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We study optimal data pooling for shared learning in two common maintenance operations: condition-
based maintenance and spare parts management. We consider systems subject to Poisson input – the 
degradation or demand process – that are coupled through an unknown rate. Decision problems for these 
systems are high-dimensional Markov decision processes (MDPs) and are thus notoriously difficult to 
solve. We present a decomposition result that reduces such an MDP to two-dimensional MDPs, enabling 
structural analyses and computations. Leveraging this decomposition, we (i) show that pooling data can 
lead to significant cost reductions compared to not pooling, and (ii) prove that the optimal policy for the 
condition-based maintenance problem is a control limit policy, while for the spare parts management 
problem, it is an order-up-to level policy, both dependent on the pooled data.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

Unplanned downtime of advanced technical systems such as 
aircraft, lithography systems, or rolling stock, is very costly for 
companies that rely on these systems in their operations. As such, 
these companies typically have agreements with maintenance ser-
vice providers to ensure high system availability. Advancements in 
information technology along with continuous reductions in costs 
of sensors have led to ample opportunities for service providers to 
improve their maintenance operations [20]. Indeed, modern sys-
tems are increasingly equipped with sensors that relay degradation 
data of critical components in real-time to decision-makers. This 
data is useful for inference of degradation behavior; however, the 
amount of data that each such system generates to predict failures 
of a particular component is scarce, especially for newly intro-
duced systems.

Maintenance service providers typically maintain several sys-
tems of the same type (e.g. similar systems for the same customer 
at different locations, or similar systems for different customers). 
At the beginning of the life-cycle of a newly introduced system, the 
maintenance service provider thus faces a setting where (i) multi-
ple systems of the same type generate a steady stream of real-time 
degradation data, but at the same time, (ii) each such system alone 
has not yet generated sufficient amounts of data. A prime example 
of this can be found in the semiconductor industry. Upon the in-
troduction of a new generation of lithography system in the field, 
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many critical components in this system are also used for the first 
time, and hence no historical degradation data is available [10]. It 
is evident that pooling degradation data from multiple systems can 
lead to cost reductions in the setting described above. However, it 
remains unclear how to quantify these cost reductions, especially 
when we are interested in optimal decisions and the state space of 
the corresponding Markov decision process (MDP) thus becomes 
large. In this paper, we address this question.

We consider a maintenance service provider that is respon-
sible for maintaining multiple systems of the same type at dif-
ferent locations or customers. We consider a single component 
that is present in the configuration of all systems. Components 
face Poisson deterioration with the same but unknown rate, and 
systems fail when the component’s degradation reaches a certain 
failure threshold. Failures can be prevented by performing preven-
tive maintenance, which is cheaper than replacement upon failure, 
which generally leads to costly unplanned downtime. We must de-
cide sequentially – based on the data from all systems – for each 
system to perform preventive maintenance or not, thereby trading 
off premature interventions with tardy replacements. Systems have 
the same unknown deterioration rate, but are otherwise heteroge-
neous (i.e. costs and failure thresholds). We propose a Bayesian 
procedure to pool all data and jointly learn the rate on-the-fly. We 
model the problem as a Bayesian MDP for which the optimal pol-
icy – in theory – can be computed numerically. However, because 
the action and state space grow exponentially in the number of 
systems, this MDP quickly suffers from the curse of dimension-
ality, making it impossible to assess the value of optimal data 
pooling. As a remedy, we establish a decomposition result that 
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
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reduces this high-dimensional MDP to multiple two-dimensional 
MDPs that permit structural analyses and computations.

When components have constant failure rates, maintenance 
service providers typically replace these components with new 
spares only correctively upon failure, i.e. they apply repair-by-
replacement. The underlying spare parts inventory system respon-
sible for supplying these spares then largely determines the avail-
ability of the technical systems. As an extension, we will show 
that our decomposition result also applies to such a spare parts in-
ventory system consisting of multiple local warehouses that keep 
spares for the same critical component whose failure rate is un-
known.

Sequential Bayesian learning based on sensory data stemming 
from systems has been used extensively in the maintenance liter-
ature to study optimal maintenance decision-making with a-priori 
unknown parameters [e.g. 11,6,8], but only for single-component 
systems in isolation (see [4] for an overview of the area). This 
makes sense when the unknown parameter is unique to the spe-
cific system in use. However, as argued above, in practice, param-
eters may be the same for multiple systems of the same type. In 
such a setting, which we consider in this paper, it is natural to pool 
data stemming from all these systems to jointly learn the common 
parameter.

The benefit of pooling has been studied extensively, yet al-
most exclusively related to pooling of physical resources. Notable 
examples include inventory pooling in inventory networks [e.g., 
12] and pooling of server capacity in queuing networks [e.g., 19]. 
Recently, researchers have started to investigate the benefits of 
pooling data [e.g., 2,14], but so far only two works exist on data 
pooling in maintenance optimization [5,10]. [5] investigates the 
benefits of combining data from a set of heterogeneous machines 
in the context of time-based preventive maintenance. They pro-
pose a method to aggregate data from multiple machines such 
that it can be utilized for selecting a periodic interval at which 
preventive maintenance is performed for each individual system. 
[10] pools data to determine whether systems are stemming from 
a so-called weak or strong population, where the former has life-
times that are stochastically smaller than the latter. Unlike [5], who 
proposes a static estimation procedure based on historical pooled 
data, [10] builds an MDP that sequentially learns as more data be-
comes available. They numerically show – only for small instances 
due to the curse of dimensionality – that data pooling can lead to 
savings of up to 14% compared to not pooling. We also learn from 
pooled data in a dynamic, sequential way, but beat the curse of di-
mensionality by leveraging our decomposition result. Both [5] and 
[10] pool data to learn a time-to-failure model in a time-based 
maintenance setting, while we focus on learning a degradation 
model in a condition-based maintenance (CBM) setting.

