J̃
∗
c (ω

×Jc0ω) − ω×J̃∗
cω −

Jc0J̃
∗
cω

×J̃∗
cω+Jc0J̃

∗
c u+(I3 +Jc0J̃

∗
c )τd. The dynamic

model can be written in a compact form:

ẋ = f(x,u)︸ ︷︷ ︸
nominal model

+ B ∆̆(x,u)︸ ︷︷ ︸
unknown model

(7)

where x = vec(qe,ω) ∈ R6 is the state vector of the
combined spacecraft, B = [03×3 I3]

⊤ ∈ R6×3 is a
projection matrix, f(x,u) denotes the known, nominal
part of the dynamics which has the following form:

f(x,u) =

[
1
2 (qe0I3 + q×

e )ω
−J−1

c0 ω×Jc0ω + J−1
c0 u

]
∈ R6. (8)

The state and control-dependent unknown model
∆̆(x,u) = J−1

c0 d(ω,u) ∈ R3 includes the model uncer-
tainties and the reactive attitude maneuvering torque of the
target. Note that ∆̆ also implicitly depends on t because
it contains the time-varying external disturbance τd(t).
In order to be able to design a controller, the system is
required to satisfy the following non-restrictive conditions:

CONDITION 1 There exists known and bounded constants
λJ , λc > 0, such that the nominal part of the inertia matrix
satisfies λmax(Jc0) ≤ λJ and λmin(Jc0) ≥ λc.

CONDITION 2 The unknown function ∆̆ is globally
bounded.

The combined spacecraft performs as a “black box”
data-generating system, i.e., only input and output data is
available from it, just in case of a real spacecraft.

ASSUMPTION 1 Measurements of the state (sampling
of x(t)) are obtained online under the sampling time
Ts ∈ R+. The sampling provided value of the states
is denoted as qe[k] := qe(kTs), ω[k] := ω(kTs), and
x[k] := x(kTs). Also, we assume that an approximation
of the state derivatives ẋ[k] can be obtained by numerical
differentiation. The approximation error can be considered
as being part of the measurement noise. Additionally, the
control input u is generated via ideal zero-order-hold
(ZOH) actuation with no delay and synchronized with the

sampling, which means that the discrete control signal
will be kept constant until the next sampling moment:

u(t) := u[k], ∀t ∈ (kTs, (k + 1)Ts]. (9)

B. Control Objectives

The primary goal of this paper is to design an adaptive
online learning attitude takeover control strategy for the
combined spacecraft in the presence of unknown dynamics
and attitude maneuverability of the target, such that the
attitude of the combined spacecraft follows the desired
orientation Qd, while the attitude error Qe and the angular
velocity ω are ultimately uniformly bounded, and converge
to a small set containing the origin.

III. Gaussian Process for Online Model Learning

To achieve the aforementioned control objectives, in
this section, our goal is to construct a data-driven and
probabilistic model ∆ of the unknown dynamics ∆̆ from
previously collected measurement data, and improve the
accuracy of the regressed model gradually as more data
becomes available and track possible time variation of ∆̆.

A. Gaussian Process Regression

GP regression (GPR) is a powerful non-parametric
framework for learning nonlinear functions from data,
where the GP itself can be seen as a distribution over
functions [21]. The main advantage of GPR is that it
not only provides the estimated mean of the unknown
function, but also its variance, which implies the regression
accuracy, namely, the model confidence. To approximate
the unknown function ∆̆, we consider ∆(x̃) as a GP
which is trained based on the following data set consisting
of N collected sampled measurements:

DN = {y[i], x̃[i]}Ni=1 (10)

where the state-input pairs x̃[k] = vec(x[k],u[k]) ∈ R9

and y[k] = ∆̆(x̃[k]) + ϵ[k] ≜ ẋ[k]− f(x[k]),u[k]) + ϵ[k]
denote the training inputs and outputs, respectively, and
ϵ[k] represents the independent and identically distributed
(i.i.d.) measurement noise with ϵ[k] ∼ N (0, σ2

ϵI) and
additional approximation error resulting from numerical
differentiation.

A vectorial Gaussian process GP : R9 → R3 assigns to
every point x̃ ∈ R9 a random variable GP(x̃) taking values
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Fig. 2: Illustration of the multi-dimensional GP structure.

in R3 such that, for any finite set {x̃[τ ]}Nτ=1 ⊂ R3, the
joint probability distribution of GP (x̃[1]) , . . . ,GP (x̃[N ])
is multi-dimensional Gaussian. This constitutes a prior
distribution over functions, which is denoted by:

∆(x̃) ∼ GP(µ(x̃), κ(x̃, x̃′)), (11)

where µ(x̃) is the mean function and κ (x̃, x̃′) ≜
cov (∆(x̃),∆ (x̃′)) is the positive semi-definite covariance
function which corresponds to a measure of correlation
of any two data points (x̃, x̃′). Furthermore, the GP
model is usually implemented for each dimension of
the GP output separately, i.e. in terms of scalar-valued
∆j(x̃) ∼ GP(µj(x̃), κj(x̃, x̃

′)) which approximates the
corresponding ∆̆j with j ∈ I31. The structure of the multi-
dimensional GP is illustrated in Fig. 2, where the outputs
are assumed to be uncorrelated, i.e., ∆̆j is mutually inde-
pendent, resulting in the choice of κ = diag(κ1, κ2, κ3).
It should be noted that this assumption is commonly used
in GP-based control approaches and it is mild for a real
spacecraft task. In this paper, the kernel function is chosen
from the exponential family, i.e., the Squared Exponential
Automatic Relevance Determination (SEARD) is taken as
a prior due to its universal approximation capability:

κj (x̃, x̃
′)=σ2

f,j exp

(
−1

2
(x̃− x̃′)⊤Λ−1

j (x̃− x̃′)

)
(12)

where the diagonal matrix Λj = diag(λ2
j,1, . . . , λ

2
j,9) and

σ2
f,j ∈ R+ are the length-scale hyperparameters and signal

variance, respectively. In order to be able to capture the
unknown function ∆̆ using the chosen kernel defined GP
(11), the following condition is required to be satisfied:

CONDITION 3 Each ∆̆j has a bounded reproducing kernel
Hilbert Space (RKHS) norm w.r.t. the chosen kernel
κj(x̃, x̃

′), that is, ∥∆̆j∥H <∞.

REMARK 1 The RKHS norm of ∆̆j can be interpreted
as a quantitative assessment of the function smoothness,
indicating that the function is “well-behaved” w.r.t. the
selected kernel.

According to the training data set (10), we define
X̃ = vec(x̃[1], . . . , x̃[N ]) and Yj = vec (yj [1], . . . ,yj [N ])
for j ∈ I31. The Gaussian prior for the function ∆ and the
model likelihood of DN is denoted as:

P(∆j) = N (∆j |0,KN,j) (13a)
P(Yj |∆j) = N

(
Yj |∆j , σ

2
ϵ,jIN

)
(13b)

where the so-called Gram matrix KN,j ∈ SN×N represents
the symmetric and semi-definite covariance matrix on the
training set DN :

KN,j=

 κj (x̃[1], x̃[1]) · · · κj (x̃[1], x̃[N ])
...

