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ABSTRACT
Smartwatches are emerging as an increasingly popular platform
for longitudinal in situ data collection with methods often referred
to as experience sampling and ecological momentary assessment.
Their small size challenges designers of relevant applications to
ensure usability and a positive user experience. This paper inves-
tigates the usability of different input techniques for responding
to in situ surveys administered on smartwatches. In this paper,
we classify different input techniques that can support this task.
Then, we report on two user studies that compared different in-
put techniques and their suitability at two levels of user activity:
while sitting and while walking. A pilot study (𝑁 = 18) examined
numeric input with three input techniques that utilize common
features of smartwatches with a touchscreen: Multi-Step Tapping,
Bezel Rotation, and Swiping. The main study (𝑁 = 80) examined
numeric input and list selection including in the comparison two
more techniques: Long-List Tapping and Virtual Buttons to scroll
through options. Overall, we found that whether users are seated
or walking did not affect the speed or accuracy of input. Bezel ro-
tation was the slowest input technique but also the most accurate.
Swiping resulted in most errors. Long-List Tapping yielded the
shortest reaction times. Future research should examine different
form factors for the smartwatch and diverse usage contexts.

CCS CONCEPTS
• Human-centered computing → Interaction devices; Empir-
ical studies in interaction design; Ubiquitous and mobile devices.
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Interaction design, Smartwatch application, Context-aware experi-
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1 INTRODUCTION
The increasing adoption of smartwatches means that a growing
number of people wear them and can use them for performing
tasks across contexts and at different times of the day. This devel-
opment makes them a particularly suitable platform for surveying
user opinions and attitudes in situ, as they go about their real-life
activities in a variety of contexts. We are particularly interested
in supporting wESM [14] approaches which use wearables as no-
tification and input devices for the Experience Sampling Method
(ESM), for surveying people’s thoughts, feelings, and behaviors
repeatedly, at various times of the day and over sustained study
periods [9, 22]. While ESM originates from the field of psychology,
it is a method that has been widely adopted in various scientific ar-
eas and application domains, and among those in human-computer
interaction, as a way to study user needs and user experiences ‘in
the wild’ [5, 8, 42].

ESM and related methods for in situ data collection, also de-
scribed as ecological momentary assessment [38], or just-in-time
ecological momentary assessment [36], aim to ensure reliable self-
report and high response rates by reducing the need for retrospec-
tion. However, data collection is hampered by the need for the
participant to carry a device, to use it in different perhaps unsuit-
able contexts, and by expecting respondents to enter data while
interrupting other activities they happen to be engaged in. Wear-
ables and more specifically smartwatches can alleviate this problem
as they can be ready at hand and potentially worn continuously
during a study period [6]. Furthermore, they allow the collection
of objective sensor data using embedded sensors in the device.

Here we are interested specifically in self-report data and the
efficacy of different user interfaces for this purpose. Smartwatches
have a minimal interface for data entry [24]. Current smartwatches
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typically rely on touchscreen-based interaction confined to a tiny
screen, for which it is challenging to ensure usability. Research in
this area has explored user interactions with such devices look-
ing at patterns of behavior [41], opening up the design space for
smartwatch interfaces, e.g., for displaying notifications and infor-
mation [44], or text input through virtual keyboards which is par-
ticularly challenging on small screens [18, 23, 26, 33, 40]. Other
research has examined menu structures and the organization of
information so that it can be easily located and selected on a smart-
watch interface, e.g., [27, 31].

Previous research has investigatedwESM implementation [11, 15,
24, 42, 45]. However, the design space of input techniques suitable
for surveying user attitudes and opinions remains to be compre-
hensively assessed. Our research aims to fill this gap and so inform
the user interface design of wESM applications. To characterize the
relevant design space we first classified available input techniques.
Then we compared user performance for different input techniques
during two studies. In a pilot study (N=18), we compared three
different input techniques (multi-step (MS) tapping, swiping, and
bezel rotation) for entering numbers when the user is seated and
when the user is walking. The pilot study exposed some usability
limitations of our implementation of these techniques which were
subsequently corrected. In the main study (N=80)we extended the
collection of input techniques assessed with two different ways for
list selection, namely Long-List Tapping (or LL-tapping) and Virtual
Button (or V-button). We then assessed how our five techniques
could support numeric input (with relatively small numbers) and
list selection (again from a relatively short collection of options).
The first study suggested MS-tapping to be superior. The second
and more extensive study found that the Bezel rotation was the
slowest input technique but also the most accurate while swiping
resulted in the most errors. Long-List Tapping was the fastest if
both tasks are considered. These results contribute a clear guideline
for the instrumentation of wESM studies to prefer LL-tapping for
speed and Bezel rotation for accuracy.

The following section summarizes earlier research on input tech-
niques for smartwatches. We then go on to describe the two studies
detailing methods and results, and conclude by discussing our re-
sults and their implications for future research.

2 RELATEDWORK
Technologies to support ESM studies have closely tracked the de-
velopments in mobile technologies from the days of personal digi-
tal assistants, e.g., see [3], to the current almost total adoption of
smartphones, e.g., [29, 42]. Recently researchers have turned their
attention to smartwatches, for the reasons mentioned above regard-
ing their increased availability and unobtrusiveness compared to
smartphones. Intille et al. implemented 𝜇EMA as an extension to
smartphones that delivered prompts on the smartwatch as well
as concise versions of ESM questions [12]. Compared to running
an ESM protocol on a smartphone, they observed significantly
higher compliance, completion, and first prompt response rates
when running it on a smartwatch, and participants found it less
distracting. Technology development efforts have resulted in differ-
ent smartwatch-based frameworks for real-time, online assessment

and activity monitoring [14, 16]. Hafiz et al. [10] found a strong cor-
relation between the data gathered with cognitive assessment tests
administered via their purpose-made smartwatch application and
computer-based tests administered in a lab, which indicates that
reporting can be reliable even for tasks that are quite demanding.

