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Effectiveness Of Retrieval In Similarity Searches
Of Chemical Databases: A Review
Of Performance M easur es

Sarah J. Edgar, John D. Holliday and Peter Willett*

KrebsInstitute of Biomolecular Resear ch and Department of I nfor mation
Studies, University of Sheffield, Western Bank, Sheffield S10 2TN, UK

Abstract This paper reviews measures for evaluating the effectiveness of similarity searches
in chemical databases, drawing principally upioem many measures that have been described
previously for evaluating the performance okttsearch-engines. The use of the various
measures is exemplified by fragment-basedskbilarity searches on several databases for
which both structural and bioactivity data araiéble. It is concluded that the cumulative

recall and G-H score measures are the most useful of those tested.
INTRODUCTION

The performance of a database retrieval system can be evaluated from two principal
viewpoints: theefficiency of retrieval is based on the resources, such as computer time and
memory, that are required for a search; while dffiectiveness of retrieval is based on the
extent to which a search has successfully metes’'s information need, as described by the
guery that has been submitted to the realiesystem. This paper discusses criteria for
measuring the effectiveness of a chemical simyl@dearch [1], which involves calculating the
similarity of a user-defined target structure with each of the molecules in a database using
some quantitative measure of inter-moleculauctural similarity [2, 3]. The resulting
similarities are then sorted so that the Hat® molecules are ranked in decreasing order of
similarity with the target structure (or increagiorder of distance from the target structure if

a coefficient such as the Euclidedistance is used). A cut-off may be applied to retrieve
some fixed number of the top-ranked database structures, the nearest neighbours, or to

retrieve all molecules with a similarity greatban (or a distance lessath) a threshold value.
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It is known that structurally similar molecules tend to have the same properties [2, 4], which
implies that the nearest neighbours of a targieticture with some particular biological
activity will also be expected to exhibit thattivity. Accordingly, the effectiveness of a
similarity search for a bioactive target struetwran be determined by the extent to which

further molecules with that activitycour towards the top of the ranking.

In this paper we discuss several ways in whiiclactivity data can be used to measure search
effectiveness. The paper seeks to provide a tutorial overview of the performance measures
that are currently available; and thus to atedgearchers in the fields of molecular similarity

and molecular diversity to the need to usendard methods of experimental reporting to
facilitate the comparison of different computaital procedures. Many of the measures that

we consider are based on those that haen lweveloped for quantifying the performance of
text-based information retrieval systems [5-&ihd the next section hence provides a brief
introduction to performance evaluation in infotioa retrieval. We then exemplify the use

of these measures for evaluating the performaricehemical similarity searches, and the

paper concludes with a summary of our major findings.

EFFECTIVENESS OF SEARCHING IN INFORMATION RETRIEVAL SYSTEMS

There is an extensive literature associated Withmeasurement of retrieval effectiveness in
information retrieval systems [8-11]. Howevagarly all of these measures can be described

in terms of the 22 contingency table shown in Table 1, where it is assumed that a search has
been carried out resulting in the retrieval ofdlocuments (or molecules in the case of a
chemical database system): this could either be tiearest neighbours from a ranking or the

n documents that satisfy the logical constrasrstsociated with a Boolean query. Assume that
thesen documents include of the A relevant documents in the complete database, which
contains a total oN documents. Then theecall, R, is defined to be the fraction of the

relevant documents that are retrieviedl,

a
R=—,
A
and theprecision, P, is defined to be the fraction of thetrieved documents that are relevant,
i.e,
a
P=—.
n

Any retrieval mechanism seeks to maximise lb#hrecall and the precision of a search so

that, in the ideal case, a user would be presenmithdall of the documents relevant to a query



without any additional, irrelevant documentk practice, it has been found that recall and
precision are inversely related to each othethst an increase in the recall of a search (as
may be accomplishe&,g., by going further down a ranking or by including additional OR
terms in a Boolean query) is generally accompanied by a decrease in precisiioe agrda
[12].