. . .
...

κj (x̃[N ], x̃[1]) · · · κj (x̃[N ], x̃[N ])

 (14)

and ∆j = vec(∆j(x̃[1]), . . . ,∆j(x̃[N ]).
According to Bayes’ Theorem, the posterior distribu-

tion can be obtained by maximum a posterior (MAP)
estimation:

P(∆j |Yj) =
P(Yj |∆j)P(∆j)

P(Yj)

∝ N
(
∆j |KN,j

(
KN,j + σ2

ϵ,jIN
)−1

Yj ,

σ2
ϵ,jKN,j

(
KN,j + σ2

ϵ,jIN
)−1)

. (15)

Then, the predictive distribution of ∆j(x̃
∗) on a test

point x̃∗ can be derived as:

P(∆∗
j | x̃∗,DN )

=

∫
P
(
∆∗

j | x̃∗,∆j , X̃
)
P(∆j |Yj)d∆j

= N (µ∆,j(x̃
∗), σ2

∆,j(x̃
∗))

(16)

where the first term inside the integral satisfies the joint
distribution:

P
(
∆∗

j | x̃∗,∆j , X̃
)

(17)

= N
(
∆∗

j |K∗N,jK
−1
N,j∆j , k∗∗,j −K∗N,jK

−1
N,jKN∗,j

)
.

Combining (15), (16) and (17), we can obtain the posterior
mean and variance function for each dimension j:

µ∆,j(x̃
∗) = K∗N,j(K

j
N + σ2

ϵ,jI)
−1Yj , (18a)

σ2
∆,j(x̃

∗) = k∗∗,j−K∗N,j(KN,j+σ2
ϵ,jI)

−1KN∗,j , (18b)

which gives a predictive vectorial GP with mean and
variance:

µ∆(x̃
∗) = vec(µ∆,1(x̃

∗), µ∆,2(x̃
∗), µ∆,3(x̃

∗)), (19a)
Σ∆(x̃

∗) = diag(σ2
∆,1(x̃

∗), σ2
∆,2(x̃

∗), σ2
∆,3(x̃

∗)). (19b)

Furthermore, to obtain an optimal choice of the
hyperparameters1θj = vec(σ2

ϵ,j , σ
2
f,j , λj,1, . . . , λj,9), the

GP model (11) is trained by maximizing the log-likelihood
L(θj) = logN

(
0, KN,j + σ2

ϵ,jIN
)

w.r.t. θj for each
dimension j:

θ̂j ∈ argmax
θj

L(θj), (20)

which optimization problem can be efficiently solved by
a conjugate gradient-based algorithm [35].

1We initialize θj based on DN : logθ0
j = vec(log(std(Yj/10)),

log(std(Yj)), log(std(X̃))). In [34], it was illustrated that although
the initial guess for the hyperparameters may have influences on the
optimization results, its impact on the regression accuracy of the GP
model is almost negligible. Therefore, it is generally advisable to choose
a relatively simple initial guess.



B. Recursive Online Sparse GP Regression

As we could see in (20), the computational complexity
for the conjugate gradient-based algorithm is O(N3)
per iteration, which is cubic in terms of the size of
the training data set. According to (18a) and (18b), the
computational complexity for predictive mean and variance
per test case is O(N) and O(N2), respectively. Thus, the
standard GP is not suitable for large training data sets.
However, it is essential to collect a large number of data
pairs to explore the state space as much as possible and
ensure a sufficiently high regression accuracy. Furthermore,
the GP model presented in Section III.A is an offline
modeling approach, i.e., the trained GP model is kept
fixed online and considered to be sufficient to describe the
various on-orbit scenarios. Nevertheless, for the combined
spacecraft takeover control missions, the unknown part
of the dynamics ∆̆ may be time-varying due to further
attitude maneuvers of the target. Therefore, this section
proposes a recursive online sparse GP algorithm (denoted
by ROSGP), which significantly reduces the computational
complexity of the data-driven model learning while making
full use of the online streaming data to update the GP
model in real time.

1. Sparse GP with inducing points
As discussed in Section III.A, the diagonal assumption

for the prior covariance function κ allows for the training
of the predictive distribution independently for each
dimension j. Thus, for the simplicity of notation, we
will drop the indexing for the output dimension j.

We will introduce a novel generalization of the original
sparse GP with inducing inputs (SPGP) [36] approach
in terms of an efficient online update step. For this we
first briefly summarize the SPGP method. The main
idea of sparse GP is to find a set of inducing inputs
X̃u = vec(x̃u,1, ..., x̃u,M ) corresponding to inducing
outputs ∆u =vec(∆u,1, ...,∆u,M ) of size M ≪ N . Akins
to (13a), the inducing points follow the Gaussian prior
distribution:

P(∆u) = N (∆u |0,KM ) (21)

where KM ∈ SM×M denotes the Gram matrix in
terms of inducing inputs. According to the fully in-
dependent training conditional approximation (FITC),
given the GP inputs with (21), the function values
∆ = vec(∆(x̃[1]), . . . ,∆(x̃[N ]) are i.i.d. Then, the model
likelihood is

P(Y |X̃,∆u, X̃u) =

N∏
i=1

P(y[i] | x̃[i],∆u, X̃u) (22)

= N (Y |KNMK−1
M ∆u,Γ+ σ2

ϵIN )

where [KMN ]i,j = κ(x̃u,i, x̃[j]) denotes the covariance
matrix between DM and DN , QN = KNMK−1

M KMN

can be seen as an approximation of KN , and Γ =
diag (KN −QN ) ∈ RN×N represents the diagonal co-
variance matrix which obtains its diagonal structure from
the independence between ∆ and ∆u.

On the basis of the Bayes’s Theorem and the Gaussian
prior (21), the approximated posterior distribution is given
by the MAP estimate:

P(∆u |Y , X̃u, X̃) ∝ P(Y |∆u, X̃u, X̃)P(∆u)

= N
(
∆u |KNMQ−1

M KMN (Γ+ σ2
ϵIN

)−1
Y ,

KMQ−1
M KM )

(23)
where QM = KM +KMN (Γ+ σ2

ϵIN )−1KNM .
Consequently, the associated posterior distribution of

∆(x̃∗) at a new test point x̃∗ is computed by

P(∆∗|DN , x̃∗, X̃u) = N (µ∆(x̃
∗), σ2

∆(x̃
∗)) (24)

with predictive mean and variance as:

µ∆(x̃
∗) = K∗MQ−1

M KMN

(
Γ+ σ2

ϵIN
)−1

Y , (25a)
σ2
∆(x̃

∗) = k∗∗ −K∗M
(
K−1

M −Q−1
M

)
KM∗. (25b)

The inducing data points DM = {∆u, X̃u} can
be seen as additional hyper-parameters and are op-
timized along with the original GP hyperparameters
θ = vec

(
σ2
ϵ , σ

2
f , λ1, . . . , λ9

)
by maximizing the marginal

likelihood function, which can be computed by integrating
(21) and (22):

P(Y ) =

∫
P(Y |X̃,∆u, X̃u)P(∆u)d∆u

= N
(
0,QN + Γ+ σ2

ϵIN
)
.