Smartwatches support a variety of input techniques via touch,
voice, or gesture [4, 46]. The small touchscreen of smartwatches
makes input tasks challenging, for which interaction techniques
need to be adapted or specially developed, e.g., [30, 31]. Touch
input tasks are challenging and users are most efficient when fix-
ing the position of their dominant hand in relation to the smart-
watch screen by using their thumb or their thumb and middle
finger [41]. Their ability to interact with smartwatches is affected
by their activity (e.g., sitting, walking, or running) and encumbrance
(whether their hands are occupied when they need to interact with
the smartwatches) [39], and this may influence the response rate in
experience sampling studies [15]. An investigation of smartwatch
touch-only interaction for the tasks of target selection, panning,
zooming, and flicking concluded that two-finger input should be
avoided, and that flick- and tap-based interactions are more robust
for different levels of physical activity and encumbrance [39]. A
usability evaluation of different smartwatch menu designs in [27]
found that menu selection is more efficient in a list rather than a
grid layout, and a hierarchical organization of the menu is superior
both in efficiency, and overall satisfaction. Text input is particularly
challenging but can be facilitated by progressively zooming into
different portions of the keyboard and by offsetting the display of
the keyboard in relation to the user’s finger, which would otherwise
cover the soft keyboard during text entry [23].

Specifically for conducting in situ surveys, user interaction con-
sists of relativelywell-defined tasks that involve presenting a prompt
or question to the user and collecting their self-report. A com-
prehensive classification of common input tasks for ESM studies
presented in [42] includes tasks such as rating Likert scales, se-
lecting options on radio buttons or checkboxes, text input, and
sliders. Here we focus on two of these that together cover most
needs of the tasks that users need to perform during ESM studies:
a) entering a small number (typically one digit) can support rating
scales that are typically used to report on an attitude or experience
of the user and b) selecting from a list of options which can be
used for scoring on nominal variables, e.g. identifying emotions
or situations by their name. For rating scales there is as yet no
specific design guideline for smartwatches [2, 12, 43, 45]. For list
selection some guidance can be derived from studies on organizing
menus on smartwatches, e.g., [27, 31] though in the case of ESM,
we are interested in shorter menus rather than the generic case
of browsing larger collection of information items. We investigate
the user performance in terms of accuracy and speed, with five
different input techniques at two different activity modes (walking
and sitting). We also explore whether the suitability of different
techniques varies with context, which would suggest the need for a
context-adaptive user interface. Earlier research has demonstrated
how context awareness can help optimize user interfaces in mobile
and wearable devices, e.g., see [19]. Such an adaptation of wESM
user interfaces to context may be an interesting approach to ensure
increased adherence to ESM protocols, as the different contexts and
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physical activity are known to influence responses and adherence
to ESM protocols, e.g., see [15, 25].

3 CLASSIFICATION OF INPUT TECHNIQUES
FOR RATING SCALES AND LIST SELECTION

Two input tasks are particularly relevant for supporting ESM studies
where users report on moods, feelings, e.g., [22], contexts, and
activities, e.g., [5, 13]. One task is rating numeric scales, which
amounts to entering a digit within that range, e.g., one to seven.
Another is list selection, where a list of options is offered to the user
to choose from. As users are asked to respond frequently to ESM
prompts, researchers avoid offering too many options. So where
earlier studies examining how smartwatch interfaces can support
users to locate and choose from a large number of options, e.g.,
15 to 240 items in [30], or 40 items as in [28, 31], a typical list
selection task for self-report in ESM studies may be lower than 12,
e.g., see [5, 13], where the options offered were kept low to limit the
effort needed for frequent self-report. Reviewing related literature
we identify the following input techniques that can support the
two selected tasks on smartwatches illustrated in Fig. 1:

(1) Multi-step (MS) tapping: The user answers each question in
multiple steps by first choosing a range where their answer is
in and continuing so until the desired answer is selected [45].

(2) Single-step (SS) tapping: The user sees all the options dis-
played on a single screen and taps to select one [12, 20, 32,
45].

(3) Long-list (LL) tapping: A list menu is displayed on the smart-
watch screen, containing all questionnaire options. Users can
swipe to scroll the list and tap to select the desired option.

(4) Arm movement: the user moves their entire arm to scroll
through the menu or to choose a particular answer [45].

(5) Wrist rotation: The user rotates their wrist to scroll through
the menu or to choose a particular answer [45].

(6) Swiping: The user continuously touches the screen toward
one direction [45].

(7) Virtual (V) buttons: Users can tap buttons to paging through
options one at a time. These virtual buttons are visually
presented on the screen and respond to the user’s touch
input for option selection.

(8) Voice input: The user speaks out the desired number or option
to the microphone of the device [1, 17].

(9) Flicking: The user rotates their wrist abruptly clockwise or
counter-clockwise [45].

(10) Button press: The user presses the buttons on the frame of
the watch to navigate between options and taps to select the
currently displayed option [17, 37].

(11) Bezel rotation: The user rotates the ring around the watch to
shift through options, and taps in the central region of the
dial to select the value it displays at that moment [21]. To
select among a large number of items, this can be combined
with the list selection, using the bezel to select list segments
and list selection to locate an individual item as in [31].

