

Feature causality

Citation for published version (APA):
Dubslaff, C., Weis, K., Baier, C., & Apel, S. (2024). Feature causality. Journal of Systems and Software, 209,
Article 111915. https://doi.org/10.1016/j.jss.2023.111915

Document license:
CC BY

DOI:
10.1016/j.jss.2023.111915

Document status and date:
Published: 01/03/2024

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://doi.org/10.1016/j.jss.2023.111915
https://doi.org/10.1016/j.jss.2023.111915
https://research.tue.nl/en/publications/096b0408-59b7-4abe-9eaf-f7daa0b6ccf4

The Journal of Systems and Software 209 (2024) 111915

A
0

✩

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Feature causality✩,✩✩

Clemens Dubslaff a,b,∗, Kallistos Weis d, Christel Baier b,c, Sven Apel d

a Formal System Analysis Group, Eindhoven University of Technology, Eindhoven, The Netherlands
b Centre for Tactile Internet with Human-in-the-Loop (CeTI), Dresden, Germany
c Institute of Theoretical Computer Science, Dresden University of Technology, Dresden, Germany
d Saarland University, Saarland Informatics Campus, Germany

A R T I C L E I N F O

Keywords:
Configurable systems
Causality
Formal methods
Feature interactions
Variability
Root causes

A B S T R A C T

The detection and understanding of reasons for defects and inadvertent behavior in software is challenging
due to its ever increasing complexity. One major aspect contributing to this complexity is the multitude of
features a user might select from in configurable systems. In this article, we tackle this challenge by introducing
the notion of feature causality that identifies features and their interactions which are the reasons for a system
showing certain functional and non-functional properties seen as effects. Feature causality operates at the level
of system configurations and is based on counterfactual reasoning, inspired by the seminal definition of actual
causality by Halpern and Pearl.

Towards turning feature causality into meaningful explanations for the reasons why an effect emerges, we
present various explication methods, e.g., by cause–effect covers, quantifications of causal impacts based on
notions like responsibility and blame, causal reasoning with uncertainty, and feature interactions. Through a
close connection of feature causality to prime implicants, we derive algorithms to effectively compute feature
causes and causal explications. By means of an evaluation on a wide range of configurable software systems,
including community benchmarks and real-world systems, we demonstrate the feasibility of our approach: We
illustrate how our notion of causality facilitates to identify root causes, estimate the impact of features on
effect properties, and detect feature interactions.
1. Introduction

Most of nowadays computing systems are configurable, offering
a wide variety of configuration options and parameters from which
users can control the functionalities of the system. A common view
on configuration options is by features that encapsulate optional or
incremental units of functionality (Zave, 2001) and pave the way
for the well-established concept of feature-oriented software engineer-
ing (Apel et al., 2013). The features of a configurable system can influ-
ence critical functional properties such as safety, and non-functional
properties such as low probability of failure or performance. Often,
the configuration spaces are exponential in the number of features,
rendering the detection, prediction, and explanation of defects and
inadvertent behavior challenging tasks. While there are specifically

✩ Editor: Laurence Duchien.
✩ The authors are supported by the DFG, Germany through the Collaborative Research Center TRR 248 (see https://perspicuous-computing.science, project ID

389792660) and the Cluster of Excellence EXC 2050/1 (CeTI, project ID 390696704, as part of Germany’s Excellence Strategy).
∗ Corresponding author at: Formal System Analysis Group, Eindhoven University of Technology, Eindhoven, The Netherlands.

E-mail addresses: c.dubslaff@tue.nl (C. Dubslaff), kallistos@cs.uni-saarland.de (K. Weis), christel.baier@tu-dresden.de (C. Baier), apel@cs.uni-saarland.de
(S. Apel).

tailored methods that tackle this challenge and enable configurable
systems analysis (Thüm et al., 2014), research on their explainability
is still in its infancy (Baier et al., 2021). The huge amounts of system
configurations and corresponding analysis results, bug reports, or other
feature-dependent properties demand techniques for a meaningful and
feasible interpretation.

In this article, we present a set of fundamental concepts and meth-
ods to identify and interpret properties of configurable systems at
the level of features by causal reasoning. We introduce the notion of
feature causes as those feature activations or deactivations that are
the reason for emergent system behaviors given as a set of effect
configurations. This notion takes inspiration from the seminal counter-
factual definition of actual causality by Halpern and Pearl (2001a),
Halpern (2015), also known as HP causality, that seeks to determine
vailable online 7 December 2023
164-1212/© 2023 The Author(s). Published by Elsevier Inc. This is an open access a

https://doi.org/10.1016/j.jss.2023.111915
Received 1 March 2023; Received in revised form 15 September 2023; Accepted 25
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

November 2023

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
https://perspicuous-computing.science
mailto:c.dubslaff@tue.nl
mailto:kallistos@cs.uni-saarland.de
mailto:christel.baier@tu-dresden.de
mailto:apel@cs.uni-saarland.de
https://doi.org/10.1016/j.jss.2023.111915
https://doi.org/10.1016/j.jss.2023.111915
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111915&domain=pdf
http://creativecommons.org/licenses/by/4.0/

The Journal of Systems & Software 209 (2024) 111915C. Dubslaff et al.

a
T
c
v

A
p
s
c
t
B
a
a
t
o
p

2

c

I

s
i
s
h
[
i
a

o

𝑦

the causes for effect events. As with HP causality, feature causality
ssumes full information about the situations where the effect emerges.
o enable causal reasoning also on incompletely specified sets of effect
onfigurations or sets of valid system configurations, we extend this
iew and present a generalization of feature causes by means of fea-

ture precauses. Incomplete specifications of sets of configurations arise,
e.g., when variability spaces are not known (Thüm, 2020), the analysis
of the effect involves noise, e.g., when using approximative methods
for determining non-functional effect properties, or when an exhaustive
analysis is impossible or infeasible, e.g., when relying on real-world bug
reports or testing.

Relevant analysis and reasoning tasks that we then address include
to determine the set of feature causes for a bug to emerge, the degree to
which some configurations are responsible for bad system performance,
how robust are feature causes w.r.t. uncertainty in emerging effects, or
which features necessarily have to interact for inadvertent behavior.

We develop techniques to perform such tasks in a very generic
way, i.e., independent from language-, architecture-, nor environment-
specific properties. In fact, our methods are applicable within any effec-
tive method to analyze or test variability-aware properties that describe
the effect for which reasons are of interest. To this end, causal rea-
soning on both variability-aware white-box and black-box analyses is
supported, complementing existing causal reasoning techniques for the
detection of root causes: Approaches such as delta-debugging (Zeller,
2002; Cleve and Zeller, 2005), causal testing (Johnson et al., 2020), or
causal trace analysis (Beer et al., 2012) require a white-box analysis
that operates at the level of code and are not variability-aware. Hence,
they usually would have to be applied on a multitude of system
configurations for a variability-aware causal analysis, suffering from a
combinatorial blowup well known to arise in configurable systems.

Explications from feature causality. Since features correspond to sys-
tem functionalities specified by software engineers, they often have
a dedicated meaning in the target application domain (Apel et al.,
2013). To this end, defects (and other behaviors of interest) detected at
the level of features can provide important insights for the resolution
of variability bugs (Garvin and Cohen, 2011; Rhein et al., 2018; Abal
et al., 2018) and configuration-dependent behavior (Siegmund et al.,
2012; Siegmund et al., 2015; Guo et al., 2018; Nair et al., 2020).
They hence are certainly more informative and actionable than low-
level program traces that do not include variability information. We
introduce and discuss several means to explicate reasons for properties
that can be obtained from feature causes and precauses: concise
logic formulas by a new method called distributive law simplification
(DLS), cause–effect covers, feature interactions, and causal measures by
means of responsibility and blame (Chockler and Halpern, 2004). With
explicated feature causality at hand, developers may choose to focus
on those feature implementations identified as root causes of bugs or
simply disallow or coordinate the activation of certain features when
defects are related to them. We envision applications of feature causal-
ity at those development phases where analysis methods are used,
for instance, in software product line engineering. Also in production-
level deployments our techniques shall be useful to optimize software
through causally relevant configurations.

Evaluation. We present algorithms to compute feature causes, feature
precauses, and causal explications for them. Our prototypical imple-
mentation relies on binary decision diagrams (BDDs) (Bryant, 1986)
and the computation of prime implicants using the de-facto standard
two-level logic minimizer Espresso (McGeer et al., 1993). By means
of an analysis of several configurable systems, including community
benchmarks and real-world systems, we investigate feature causes and
their properties. We demonstrate that our notion of feature causes and
methods to represent them help to pinpoint features relevant for the
configurable system’s properties and illustrate how feature interactions
can be detected and quantified. In particular, our evaluation is driven
by the following research questions:
2

(RQ1) Can feature causes be effectively computed in real-world set-
tings and support the detection of reasons for different effects
of interest?

(RQ2) Do DLS representation, cause–effect covers, and degrees of re-
sponsibility and blame provide concise causal explications?

(RQ3) Is feature causality beneficial for guiding the configuration of
systems under variability-aware constraints?

(RQ4) Can feature interactions and configuration-dependent anoma-
lies be detected and isolated based on feature causality?

(RQ5) To which extend can feature precauses for underspecified effect
sets already provide insights on causal relationships?

Contributions. In summary, our contributions are:

(1) We introduce the notion of feature causality inspired by the
well-established counterfactual definition of actual causality
by Halpern and Pearl (2001a), Halpern (2015).

(2) We show that feature causes for effects given as sets of configura-
tions coincide with certain prime implicants that cover the effect
configurations, leading to an algorithm to effectively compute all
feature causes (Strzemecki, 1992).

(3) We extend feature causality and algorithms to support incom-
plete specifications and uncertainties of effects and configuration
space, leading to feature precauses.

(4) We provide methods to interpret and represent feature causes
and precauses by propositional formulas, cause–effect covers,
responsibility and blame, and potential feature interactions.

(5) We offer a BDD-based prototype to compute and represent fea-
ture causes, feature precauses, and feature interactions.

(6) We conduct several experiments illustrating how to determine
and reason about feature causes in different realistic settings.

bout this article. This article is an extended version of the conference
ublication titled ‘‘Causality in Configurable Software Systems’’ (Dub-
laff et al., 2022). The main additional material not presented in the
onference version comprises the definition, computation, and evalua-
ion of feature precauses (see above (3) and parts of (4), (5), and (6)).
esides this, the article provides full proofs, additional technical details
nd examples, a formal comparison to the binary case of HP causality,
s well as discussions on cause–effect prime covers and their relation
o minimal sum of products from circuit optimization. The source code
f our implementation and raw data to reproduce our experiments are
ublicly available Dubslaff et al. (2023a,b).

. Background

In this section, we revisit basic concepts and notions from logics and
onfigurable systems used throughout the paper.

nterpretations. A partial interpretation over a set 𝑋 is a partial mapping
𝜕∶𝑋 ⇀ {𝚝𝚛𝚞𝚎, 𝚏𝚊𝚕𝚜𝚎}. We denote by 𝗌𝗎𝗉𝗉(𝜕) the support of 𝜕, i.e., the
set of all elements 𝑥 ∈ 𝑋 where 𝜕(𝑥) is defined. We say that 𝜕 is a
total interpretation if 𝗌𝗎𝗉𝗉(𝜕) = 𝑋 and denote by 𝛥(𝑋) and 𝛩(𝑋) the
et of partial and total interpretations, respectively. Given a partial
nterpretation 𝜕 ∈ 𝛥(𝑋), we define its semantics [[𝜕]] ⊆ 𝛩(𝑋) as the
et of all total interpretations 𝜃 ∈ 𝛩(𝑋) where for all 𝑥 ∈ 𝗌𝗎𝗉𝗉(𝜕) we
ave 𝜕(𝑥) = 𝜃(𝑥). For a set of partial interpretations  ⊆ 𝛥(𝑋), we define
[]] =

⋃

𝜕∈ [[𝜕]]. The 𝑥-expansion of a partial interpretation 𝜕 ∈ 𝛥(𝑋)
s the partial interpretation 𝜕↑𝑥 ∈ 𝛥(𝑋) where 𝗌𝗎𝗉𝗉(𝜕↑𝑥) = 𝗌𝗎𝗉𝗉(𝜕)⧵{𝑥}
nd where 𝜕↑𝑥(𝑦) = 𝜕(𝑦) for all 𝑦 ∈ 𝗌𝗎𝗉𝗉(𝜕)⧵{𝑥}.

We formalize switching of polarities in interpretations, i.e., mapping
f 𝚝𝚛𝚞𝚎 to 𝚏𝚊𝚕𝚜𝚎 assignments and vice versa, by a function

𝗌𝗐𝗂𝗍𝖼𝗁∶℘(𝑋) × 𝛩(𝑋) → 𝛩(𝑋)

where for any 𝑌 ⊆ 𝑋 and 𝜃 ∈ 𝛩(𝑋), we have 𝗌𝗐𝗂𝗍𝖼𝗁(𝑌 , 𝜃)(𝑦) = 𝜃(𝑦) if
∉ 𝑌 and 𝗌𝗐𝗂𝗍𝖼𝗁(𝑌 , 𝜃)(𝑦) = ¬𝜃(𝑦) otherwise.

The Journal of Systems & Software 209 (2024) 111915C. Dubslaff et al.

C

u
h
o
f
o
c

3

s
P
s
e
c

b
a

a
a
a
a
g
t

𝖤

b
v
(
b
a
c
f
t
c
c
o

D
r

Fig. 1. Feature diagram for the email system example.

overs and prime implicants. Let  ,0,1 ⊆ 𝛥(𝑋) be three sets of partial
interpretations. We say that 1 is covered by  (or alternatively:  is a
cover of/covers 1) iff [[1]] ⊆ [[]]. Further,  is a ∗-cover of 1 relative
to 0 if  is a cover of 1 that is covered by 𝛩(𝑋)⧵[[0]], i.e., [[1]] ⊆
[[]] ⊆ 𝛩(𝑋)⧵[[0]]. In ∗-covers, [[1]] and [[0]] intuitively stand for
the sets of interpretations for which a Boolean function is known to
be 𝚝𝚛𝚞𝚎 and 𝚏𝚊𝚕𝚜𝚎, respectively. The set of all other interpretations
𝛩(𝑋)⧵[[0 ∪ 1]] is the ∗-set, constituting the set of unknown or ‘‘don’t
care’’ interpretations. Note that  is a cover of 1 iff  is a ∗-cover of 1
relative to ∅ and hence, ∗-covers can be seen as a more general form of
covers. A ∗-cover  of 1 relative to 0 is minimal if there is no ∗-cover
 ′ of 1 relative to 0 where | ′

| < ||. Note that minimal ∗-covers
are not uniquely defined and there can be multiple minimal ∗-covers
 for a given 0 and 1. Our notions also extend to  , 0, or 1 being
singletons (or sets of total interpretations), e.g., a partial configuration
𝜕 ∈ 𝛥(𝑋) covers a set of total interpretations  ⊆ 𝛩(𝑋) iff  ⊆ [[𝜕]]. We
call a partial interpretation 𝜕 ∈ 𝛥(𝑋) a prime implicant of  iff  covers
𝜕 and [[𝜕↑𝑥]] ⊈  for all 𝑥 ∈ 𝗌𝗎𝗉𝗉(𝜕). A prime ∗-cover of 1 relative to
0 is a cover of 1 that only comprises prime implicants of 𝛩(𝑋)⧵[[0]].
We denote by P(1,0) the set of prime ∗-covers of 1 relative to 0 and
by 𝑚P(1,0) the minimal prime ∗-covers of 1 relative to 0.

Propositional logics. A propositional logic formula over a set 𝑋 is an
expression defined by the grammar 𝜙 = 𝚝𝚛𝚞𝚎 ∣ 𝚏𝚊𝚕𝚜𝚎 ∣ 𝑥 ∣ ¬𝜙 ∣
𝜙 ∧ 𝜙 ∣ 𝜙 ∨ 𝜙 where 𝑥 ranges over 𝑋. The length |𝜙| of a formula 𝜙
is recursively defined by |𝚝𝚛𝚞𝚎| = |𝚏𝚊𝚕𝚜𝚎| = |𝑥| = 1, |¬𝜙| = |𝜙| + 1,
and |𝜙0 ∧ 𝜙1| = |𝜙0 ∨ 𝜙1| = |𝜙0| + |𝜙1| + 1. For a partial interpretation
𝜕 ∈ 𝛥(𝑋), we write 𝜕 ⊧ 𝜙 if either 𝜙 = 𝚝𝚛𝚞𝚎, 𝜙 = 𝑥 ∈ 𝗌𝗎𝗉𝗉(𝜕) and
𝜕(𝑥) = 𝚝𝚛𝚞𝚎, 𝜙 = ¬𝜓 and not 𝜕 ⊧ 𝜓 , 𝜙 = 𝜙0 ∧ 𝜙1 and 𝜕 ⊧ 𝜙0 and 𝜕 ⊧ 𝜙1,
and 𝜙 = 𝜙0 ∨ 𝜙1 and 𝜕 ⊧ 𝜙0 or 𝜕 ⊧ 𝜙1. The semantics of 𝜙 is the set of
all satisfying total interpretations [[𝜙]] = {𝜃 ∈ 𝛩(𝑋) ∶ 𝜃 ⊧ 𝜙}.

Configurable systems. A widely adopted concept to model configurable
systems is by means of features (Apel et al., 2013). Features encapsulate
optional or incremental units of functionality (Zave, 2001) and describe
commonalities and variabilities of whole families of systems. At an
abstract level, we identify Boolean configuration options with features
of the system and fix a set of features 𝐹 . We call a total interpretation
𝜃 ∈ 𝛩(𝐹) over 𝐹 a configuration, which we usually describe by listing
the selected features, i.e., the features 𝑥 ∈ 𝐹 where 𝜃(𝑥) = 𝚝𝚛𝚞𝚎. The set
of valid configurations 𝖵𝖺𝗅𝗂𝖽 ⊆ 𝛩(𝐹) comprises those configurations for
which there exists a corresponding system implementation. A partial
interpretation over 𝐹 is called partial configuration.

Example 1. As the running example, consider a simple email sys-
tem over features 𝐹 = {𝑚, 𝑠, 𝑒, 𝑐, 𝑎, 𝑟}, formalizing the base email
system functionality, optional features for signing and encryption, and
encryption methods Caesar, AES, and RSA. Valid configurations are
sually specified through feature diagrams (Kang et al., 1990). These are
ierarchical structures over features describing the constraints imposed
n configurations to render them valid. An example of such a diagram
or our running example is provided in Fig. 1. In essence, the feature
f the root of the diagram has always to be included in any valid
3

onfiguration, here ‘‘m’’. If some son is active in a configuration, then
also its parent has to be included. The other way around, if no ◦
is drawn at the top of a node (indicating ‘‘optional features’’), then
also the activation of a parent feature imposes activation of the son.
Non-connected branches stand for logical conjunctions and connected
branches for exclusive disjunctions over the connected sons. Thus, for
the encryption features, we assume that exactly one can be selected.
The described variability constraints for the email system specified in
the feature diagram of Fig. 1 lead to valid configurations 𝖵𝖺𝗅𝗂𝖽 =
{𝑚,𝑚𝑒𝑐, 𝑚𝑒𝑎, 𝑚𝑒𝑟, 𝑚𝑠, 𝑚𝑠𝑒𝑐, 𝑚𝑠𝑒𝑎, 𝑚𝑠𝑒𝑟 }. ⋄

. Feature causality

The notion of causality has been extensively studied in philosophy,
ocial sciences, and artificial intelligence (Good, 1959; Eells, 1991;
earl, 2009; Williamson, 2009). We focus here on actual causality, de-
cribing binary causal relationships between cause events 𝐶 and effect
vents 𝐸. Halpern and Pearl formalized actual causality based on the
oncept of counterfactual dependencies (Lewis, 1973) using a structural-

equation approach (Halpern, 2015; Halpern and Pearl, 2001a,b). The
idea of counterfactual reasoning (Wachter et al., 2017) relies on the
assumption that 𝐸 would not have happened if 𝐶 had not happened
efore, which corresponds to the ‘‘but-for’’ test used in law (Spellman
nd Kincannon, 2001; Wachter et al., 2017).

In this section, we take inspiration of the definition by (Halpern
nd Pearl, 2001a; Halpern, 2015) to establish a notion of causality
t the level of features. Here, we interpret the selection of features
s events considered for actual causality. The basic reasoning task we
ddress then amounts to determine those feature selections that cause a
iven effect property. Examples for effect properties are ‘‘the execution
ime is longer than five minutes’’ or ‘‘the system crashes’’.