(26)

To initialize the optimization, one reliable approach is to
pick random points from the original data set DN .

It is worth mentioning that the inverse of KN + σ2
ϵIN

is reduced to the inverse of the diagonal matrix Γ+σ2
ϵIN .

In the SPGP based on the FITC assumption, the com-
putational load O(M2N) mainly comes from the matrix
multiplication KMN (Γ + σ2

ϵIN )−1KNM . Subsequently,
for each test point x̃∗, the computational complexity for
corresponding predictive mean and variance is decreased
to O(M) and O(M2), respectively. Moreover, compared
to the marginal likelihood of the standard GP, QN is a low-
rank approximation of Gram matrix KN , which reduces
the computational complexity from O(N3) to O(M2N)
during the hyperparameter training. Similar to the standard
GP, the SPGP model can be trained by maximizing
the log form of the likelihood (26) to find the optimal
hyperparameters and DM by means of a conjugate gradient-
based algorithm, which has a computational complexity
of O(M2N + 3MN) per iteration.

2. Recursive Online Sparse GP Regression Algorithm
In this subsection, a novel online update strategy for

SPGP is proposed, where the offline trained GP model
is recursively updated with the online measurement data
sampled at the current time moment k ∈ N.

Equation (25a) can be rewritten into a linear combina-
tion of M kernel functions with the current time moment
k:

µ∆,k(x̃) =

M∑
j=1

αjκ(x̃u,j , x̃[k]) = α⊤[k]KM [k] (27)



where α[0] = Q−1
M KMN

(
Γ+ σ2

ϵIN
)−1

Y ∈ RM is the
initial weight vector obtained from offline training and
[KM [k]]j = κ(x̃u,j , x̃[k]) is the corresponding kernel slice
evaluated at the input x̃[k].

At time moment k, consider the data set Dk given in
(10). Define a performance index W(α) w.r.t. α over the
extended data set Dk = Dk−1∪(y[k], x̃[k]) which contains
Nk data pairs:

W(α) =

Nk∑
i=1

λNk−i
(
y[i]−α⊤KMi

)2
+ ςλNk+1∥α∥2

(28)
where [KMi]j = κ(x̃u,j , x̃[i]), 0 < λ ≤ 1 is a user-defined
parameter, also known as the forgetting factor. The choice
of parameter ς will be discussed later in this section. The
weight vector α[k] at step k is taken as the minimizer of
(28), i.e.:

α[k] = arg min
α∈RM

W(α). (29)

The optimization problem (29) has an analytical
solution. Note that

Φ[k]α[k]ρ[k] (30)

where

Φ[k] =

Nk∑
i=1

λNk−iKMiK
⊤
Mi + ςλNk+1IM , (31a)

ρ[k] =

Nk∑
i=1

λNk−iKMiy[i]. (31b)

Next, (31a) and (31b) can be written in a separate
form:

Φ[k] = λΦ[k − 1] +KM [k]K
⊤
M [k], (32a)

ρ[k] = λρ[k − 1] +KM [k]y[k]. (32b)

Using formula Woodbury’s matrix inverse for (32a),
one has:

Φ−1[k] = λ−1Φ−1[k − 1]− λ−1L[k]K⊤
M [k]Φ

−1[k − 1]
(33)

where

L[k] =
λ−1Φ−1[k − 1]KM [k]

1 + λ−1K⊤
M [k]Φ

−1[k − 1]KM [k]

. (34)

For the convenience of notation, we define P [k] = Φ−1[k].
Thus, from (33) and (34), we have:

P [k] = λ−1P [k − 1]− λ−1L[k]K⊤
M [k]P [k − 1], (35a)

L[k] = P [k]KM [k]. (35b)

Subsequently, combining (30), (32b), (33), and (34),
one can derive:

α[k] = α[k − 1]−L[k]K⊤
M [k]α[k − 1] +L[k]y[k] (36)

Finally, the weight vector α[k] can be recursively
updated by:

α[k] = α[k − 1] +L[k]r[k] (37)

where r[k] = y[k]−α⊤
j [k − 1]KM [k].

REMARK 2 The online update routine starts from the
initial weight vector α[0] and the initial user-defined matrix
P [0]. α[0] can be obtained by offline training of the GP
and P [0] is usually selected as P [0] = ς−1IM with 0 <
ς ≤ 1. The choice of ς is on the basis of the confidence
level of the offline trained GP.

REMARK 3 It is worth mentioning that, the convergence
of the proposed recursive online sparse GP is inherently
guaranteed because it minimizes the performance index
(28) at each iterative step.

REMARK 4 Compared with the existing online GP meth-
ods, such as SOGP [25], [27], and the evolving GP in [30],
[31], the proposed recursive online sparse GP do not
involve any re-optimization of the hyperparameters nor it
requires data-dictionary update at every time step, which
ensures low online computational cost.

IV. GP-based Online Learning Control

Recalling the control objective given in Section II.
B, the goal of this paper is to design a GP-based online
learning control strategy to ensure that, for a given attitude
set point Qd = [qd0 q⊤

d ]
⊤ ∈ Q3, the closed-loop error and

velocity states (Qe,ω) converge to (1,0) even under the
unknown dynamics and attitude maneuverability of target.
Furthermore, the proposed ROSGP algorithm is employed
to derive a probabilistic model of ∆̆(x̃), which is utilized
for feedforward compensation of the unknown function.

A. Controller Design

In order to design the controller, we begin by consid-
ering the following lemmas and conditions.

LEMMA 1 Consider a GP trained on DN collected from
system (7), which satisfies Condition 3. The estimation
error ∥µ∆(x̃)−∆̆(x̃)∥ is bounded for all x̃ on the compact
set Ω ⊂ R9 with probability (1− δ)3:

P{∀x̃∈Ω, ∥µ∆(x̃)−∆̆(x̃)∥ ≤ ∥β∥∥Σ1/2
∆ (x̃)∥} ≥ (1− δ)3

(38)
where δ ∈ (0, 1), β = vec(β1, β2, β3) denotes:

βj =

√
2∥∆̆j∥2H + 300γj log

3((N + 1)/δ), (39)

and γj = max 1
2 log |IN + σ−2

ϵ,jKN,j | represents the maxi-
mum information gain w.r.t. the kernel κj ,∀j ∈ I31.

PROOF See [37, Lemma 2]. This lemma is a vectorial
generalization of the scalar case given in [38].

PROPOSITION 1 Consider a GP recursively trained on the
initial data set DN and online samples obtained during time
interval [0, k] from system (7) which satisfies Condition 3.
The estimation error ∥µ∆,k(x̃)−∆̆(x̃)∥ is bounded for all



x̃ on the compact set Ω ⊂ R9 with probability (1− δ)3:

P{∀x̃∈Ω, ∥µ∆,k(x̃)−∆̆(x̃)∥ ≤ ∥β∥∥Σ1/2
∆ (x̃)∥}

≥ (1− δ)3
(40)

where µ∆,k(x̃) represents the predictive mean of the
recursively updated GP given by (27) at time k ∈ N.