(12) Sliding: Sliding is a variant of swiping where the user swipes
in a circular motion (clockwise or counter-clockwise) on the
screen to select an answer [45]

(13) Drawing: The user slides their finger on the screen and
draws the desired input such as numbers or simplified draw-
ings [45]. This amounts to handwriting with the finger on
the smartwatch screen.

4 PILOT STUDY: NUMERIC INPUTWITH
MULTI-STEP TAPPING, BEZEL ROTATION,
AND SWIPING

Our pilot aimed to explore how different input techniques affect
user performance when reporting on a rating scale, as is common
in ESM protocols. Specifically, we compared three of the input
techniques described above, namely Bezel Rotation, MS-Tapping,
and Swiping, for answering survey questions implemented on the
same hardware and operating system. These three techniques were
chosen based on earlier research. MS tapping has been found to
be more efficient than single-step tapping [45] and it can accom-
modate multiple options thanks to its hierarchical organization.
An earlier study [31] found that circular selection as in the Bezel
rotation outperforms traditional smartwatch list interfaces in terms
of user preference and task completion time. On the other hand, we
considered swiping to be particularly relevant when ESM respon-
dents are moving, as it requires less precise gestures. We designed
and developed an ESM smartwatch application supporting these
three input techniques and the procedures and measurements of
the experiment. We measured the time taken to answer questions
and whether the responses were correct. In order to assess how
the level of physical activity may alter the suitability of different
input methods, we compared user performance in these interac-
tions while walking and sitting. In order to examine whether user
interfaces for wESM should be adaptive, we were particularly inter-
ested to note if different interfaces are suitable for different levels
of activity of users.

4.1 Methods
We conducted a within-subject, 3 (input techniques) × 2 (activity
level) experiment with a crossover design, with 𝑁 = 18 participants
recruited through convenience sampling. The study was approved
by the university ethics board. Participants did not receive any
compensation for their participation in the study, and informed
consent was obtained before the study took place.

4.1.1 Independent variables. We had two variables, the input tech-
nique (Bezel Rotation, MS-Tapping, and Swiping) and the activity
level (sitting or walking).

4.1.2 Dependent variables. Wemeasured the time taken to respond
to the survey questions as logged by the software as a measure of
the efficiency of user input and the number of incorrect answers as
a negative measure of accuracy. We divided the number of incorrect
responses by the number of all responses. Accordingly, higher aver-
age values indicate a higher error rate, and thus, a lower accuracy.

4.1.3 Hypotheses. Based on the literature review we expected that:
(1) The reaction time and the error rates will differ between the

input techniques.
(2) The reaction times and the error rates will differ when walk-

ing or sitting.
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(1) MS-tapping (2) SS-tapping (3) LL-tapping (4) Arm movement (5) Wrist rotation

(6) Swiping (7) Virtual buttons (8) Voice input (9) Flicking (10) Button press

(11) Bezel rotation (12) Sliding (13) Drawing

Figure 1: Overview of input techniques on (circular) smartwatches

(3) There will be an interaction effect between the activity level
and the input techniques, meaning that observed differences
in reaction times and error rates for the different input tech-
niques will be influenced by whether the users are walking
or sitting.

4.1.4 Materials and Measures. The experimental protocol was
supported by a purpose-made application developed for the Sam-
sung Galaxy Watch Active 2 [35] (Tizen OS 5.5) using the Ti-
zen Web API and the Tizen Advanced UI (TAU) framework [34],
written in JavaScript. The source code of the app is available at
https://github.com/khnshn/interaction-styles-evaluation. The ap-
plication asks the user to respond to survey questions using the
three input techniques compared. The questions, which are similar
in structure to those asked in ESM surveys, are offered in a ran-
domized order to limit the learning effect and expectancy bias. The
application records the answers and the time users take to answer.
The interface was designed to be minimal to avoid distracting users
with unrelated design features and to avoid potentially biasing the
experimental results. To ensure usability, all three input techniques
implemented the design guidelines reported in [39], and [27]. Fig-
ure 2 provides an overview of the application and instances from
the three input techniques evaluated.

4.1.5 Participants. Eighteen participants were recruited with con-
venience sampling, with ages ranging between 19 and 61 (𝑚𝑒𝑎𝑛 =

34.11, 𝑆𝐷 = 17, 61) years. No participant suffered from poor vision.

4.1.6 Procedure. Each participant interacted with the software
and was asked to enter data once while sitting in front of a desk
and once again while walking in a large open office environment
with relatively low occupancy and enough area for participants
to walk unencumbered. To avoid learning effects we adopted a

crossover design, in which we asked half of the participants to
perform the experiment at first while walking and thenwhile sitting,
and the other half vice versa. Moreover, a sequence of 18 questions
on the smartwatch and their corresponding input technique was
randomized for each experiment to avoid expectancy-related bias.
In order to avoid influencing performance by how each participant
would find a question easy or difficult to answer, we asked short
simple questions with trivial answers. During the experiment, two
types of questions were asked. The first type comprised 15 questions
with numerical answers (Appendix A). Each question presented ten
options, ranging from one to ten. The second type consisted of five
questions with textual answers (Appendix A), where each question
included ten different country names as options. For example, "Can
you insert number 5?" or One+One=?" to minimize the cognitive
load for deciding on what to respond and minimize the influence of
cognitive processing on the performance of the input task. We also
made sure the expected answers would cover the range of possible
responses, to avoid a contrived comparison (e.g., when the expected
answer would always be to the lower end of the range). Then, we
measured the task completion time and errors per input technique.
After interacting with the smartwatch, we conducted structured
interviews with the participants to understand their subjective
preferences. The interview protocol is shown in Appendix A.

4.1.7 Data Analysis. For the data analysis, IBM SPSS Statistics
software version 27 was used. To test the hypotheses, a number of
Repeated Measures of two-way ANOVA was conducted.

