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(Machine) learning for feedforward
in precision mechatronics

Leontine Aarnoudse1 and Tom Oomen1,2

I. RESEARCH OVERVIEW

High tracking performance for mechatronic systems re-
quires accurate feedforward control, which can be learned
from data through dedicated efficient algorithms. This research
is positioned at the intersection of machine learning (neural
nets, random learning), controls (feedforward), and precision
mechatronics. First, an overview of three different research
topics is given, and secondly the topic of nonlinear filters in
iterative learning control (ILC) is elaborated upon.

Randomized experiments lead to efficient learning of MIMO
feedforward signals [1]

A trick using adjoints allows gradient-based ILC to be run
fully model-free, yet this does not extend well to multivariable
systems: generating gradients requires ni × no experiments
per iteration and is comparable to tuning by turning one
knob at a time. Instead, an unbiased gradient estimate can
be generated through one experiment for any MIMO system.
All experiments are run simultaneously (‘turn all knobs’) in
randomized directions. These gradient estimates lead to fast
convergence of a stochastic gradient descent algorithm ( ),
which is much more efficient than deterministic approaches
( ) that may diverge when data is noisy ( ).
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Neural networks for flexible feedforward: cost functions, model
structures and training data [2]

Neural networks are promising for flexible feedforward
control, but combining them in a harmonious way with state-
of-the-art feedback control is subtle and requires care:
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• The cost function used for training should reflect the aim
of minimizing the tracking error, as ∥ftrain − fnn∥, with
e(ftrain) = 0, being small does not necessarily mean that
e(fnn) will be small.

• The model structure should allow for non-causal feedfor-
ward, as many systems contain delays.

• Training data, consisting of references and feedforward
signals, should be generated in closed-loop, for example
using ILC, as nonlinearities manifest along trajectories.

The figure compares the performance of ftrain ( ), and non-
causal time-delay ( ) and recurrent neural networks ( ).
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Weighting the errors that matter: cross-coupled iterative learn-
ing control [3]

For contour tracking applications, the error in time domain
is less important than the deviation from the contour. Cross-
coupled ILC can be used to design feedforward signals for
these specific cases, by using a cost function that weights this
contour error explicitly. The cost function also weights the
error tangential to the contour error, to allow for specifying
different aims in different parts of the trajectory. For example,
one might want to slow down in sharp corners and make up
for lost time when moving straight. The figure shows contour
tracking ( ) with ( ) and without ( ) cross-coupled ILC.
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II. SEMINAR TOPIC - NONLINEAR ITERATIVE LEARNING
CONTROL [4]

Iterative learning control (ILC) can attenuate repeating
disturbances completely, yet it also amplifies iteration varying
disturbances up to a factor two [5]. The aim of this research
is to develop a nonlinear ILC framework that achieves fast
convergence, robustness, and low converged error values in
ILC. To this end, a nonlinear deadzone is added to the learn-
ing filter, which differentiates between varying and repeating
disturbances based on their amplitude characteristics and ap-
plies different learning actions: fast attenuation of repeating
disturbances, and slow averaging of varying disturbances.

A. Problem formulation

C P
yd ej yj

−

fj ṽj

ILC is applied to the SISO LTI system above, according to

ej = S(yd − ṽj)− Jfj , fj+1 = Q(fj + αLej) (1)

with S = (1 + PC)−1, J = SP and L ≈ J−1. Robustness
filter Q is typically a low-pass filter. The learning gain
α ∈ (0, 1] influences both the number of iterations required
to compensate the iteration-invariant disturbance yd, and the
amplification of iteration-varying disturbance vj , as illustrated
for α = 1 ( ), 0.5 ( ), 0.2 ( ) and 0.1 ( ). The aim is to
achieve both small converged errors and fast convergence.
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B. Approach: nonlinear ILC

To achieve both fast convergence and limited amplification
of varying disturbances, a deadzone nonlinearity φ is included
in the feedforward update, such that

fj+1 = Q(fj + αLej + Lφ(ej)), (2)

with, for deadzone width δ and gain γ > 0,

φ(ej(k)) =

{
0, if |ej(k) ≤ δ(
γ − γδ

|ej(k)|

)
ej(k), if |ej(k)| > δ.

(3)

The deadzone nonlinearity satisfies an incremental sector
condition with γ, which enables convergence analysis, leading
to the following convergence condition:∥∥∥Q(

1− αJL− γ

2
JL

)∥∥∥
L∞

+
γ

2
∥QJL∥L∞

< 1. (4)

Through the deadzone with width δ ( ), a high learning gain
is applied to the iteration-invariant disturbance ( ) and the
amplification of iteration-varying disturbances is limited.
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C. Conclusions and future work

A nonlinear frequency-domain ILC algorithm ( ) is de-
veloped that achieves both fast convergence and a small con-
verged error in the presence of iteration-varying disturbances,
as compared in simulation to standard ILC with α = 1 ( ),
0.5 ( ) and 0.2 ( ). Ongoing research is aimed at extending
this approach to lifted ILC and repetitive control.
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