The proof of Proposition 1 follows the lines of the
proof of Lemma 1. Proposition 1 ensures the boundedness
of the GP regression error between the true function
∆̆(x̃) and the recursively updated predictive mean function
µ∆,k(x̃) with a high probability, where the error bound
is proportional to the predictive standard deviation [39].

Based on the online adapted GP, we propose the
following controller:

u[k] = −ζp(k̆p,Σ∆(x̃[k]))qe[k]−ζd(k̆d,Σ∆(x̃[k]))ω[k]

− Jc0µ∆,k(x̃[k]) + ω×[k]Jc0ω[k], (41)

where k ∈ N is the discrete time and [µ∆,k]j =

α⊤
j [k]K

j
M+, j ∈ I31 is the predictive mean updated at k-

th step according to the ROSGP algorithm proposed in
Section III.B. The functions ζp and ζd correspond to the
feedback gains of the proposed control law, parameterized
in terms of k̆p ∈ Rnp , k̆d ∈ Rnd . These functions are
chosen such that the following condition is satisfied:

CONDITION 4 For given sets S∗ ⊆ S3×3 and K∗ ⊆ R, the
symmetric functions ζp, ζd : S3×3 → S3×3 are monotone
increasing w.r.t. K and bounded in the sense that the
minimum ζ

τ
of σmin(ζτ (K, k̆τ ) and the maximum ζ̄τ of

σmin(ζτ (K, k̆τ ) exist over K ∈ S∗ and k̆τ ∈ Knτ
∗ where

σmin and σmax corresponds to the minimum and maximum
singular values and τ ∈ {p,d}. Then

ζ
p
∥w∥2 ≤ w⊤ζp(k̆p,K)w ≤ ζ̄p∥w∥2

ζ
d
∥w∥2 ≤ w⊤ζd(k̆d,K)w ≤ ζ̄d∥w∥2

holds for all w ∈ R3.

There is a wide class of ζ functions such that Condition
4 is satisfied. For instance, if S∗ and K∗ are bounded
sets, then polynomial functions can be selected for ζσ.
Otherwise, they can be chosen as saturated functions such
as sigmoid or Gauss functions. Furthermore, k̆p and k̆d
can be seen as tuning parameters that can be adjusted
based on practical experience w.r.t. nominal controller
design and do not require extensive tuning procedures.

The implementation of the controller is summarized
in Algorithm 1.

B. Stability Analysis

In order to conduct the stability analysis of the
proposed scheme, we take the assumption that Ts is small
enough such that x(t) ≈ x[k] for t ∈ (kTs, (k + 1)Ts],
which is reasonable in case of 10-50 Hz sampling based
attitude control of a satellite. This simplifies our analysis
as instead of sampled data related issues we can focus on

Algorithm 1 GP-based online learning control strategy
for attitude takeover tasks

Initialization: Choose Q0, Qd, ω0, k̆p, k̆d, λ, P [0],
k = 0, Ts, N .
Offline Training Phase:

1: Generate training data set DN ;
2: Train GP model to optimise θ̂ and α[0].

Online Control Phase:
3: for k = 1, 2, ..., do
4: Observe the current x̃[k] and y[k];
5: Update:
6: P [k]←λ−1P [k − 1]−λ−1L[k]K⊤

M [k]P [k − 1]

7: L[k]← P [k]KM [k]

8: r[k]← y[k]−α⊤[k − 1]KM [k]

9: α[k]← α[k − 1] +L[k]r[k]
10: Compute µ∆,k and Σ∆ with (27) and (25b);
11: Compute u[k] using (41);
12: Applyu(t)=u[k] on the system for t∈ [kTs,(k+1)Ts]
13: end for

the interplay between the GP-based adaptive control law
and the motion dynamics of the combined spacecraft. For
this reason we will treat (41) as a continuous time control
law and consider α varying continuously with time t.

Assume that the true model uncertainty ∆̆(x̃(t)) =
J−1
c0 d(x̃(t)) at time moment t can be parameterized as

d(x̃(t)) = Jc0ᾰ
⊤(t)KM(t), where ᾰ(t) denotes the true

value of the weight for time t. Define α̃(t) = α(t)− ᾰ(t)
as the deviation of the weight for the time moment t.
Substituting the controller (41) into (6) yields the closed-
loop system:

Jc0ω̇(t) = −ζp(k̆p,Σ∆(t))qe(t)− ζd(k̆d,Σ∆(t))ω(t)

− Jc0α̃
⊤(t)KM(t). (42)

The following theorem shows boundedness of the
closed-loop signals.

THEOREM 1 Consider that the combined spacecraft (7)
which satisfies Conditions 1-3 and Assumption 1. Under
the proposed GP-based learning control law (41), satisfying
Condition 4, where the unknown function ∆̆ is modeled
by a multi-dimensional GP (11) that is recursively online
updated according to Algorithm 1, Qe, ω and α̃ are
guaranteed to be ultimately uniformly bounded.

PROOF Consider the radially unbounded Lyapunov func-
tion:

V0(t) =
1

2
ω⊤(t)Jc0ω(t) +

∫ t

t−Ts

α̃⊤(τ)α̃(τ)dτ. (43)

By differentiating (43) along the system trajectories (42),

V̇0(t) =ω⊤(t)(−ζp(k̆p,Σ∆(t))qe(t)−ζd(k̆d,Σ∆(t))ω(t)

−Jc0α̃
⊤(t)KM(t))+α̃⊤(t)α̃(t)− α̃⊤(t− Ts)α̃(t− Ts)

≤ −ζ
d
∥ω(t)∥2 − ω⊤ζp(k̆p,Σ∆(t))qe(t)

− ω⊤(t)Jc0α̃
⊤(t)KM(t) + α̃⊤(t)α̃(t)

− α̃⊤(t− Ts)α̃(t− Ts). (44)



Furthermore, from (37), we have:

α̃(t) = α(t− Ts) +L(t)r(t)− ᾰ(t), (45)
= α̃(t− Ts) +L(t)r(t) + ᾰ(t− Ts)− ᾰ(t).