The contributions of this paper are as follows. First, we for-
mulate the problem of optimally maintaining N systems while 
pooling data to learn a common unknown deterioration rate as 
a Bayesian MDP, and establish a novel result to decompose this 
high-dimensional MDP into N two-state MDPs. Second, using the 
decomposition, we show that the optimal policy of each individ-
ual system has a control limit structure, where the control limit 
depends on the pooled data. Surprisingly, we show that this opti-
mal control limit is not monotone in general. It typically decreases 
first but it always increases and converges to the failure level when 
the pooled data grows very large, implying that preventive mainte-
nance is never optimal in that asymptotic regime. Third, numerical 
results show that savings due to pooling data can be substantial, 
even for small values of N . The exact magnitude of these savings 
largely depends on the degree of the uncertainty in the parame-
ter. Under high uncertainty, savings of close to 57% can be realized 
on average, while these savings become almost negligible when 
uncertainty is low. Finally, we apply our decomposition result to 
2

a spare parts inventory system consisting of multiple local ware-
houses where a common failure rate needs to be learned. For this 
setting, we establish the optimality of monotone order-up-to poli-
cies that are non-decreasing in the pooled data.

The remainder is organized as follows. We discuss the model 
in §2. In §3, we formulate the problem as a Bayesian MDP and 
we establish the decomposition result. Structural properties of the 
expected cost and the optimal policy of the alternative MDP are 
presented in §4. In §5, we report on a numerical study that high-
lights the benefit of pooling data. In §6, we conclude by applying 
our decomposition result to a set of spare parts inventory systems. 
All proofs are relegated to Appendix A.

2. Model description

We consider N ≥ 1 systems subject to damage accumulation 
due to random shock arrivals. Random shock degradation is a com-
mon assumption in the maintenance literature [see, e.g., 16,18,7]
that has been validated by practice-based research [8]. Although 
data pooling has only value when N > 1, the analysis in this pa-
per also holds for N = 1. Let N � {1, . . . , N} be the set of all 
systems. Each system has a critical component such that the sys-
tem breaks down whenever this component fails. The deterioration 
processes of these components are modeled as independent Pois-
son processes with the same, but unknown rate λ, denoted with 
{Xi(t), t ≥ 0}, with Xi(0) = 0, for i ∈ N . A component of system 
i ∈ N deteriorates until its deterioration level reaches or crosses 
a deterministic failure threshold ξi ∈ N+ , where N+ � {1, 2, . . .}, 
after which the component has failed. This failure threshold ξi
is essentially the maximum physical capacity of a component to 
withstand the accumulated damage and under which system i ∈N
still adequately performs its function. In most practical situations, 
components of the same type will have the same failure threshold 
ξi . However, to allow for the general setting in which components 
have different capacities to withstand deterioration – which is rea-
sonable when some components are of better quality than others 
– we let the failure threshold ξi depend on system i ∈N .

Deterioration is monitored at equally spaced decision epochs, 
though failure moments can happen at any point in time. Replac-
ing only at decision epochs is a reasonable assumption given that 
critical components in these systems typically have mean lifetimes 
ranging from 1 to 10 years, while maintenance decisions are made 
much more frequently, often on a daily to weekly basis [21,17]. 
For convenience, we re-scale time such that the time between two 
decision epochs equals 1. If at a decision epoch a component of 
system i ∈N is failed, it needs to be replaced correctively at costs 
ci

u > 0. Such a failure can be prevented by performing a preventive 
replacement, which costs ci

p > 0, with ci
p < ci

u for all i ∈ N . Cor-
rective maintenance is more expensive because it includes costs 
caused by a component failure in addition to the costs related to 
the replacement (e.g. unplanned downtime costs). Both replace-
ments involve a new component that starts deteriorating again 
from level 0 according to a Poisson process with rate λ, that is, 
{Xi(t), t ≥ 0} is reset to Xi(0) = 0. We assume that replacement 
times are negligible. This is reasonable given the efficiency of re-
placing old components with new ones, which usually takes only 
a few minutes to an hour – significantly shorter than the time be-
tween consecutive decision epochs. The systems have a common 
finite lifespan of length T ∈ N+ time units. This lifespan repre-
sents the time from their introduction until they are taken out of 
service, with typical durations of 10 to 30 years [21].