It is possible to define several other meastma® the contingency table. For example, the

fallout, F, is defined to be the fraction of the A@levant documents that are retrieviegl,

F_ n-a ,

N-—A
while the generality, G, characterises the particular query that is being searched for (rather
than the performance of that query) and is defiteebe the fraction of the database that is
relevant,.e.,

=2
N

Further measures based on the table are discussed by @@/ c¢9] and by Robertson and
Sparck Jones [13]; the latter have been usevalsiation criteria for substructural analysis of
high-throughput screening data [14]. Their origins in the same basic contingency table mean
that the various measures mentioned above are closely rada@tedsalton and McGill [5]
note that

p__ RG
RG+F(@1-G)

The need to specify two parameters, typic&®lgndP but occasionallyR andF, to quantify

the effectiveness of a search has led severdiet® to suggest single-valued measures that
combineR and P by some form of averaging procedure. Examples are the measures
described by Vickery [15]

1
(2/P)+(2/R) -3’

and by Heine [16]
1
A/P)+ M/ R -1

van Rijsbergen [17] s@equently described a measure, which he calledffixtiveness or E

measure, that is a generalisation of thekéry and Heine measures and is given by

1
all/P)+(1-a)UR)’




wherea (0 < a < 1) is the relative importance assigned by the user to the precision of the
search. Setting to 0.5 in the formula above yields the measure suggested by Shaw [18]

1
@1/2P)+ (L/2R)

Voiskunskii [19] has noted that similarity coefénts provide a simple and direct basis for
the measurement of retrieval performance amdaestrates the use of the cosine coefficient

to obtain the combined measure

JPR.

Given two objectsX and Y, containingx andy attributes respectively, of whict are in
common, then the binary form of thestiwe coefficient is defined to be [1]

c

VXY
Let X andY here denote the set of records that are retrieved and the set of relevant records,
respectively (so that the attributes here ardividual record identifiers); then, using the

information in the contingency table (Table 1), the cosine coefficient is given by

a

VA
Now
a

p=2 andrR=2,
n A

from which the cosine coefficient iﬁ, as noted above. It is thus possible to define a
whole range of different performance measures depending upon the similarity coefficient that
is used: for example, the Tanimoto and Daefficients [1] yield the Heine and Shaw
measures, respectively. Voiskunskii argues thatcosine-based measure is superior to all

other possible combinations BfandR [19].

Finally, a rather different approach to the measurement of performance is provided by the
normalised recall [5]. Consider acumulative recall graph, which plots the recall against the
number of documents retrieved. The best-possible such graph would be one in wiich the
relevant documents are at the top of the rankieg,at rank-positions 1, 2, 3A.(or at rank-
positions,N-A+1, N-A+2, N-A+3...N in the case of the worst-possible ranking). In practice,

of course, the clustering of the relevaltcuments is much less pronounced, and the area
between the actual and ideal cumulative lteplots can be used as a measure of the
effectiveness of the ranking. LIBANK(I) denote the rank of tHeth relevant document; then

the normalised recall is defined to be



ZA:RANK(I)—ZA:I
TTAN-A)

which Salton and McGill note is equivalentthe area under a recall-fallout curve [5].

It will be clear from the above that the measurement of retrieval effectiveness is of central
importance in textual information retrieval; hoveeyrather less interest in the evaluation of
performance is evident when wensider chemical information systems. At least in part, this
reflects the fact that most early information systems provided facilities only for 2D
substructure searching, where the use of the first-stage screening search and the second-stage
atom-by-atom search ensured that all queries resulted in perfect recall and perfect precision,
respectively. The only performance measure ihatidely quoted for substructure searching
systems is thecreenout (the fraction of a database that is eliminated by the initial screen
search), and it can be argued that this @ally a measure of efficiency, rather than
effectiveness; other such measures are much egerthat described by Bawden and Fisher
[20].

There is less consensus as to how the resdiltshemical similarity searches should be
reported. For example, the Sheffield group has generally quoted the mean numbers of active
compounds identified in some numbexg(, the top-20) of the nearest neighbours, when
averaged over a set of searches for bioactivgetastructures; an example is a study of
distance-based measures for 3D similarity searching [21]. Alternatively, the Merck group
have used cumulative recall diagrams, from which it is simple to obtaentiehment, i.e.,
the number of actives retrieved relative to tluenber that would be retrieved if compounds
were picked from the database at random. Theusech diagrams is exemplified by a study
of similarity searching using geometric paescriptors [22]. More recently, Giner and
Henry have proposed a new combined measure, Ghé score, for evaluating the
effectiveness of 3D database searches [23] agdest that it is superior to existing single-
variable performance measures. Using the ptesvihotation, the G-H score is defined to be

aP + R

Yy
wherea and are weights describing the relative importance of recall and precision. The
lowerbound for the G-H score is zero; if both weights are set to unity, then the score is simply
the mean of recall and precision,

P+R
2 L)




(i.e., the square of the Voiskunskii measure divided by the Shaw measure).