We assume to have described the effect properties as effect set
𝖿𝖿𝖾𝖼𝗍 ⊆ 𝖵𝖺𝗅𝗂𝖽 of valid configurations for which an effect property can
e observed. Elements of 𝖤𝖿𝖿𝖾𝖼𝗍 are called effect instances. All other
alid configurations in 𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍 are assumed not to exhibit the effect
called non-effect instances). Feature selections are naturally specified
y partial configurations. Clearly, a partial configuration 𝛾 can only be
cause of the effect if 𝛾 ensures the effect to emerge, i.e., all valid

onfigurations that are covered by 𝛾 are effect instances. Furthermore,
ollowing counterfactual reasoning, we require for 𝛾 being a cause
hat, if we would select features of 𝛾 differently, there might be a
onfiguration for which the effect does not emerge. These two intuitive
onditions on causality are reflected in our formal definition of causes
f 𝖤𝖿𝖿𝖾𝖼𝗍 w.r.t. 𝖵𝖺𝗅𝗂𝖽:

efinition 1. A feature cause of an effect 𝖤𝖿𝖿𝖾𝖼𝗍 w.r.t. valid configu-
ations 𝖵𝖺𝗅𝗂𝖽 is a partial configuration 𝛾 ∈ 𝛥(𝐹) where

(FC1) ∅ ≠ [[𝛾]] ∩ 𝖵𝖺𝗅𝗂𝖽 ⊆ 𝖤𝖿𝖿𝖾𝖼𝗍 and
(FC2) [[𝛾↑𝑥]] ∩ 𝖵𝖺𝗅𝗂𝖽 ⊈ 𝖤𝖿𝖿𝖾𝖼𝗍 for all 𝑥 ∈ 𝗌𝗎𝗉𝗉(𝛾).

𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) denotes the set of all causes for 𝖤𝖿𝖿𝖾𝖼𝗍 w.r.t. 𝖵𝖺𝗅𝗂𝖽.

In case (FC1) holds for a partial configuration 𝛾, we say that 𝛾
is sufficient for 𝖤𝖿𝖿𝖾𝖼𝗍 w.r.t. 𝖵𝖺𝗅𝗂𝖽 (Garvin and Cohen, 2011). This
sufficiency is considered in the scope of 𝖵𝖺𝗅𝗂𝖽, since for configurations
not contained in 𝖵𝖺𝗅𝗂𝖽 it usually cannot be decided in practice whether
an effect emerges or not. The counterfactual nature of (FC2) ensures
that for every feature cause 𝛾 and 𝑥 ∈ 𝗌𝗎𝗉𝗉(𝛾) there is a counterfactual
witness 𝜂 ∈ [[𝛾↑𝑥]] ∩ (𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍). That is, a valid feature configuration
where the effect does not emerge but where changing one feature selec-
tion may yield an effect instance. Note that (FC2) ensures minimality
of the feature cause w.r.t. its support, i.e., dropping conditions on
interpretations of features necessarily leads to a partial configuration
that is not sufficient for the effect anymore. In the formal definition
of Halpern and Pearl causality (Halpern, 2015), counterfactuality and

minimality are stated in two distinct conditions (see also Section 3.2).

The Journal of Systems & Software 209 (2024) 111915C. Dubslaff et al.

p
c

E
e
r
t
p
s
c
n
b
e
e
r
e

f
a
T
a

f

a
𝛾

[

H
𝑒
t
p

3

i
p
f
s
i
i
a
f
e
v
t

Fig. 2. Configuration sets for feature causality.
We usually denote configurations in 𝖤𝖿𝖿𝖾𝖼𝗍 by 𝜂, counterfactual
witnesses in 𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍 by 𝜂, and feature causes by 𝛾. Fig. 2 de-
icts the relation between valid configurations, effects, causes, and
ounterfactual witnesses.

xample 2. Let us continue our running example of the configurable
mail system introduced in Example 1. We consider an effect property
eflecting ‘‘long decipher time’’, e.g., that it takes in average more than
hree months for an attacker to decrypt an email. Assume that this effect
roperty can be observed by configurations in which AES or RSA are
elected, i.e., 𝖤𝖿𝖿𝖾𝖼𝗍 = {𝑚𝑒𝑎, 𝑚𝑒𝑟, 𝑚𝑠𝑒𝑎, 𝑚𝑠𝑒𝑟}. Conversely, in all valid
onfigurations in which AES and RSA are not selected, the effect does
ot emerge. In this setting, the encryption features AES and RSA are
oth causes since all valid configurations with either feature show the
ffect. Considered in isolation, AES and RSA are not necessary for the
ffect, as one can choose the other encryption feature (RSA or AES,
espectively) to ensure the effect. The sign feature does not trigger the
ffect and is not a cause.

Interestingly, a further cause is given by selecting the encryption
eature and explicitly deselecting the Caesar feature, illustrating that
lso explicitly not selecting features might be a cause of some effect.
his hints at the fact that causes can be represented in different ways,
ddressed later in the paper.

Formalizing this intuition, we check whether the three partial con-
igurations 𝛾𝑎, 𝛾𝑟, and 𝛾𝑒𝑐 given by

(i) 𝗌𝗎𝗉𝗉(𝛾𝑎) = {𝑎} with 𝛾𝑎(𝑎) = 𝚝𝚛𝚞𝚎,
(ii) 𝗌𝗎𝗉𝗉(𝛾𝑟) = {𝑟} with 𝛾𝑟(𝑟) = 𝚝𝚛𝚞𝚎, and

(iii) 𝗌𝗎𝗉𝗉(𝛾𝑒𝑐) = {𝑒, 𝑐} with 𝛾𝑒𝑐 (𝑒) = 𝚝𝚛𝚞𝚎 and 𝛾𝑒𝑐 (𝑐) = 𝚏𝚊𝚕𝚜𝚎

are feature causes of 𝖤𝖿𝖿𝖾𝖼𝗍 w.r.t. 𝖵𝖺𝗅𝗂𝖽 according to Definition 1: First,
note that [[𝛾𝑒𝑐]]∩𝖵𝖺𝗅𝗂𝖽 = ([[𝛾𝑎]]∪[[𝛾𝑟]])∩𝖵𝖺𝗅𝗂𝖽 = 𝖤𝖿𝖿𝖾𝖼𝗍 and both, [[𝛾𝑎]]∩𝖵𝖺𝗅𝗂𝖽
nd [[𝛾𝑟]]∩𝖵𝖺𝗅𝗂𝖽, are non-empty. Hence, (FC1) is fulfilled for 𝛾𝑒𝑐 , 𝛾𝑎, and
𝑟. To check (FC2), we observe that [[𝛾𝑎↑𝑎]] = [[𝛾𝑟↑𝑟]] = 𝛩(𝐹) and

[[𝛾𝑒𝑐↑𝑒]] ∩ 𝖵𝖺𝗅𝗂𝖽 = 𝖤𝖿𝖿𝖾𝖼𝗍 ∪ {𝑚,𝑚𝑠}, and
[𝛾𝑒𝑐↑𝑐]] ∩ 𝖵𝖺𝗅𝗂𝖽 = 𝖤𝖿𝖿𝖾𝖼𝗍 ∪ {𝑚𝑒𝑐, 𝑚𝑠𝑒𝑐}.

ence, 𝑚 is a counterfactual witness for 𝛾𝑎, 𝛾𝑟, and 𝛾𝑒𝑐 w.r.t. 𝑎, 𝑟, and
, respectively, while 𝑚𝑒𝑐 can serve as such for 𝛾𝑒𝑐 and 𝑐. It is easy
o check that there are no further feature causes since for all other
artial configurations sufficient for 𝖤𝖿𝖿𝖾𝖼𝗍 w.r.t. 𝖵𝖺𝗅𝗂𝖽 (see (FC1)) there

are expansions towards 𝛾𝑎, 𝛾𝑟, or 𝛾𝑒𝑐 (thus, violating (FC2)). ⋄

.1. Effect properties and effect sets

Our definition of feature causality relies on a given effect set, which
s assumed to comprise all those valid configurations where the effect
roperty holds. We now elaborate more on how to obtain effect sets
rom analyzing configurable systems. In fact, our generic definition
upports a multitude of effect properties for which the only assumption
s that there is an effective method to determine all configurations
n which the effect property holds. Such methods include variability-
ware white-box analyses (Weber et al., 2021; Velez et al., 2021) or
ormal analysis through model checking (Cordy et al., 2013a; Chrszon
t al., 2018) where the source code or operational behavior of system
ariants is accessible. Further, also black-box analyses are eligible
o specify effect sets, where only the behavior of the system can
4

be observed without knowledge about the innerworkings, relying on
testing or sampling (Guo et al., 2018; Kaltenecker et al., 2019). In
the following paragraphs, we exemplify how to obtain effect sets from
analysis results. The discussed effect properties reflect the instances of
the experimental evaluation section (see Section 5) and do not claim to
be exhaustive.

Functional properties. To reason about causality w.r.t. functional prop-
erties, the effect set can be determined by variability-aware static
analysis (Beek et al., 2019; Rhein et al., 2018) or model checking (Plath
and Ryan, 2001; Classen et al., 2013; Apel et al., 2013). In the latter
case, effect properties can be formalized, e.g., in a temporal logic such
as LTL (Pnueli, 1977) or CTL (Clarke et al., 1986). Model checking
configurable systems against LTL and CTL properties has broad tool
support (e.g. Classen et al., 2012; Cordy et al., 2013a). Given a formula
𝜑 that specifies the effect property, these tools return all the valid
configurations 𝜃 ∈ 𝖵𝖺𝗅𝗂𝖽 whose corresponding system variants satisfy
𝜑, i.e., the effect set

𝖤𝖿𝖿𝖾𝖼𝗍𝜑 = {𝜃 ∈ 𝖵𝖺𝗅𝗂𝖽 ∶ 𝜃 ⊧ 𝜑}

Since model checking is based on an exhaustive analysis, an analysis
also exposes those valid configurations for which the effect prop-
erty does not hold. The same is possible for variability-aware static
analysis (Rhein et al., 2018; Bodden et al., 2013).

Non-functional properties. Besides functional properties, also non-
functional properties of configurable systems can serve as effect prop-
erty and give rise to an effect set. Let 𝜌∶ 𝖵𝖺𝗅𝗂𝖽 → R be a function
that results from a quantitative analysis of the configurable system in
question, providing a quantitative measure for all valid configurations.
Values 𝜌(𝜃) for a valid configuration 𝜃 ∈ 𝖵𝖺𝗅𝗂𝖽 may stand for the per-
formance achieved, the probability of failure, or the energy consumed
in the system variant that corresponds to 𝜃. To obtain 𝜌 for real-world
systems, Siegmund et al. (2015), Siegmund et al. (2012) presented a
black-box method to generate linear-equation models for performance
measures by multivariable linear regression on sampled configura-
tions. Other black-box approaches rely on regression trees (Guo et al.,
2018), Fourier learning (Zhang et al., 2015), or probabilistic program-
ming (Dorn et al., 2020). Related white-box approaches use insights of
local measurements and taint analysis information (Velez et al., 2021)
or profiling information (Weber et al., 2021).

An orthogonal formal white-box analysis on operational models
with quantitative information (such as probabilities, costs, etc.) is
provided through variability-aware probabilistic model checking (Dub-
slaff et al., 2015; ter Beek et al., 2016). Effect properties for such
approaches are specified in quantitative variants of temporal logic such
as probabilistic CTL (Hansson and Jonsson, 1994). These approaches
have been implemented in the tools like ProFeat (Chrszon et al., 2018)
and QFLan (Vandin et al., 2018) and have shown practical applicability
in various experimental studies.

Given 𝜌 that results from one of the analysis approaches mentioned
above, an effect set can be specified by imposing a threshold 𝜏 ∈ R
combined with a comparison relation ∼ towards threshold effect sets

𝖤𝖿𝖿𝖾𝖼𝗍𝜌∼𝜏 = {𝜃 ∈ 𝖵𝖺𝗅𝗂𝖽 ∶ 𝜌(𝜃) ∼ 𝜏}.

The Journal of Systems & Software 209 (2024) 111915C. Dubslaff et al.

d
w
q
𝜌
d
A
w

t

(

L
h

P
𝗌

(
v

t
Example 3. In Example 2, we informally specified the effect of a ‘‘long
ecipher time’’ as taking more than three months to decrypt an email
ithout having the encryption key available. By a variability-aware
uantitative analysis on the email system, we may obtain a function
that, for a configuration 𝜃, returns the minimal time in years to

ecipher an email sent with the system variant corresponding to 𝜃.
nalysis results could be, e.g., 𝜌(𝜃) = 0 with no encryption, 𝜌(𝜃) = 10−7

ith Caesar, 𝜌(𝜃) = 1 with AES, and 𝜌(𝜃) = 2 with RSA selected
in 𝜃, respectively. Then, 𝖤𝖿𝖿𝖾𝖼𝗍𝜌>0.25 provides the effect set 𝖤𝖿𝖿𝖾𝖼𝗍 of
Example 2. ⋄

On computing effect sets. The effect set and the set of valid configura-
tions can be of exponential size in the number of features. An efficient
computation of these sets depends on the analysis techniques used and
are independent from our causal framework. However, specifically tai-
lored variability-aware analysis techniques can tackle the exponential
blowup, e.g., through symbolic representation of family models (Thüm
et al., 2014; Dubslaff, 2019).

3.2. Relation to HP causality

The original definition of actual causality by (Halpern, 2015) relies
on a structural-equation approach and comprises three conditions:
effectiveness, counterfactuality, and minimality. Compared to our def-
inition of feature causes presented in Definition 1, their definition sup-
ports non-Boolean evaluation of variables and the distinction between
endogenous and exogenous variables, specifying variables inherently
contained in the system and those that can be subject of external
influences, respectively. Directly transferring their notion of actual
causality to the setting of configurable systems leads to the following
definition of HP feature causality :

Definition 2. An HP feature cause of an effect 𝖤𝖿𝖿𝖾𝖼𝗍 w.r.t. valid
configurations 𝖵𝖺𝗅𝗂𝖽 is a partial configuration 𝛾 ∈ 𝛥(𝐹) where

(FCa) [[𝛾]] ∩ 𝖤𝖿𝖿𝖾𝖼𝗍 ≠ ∅ and [[𝛾]] ∩ (𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍) = ∅,
(FCb) there is a partial configuration 𝜕 ∈ 𝛥(𝐹) with 𝗌𝗎𝗉𝗉(𝛾) = 𝗌𝗎𝗉𝗉(𝜕)

such that [[𝜕]] ∩ (𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍) ≠ ∅, and
(FCc) 𝛾 is minimal; for all ∅ ≠ 𝑆 ⊆ 𝗌𝗎𝗉𝗉(𝛾) either (FCa) or (FCb) is

not satisfied for 𝛾↑𝑆 .

In the following, we draw the connection between HP feature causes
and our definition of feature causes provided in Definition 1. First,
observe that for the counterfactual (FCb) of HP feature causes, a single
counterfactual witness suffices:

Lemma 1. 𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍 ≠ ∅ iff (FCb) for some 𝛾 ∈ 𝛥(𝐹).

Proof. (⇒): Let 𝜃 ∈ 𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍, which exists by assumption and
let 𝛾 ∈ 𝛥(𝐹). For 𝜕 = 𝜃↑𝐹⧵𝗌𝗎𝗉𝗉(𝛾) we then have 𝜃 ∈ [[𝜕]] and hence,
𝜃 ∈ [[𝜕]] ∩ 𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍. Thus, (FCb) is fulfilled for 𝛾.

(⇐): Let 𝛾 ∈ 𝛥(𝐹). By (FCb) there is 𝜕 ∈ 𝛥(𝐹) with 𝗌𝗎𝗉𝗉(𝛾) = 𝗌𝗎𝗉𝗉(𝜕)
and [[𝜕]] ∩ (𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍) ≠ ∅. Then there is 𝜃 ∈ [[𝜕]] ∩ (𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍) and
hus 𝜃 ∈ 𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍, leading to 𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍 ≠ ∅. □

Then, we can show that minimality condition (FCc) agrees with
FC2) under the condition of (FCa) and (FCb) to hold:

emma 2. Let 𝛾 ∈ 𝛥(𝐹) for which (FCa) and (FCb) hold. Then, (FCc)
olds for 𝛾 iff (FC2) holds for 𝛾.

roof. First observe that due to Lemma 1 we have that for any 𝑆 ⊆
𝗎𝗉𝗉(𝛾) we have (FCb) to hold for 𝛾↑𝑆 iff (FCb) holds for 𝛾.

⇒): Let 𝑆 = {𝑥} for some 𝑥 ∈ 𝗌𝗎𝗉𝗉(𝛾), then 𝛾↑𝑥 validates (FCb). Since 𝛾
5

alidates (FCc), (FCa) is not valid for 𝛾↑𝑥. Further, [[𝛾]]∩𝖤𝖿𝖿𝖾𝖼𝗍 ≠ ∅ due
o (FCa) and thus also [[𝛾↑𝑥]]∩𝖤𝖿𝖿𝖾𝖼𝗍 ≠ ∅. Hence, [[𝛾↑𝑥]]∩(𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍) ≠
∅ and thus, [[𝛾↑𝑥]] ∩ 𝖵𝖺𝗅𝗂𝖽 ⊈ 𝖤𝖿𝖿𝖾𝖼𝗍, i.e., (FC2) holds.

(⇐): Due to (FC2) we have [[𝛾↑𝑥]]∩(𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍) ≠ ∅ for all 𝑥 ∈ 𝗌𝗎𝗉𝗉(𝛾).
By (FCa), |𝗌𝗎𝗉𝗉(𝛾)| > 0, hence there is also an 𝑥 ∈ 𝗌𝗎𝗉𝗉(𝛾) such that
[[𝛾↑𝑥]] ∩ (𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍) ≠ ∅. Let 𝑆 ⊆ 𝗌𝗎𝗉𝗉(𝛾) with |𝑆| ≥ 1. Due to the
remark at the beginning of this proof (FCb) holds for 𝛾↑𝑆 . However,
since [[𝛾↑𝑥]] ⊆ [[𝛾↑𝑆]] for all 𝑥 ∈ 𝑆 we have [[𝛾↑𝑥]] ∩ (𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍) ≠ ∅,
contradicting (FCa) for 𝛾↑𝑆 . Hence, (FCc). □

Finally, we obtain the following proposition providing the direct
connection of actual causes by Halpern and Pearl in the setting of
configurable systems and feature causality:

Proposition 1. For 𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍 ≠ ∅, any HP feature cause for
𝖤𝖿𝖿𝖾𝖼𝗍 w.r.t. 𝖵𝖺𝗅𝗂𝖽 is a feature cause for 𝖤𝖿𝖿𝖾𝖼𝗍 w.r.t. 𝖵𝖺𝗅𝗂𝖽 and vice versa.
Otherwise, i.e., if 𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍 = ∅, then

• there is no HP feature cause for 𝖤𝖿𝖿𝖾𝖼𝗍 w.r.t. 𝖵𝖺𝗅𝗂𝖽, and
• if 𝖵𝖺𝗅𝗂𝖽 ≠ ∅, then 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) = {𝛼} with 𝗌𝗎𝗉𝗉(𝛼) = ∅.

Proof. First, let 𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍 ≠ ∅. (FCa) coincides with (FC1). Due
to Lemma 1 we also have (FCb). The claim then directly follows in
combination with Lemma 2. If 𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍 = ∅, then (FCb) is violated
(see Lemma 1) and hence, there is no HP feature cause for 𝖤𝖿𝖿𝖾𝖼𝗍
w.r.t. 𝖵𝖺𝗅𝗂𝖽. Further, (FC2) can only be satisfied for a 𝛾 ∈ 𝛥(𝐹) if
𝗌𝗎𝗉𝗉(𝛾) = ∅ and (FC1) can only be satisfied if 𝖵𝖺𝗅𝗂𝖽 ≠ ∅. Thus, we
have 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) = {𝛼} with 𝗌𝗎𝗉𝗉(𝛼) = ∅. □

It is merely a philosophical discussion whether one allows for
empty causes, i.e., feature causes with empty support and covering all
valid feature configurations. We defined feature causes allowing for
an empty support to distinguish between those cases where no causal
dependencies arise, which is the case of an empty effect set. In the latter
case, one could not distinguish between no causal dependencies due to
all valid configurations showing the effect or none.

From effect configurations to effect sets. Our definition of HP feature
causes can be embedded into HP causality on binary domains, al-
lowing for structural equations on Boolean variables for feature se-
lection (Halpern, 2015). Given an effect property as a propositional
formula, actual causes are then considered w.r.t. a contingency that has
a similar role as a single effect configuration in our setting. Causes w.r.t.
a contingency then can be easily extended to causes w.r.t. an effect set.

3.3. Computation of feature causes

For a given effect set 𝖤𝖿𝖿𝖾𝖼𝗍 and a set of valid configurations 𝖵𝖺𝗅𝗂𝖽
along with a partial configuration 𝜕, Definition 1 directly provides a
polynomial-time algorithm to decide whether 𝜕 is a cause of 𝖤𝖿𝖿𝖾𝖼𝗍
w.r.t. 𝖵𝖺𝗅𝗂𝖽 by checking (FC1) and (FC2). From this, we obtain a
simple approach to compute the set 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) by successively
checking expansions for sets of features applied on elements in 𝖤𝖿𝖿𝖾𝖼𝗍
as candidates for causes. Since there might be exponentially many such
expansions, this approach easily renders infeasible already within a
small number of features.