The maintenance service provider, responsible for maintaining 
the set of N systems, seeks to minimize the total expected main-
tenance costs over the systems’ lifespan. Components used for re-
placements always have the same rate but this rate is a-priori un-
known and needs to be inferred based on the observations of the 
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deterioration processes throughout this lifespan. Because compo-
nents have the same rate, we can pool and utilize all accumulated 
data together in real-time to jointly learn this unknown rate. To 
this end, we adopt a Bayesian approach and treat the unknown 
rate λ as a random variable denoted with �. Upon the start of 
operating all systems, at t = 0, � is modeled by a Gamma distribu-
tion with shape parameter α0 and rate parameter β0. The subscript 
notation reflects that this corresponds to t = 0; we adopt this no-
tation in the remainder of this paper. Thus, at t = 0, the density 

function of � is equal to f�(λ; α0, β0) = λα0−1e−β0λβ
α0
0

�(α0)
for λ > 0

with α0, β0 > 0, and where �(·) denotes the Gamma function. Es-
timation procedures are available in the literature for obtaining the 
parameters of this initial belief based on expert knowledge or his-
torical data [see, e.g., 1,8]. Suppose that at decision epoch t ∈N+ , 
we observed a cumulative amount of k deterioration increments 
from all installed components. As degradation is modeled by a 
Poisson process, which is a non-decreasing, integer-valued process, 
we know that the degradation increments are non-negative and 
integer-valued as well. Hence, we know that the cumulative sum 
of all deterioration increments from all installed components, k, 
will always be a non-negative integer. Our choice for the Gamma 
distribution is not only empirically grounded [e.g. 1,8], but also 
mathematically convenient and therefore quite customary in the 
literature. Indeed, it is well-known that the Gamma distribution is 
a conjugate prior for the Poisson distribution, which implies that 
the new posterior distribution describing our belief of � is again 
a Gamma distribution but with updated parameters [see, e.g., 13, 
Chapter 2]:

αt = α0 + k and βt = β0 + N · t. (1)

Observe that from the updating scheme in Equation (1), it is imme-
diately clear that the data stemming from all N systems is pooled 
for learning the unknown rate λ that the systems have in common. 
In Bayesian terminology, k is the sufficient statistic (which is thus 
linear in the observations) and N · t is the total amount of observa-
tions at decision epoch t . At each decision epoch, based the current 
belief of �, we wish to predict the future evolution of the deteri-
oration of each component so that we can decide upon potential 
replacements. This prediction is encoded in the posterior predictive 
distribution. For this Gamma-Poisson model, it is well-known that 
the posterior predictive distribution is a Negative Binomial distri-
bution [see, e.g., 13]. Specifically, given parameters αt and βt , the 
deterioration increment (i.e. Xi(t + 1) − xi(t) with xi(t) the current 
deterioration at decision epoch t) of a component at system i at 
the next decision epoch, denoted with Zi , is Negative Binomially 
distributed with parameters

r = αt and p = βt

βt + 1
, (2)

where r is the number of successes and p is the success proba-
bility, so that Zi can be interpreted as the number of failures until 
the rth success. In the remainder we use the notation Z ∼ N B(r, p)

to denote that Z is a Negative Binomially distributed random vari-
able with parameters r and p.

Equations (1) and (2) can be used to sequentially construct an 
updated posterior predictive distribution in real-time based on the 
observed data. Since the posterior predictive distributions of the 
deterioration increments of each system are fully described by only 
the current decision epoch t and cumulative amount of deteriora-
tion increments k, it is a Markov process. This allows us to formu-
late the optimization problem as a finite horizon (with length T ) 
MDP equipped with the state variable k for Bayesian inference of 
3

the unknown rate. Before doing so, we end this section with an 
important result that establishes a stochastic ordering property of 
the posterior predictive distribution Z (for brevity we drop the de-
pendence on k, N and t) in the cumulative amount of deterioration 
increments k when everything else is fixed.

Lemma 1. The posterior predictive random variable Z is stochastically 
increasing in k in the usual stochastic order.

Lemma 1 implies that if the sum of deterioration increments 
increases, and all else is fixed, then the next random deterioration 
increments are more likely to take on higher values. This is intu-
itive since the mean increment (= αt

βt
) increases in k.

3. Markov decision process formulation

We will now formulate the problem described in the previous 
section as an MDP. Let S � NN+1

0 , where N0 � N+ ∪ {0}, be the 
state space of the MDP. For a state (x, k) ∈ S, x = (x1, x2, . . . , xN )

represents the vector of all deterioration levels, and k denotes the 
sum of all deterioration increments. Recall that as we are deal-
ing with Poisson degradation, both the deterioration levels and the 
sum of deterioration increments are non-negative integer-valued. 
For a given state (x, k) ∈ S, let A(x) denote the action space. For 
any action a = (a1, a2, . . . , aN) ∈A(x), ai represents the action per 
system, with ai ∈ {0, 1} when xi < ξi and ai = 1 otherwise. Here, 
ai = 0 corresponds to taking no action and ai = 1 corresponds to 
performing maintenance on the component of system i, respec-
tively. This implies that if the critical component of system i is 
failed (i.e. xi ≥ ξi ), then the maintenance service provider must 
(correctively) replace it. For all components that have not failed, 
the maintenance service provider can choose to either preventively 
replace it, or do nothing and continue to the next decision epoch.

Given the state (x, k) ∈ S and an action a = (a1, a2, . . . , aN) ∈
A(x), the maintenance service provider incurs a direct cost, de-
noted by C(x, a), equal to

C(x,a) �
∑
i∈N

(
ai

(
1 − Ii(x)

)
ci

p + Ii(x)ci
u

)
, (3)

where Ii(x) is an indicator function that indicates whether the 
component of system i has failed in the deterioration vector x; 
that is, Ii(x) = 0 if xi < ξi and Ii(x) = 1 otherwise.