Having introduced the various measures, wctude this section by noting their upperbound
behaviours. As noted previously when discussing normalised recall, the best possible
similarity search is one in which all of tieactives are in the firgk positions in the ranking.

From such a perfect ranking it is possible to calculate an upperbound to the value of the
various measures that can be achieved given some numbéretrieved structures. We will
illustrate this by considering precision and tkcasiven a perfect ranking, there are three
cases to be considerad< A; n=A; andn >A. Whenn <A, all of the retrieved molecules

are active so thd&® = 1; however, there are still other actives that have not yet been retrieved
andR =n/A. Whenn = A, we have the perfect outcome, in which all of the actives have been
retrieved, so thaR = 1, and none of the inactives have been retrieved, sdPtkdt also.
Whenn > A, R=1 (as all of the actives have been retrievedPbutd/n, so that the precision
steadily decreases in line with the sizetlodé output. Examples of upperbound values are
detailed in Table 2.

EXPERIMENTAL DETAILS

Much of the literature on similarity searchindates to the different measures that can be
used to compute the degree of resemblance betaésnget structure and a database structure
[1-3]. The most common type of similarisearch procedure determines the extent of this
resemblance by a comparison of the moleculegnfient bit-strings or fingerprints, with the
degree of similarity being a function of tmmber of bits (and hence 2D substructural
fragments) that they have in common. eThxperiments reported below have used 2D
similarity searching routines based on the Taminmmefficient. However, the measures of
effectiveness discussed here are applicabdeyaype of similarity measure, subject only to it

producing a ranking of a database in order of decreasing similarity with the target structure.

The experiments used a subset of therld/@rugs Index (WDI) database [24]. Those
structures which did not include activity datere removed, leaving a set of 19102 unique
compounds that were characterised by UNITY 2D fragment bit-strings [25]. This set of
structures will be referred to as thetives database. Fifty target structures, each associated
with a distinct activity class (such as ‘phytoreisr ‘hypotensive’), were chosen from the

actives database using a MaxMin diversity sedectilgorithm [26] to ensure that the targets



were structurally heterogeneous. Each member oftdhigt set had between 5 and 2932

associated active structures.

The bit-string of each of the molecules in thegéd set was used to carry out a similarity
search of the actives database, with theicsires being ranked in order of decreasing
Tanimoto coefficient. Each compound in aking was labelled with a ‘one’ where it shared
the same activity as the target molecule, angeso’ otherwise, and plots were generated of
the values of the various measures at interolB00 positions in the ranked list. Note that
we have generated plots for the entire rankedsgatto illustrate the behaviour of the various
measures over the full range of similarity values. In a typical virtual screening application
[27], a searcher is likely to be interestedjurst the uppermost parts of the ranking; for
example, Brown and Martin [28] suggest theiesl of structures with a Tanimoto similarity

of 0.85 or greater, these corresponding to, typically, just the first few structures from the
entire ranked list (and thus to points at the exéréaft-hand edge of the various plots that are

discussed below).

EXPERIMENTAL RESULTS AND DISCUSSION

Cumulative recall. A typical cumulative recall graph is shown in Figure 1a, together with
the ideal case, where all of tlaetives occur at the very top of the ranking. The target
illustrated shares its activity with 83 other qmmnds, and shows the best retrieval out of the
50 searches carried out, with most of these actives being retrieved within the first 2000
positions. Figure 1b illustrates an example of pmtrieval in which the shared actives are
approximately evenly distributed throughout the rankings, with little obvious grouping of
them. Figures 1c and 1d illustrate the steppedutative-recall plots that characterise target
structures for which there are few other actteenpounds. The first of these plots illustrates
effective searching, with six of the eight activfes this target being near to the top of the
ranking, and the other two in the middle oé thanking; the effectiveness of the search in

Figure 1d is much lower.

For ease of comparison, these four target structures will be used for most of the illustrations
of the other measures: the structures, which are shown in Figure 2, are referred to
subsequently as targets A (anabolics), Bodb-substitutes), C (antioxidants) and D

(sweeteners).