We now present a practical algorithm to compute the set of causes,
which relies on a connection to the notion of prime implicants (see
Section 2). In the setting of features, a prime implicant of a set of
partial configurations  ⊆ 𝛥(𝐹) is a partial configuration 𝜕 ∈ 𝛥(𝐹)
where  covers 𝜕 and [[𝜕↑𝑥]] ⊈  for all 𝑥 ∈ 𝗌𝗎𝗉𝗉(𝜕). Here, observe
the similarity to (FC2) of Definition 1. Further, this connection is not
immediately visible when considering HP causality (see Definition 2).
Towards establishing the feature cause computation algorithm, we first
require a technical lemma:

Lemma 3. For any partial configuration 𝜕 ∈ 𝛥(𝐹)

[[𝜕]] ∩ 𝖵𝖺𝗅𝗂𝖽 ⊆ 𝖤𝖿𝖿𝖾𝖼𝗍 iff [[𝜕]] ⊆
(

𝛩(𝐹)⧵𝖵𝖺𝗅𝗂𝖽
)

∪ 𝖤𝖿𝖿𝖾𝖼𝗍.

The Journal of Systems & Software 209 (2024) 111915C. Dubslaff et al.

(

(
t
H

p
d
𝖤

d
A
t

p
d

T

Proof. Let 𝜃 ∈ [[𝜕]].

⇒): If 𝜃 ∈ 𝖵𝖺𝗅𝗂𝖽, then 𝜃 ∈ 𝖤𝖿𝖿𝖾𝖼𝗍 and thus, 𝜃 ∈
(

𝛩(𝐹)⧵𝖵𝖺𝗅𝗂𝖽
)

∪ 𝖤𝖿𝖿𝖾𝖼𝗍.
Otherwise, 𝜃 ∈ 𝛩(𝐹)⧵𝖵𝖺𝗅𝗂𝖽 and thus also 𝜃 ∈

(

𝛩(𝐹)⧵𝖵𝖺𝗅𝗂𝖽
)

∪ 𝖤𝖿𝖿𝖾𝖼𝗍.

⇐): If 𝜃 ∈ 𝖤𝖿𝖿𝖾𝖼𝗍, then the statement is clear due to 𝖤𝖿𝖿𝖾𝖼𝗍 ⊆ 𝖵𝖺𝗅𝗂𝖽 and
hus 𝜃 ∈ [[𝜕]] ∩ 𝖵𝖺𝗅𝗂𝖽. Otherwise, 𝜃 ∉ 𝖤𝖿𝖿𝖾𝖼𝗍 and thus, 𝜃 ∈ 𝛩(𝐹)⧵𝖵𝖺𝗅𝗂𝖽.
ence 𝜃 ∉ 𝖵𝖺𝗅𝗂𝖽, such that 𝜃 ∉ [[𝜕]] ∩ 𝖵𝖺𝗅𝗂𝖽. □

Following this lemma, every cause of 𝖤𝖿𝖿𝖾𝖼𝗍 w.r.t. 𝖵𝖺𝗅𝗂𝖽 is also an im-
licant of

(

𝛩(𝐹)⧵𝖵𝖺𝗅𝗂𝖽
)

∪𝖤𝖿𝖿𝖾𝖼𝗍 due to (FC1) and even a prime implicant
ue to (FC2). Conversely, every prime implicant 𝜕 of

(

𝛩(𝐹)⧵𝖵𝖺𝗅𝗂𝖽
)

∪
𝖿𝖿𝖾𝖼𝗍 for which [[𝜕]] ∩ 𝖤𝖿𝖿𝖾𝖼𝗍 ≠ ∅ is a cause due to (FC1). This
irectly suggests an algorithm to compute causes via prime implicants:
lgorithm 1 first generates prime implicants as cause candidates and

hen removes those candidates that are not sufficient for 𝖤𝖿𝖿𝖾𝖼𝗍 w.r.t.
𝖵𝖺𝗅𝗂𝖽. Fig. 2 reflects this situation where 𝛾 and 𝜕 are prime implicants
with 𝛾 being a cause and 𝜕 not: at least one effect instance is covered
by 𝛾, while this is not the case for 𝜕 and hence would be removed by
Algorithm 1.

Algorithm 1: Computation of feature causes
input : 𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽 ⊆ 𝛩(𝐹) with 𝖤𝖿𝖿𝖾𝖼𝗍 ⊆ 𝖵𝖺𝗅𝗂𝖽
output: 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽)

1  ∶= Compute-Primes
(

(𝛩(𝐹)⧵𝖵𝖺𝗅𝗂𝖽) ∪ 𝖤𝖿𝖿𝖾𝖼𝗍
)

2 forall 𝜕 ∈  where [[𝜕]] ∩ 𝖤𝖿𝖿𝖾𝖼𝗍 = ∅ do  ∶= ⧵{𝜕}
3 return 

Prime implicants of a set of configurations can be computed in
olynomial time in the size of the input set (Strzemecki, 1992), which
irectly leads to:

heorem 1. Given valid configurations 𝖵𝖺𝗅𝗂𝖽 ⊆ 𝛩(𝐹) and effect set
𝖤𝖿𝖿𝖾𝖼𝗍 ⊆ 𝖵𝖺𝗅𝗂𝖽, Algorithm 1 computes 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽), the set of
feature causes for 𝖤𝖿𝖿𝖾𝖼𝗍 w.r.t. 𝖵𝖺𝗅𝗂𝖽, in polynomial time in |𝛩(𝐹)|.

Proof. By Lemma 3 and Definition 1, we directly obtain that for
all 𝛾 ∈ 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) we have that 𝛾 is a prime implicant of
(𝛩(𝐹)⧵𝖵𝖺𝗅𝗂𝖽)∪𝖤𝖿𝖿𝖾𝖼𝗍 where [[𝛾]]∩𝖤𝖿𝖿𝖾𝖼𝗍 ≠ ∅. To this end, Algorithm 1 is
complete. For soundness, let 𝜕 ∈  where  is returned by Algorithm
1. Then 𝜕 is a prime implicant of (𝛩(𝐹)⧵𝖵𝖺𝗅𝗂𝖽) ∪𝖤𝖿𝖿𝖾𝖼𝗍 and by Lemma 3
we have that (FC2) is satisfied. Further, by the definition of implicants
we obtain that [[𝜕]] ⊆ (𝛩(𝐹)⧵𝖵𝖺𝗅𝗂𝖽) ∪𝖤𝖿𝖿𝖾𝖼𝗍 and thus [[𝜕]] ∩𝖵𝖺𝗅𝗂𝖽 ⊆ 𝖤𝖿𝖿𝖾𝖼𝗍,
which in combination with [[𝜕]] ∩ 𝖤𝖿𝖿𝖾𝖼𝗍 ≠ ∅ by Line 2 directly leads to
(FC1). Hence, for all 𝜕 ∈  we have 𝜕 ∈ 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) and thus,
Algorithm 1 is sound.

Let us now turn to the complexity of Algorithm 1. It is well known
that the computation of prime implicants can be done in polynomial
time (Strzemecki, 1992) in the size of the number of interpretations.
Hence, || is polynomial in |(𝛩(𝐹)⧵𝖵𝖺𝗅𝗂𝖽) ∪ 𝖤𝖿𝖿𝖾𝖼𝗍|, which is smaller
than |𝛩(𝐹)|. Furthermore, since the emptiness check in Line 2 can
be done by simply iterating over all elements of 𝖤𝖿𝖿𝖾𝖼𝗍, the whole
algorithm runs in polynomial time in |𝛩(𝐹)|. □

Note that the set of valid and effect configurations can be both
exponential in the number of features and there might be exponentially
many prime implicants (Chandra and Markowsky, 1978) in the worst
case. Hence, Algorithm 1 is exponential in the number of features.

Example 4. Let us illustrate the computation of feature causes of
Example 2 by Algorithm 1. First notice that

(

𝛩(𝐹) ⧵ 𝖵𝖺𝗅𝗂𝖽
)

∪ 𝖤𝖿𝖿𝖾𝖼𝗍 = 𝛩(𝐹) ⧵ {𝑚,𝑚𝑒𝑐, 𝑚𝑠, 𝑚𝑠𝑒𝑐 }

comprising 60 feature configurations. The prime implicants for this set
are computed in Line 1, which yields
6

 = { 𝛾𝑚̄, 𝛾𝑎, 𝛾𝑟, 𝛾𝑒𝑐 , 𝛾𝑒𝑐 }.
Here, we used notations as in Example 2, e.g., 𝗌𝗎𝗉𝗉(𝛾𝑒𝑐) = {𝑒, 𝑐},
𝛾𝑒𝑐 (𝑒) = 𝚏𝚊𝚕𝚜𝚎, and 𝛾𝑒𝑐 (𝑐) = 𝚝𝚛𝚞𝚎. Clearly, all configurations covered
by 𝛾𝑚̄ or 𝛾𝑒𝑐 are not valid and hence also no effects. Thus, they are
removed in Line 2, leading to 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) = {𝛾𝑎, 𝛾𝑟, 𝛾𝑒𝑐}. ⋄

3.4. Effect uncertainty and feature precauses

For our notion of feature causality introduced at the beginning of
this section (see Definition 1), we assumed full information about the
set of valid configurations 𝖵𝖺𝗅𝗂𝖽 and its partition into configurations
𝖤𝖿𝖿𝖾𝖼𝗍 that show an effect and those 𝖵𝖺𝗅𝗂𝖽 ⧵ 𝖤𝖿𝖿𝖾𝖼𝗍 that do not. While
this assumption is reasonable when applied in the context of variability-
aware exhaustive analysis (see Section 3.1), there are situations where
effect and non-effect configurations cannot be ultimately separated:

(1) The set of valid configurations is unknown, irrelevant, or cannot
be explicitly constructed.

(2) There is incomplete information about the set of effect configu-
rations due to non-exhaustive analysis methods, e.g., variability-
aware testing or limits on analysis resources such as runtime.

(3) The chosen analysis method inherently incorporates uncertain-
ties, e.g., relies on approximations.

The first case arises, e.g., when the configuration spaces are of such
sizes that formal reasoning about valid configurations is infeasible
(Thüm, 2020). The second case boils down to not having information
about all effect configurations at hand. This also covers practical rele-
vant situations where the effect is partly described, e.g., through bug
reports where users report the same bug within different configurations
(see Section 3.1). The third case is in particular relevant for non-
functional effect properties, e.g., when variability-aware probabilistic
model checking or approximative regression methods are chosen as
analysis methods to investigate threshold effect sets (see Section 3.1).
Then, an exact decision whether the given threshold is met cannot be
made due to noise: those quantities close to the threshold cannot be
decided up to the precision of the analysis method.

While feature causality cannot directly be used to pinpoint those
configuration options that are the reasons for such effects with uncer-
tainty, we can still follow the very same counterfactual reasoning to
establish candidates for causes given the limited access to information,
which we call feature precauses.

Definition 3. A feature precause for effect configurations 𝖤𝖿𝖿𝖾𝖼𝗍∗ ⊆
𝛩(𝐹) w.r.t. non-effect configurations 𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗ ⊆ 𝛩(𝐹) where 𝖤𝖿𝖿𝖾𝖼𝗍∗ ∩
𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗ = ∅ is a partial configuration 𝛾 ∈ 𝛥(𝐹) where

(FPC1) [[𝛾]] ∩ 𝖤𝖿𝖿𝖾𝖼𝗍∗ ≠ ∅, [[𝛾]] ∩ 𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗ = ∅, and
(FPC2) [[𝛾↑𝑥]] ∩ 𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗ ≠ ∅ for all 𝑥 ∈ 𝗌𝗎𝗉𝗉(𝛾).

We denote by 𝖯𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍∗,𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗) the set of all precauses for
effect configurations 𝖤𝖿𝖿𝖾𝖼𝗍∗ w.r.t. non-effect configurations 𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗.

Note the close relation of the effectiveness condition in HP fea-
ture causes (see (FCa) in Definition 2) and (FPC1). Stated in words,
precauses provide minimal conditions on feature selection or dese-
lection (see (FPC2)) such that it is possible to show the effect and
they do not cover any configuration where it is sure the effect is not
emerging (see (FPC1)). Our definition of precauses also implements
counterfactual reasoning by (FPC2), since relaxing one of the feature
selection conditions directly leads to also allow for a possible non-effect
configuration, serving as counterfactual witness.

Feature precauses indeed constitute an extension of feature causes,
i.e., in case the set of valid configurations can be partitioned into effect
and non-effect configurations, precauses coincide with causes. Even
more, if the set of valid configurations is known to be 𝖵𝖺𝗅𝗂𝖽, every
precause for an effect 𝖤𝖿𝖿𝖾𝖼𝗍∗ w.r.t. non-effects 𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗ is a cause for

∗
the effect 𝖵𝖺𝗅𝗂𝖽⧵𝖭𝖤𝖿𝖿𝖾𝖼𝗍 :

The Journal of Systems & Software 209 (2024) 111915C. Dubslaff et al.

𝖭

s
N
𝛾
l
[
a

f
p
i
p

e
f

h
l
a
t
f
c
c
f
t
m

t
t
h
d
i
i
a
e
f
s
b

Lemma 4. Let 𝖵𝖺𝗅𝗂𝖽 ⊆ 𝛩(𝐹) be a set of valid configurations contain-
ing effect configurations 𝖤𝖿𝖿𝖾𝖼𝗍∗ ⊆ 𝖵𝖺𝗅𝗂𝖽 and non-effect configurations
𝖤𝖿𝖿𝖾𝖼𝗍∗ ⊆ 𝖵𝖺𝗅𝗂𝖽 such that 𝖤𝖿𝖿𝖾𝖼𝗍∗ ∩ 𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗ = ∅. Further, let 𝖤𝖿𝖿𝖾𝖼𝗍 =

𝖵𝖺𝗅𝗂𝖽⧵𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗. Then

𝖯𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍∗,𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗) ⊆ 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽)

with meeting equality in case 𝖤𝖿𝖿𝖾𝖼𝗍∗ = 𝖤𝖿𝖿𝖾𝖼𝗍.

Proof. If 𝖤𝖿𝖿𝖾𝖼𝗍∗ = ∅, then 𝖯𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍∗,𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗) = ∅. Otherwise
𝖤𝖿𝖿𝖾𝖼𝗍∗ ≠ ∅, 𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗ ≠ ∅, and 𝖤𝖿𝖿𝖾𝖼𝗍∗ ⊆ 𝖤𝖿𝖿𝖾𝖼𝗍. Let now 𝛾 ∈
𝖯𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍∗,𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗). For (FC1), (FPC1) with [[𝛾]] ∩ 𝖤𝖿𝖿𝖾𝖼𝗍∗ ≠ ∅
leads to [[𝛾]] ∩ 𝖵𝖺𝗅𝗂𝖽 ≠ ∅ and [[𝛾]] ∩ 𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗ = ∅ leads to [[𝛾]] ∩ 𝖵𝖺𝗅𝗂𝖽 ⊆
𝖤𝖿𝖿𝖾𝖼𝗍. Due to (FPC2) for all 𝑥 ∈ 𝗌𝗎𝗉𝗉(𝛾) there is 𝜂 ∈ [[𝛾↑𝑥]] ∩ 𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗

uch that 𝜂 ∈ [[𝛾↑𝑥]] ∩ 𝖵𝖺𝗅𝗂𝖽 but 𝜂 ∉ 𝖤𝖿𝖿𝖾𝖼𝗍, directly leading to (FC2).
ow we show that precauses agree with causes if 𝖤𝖿𝖿𝖾𝖼𝗍∗ = 𝖤𝖿𝖿𝖾𝖼𝗍. Let
∈ 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽). (FC1) with [[𝛾]]∩𝖵𝖺𝗅𝗂𝖽 ⊆ 𝖤𝖿𝖿𝖾𝖼𝗍 = 𝖵𝖺𝗅𝗂𝖽⧵𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗

eads to [[𝛾]] ∩ 𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗ = ∅ and further [[𝛾]] ∩ 𝖵𝖺𝗅𝗂𝖽 ≠ ∅ leads to
[𝛾]] ∩ 𝖤𝖿𝖿𝖾𝖼𝗍 = [[𝛾]] ∩ 𝖤𝖿𝖿𝖾𝖼𝗍∗ ≠ ∅, implying (FPC1). Due to (FC2) for
ll 𝑥 ∈ 𝗌𝗎𝗉𝗉(𝛾) there is 𝜂 ∈ [[𝛾↑𝑥]] ∩ 𝖵𝖺𝗅𝗂𝖽 such that 𝜂 ∉ 𝖤𝖿𝖿𝖾𝖼𝗍 =

𝖵𝖺𝗅𝗂𝖽 ⧵𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗, leading to 𝜂 ∈ [[𝛾↑𝑥]] ∩𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗ and hence (FPC2). □

Similar to Lemma 3, which opened the door towards effective
eature cause computations, we observe that precauses are exactly those
rime implicants 𝜕 of 𝛩(𝐹) ⧵ 𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗ that cover an effect witness,
.e., [[𝜕]]∩𝖤𝖿𝖿𝖾𝖼𝗍∗ ≠ ∅. This directly leads to an algorithm for computing
recauses, provided in Algorithm 2.

Algorithm 2: Computation of feature precauses
input : 𝖤𝖿𝖿𝖾𝖼𝗍∗,𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗ ⊆ 𝛩(𝐹) with 𝖤𝖿𝖿𝖾𝖼𝗍∗ ∩ 𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗ = ∅
output: 𝖯𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍∗,𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗)

1  ∶= Compute-Primes
(

𝛩(𝐹)⧵𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗
)

2 forall 𝜕 ∈  where [[𝜕]] ∩ 𝖤𝖿𝖿𝖾𝖼𝗍∗ = ∅ do  ∶= ⧵{𝜕}
3 return 

Proposition 2. Given effect configurations 𝖤𝖿𝖿𝖾𝖼𝗍∗ ⊆ 𝛩(𝐹) and non-
effect configurations 𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗ ⊆ 𝛩(𝐹), Algorithm 2 computes
𝖯𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍∗,𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗), the set of feature precauses for 𝖤𝖿𝖿𝖾𝖼𝗍∗ w.r.t.
𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗, in polynomial time in |𝛩(𝐹)|.

4. Causal explications

Since the number of feature causes (and precauses) can be expo-
nential in the number of features, a mere listing of all causes is neither
feasible nor expedient for real-world software systems. This holds for
both, humans that have to evaluate causal relationships in configurable
systems, e.g., during software development, and machines that might
use feature causes for further processing and reasoning.

In this section, we present and discuss several methods to compute
causal explications, i.e., mathematical or computational constructs that
arise from processing feature causes to provide useful causal representa-
tions and measures (Baier et al., 2021). Explications are closely related
to explanations, by which we mean human-understandable objects em-
ployed within an integrated system, e.g., in feature-oriented software
development or in production-level deployments.

Our methods for computing explications rely on techniques from
propositional logic and circuit optimization (Paul, 1975; McGeer et al.,
1993), responsibility and blame (Chockler and Halpern, 2004), and
feature interactions (Garvin and Cohen, 2011). They all take a global
perspective on sets of feature causes rather than only considering
single feature causes in isolation. In the following, we fix sets of valid
configurations 𝖵𝖺𝗅𝗂𝖽 ⊆ 𝛩(𝐹) and effects 𝖤𝖿𝖿𝖾𝖼𝗍 ⊆ 𝖵𝖺𝗅𝗂𝖽.
7

4.1. Propositional logic formulas

A rather natural explication for a set of causes  ⊆
𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) is to represent  as propositional logic formula,
.g., as the characteristic formula 𝜒() defined in disjunctive normal
orm (DNF)

𝜒() =
⋁

𝜕∈

(
⋀

𝑥∈𝗌𝗎𝗉𝗉(𝜕)
𝜕(𝑥)=𝚝𝚛𝚞𝚎

𝑥 ∧
⋀

𝑥∈𝗌𝗎𝗉𝗉(𝜕)
𝜕(𝑥)=𝚏𝚊𝚕𝚜𝚎

¬𝑥
)

.

Clearly, 𝜒() has the same size as  and its representation does not ex-
ibit any advantage compared to . Methods to minimize propositional
ogic formulas (McCluskey, 1956; McGeer et al., 1993; Hemaspaandra
nd Schnoor, 2011) could be used to yield small formulas 𝜑 covering
he same configurations as , i.e., where [[𝜑]] = [[]]. While beneficial
or related problems in configurable systems analysis, e.g., for presence
ondition simplification (von Rhein et al., 2015), such methods vanish
ausal information, i.e., the set of causes  cannot be reconstructed
rom the reduced formula 𝜑. To provide a small formula that maintains
he causal information of , we use a simple yet effective reduction
ethod, which we call distributive law simplification (DLS). The basic

idea is to factorize common feature selections in a DNF formula step by
step, exploiting the 𝑛-ary distributive law [[

⋁𝑛
𝑖=1(𝜙∧𝜓𝑖)]] = [[𝜙∧

⋁𝑛
𝑖=1 𝜓𝑖]].

Each factorization leads to a length reduction of (𝑛−1)⋅|𝜙|, where |𝜙| is
he length of the propositional formula factored out. Obviously, these
ransformations are reversible, such that the original DNF 𝜒() and
ence the set of causes  can be reconstructed. The final formula length
epends on the formulas factored out, the subformulas, and the factor-
zation order. Determining a formula through DLS that has minimal size
s close to global optimization problems for propositional logic formulas
nd thus computationally hard. For practical applications, we hence
mploy a heuristics that reduces a given formula 𝜑 in DNF by stepwise
actoring out literals that have maximal number of occurrences in DNF
ubformulas. We denote the reduced formula obtained by this heuristics
y 𝖣𝖫𝖲(𝜑), where 𝖣𝖫𝖲(⋅) is provided by Algorithm 3.