4.2 Results
4.2.1 Effects of activity level and input technique on reaction times.
The mean reaction times measured in milliseconds for the two activ-
ity levels (i.e., sitting and walking) along the three input techniques
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(1) Starting screen (2) Question (3) MS-tapping (step 1: all options)
(4) MS-tapping (step 2: e.g., options after se-
lecting [5-7])

(5) Bezel rotation (6) Swiping (7) Completion (after a question) (8) Completion (after the questionnaire)

Figure 2: Screenshots of the smartwatch application guiding participants through the study procedure and implementing the
three input techniques we compare

are shown in Table 1. Fig. 3 displays the average reaction time along
the three input techniques. The separate lines indicate the activity
levels (i.e., sitting and walking conditions).

Sitting Walking
Bezel Rotation 5458 (SD = 3128) 5151 (SD = 2987)
MS-Tapping 2910 (SD = 1997) 2726 (SD = 1008)
Swiping 3625 (SD = 1844) 4011 (SD = 1879)

Table 1: Mean reaction time values (milliseconds) for the
input techniques for the sitting and walking conditions.

We conducted repeated measures of two-way ANOVA to assess
the effect of activity level on the reaction time for the three input
techniques. Themain effect (i.e., within-subject effect) of the activity
level was not significant (p = 0.786, F(1, 17) = 0.076, Partial 𝜂2
= 0.004), suggesting that, overall, participants were just as fast
whether seated or walking. The main effect of the input technique
was significant (p < 0.001, F(2, 34) = 38.705, Partial 𝜂2 = 0.695).
A posthoc analysis with a Bonferroni correction determined that
there was a significant difference between all input technique pairs
(pBezel R – MS-Tapping < 0.001; pBezel R – Swiping < 0.001; pMS-
Tapping-Swiping = 0.008). MS-Tapping was the fastest followed by
Swiping and Bezel Rotation. Furthermore, the repeated measures

Figure 3: Reaction times while sitting and walking for the
three input techniques.

ANOVA indicated a non-significant interaction effect (p = 0.470, F(2,
34) = 0.773, Partial 𝜂2= 0.043). Thus, the differences in efficiency
noted between the input techniques are similar when walking or
seated.

78



MUM ’23, December 03–06, 2023, Vienna, Austria P. Markopoulos et al.

4.2.2 Effects of activity level and input technique on error rates. The
average values along the activity levels and three input techniques
are shown in Table 2.

Sitting Walking
Bezel Rotation 0.28 0.20
MS-Tapping 0.06 0.19
Swiping 0.19 0.15

Table 2: Average error rates for the three input techniques
for the sitting and walking conditions.

MS-Tapping resulted in the lowest error rate in the sitting condi-
tion, while Swiping resulted in the lowest error rate in the walking
condition. On the other hand, most errors in both conditions were
made with the Bezel Rotation input technique. Fig. 4 displays the
average error rates along the three input techniques per activity
level.

Figure 4: Average error rates in the sitting and walking con-
ditions for the three input techniques.

A repeated measures two-way ANOVA did not find a significant
main effect of the activity level (p = 0.163, F(1,17) = 2.125, 𝜂2 =
0.111), suggesting that overall participants were just as accurate
whether seated or walking. However, there was a significant main
effect of the input technique on the error rate (p = 0.004, F(2, 34)
= 6.384, Partial 𝜂2 = 0.273). A post-hoc analysis with a Bonferroni
correction determined that there was a significant difference (p =
0.026) between Bezel Rotation and MS-Tapping, the latter having
a significantly lower error rate. Other pairwise comparisons were
non-significant. Furthermore, the two-way ANOVA indicated a
non-significant interaction effect (p = 0.059, F(2, 34) = 3.085), Partial
𝜂2 = 0.154). In other words, whether the participant was sitting or
walking did not influence the differences in the error rates found
for the input techniques.

4.3 Qualitative data
Most participants commented that they favored MS-Tapping for
being the quickest input technique while resulting in the least
burden and fewest errors. They found that it gave them a clearer
overview of the possible answers and felt it required less precise

action compared to the other techniques. However, they also found
it the least visually appealing. The Bezel Rotation received mixed
feedback. It was found convenient since it gave a detailed overview
of all the possible answers while facilitating a back-and-forth tran-
sition between the choices. However, for users inexperienced with
smartwatches, the interface did not clearly indicate what type of
interaction was required to navigate through the options and how
to select an answer. The swiping interface was considered to be
sufficient and functional but was favored less than MS-Tapping,
while it was found more convenient than the Bezel Rotation. No-
tably, 17 out of 18 participants mentioned that they experienced
it as more effortful while walking, which was not reflected in the
objective measures of performance or errors above. Additionally,
the active area for tapping to select a response was found to be too
close to the bezel, so some participants mentioned how they acci-
dentally selected a response when they intended to rotate the bezel.
A potential limitation we noted in this pilot study, is that there
was a very high spread of ages in our convenience sample, which
included young students as well as people close to retirement and
few people in the range between. We compared the performance
and preferences of these two subgroups and found that they di-
verged, potentially confounding our results. Another limitation
concerns the implementation of the swiping interface. We observed
that participants often mistook the arrows in the swiping screen in
Fig. 2.6, which were purposed to solely provide a visual guide to
indicate the swiping direction. Hence, they often tapped on those
(non-interactive) icons hoping to scroll to the next value left or
right rather than swiping, which led to longer interaction times.
We considered this to be a limitation of our implementation of
the input style rather than an inherent limitation of swiping as an
input technique. For this, we decided to improve the application
and repeat the comparison.