Define Ψ(t) = ᾰ(t − Ts) − ᾰ(t) and Θ(t) = L(t)r(t).
Then, it follows that:

α̃⊤(t)α̃(t) = α̃⊤(t− Ts)α̃(t− Ts) + 2α̃⊤(t− Ts)Θ(t)

+ 2α̃⊤(t− Ts)Ψ(t) + 2Θ⊤(t)Ψ(t). (46)

Using the special case of Young’s inequality x⊤y ≤
1
2x

⊤x+ 1
2y

⊤y, the following inequalities can be derived:

2α̃⊤(t− Ts)Θ(t) ≤ ∥α̃(t− Ts)∥2 + ∥Θ(t)∥2

(47a)

2α̃⊤(t− Ts)Ψ(t) ≤ ∥α̃(t− Ts)∥2 + ∥Ψ(t)∥2
(47b)

−ω⊤(t)ζp(k̆p,Σ∆(t))qe(t) ≤
1

2
ζ̄2p +

1

2
∥ω(t)∥2 (47c)

−ω⊤(t)Jc0α̃
⊤(t)KM(t) ≤

1

2
λ2
J σ̄

4
f ∥α̃(t)∥2 + 1

2
∥ω(t)∥2

(47d)

where σ̄f = sup σf,j , j ∈ I31. Substituting the inequalities
(47a)-(47d) into (44) leads to:

V̇0(t) ≤ −(ζd − 1)∥ω(t)∥2 − γ∥α̃(t)∥2 + 1

2
ζ̄2p

+(
1

2
λ2
J σ̄

4
f +1+γ)(3∥α̃(t−Ts)∥2+3∥Ψ(t)∥2+3∥Θ(t)∥2)

− ∥α̃(t− Ts)∥2, (48)

where γ is a positive constant. Furthermore, according
to the definition of Ψ and Θ, it is reasonable to assume
that Ψ and Θ are bounded2, that is, ∥Ψ(t)∥ ≤ ϕ̄ and
∥Θ(t)∥ ≤ ξ̄. If ζ

d
− 1 > 0 and 1− 3( 12λ

2
J σ̄

4
f +1+ γ) > 0

are satisfied, then the time derivative of V0 can be given
as:

V̇0(t) ≤ −η∥ω(t)∥2 − γ∥α̃(t)∥2 +ϖ (49)

where η = ζ
d
− 1, ϖ = 1

2 ζ̄
2
p +3( 12λ

2
J σ̄

4
f +1+ γ)(ϕ̄2+ ξ̄2).

Clearly, equation (49) indicates that ω(t) and α̃(t) are
ultimately uniformly bounded in the set:

Ω0=

{
(ω, α̃) ∈ R3 ×R3

∣∣∣∥ω∥2 ≤ ϖ

η
, ∥α̃∥2 ≤ ϖ

γ

}
(50)

Furthermore, in view of the natural boundedness of
the quaternion, one can conclude that the system state
(Qe,ω) is ultimately uniformly bounded.

Theorem 1 implies the existence of the ultimate bound
of system states (Qe,ω). However, because ϖ is an
unknown constant, the specific size of the ultimate bound
is hard to know. Next, we will make a step further to
quantify the ultimate bound of system states (Qe,ω) by
taking Proposition 1 into consideration.

2Generally, the unknown uncertainties will not vary with an infinite
rate for on-orbit scenarios, thus ∥Ψ(t)∥ has an upper bound. Moreover,
according to the definition of Φ, if the condition of persistent excitation
is satisfied (which is mild for attitude dynamics), then ∥Φ(t)∥ is also
bounded.

THEOREM 2 Consider that the combined spacecraft (7)
which satisfies Conditions 1-3 and Assumption 1. Under
the proposed GP-based learning control law (41), satisfying
Condition 4 and where the unknown function ∆̆ is
modeled by a multi-dimensional GP (11) that is recursively
online updated according to Algorithm 1, Qe and ω are
guaranteed to be ultimately uniformly bounded with a
probability of (1− δ)3.

PROOF Consider the Lyapunov function candidate as:

V1 = (ζp(k̆p,Σ∆) + νζd(k̆d,Σ∆))((1− qe0)
2 + q⊤

e qe)

+
1

2
ω⊤Jc0ω + νq⊤

e Jc0ω,

(51)
where ν > 0 is a constant. The proof for the positive-
definiteness of V1 can be found in [40].

By differentiating V1 and employing the closed-loop
system and controller, one can derive:

V̇1 = (ζp(k̆p,Σ∆) + νζd(k̆d,Σ∆))q
⊤
e ω

+ (ω + νqe)
⊤(−ζp(k̆p,Σ∆)qe − ζd(k̆d,Σ∆)ω

− Jc0µ∆,k(x̃) + d(x̃)) +
1

2
νω⊤(qe0I3 + q×

e )Jc0ω

(52)
According to Cauchy-Schwartz inequality and ∥qe0I3 +
q×
e ∥ = 1:

V̇1 = −νζp(k̆p,Σ∆)∥qe∥2 − ζd(k̆d,Σ∆)∥ω∥2

+
1

2
νω⊤(qe0I3 + q×

e )Jc0ω

+ (ω + νqe)
⊤(d(x̃)− Jc0µ∆,k(x̃))

≤ −νζ
p
∥qe∥2 − λJ(ζd −

1

2
ν)∥ω∥2

+ (ω + νqe)
⊤(d(x̃)− Jc0µ∆,k(x̃))

(53)

Further combining Proposition 1 with (53), it can be
deduced that:

P{V̇1 ≤ −λmin(Ml)∥x∥2 + λJ(∥ω∥+ ν∥qe∥)∥β∥∥Σ1/2
∆ ∥}

≥ (1− δ)3

(54)
holds for all t ∈ R+

0 where

Ml =

[
νζ

p
0

0 ζ
d
− 1

2νλJ

]
. (55)

From the definition of V1, we have:

V1 ≤ x⊤Msx ≤ λmax(Ms)∥x∥2,

Ms =

[
2(ζ̄p + νζ̄d)

1
2νλJ

1
2νλJ

1
2λJ

]
(56)

Moreover, we can derive the boundedness of qe and ω,
which indicates that:

∥qe∥ ≤

√
V1

ζ̄p + νζ̄d
, ∥ω∥ ≤

√
2V1

λc
. (57)



Consequently, from (54), (56) and (57), one can readily
derive:

P
{
V̇1 ≤ −

λmin(Ml)

λmax(Ms)
V1

+ λJ

(√
2V1

λc
+ ν

√
V1

ζ̄p + νζ̄d

)
ε

}
≥ (1− δ)3, (58)

holds for all t ∈ R+
0 where ε ≥ ∥β∥∥Σ1/2

∆ ∥.

Next, we will take a step further to estimate the
ultimately uniform bound for attitude error qe and an-
gular velocity ω. Defining W =

√
V1, we have that

Ẇ = V̇1/(2
√
V1) holds when V1 ̸= 0, that is:

P
{
Ẇ ≤ − λmin(Ml)

2λmax(Ms)
W +

λJε√
2
ϑ

}
≥ (1− δ)3 (59)

with ϑ =
(√

1
2λc

+ ν
√

1
2(ζ̄p+νζ̄d)

)
. Integrating the in-

equality in (59) leads to:

0 ≤
√

V1(t) ≤
(√

V1(0)− s1

)
e−s2t + s1 (60)

where

s1 =

√
2λJεϑλmax(Ms)

λmin(Ml)
, s2 =

λmin(Ml)

2λmax(Ms)
.