Algorithm 3: Distributive law simplification 𝖣𝖫𝖲(⋅)
input : 𝜙 =

⋁

𝑖∈𝐼
⋀

𝑗∈𝐽𝑖 𝓁𝑖𝑗 in DNF
output: propositional logic formula 𝖣𝖫𝖲(𝜙)

1 if |𝐼| ≤ 1 then return 𝜙
2 forall 𝑖 ∈ 𝐼 do 𝐿𝑖 ∶= {𝓁𝑖𝑗 ∶ 𝑗 ∈ 𝐽𝑖}
3 forall 𝓁 ∈

⋃

𝑖∈𝐼 𝐿𝑖 do
𝑁𝓁 ∶= | {(𝑖, 𝑗) ∈ 𝐼×𝐽𝑖 ∶ |𝐽𝑖| > 1,𝓁𝑖𝑗 = 𝓁} |

4 𝛼 = 𝑎𝑟𝑔𝑚𝑎𝑥𝓁∈⋃𝑖∈𝐼 𝐿𝑖 𝑁𝓁

5 𝜙0 =
⋁

𝑖∈𝐼
|𝐿𝑖 |≤1∨𝛼∉𝐿𝑖

⋀

𝑗∈𝐽𝑖 𝓁𝑖𝑗

6 𝜙1 =
⋁

𝑖∈𝐼
|𝐿𝑖 |>1∧𝛼∈𝐿𝑖

⋀

𝑗∈𝐽𝑖
𝓁𝑖𝑗≠𝛼

𝓁𝑖𝑗

7 if [[𝜙0]] = ∅ then return 𝛼 ∧ 𝖣𝖫𝖲(𝜙1)
8 return 𝖣𝖫𝖲(𝜙0) ∨

(

𝛼 ∧ 𝖣𝖫𝖲(𝜙1)
)

Note that Line 4 involves a non-deterministic choice of a literal
with maximal occurrence. This leaves some degree of freedom when
implementing this algorithm, enabling heuristics depending on the
practical need, e.g., prioritizing important or user-specific features for
explication.

Extended boolean connectives. Besides the standard Boolean connectives
∧ and ∨ apparent in our DLS, common patterns of propositional logic
formulas such as ⊕ (XOR), ↔ (equivalence), ≠ (non-equivalence), and
→ (implication) could be used for explication and providing a short (yet
reversible) representation.

Example 5. In the feature diagram of Fig. 1, the encryption features
are connected through an exclusive disjunction (XOR) and the set of
valid feature configurations could then be described by
𝑚 ∧ (𝑐 ∨ 𝑎 ∨ 𝑟 → 𝑒) ∧ (𝑒→ 𝑐 ⊕ 𝑎 ⊕ 𝑟).

The Journal of Systems & Software 209 (2024) 111915C. Dubslaff et al.

N
c
m
o
2
i
k
e
c

w
∅

a
a
a
e
a

e

a
c

𝜂
d

𝖢

∅
=
(

s
[
o
𝜕

P
b
L
o
t
𝖬
c
𝖵

E
T

⋄

Such extended Boolean connectives could well be included into our
DLS scheme, possibly also exploiting anti-distributivity of →.

umeric features. Another possibility to further provide reversible and
oncise representations could be achieved by exploiting properties of
ulti-features and attributes, i.e., features that might not only be active

r inactive but are configurable by a numerical value (Classen et al.,
011; Cordy et al., 2013b). Formally, a numeric feature configuration
s a function 𝑓 ∶ 𝐹 → D over a finite domain D ⊆ N. It is well
nown that feature attributes can be modeled by Boolean features by
xtending the feature space, e.g., introducing features 𝓁0,… ,𝓁9 in the
ase a feature attribute 𝓁 can take numeric values in D = {0,… , 9}.

To this end, our Boolean framework for feature causality also covers
reasoning about configurable systems with feature attributes. Towards
a meaningful explication, we might however revert this encoding after
our feature causality analysis and replace parts of a propositional logic
formula for the feature causes by corresponding arithmetic expressions.
For instance, 𝓁0 ∨ 𝓁1 ∨ 𝓁2 could be replaced by an expression 𝓁 ≤ 2.

4.2. Cause–effect covers

The complete set of causes may contain several candidates to de-
scribe reasons for the effect emerging in a single system variant. If
not interested in all causes but in a set of causes that covers all
effects (i.e., that contains, at least, one cause for every system variant)
we might ask for a preferably small set of causes covering all effect
configurations. Formally, a cause–effect cover of 𝖤𝖿𝖿𝖾𝖼𝗍 is a set of causes
 ⊆ 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) that covers 𝖤𝖿𝖿𝖾𝖼𝗍, i.e., where 𝖤𝖿𝖿𝖾𝖼𝗍 ⊆ [[]].
Note that 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) is a cause–effect cover of 𝖤𝖿𝖿𝖾𝖼𝗍

Lemma 5. 𝖤𝖿𝖿𝖾𝖼𝗍 ⊆ [[𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽)]].

Proof. Let us assume the opposite, i.e., there is a configuration 𝜂 ∈
𝖤𝖿𝖿𝖾𝖼𝗍 such there is no 𝛾 ∈ 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) with 𝜂 ∈ [[𝛾]]. Since
(FC1) is fulfilled for 𝜂, (FC2) cannot be true for 𝜂 since otherwise 𝜂 ∈
𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) and thus, 𝛾 = 𝜂 could serve as counterexample of
our statement. Hence, there is an 𝑥 ∈ 𝐹 such that [[𝜂↑𝑥]]∩𝖵𝖺𝗅𝗂𝖽 ⊆ 𝖤𝖿𝖿𝖾𝖼𝗍,

hich yields (FC1) to hold for 𝜂↑𝑥. By an inductive argument, there is
≠ 𝑋 ⊆ 𝐹 such that 𝜂↑𝑋 ∈ 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) but 𝜂 ∈ [[𝜂↑𝑋]]. □

We say that a cause–effect cover  is minimal if there is no cause–
effect cover ′ of 𝖤𝖿𝖿𝖾𝖼𝗍 where |′

| < ||. Note that this notion
of minimality is similar to the standard definition for sets of partial
interpretations, but ranges not over all sets of partial configurations
but over causes only.

Example 6. For the email system in Example 2 we directly see that
{𝛾𝑒𝑐} and {𝛾𝑎, 𝛾𝑟} are the only cause–effect covers of 𝖤𝖿𝖿𝖾𝖼𝗍. Thus, {𝛾𝑒𝑐}
is a minimal cause–effect cover of 𝖤𝖿𝖿𝖾𝖼𝗍 as |{𝛾𝑎, 𝛾𝑟}| > |{𝛾𝑒𝑐}|.⋄

It is well known that computing minimal covers is expensive as
the decision problem whether there is a cover of a given set of con-
figurations with at most 𝑘 ∈ N elements is NP-complete (e.g. Umans
et al., 2006). The same holds for computing minimal prime ∗-covers
nd hence minimal cause–effect covers (Paul, 1975). Thus, for practical
pplicability, heuristics that lead to nearly minimal cause–effect covers
re of interest to concisely explicate causal candidates covering all
ffect configurations. In the following, we establish such a heuristic by
greedy scheme involving most general causes.

Definition 4. The binary relation ⊴ ⊆ 𝛥(𝐹)×𝛥(𝐹), where 𝜕⊴𝜕′ stands
for 𝜕′ to be at least as general as 𝜕 w.r.t. 𝖤𝖿𝖿𝖾𝖼𝗍, is defined by

𝜕 ⊴ 𝜕′ iff [[𝜕]] ∩ 𝖤𝖿𝖿𝖾𝖼𝗍 ⊆ [[𝜕′]] ∩ 𝖤𝖿𝖿𝖾𝖼𝗍.

The set of most general causes 𝖬𝖺𝗑𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) comprises those
causes for 𝖤𝖿𝖿𝖾𝖼𝗍 w.r.t. 𝖵𝖺𝗅𝗂𝖽 that are ⊴-maximal in 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽).
8

In the next paragraphs, we formally prove relationships of
𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) and the set of most general causes
𝖬𝖺𝗑𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) to prime ∗-covers and minimal prime ∗-covers.
From the above definition, we then directly establish an algorithm to
compute 𝖬𝖺𝗑𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) by computing ⊴ in quadratic time and
by selecting elements maximal w.r.t. ⊴. In particular, we will see that
𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) and 𝖬𝖺𝗑𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) both provide cause–
ffect covers of 𝖤𝖿𝖿𝖾𝖼𝗍. Note that ⊴ is not antisymmetric and hence

there might be different most general causes that cover the same set of
effect instances. Towards nearly minimal cause–effect covers, we thus
might pick only one of those candidates from 𝖬𝖺𝗑𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽)
(e.g., with minimal support) to obtain even more concise representa-
tives for feature causality.

Feature causality and prime covers. Lemma 5 and the section above
showed the close connection of feature causes of 𝖤𝖿𝖿𝖾𝖼𝗍 w.r.t. 𝖵𝖺𝗅𝗂𝖽 to
prime covers. However, it is still open whether 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) is
ctually a prime ∗-cover of 𝖤𝖿𝖿𝖾𝖼𝗍 relative to 𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍. In the corner
ases, e.g., if 𝖤𝖿𝖿𝖾𝖼𝗍 = ∅, then 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) = ∅ due to (FC1) and

the statement holds since ∅ is the trivial ∗-cover of ∅ relative to any set.
Further observe that if 𝖤𝖿𝖿𝖾𝖼𝗍 = 𝖵𝖺𝗅𝗂𝖽, the statement is also clear since
the uniquely defined prime ∗-cover of 𝖤𝖿𝖿𝖾𝖼𝗍 relative to 𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍 is
{𝛼} with 𝛼 ∈ 𝛥(𝐹) where 𝗌𝗎𝗉𝗉(𝛼) = ∅. Then, (FC2) is trivially fulfilled
and since 𝛼 covers all configurations, also (FC1) holds.

For the following proposition, recall that for sets of partial config-
urations 0 and 1, P(1,0) denotes the set of prime ∗-covers of 1
relative to 0 and 𝑚P(1,0) denotes the set of minimal prime ∗-covers
of 1 relative to 0.

Proposition 3.

(P1) 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) ∈ P(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍)
(P2)  ⊆ 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) for all  ∈ 𝑚P(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍)

Proof. Ad (P1): Due to Definition 1 and Lemma 3, all causes are prime
implicants of

(

𝛩(𝐹)⧵𝖵𝖺𝗅𝗂𝖽
)

∪ 𝖤𝖿𝖿𝖾𝖼𝗍. Further,
(

𝛩(𝐹)⧵𝖵𝖺𝗅𝗂𝖽
)

∪ 𝖤𝖿𝖿𝖾𝖼𝗍 =
𝛩(𝐹)⧵

(

𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍
)

and thus, it is left to show that 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽)
covers 𝖤𝖿𝖿𝖾𝖼𝗍. Assume the opposite, i.e., there is 𝜂 ∈ 𝖤𝖿𝖿𝖾𝖼𝗍 such
that 𝜂 ∉ [[𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽)]]. Then there must be a prime implicant
𝜕 ∈ 𝛥(𝐹) of

(

𝛩(𝐹)⧵𝖵𝖺𝗅𝗂𝖽
)

∪ 𝖤𝖿𝖿𝖾𝖼𝗍 with 𝜂 ∈ [[𝜕]]. By Lemma 3, and
∈ [[𝜕]] ∩ 𝖤𝖿𝖿𝖾𝖼𝗍, (FC1) is satisfied. Further, 𝜕 being a prime implicant
irectly leads to [[𝜕↑𝑥]] ∩ (𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍) ≠ ∅ for all 𝑥 ∈ 𝗌𝗎𝗉𝗉(𝜕) and

thus, (FC2) and 𝜕 ∈ 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽). This contradiction yields that
𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) is a prime ∗-cover of 𝖤𝖿𝖿𝖾𝖼𝗍 relative to 𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍.

Ad (P2): First consider the case where  = ∅, then this is the only
minimal prime ∗-cover and 𝖤𝖿𝖿𝖾𝖼𝗍 = ∅, leading to 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) =

and  ⊆ 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽). Now let 𝜕 ∈ , then [[𝜕]]∩(𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍)
∅ since 𝜕 is a prime implicant of

(

𝛩(𝐹)⧵𝖵𝖺𝗅𝗂𝖽
)

∪ 𝖤𝖿𝖿𝖾𝖼𝗍 = 𝛩(𝐹)⧵
𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍

)

, which also leads to (FC2) being fulfilled for 𝜕. Further,
ince  is a minimal cover, ⧵{𝜕} is not a cover of 𝖤𝖿𝖿𝖾𝖼𝗍 and thus,
[𝜕]] ∩ 𝖤𝖿𝖿𝖾𝖼𝗍 ≠ ∅. In combination with [[𝜕]] ∩ (𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍) = ∅, we
btain [[𝜕]] ∩ 𝖵𝖺𝗅𝗂𝖽 ⊆ 𝖤𝖿𝖿𝖾𝖼𝗍 and thus, (FC1) is fulfilled for 𝜕. Hence,
∈ 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽). □

rime covers and most general causes. Due to the close connection
etween feature causes and prime implicants (see Proposition 3 and
emma 3) and the global maximization definition w.r.t. the semantics
f partial feature configurations, one might think about a connec-
ion of minimal prime ∗-covers of 𝖤𝖿𝖿𝖾𝖼𝗍 relative to 𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍 and
𝖺𝗑𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽). However, there could be most general feature

auses that are not contained in any minimal ∗-cover 𝖤𝖿𝖿𝖾𝖼𝗍 relative to
𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍:

xample 7. Let 𝐹 = {𝑎, 𝑏, 𝑐}, 𝖤𝖿𝖿𝖾𝖼𝗍 = {𝑎𝑏𝑐, 𝑎𝑏, 𝑎𝑐, 𝑐}, and 𝖵𝖺𝗅𝗂𝖽 = 𝛩(𝐹).
hen there are three feature causes 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) = {𝛾𝑎𝑏, 𝛾𝑎𝑐 , 𝛾𝑏𝑐}

with 𝛾𝑎𝑏 assigning 𝚝𝚛𝚞𝚎 to 𝑎 and 𝑏, 𝛾𝑎𝑐 assigning 𝚝𝚛𝚞𝚎 to 𝑎 and 𝑐, and
𝛾 assigning 𝚏𝚊𝚕𝚜𝚎 to 𝑏 and 𝚝𝚛𝚞𝚎 to 𝑐. Note that all these causes are
𝑏𝑐

The Journal of Systems & Software 209 (2024) 111915C. Dubslaff et al.

m

P

(
(

d
(
a

D

w
d

E
f
d
c
c
𝛾
t
f
c
𝑐
𝑚

i
𝖤

𝜂

most general according to Definition 4. However, [[𝛾𝑎𝑐]] ⊆ [[𝛾𝑎𝑏]] ∪ [[𝛾𝑏𝑐]],
i.e., 𝛾𝑎𝑐 is covered by 𝛾𝑎𝑏 and 𝛾𝑏𝑐 . Hence,

𝖬𝖺𝗑𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) ⊈
⋃

∈𝑚P(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍)


Nevertheless, all most general feature causes are contained in any
inimal ∗-cover of 𝖤𝖿𝖿𝖾𝖼𝗍 relative to 𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍.

roposition 4.

M1) 𝖬𝖺𝗑𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) ∈ P(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍)
M2) There is  ∈ 𝑚P(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍) with  ⊆

𝖬𝖺𝗑𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽).

Proof. Ad (M1): Following Definition 4, we have
that 𝖬𝖺𝗑𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) ⊆ 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) but
[[𝖬𝖺𝗑𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽)]] = [[𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽)]].

The statement is then a direct consequence of the definition of cov-
ers, (P1) of Proposition 3, and 𝖬𝖺𝗑𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) ⊆
𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽).

Ad (M2): Due to Proposition 3(P2) we have ′ ⊆
𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) for all ′ ∈ 𝑚P(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍). Let  arise
from ′ by replacing every 𝜕′ ∈ ′ with 𝜕′ ∉ 𝖬𝖺𝗑𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽)
by a 𝜕 ∈ 𝖬𝖺𝗑𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) such that 𝜕′ ⊴ 𝜕. Then  ∈ 𝑚P
(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍) and  ⊆ 𝖬𝖺𝗑𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽). □

To this end, sets of most general causes can serve as prime ∗-covers
of 𝖤𝖿𝖿𝖾𝖼𝗍 relative to 𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍 and thus provide cause–effect covers
as concise representation of cause candidates for each effect instance.

Effect uncertainty and precause–effect covers. Following Definition 3
and Proposition 2, counterfactual reasoning by using prime implicant
computations can be also used to provide causal candidates for un-
derspecified effect sets. However, the number of precauses is usually
much higher than actual causes, due to the uncertainty of configura-
tions being possible to serve as effect or non-effect instances. To this
end, precause–effect covers are important to reduce the number of
precauses eligible to describe the (sure) effect instances and respect
counterfactual reasoning. It seems reasonable to aim for precause–
effect covers that minimize the number of precauses and the covered
underspecified valid configurations (or configurations in case the set of
valid configurations is unknown). We propose to first compute most
general precauses following Definition 4 and stepwise select those
towards a precause–effect cover that have the highest ratio between
covered effect instances from 𝖤𝖿𝖿𝖾𝖼𝗍∗ and additional covered under-
specified valid configurations. For the latter, we assume configurations
covered by previously selected most-general precauses as not under-
specified anymore (with complete information, they would turn into
effect instances for feature causes following (FC1) in Definition 1).

4.3. Responsibility and blame

To measure the influence of causes on effects, Chockler and Halpern
(2004) introduced degrees of responsibility and blame, ranging from
zero to one for ‘‘no’’ to ‘‘full’’ responsibility and blame, respectively.
Responsibility measures how relevant a single cause is for an effect in
a specific context. Blame denotes the expected overall responsibility
according to a given probability distribution on all contexts where the
effect emerges. We take inspiration from these measures and present
corresponding notions for feature causality. In short, the degree of
responsibility is the maximal share of features contributing to the
effect, i.e., features that would have to be reconfigured to provide a
counterfactual witness.
9

i

Example 8. We rephrase the majority example by Chockler and
Halpern (2004) in our setting. Consider 11 features whose configura-
tions are all valid. We are interested in responsibilities for the effect
that the majority of features is active. If all eleven features are active,
each feature has a responsibility of 1∕6, since six features share the
responsibility for the effect: Besides the feature of interest, further five
features have to be reconfigured towards a majority of inactive features.
In a configuration where six features are active and five not, each of the
six active ones is fully responsible for the effect: If this feature would
be reconfigured, more features would be inactive than active. We then
assign responsibility of one to each of the six active features.⋄

In what follows, we formalize degrees of responsibility and blame
for single features as in the example above. An extension of this notion
to partial configurations to explicate feature interactions is provided in
Section 4.4.

Feature responsibility. Intuitively, the degree of responsibility of a single
feature 𝑥 ∈ 𝐹 is defined as the maximal share to contribute to causing
the effect in an effect instance 𝜂 ∈ 𝖤𝖿𝖿𝖾𝖼𝗍. In the case that 𝑥 does not
appear in the support of any cause 𝛾 covering 𝜂, feature 𝑥 does not
contribute to causing the effect in 𝜂 and thus has no responsibility.
Otherwise, 𝑥 shares its responsibility with, at least, a minimal number
of other features, whose switch of its interpretation in 𝜂 would lead to
a counterfactual witness 𝜂, i.e., 𝜂 ∈ 𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍. In the following, 𝑌
enotes the set of features that have to be switched in a configuration
including the feature 𝑥 the responsibility is determined for) such that
counterfactual witness is reached.

efinition 5. The degree of responsibility of a feature 𝑥 ∈ 𝐹 in the
context 𝜂 ∈ 𝖤𝖿𝖿𝖾𝖼𝗍 for which there is 𝛾 ∈ 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) with
𝜂 ∈ [[𝛾]] and 𝑥 ∈ 𝗌𝗎𝗉𝗉(𝛾) is defined as

𝗋𝖾𝗌𝗉(𝑥, 𝜂) = 1
min {|𝑌 | ∶ 𝑌 ⊆ 𝐹 , 𝑥 ∈ 𝑌 , 𝗌𝗐𝗂𝗍𝖼𝗁(𝑌 , 𝜂) ∈ 𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍}

and as 𝗋𝖾𝗌𝗉(𝑥, 𝜂) = 0 otherwise.

Note that due to (FC2) there exists at least one counterfactual
itness in the case 𝑥 appears in a cause covering 𝜂 and hence, the
enominator of the above fraction is finite and greater than zero.

xample 9. Continuing the email example (see Example 2), the mail
eature 𝑚 and sign feature 𝑠 do not have any responsibility for a long
ecipher time in any configuration as they do not appear in any of the
auses 𝛾𝑎, 𝛾𝑟, and 𝛾𝑒𝑐 . Also the AES feature 𝑎 has no responsibility in
onfigurations 𝑚𝑒𝑟 or 𝑚𝑒𝑟𝑠, since the only covering causes are 𝛾𝑒𝑐 and
𝑟, not containing 𝑎 in their support. Besides the analogous case for
he RSA feature 𝑟, other degrees of responsibility are 1∕2: switching a
eature 𝑥 in 𝜂 usually requires one further feature to switch towards a
onfiguration of 𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍. For example, selecting the Caesar feature
in 𝜂 = 𝑚𝑒𝑎 requires also to deselect the AES feature 𝑎, leading to 𝜂 =
𝑒𝑐 ∈ 𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍. The table below shows 𝗋𝖾𝗌𝗉(𝑥, 𝜂) for 𝑥 ∈ {𝑒, 𝑐, 𝑎, 𝑟}.