Let V N
t (x, k) denote the optimal expected total cost over de-

cision epochs t, t + 1, . . . , T , starting from state (x, k) ∈ S, and 
let the terminal cost, V N

T (x, k), be equal to the function C(x) �∑
i∈N Ii(x)ci

u for all k. This terminal cost function essentially as-
signs a corrective maintenance cost to failed components, while no 
costs are incurred for non-failed components. Then, by the princi-
ple of optimality, V N

t (x, k) satisfies the following recursive Bellman 
optimality equations

V N
t (x,k) = (4)

min
a∈A(x)

{
C(x,a) +EZ

[
V N

t+1

(
x′ + Z ,k +

∑
i∈N

Zi

)]}
,

where Z = (Z1, Z2, . . . , Z N) is an N-dimensional random vector 
with Zi ∼ N B

(
α0 + k, β0+N·t

β0+N·t+1

)
(all Zi ’s are independent and 

identically distributed), EZ denotes that the expectation is taken 
with respect to Z , and x′ = (

x′
1, x

′
2, . . . , x

′
N

)
with x′

i = xi if ai = 0, 
and x′

i = 0 if ai = 1.
We also refer to V N

t (x, k) as the value function of the origi-
nal MDP. The first part between the brackets is the direct costs 
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while the second part is the expected future costs of taking ac-
tion a in state (x, k). Specifically, each component’s deterioration 
accumulates further according to the posterior predictive distribu-
tion that corresponds to state (x, k), and k increases with the sum 
of all those increments. Systems that are maintained start with 
an as-good-as-new component, which is governed by the auxiliary 
vector x′ which ensures that x′

i = 0 when ai = 1. The formulation 
in (4) shows that the learning process about the unknown rate λ
is pooled through the evolution of the common state variable k, 
while the future evolution of all individual deterioration processes 
depends on all pooled information and the parameter N . The ex-
istence of an optimal policy in this setting is guaranteed, see e.g., 
Proposition 3.4 of [3].

Observe that the minimum total expected cost for N systems 
over the complete lifespan of length T is given by V N

0 (0, 0) (0 de-
notes the N-dimensional zero vector) which can be found by solv-
ing Equation (4) via backward induction. It is however clear from 
the formulation in (4), that as the number of systems grows, the 
problem will increasingly suffer from the curse of dimensionality: 
The cardinality of both the action and state space grow exponen-
tially in N . Instead of solving (4) (referred to as the original MDP) 
directly, we will therefore construct an alternative MDP and show 
that the original MDP can be decomposed into N of these alter-
native MDPs: One for each system i ∈ N . This decomposition is 
imperative as it allows us to (i) analyze the benefits of pooling 
of learning when N is relatively large without suffering from the 
curse of dimensionality, and (ii) establish structural properties of 
the optimal policy.

To this end, let Ṽ N,i
t (x, k) denote the optimal expected total cost 

for system i ∈N , over decision epochs t, t + 1, . . . , T , starting from 
state (x, k) ∈ N2

0 , and let the terminal cost, Ṽ N,i
T (x, k), be equal to 

the function Ci(x) � Ii(x)ci
u for all k. Then, Ṽ N,i

t (x, k) satisfies the 
following recursive Bellman optimality equations

Ṽ N,i
t (x,k) = (5)

min
a∈A(x)

{
Ci(x,a) +E(Z ,K )

[
Ṽ N,i

t+1

(
x · (1 − a) + Z ,k + Z + K

)]}
,

where Z ∼ N B
(
α0 + k, β0+N·t

β0+N·t+1

)
, K ∼ N B

(
(N − 1) · (α0 + k),

β0+N·t
β0+N·t+1

)
, E(Z ,K ) denotes that the expection is taken with respect 

to Z and K , and

Ci(x,a) � a
(
1 − Ii(x)

)
ci

p + Ii(x)ci
u . (6)

The indicator functions and actions (spaces) are as defined before. 
It is noteworthy to mention that the formulation in (5) resembles 
a single component optimization problem in isolation, where the 
transition probabilities depend on N and k. The evolution of state 
variable k depends on the random deterioration increment of the 
component (Z ) but it also accounts for the evolution of the other 
components through the random variable K . Below we present the 
decomposition result, which establishes that the value function of 
the original MDP is the sum of all N value functions of the alter-
native MDPs.

Theorem 1. For each t ∈ {0, 1, . . . , T }, we have V N
t (x, k) =∑

i∈N Ṽ N,i
t (xi, k) for all (x, k) ∈ S.