Precision-recall Plots of precision against recall are widely used in the information retrieval
literature [5, 12] and typically involve an ingerrelationship, with high values of recall being
associated with low values of precision awide versa. Such inverse relationships were
encountered only rarely in the individual cheah searches considered here: the plot for
target A (Figure 3a) shows some degree of inverse behaviour but this is certainly not the case
for target B (Figure 3b). The most common type of plot was one characterised by peaks
where the performance is high, indicating thadups of actives are being retrieved together,

and troughs where few actives are retrievederelis a steady curve would indicate much less
grouping of the actives in the ranked list. Arreme example of this behaviour is provided

by structure-8067, GFC-CFC}, which has a total of 517 other actives. The precision-recall
plot for this search is shown in Figure 3edacontains several well-marked peaks. The
actives associated with the top two peaks (at around rank positions 100-400) were inspected
and were all found to contain a PhQhoiety, with many of them also possessing a proximate
nitrogen atom (as illustrated in Figure 4). Thins peaked behaviour observed here appears

to arise from the occurrence of large numbersrofiai active structures; this is likely to be a
frequent occurrence with corporate databaseshwiiien contain very large analogue series.

The behaviour is different fromdhobserved in most text retrieval applications where there is
less likelihood of high similarities between the diments that are relevant to a particular
guery, with the result that precision-recalbtsl are generally much smoother than those

observed here.

Normalised recall It will be realised that cumulative recall and normalised recall are closely
related, but they do not result in identicahas since the values for the latter measure take
account of the maximum recall that could be achieved the upperbound portions of the
cumulative recall plots shown in Figure 1). rN@lised recall values fall into the range of 1

to 0, with the former representing the case #ilathe active molecules have been retrieved
before any non-actives and the lower the vathe, greater the deviation from this ideal
behaviour. The normalised recall plots for targets A and B are shown in Figure 5. The first
portion of Figure 5a illustrates a high level of performance, but there is then a noticeable dip
corresponding to a section of the ranking wheve detives are being identified, despite the
fact that there are still many to be retrievdtereafter, the curve tends to unity. By way of

contrast, the normalised recall plot for target B (Figure 5b) is almost featureless.

Vickery, Heine and Shaw measures The single-valued measures of Vickery, Heine and
Shaw are very similar in nature and consigyeresult in highly comparable plots: we have

hence included only the Vickery plots for targets A and B (in Figures 6a and 6b,



respectively). The first of these, where mosthe# actives were retrieved near to the top of
the ranking, gives a well-marked peak thia¢én drops steadily away as fewer and fewer
further actives are identified. Figure 6b aga#s lan initial peak, but the remainder is much
more complex, with a large number of snbks on the main curas the remaining actives
are identified. In general form, this plot is m$similar to this target’'s precision-recall plot
(Figure 3b).

Van Rijsbergen measure The graphs for the van Rijsbergen measure for targets A-D are
shown in Figure 7. The formula for the vaijsBergen measure differs only slightly from the
Vickery, Heine and Shaw, the extent of lifference depending upon the value chosen for

a user-defined parameter which defines thetiveaontribution of precision and recall to the
overall score (with a high value reflecting an emphasis on precision rather than recall). The
low values of precision in targets C aBdresult in near-featureless curves wheis 0.5;

with lower values fora, the plots obtained are similar to those obtained for the Vickery

measure in Figure 6a.

Voiskunskii The form of the measure proposed by Voiskunskii is significantly different from
the measures discussed above, but the plots that are obtained (in Figure 8) are similar in
outline to many of those shown previouslithaugh there are some differences: for example,

the plot for target D reflects the progressivenitification of each of the six actives for this

target more obviously than in the corresponding Vickery plot.

G-H score The final measure used to analysedh& is the G-H score of Gluner and Henry

[23]. The precise form of the plots resulting from use of this measure again depend upon the
values of user-defined parametessandp here) but comparably-shaped curves are obtained

for a wide range of combinations of values, sahwhich are illustrated in Figure 9. It will

be seen that the effect of the parameter values on the plot shapes seems to diminish for small

numbers of active structures (as exemplified in Figures 9c and 9d).

It will be seen that all of the G-H score plots tend to a limiting value of 0.5. For simplicity,
assume, without loss of generality, that3=1, so that the measure is given by
P+R
5

As n — N, i.e,, when very many molecules have been retrieaed; A, and hence the

precision and recall are given By= A/N andR = 1, respectively. Thus the score at i

rank positionGH,, is given by



A

—+1
N . A+N
- e, .

Now N >> A, i.e,, the total file size is much greateaththe number of actives for the chosen

target structure, and hence

GH,—»1/2,
which is what is observed in practice in Figure 9. By similar arguments, the Vickery, van
Rijsbergen (witho. = 0.5) and Voiskunskii measures tend A®@N, 2A/N and V(A/N),

respectively (all of which are close to zerd\as> A).