𝜂 𝑥 = 𝑒 𝑥 = 𝑐 𝑥 = 𝑎 𝑥 = 𝑟

𝑚𝑒𝑎 1/2 1/2 1/2 0
𝑚𝑒𝑟 1/2 1/2 0 1/2
𝑚𝑠𝑒𝑎 1/2 1/2 1/2 0
𝑚𝑠𝑒𝑟 1/2 1/2 0 1/2

Example 10. Let us take a more formal view on Example 8, using nota-
tions to specify effect sets (see Section 3.1). Let 𝐹 = {𝑥0,… , 𝑥10} define
the set of features and consider all configurations valid, i.e., 𝖵𝖺𝗅𝗂𝖽 =
𝛩(𝐹). Further, let 𝜌∶ 𝖵𝖺𝗅𝗂𝖽 → R count the number of active features
n a configuration. The majority effect set is then specified through
𝖿𝖿𝖾𝖼𝗍𝜌>5 = {𝜃 ∈ 𝖵𝖺𝗅𝗂𝖽 ∶ 𝜌(𝜃) > 5}. In any effect configuration
∈ 𝖤𝖿𝖿𝖾𝖼𝗍𝜌>5, the responsibility 𝗋𝖾𝗌𝗉(𝑥, 𝜂) of any feature 𝑥 ∈ 𝐹 is zero

f 𝜂(𝑥) = 𝚏𝚊𝚕𝚜𝚎 and 1 otherwise. For instance, if 𝜌(𝜂) = 11, then all
𝜌(𝜂)−5

The Journal of Systems & Software 209 (2024) 111915C. Dubslaff et al.

t
s
v

B
w
b
i
d
o

D
d

E
w
i
T
f
r
o
c
b
i

O
f
s
t
c
u
w
c
b
c

4

(
w
o
b
t
a
i
i
n
f
o
n
s
u
s
a
p
d
s
S
i
f
(

D
f
s
c
m
z
t
d
o
w

D
w

(
(

w

T
h

𝛾

w

P
𝖵
l
𝖤
𝛾
𝛩
(

𝖢
∅
[
c
i

(

f
t
f
a

E
t
n
s
H
r

I
s
s
(
e
l
i
o
t
d
f

features are selected and thus, each of the features have responsibility
of 1∕6 since in addition to the feature, at least five other features have
to swap its vote before not winning the majority vote. In case 𝜌(𝜂) = 6,
he responsibility of each of the features 𝑥 where 𝜂(𝑥) = 𝚝𝚛𝚞𝚎 is one,
ince only swapping the vote of 𝑥 suffices to turn down the majority
ote.⋄

lame. Degrees of responsibility are locally defined w.r.t. a context,
hile one is surely also interested in a global measure of responsi-
ility of a feature or partial configuration w.r.t. all possible contexts,
.e., effect configurations. The degree of blame is defined as the expected
egree of responsibility on a probability distribution 𝜋 ∶𝖵𝖺𝗅𝗂𝖽 → [0, 1]
ver valid configurations 𝖵𝖺𝗅𝗂𝖽, i.e., where ∑

𝜃∈𝖵𝖺𝗅𝗂𝖽 𝜋(𝜃) = 1.

efinition 6. The degree of blame of a feature 𝑥 ∈ 𝐹 w.r.t. a
istribution 𝜋 over 𝖵𝖺𝗅𝗂𝖽 is defined as

𝖻𝗅𝖺𝗆𝖾(𝑥, 𝜋) =
∑

𝜂∈𝖤𝖿𝖿𝖾𝖼𝗍
𝜋(𝜂) ⋅ 𝗋𝖾𝗌𝗉(𝑥, 𝜂).

xample 11. To illustrate the degree of blame, continue Example 9,
here we assume a uniform distribution 𝜋 over effect configurations,

.e., 𝜋(𝜂) = 1∕|𝖤𝖿𝖿𝖾𝖼𝗍| = 1∕4 for all 𝜂 ∈ 𝖤𝖿𝖿𝖾𝖼𝗍 and 0 otherwise.
hen, 𝖻𝗅𝖺𝗆𝖾(𝑥, 𝜋) = 1∕4

∑

𝜂∈𝖤𝖿𝖿𝖾𝖼𝗍 𝗋𝖾𝗌𝗉(𝑥, 𝜂) and thus, 𝖻𝗅𝖺𝗆𝖾(𝑥, 𝜋) is 1∕2
or 𝑥 ∈ {𝑒, 𝑐}, 3∕8 for 𝑥 ∈ {𝑎, 𝑟}, and 0 for 𝑥 ∈ {𝑚, 𝑠}. Note that
esponsibility and blame values are independent from the polarities
f feature, i.e., whether they have to be active or inactive for being
ausally relevant. For instance, features 𝑒 and 𝑐 have both the highest
lame values, originating from the cause 𝛾𝑒𝑐 where 𝑒 is active and 𝑐 is
nactive. ⋄

n the choice of blame distributions. The distribution 𝜋 models the
requency of valid configurations to occur, for which there are several
cenarios that lead to a reasonable definition of 𝜋. One natural distribu-
ion may model the frequency of users choosing a configuration in the
onfigurable system. But also the frequency of effect configurations is
seful, e.g., to model the frequency a certain bug is reported by users
hen the effect corresponds to the property of a malfunction. In the

ase such statistics are not at hand or one is interested in the degree of
lame from a developer’s perspective, uniform distributions over valid
onfigurations or effects are canonical candidates for 𝜋.

.4. Feature interactions

A notorious problem in configurable systems is the presence of
inadvertent) feature interactions (Calder et al., 2003; Apel et al., 2014),
hich describe system behaviors that emerge due to a combination
f multiple features not easily deducible from the features’ individual
ehaviors. The detection, isolation, and resolution of feature interac-
ions play a central role in the development of configurable systems
nd beyond (Zave, 2001; Apel et al., 2013). On the one hand, feature
nteractions may be desired to integrate and coordination multiple
ndependently developed features. On the other hand, due to the expo-
ential number of possibilities of how features may interact, undesired
eature interactions can easily be overseen by developers. The problem
f detecting unintended feature interactions rises in severity with the
umber of features. This led to a crisis in the area of telecommunication
ystems already in the early 1980s. Back then, an increasing number of
ndesired behaviors between features of complex telecommunication
ystems have been observed (Calder et al., 2003). A multitude of
pproaches have been proposed and are still developed to address the
roblem of detecting (undesired) feature interactions, for example, to
iscover feature interaction faults (Garvin and Cohen, 2011). We now
how how our black-box causal analysis at the level of features (see
ection 3.1) can be used for the detection and isolation of feature
nteractions. These can provide the basis for fine-grained, white-box
eature-interaction resolution as also proposed by Garvin and Cohen
2011).
10

i

etection. The first problem we address is to detect the necessity of
eature interactions for an effect to emerge. Garvin and Cohen pre-
ented a formal definition of feature interaction faults to capture faults in
onfigurable systems that necessarily arise from the interplay between
ultiple features (Garvin and Cohen, 2011). Notably, their characteri-

ation is also at the abstraction level of features and relies on black-box
esting of faults, similar to our perspective on effects. We transfer their
efinition to our setting, but covering arbitrary effects instead of faults
nly. Recall that a partial configuration 𝜔 ∈ 𝛥(𝐹) is sufficient for 𝖤𝖿𝖿𝖾𝖼𝗍
.r.t. 𝖵𝖺𝗅𝗂𝖽 if ∅ ≠ [[𝜔]] ∩ 𝖵𝖺𝗅𝗂𝖽 ⊆ 𝖤𝖿𝖿𝖾𝖼𝗍 (see (FC1)).

efinition 7. A partial configuration 𝜔 ∈ 𝛥(𝐹) is a 𝑡-way interaction
itness for 𝖤𝖿𝖿𝖾𝖼𝗍 w.r.t. 𝖵𝖺𝗅𝗂𝖽 if

FI1) 𝜔 sufficient for 𝖤𝖿𝖿𝖾𝖼𝗍 w.r.t. 𝖵𝖺𝗅𝗂𝖽 with |𝗌𝗎𝗉𝗉(𝜔)| = 𝑡 and
FI2) there is no 𝜔̂ sufficient for 𝖤𝖿𝖿𝖾𝖼𝗍 w.r.t. 𝖵𝖺𝗅𝗂𝖽 with |𝗌𝗎𝗉𝗉(𝜔̂)| = 𝑡−1.

Basically, there is a one-to-one correspondence between interaction
itnesses and feature causes with minimal support:

heorem 2. For any partial configuration 𝛾 ∈ 𝛥(𝐹) with 𝑡 = |𝗌𝗎𝗉𝗉(𝛾)| we
ave that

(1) if 𝛾 is a 𝑡-way interaction witness for 𝖤𝖿𝖿𝖾𝖼𝗍 w.r.t. 𝖵𝖺𝗅𝗂𝖽, then
∈ 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽), and

(2) if 𝛾 ∈ 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) and there is no 𝛾̂ ∈ 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽)
ith |𝗌𝗎𝗉𝗉(𝛾̂)|<𝑡, then 𝛾 is a 𝑡-way interaction witness for 𝖤𝖿𝖿𝖾𝖼𝗍 w.r.t. 𝖵𝖺𝗅𝗂𝖽.

roof. Ad (1): Let 𝛾 be a 𝑡-way interaction witness for 𝖤𝖿𝖿𝖾𝖼𝗍 w.r.t.
𝖺𝗅𝗂𝖽. Since ∅ ≠ [[𝛾]] ∩ 𝖵𝖺𝗅𝗂𝖽 ⊆ 𝖤𝖿𝖿𝖾𝖼𝗍, also [[𝛾]] ∩ 𝖤𝖿𝖿𝖾𝖼𝗍 ≠ ∅, directly

eading to (FC1). Further, [[𝛾]] ∩ (𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍) = ∅ due to [[𝛾]] ∩ 𝖵𝖺𝗅𝗂𝖽 ⊆
𝖿𝖿𝖾𝖼𝗍 and [[𝛾↑𝑥]] ∩ (𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍) ≠ ∅ for all 𝑥 ∈ 𝗌𝗎𝗉𝗉(𝛾) since otherwise
′ = 𝛾↑𝑥 would be a 𝑡−1-way interaction witness for 𝑡 > 1 or [[𝛾↑𝑥]] =
(𝐹) for 𝑡 = 1 (recall that 𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍 = 𝖵𝖺𝗅𝗂𝖽 ⧵ 𝖤𝖿𝖿𝖾𝖼𝗍). Hence, also
FC2) is fulfilled for 𝛾.

Ad (2): Let 𝛾 ∈ 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) where there is no 𝛾̂ ∈
𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) with |𝗌𝗎𝗉𝗉(𝛾̂)| < |𝗌𝗎𝗉𝗉(𝛾)|. Then [[𝛾]] ∩ 𝖤𝖿𝖿𝖾𝖼𝗍 ≠

due to (FC1) and [[𝛾]] ∩ (𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍) = ∅ due to (FC2). Thus,
[𝛾]] ∩ 𝖵𝖺𝗅𝗂𝖽 ⊆ 𝖤𝖿𝖿𝖾𝖼𝗍 and thus, (FI1) holds. Note that this holds for all
auses, independent from the minimality condition. Thus, since there
s no 𝛾̂ ∈ 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) with |𝗌𝗎𝗉𝗉(𝛾̂)| < |𝗌𝗎𝗉𝗉(𝛾)|, there is no
𝛾̂ ∈ 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) with |𝗌𝗎𝗉𝗉(𝛾̂)| = |𝗌𝗎𝗉𝗉(𝛾)| − 1 and hence, also
FI2) is fulfilled. □

To this end, Algorithm 1, in combination with a projection to
eature causes with minimal support, can be used to decide whether
he effect emerges necessarily from feature interactions: A necessary
eature interaction takes place in the case these minimal feature causes
ll have a supports that involve, at least, two features.

xample 12. Returning to Example 2, there are exactly two causes
hat are both 1-way interaction witnesses: 𝛾𝑎 and 𝛾𝑟. The cause 𝛾𝑒𝑐 does
ot witness a necessary 2-way feature interaction since although having
upport size of two, 𝛾𝑎 and 𝛾𝑟 have support size one (cf. Theorem 2(2)).
ence, the effect describing long decipher time is not necessarily

elated to a feature interaction.⋄

solation. The second problem we address is to pinpoint features re-
ponsible for feature interactions. For this, observe that Definition 7 is
imilar to Definition 1, but with a different notion of minimality: While
FI2) ensures global minimality over all partial configurations, (FC2)
nsures local minimality through expansions, taking the individual se-
ection of features into account. To pinpoint those features that actually
nteract towards the effect, feature causes can be interpreted as a form
f interaction witnesses at the local level instead of the global perspective
aken for 𝑡-way interaction witnesses: Switching some feature a cause
oes not ensure the effect to emerge anymore — hence, the switched
eature is necessary for the effect. For instance, in Example 12, the

nteraction between encryption and Caesar being disabled is witnessed

The Journal of Systems & Software 209 (2024) 111915C. Dubslaff et al.

b
i
c
c

D

by the feature cause 𝛾𝑒𝑐 . Feature causes thus also provide a criterion for
feature interactions at the operational level and can be used to guide a
more in-depth white-box feature interaction analysis, possibly reducing
the naive exponentially-sized feature-interaction search space.

Feature interaction responsibility and blame. Any subset of the support
of a feature cause that contains more than two features provides a
candidate for an actual interaction between those features. Since both,
the number of feature causes and their expansions, can be exponential
in the number of features, feature interactions isolated via a causal
analysis might still be difficult to interpret by developers. Based on the
degree of responsibility for single features, we now provide a variant
to measure responsibility and blame of feature interactions, where high
values indicate strong relevance of the interaction and low values weak
relevance. Both measures are defined as the share of features 𝑌 ⊆ 𝐹 to
e switched including at least one feature 𝑥 ∈ 𝗌𝗎𝗉𝗉(𝜕) ∩ 𝑌 from the
nteraction support to obtain a counterfactual witness. This definition
overs the single feature case (Definition 5), where the latter feature 𝑥
oincides with the feature of interest.

efinition 8. The degree of responsibility 𝗋𝖾𝗌𝗉(𝜕, 𝜂) of a partial con-
figuration 𝜕 ∈ 𝛥(𝐹) in the context 𝜂 ∈ 𝖤𝖿𝖿𝖾𝖼𝗍 for which there is 𝛾 ∈
𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) with 𝜂 ∈ [[𝛾]] and 𝗌𝗎𝗉𝗉(𝜕) ⊆ 𝗌𝗎𝗉𝗉(𝛾) and 𝜕(𝑥) = 𝛾(𝑥)
for all 𝑥 ∈ 𝗌𝗎𝗉𝗉(𝜕) is defined as

1
min {|𝑌 | ∶ 𝑌 ⊆ 𝐹 , 𝗌𝗎𝗉𝗉(𝜕) ∩ 𝑌 ≠ ∅, 𝗌𝗐𝗂𝗍𝖼𝗁(𝑌 , 𝜂) ∈ 𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍}

and as 𝗋𝖾𝗌𝗉(𝜕, 𝜂) = 0 otherwise.

Note that, for 𝜕(𝑥) = 𝜂(𝑥) and 𝗌𝗎𝗉𝗉(𝜕) = {𝑥}, Definition 8 agrees
with Definition 5. The degree of responsibility is non-zero in the case
of a single feature if the feature appears in some cause, whereas the
degree of feature interaction responsibility is non-zero if some cause
is an expansion of the potential feature interaction. Feature interaction
blame is extended similarly from the single feature case (Definition 6)
by replacing single features 𝑥 ∈ 𝐹 by partial configurations 𝜕 ∈ 𝛥(𝐹)
that stand for the potential feature interaction of interest:

Definition 9. The degree of blame of a partial configuration 𝜕 ∈ 𝛥(𝐹)
w.r.t. a distribution 𝜋 over 𝖵𝖺𝗅𝗂𝖽 is defined as

𝖻𝗅𝖺𝗆𝖾(𝜕, 𝜋) =
∑

𝜂∈𝖤𝖿𝖿𝖾𝖼𝗍
𝜋(𝜂) ⋅ 𝗋𝖾𝗌𝗉(𝜕, 𝜂).

Example 13. We formalize the majority voting example of Example 8
by features 𝐹 = {𝑥1,… , 𝑥11} and a function 𝜌∶ 𝖵𝖺𝗅𝗂𝖽 → N counting
active features in valid configurations such that 𝖤𝖿𝖿𝖾𝖼𝗍 = {𝜃 ∈ 𝖵𝖺𝗅𝗂𝖽 ∶
𝜌(𝜃) > 5}. Then, the degree of responsibility of a part 𝑋 = {𝑥1, 𝑥2, 𝑥3}
in the context of 𝜂 ∈ 𝖤𝖿𝖿𝖾𝖼𝗍 where 𝜌(𝜂) = 11, i.e., all features are active.
Then, the joint responsibility of 𝑋 in 𝜂 is 1∕4, since besides the features
of 𝑋, further three features have to swap to yield a non-winning
configuration. ⋄

5. Experiment setup

To evaluate our causal analysis and explication methods, we con-
ducted a number of experiments comprising many analyses on commu-
nity benchmarks and real-world examples from the area of configurable
software systems.

Our evaluation is driven by the five research questions stated in the
introduction that address the key issue of whether and how the notion
of feature causality facilitates identifying root causes, estimating the
effects of features, and detecting feature interactions in controlled and
11

practical settings.
5.1. Implementation

We implemented our algorithms to compute feature causes and
explications in the prototypical tool FeatCause. Written in Python, our
tool relies on the engines for logical expressions and binary decision
diagrams (BDDs) of PyEDA, a library for electronic design automa-
tion (Drake, 2015). The tool takes the sets of valid feature configu-
rations 𝖵𝖺𝗅𝗂𝖽 and effects 𝖤𝖿𝖿𝖾𝖼𝗍 as input. FeatCause supports different
input formats for these sets, e.g., by Boolean expressions in DNF or
CNF. We implemented Algorithm 1, which uses prime implicants to
efficiently determine feature causes (cf. Section 3). Internally, sets of
(partial) feature configurations are efficiently represented as reduced
ordered BDDs (Bryant, 1986). In addition to their compact and hence
space-efficient representation, we chose BDDs because they provide
an efficient method to check satisfiability (required, e.g., for Line 2
in Algorithm 1). Note that even when using BDDs, a naive algorithm
that directly checks the conditions (FC1) and (FC2) for all partial
configurations is not feasible, since it would need to construct and
operate on exponentially many BDDs for each of the possible partial
configurations. Instead, in our evaluation we determine feature causes
using prime implicant computations (cf. Section 3). To compute prime
implicants, we used the tool Espresso (McGeer et al., 1993), well known
from circuit optimization, through an interface that mediates between
our BDD representations and the DNF representations in Espresso’s
PLA format. This interface is also used to provide minimal and nearly
minimal cause–effect covers through Espresso-Signature and Espresso,
respectively, which can then be compared with our heuristic cause–
effect cover by most general causes (see Section 4.2). While it is well
known that the length of DNFs can be exponential in the size of the BDD
representing the same Boolean function, generating DNFs from our BDD
representations did not face any significant blowup and required neg-
ligible time in all our experiments. For resolving the non-deterministic
choice in Line 4 of Algorithm 3 (DLS) in our implementation, we
picked the first element of the list of literals ordered according to their
occurrences, i.e., left the resolution of the non-determinism open to
be resolved by the sorting algorithm implemented in Python. We also
modified the algorithm towards a global minimization by exhaustively
iterating over all literals and returning the factorization with minimal
length. Our conducted experiments with a global minimization resolu-
tion of this non-determinism unsurprisingly led to massive performance
drawbacks. The impact on the resulting formula sizes turned out to be
negligible. The reduction by the algorithm is reversible and hence the
set of causes can be easily reconstructed from the reduced formula.
Besides the core tool, we have implemented several conversion scripts
to generate valid feature configuration sets from TVL (Classen et al.,
2011) and effect sets from analysis results returned by variability-
aware analysis tools such as ProVeLines (Cordy et al., 2013a) and
ProFeat (Chrszon et al., 2018) (see also Section 3.1) and the data sets
from Siegmund et al. (2015) and Kaltenecker et al. (2019).

5.2. Subject systems

We selected a diverse set of subject systems to approach our re-
search questions, ranging from popular community benchmarks to
more involved systems with non-functional properties and from real-
world settings.

From Cordy et al. (2013a), we use CFDP, Elevator, and Minepump
systems and analyzed them against the accompanied LTL properties 𝜑
using the variability-aware model checker ProVeLines. Furthermore, we
took the Email and Elevator from von Rhein et al. (2015) and analyzed
multiple defects provided as propositional logic formula generated by
SPLVerifier (Apel et al., 2013).