The decomposition in Theorem 1 reduces the computational 
burden of solving (4) significantly. It collapses the original, high-
dimensional MDP into N 2-dimensional MDPs with a binary action 
space, each with their own cost structure and failure threshold, 
while still taking into account pooled learning across the N sys-
tems. The decomposition also eases the process of establishing 
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roaches the failure level as the pooled data increases. 
nd, we first rewrite (5) into the conventional formula-
ingle component optimization problems. So, for x = ξ , 

 = ci
u +E(Z ,K )

[
Ṽ N,i

t+1

(
Z , k + Z + K

)]
because failed com-

ust be replaced correctively at cost ci
u , and,

) = (7)

i
p +E(Z ,K )

[
Ṽ N,i

t+1

(
Z ,k + Z + K

)]
;

E(Z ,K )

[
Ṽ N,i

t+1

(
x + Z ,k + Z + K

)]}
,

ξi , as we can then either perform a preventive replace-
ich costs ci

p , or leave the component in operation until 
decision epoch at no cost. The terminal costs are as in-
before. The next result establishes the monotonicity of 
in x and k.

on 1. For each t ∈ {0, 1, . . . , T } and i ∈N , the value function 
is (i) non-decreasing in x, and (ii) non-decreasing in k.

ition 1 implies that (i) if a component is more deteri-
 (ii) when the total amount of deterioration increments 
 we expect higher costs. This is intuitive: A higher level 
ration increases the probability of a costly failure and/or 
for preventive replacement, while a higher total amount 
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of deterioration increments implies that all components are dete-
riorating relatively fast (i.e. λ is larger). Using, Proposition 1, we 
may also conclude that V N

t (x, k) is non-decreasing in the standard 
component-wise order in x, and non-decreasing in k. The former 
means that for any deterioration vectors x and x′ such that xi ≤ x′

i
for all i ∈N , we have that V N

t (x, k) ≤ V N
t (x′, k). The intuition be-

hind this is similar to the intuition behind Proposition 1.
The next result establishes the optimality of a state-dependent 

control limit policy for the alternative MDP.

Proposition 2. For each t ∈ {0, 1, . . . , T − 1}, k ∈N0 , and i ∈N , there 
exists a control limit δ(k,t)

i , 0 < δ
(k,t)
i ≤ ξi , such that the optimal action is 

to carry out a replacement if and only if x ≥ δ
(k,t)
i .

Proposition 2 shows that the control limit at each time of each 
component, δ(k,t)

i , depends in real-time on the shared learning pro-
cess across all components through pooling data via the state vari-
able k. The optimality of a control limit policy itself is not only 
intuitive and convenient for the implementation of this optimal 
policy in practice, it can also be exploited to further decrease the 
computational burden of solving the original MDP. That is, exist-
ing algorithms that rely on these structural properties such as the 
modified policy iteration algorithm [see 22, Section 6.5] can be 
used to efficiently solve the alternative MDP, and hence the origi-
nal MDP.

Conceivably, one would expect that as we learn from the pooled 
data that λ is larger (through a higher k) and everything else 
is fixed, we would impose a lower control limit per component, 
i.e. δ(k,t)

i is non-increasing in k. The intuition behind this is that 
because it is more likely that deterioration increments will take 
on higher values (see Lemma 1), we should replace a component 
earlier. Although such a non-increasing δ(k,t)

i would indeed be intu-
itive, we found numerically that this is in general not true. Specifi-
cally, we found that the control limit usually decreases in k first, as 
expected, but that it always increases eventually to ξi as k grows 
large, in which case it is never optimal to do preventive mainte-
nance (see Appendix A for an illustration of this behavior). This 
limiting behavior, which breaks the monotonic behavior of δ(k,t)

i in 
k, is formalized in the proposition below.

Proposition 3. For each t ∈ {0, 1, . . . , T − 1} and i ∈ N , we have 
lim

k→∞
δ
(k,t)
i = ξi .

While Proposition 3 may initially appear counter-intuitive, it 
can be heuristically explained as follows. When k grows very large 
and everything else is kept fixed, the random deterioration per pe-
riod grows so large that any component will fail with certainty 
solely due to the one-period deterioration. In this case, if a com-
ponent is still working at a certain decision epoch and has de-
terioration level x (< ξi), performing preventive maintenance will 
induce an extra cost of ci

p because in the next period, the com-
ponent will fail anyway, regardless of the value of x. To make this 
argument more explicit, consider a component with deterioration 
level x < ξi at decision epoch T − 1. As we only have the terminal 
cost at time T , (7) gives us for the optimality equation:

Ṽ N,i
T −1(x,k) =

min

{
ci

p + P
[

Z ≥ ξi
] · ci

u + (
1 − P

[
Z ≥ ξi

]) · ci
p︸ ︷︷ ︸;
preventive maintenance

5

P
[

Z ≥ ξi − x
] · ci

u + (
1 − P

[
Z ≥ ξi − x

]) · ci
p︸ ︷︷ ︸

leave in operation

}
. (8)

It is clear that preventive maintenance in this state is not optimal 
if and only if the following holds:

ci
p + P

[
Z ≥ ξi

] · ci
u + (

1 − P
[

Z ≥ ξi
]) · ci

p >

P
[

Z ≥ ξi − x
] · ci

u + (
1 − P

[
Z ≥ ξi − x

]) · ci
p. (9)

Since the random variable Z is increasing in k (see Lemma 1), one 
can show that P

[
Z ≥ ξi

] → 1 and P
[

Z ≥ ξi − x
] → 1 for each x <

ξi as k → ∞. This implies, using (8), that at decision epoch T −
1 as k → ∞, leaving the component in operation costs ci

u , while 
performing preventive maintenance costs ci

p + ci
u (an extra cost of 

ci
p). Since ci

p > 0, Equation (9) will always hold for any x < ξi at 
decision epoch T − 1 as k → ∞. In the proof of Proposition 3, 
we formalize this heuristic argument and do so for each decision 
epoch.