Thus, when t→∞, one can derive:

lim
t→∞

sup
√

V1(t) ≤ s1 (61)

Recalling (57), we can finally compute the bound of qe
and ω that:

lim
t→∞

sup ∥qe(t)∥ =
s1√

ζ̄p + νζ̄d
, (62a)

lim
t→∞

sup ∥ω(t)∥ =
√

2

λc
s1. (62b)

Furthermore, due to 2(ζ̄p + νζ̄d)(1− qe0) ≤ V1, we have:

lim
t→∞

sup ∥qe0(t)∥ ≥ 1− limt→∞ supV1(t)

2(ζ̄p + νζ̄d)

≥ 1− s21
2(ζ̄p + νζ̄d)

. (63)

Then,

lim
t→∞

sup ∥qe(t)∥ = lim
t→∞

sup
√

1− q2e0

≤

√
1− (1− s21

2(ζ̄p + νζ̄d)
)2. (64)

Comparing (64) and (62a), it can be concluded that the
upper bound for qe is further reduced. Hence, the system
states qe and ω ultimately converge to the compact set Ω1

and Ω2 within the probability (1− δ)3:

Ω1 =

{
Qe ∈ Q3

∣∣∣ ∥qe∥ ≤
√

1− (1− s21
2(ζ̄p + νζ̄d)

)2

}

Ω2 =

{
ω ∈ R3

∣∣∣ ∥ω∥ ≤√ 2

λc
s1

}
This completes the proof.

The block diagram of the closed-loop control system
is shown in Fig. 3.

REMARK 5 Compared to the existing attitude takeover
controllers for the combined spacecraft, such as NN-
based compensation [16] and adaptive control in [13],
the advantages of the proposed GP-based online learning
controller are as follows:

1) As a nonparametric modeling approach, the pre-
dictive outputs of GP are inherently probabilistic. The
GP variance quantifies the confidence level of the pre-
dicted uncertainty, while the mean corresponds to the
estimated uncertainty. Both the mean and the variance
are incorporated into the control scheme, where the latter
effectively improves the robustness of the algorithm. To
the best of the authors’ knowledge, existing results for the
uncertainty quantification of NN mainly include Monte
Carlo methods, dropout, and Bayesian ANNs. These
approaches are generally complex and computationally
too demanding to be applied in a real implementation on
a spacecraft.

2) In contrast to the manual time-consuming tuning
process for the hyperparameters of the NN-based adaptive
control scheme, the hyperparameters of the GP scheme,
such as θj = vec(σ2

ϵ,j , σ
2
f,j , λj,1, . . . , λj,9), are automati-

cally tuned by marginalized likelihood based optimization,
while the remaining parameters of the adaptive feedback
controller, such as k̆p and k̆d, can be designed by practical
experience with PD control design for such systems with
known nominal inertia matrix Jc0 and does not require
extensive tuning procedures.

3) As a data-driven adaptive approach, the proposed
GP-based learning controller only needs an initial “rough”
model of the unknown dynamics that is learnt with only a
small amount of data and needs no extensive exploration
of the entire state space before safe execution of the
mission. Subsequently, the initial GP model is updated
online as new operational data becomes available to ensure
continuous adaption and performance improvement of the
controller.

V. Simulation Results

In this section, simulation results under various on-
orbit scenarios are presented to illustrate the effectiveness
of our proposed control strategy.

A. Simulation Platform

A SimMechanics-based, high-fidelity simulator has
been developed for the combined spacecraft to accurately
characterize its attitude motion under the considered model
uncertainties and target maneuvering, and act as the
physical system and data-generator for the proposed online
learning control strategy. As shown in Fig. 4, the system
consists of two components, namely the servicer and the
target. The servicer, simplified as a cubesat, is equipped
with two robotic arms on each side for capturing the
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Fig. 3: Block diagram of the proposed control strategy.

TABLE I: Physical parameters of the combined spacecraft

Parameter Value

Servicer

Body
Size (m) 2× 2× 2

Inertia (kg ·m2) diag(405, 405, 405)

Mass (kg) 1080

Robotic
Arm

Length per link (m) 0.73, 1, 2
Mass per link (kg) 6
Inertia per link (kg ·m2) diag(0.03, 0.73, 0.73)

Target
Body

Size (m) 2× 2× 2

Inertia (kg ·m2) diag(36.8, 37.5, 36.8)

Mass (kg) 75

Others
Size of solar panels (m) 1.5× 0.8× 0.01

Size of docking ring (m) 0.423/0.443 (I/O)

target. Each arm is composed of three segments, and once
capture is completed, the joints are locked in a specific
configuration. The target is also modeled as a cube with
solar panels on both sides and a capture interface in the
form of a docking ring. For the simplicity of the study,
each component in the system is considered as a rigid
body without flexibility.

The simulation platform can be seen as a black-
box system, i.e. the attitude motion equations in the
analytical form are “packaged” within Simulink, and
only the I/O ports are used for the proposed adaptive
control algorithm, just as it would be the case for a
real spacecraft. The physical parameters considered in the
simulator are given in Table. I, which are mainly based on
[41]. Note that appropriate modifications have been done
to make this scenario more suitable for implementation in
Matlab/SimMechanics.

The studied simulation scenario is as follows. The
target is a partially malfunctioning satellite working in
a sun-oriented mode. Thus, after being captured by the
servicer, the target attempts to perform active attitude
maneuvers throughout the takeover task, i.e., when the
servicer applies a control torque to the target that leads to a
deviation from its initial attitude orientation, the target will
generate a competitive torque against the control torque
to keep its attitude. The unknown model uncertainties
considered in this example consist of two parts, the
unknown dynamics corresponding to additional robot arms,

flexible solar panels, etc., and the additional dynamics
caused by the target-generated torque. The active attitude
control law for the target is chosen to be of the PD form:

ut = −Kptqet −Kdtωt (65)

where the subscript “t” denotes the target-related variables,
Kpt = 0.02Jt, Kdt = 0.05Jt, qet = q−1

dt ⊗ qt, qdt is the
vector part of initial quaternion of the target relative to
the inertial coordinate system FI. Note that (65) is part
of the black-box simulation system and it is not known
by the servicer.

B. Adaptive Control Under Unknown Model
Uncertainties

After docking, the initial Euler angle for the combined
spacecraft is [15 5 −20]◦, and the initial angular velocity is
ω0 = [0.01 0.02 −0.01]⊤ rad/s. In this simulation scenario,
the attitude orientation of the combined spacecraft is forced
to converge to Qd = [1 0 0 0]⊤, which corresponds to an
attitude stabilization task. Generally, there are two options
to construct the training data set DN : Either just using
the transient data of the closed-loop system or applying
excitation torque on the spacecraft. In this paper, only
the transient data regarding orientation change with a
baseline PD controller is collected, which represents a
low-profile scenario. That is, the training data is collected
during the control process in the first 50s of the simulation.
With a sampling frequency of 10 Hz, the size of the
collected training set is N = 500. Considering the sensor-
based measurement of qe and ω, the training outputs are
corrupted by a Gaussian white noise ϵ[k] with ϵ[k] ∼
N (0, 0.05). The feedback gain for the baseline controller
follows Kp0 = 0.1Jc0, Kd0 = 0.3Jc0, where the nominal
inertia matrix of the combined spacecraft is selected as
Jc0 = diag(600, 450, 600) kg ·m2. It is worth mentioning
that the value of Jc0 is simply selected based on the known
inertia matrix of the servicer.