5 MAIN STUDY: NUMERIC INPUT AND LIST
SELECTIONWITH FIVE INPUT
TECHNIQUES

To address the limitations of the pilot study we improved the ap-
plication. First, we removed the arrows from the swiping interface
to avoid them being mistaken for on-screen buttons. Considering
how users intuitively interpreted these buttons we also decided
to implement the V-Button input method, where the virtual but-
tons indicating the direction of scrolling could be pressed to page
through the list of choices. We also increased the separation of the
bezel rotation dial from the area for tapping to confirm a response.
Moreover, to cover more of the input tasks needed for wESM, we ex-
tended our study to include list selection, i.e. to choose from a list of
strings representing names or phrases. This is useful in ESM studies
to indicate responses that require providing categorical and ordinal
responses, e.g., to indicate moods, preferences, etc. Following the
results of [27] we should expect a list of items to choose from to be
a more efficient user interface than other organizations such as a
two-dimensional grid. We thus extended our smartwatch app with
the Virtual Button and the LL-tapping input techniques to test and
evaluate whether reaction times and error rates are influenced by
the activity level (see Fig. 5). We also included in the application list
selection tasks that used the three initial input techniques. Finally,
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to eliminate the spread in ages, we restricted the age of participants
to only include students.

We conducted a within-subject, 5 (input techniques) × 2 (activity
level) experiment with a crossover design, with 𝑁 = 80 participants
recruited through convenience sampling. The procedures and the
measures in this study were similar to those in the pilot study
described in section 4.1.

5.1 Methods
5.1.1 Participants. In this study, 80 students (43 male, 37 female)
participated between ages 18 to 26 (𝑚𝑒𝑎𝑛 = 25.51, 𝑆𝐷 = 2.158). The
sample size was determined a priori based on a target of 0.8 power,
with at least medium effect sizes expected (f=0,4), using statistical
power analysis on the G*Power application [7]. We narrowed our
sampling frame to students in our university to avoid potential
confounding effects relating to age and fluency with mobile, touch-
based interactions. Participants did not have vision problems. Prior
to the study, 24 participants reported having previous experience
with using smart watches, from which 6 participants had used
a Samsung smartwatch before; the rest of the participants were
novices in this respect.

5.1.2 Procedure. The experiment was conducted on the campus of
the [university], in the library building. Participants completed both
conditions (i.e., sitting and walking) in a single setting. In the sit-
ting condition participants were asked to take a seat to answer the
questions, while in the walking condition, they were asked to walk
around while responding to the questions. The participants under-
went the experiment individually, and their questionnaire responses
and time data were automatically recorded on the smartwatch. The
experiment lasted approximately 12 minutes and consisted of the
following steps: i) introduction to the study and obtaining consent,
ii) introduction to the interaction methods, iii) experiment, iv) in-
terview. During the experiment, two types of questions were asked.
The first type comprised of 15 objective questions with numerical
answers (Appendix A). Each question presented ten options, rang-
ing from 1 to 10. The second type consisted of 5 objective questions
with textual answers (Appendix A), where each question included
ten different country names as options. In the experimental setting,
all questions were presented in a randomized sequence. After the
experimental tasks were completed we conducted structured in-
terviews with all participants (n = 80) to gather their perspectives
on the five interaction methods (i.e., Bezel rotation, MS-tapping,
LL-tapping, Swipe, and V-Button. The interview comprised of the
following six questions: i) How old are you?, ii) Do you have earlier
experience with using a smartwatch?, iii) Which interaction style
do you like the most? Why?, iv) Which interaction style do you
hate the most? Why?, v) What is your opinion on each interaction
style?, and vi) What is your opinion about each interaction style in
reflection of the sitting and walking condition?

5.1.3 Independent variables. We had two variables, the input tech-
nique (Bezel Rotation, MS-Tapping, Swiping. LL-tapping, V-Button)
and the activity level (sitting or walking).

5.1.4 Dependent Variables and Hypotheses. The dependent vari-
ables were the same as with the pilot study, our measures were the

Sitting Walking
Bezel Rotation 5691 (SD = 2052) 5269 (SD = 1603)
LL-Tapping 2816 (SD = 1217) 2866 (SD = 2026)
MS-Tapping 3119 (SD = 1033) 3189 (SD = 1462)
Swiping 3721 (SD = 1516) 3738 (SD = 1138)
V-Button 3036 (SD = 1264) 3123 (SD = 995)

Table 3: Mean reaction time values (milliseconds) for the
input techniques for the sitting and walking conditions with
numeric input.

time taken to respond to survey questions and the number of errors
made.

5.1.5 Hypotheses. The hypotheses were the same as for the pilot
study, but this time for the numeric and the list selection tasks, and
using all five input techniques.

5.2 Results
In order to address the research questions and investigate the ex-
pected interaction effect between the sitting and walking conditions
and the input techniques, we conducted a number of 2-way repeated
measures ANOVA tests.

5.2.1 Effects of activity level and input technique on reaction time
for numeric input. The mean reaction time values (milliseconds) for
the two conditions (i.e., sitting and walking) with numeric input,
compared between the five input techniques are shown in Table 3.
Based on the average values we note that the LL-Tapping had
on average the lowest reaction time for numeric input, while the
Bezel Rotation required the highest average reaction time in both
the sitting and the walking condition. Fig. 6 displays the average
reaction times along the five input techniques. The separate lines
indicate the two activity levels(i.e., sitting and walking).