For quantitative properties, we generated effect sets from config-
urable system analysis results as illustrated in Section 3.1 for three

classes of systems.

The Journal of Systems & Software 209 (2024) 111915C. Dubslaff et al.

p
2
L
b
m
o
p
b

a
c
a
2
i
r
a

o
e
K
d
(
t
t

5

t
p
c

Table 1
Statistics of feature causality experiments.

Property System # |𝖵𝖺𝗅𝗂𝖽| |𝐹 | Time Average size of

[type] [s] 𝖤𝖿𝖿𝖾𝖼𝗍  ⊴− DLS

𝜑
CFDP 10 56 13 0.21 28 7.30 2.60 58%
Elevator 1 36 256 9 0.09 128 0.58 0.58 26%
Minepump 82 128 11 0.29 64 1.77 0.91 43%

𝜀𝐵

LinkedList 42 204 19 18.97 102 47.40 8.36 54%
Linux 21 16 777 216 25 5.88 22 22.14 22.14 80%
PKJab 28 72 12 0.42 36 8.43 4.86 72%
Prevaylar 42 24 7 0.20 12 3.57 2.17 93%
SNW 42 3 240 36 2 751.32 1 620 2 110.31 18.90 37%
ZipMe 1 42 64 9 0.19 32 4.19 2.69 93%

𝜀𝑀

Curl 28 768 14 83.07 384 96.75 67.39 59%
h264 28 1 152 17 355.37 576 229.86 113.93 53%
SQLite 21 3 932 160 40 34 826.86 1 310 729 1 881.67 436.48 27%
WGet 28 5 120 17 777.26 2 560 298.11 201.79 51%

𝜀𝑇

Apache 28 192 10 2.85 96 28.79 22.96 69%
Elevator 2 28 10 6 0.14 5 3.21 2.25 80%
Email 28 40 10 1.01 20 22.32 8.21 69%
h264 56 1 152 17 32.24 576 68.98 22.71 51%
ZipMe 2 42 640 16 1.73 320 11.07 9.98 72%

𝜏𝑅
BSN 4 298 11 0.63 149 21.00 8.75 68%
VCL 22 2 097 152 21 60 403.78 1 048 576 3 718.05 3 718.05 36%

𝜏𝑇

BerkeleyDB 36 2 560 19 5.71 1 280 13.03 4.28 72%
DUNE 46 2 304 32 3 950.15 1 152 724.87 46.00 46%
LLVM 30 1 024 12 16.21 512 53.57 53.57 55%
Lrzip 48 432 20 5.71 216 13.85 1.90 69%
x264 48 1 152 17 2.38 576 7.50 3.75 78%

We list for each type of effect property the considered subject systems, the numbers of experiments (#), valid configurations (|𝖵𝖺𝗅𝗂𝖽|), features
(|𝐹 |), and the overall time in seconds to compute feature causes and most general causes. The second part of the table lists the average sizes
of the effect sets (𝖤𝖿𝖿𝖾𝖼𝗍), feature causes ( = 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽)), cause–effect covers by most general causes (⊴− = 𝖬𝖺𝗑𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽)),
and DLS formulas relative to the characteristic formula of causes (DLS=|𝖣𝖫𝖲(𝜒())|∕|𝜒()| in percent).
ity-
,

F
e
d
f
i
t
a
e
f
c
R

6

c
a
m
r
s
c

First, we constructed effect sets for several systems from studies on
erformance prediction of non-functional properties (Siegmund et al.,
013a; Siegmund et al., 2012; Siegmund et al., 2013b), such as Apache,
inux, SQLite, and WGet. For these, we used the black-box approach
y Siegmund et al. (2012), which uses multivariable linear regression
ethods to generate variability-aware performance models. Our thresh-

lds 𝜀𝐵 , 𝜀𝑀 , and 𝜀𝑇 for constructing effect sets are imposed on the
rediction accuracy of the three different non-functional properties of
inary size, memory footprint, and runtime, respectively.

Second, we considered configurable systems modeled for the variabil
ware probabilistic model checker ProFeat (Chrszon et al., 2018),
omprising a body sensor network (BSN) model (Rodrigues et al., 2015)
nd a velocity control loop (VCL) model of an aircraft (Dubslaff et al.,
019a, 2020b). In both systems, the reliability of the system is analyzed
n terms of the probability of failure of sensors and control components,
espectively. Effect sets are generated by imposing a threshold 𝜏𝑅 on the
nalysis results.

Third, we generated effect sets from performance measurements
f real-world configurable software systems that have been used to
valuate performance modeling techniques (Siegmund et al., 2015;
altenecker et al., 2019). In particular, we selected five systems from
ifferent domains: a compiler framework (LLVM), a database-system
BerkeleyDB), a compression tool (Lrzip), a video encoder (x264), and a
oolbox for solving partial differential equations (DUNE). For these sys-
ems, we chose thresholds 𝜏𝑇 on the runtime of the system executions.

.3. Operationalization

To address (RQ1), we compute both sets 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) and
heir dual 𝖢𝖺𝗎𝗌𝖾𝗌(𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽), i.e., the feature causes of the effect
roperty and its negation. Based on these feature causes, we further
ompute the following causal explications, e.g., to answer (RQ2):
12
• most-general cause–effect covers 𝖬𝖺𝗑𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) and their
dual set 𝖬𝖺𝗑𝖢𝖺𝗎𝗌𝖾𝗌(𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽),

• nearly minimal cause–effect covers by ∗-covers of 𝖤𝖿𝖿𝖾𝖼𝗍 w.r.t.
𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍 provided by Espresso (and their dual case),

• distributive law simplification (DLS) on causes 𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽)
and cause–effect covers 𝖬𝖺𝗑𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍,𝖵𝖺𝗅𝗂𝖽) (and their dual
case),

• feature precauses 𝖯𝖢𝖺𝗎𝗌𝖾𝗌(𝖤𝖿𝖿𝖾𝖼𝗍∗,𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗) and precause–effect
covers for samples 𝖤𝖿𝖿𝖾𝖼𝗍∗ and 𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗ from 𝖤𝖿𝖿𝖾𝖼𝗍 and 𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍
respectively, of increasing size,

• responsibility and blame values for single features and causes, and
• feature interaction blames for pairs of features.

or blame computations, we assume a uniform distribution over all
ffects, due to the absence of further statistical information and taking a
evelopers’ perspective (cf. Section 4.3). For (RQ3), we compute single
eature blames based on a uniform effect distribution to measure the
nfluence of individual features onto the effect. We compute feature in-
eraction blames on pairs of features to address (RQ4), again assuming
uniform effect distribution. Table 1 provides key statistics about our

xperiments, focusing on model characteristics and the time to compute
eature causes and most general feature causes. All experiments were
onducted on an AMD Ryzen 7 3800X 8-Core system with 32 GB of
AM running Debian 10 and Python 3.7.3.

. Results

We discuss our results w.r.t. the different kinds of causal expli-
ations of Section 4. First, we discuss statistics on our experiments,
lso quantitatively analyzing the potential of causal explications by
ost general causes and DLS-reduced formulas. Then, we address our

esearch questions in more depth by means of three representative
ubject systems. Here, we focus on properties not detectable by classical
ausal white-box analysis methods (Zeller, 2002; Johnson et al., 2020).

The Journal of Systems & Software 209 (2024) 111915C. Dubslaff et al.

u
w
s
w
b
e
𝜀
f
r

6

b
f
s
r
t
L

y

2
c

e
|

c
a
a
A
b
t
m

c
o
r
s
r

h
e
c
t
e
o
W
v
e
p
r
d
o
a
c

w
m

Table 2
Minepump – (most general) feature causes.

Blame Feature cause (characteristic formula)

0.29 High ∧ Command ∧ ¬Stop ∧ MethaneAlarm
0.57 High ∧ Start ∧ MethaneAlarm
0.14 High ∧ Command ∧ ¬Stop ∧ MethaneSensor ∧ ¬MethaneQuery
0.57 High ∧ Start ∧ Stop
0.57 High ∧ Low ∧ Start
0.29 High ∧ Start ∧ MethaneSensor ∧ ¬MethaneQuery
0.29 High ∧ Low ∧ Command ∧ ¬Stop

6.1. Descriptive statistics ((RQ1) and (RQ2))

The computability of feature causes is of major interest for our eval-
ation. Table 1 provides an overview of the subject systems for which
e generated effect sets and applied our feature causality analysis. We

ee that our algorithms compute feature causes in reasonable time,
ithin a few seconds for most subject systems. The effect sets have
een precomputed by various variability-aware analysis methods for
ffect properties as described in Section 3.1: 𝜑 stands for LTL properties;
𝐵 , 𝜀𝑀 , and 𝜀𝑇 for thresholds on the accuracy of a prediction model
or binary size, memory footprint, and runtime; and 𝜏𝑅 and 𝜏𝑇 for
eliability and runtime thresholds, respectively. This variety of proper-

ties already illustrates the wide range of applications and potential use
of feature causality. Note that the time to compute the effect sets is not
included in our experiments, since they were partly taken from existing
benchmark sets. The sizes of valid configuration and effect sets crucially
influence the time for computing feature causes, which is as expected
since the complexity of Algorithm 1 is dominated by the computation
of prime implicants of

(

𝛩(𝐹)⧵𝖵𝖺𝗅𝗂𝖽
)

∪𝖤𝖿𝖿𝖾𝖼𝗍. Since our implementation
relies on BDDs for the representation of valid configuration and effect
sets, it is however well possible that within similar sizes, computation
times can significantly differ. This is mainly due to the fact that BDD
sizes highly depend on the specific nature of the represented Boolean
functions and the variable order chosen (Bryant, 1986). For instance,
while the experiments on DUNE and BerkeleyDB (see Table 1) have
similar sized sets 𝖵𝖺𝗅𝗂𝖽 and 𝖤𝖿𝖿𝖾𝖼𝗍, their runtimes differ in two orders
of magnitude. We see that the number of most general feature causes
is often way smaller than the overall number of feature causes, which
renders the creation of cause–effect covers by most general causes sen-
sible to support concise explications. In the same vein, the application
of DLS leads to great reductions of logical representations of feature
causes, e.g., on average by almost 3/4 in the Elevator 1 subject system
(see Table 1).

For (RQ1) and (RQ2), we conclude that feature causes are com-
putable in reasonable time. A substantial reduction of the set of
feature causes and cause–effect covers can be performed with DLS
formulas and most general feature causes, respectively.

.2. Feature cause explications (RQ2)

We discuss the explications of feature causes that we have generated
y the example of the Minepump system (Classen et al., 2013), which is
requently used in the configurable systems’ analysis community. This
ystem models a water pump of a mine with |𝐹 | = 11 features on which
equirements expressed in LTL are imposed (see Section 3.1). One of
hese requirements addresses system stabilization, formalized by the
TL formula

𝜑 = ◊□¬pumpOn ∨◊□pumpOn,

i.e., that from some point on the pump stays on or off forever. An anal-
sis of the stabilization property using ProVeLines returned |𝖤𝖿𝖿𝖾𝖼𝗍| =
13

t

8 configurations where the property holds and |𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍| = 100
onfigurations where it does not hold.

The assessment which features are important for this effect prop-
rty is not obvious, possibly requiring a careful investigation of all
𝖵𝖺𝗅𝗂𝖽| = 128 configurations, evaluating both, effect and non-effect
onfigurations. Our causal analysis returned seven feature causes in
n automated way, listed with their degree of blame in Table 2. They
lready provide hints which features are responsible for the property.
mong the feature causes, three are most general, highlighted in Ta-
le 2. They have the highest degree of partial configuration blame while
he most lengthy cause has the smallest degree. Our DLS heuristics on
ost general causes yields

High ∧ Start ∧ (Stop ∨ Low ∨MethaneAlarm)

providing a concise representation of feature cause candidates expli-
ating the effect property. That is, selecting features High, Start, and
ne of the three features Stop, Low, or MethaneAlarm covers all causally
elevant configurations for the Minepump system to stabilize. On other
ubject systems, explications are also effective, but with less drastic
eductions than for the Minepump example.

Answering (RQ2), feature causes are of reasonable size compared to
the complete analysis results, i.e., most general feature causes and
DLS provide concise explications for feature causes. Responsibility
and blame reflect the impact of feature causes.

6.3. Causality-guided configuration (RQ3)

Feature blame provides a quantitative measure on the causal impact
of feature selections w.r.t. a set of configurations. This measure can be
used to support configuration decisions, e.g., by prioritizing features
with high blame values in case the effect property is desirable. We in-
vestigate such a causality-guided configuration on the velocity control
loop (VCL) subject system (Dubslaff et al., 2020a,b). The VCLmodels an
aircraft velocity controller in SimuLink for which its reliability in terms
of probability of failure is of interest. A common principle to increase
the reliability of a system is by triple modular redundancy (TMR) where
system components are triplicated and their output are combined via a
majority vote. Dubslaff et al. (2019a) suggested to model and analyze
systems with such protection mechanisms using family-based methods
from configurable systems’ analysis. To each component they assign a
protection feature that specifies whether a component is triplicated or
not. Comprising 21 components eligible for protection, the VCL model
has |𝖵𝖺𝗅𝗂𝖽| = 221 = 2 097 152 valid feature configurations. Clearly, the
ighest reliability is achieved by protecting all components. However,
ach protection comes at its costs in terms of execution time, energy
osts, and packaging size. While it is known how to determine pro-
ection configurations with optimal reliability–cost tradeoff (Dubslaff
t al., 2019a), reasons for why a protection configuration is optimal
r why a component was selected for protection are typically unclear.
e address this issue exploiting our causal analysis methods. Using the

ariability-aware probabilistic model checking tool ProFeat (Chrszon
t al., 2018), we generated effect sets 𝖤𝖿𝖿𝖾𝖼𝗍𝜌<𝜏𝑅 w.r.t. 𝜌 mapping to the
robability of failure of the VCL within two control-loop executions and
eliability thresholds 𝜏𝑅 between 0.019 and 0.064.1 Table 3 shows the
egree of feature blame for 18 protection features of the 21 components
f VCL (cf. Section 4.3). The three components not shown in the table
re input components, having zero degree of blame and hence do not
ontribute to the systems’ reliability. With the lowest threshold 𝜏𝑅 =

1 To ensure timely analysis results, real-world failure probability measures
ere increased by a factor 100 (Dubslaff et al., 2020a). Resulting higher values
ight seem unrealistic but arguably do not affect the causal analysis measuring

he impact of protections.

The Journal of Systems & Software 209 (2024) 111915C. Dubslaff et al.

0
r
l
o
w
f
W
c
a
T
p
c
T

6

c
t
a
t
i
a
f
i
b
r

Table 3
Degree of feature blame for the VCL redundancy system.

𝜏𝑅 M
Fu

nc

Su
m

1,
Su

m
4

M
em

or
y

M
O

ne
,P

,
vC

ru
ise

Sp
en

tF
ue

l,
I

D Pr
od

Dr
ag

Fo
rc

e,
ET

hr
us

t

In
te

gr
at

or

Su
m

5

Su
m

3

Su
m

2

Ac
ce

le
ra

tio
n

0.019 0.63 1.00 0.63 1.00 1.00 1.00 0.63 1.00 1.00 1.00 1.00 1.00 1.00
0.020 0.70 0.80 0.77 0.82 0.94 1.00 0.70 0.82 1.00 0.80 0.80 0.80 1.00
0.022 0.49 0.55 0.55 0.61 0.75 0.95 0.49 0.61 1.00 0.55 0.55 0.55 1.00
0.025 0.35 0.38 0.36 0.40 0.46 0.65 0.35 0.40 1.00 0.38 0.38 0.38 1.00
0.029 0.28 0.29 0.28 0.29 0.31 0.33 0.28 0.29 0.91 0.29 0.29 0.29 1.00
0.034 0.28 0.29 0.30 0.30 0.32 0.38 0.28 0.30 0.57 0.29 0.30 0.30 0.97
0.040 0.26 0.27 0.27 0.27 0.28 0.31 0.26 0.27 0.37 0.27 0.34 0.34 0.86
0.047 0.24 0.25 0.25 0.25 0.25 0.26 0.25 0.25 0.30 0.25 0.36 0.36 0.78
0.055 0.24 0.24 0.24 0.24 0.25 0.26 0.24 0.25 0.27 0.26 0.37 0.39 0.68
0.064 0.23 0.23 0.23 0.23 0.24 0.24 0.24 0.25 0.27 0.27 0.35 0.41 0.61
Table 4
Degree of feature interaction blame for Lrzip.

Gzip Lrzip Zpaq

𝜏𝑇 [𝑠] 8 9 4–6 7 8 9 4–7 8–9
200 0.002 0.009
300 0.033 0.033 0.033 0.033
400 0.042 0.042 0.042
500 0.042 0.042 0.042
600 1-way 0.042 0.042 0.042
700 2-way 0.056 0.056 0.056 0.056 0.056
800 0.056 0.056 0.056 0.056 0.056
900 0.063 0.063 0.063 0.063

1 000 0.063 0.063 0.063 0.063
1 100 0.071 0.071 0.071
1 200 0.083 0.083
⋯2 200 0.083 0.083

2 300 0.250
f
e
t
i
a
i
c
r
p
a
w
r
c
a
t
t
h
w
r
h
l
l
u
i
L
T
i
l
i
a

.019, the effect set contains only 32 out of the 221 feature configu-
ations; almost all protections of components are responsible for the
ow probability of failure. Increasing the threshold lowers the degree
f blame since the effect set increases, leading to less counterfactual
itnesses. Using our blame analysis, we can directly deduce advice

or engineers about components protections towards high reliability:
ith tight reliability constraints, one should protect the ‘‘Acceleration’’

omponent, followed by the ‘‘Integrator’’ component, as their blames
re significantly higher than for other components (cf. upper rows of
able 3). When higher failure rates are acceptable, one should prefer to
rotect the components ‘‘Sum2’’ and ‘‘Sum3’’ instead of the ‘‘Integrator’’
omponent due to their higher impact on reliability (cf. lower rows of
able 3).

For (RQ3), we conclude that feature causes and degrees of blame
reveal and quantify the impact of features on the desired effect and,
this way, are able to guide the feature configuration process.

.4. Feature interactions (RQ4)

Our theoretical results from Section 4.4 provide a new connection of
ausal reasoning to feature interactions in configurable systems. In par-
icular, all methods to explicate feature causes and precauses, as well
s cause–effect covers with causes of minimal support can also be used
o explicate feature interactions. For illustration of how to detect and
solate feature interactions through causal reasoning, we perform causal
nalysis on the Lrzip subject system, modeling a compression system
or which runtime characteristics of the compression algorithms are of
nterest. Since the number of feature causes and their expansions can be
oth exponential in the number of features, a direct evaluation of the
14

untimes and causal analysis results is difficult. We hence investigate t
eature interactions through their degrees of blame as described at the
nd of Section 4.3. The subject effect sets 𝖤𝖿𝖿𝖾𝖼𝗍𝜌>𝜏𝑇 depend on the run-
ime 𝜌∶𝖵𝖺𝗅𝗂𝖽 → R in seconds for a configuration compressing a file that
s obtained as by Siegmund et al. (2015), Kaltenecker et al. (2019) and
runtime threshold 𝜏𝑇 (see end of Section 3.1). We then focus on 2-way

nteractions by investigating potential feature interactions between the
ompression algorithm and compression level responsible to have high
untimes. For this we compute degrees of feature interaction blame for
artial configurations 𝜕 where 𝗌𝗎𝗉𝗉(𝜕) ∈ {𝐺𝑧𝑖𝑝, 𝐿𝑟𝑧𝑖𝑝,𝑍𝑝𝑎𝑞}×{1,… , 9}
nd 𝜕(𝑥) = 𝚝𝚛𝚞𝚎 for each 𝑥 ∈ 𝗌𝗎𝗉𝗉(𝜕). In the columns of Table 4,
e show the degrees of feature interaction blames for thresholds 𝜏𝑇

anging from 𝜏𝑇 = 200s to 𝜏𝑇 = 2 300s. Empty cells correspond to
ombinations of compression algorithm and level that do not appear in
ny cause and thus have zero blame. In these cases, we can conclude
hat no feature interaction takes place. Higher blame values indicate
hat the combined responsibility of the compression algorithm and level
as a greater causal impact on runtime. Notably, we observe that,
ith an increasing threshold, the level of compression is increasingly

esponsible for longer runtime. Certain compression algorithms always
ave runtimes above the threshold independently of the compression
evel. This leads to a configuration blame of zero at any compression
evel, e.g., thresholds 𝜏𝑇 ≤ 600s for the Zpaq algorithm shown in the
pper right of Table 4. Note that, in these cases, Zpaq serves as 1-way
nteraction witness according to Definition 7. All greater thresholds for
rzip and Zpaq do not have 1-way but 2-way interaction witnesses.
hat is, being above the runtime threshold is a result of a feature

nteraction between the compression algorithm and those compression
evels not showing zero blame. Notice that the sums of the given feature
nteraction blames for 𝜏𝑇 ≥ 700s that contain algorithms Lrzip or Zpaq
dd up to 1∕2. That is, no other features are to be blamed for exceeding

he runtime threshold.