5. Numerical study

This section reports the results of a comprehensive numerical 
study in which we assess the benefits of pooling data to jointly 
learn an unknown parameter. Although the results in the previous 
sections hold for asymmetric – in terms of costs and failure thresh-
olds – systems, we focus on symmetric systems in this numerical 
study. By doing so, the value function Ṽ N

0 (0, 0) (we drop the index 
i as we consider symmetric systems) gives us the cost per sys-
tem over its lifespan when the data of N systems is pooled. We 
can use this cost per system to assess the value of pooling learn-
ing as a function of N compared to not pooling. To this end, we 

define the performance measure 	 = 100 
[

1 − Ṽ N
0 (0,0)

Ṽ 1
0 (0,0)

]
. These are 

the relative savings per system over the lifespan when N systems 
are jointly learning compared to not pooling any data for those 
systems and learning the unknown rate independently from the 
other systems.

We first perform an extensive numerical study. Recall that the 
initial parameter uncertainty is modeled by the random variable 
� which has a Gamma distribution with shape α0 and rate β0. 
By fixing the mean of � and subsequently varying its coefficient 
of variation, we can thus increase or decrease the initial parameter 
uncertainty. We do so by solving the following set of two equations 
for the two unknowns α0 and β0: E[�] = α0

β0
, and cv� = 1√

α0
, 

where cv� is the coefficient of variation of �. This allows us to 
explicitly study the impact of the uncertainty (in terms of its mean 
and coefficient of variation) on the pooling effects. Our testbed 
consists of 2268 instances. These are obtained by permuting all 
parameter values in the second column of Table 1, with the cor-
rective maintenance cost cu held fixed at 10. These values are 
representative for the capital goods industry and are in line with 
the maintenance literature (see, e.g., [23] on typical maintenance 
costs, and [8] on initial parameter uncertainty). For each instance 
of the test bed we compute the relative savings %	. The results 
of the numerical study are summarized in the remaining columns 
of Table 1. In this table, we present the average and maximum 
relative savings %	. For each value of N , we first present the av-
erage relative savings for subsets of instances with the same value 
for a given input parameter (row wise), and then present the av-
erage results for all instances with that fixed value of N (bottom 
row), where each average value is accompanied with the maxi-
mum value in brackets.

Based on the results in Table 1, we can state the following main 
observations:
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Table 1
Relative savings (%	) due to pooled learning.

N

Input Value 2 4 6 8 10 20

ξ
7 2.7 (16.4) 9.8 (37.2) 14.8 (59.2) 18.0 (71.2) 19.7 (77.2) 24.5 (88.5)
10 3.4 (19.7) 9.9 (36.8) 14.5 (59.4) 17.1 (71.8) 19.1 (79.7) 22.7 (89.2)

T

50 3.0 (19.7) 9.7 (36.3) 14.5 (57.3) 17.4 (70.2) 19.3 (78.4) 23.6 (88.4)
70 3.1 (19.7) 9.8 (36.6) 14.7 (58.6) 17.6 (71.2) 19.4 (79.2) 23.6 (88.9)
90 3.1 (19.7) 10.0 (37.2) 14.8 (59.4) 17.6 (71.8) 19.5 (79.7) 23.6 (89.2)

cp

0.5 4.4 (19.7) 12.7 (37.2) 18.3 (59.4) 21.6 (71.8) 23.7 (79.7) 28.0 (89.2)
1 2.9 (12.7) 9.5 (33.5) 14.2 (53.9) 17.1 (65.1) 18.9 (72.5) 22.9 (82.8)
1.5 1.9 (8.7) 7.4 (29.9) 11.5 (48.9) 14.0 (59.4) 15.6 (65.8) 19.9 (77.6)

E[�]
0.5 3.0 (19.7) 8.3 (33.5) 12.1 (47.5) 14.6 (60.1) 16.2 (69.1) 19.6 (83.6)
0.75 3.0 (18.7) 10.0 (36.8) 14.9 (54.6) 17.8 (67.6) 19.7 (76.3) 23.8 (87.5)
1 3.1 (14.3) 11.2 (37.2) 16.9 (59.4) 20.3 (71.8) 22.4 (79.7) 27.3 (89.2)

cv�

0.1 0.0 (0.1) 0.0 (0.2) 0.1 (0.2) 0.1 (0.3) 0.1 (0.3) 0.2 (0.4)
0.25 0.2 (0.5) 0.4 (0.8) 0.5 (1.0) 0.5 (1.1) 0.6 (1.2) 0.8 (1.4)
0.5 0.6 (1.3) 1.3 (2.7) 1.8 (3.5) 2.1 (4.1) 2.4 (5.3) 3.1 (6.4)
1 4.1 (12.0) 7.8 (22.5) 9.4 (26.3) 10.4 (28.3) 11.0 (31.1) 12.4 (35.7)
2 10.3 (19.7) 22.7 (36.8) 29.5 (44.8) 33.8 (51.5) 36.7 (57.3) 46.0 (73.9)
4 13.0 (24.6) 27.2 (37.2) 35.3 (59.4) 40.8 (71.8) 44.9 (79.7) 56.9 (89.2)

Total 3.6 (24.6) 9.8 (37.2) 14.0 (59.4) 16.5 (71.8) 18.2 (79.7) 22.3 (89.2)

Fig. 1. Relative savings (%	) as function of N for various values of cv� for E[�] = 0.75, ξ = 10, cp = 0.5, cu = 10, and T = 90.
1. Pooling of data for learning a common unknown parameter can 
lead to significant savings compared to not pooling data and 
learning it independently.