In general, the G-H score plots are very simitathe cumulative recall plots: we have noted
previously that there are close relationshipsveen several of the measures considered here,
and it is simple to demonstrate such a relatigngin this pair of measures. Consider the case
whenn molecules have been retrievadyf which are active: then the cumulative recall at this

point, CR,, is given by

a
CR=,
and the corresponding G-H score (again assunsfig1) by
a a
_n
GH n_ 2 )
Taking the ratio of these two measures and simplifying we obtain

CR._
GH. A+n’

A will be small for most target structures and thtio will hence tend to the constant value of

2 asn increases,e., as more and more structures are retrieved. The G-H score can hence best
be considered as a more flexible form of tumulative recall measure, with the flexibility
being provided by the user’s ability to specify values for the parametanslf. This is, of
course, also the aim of the van Rijsbergesasure, and the other related measures (Heine,
Vickery and Shaw) all involve the adoption of an implicit weighting of precision as against
recall; however, the cumulative recall and G-H score plots we have obtained seem, to us at

least, to be intuitively more comprehensiblartithose resulting from the other measures.

Average plots The final set of plots here (in Figure 10) represent mean values calculated
across the entire set of 50 targeEr the van Rijsbergen measusewas set to 0.2, while

and 3 were both set to 1 for the G-H score. The plots demonstrate the high degree of



commonality between the Vickery, van Rijsbemgand Voiskunskii measures. There are no
obvious peaks due to the averaging, buttlatee show the same characteristics with a
pronounced trough, followed by a noticeable improvement in performance at about rank-4000
that is rather less evident in the G-H scom,mlthough even here a slight bump is observed

in the plot. There does not seem to be abyious reason for this behaviour and we hence
assume that it is specific to this set of stoes and targets. The G-H score plot is very
similar to the cumulative recall and normalised recall plots; however, as noted previously, the
last of these can give very different typescafve for individual searches. The averaged
precision-recall plot shows the inverse relatiopghiat characterises such plots in the textual
information retrieval (with the exception ofethinitial peak at low recall); however, this

measure also can give very different types of curve (as demonstrated by Figure 3).

CONCLUSIONS

In this paper we have illustrated the use of a range of measures for evaluating the
effectiveness of retrieval in bit-string simily searches of 2D chemical databases. Our
investigations show that there is little testihiguish between the single-valued measures of
van Rijsbergen, Vickery, Heine, Shaw ambiskunskii, and that there are also close
similarities between the cumulative recall and Gddre measures. We believe that the plots
resulting from the latter measures are rathereedsiinterpret, and hence recommend their

adoption for reporting the results of chemical similarity searching experiments.
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Relevant
Yes No
Retrieved Yes a n-a n
No A-a N-n-A+a N-n
A N-A N

Table 1. Contingency table describing the outmiita search in terms of records
retrieved and records that are relevant

Measure n<A n=A n>A
Precision-recall P=1R= n P=R=1 p= é, R=1
A n
Vickery n 1 A
2A—n 2n—- A
van Rijsbergen 2n 1 2A
(a=0.5) A+n A+n
Voiskunskii n 1 A
A n
G-H score ¢=p=1) n+ A 1 n+ A
2A 2n

Table 2: Upperbound values of the various performance measures
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Figure 2: Target structures A-D used to illustrate the behaviour of the various
performance measures.




precision

0.12

0.1 4

0.08

0.06

0.04

0.02

recall

Figure 3a: Precision-recall curve for target A

0.012

0.01 -
0.008 -
0.006 -
0.004 -
0.002

precision

recall

Figure 3b: Precision-recall curve for target B

precision

0.03

0.025+
0.02
0.0154
0.01
0.005+

recall

Figure 3c: Precision-recall curve for target structure 8067




F
F
(119)
@Y F
F
E
(211)
F
FF
(245)

H F
(@] @)
H

(151)
/Q>/F
|
F
H\O/\/O\/\O . H F



(291)

@ | \
R |
F =
N
! !