The Journal of Systems & Software 209 (2024) 111915C. Dubslaff et al.

6

i
d
c
t
n
a
a
t
h
f
c
p
c
m
∗

6

t
a

s
t
s
s
i

Features have a dedicated meaning and one would hence expect
higher runtimes for higher compression levels. To this end, it seems
odd that the feature interaction of Lrzip and compression level 9 is less
to blame for higher runtimes than for levels 7 and 8. This indicates an
anomaly of the feature interaction between Lrzip and the compression
levels 7, 8, and 9. Further investigations on analysis results and feature
causes support these findings: averaged over all measurements of Lrzip
configurations, we observe runtimes of 1 064.9s at compression level
7 (standard deviation 4.1s), 1 181.7s at level 8 (standard deviation
3.2s), and only 830.5s at level 9 (standard deviation 2.6s). Hence,
Lrzip at level 9 is not causally relevant for exceeding the execution
time threshold of 900 s, as the compression level 9 feature is not
contained in any cause with Lrzip. However, this insight is difficult to
obtain relying purely on the performance influence model given by 𝜌,
as this would require handcrafted analysis of all 432 analysis results
(see Table 1).

For (RQ4) we conclude that feature causes can provide hints for
feature interactions and anomalies arising from them. Blame mea-
sures render themselves promising to quantify the influence of feature
interactions that contribute to certain effects.

.5. Minimal ∗-Covers (RQ2)

Minimal prime ∗-covers have, due to its different purpose minimiz-
ng the number of prime implicants in the cover, no direct correspon-
ence to most general causes. But as detailed in Section 4.2, they share
ertain commonalities. While determining minimal ∗-covers involves
o solve an NP-complete problem, many heuristics exist to compute
early-minimal ∗-covers (McGeer et al., 1993). We discovered that in
ll our experiments the nearly minimal ∗-covers returned by Espresso
re contained in the set of ∗-covers of most general feature causes
hat have minimal support size. This has three implications: First, the
ighly optimized heuristics of two-level logic minimizers can provide a
irst impression about feature causality. Second, as feature interactions
orrespond to feature causes with minimal supports, these methods
rovide also first insights about feature interactions. Third, once feature
auses are computed, our heuristics towards cause–effect cover with
ost general causes provides an efficient method for nearly minimal

-covers.

Concerning (RQ2), we can conclude that most general feature causes
in combination with distributive law reduction provides smaller rep-
resentations for ∗-covers of 𝖤𝖿𝖿𝖾𝖼𝗍 relative to 𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍, which
could also lead to meaningful and concise presence conditions von
Rhein et al. (2015).

.6. Effect uncertainty and precause–effect covers (RQ5)

To investigate the impact of uncertainty effect sets, we conducted
wo experiments, (1) addressing effect set underspecification and (2)
ccounting approximative analysis methods and threshold effect sets.

For (1), we chose the Minepump example and stepwise uniformly
ampled effects 𝖤𝖿𝖿𝖾𝖼𝗍∗𝑖 and non-effects 𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗𝑖 for 𝑖 = 1,… , 128 from
he 128 valid configurations in 𝖤𝖿𝖿𝖾𝖼𝗍 and 𝖵𝖺𝗅𝗂𝖽 ⧵ 𝖤𝖿𝖿𝖾𝖼𝗍, respectively,
uch that 𝖤𝖿𝖿𝖾𝖼𝗍∗128 = 𝖤𝖿𝖿𝖾𝖼𝗍 and 𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗128 = 𝖵𝖺𝗅𝗂𝖽 ⧵ 𝖤𝖿𝖿𝖾𝖼𝗍. During
ampling, we closely maintain the ratio between effects and non-effects,
.e., |𝖤𝖿𝖿𝖾𝖼𝗍∗𝑖 |

|𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗𝑖 |
≈ |𝖤𝖿𝖿𝖾𝖼𝗍|

|𝖵𝖺𝗅𝗂𝖽⧵𝖤𝖿𝖿𝖾𝖼𝗍| for all 𝑖 ∈ {1,… , 128}. To evaluate the
quality of the precause–effect covers 𝑖 of 𝖤𝖿𝖿𝖾𝖼𝗍∗𝑖 with relation to the
(true) effects 𝖤𝖿𝖿𝖾𝖼𝗍, we computed the fscore in each step 𝑖, i.e.,

fscore(𝑖) = 2 ⋅ 𝑇𝑃
2 ⋅ 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁

where 𝑇𝑃 = |[[𝑖]] ∩ 𝖤𝖿𝖿𝖾𝖼𝗍| are the true positives, 𝑇𝑁 =
|[[𝑖]] ∩ (𝖵𝖺𝗅𝗂𝖽 ⧵ 𝖤𝖿𝖿𝖾𝖼𝗍)| the true negatives, and 𝐹𝑁 =
|(𝖵𝖺𝗅𝗂𝖽 ⧵ [[]]) ∩ 𝖤𝖿𝖿𝖾𝖼𝗍| the false negatives.
15

𝑖

The results of these scores are shown for the 20 functional effect
properties of Minepump with non-empty sets of causes in Fig. 3. Here, we
averaged the score for each step of 500 sample runs. One can see that
already with around 30% of knowledge about a configuration being
either effect or non-effect, in all cases an fscore of more than 0.8 shows
great quality of the causal description of effects from precauses. Hence,
our notion of feature causality is also meaningful for effect sets that are
underspecified.

To account for the approximative nature of performance models
obtained by regression methods, we investigated Lrzip with the same
thresholds as in Section 6.4 but with introducing a 5% uncertainty
around thresholds 𝜏𝑇 , i.e.,

𝖤𝖿𝖿𝖾𝖼𝗍∗ = {𝜃 ∈ 𝖤𝖿𝖿𝖾𝖼𝗍<𝜏𝑇 ∶ 𝜌(𝜃) ≤ 𝜏𝑇 ⋅ 0.95}

𝖭𝖤𝖿𝖿𝖾𝖼𝗍∗ = {𝜃 ∈ (𝖵𝖺𝗅𝗂𝖽 ⧵ 𝖤𝖿𝖿𝖾𝖼𝗍<𝜏𝑇) ∶ 𝜌(𝜃) ≥ 𝜏𝑇 ⋅ 1.05}.

This introduced noise led to only slight changes of the results in feature
interaction blames of Table 4. Specifically, the uncertainty leads to not
being sure about the interaction between Gzip and compression level
8 at the threshold 𝜏𝑇 = 200s, i.e., showing a blame of 0 in the leftmost
upper cell of Table 4. Starting with 10% uncertainty only changes the
determined causal influences also from the other compression methods,
but not affecting the overall picture. Hence, we can conclude that our
causal reasoning is also robust on small deviations and introducing
noise in effect sets.

Concerning (RQ5), we can conclude that precause–effect covers al-
ready show great performance for causal explications also when
considering reasonably underspecified effect sets.

7. Discussion

In this section, we discuss potential threats to validity of our exper-
iments and relate our findings to existing work from the literature.

7.1. Threats to validity

A threat to internal validity arises from the correctness of the
analysis results from which we generated the effect sets. While for func-
tional properties this threat is not crucial due to exact model-checking
techniques used in our experiments, for non-functional properties the
results have been partly established using machine learning. To miti-
gate this threat, we carefully chose effect-set thresholds such that the
effect sets remain stable also within small threshold variations. Note
that the choice of the effect set has no influence on the applicability
of our causality definitions but only on to what extent causality can
serve as an explication. For blame computations in our experiments,
we assumed a uniform distribution over all effects, taking a developers’
perspective where frequencies on how often an effect occurs in a real-
world setting are not yet accessible. Other distributions could change
our quantitative results, it is unlikely that they would alter our conclu-
sions about causal influences of features and feature interactions. To
increase the internal validity of our prototype, we implemented and
evaluated several methods to compute causes. These include a naive
brute-force approach and two additional methods to generate prime
implicants, independent from the tool Espresso.

Naturally, the choice of subject systems threatens external validity,
which includes the kinds of effect sets on which we evaluate causal-
ity. To alleviate this threat, we included a wide variety of systems
with multiple properties from different areas to our evaluation. They
comprise several real-world software systems often used to evaluate
sampling strategies and performance-modeling approaches. We further
added several community benchmarks from the feature-oriented model-
checking community as well as a large-scale redundancy system from

reliability engineering.

The Journal of Systems & Software 209 (2024) 111915C. Dubslaff et al.
Fig. 3. Fscores from precauses for effect sets sampled with increasing size.
7.2. Related work

Various techniques for software defect detection have been pro-
posed in the literature, ranging from testing (Myers, 2004) and static
code analysis (Nielson et al., 2010) to model checking (Baier and
Katoen, 2008). These techniques have been also extended for analyzing
configurable systems to tackle huge configuration spaces (Thüm et al.,
2014). While such methods are able to identify defects and their
location, the challenge of finding root causes for defects remains. A
methodology to identify causes of defects during software develop-
ment is provided through root cause analysis (Risk and Division, 1999;
Rooney and Heuvel, 2004), which can be supported by a multitude
of techniques for causal reasoning (Pearl, 2009; Peters et al., 2017).
To the best of our knowledge, the foundations for a combination of
configurable systems analysis and causal reasoning as we presented
in this paper have not yet been addressed in the literature. In the
following, we discuss related work in the fields of configurable systems
analysis and causal reasoning.

Configurable systems analysis and explications. For analyzing config-
urable software systems, many approaches have been presented in the
last two decades (Post and Sinz, 2008; Thüm et al., 2014). There is
broad tool support for variability-aware testing and sampling (Sieg-
mund et al., 2012; Guo et al., 2018; Kaltenecker et al., 2019; Beek
et al., 2019; Kaltenecker et al., 2020), static analysis (Bodden et al.,
2013; Rhein et al., 2018; Weber et al., 2021; Velez et al., 2020, 2021),
and model checking (Plath and Ryan, 2001; Cordy et al., 2013a; Classen
et al., 2013; Apel et al., 2013; Chrszon et al., 2018; Vandin et al., 2018).

There is a substantial corpus of work on determining those features
in a configurable system that are responsible for emerging effects (e.g.
Kuhn et al., 2004; Yilmaz et al., 2006; Qu et al., 2008). The focus
has been mainly on detecting feature interactions (Calder et al., 2003;
Calder and Miller, 2006; Apel et al., 2014). Siegmund et al. (2012)
and Kolesnikov et al. (2019) describe non-functional feature inter-
actions as interactions where the composed non-functional property
diverges from the aggregation of the individual contributions of the
single features. Garvin and Cohen (2011) provided a formal defini-
tion of feature interaction faults based on black-box analysis to guide
white-box isolation of interaction faults.

An incremental software configuration approach to optimize non-
functional properties has been presented by Nair et al. (2020), comple-
menting our causality-guided configuration exemplified in Section 6.3.

To reduce the size of propositional logic formulas in configurable
systems, von Rhein et al. (2015) proposed to exclude information about
16

valid configurations and use two-level logic minimization, e.g., by the
Espresso heuristics (McCluskey, 1956; McGeer et al., 1993). Our DLS
method differs from this approach by prioritizing causal information
over reduction.

Causal reasoning. Algorithmic reasoning about actual causes following
the approach by Halpern and Pearl (2001a), Halpern (2015) on struc-
tural equations is computationally hard in the general case (Eiter and
Lukasiewicz, 2002; Aleksandrowicz et al., 2017). However, tractable
instances such as the Boolean case have been identified by Eiter and
Lukasiewicz (2006). For deciding whether a partial interpretation is
an actual cause in the Boolean case, Ibrahim and Pretschner presented
an approach based on SAT solving (Ibrahim and Pretschner, 2020). To
compute all causes, their implementation relies on checking causality
for all possible partial interpretations, suffering from an additional
exponential blowup in the number of variables, which we avoid within
our approach using prime implicant computations.

Using test generation methods relying on program trace informa-
tion, program locations that are the origin of the defect can be identi-
fied (Johnson et al., 2020; Rößler et al., 2012). Analyzing differences
between program states of sampled failing and passing executions,
delta debugging identifies code positions relevant for an emerging fail-
ure (Cleve and Zeller, 2005). Similarly, causes for detects can be
determined by analyzing counterexample traces (Groce and Visser,
2003; Beer et al., 2012). Faults can be also located by causal inference
on graphs constructed from statement and test coverage data (Baah
et al., 2010).

Iqbal et al. present a static technique to generate causal models of
a given configurable system using causal interference and statistical
counterfactual reasoning (Iqbal et al., 2021). This model is used to
detect performance bugs and provide hints for their resolution. While
we focused on actual causality and rigorous analysis, they are interested
in type causality to answer more generic questions.

8. Concluding remarks

We introduced a formal definition and algorithms to identify causes
in configurable systems that relies on counterfactual reasoning and
connections to classical problems of propositional logics and circuit
optimization. We demonstrated their potential by analyzing several
subject systems, including real-world software systems and popular
community benchmarks. To prepare for explanations of causes and
their impact onto effects, we proposed explication techniques to con-
cisely represent causes and quantify the causal impact of features.
We showed that our explications are meaningful and can support

the development of configurable software systems by causality-guided

The Journal of Systems & Software 209 (2024) 111915C. Dubslaff et al.

w
i
H
f
I
D
s
e
i
w
o
c
e
a
(
i
2
m
O
t
t
i
p
e

C

i
i
p
S
&
W

configuration and isolating feature interactions. With our prototypi-
cal implementation, we showed that our algorithms are effective on
real-world systems of varying sizes and run in reasonable time.

While already shown to be effective, our implementation could
be enhanced by directly integrating feature cause computations into
optimized algorithms to compute prime implicants, e.g., relying on
prime implicant computations at the level of BDDs (Coudert and
Madre, 1992). Combined with state-of-the-art BDD libraries such as
CUDD (Somenzi, 1997), the computation of causes might become
feasible for even larger systems than considered in this paper.

Another direction is by enhancing our analysis of feature interaction
blames (see Theorem 2) with in-depth white-box analyses (Garvin and
Cohen, 2011) to pinpoint root causes in source code for a great variety
of effect properties using feature causality.

Further applications could be imagined for context-aware systems
here feature-oriented formalisms have been shown great applicabil-

ty (Mauro et al., 2016; Dubslaff et al., 2019b; Chrszon et al., 2020).
ere, our causal framework could reason about contexts responsible

or certain effects, e.g., in self-adaptive systems (Aßmann et al., 2021).
n this vein, dynamic configurable systems (Gomaa and Hussein, 2003;
ubslaff, 2021) are also an interesting direction to be considered. In

uch systems, features can be activated or deactivated during runtime,
.g., to model upgrade and downgrade of systems. The detection and
solation of feature interactions in dynamic configurable systems is a
ell-known challenge (Liu and Meier, 2009). It is a promising avenue
f further work to extend our causal framework to determine root
auses and identify feature interactions in the dynamic setting (Beer
t al., 2012). Results of such extension could also lead to causal
nalysis of evolving software product lines, where the feature space
assumed to be fixed in our static setting) changes over time. Another
mportant instance are quantitative feature interactions (Siegmund et al.,
012; Chrszon et al., 2020), which take into account how performance
easures and quality of service (QoS) change when features interact.
ne possibility would be to identify feature causes with those that have

he greatest impact on a quantitative measure, e.g., which features have
o be active or inactive for ensuring the best increase of reliability
n a fault-tolerant system. This approach would be similar to the
robability-raising principle in probabilistic operational systems (Baier
t al., 2021).

RediT authorship contribution statement

Clemens Dubslaff: Conceptualization, Methodology, Software, Val-
dation, Formal analysis, Investigation, Resources, Data curation, Writ-
ng – original draft, Writing – review & editing, Visualization, Su-
ervision, Project administration, Funding acquisition. Kallistos Weis:
oftware, Validation, Investigation, Data curation, Writing – review

editing, Visualization. Christel Baier: Validation, Formal analysis,
riting – review & editing, Funding acquisition. Sven Apel: Validation,

Writing – review & editing, Funding acquisition, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The research data and code is publicly available.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
17

at https://doi.org/10.1016/j.jss.2023.111915.
References

Abal, I., Melo, J., Stănciulescu, Ş., Brabrand, C., Ribeiro, M., Wąsowski, A., 2018.
Variability bugs in highly configurable systems: A qualitative analysis. Trans. Softw.
Eng. Methodol. 26.

Aleksandrowicz, G., Chockler, H., Halpern, J.Y., Ivrii, A., 2017. The computational
complexity of structure-based causality. Artif. Intell. Res. 58, 431–451.

Apel, S., Atlee, J.M., Baresi, L., Zave, P., 2014. Feature interactions: The next generation
(Dagstuhl Seminar 14281). Dagstuhl Rep. 4, 1–24.

Apel, S., Batory, D.S., Kästner, C., Saake, G., 2013. Feature-Oriented Software Product
Lines - Concepts and Implementation. Springer.

Apel, S., von Rhein, A., Wendler, P., Größlinger, A., Beyer, D., 2013. Strategies for
product-line verification: Case studies and experiments. In: Proceedings of the 35th
International Conference on Software Engineering. ICSE, IEEE, pp. 482–491.

Aßmann, U., Baier, C., Dubslaff, C., Grzelak, D., Hanisch, S., Hartono, A.P.P., Köpsell, S.,
Lin, T., Strufe, T., 2021. Tactile computing: Essential building blocks for the tactile
internet. In: Tactile Internet with Human-in-the-Loop. Academic Press, pp. 301–326.

Baah, G.K., Podgurski, A., Harrold, M.J., 2010. Causal inference for statistical fault
localization. In: Proceedings of the 19th International Symposium on Software
Testing and Analysis. ISSTA, ACM, pp. 73–84.

Baier, C., Dubslaff, C., Funke, F., Jantsch, S., Majumdar, R., Piribauer, J., Ziemek, R.,
2021. From verification to causality-based explications. In: Proceedings of the
48th International Colloquium on Automata, Languages, and Programming, Vol.
LIPIcs:198. ICALP, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, pp. 1–20.

Baier, C., Katoen, J.-P., 2008. Principles of Model Checking. MIT Press.
Beek, M.H.t., Damiani, F., Lienhardt, M., Mazzanti, F., Paolini, L., 2019. Static analysis

of featured transition systems. In: Proceedings of the 23rd Systems and Software
Product Line Conference. SPLC, ACM, pp. 39–51.

Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.J., 2012. Explaining
counterexamples using causality. Form. Methods Syst. Des. 40, 20–40.

Bodden, E., Tolêdo, T., Ribeiro, M., Brabrand, C., Borba, P., Mezini, M., 2013.
SPLLIFT: statically analyzing software product lines in minutes instead of years.
In: Proceedings of the 34th Conference on Programming Language Design and
Implementation. PLDI, ACM, pp. 355–364.

Bryant, R.E., 1986. Graph-based algorithms for Boolean function manipulation. Trans.
Comput. 35, 677–691.

Calder, M., Kolberg, M., Magill, E.H., Reiff-Marganiec, S., 2003. Feature interaction: a
critical review and considered forecast. Comput. Netw. 41, 115–141.

Calder, M., Miller, A., 2006. Feature interaction detection by pairwise analysis of LTL
properties—A case study. Form. Methods Syst. Des. 28, 213–261.

Chandra, A.K., Markowsky, G., 1978. On the number of prime implicants. Discrete
Math. 24, 7–11.

Chockler, H., Halpern, J.Y., 2004. Responsibility and blame: A structural-model
approach. Artificial Intelligence Res. 22, 93–115.

Chrszon, P., Baier, C., Dubslaff, C., Klüppelholz, S., 2020. From features to roles. In:
Proceedings of the 24th Systems and Software Product Line Conference. SPLC, ACM,
pp. 1–11.

Chrszon, P., Dubslaff, C., Klüppelholz, S., Baier, C., 2018. ProFeat: feature-oriented
engineering for family-based probabilistic model checking. Form. Asp. Comput. 30,
45–75.

Clarke, E.M., Emerson, E.A., Sistla, A.P., 1986. Automatic verification of finite-state
concurrent systems using temporal logic specifications. Trans. Programm. Lang.
Syst. 8, 244–263.

Classen, A., Boucher, Q., Heymans, P., 2011. A text-based approach to feature
modelling: Syntax and semantics of TVL. Sci. Comput. Programm. 76, 1130–1143.

Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.-Y., 2012. Model checking
software product lines with SNIP. Int. J. Softw. Tools Technol. Transfer 14,
589–612.

Classen, A., Cordy, M., Schobbens, P.-Y., Heymans, P., Legay, A., Raskin, J.-F., 2013.
Featured transition systems: Foundations for verifying variability-intensive systems
and their application to LTL model checking. Trans. Softw. Eng. 39, 1069–1089.

Cleve, H., Zeller, A., 2005. Locating causes of program failures. In: Proceedings of the
27th International Conference on Software Engineering. ICSE, ACM, pp. 342–351.

Cordy, M., Classen, A., Heymans, P., Schobbens, P., Legay, A., 2013a. ProVeLines: a
product line of verifiers for software product lines. In: Proceedings of the 17th
Systems and Software Product Line Conference. SPLC, ACM, pp. 141–146.

Cordy, M., Schobbens, P.-Y., Heymans, P., Legay, A., 2013b. Beyond boolean product-
line model checking: Dealing with feature attributes and multi-features. In:
Proceedings of the 35th International Conference on Software Engineering. ICSE,
IEEE, pp. 472–481.