2. The magnitude of the savings seems to be inextricably linked 
with the magnitude of uncertainty in the parameter λ measured 
by the coefficient of variation of �. When cv� is high, savings 
of up to 56.9% on average (over all instances with cv� = 4 and 
N = 20) can be achieved, while if cv� is low, savings become 
almost negligible (≤ 0.2% on average). This can be explained as 
follows. When there is high uncertainty in the unknown pa-
rameter, pooling data allows the maintenance service provider 
to faster learn the unknown parameter compared to learning 
it from data generated by a single system. This result implies 
that pooling data is especially beneficial for real-life settings 
where there is high uncertainty in λ through limited knowl-
edge, limited historical data, and/or poor estimation procedures. 
The opposite is also true. When there is little uncertainty in 
the unknown parameter, the benefit of data pooling vanishes; a 
maintenance service provider already has an accurate belief of 
the unknown parameter that needs little updating.

3. When comparing the average savings for increasing values of N , 
we find that pooling has already a significant impact for small 
values of N , and that the marginal savings gradually decrease 
when N increases.

4. The savings for each value of N tend to decrease as the ra-
tio cu/cp decreases (recall that we keep cu fixed and vary cp ). 
When this ratio decreases and N is fixed, maintenance decisions 
6

have less impact on the resulting costs – simply because their 
cost difference decreases. Consequently, the benefits of utiliz-
ing pooled learning in such maintenance decisions also decrease 
when cu/cp decreases.

5. The savings for each value of N tend to increase as E[�] in-
creases. When E[�] increases and N is fixed, the expected de-
terioration increment between two consecutive decision epochs 
is larger and, as a result, the optimal control limit will be more 
conservative. The results suggest that in that regime, the choice 
of the control limit has a higher impact on the resulting costs 
than when E[�] is low and a less conservative control limit is 
chosen. By pooled learning, one is able to better choose this 
control limit, and as a result, the relative savings of pooled 
learning also increase when E[�] increases.
Observations 1-3 are also illustrated by Fig. 1. In this figure we 

plot the relative savings (%	) as a function of N for various values 
of cv� when E[�] = 0.75, ξ = 10, cp = 0.5, cu = 10, and T = 90. 
The plot indeed shows that for a given level of parameter uncer-
tainty, pooling data across a larger number of systems increases 
the relative savings. The rate at which the savings increase in N
increases significantly in the coefficient of variation. This confirms 
that pooling data can lead to significant cost reductions, especially 
when the uncertainty surrounding an unknown parameter is high. 
We further clearly see that the marginal savings due to adding an 
extra system to the pooled systems decreases as N increases.
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6. An application to spare parts inventory systems

We conclude this paper by illustrating that our decomposition 
result can also be applied to spare parts inventory systems. We 
first redefine some notation introduced in the previous sections. 
Again, we consider a maintenance service provider that operates a 
set of N ≥ 1 local spare parts warehouses, and we denote this set 
by N = {1, . . . , N}. Each local warehouse stocks spare parts of the 
same critical component to serve an installed base of technical sys-
tems. As is common in the spare parts inventory literature [e.g. 9], 
we model demand for spare parts at each local warehouse as an 
independent Poisson process. The rate of these Poisson processes 
λ is identical across all local warehouses. This is a reasonable as-
sumption when the installed bases served by each local warehouse 
are of similar size.

The maintenance service provider is concerned with stocking 
decisions over a finite horizon of T periods. At the start of each 
such period, the maintenance service provider decides how many 
new spare parts are transported to each local warehouse i ∈ N . 
Each unit has a transportation cost ci

v . Since the lead times to the 
local warehouses are typically much shorter than the duration of 
a period, we assume that these new spare parts are instantly de-
livered, after which the period commences. When a component in 
a technical system fails during the period, local warehouse i ∈ N
responsible for this system immediately replaces the failed com-
ponent with a read-for-new one, if it has one available. Otherwise, 
the part is backordered at unit cost ci

b , which reflects expensive 
downtimes or emergency shipments from a central depot or an 
external supplier. Spare parts on stock that are carried over to the 
next period cost ci

h per unit. We account for both backorder and 
holding costs at the end of each period. We assume that each pe-
riod lasts 1 time unit so that demand in each period is Poisson 
distributed with mean λ. We employ the Bayesian approach of Sec-
tion 2 to infer the a-priori unknown rate λ based on the observed 
demands at all local warehouses over the entire planning horizon. 
Observe that in the updating scheme of this approach (cf. Equa-
tion (1)), k is now defined as the total cumulative demand at all 
N local warehouses up to period t . Given k and t , the posterior 
predictive Zi now represents the total demands that arrive at local 
warehouse i ∈N during the next decision epoch.