(o] (@]

(389)

(308)
.
P
s
\ :
| e F
/N
(399)

Figure 4: Retrieval position (in parentheses) of the active structures associated with
the two peaks betwearr100 andch=400 in the recall-precision plot for target

structure 8067CI,FC-CFC}.



g 196.Je) 10} AINI @23 pasIewIoN :qg ainbi4

juel

rc'o

r¥'0

90

80

1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
11000
12000
13000
14000
15000
16000
17000
18000

v

=
[{e)
o
o
o

|

v 196Je)] 10) 9AIND |[BD3. pasIfewlop s ainbi4

yuel

1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
11000
12000
13000
14000
15000
16000
17000
18000

190001

0

rco

rvo

r9o

r8o

T




0.05
0.04
0.03 -
0.02 -
0.01 -

O LR R R R R R R RN RN R R R AR R R R R R R R R R R R R R R AR R R A R A R LA AR L RN AR RN EF

oOOOOOOOO%

o
»

o O o

S & O O & & & & © &
O O O O O O O o o o
O «d N MM < I © ~ 0O O
L T B I I B R B B B |
rank

Figure 6a: Vickery curve for target A

0.003

0.0025-
0.002 4
0.0015-
0.001+
0.0005+

0

o O o o

o O o
o o O o o O o o O o o
o o o o o o o o o o o
» o — N (a2} < Te] o ~ [o0] [}
— — — — — — — — — —
rank

Figure 6b: Vickery curve for target B




0.4
03 [
0.2
0.1 \:\\
-.,_~__~__~_ hhhhh
0 LR LR R R R R R R R R R R R R R
o © ©O O O O O O O O 9 9 9o o o o O
o O O o o O O O O O O O O O o o o
O O O O O O O 0O 0o O o o o o o o o o o
= N O < O © ~ 0 O O 4 N M I ;N O N~ 0o O
— — — — — — — — — —
rank
\ alpha=0.1  ------- alpha=0.2 ————alpha:O.S‘
Figure 7a: van Rijsgergen curve for target A
0.06
0.05 -
0.04 -
0.03 1
.r—/_”-"
0.02 - I
0.01 - A e S
o ke ————
o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o o
— N ™ < o [{e} ~ [ee] (o) o — N [e2] < n [{e] N~ [o0] (o]
— — i i - - - - — —
rank
‘ alpha=0.1  ------- alpha=0.2  — — — —alpha=0.5

Figure 7b: van Rijsbergen curve for target B




0 TTTT H\HmmHHHHHHH LU LR R R R R R R R R R R R R

© 3 38383883838383888888888 8 8

SRS IBIRISSIIZIT B3R IS

— — — — — — — — — —

rank
‘ alpha=0.1 ------- alpha=0.2 ————aIpha:O.S‘
Figure 7c: van Rijsbergen curve for target C

0.07
0.06
0.05
0.04
0.03
0.02
0.01

S~
0
o © o o o o o o
o o o o o o o o O o o o o o o o
o o O o o o O o o o o O o o o O o o o
— N ™ < Lol © M~ [ee] o)) o — N ™ < n © N~ [ee] (o]
— — — — — — — — — —
rank
alpha=0.1 ------- alpha=0.2 — — — —alpha=0.5

Figure 7d: van Rijsbergen curve for target D




g 196.e)] 10J SAIND ISUNYSIOA g8 3inbi-

yuel

0

r¢00

00

900

80°0

1000
200

3000
4000
5000
6000
7000
8000
9000
10000
11000
12000
13000
14000
15000
16000
17000
18000

=
©
o
o
o

!

v 196.e] 10} SAIND 1SUNYSIOA eg ainbi

yuel

o

1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
11000
12000
13000
14000
15000
16000
17000
18000

=
©
o
o
o

0

rS0°0

rT0

rST'o

rco

G20




0.25

0.2 1

0.15 1

0.1 -

0.05 1

L0 L4310 3111 R R B S e e

a1
o © o o o o o o o o O O o
O O O O O O O O o ©O o o o o o o o o o
O O O O O O O O o o o o o o o o o o o
I N M < O © N~ 0 O O «€H N M < 1 O N~ 0o o
4 d 94 d d d d I <

rank

Figure 8c: Voiskunskii curve for target C
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Figure 8d: Voiskunskii curve for target D
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Figure 10d: Averaged Vickery measure
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Figure 10e: Averaged van Rijsbergen measu+® (2)




0.1

\"

©0.04 |

0.02

008 L_/_/_,_//—//—/—
o 0-06 -

0
o

T e AT T T FE TP AT TP TP T T T
o o o
OO O O O O O O O O O o o o o o o o o o
O O O O O O 0O O o o o o o o o o o o o
1 N M < 1N ©O© N~ 0 O O €4 N M < 1 O N~ 0 o
L I B IR R R . B B B I |

rank

Figure 10f: Averaged Voiskunskii measure
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