Coudert, O., Madre, J.C., 1992. Implicit and incremental computation of primes and
essential primes of boolean functions. In: Proceedings of the 29th European Design
Automation Conference. EURO-DAC, IEEE, pp. 36–39.

Dorn, J., Apel, S., Siegmund, N., 2020. Mastering uncertainty in performance estima-
tions of configurable software systems. In: Proceedings of the 35th Conference on
Automated Software Engineering. ASE, IEEE, pp. 684–696.

Drake, C., 2015. Pyeda: Data structures and algorithms for electronic design automation.
In: Proceedings of the 14th Python in Science Conference. SciPy, pp. 26–31.

https://doi.org/10.1016/j.jss.2023.111915
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb1
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb1
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb1
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb1
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb1
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb2
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb2
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb2
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb3
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb3
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb3
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb4
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb4
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb4
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb5
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb5
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb5
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb5
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb5
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb6
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb6
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb6
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb6
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb6
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb7
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb7
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb7
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb7
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb7
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb8
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb8
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb8
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb8
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb8
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb8
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb8
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb9
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb10
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb10
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb10
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb10
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb10
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb11
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb11
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb11
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb12
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb12
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb12
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb12
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb12
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb12
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb12
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb13
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb13
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb13
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb14
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb14
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb14
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb15
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb15
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb15
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb16
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb16
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb16
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb17
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb17
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb17
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb18
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb18
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb18
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb18
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb18
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb19
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb19
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb19
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb19
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb19
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb20
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb20
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb20
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb20
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb20
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb21
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb21
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb21
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb22
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb22
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb22
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb22
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb22
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb23
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb23
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb23
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb23
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb23
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb24
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb24
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb24
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb25
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb25
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb25
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb25
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb25
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb26
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb26
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb26
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb26
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb26
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb26
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb26
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb27
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb27
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb27
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb27
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb27
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb28
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb28
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb28
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb28
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb28
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb29
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb29
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb29

The Journal of Systems & Software 209 (2024) 111915C. Dubslaff et al.
Dubslaff, C., 2019. Compositional feature-oriented systems. In: Proceedings of the 17th
Conference on Software Engineering and Formal Methods, Vol. LNCS:12226. SEFM,
Springer, pp. 162–180.

Dubslaff, C., 2021. Quantitative Analysis of Configurable and Reconfigurable Systems
(Ph.D. thesis). TU Dresden, Institute for Theoretical Computer Science.

Dubslaff, C., Baier, C., Klüppelholz, S., 2015. Probabilistic model checking for
feature-oriented systems. Trans. Aspect-Oriented Softw. Dev. LNCS:8989, 180–220.

Dubslaff, C., Ding, K., Morozov, A., Baier, C., Janschek, K., 2019a. Breaking the limits
of redundancy systems analysis. In: Proceedings of the 29th European Safety and
Reliability Conference. ESREL, pp. 2317–2325.

Dubslaff, C., Koopmann, P., Turhan, A.-Y., 2019b. Ontology-mediated probabilistic
model checking. In: Proceedings of the 15th Conference on Integrated Formal
Methods, Vol. LNCS:11918. IFM, Springer, pp. 194–211.

Dubslaff, C., Morozov, A., Baier, C., Janschek, K., 2020a. Iterative variable reordering:
Taming huge system families. In: Proceedings of the 4th Workshop on Models
for Formal Analysis of Real Systems, Vol. EPTCS:316. MARS, Open Publishing
Association, pp. 121–133.

Dubslaff, C., Morozov, A., Baier, C., Janschek, K., 2020b. Reduction methods on error-
propagation graphs for quantitative systems reliability analysis. In: Proceedings of
the 30th European Safety and Reliability Conference (ESREL) and 15th Probabilistic
Safety Assessment and Management Conference. PSAM.

Dubslaff, C., Weis, K., Baier, C., Apel, S., 2022. Causality in configurable software sys-
tems. In: Proceedings of the 44th International Conference on Software Engineering.
ICSE’22.

Dubslaff, C., Weis, K., Baier, C., Apel, S., 2023a. FeatCause – Sources and Data. Zenodo,
http://dx.doi.org/10.5281/zenodo.8350560.

Dubslaff, C., Weis, K., Baier, C., Apel, S., 2023b. FeatCause – Github. URL https:
//github.com/dubslaff/FeatCause.

Eells, E., 1991. Probabilistic Causality. Cambridge University Press.
Eiter, T., Lukasiewicz, T., 2002. Complexity results for structure-based causality.

Artificial Intelligence 142, 53–89.
Eiter, T., Lukasiewicz, T., 2006. Causes and explanations in the structural-model

approach: Tractable cases. Artif. Intell. 170 (6–7), 542–580.
Garvin, B.J., Cohen, M.B., 2011. Feature interaction faults revisited: An exploratory

study. In: Proceedings of the 22nd International Symposium on Software Reliability
Engineering. ISSRE, ACM, pp. 90–99.

Gomaa, H., Hussein, M., 2003. Dynamic software reconfiguration in software prod-
uct families. In: Proceedings of the 5th Workshop on Software Profuct Family
Engineering, Vol. LNCS:3014. PFE, pp. 435–444.

Good, I.J., 1959. A theory of causality. British J. Philos. Sci. 9, 307–310.
Groce, A., Visser, W., 2003. What went wrong: Explaining counterexamples. In:

Proceedings of the 10th Workshop on Model Checking of Software, Vol. LNCS:2648.
Springer, pp. 121–135.

Guo, J., Yang, D., Siegmund, N., Apel, S., Sarkar, A., Valov, P., Czarnecki, K.,
Wasowski, A., Yu, H., 2018. Data-efficient performance learning for configurable
systems. Empir. Softw. Eng. 23, 1826–1867.

Halpern, J.Y., 2015. A modification of the Halpern-Pearl definition of causality. In:
Proceedings of the 24th International Joint Conference on Artificial Intelligence.
IJCAI, AAAI, pp. 3022–3033.

Halpern, J.Y., Pearl, J., 2001a. Causes and explanations: A structural-model approach
- part I: Causes. In: Proceedings of the 17th Conference in Uncertainty in Artificial
Intelligence. UAI, Morgan Kaufmann, pp. 194–202.

Halpern, J.Y., Pearl, J., 2001b. Causes and explanations: A structural-model approach
- part II: Explanations. In: Proceedings of the 17th International Joint Conference
on Artificial Intelligence. IJCAI, Morgan Kaufmann, pp. 27–34.

Hansson, H., Jonsson, B., 1994. A logic for reasoning about time and reliability. Form.
Asp. Comput. 6, 512–535.

Hemaspaandra, E., Schnoor, H., 2011. Minimization for generalized boolean formulas.
In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence.
IJCAI, IJCAI/AAAI, pp. 566–571.

Ibrahim, A., Pretschner, A., 2020. From checking to inference: Actual causality
computations as optimization problems. In: Proceedings of the 18th Symposium
Automated Technology for Verification and Analysis, Vol. LNCS:12302. ATVA,
Springer, pp. 343–359.

Iqbal, M.S., Krishna, R., Javidian, M.A., Ray, B., Jamshidi, P., 2021. CADET: Debugging
and fixing misconfigurations using counterfactual reasoning. arXiv:2010.06061.

Johnson, B., Brun, Y., Meliou, A., 2020. Causal testing: Understanding defects’
root causes. In: Proceedings of the 42nd International Conference on Software
Engineering. ICSE, ACM, pp. 87–99.

Kaltenecker, C., Grebhahn, A., Siegmund, N., Apel, S., 2020. The interplay of sampling
and machine learning for software performance prediction. Software 37, 58–66.

Kaltenecker, C., Grebhahn, A., Siegmund, N., Guo, J., Apel, S., 2019. Distance-based
sampling of software configuration spaces. In: Proceedings of the 41st International
Conference on Software Engineering. ICSE, IEEE, pp. 1084–1094.

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S., 1990. Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Tech. Rep., Carnegie-Mellon University
Software Engineering Institute.

Kolesnikov, S.S., Siegmund, N., Kästner, C., Grebhahn, A., Apel, S., 2019. Tradeoffs in
modeling performance of highly configurable software systems. Softw. Syst. Model.
18, 2265–2283.
18
Kuhn, D.R., Wallace, D.R., Gallo, A.M., 2004. Software fault interactions and
implications for software testing. Trans. Softw. Eng. 30, 418–421.

Lewis, D., 1973. Counterfactual theories of causation. J. Phil. 556–567.
Liu, Y., Meier, R., 2009. Resource-aware contracts for addressing feature interaction in

dynamic adaptive systems. In: Proceedings of the 5th International Conference on
Autonomic and Autonomous Systems. ICAS, IEEE, pp. 346–350.

Mauro, J., Nieke, M., Seidl, C., Yu, I.C., 2016. Context aware reconfiguration in software
product lines. In: Proceedings of the 10th Workshop on Variability Modelling of
Software-Intensive Systems. VaMoS, ACM, pp. 41–48.

McCluskey, Jr., E.J., 1956. Minimization of Boolean functions. Bell Syst. Tech. J. 35,
1417–1444.

McGeer, P., Sanghavi, J., Brayton, R., Vincentelli, A.S., 1993. Espresso-signature: A new
exact minimizer for logic functions. In: Proceedings of the 30th Design Automation
Conference. DAC, ACM, pp. 618–624.

Myers, G.J., 2004. The Art of Software Testing. Wiley.
Nair, V., Yu, Z., Menzies, T., Siegmund, N., Apel, S., 2020. Finding faster configurations

using FLASH. Trans. Softw. Eng. 46, 794–811.
Nielson, F., Nielson, H.R., Hankin, C., 2010. Principles of Program Analysis. Springer.
Paul, W.J., 1975. Boolesche minimalpolynome und überdeckungsprobleme. Acta Inform.

4, 321–336.
Pearl, J., 2009. Causality: Models, Reasoning and Inference, second ed. Cambridge

University Press.
Peters, J., Janzing, D., Schölkopf, B., 2017. Elements of Causal Inference: Foundations

and Learning Algorithms. MIT Press.
Plath, M., Ryan, M., 2001. Feature integration using a feature construct. Sci. Comput.

Programm. 41, 53–84.
Pnueli, A., 1977. The temporal logic of programs. In: Proceedings of the 18th

Symposium on Foundations of Computer Science. SFCS, IEEE, pp. 46–57.
Post, H., Sinz, C., 2008. Configuration lifting: Verification meets software configuration.

In: Proceedings of the 23rd Conference on Automated Software Engineering. ASE,
IEEE, pp. 347–350.

Qu, X., Cohen, M.B., Rothermel, G., 2008. Configuration-aware regression testing:
An empirical study of sampling and prioritization. In: Proceedings of the 17th
International Symposium on Software Testing and Analysis. ISSTA, ACM, pp. 75–86.

Rhein, A.V., Liebig, J., Janker, A., Kästner, C., Apel, S., 2018. Variability-aware static
analysis at scale: An empirical study. Trans. Softw. Eng. Methodol. 27.

Risk, A.G.I., Division, R., 1999. Root Cause Analysis Handbook: A Guide To Effective
Incident Investigation. In: G - Reference, Information and Interdisciplinary Subjects
Series, Government Institutes.

Rodrigues, G.N., Alves, V., Nunes, V., Lanna, A., Cordy, M., Schobbens, P., Shari-
floo, A.M., Legay, A., 2015. Modeling and verification for probabilistic properties in
software product lines. In: Proceedings of the 16th Symposium on High Assurance
Systems Engineering. HASE, IEEE, pp. 173–180.

Rooney, J.J., Heuvel, L.N.V., 2004. Root cause analysis for beginners. Qual. Prog. 37,
45.

Rößler, J., Fraser, G., Zeller, A., Orso, A., 2012. Isolating failure causes through test
case generation. In: Proceedings of the 2012 International Symposium on Software
Testing and Analysis. ISSTA, ACM, pp. 309–319.

Siegmund, N., Grebhahn, A., Apel, S., Kästner, C., 2015. Performance-influence models
for highly configurable systems. In: Proceedings of the 10th Joint Meeting on
Foundations of Software Engineering. ESEC/FSE, ACM, pp. 284–294.

Siegmund, N., Kolesnikov, S.S., Kästner, C., Apel, S., Batory, D., Rosenmüller, M.,
Saake, G., 2012. Predicting performance via automated feature-interaction detec-
tion. In: Proceedings of the 34th International Conference on Software Engineering.
ICSE, IEEE, pp. 167–177.

Siegmund, N., Rosenmüller, M., Kästner, C., Giarrusso, P.G., Apel, S., Kolesnikov, S.S.,
2013a. Scalable prediction of non-functional properties in software product lines:
Footprint and memory consumption. Inf. Softw. Technol. 55, 491–507, Special Issue
on Software Reuse and Product Lines.

Siegmund, N., Rosenmüller, M., Kuhlemann, M., Kästner, C., Apel, S., Saake, G.,
2012. SPL conqueror: Toward optimization of non-functional properties in software
product lines. Softw. Qual. J. 20, 487–517.

Siegmund, N., Sven, A.v., Apel, 2013b. Family-based performance measurement.
SIGPLAN Not. 49 (3), 95–104.

Somenzi, F., 1997. CUDD 3.0.0. URL http://vlsi.colorado.edu/~fabio/CUDD/html/.
Spellman, B.A., Kincannon, A., 2001. The relation between counterfactual (‘‘But for")

and causal reasoning: Experimental findings and implications for Jurors’ decisions.
Law Contemp. Probl. (ISSN: 00239186) 64 (4), 241–264, URL http://www.jstor.
org/stable/1192297.

Strzemecki, T., 1992. Polynomial-time algorithms for generation of prime implicants.
J. Complexity 8, 37–63.

ter Beek, M.H., Legay, A., Lluch Lafuente, A., Vandin, A., 2016. Statistical model
checking for product lines. In: Proceedings of the 7th Symposium on Leveraging
Applications of Formal Methods, Vol. LNCS:9952. ISoLA, Springer, pp. 114–133.

Thüm, T., 2020. A BDD for linux? The knowledge compilation challenge for variability.
In: Proceedings of the 24th Systems and Software Product Line Conference. SPLC,
ACM.

Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G., 2014. A classification and survey
of analysis strategies for software product lines. Comput. Surv. 47, 6:1–6:45.

http://refhub.elsevier.com/S0164-1212(23)00310-2/sb30
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb30
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb30
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb30
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb30
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb31
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb31
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb31
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb32
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb32
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb32
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb33
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb33
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb33
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb33
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb33
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb34
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb34
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb34
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb34
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb34
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb35
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb35
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb35
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb35
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb35
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb35
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb35
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb36
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb36
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb36
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb36
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb36
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb36
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb36
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb37
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb37
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb37
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb37
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb37
http://dx.doi.org/10.5281/zenodo.8350560
https://github.com/dubslaff/FeatCause
https://github.com/dubslaff/FeatCause
https://github.com/dubslaff/FeatCause
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb40
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb41
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb41
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb41
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb42
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb42
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb42
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb43
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb43
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb43
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb43
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb43
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb44
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb44
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb44
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb44
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb44
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb45
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb46
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb46
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb46
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb46
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb46
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb47
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb47
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb47
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb47
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb47
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb48
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb48
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb48
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb48
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb48
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb49
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb49
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb49
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb49
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb49
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb50
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb50
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb50
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb50
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb50
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb51
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb51
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb51
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb52
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb52
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb52
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb52
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb52
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb53
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb53
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb53
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb53
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb53
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb53
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb53
http://arxiv.org/abs/2010.06061
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb55
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb55
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb55
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb55
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb55
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb56
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb56
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb56
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb57
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb57
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb57
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb57
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb57
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb58
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb58
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb58
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb58
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb58
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb59
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb59
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb59
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb59
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb59
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb60
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb60
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb60
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb61
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb62
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb62
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb62
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb62
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb62
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb63
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb63
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb63
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb63
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb63
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb64
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb64
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb64
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb65
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb65
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb65
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb65
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb65
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb66
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb67
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb67
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb67
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb68
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb69
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb69
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb69
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb70
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb70
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb70
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb71
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb71
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb71
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb72
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb72
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb72
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb73
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb73
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb73
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb74
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb74
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb74
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb74
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb74
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb75
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb75
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb75
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb75
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb75
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb76
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb76
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb76
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb77
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb77
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb77
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb77
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb77
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb78
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb78
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb78
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb78
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb78
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb78
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb78
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb79
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb79
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb79
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb80
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb80
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb80
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb80
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb80
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb81
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb81
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb81
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb81
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb81
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb82
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb82
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb82
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb82
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb82
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb82
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb82
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb83
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb83
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb83
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb83
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb83
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb83
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb83
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb84
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb84
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb84
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb84
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb84
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb85
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb85
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb85
http://vlsi.colorado.edu/~fabio/CUDD/html/
http://www.jstor.org/stable/1192297
http://www.jstor.org/stable/1192297
http://www.jstor.org/stable/1192297
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb88
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb88
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb88
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb89
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb89
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb89
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb89
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb89
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb90
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb90
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb90
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb90
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb90
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb91
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb91
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb91

The Journal of Systems & Software 209 (2024) 111915C. Dubslaff et al.
Umans, C., Villa, T., Sangiovanni-Vincentelli, A.L., 2006. Complexity of two-level logic
minimization. Trans. Comput.-Aided Des. Integr. Circuits Syst. 25, 1230–1246.

Vandin, A., ter Beek, M.H., Legay, A., Lluch Lafuente, A., 2018. QFLan: A tool for the
quantitative analysis of highly reconfigurable systems. In: Proceedings on the 22nd
Symposium on Formal Methods, Vol. LNCS:10951. FM, Springer, pp. 329–337.

Velez, M., Jamshidi, P., Sattler, F., Siegmund, N., Apel, S., Kästner, C., 2020.
ConfigCrusher: Towards white-box performance analysis for configurable systems.
Autom. Softw. Eng. 27, 265–300.

Velez, M., Jamshidi, P., Siegmund, N., Apel, S., Kästner, C., 2021. White-box anal-
ysis over machine learning: Modeling performance of configurable systems. In:
Proceedings of the 43rd International Conference on Software Engineering. ICSE,
IEEE.

von Rhein, A., Grebhahn, A., Apel, S., Siegmund, N., Beyer, D., Berger, T., 2015.
Presence-condition simplification in highly configurable systems. In: Proceedings
of the 37th International Conference on Software Engineering. ICSE, IEEE, pp.
178–188.

Wachter, S., Mittelstadt, B.D., Russell, C., 2017. Counterfactual explanations without
opening the black box: Automated decisions and the GDPR. Harv. J. Law Technol.
31, 841–887.
19
Weber, M., Apel, S., Siegmund, N., 2021. White-box performance-influence models:
A profiling and learning approach. In: Proceedings of the 43rd International
Conference on Software Engineering. ICSE, IEEE.

Williamson, J., 2009. Probabilistic theories of causation. Oxf. Handb. Causation
185–212.

Yilmaz, C., Cohen, M.B., Porter, A.A., 2006. Covering arrays for efficient fault
characterization in complex configuration spaces. Trans. Softw. Eng. 32, 20–34.

Zave, P., 2001. Feature-oriented description, formal methods, and DFC. In: Proceedings
of the Workshop on Language Constructs for Describing Features. Springer, pp.
11–26.

Zeller, A., 2002. Isolating cause-effect chains from computer programs. In: Proceedings
of the 10th Symposium on Foundations of Software Engineering. FSE, ACM, pp.
1–10.

Zhang, Y., Guo, J., Blais, E., Czarnecki, K., 2015. Performance prediction of configurable
software systems by Fourier learning (T). In: Proceedings of the 30th Conference
on Automated Software Engineering. ASE, IEEE, pp. 365–373.

http://refhub.elsevier.com/S0164-1212(23)00310-2/sb92
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb92
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb92
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb93
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb93
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb93
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb93
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb93
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb94
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb94
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb94
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb94
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb94
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb95
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb95
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb95
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb95
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb95
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb95
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb95
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb96
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb96
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb96
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb96
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb96
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb96
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb96
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb97
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb97
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb97
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb97
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb97
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb98
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb98
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb98
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb98
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb98
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb99
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb99
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb99
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb100
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb100
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb100
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb101
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb101
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb101
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb101
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb101
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb102
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb102
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb102
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb102
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb102
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb103
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb103
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb103
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb103
http://refhub.elsevier.com/S0164-1212(23)00310-2/sb103

	Feature causality
	Introduction
	Background
	Feature Causality
	Effect Properties and Effect Sets
	Relation to HP Causality
	Computation of Feature Causes
	Effect Uncertainty and Feature Precauses

	Causal Explications
	Propositional Logic Formulas
	Cause–Effect Covers
	Responsibility and Blame
	Feature Interactions

	Experiment Setup
	Implementation
	Subject Systems
	Operationalization

	Results
	Descriptive Statistics (lst9002 and lst9003)
	Feature Cause Explications rq:explicate
	Causality-guided Configuration rq:guide
	Feature Interactions rq:interaction
	Minimal ∗-Covers rq:explicate
	Effect Uncertainty and Precause–effect Covers rq:uncertainty

	Discussion
	Threats to Validity
	Related Work

	Concluding Remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix A. Supplementary data
	References

