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Abstract

In this work, we characterize two data piling phenomenon for a high-dimensional
binary classification problem with heterogeneous covariance models. The data
piling refers to the phenomenon where projections of the training data onto a
direction vector have exactly two distinct values, one for each class. This first
data piling phenomenon occurs for any data when the dimension p is larger
than the sample size n. We show that the second data piling phenomenon,
which refers to a data piling of independent test data, can occur in an asymp-
totic context where p grows while n is fixed. We further show that a second
maximal data piling direction, which gives an asymptotic maximal distance
between the two piles of independent test data, can be obtained by projecting
the first maximal data piling direction onto the nullspace of the common lead-
ing eigenspace. Based on the second data piling phenomenon, we propose novel
linear classification rules which ensure perfect classification of high-dimension
low-sample-size data under generalized heterogeneous spiked covariance mod-

els.

Keywords: High dimension low sample size, Classification, Maximal data
piling, Spiked covariance model, High-dimensional asymptotics
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Chapter 1

Introduction

High-Dimension Low-Sample-Size (HDLSS) data have often been found in
many of scientific fields, such as microarray gene expression analysis, chemo-
metrics, and image processing. Such HDLSS data are oftentimes best classi-
fied by linear classifiers since the dimension of data p is much larger than the
sample size n. For binary classification with p > n, |Ahn and Marron| [2010]
observed the data piling phenomenon, that is, projections of the training data
onto a direction vector w are identical for each class. Among such directions
exhibiting data piling, the mazimal data piling direction uniquely gives the
largest distance between the two piles of training data. The maximal data
piling direction is defined as
WMDP = argmax (wTSBw) subject to w' Syrw =0,
wi||lwl|=1

where Sy is the p x p within-class scatter matrix and Sp is the p X p between-
class scatter matrix of training dataset A'. /Ahn and Marron| [2010] observed

that a classification rule using wypp as the normal vector to a discrimina-



tive hyperplane achieves better classification performance than classical linear
classifiers when there are significantly correlated variables.

However, the maximal data piling direction has not been considered as an
appropriate classifier since it depends too much on training data, resulting
in poor generalization performances |[Marron et al., 2007, Lee et al., [2013].
In general, while the training data are piled on wypp, independent test data
are not piled on wypp. Recently, Chang et al.| [2021] revealed the existence
of the second data piling direction, which gives a data piling of independent
test data, under the HDLSS asymptotic regime of |Hall et al.| [2005] where the
dimension of data p tends to grow while the sample size n is fixed. In addition,
they showed that a negatively ridged linear discriminant vector, projected onto
a low-dimensional subspace, can be a second mazximal data piling direction,
which yields a maximal asymptotic distance between two piles of independent
test data.

A second data piling direction is defined asymptotically as p — oo, unlike
the first data piling of training dataset X for any fixed p > n. For a sequence
of directions {w} = (wM, ..., w®=D @ w@E+D ) in which w(@ € R? for
q € N, we write w € RP for the pth element of {w}. Let Y, Y’ be independent
random vectors from the same population of X, and write 7(Y) = k if ¥V
belongs to class k. |Chang et al.| [2021] defined the collection of all sequences

of second data piling directions as
A= {{w} € Wy : VY, Y with n(Y) = #(Y"), p~ 2w (Y —Y) 2,0 as D — oo}

where Wy = {{w} : w € Sx, [Jw|| =1 for all p}, and Sx = span(Sw )Uspan(Sp)
is the sample space. Furthermore, among the sequences of second data piling

directions in A, if {v} € A satisfies

{v} € argmax D(w),
{w}eA



where D(w) is the probability limit of p~1/2|w T (Y; — Y3)| for 7(Y) =k (k =
1,2), then we call v a second maximal data piling direction. Note that a second
maximal data piling direction does not uniquely exist as opposed to wypp:
For {vi} € A satisfying D(w) < D(vy) for any {w} € A, if ||v; — va|| Lo
as p — oo for some {v2} € A, then {va} also satisfies D(w) < D(v2) for any
{w} € A.