A repeated measures ANOVA was conducted to assess the effect
of the activity level on the reaction time for the five input techniques
for numeric input. The main effect of the activity level was not
significant (p = 0.785, F(1,79) = 0.075, 𝜂2= 0.001), suggesting that
overall participants were just as fast whether walking or seated. The
main effect of the input techniquewas significant (p < 0.001, F(4, 316)
= 99.053, Partial 𝜂2 = 0.556). A post-hoc analysis with a Bonferroni
correction indicated that there was a significant difference between
Bezel Rotation and all other input techniques (all p < 0.001) and
that there was a significant difference between Swiping and other
input techniques (all p ≤ 0.001), both of them resulting in longer
reaction times than the other three input techniques. Other pairwise
comparisons were non-significant. The interaction effect was not
significant (p = 0.381, F(4, 316) = 1.051), Partial 𝜂2 = 0.013), too.
In other words, the differences in efficiency between the input
techniques were independent of the activity level.

5.2.2 Effects of activity level and input technique on reaction times
for list selection. The mean reaction time values (milliseconds) for
the two conditions (i.e., sitting and walking) while using each of the
five input techniques for list selection tasks are shown in Table 4.
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(1) Virtual buttons (2) Swiping (no indicator buttons) (3) LL-tapping

Figure 5: Screenshots of the additional input techniques developed for the main study

Figure 6: Reaction times for the sitting and walking condi-
tions for the different input techniques for numeric input.

Sitting Walking
Bezel Rotation 5808 (SD = 3317) 6091 (SD = 3686)
LL-Tapping 2916 (SD = 1802) 3195 (SD = 2248)
MS-Tapping 4901 (SD = 3804) 4623 (SD = 2412)
Swiping 5122 (SD = 3591) 5825 (SD = 4488)
V-Button 3435 (SD = 1832) 3652 (SD = 1968)

Table 4: Mean reaction time values (milliseconds) for list
selection for the sitting and walking conditions.

For list selection tasks LL-Tapping had on average the lowest
reaction time, while the Bezel Rotation required the highest aver-
age reaction time in both the sitting and the walking conditions.
Fig. 7 displays the average reaction time along the five input tech-
niques. The separate lines indicate the activity level (i.e., sitting and
walking).

A repeated measures ANOVA did not reveal a significant main
effect of the activity level (p = 0.289, F(1, 79) = 1.141, Partial 𝜂2 =
0.014), suggesting that overall participants were just as fast whether
seated or walking. As above, the main effect of the input techniques

Figure 7: Reaction times in the sitting andwalking conditions
for list-selection tasks

was significant (p<0.001, F(4, 316) = 27.378, Partial 𝜂2 = 0.257). Post-
hoc pairwise comparisons for all pairs (p < 0.05) except between the
Bezel Rotation and Swiping (p = 1.000), LL-Tapping and V-Button
(p = 0.483), and MS-Tapping and Swiping (p = 0.619). Furthermore,
the variance analysis indicated a non-significant interaction effect
(p = 0.724, F(4, 316) = 0.516), Partial 𝜂2 = 0.006), too. In other words,
the differences in efficiency between the input techniques were
independent of the activity level.

5.2.3 Effects of activity level and input technique on error rates for
numeric input. The average error rates are calculated as the number
of false responses over the total number of responses, and it shown
in Table 5. We observe that the Bezel Rotation had on average the
lowest error rate while Swiping had the highest, in both the sitting
and the walking conditions. Fig. 8 displays the average error rates
for the five input techniques. The separate lines indicate the level
of activity (i.e., sitting and walking).

A repeated measures ANOVA did not find a significant main
effect of the level of activity on the error rates for numeric input (p
= 0.070, F (1, 79) = 3.380, Partial 𝜂2 = 0.041), suggesting that, overall,
participants were just as accurate whether walking or seated. The
main effect of the input technique was significant (p = 0.009, F(4,
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Sitting Walking
Bezel Rotation 0.02 (SD = 0.08) 0.03 (SD = 0.11)
LL-Tapping 0.03 (SD = 0.09) 0.06 (SD = 0.17)
MS-Tapping 0.03 (SD = 0.11) 0.04 (SD = 0.13)
Swiping 0.07 (SD = 0.16) 0.09 (SD = 0.18)
V-Button 0.04 (SD = 0.11) 0.04 (SD = 0.11)

Table 5: Mean error values for the input techniques along
the sitting and walking conditions with numeric input.

Figure 8: Error rates in the sitting and walking conditions
per input techniques for numeric input.

316) = 3.460, Partial 𝜂2 = 0.042). However post-hoc analysis with
a Bonferroni correction revealed no significant difference in any
of the pairwise comparisons (p > 0.05). Furthermore, the repeated
measures ANOVA indicated a non-significant interaction effect (p
= 0.857, F(4, 316) = 0.331), Partial 𝜂2 = 0.004), too. In other words,
the differences in accuracy between the input techniques were
independent of the activity level.

5.2.4 Effect of activity level and input technique on error rates for
the list selection tasks. The mean error rate values for the activity
level (i.e., sitting and walking) with text input are calculated as the
number of false responses over the total number of responses, and
the comparison between the five input techniques are shown in
Table 6. We note how MS-Tapping resulted in the lowest error rate
in list selection tasks, while Swiping resulted in the lowest error
rates in the sitting condition. In the walking condition, V-Button
had the lowest error rate and Swiping the highest. Fig. 9 displays
the average error rates for the five input techniques. The separate
lines indicate the level of activity (i.e., sitting and walking).