For the obtained data set DN , both a sparse and a
standard GP are trained, of which the hyperparameters
of both are optimized by the conjugated gradient descent
algorithm. Specifically, in the case of ROSGP, the inducing
points are initialized randomly inside DN with the size
of M = 50 and the initial α[0] is computed according



 
 
                        
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 4: Parts the combined spacecraft assembly: (a) Servicer spacecraft, (b) Target spacecraft, (c) Docking ring on the
target, (d) Capture point.

to (25a). The initial value of P is set to P [0] = 102IM .
Then, at t = 50s, the controller is updated to (41) where
the recursive update routine is activated. The feedback
gain functions ζp(k̆p,Σ∆) and ζd(k̆d,Σ∆) are selected as
linear functions of the variance: ζp(k̆p,Σ∆) = Jc0(k̆p +

0.1Σ
1/2
∆ ) and ζd(k̆d,Σ∆) = Jc0(k̆d+0.2Σ

1/2
∆ ) with k̆p =

0.02 and k̆d = 0.05. It can be easily verified that ζp(·)
and ζd(·) satisfy Condition 4 because the GP predictive
variance is bounded by sup k∗∗,j for j ∈ I31. Furthermore,
the selection of parameters k̆p and k̆d is based on practical
experience with PD control design for such systems with
known nominal inertia matrix Jc0, and does not require
extensive tuning procedures.

The proposed recursive online sparse GP-based learn-
ing controller is compared to:

1) Baseline PD controller: This is the initial controller
to generate the training data set during the first 50s,
and it is kept fixed after t = 50s.

2) Standard GP-based controller: This controller keeps
the same structure and parameters as the proposed
controller (41), but it is based only on an initial
trained GP without the recursive online update
strategy.

The trajectories of the system states, control inputs,
together with the feedback gain are depicted in Figs. 5-6,
where the green line indicates that the controller updates
at 50s. Simulation results show that all three controllers
succeed in achieving the attitude stabilization task for
the combined spacecraft. Also, as shown in Fig. 6, the
feedback gain of baseline PD remains constant during the
entire task, and the two GP-based controllers can adapt its
gain with the predictive variance. It is worth mentioning
that the ROSGP performs the best in terms of final
pointing error, because the unknown function ∆̆(x̃) in the
combined spacecraft dynamics is real-time compensated
by the predictive mean µ∆(x̃) of the trained GP model and
further completed by the ROSGP algorithm with online
adaption. However, it is more cautious hence its settling
time is slightly slower which can be seen in terms of the
slower convergence of the angular velocity. Additionally,
while the baseline PD controller remains the largest steady-
state error of qe without the GP compensation, it seems to
achieve the smallest steady-state error of ω, nonetheless,
at the expense of high-gain feedback. This can also be
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Fig. 5: Trajectories of qe and ω under the considered
controllers. The lines in each subplot describe the three
components of these signals. It can be observed that the
ROSGP performs the best in terms of the steady-error of qe
due to its capability of online GP compensation, while the
baseline PD controller achieves the smallest steady-state
error in terms of ω at the expense of high-gain feedback.

seen in Fig. 7, where the Pareto-front-like figure shows
the relationship between the normalized feedback gain√
∥ζp(·)∥2 + ∥ζd(·)∥2 and system error

√
∥qe∥2 + ∥ω∥2

of the two controllers in 30 simulation cases. The color
indicates the control efforts

∫ 150

50
∥u∥dt during the task. It

is clear that the proposed ROSGP-based controller requires
a relatively modest feedback gain at the same level of
system error.

The absolute value of the two GP estimation errors
∥µ∆,j − ∆̆j∥ is depicted in Fig. 8. One can see that there
exists a significant estimation error between the predictive
mean of standard GP and true function due to the initial
data set DN collected in the first 50s is not sufficient
to describe the whole state space. In contrast, the model
accuracy is adaptively enhanced by the proposed ROSGP,
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Fig. 6: Control inputs u and the norm of feedback gain under
the considered controllers. It can be observed that the high-
gain feedback of the baseline PD controller remains fixed
throughout the entire task, while the GP-based controllers
can adaptively adjust the feedback gain according to the GP
predictive variance, keeping it at a low level while ensuring
pointing accuracy.

and the full compensation for the unknown function ∆̆(x̃)
is achieved.

C. Adaptive Control Under Re-maneuver Scenario

During the on-orbit takeover control tasks, the com-
bined spacecraft often needs to perform additional new
tasks after attitude stabilization, such as maneuvering to
a new attitude orientation for awaiting further missions.
This new attitude orientation may be far from the initial
training data set DN , which poses a significant challenge
for the GP-based learning control strategy. Therefore, it
is essential to verify the generalization performance and
control effectiveness of the proposed GP-based online
learning control strategy in untrained areas.

Consider the following scenario: On the basis of
the effective attitude stabilization in the first 150s, the
combined spacecraft is required to re-maneuver to a new
attitude orientation Qd = [0.899 − 0.30 0.20 − 0.10]⊤.
Meanwhile, to further illustrate the superior performance of
the proposed ROSGP-based control strategy, rougher con-
ditions are considered in this scenario. In addition to larger
uncertainties resulting from the re-orientation outside the
trained area and competitive torque of the target maneuver,
large time-varying external disturbances that may result
from the movement of an extra robotic arm, fuel sloshing,
and flexible vibrations of solar panels, etc., are applied
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malized feedback gain and system error between the
baseline PD and proposed ROSGP-based controllers.
The color indicates the control efforts during the task.
It is apparent that at the same level of system error, the
ROSGP-based controller requires a relatively small
feedback gain.

 

 

Fig. 8: Absolute value of the GP estimation error
∥µ∆,j − ∆̆j∥ for each dimension j evaluated over
time under the stabilization scenario.

to the combined spacecraft from 150s, and can be mod-
eled as τd(t) = [0.5 sin 0.1t,− sin 0.15t, 1.5 sin(−0.15t +
1.5)]⊤N ·m.

To show the advantages of the proposed GP-based
learning control strategy, the NN-based adaptive control
scheme (denoted by ANN) in [16] is applied in the
considered scenario. In this ANN approach, radial basis
functions (RBF) are chosen as the activation functions to
estimate and compensate the unknown uncertainties. The
NN structure ∆̂ = Θ̂⊤Φρ used to estimate the unknown
dynamics ∆̆ contains 10 neurons with centers ci ∈ R6

(i ∈ I101 ) randomly distributed in [−2, 2]6 and widths
σi = 2. Each element of the initial NN weights Θ̂(0) is



 
 Fig. 9: Trajectories of qe and ω under the considered

controllers and additional torque disturbances. Due to the
torque disturbances, only ROSGP can achieve reasonably
low steady-state error.

chosen between ±0.5 randomly. The adaptive law for the
NN weight is given by: ˙̂

Θ = FρΦρr
⊤−kρFρ∥r∥Θ̂ where

r = ω + ϵqe. The parameters for the ANN controller
are selected as Fρ = 200I3, kρ = 1, Λ = 0.1I3,
ϵ = 0.1. It should be emphasized that the choice of
all the aforementioned parameters in the ANN method
is required to be tuned manually, for which there are
no comprehensive tuning rules. For a fair comparison,
the previously used control scenario was used where the
GP-based feedforward has been substituted by the ANN
compensation term.