The state space of the Bayesian MDP corresponding to the de-
cision problem described above is given by S � ZN × N0. For 
a given state (x, k) ∈ S, x = (x1, x2, . . . , xN ) represents the vec-
tor of net inventory levels of all local warehouses before order 
placement at the start of a period, and k denotes the sum of all 
observed demands until that period. For a given state (x, k) ∈ S, 
the action space A(x) contains all possible net inventory levels af-
ter orders are placed and received but before demand is realized, 
i.e. for any action a = (a1, a2, . . . , aN) ∈ A(x), ai ∈ {xi, xi + 1, . . .}
is the net inventory level per local warehouse. As before, we 
let Z = (Z1, Z2, . . . , Z N) denote an N-dimensional random vec-

tor with Zi ∼ N B
(
α0 + k, β0+N·t

β0+N·t+1

)
. As is customary in inventory 

theory, the direct cost in a given period accounts for the ex-
pected holding and backorder costs of the orders placed in that 
period. As such, the total transportation, holding, and backorder 
costs over all local spare parts warehouses is given by C(a, x, k) �∑

i∈N
(
ci

v(ai − xi) + ci
hE

[
(ai − Zi)

+] + ci
bE

[
(Zi − ai)

+])
with x+ �

max(x, 0). While the direct cost now depends on the pooled data 
through state variable k, we note that it remains decomposable in 
N direct costs Ci(a, x, k) � ci

v(ai − xi) + ci
hE[(ai − Zi)

+] + ci
bE[(Zi −

ai)
+], each associated with a local warehouse i ∈N . Let V N

t (x, k)

denote the optimal expected total cost over decision epochs 
t, t + 1, . . . , T , starting from state (x, k) ∈ S, and let V N

T (·, ·) � 0. 
By the principle of optimality, V N

t (x, k) satisfies the recursive 
7

Bellman optimality equations V N
t (x, k) = mina∈A(x)

{
C(a, x, k) +

EZ

[
V N

t+1

(
a − Z , k + ∑

i∈N Zi

)]}
. We now formulate the cor-

responding alternative MDP in which the original MDP can be 
decomposed. For each i ∈N , we let Ṽ N,i

t (x, k) denote the optimal 
expected total cost over decision epochs t, t + 1, . . . , T , starting 
from state (x, k) ∈ Z ×N0. Then, Ṽ N,i

t (x, k) satisfies the following 
recursive Bellman optimality equations

Ṽ N,i
t (x,k) = (10)

min
a∈A(x)

{
Ci(a, x,k) +E(Z ,K )

[
Ṽ N,i

t+1

(
a − Z ,k + Z + K

)]}
,

where Z ∼ N B
(
α0 + k, β0+N·t

β0+N·t+1

)
, K ∼ N B

(
(N − 1) · (α0 + k),

β0+N·t
β0+N·t+1

)
, and Ṽ N,i

T (·, ·) � 0. Observe that the alternative formu-

lation in (10) resembles a single spare parts warehouse problem 
in isolation, but where the dynamics of the system depend on the 
learned information of all warehouses through k.

In the result below, we present our decomposition result ap-
plied to the spare parts inventory system setting. Its proof is al-
most verbatim the proof of Theorem 1 and therefore omitted.

Theorem 2. For each t ∈ {0, 1, . . . , T }, we have: V N
t (x, k) =∑

i∈N Ṽ N,i
t (xi, k) for all (x, k) ∈ S.

As before, the above decomposition result motivates us to es-
tablish structural properties of the alternative 2-dimensional MDP, 
which then carry over to the original, high-dimensional MDP. To 
that end, we first establish convexity of the value function in the 
inventory level before order placement.

Proposition 4. For each t ∈ {0, 1, . . . , T }, k ∈ N0 , and i ∈N , the value 
function Ṽ N,i

t (x, k) is convex in x.

The above result also implies that the optimal policy of the de-
composed MDP is characterized by an order-up-to structure, in 
which we place orders such that the inventory level after order-
ing reaches a certain target level (if needed). Our next result for-
malizes the optimality of order-up-to levels, together with their 
non-decreasing monotonic behavior in the state variable k.

Proposition 5. For each t ∈ {0, 1, . . . , T − 1}, k ∈N0 , and i ∈N , there 
exists a single target level δ(k,t)

i ∈Z such that the optimal action is ai =
δ
(k,t)
i if x < δ

(k,t)
i and ai = x otherwise. The optimal target level δ(k,t)

i is 
non-decreasing in k.

Proposition 5 shows that the optimal target levels depend in 
real-time on the shared learning process across all local ware-
houses via the state variable k in a monotonic way. This is intu-
itive: As we learn from the pooled data that λ is higher (through a 
higher k) and everything else fixed, the next demand will likely 
take on higher values. Therefore, we should increase the target 
level to which we raise our spare part inventories. This monotonic-
ity result stands in contrast to the limiting result of the optimal 
control limits in the CBM setting, as described in Proposition 3. 
The key difference is that, unlike in the CBM setting, there is a cost 
incentive that is proportional to demand realizations. This cost in-
centive remains proportional, even if the demand becomes very 
large because of a very large k, so that ordering quantities are 
monotonically non-decreasing in k. We conclude by noting that 
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similar monotonicity results for Bayesian inventory systems exist 
in the literature, but only for single inventory systems in isolation 
and without any data pooling considerations [e.g. 15].
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