Chang et al. [2021] showed that the second maximal data piling direc-
tion exists and by using such a direction, asymptotic perfect classification of
independent test data is possible. They assumed that the population mean dif-
ference is as large as ||y — p(g)ll = O(p'/?) and each of two populations has
a homogeneous spiked covariance matrix. The spiked covariance model, first
introduced by |Johnstone| [2001], refers to high-dimensional population covari-
ance matrix structures in which a few eigenvalues of the matrix are much
larger than the other nearly constant eigenvalues [Ahn et al. 2007, Jung and
Marron), 2009, [Shen et al., |2016].

With such assumptions, Chang et al.| [2021] showed that if 3 has m strong
spikes, that is, m eigenvalues increase at the order of p as p — oo while the
other eigenvalues are nearly constant, averaging to 72 > 0, then projections of
independent test data tend to be respectively distributed along two parallel
affine subspaces in a low-dimensional subspace S = span(ty, . .., U, wypp) C
Sx, where 10; is the ith eigenvector of Syy. See Figure for an illustration.
Furthermore, they showed that v,,, which is obtained by projecting a ridged lin-
ear discrimination vector onto S, is asymptotically orthogonal to these affine
subspaces when the negative ridge parameter a := —72 is used. Figure
displays that the projections of independent test data onto v__2 are asymp-
totically piled on two distinct points, one for each class.

While (Chang et al.| [2021] provided compelling insights on double data pil-
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Figure 1.1 Double data piling phenomenon for homogeneous covariance model
with one strong spike (m = 1). The projections of training dataset are piled
on two distinct points on wypp. The projections of independent test dataset
are distributed along parallel lines in & = span(u;, wympp), which appear to

be orthogonal to v__ 2.



ing phenomenon, their discussion was limited to the homogeneous covariance
models. Also, it is known that v,, the projected ridged linear discriminant vec-
tor, may not yield second data piling for any ridge parameter o € R under het-
erogeneous covariance models. In this work, we show that, under generalized
heterogeneous spiked covariance models, the second data piling phenomenon
occurs when the dimension of data p grows while the sample size n is fixed, and
a second maximal data piling direction can be also obtained purely from the
training data. Moreover, we introduce novel algorithms which ensure perfect
classification of independent test data for heterogeneous covariance models, by
noting the fact that a second maximal data piling direction can be obtained
by projecting wypp onto the nullspace of the common leading eigenspace.
The rest of this paper is organized as follows. In Chapter [2] we specifically
define the generalized heterogeneous spiked covariance models. In Chapter
we characterize the second data piling phenomenon under the heterogeneous
covariance models. In Chapter |4, we propose Second Maximal Data Piling
(SMDP) algorithms to estimate a second maximal data piling direction. In
Chapter o] we numerically confirm classification performances of SMDP algo-
rithms. In Chapter [0 we conclude the paper with a discussion. The proofs of

main lemmas and theorems are contained in Appendices [A] and [B]



Chapter 2

Heterogeneous Covariance Models

We assume that for k¥ = 1,2, X|n(X) = k follows an absolutely continu-
ous distribution on R? with mean p;y and covariance matrix X). Also, we
assume P(w(X) = k) = mg, where m; > 0 and 7 + m2 = 1. Write the eigen-
decomposition of ¥y by ¥,y = U(k)A(k)U(Tk), where A ;) = Diag(Ak),1,- -5 Ak) p)
in which the eigenvalues are arranged in descending order, and U ;) = [u(k)vl, ey u(km]
for k=1,2.

Let the p x n data matrix X = [X, Xo| where Xy, = [Xk1, ..., Xin, ), 1=
n1-+ng and W(ij) = k for any k, j. We assume n; and ns are fixed and denote
Nk = ng/n for k = 1,2. We assume n; and ng are fixed and denote 1 = ny/n
for k = 1,2. We write class-wise sample mean vectors Xj = nj ' Z;Lil Xij,
and total sample mean vector X = an 1 —1—?72)22. Also, we write the within-class
scatter matrix Sy = (X — X)(X — X) " where X = [X; X5] and X, = Xqul—k

for k = 1,2. We write an eigen-decomposition of Sy by Sy = ﬂAﬂT, where

A= Diag(;\l, ceey j\p) in which the eigenvalues are arranged in descending or-
der, and U = [Qy,...,0p]. Since M> . o> o> Ay = ... = j\p =0
¥ _-E g ] "‘_I .i