A two-way repeated measures ANOVA did not find a significant
main effect of the activity level (p = 0.171, F(1, 79) = 1.905, Partial 𝜂2
= 0.024), suggesting that overall participants were equally precise
whether seated or walking. The main effect of the input technique
was significant (p = 0.009, F(4, 316) = 3.435, Partial 𝜂2 = 0.042).
However, post-hoc analysis with Bonferroni correction found no
significant difference in any of the pairwise comparisons (p > 0.05).
Furthermore, the ANOVA indicated a non-significant interaction
effect (p = 0.481, F(4, 316) = 0.872), Partial 𝜂2 = 0.011). In other

Sitting Walking
Bezel Rotation 0.03 (SD = 0.16) 0.05 (SD = 0.22)
LL-Tapping 0.04 (SD = 0.19) 0.09 (SD = 0.28)
MS-Tapping 0.01 (SD = 0.11) 0.06 (SD = 0.24)
Swiping 0.13 (SD = 0.33) 0.10 (SD = 0.30)
V-Button 0.03 (SD = 0.16) 0.04 (SD = 0.19)

Table 6: Mean error rates for the input techniques for the
sitting and walking conditions with text input.

Figure 9: Error rates in the sitting and walking conditions
per input technique for list selection tasks

words, the differences in accuracy between the input techniques
were independent of the activity level.

5.3 Qualitative data
Based on participant’s feedback, LL-tapping emerged as the most
favored method, with 31 participants expressing a preference for it.
Conversely, Bezel rotation was the least popular, garnering only 8
participants’ approval. More than half of the users found interaction
methods that displayed one option at a time, such as Bezel rotation,
Swipe, and Virtual button, to be less efficient.

For the bezel rotation, participants had diverse opinions. Among
them, 21 participants indicated that during the sliding process, their
fingers would obstruct the screen, while 17 participants found the
need to slide their entire hand on the bezel to be cumbersome.
Additionally, 22 participants mentioned their unfamiliarity with
this interaction method, finding it challenging to use and often
sliding past the intended answer. However, among the 6 partici-
pants who had prior experience with Samsung smartwatches, 5 of
them displayed greater acceptance of this method. Furthermore, 8
participants considered it innovative and appealing. Overall, Bezel
rotation received the least positive response, with only 8 partici-
pants expressing a liking for it.

Regarding MS-tapping participants’ opinions varied. Fourteen
participants believed that proper categorization could lead to faster
identification of answer options, while 22 participants found the
categorization process burdensome. Additionally, 9 participants
mentioned the need for double tapping, requiring additional effort.

LL-tapping (single-choice categorization) received widespread
appreciation, with 47 participants finding it efficient in quickly
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displaying multiple options. However, 8 participants expressed con-
cerns about accidentally scrolling past options and being unaware
of missed answer choices. Thirty-seven participants expressed fa-
miliarity with this method and displayed greater acceptance.

Regarding the swiping method, 24 participants mentioned their
familiarity with this interaction from mobile devices. Additionally,
9 participants felt that the smartwatch provided sufficient screen
space for swiping between options. However, 42 participants experi-
enced slow performance while swiping on the experimental smart-
watch. Moreover, 45 participants considered the Swipe method,
similar to the Virtual button, inefficient due to the display of only
one option at a time.

The Virtual button method received a moderate level of accep-
tance, with 32 participants finding it fast, convenient, and associated
with low error rates for switching between options. However, 45
participants expressed the need for continuous button presses to
view all the options, considering it clumsy. Additionally, 5 partici-
pants found the buttons inconspicuous and too small, making them
difficult to press.

6 DISCUSSION
Recognizing the potential of smartwatches to support ESM studies,
this research has examined user interfaces for self-reporting that
rely on touch-based input on smartwatches. We focused on two
input tasks that are typical for ESM surveys: entering a number and
list selection. We identified 13 broad categories of input techniques
presented in related literature that can be distinguished in terms of
the user interactions they involve. We implemented five of these to
support the above two tasks and compared how users perform in
terms of reaction times and error rates. Our comparison considered
two different levels of activity, sitting and walking. Our first experi-
ment compared three input techniques for the task of numeric input:
Bezel Rotation, MS-tapping, and Swiping. The second experiment
extended the comparison to include two more input techniques,
namely LL-Tapping and V-button (see Fig. 5). All five techniques
were adapted to support both tasks thus allowing the input of ei-
ther numeric or categorical data without any inherent order, e.g.,
choosing among different states or activities. Next to looking for
overall comparisons of different activity levels and different input
techniques, the design of our experiments reflected our interest in
uncovering interaction effects, which would indicate that the five
input techniques are differently suited for different activity levels.
Such a finding would also suggest a direction for future research, to
develop adaptive user interfaces for wESM, where different input
styles might be offered for the same task depending on the activity
of the user.

Earlier research regarding the usability of input techniques for
smartwatches has not attempted to assess the effects of different
levels of activity on the accuracy and speed of input. Contrary
to our expectations we found that user performance in terms of
reaction times and error rates was similar when seated or walking.
There may be different explanations for this finding. The most
straightforward would be that users can equally well provide touch-
based input on smartwatches while seated or walking, at least with
the five techniques we assessed. Of course, different levels of activity
which we did not include in our experiments, e.g., running, could

have a larger impact on usability but this does not appear relevant
for ESM - researchers are likely to avoid surveying participants
when they are engaged in intense physical activity or if necessary,
opt for different input techniques that do not distract respondents
or put them at risk. An alternative explanation could be that our
measurements were not sensitive enough to these differences and
larger samples or usage in different physical and social contexts
could reveal differences in the performance of users.