The trajectories of the system states, control inputs,
together with the feedback gain under these settings are
depicted in Figs. 9-10. It can be seen that under the
additional disturbances, both the dynamic response and
steady-state error of the baseline PD and standard GP-
based schemes are obviously unsatisfactory and fail to
sufficiently well perform the attitude re-orientation task,
resulting in an oscillating behavior around the equilibrium
points. The reason is that the high-gain feedback of
the baseline PD controller is not capable of dealing
with such large uncertainties anymore, which also cannot
be precisely captured by the offline-trained standard
GP model. The performance of the proposed ROSGP-
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Fig. 10: Control inputs u and the norm of the feedback gain
under the considered controllers. One can observe that the
feedback gain of GP-based controllers can vary according
to the predictive variance of GP in the untrained areas.

 

Fig. 11: 3-D trajectories of the spacecraft under the
considered controllers.

based controller is significantly better compared to the
baselines, mainly resulting from the online adaptation of
the GP compensation strategy. Particularly, compared with
ANN method, the system states converge faster under
the proposed ROSGP-based controller because of the
adaptive feedback gains with GP predictive variance. A
3D illustration of the trajectories of the axes of FB is
shown in Fig. 11, where the gray cube in the center
represents the combined spacecraft. One can observe that
the trajectories under the baseline PD controller show an



 

 

Fig. 12: Value of the true uncertain dynamics (given by
blue) for each angular acceleration, the mean of the learnt
ROSGP (given by red), and the 95% confidence interval
(given by shaded blue) evaluated at the true state values
at time t when re-maneuvers to the untrained area.

 

 

Fig. 13: Absolute value of the estimation error e∆,j

for each dimension j under the considered controllers
evaluated over time under the re-orientation scenario.

obvious limit cycle behavior around the desired orientation.
This phenomenon can be further demonstrated by Fig. 12.

As shown in Fig. 12, the predictive variance (depicted
by a shaded area of 95% confidence interval) keeps at a
low level from 50s to 150s during the stabilization task.
Next, the predictive variance increases significantly from
150s when the combined spacecraft re-maneuvers to an
area outside the training data set. This makes it so that
the feedback gain of the two GP-based learning controllers
appropriately increases to further mitigate the suddenly
appearing time-varying disturbance.

Figure 13 shows the absolute value of the estimation
error e∆,j = ∥µ∆,j − ∆̆j∥ of the two GPs and e∆,j =
∥∆̂j − ∆̆j∥ of the ANN starting from 150s, i.e., the re-
maneuver task begins. It can be observed that despite
the presence of target attitude maneuvers, external time-
varying disturbances, and unlearnt dynamics, the ROSGP
still has the capability of online learning of complicated
time-varying uncertainties and compensating for them.
Therefore, despite realizing an attitude re-orientation in
a previously unseen area of the state space, the set point
error can always be maintained at a low level with superior
transient performance. It should be noted that the ANN
method results in a comparable estimation error w.r.t. the
proposed ROSGP, but this comes at the cost of a significant
manual tuning of the hyperparameters of the ANN scheme.

In addition, the computation time for a 400s long
simulation (on a MacOS Monterey, 10-core M1 Pro,
16GB RAM) under different controllers is illustrated as
follows. Particularly, the time costs of the standard GP and
ROSGP-based controller during model training is 5.59s
and 2.71s while during task execution of a 400s long
trajectory. The average computation time of the standard
GP, ROSGP, and ANN-based controller per control cycle is
16.36ms, 3.31ms, and 3.99ms (which are realizable under
the sampling time Ts = 100ms), respectively. This shows
that the computational load of the proposed control strategy
is quite small, and does not require extensive parameter
tuning procedures. Thus, the results are consistent with
the expected performance of the control system design,
indicating that the proposed strategy can efficiently, yet
accurately learn the unknown function online, and achieve
high-precision control of the attitude takeover task.

D. Monte Carlo Simulation

Finally, Monte Carlo simulation is conducted to com-
prehensively analyze the effectiveness and generalization
of the proposed control strategy under different physical
parameter values and user chosen controller parameters.
Table. II presents the range of the selected random
parameters in the Monte Carlo simulation.

TABLE II: Randomized parameter ranges in the Monte
Carlo study.

Randomized Parameters Range
mt, kg [50,100]
Jt, kg·m2 diag[50± 50, 50± 50, 50± 50]
Q0 Q3

ω0, rad/s [-0.1,0.1]×[-0.1,0.1]×[-0.1,0.1]
Baseline Kp [0.08, 0.25]Jc0

Baseline Kd [0.28, 0.55]Jc0

P [0] [1, 1000]IM
Kpt [0.01, 0.3]Jt

Kdt [0.02, 0.8]Jt

Amplitude of τd(t) [-0.5,0.5]×[-0.5,0.5]×[-0.5,0.5]

Figure 14 presents the distributions of the steady-state
error and mean square error (MSE) of qe and ω from
500 Monte Carlo simulations, respectively, where each
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Fig. 14: Distributions of (a) steady-state error and (b) MSE
of qe and ω.

“*” represents a simulation case under random conditions.
It can be observed that the overwhelming majority of the
simulation cases correspond to good performance, where
the steady-state error of the attitude quaternion is less
than 1× 10−2 and that of attitude angular velocity is less
than 1 × 10−2rad/s. Additionally, the MSE of attitude
quaternion is less than 1 × 10−4, and that of attitude
angular velocity is less than 1× 10−4rad/s. The results
illustrate the generalization performance of the proposed
ROSGP-based controller.

In summary, the simulation results show that the
proposed GP-based online learning control strategy pre-
sented in (41) and Algorithm 1 is highly effective and its
implementation is feasible for OOS attitude takeover tasks
even in the presence of target attitude maneuverability.

VI. CONCLUSION

This paper presents an effective GP-based online
learning control strategy for attitude takeover control
of noncooperative targets with attitude maneuverability.
A novel recursive online sparse GP algorithm is intro-
duced to ensure the successive online learning of the
unknown dynamics, while the computational load is kept
low, making the approach well applicable in resource-
constrained onboard scenarios. The proposed method
has probabilistic guarantees for a user-defined bound
of the pointing error. The introduced approach provides
new perspectives into the attitude controller design of
spacecrafts with unknown dynamics, especially in cases
where the moment of inertia cannot be identified. The
properties and effectiveness of our proposed strategy have
been analyzed and demonstrated by numerical simulations
based on a high-fidelity simulator.
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