with probability 1, we can write Sy = Ijlf\lfjir where Uy = [Q1,...,0,-9]
and A; = Diag(j\l,...,j\n_g). Also, we write Uy = [Gp—1,...,0p). We de-
note the sample space as Sx, which is the (n — 1)-dimensional subspace
spanned by Xj; — X for k = 1,2 and 1 < j < ny. Note that the sample
space Sx can be equivalently expressed as span(ti,...,0,—2, wypp) [Ahn
and Marron, 2010, Chang et al.l 2021]. We denote the sample mean differ-
ence vector as d = X; — Xs. Note that the sphered data matrix of X is
Zgy = A

1
(kj U&,)(Xk — [l,(k)]_;l;k) = [Z(k),lv .. .,,Z(]C)J,]—r € RP*™ for k = 1,2
Then the elements of Z, are uncorrelated with each other, and have mean
zero and unit variance. We make the following assumptions for generalized

heterogeneous spiked covariance models.

Assumption 1 For the population mean difference vector p = K1)y — H(2);

~1/2

there exists 6 > 0 such that p | pelly = 0 as p — oo.

Assumption 2 For a fized integer my > 1, 0'(2k)7i,7’(2k)7i >0 (k=1,2), as-
sume that A\g); = U(Qk) P+ T(Zk)i for 1. < i < my and A\gy,; = T(Qk)i for

3

5

mi +1 <1 < p. Also, {T(Qk) k=12, i= 1,2,...} is uniformly bounded

and p~* [ T(2k)7i — 7',? as p — oo for some 7']? > 0.

Assumption [1| ensures that nearly all variables are meaningfully contribut-
ing to discrimination [Hall et al., 2005, |Qiao et al., {2010, Jung, 2018|. Assump-
tion [2] allows heterogeneous covariance matrices for different classes, including
the homogeneous case, that is, () = ¥(y). We assume for k = 1,2, 3,
has my, strong spikes, that is, my eigenvalues increase at the order of p as
p — oo while the other eigenvalues are nearly constant as 7']3. We call the first
my, eigenvalues and their corresponding eigenvectors leading eigenvalues and

eigenvectors of the kth class for k =1, 2.



Also, we regulate the dependency of the principal components by intro-
ducing the concept of p-mixing condition |[Kolmogorov and Rozanov, (1960,
Bradley, [2005]. For any o-field £, denote the class of square-integrable and
E-measurable random variables as Lo (). Suppose {Z; : —oo < i < o0} is a se-
quence of random variables. For —oo < J < L < o0, denote F } as the o-field
of events generated by the random variables {Z; : J < i < K}. Then, for the
p-mixing coeflicient

p(k) = sup p(F o, F53p)
JEZ

= supsup { |Corr(f, 9)| : f € LAF ). g € LAFE,) |
JEZ

the sequence {Z; : —oo < ¢ < oo} is said to be p-mixing if p(k) — 0 as k — oo.
We now give a following assumption on the true principal component scores
2 = A&l)/QU(Tk) (Xkj — p@y) € RP for k=1,2 and 1 < j < ng. This allows us

to make use of the law of large numbers applied to p — oo introduced in [Hall

et al.| [2005] and |Jung and Marron [2009].

Assumption 3 The elements of the p-vector zi; have uniformly bounded fourth

moments, and for each p, z; consists of the first p elements of an infinite ran-

dom sequence
(Z(k),15 2(k) 25 ++)j

which is p-mizing under some permutation.

We define Angle(wy, ws) := arccos{w{ wa/ (|lw1 ||2|w2||2)} for w1, ws € RP\

0,}. For w € RP\{0,} and a subspace V of R?, let Pyw be the orthogonal pro-
P P

jection of w onto V and define Angle(w, V) := arccos{w ' Pyw/ (||w||2]| Pyw]|2)}.

Also, for subspaces H = span(hy, ..., hi) and V of RP, we define the projection
of H onto V as PyH = span(Pyhy,..., Pyhi). Assumption {4 specifies limiting

angles between leading eigenvectors of each class and the population mean



difference vector p. Without loss of generality, we assume u&) > 0 for all

k=1,2and 1 <i<my.