In both studies and in different situations and for all compar-
isons we made, we found a significant main effect of the input
technique. This confirms the intuition that not all user interfaces
are as good for the two tasks studied. Regarding the reaction times
our pilot study suggests the superiority of MS-tapping which is a
multi-step input technique. Numbers are grouped into ranges and
strings are grouped into categories, (which though supposes such
groupings make sense logically), and can be accessed hierarchically:
respondents first select the category and then an option within
this category. In our study, we only examined such selection with
two levels, as it is unusual for ESM studies to require choosing
from extensive collections of items or ranges of numbers. This re-
sult is consistent with earlier findings for other interaction tasks,
e.g., zoomable keyboards have been found effective for text input
tasks [40, 41] and circular menus where a sub-range of potential
responses is selected through a bezel rotation interface before an
option within this sub-range is selected by tapping [31].

The Bezel rotation turned out to be the slowest of input tech-
niques. The results of the second study were largely similar re-
garding the comparison among Bezel Rotation, Swiping, and MS-
Tapping. However, the inclusion of the two other input techniques
and extending our experimental tasks to include list selection led to
further insights. Here too, the Bezel Rotation was found to be the
slowest, but LL-Tapping (scrolling options by dragging the finger
up or down and then tapping to select), was found to be the fastest
way to enter numeric responses.

Regarding the accuracy of user input, we could not find a differ-
ence in error rates between sitting and walking. On the other hand,
we noted how the Bezel Rotation which was the slowest also led to
fewer errors both for text input and for list selection. LL-Tapping
and MS-Tapping were the fastest but not as accurate. This could
suggest that when designers are interested in reducing participant
burden, which is an important concern in ESM studies, e.g., see [42],
they could avoid the Bezel Rotation and choose one of the tapping
interfaces. When the sampling protocol is sparser and the accuracy
of responses more crucial for the research study, the Bezel Rotation
input could be preferable.

Our expectations regarding interaction effects, which would
suggest that the comparison favoring an input technique would
be different when seated or when walking, were not confirmed,
so unless future research uncovers interaction effects in different
combinations of activity and input techniques, a guideline that can
be offered to designers is to keep it simple and not pursue such an
adaptation.

7 LIMITATIONS AND FUTUREWORK
Researchers have noted how circular and rectangular user interfaces
on smartwatches may need to be approached differently to optimize

83



Comparative Evaluation of Smartwatch Touch-Based Input Techniques MUM ’23, December 03–06, 2023, Vienna, Austria

the use of the limited screen real estate [31]. Similar comparative
evaluations also need to be done with rectangular watches, with
user interfaces suited for that form factor. Our studies took place
in a busy office space rather than in a well-controlled environment.
While studies of input techniques on smartwatches have often been
done in a more controlled environment, see for example [18, 28, 31],
a real-life office environment can be more representative of the
situations in which users may be prompted for a wESM study, with
the obvious caveat that extraneous variables may have influenced
our findings. Such extraneous variablesmay also include the relative
familiarity with the hardware and the input techniques, which
can be addressed by training participants before assessing their
performance. Reducing environmental influences in a controlled lab
setting may also help eliminate confounding factors. On the other
hand, future field studies could extend the span of the experiment
in time and space, allowing us to introduce realism and variation
in the situations and moments chosen to prompt users. Taking
this line of reasoning further, we note that our study does not
capture the diversity of contexts in which users may find themselves
when prompted to self-report in a wESM study. The pilot was
conducted in an office space and the main study was in a library.
Future research could consider different contexts such as outdoors,
during transport, or at home. Also, they could be extended with
more techniques for user input that we have not yet assessed in our
study. For example, speech-based input is not an obvious choice for
supporting wESM, as users are not always able or willing to speak
when prompted in different situations. However, having the choice
to use it in some situations may be helpful for enhancing response
rates and the eventual user experience. Future studies could also
include quantitative self-report measures of workload to rigorously
compare the effort required from users for responding to wESM
surveys with different input techniques. Furthermore, given that
study participants were all young adults, future studies should aim
to cover different age groups who may differ systematically in their
performance and preferences.

8 CONCLUSION
We have examined touch-based input techniques to support the
task of responding to ESM surveys on a smartwatch with numeric
input and list selection. We implemented five input techniques that
make use of the touchscreen of round smartwatches: MS-Tapping,
Bezel Rotation, Swiping, Long List tapping, and Virtual Buttons for
scrolling, which were compared with regard to the time it takes
users to respond and the number of mistakes they make while doing
so.

We found that MS-Tapping is the fastest technique, where users
first select a segment within the range of options available for
entering numbers or strings and then tap to select the preferred
one within this range. The slowest, but most accurate technique
turned out to be Bezel Rotation, where a virtual touch dial organized
around the rim of the watch display allows one to flick between
different options, and then tap in the central area to select that
option. The activity level (i.e., sitting or walking) did not seem to
affect the user’s performance nor did it make much of a difference
for which input technique works best, meaning that no adaptation
is necessary with regards to the user activity. Rather, designers

should decide whether reducing participant burden or emphasizing
the accuracy of the response of the user is their priority and select
appropriate controls.
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A NUMERIC AND TEXT INPUT QUESTIONS
IN THE MAIN STUDY

1 Can you insert the number 5?
2 How many fingers do you have on your right hand?
3 2021 is how many years ago?
4 2 + 6 = ?
5 3 - 2 = ?
6 1 + 6 = ?
7 How many toes do you have on your left foot?
8 Can you insert the number 7?
9 Can you insert the number 10?
10 Can you insert the number 8?
11 Can you insert the number 3?
12 3 + 6 = ?
13 1 + 1 = ?
14 How many thumbs do you have?
15 Can you insert number 2?
Table 7: Items used for the numeric input questions.

1 Which country is famous for the Pyramids?
2 What country did Van Gogh come from?
3 Which country is known for the Eiffel Tower?
4 What is the country where the Great Wall is located?
5 Tokyo is the capital of which country?

Table 8: Items used for text input questions.
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