Assumption 4 For 0 ; € [0,7/2], Angle(u,;, 1) — (), as p — oo for

1<i<my and k=1,2.

We write a p x my orthonormal matrix of leading eigenvectors of each
class as Uy 1 = [W(r),15- - Uk),m, ] for & =1,2. We call U,y = span(Uyy, 1)
the leading eigenspace of the kth class. Furthermore, let & be the subspace
spanned by leading eigenvectors whose corresponding eigenvalues increase at
the order of p, that is, U = span(lf(;)) U span(Uz)). We call U the common

leading eigenspace of both classes. We assume that the dimension of U,
m = dim (U),

is a fixed constant for all p. Note that max (mj, mg2) < m < m; + mg. Write
an orthogonal basis of U as Uy = [uy,...,uy), satisfying uiT;L > (0 for all
1 < 4 < m. Then there exist orthogonal matrices REZ)) € R™ ™% gatisfying
Up1 = Uleg for £k = 1,2. Note that the matrix Rgi; catches the angles

between the my leading eigenvectors in U,y and the m basis in U;. We

assume the following.

Assumption 5 For 0; € [0,7/2], Angle(u;, ) — 6; asp — oo for 1 <i<m
and for an orthogonal matriz R, € R™ ™k, Rgi)) — Ry as p = oo for

k =1,2. Moreover, R = [R1) Ryp)] is of rank m.

Finally, let ¢ denote the limiting angle between p and ¢/. Then we have

cos? p =", cos? ;.



Chapter 3

Data Piling of Independent Test
Data

In this chapter, we show that independent test data, projected onto a low-
dimensional signal subspace S of the sample space Sx, tend to be respectively
distributed along two affine subspaces as p — oco. |Chang et al.| [2021] showed
that there are two affine subspaces, each with dimension m = mj = mso, such
that they are parallel to each other if each class has common covariance matrix,
that is, ¥(1) = ¥(g). We show that if 3;) # (o), these affine subspaces may
not be parallel to each other, but there exist parallel affine subspaces, of greater
dimension, containing each of these affine subspaces.

To illustrate this phenomenon, we first consider a simple one-component
covariance model for each covariance matrix, that is, m; = 1 and mo = 1 in
Assumption [2l In Chapter this phenomenon is demonstrated under the
one-component covariance model with various conditions on covariance ma-
trices. In Chapter we characterize the signal subspace &, which captures

important variability of independent test data, for each scenario of two covari-

10 2 8-



ance matrices. Then we provide the main theorem (Theorem 5) that generalizes
propositions in Chapter to the cases where m; > 1 and mg > 1.

Let Vi be an independent test data of the kth class whose element Y € ),
satisfies w(Y) = k for k = 1,2 and is independent to training data X. Write
Y=Y1Us.

3.1 One-component Covariance Model

We investigate the data piling phenomenon of independent test data under
the one-component covariance model as follows:

21y = oy Pumaufy + 1L (3.1)
P = 0(22),1pu(2),1“(TQ),1 + 731,

We consider various settings where both covariance matrices have either equal
tail eigenvalues or unequal tail eigenvalues, and have either a common leading
eigenvector or uncommon leading eigenvectors. We provide an overview of our

settings in the following.

Uy, = we)1 | W1 # Uiy

2 =72 | Example

—

Example

2
2 #1713 | Example|3 Example (4
First, we assume that two covariance matrices have equal tail eigenvalues,

that is, 7# = 73. For the sake of simplicity, denote 72 := 7 = 73.

Example 1 We first consider the case where both classes have the common
leading eigenvector, that is, u)1 = W) = ui. Note that if 0(21)71 = 0(22)71,
then this model is equivalent to the homogeneous covariance model 31y = X(9),
studied in |Chang et al.| [2021).

It turns out that the angle between 01 and uy converges to a random quan-

tity between 0 and /2, while Gy, ..., 0,—2 are strongly inconsistent with uy in

11 .-'-H.E -l- ]_-li ."‘-'!_ T'I.
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Figure 3.1 2-dimensional projections onto &1 = span(a, wympp) and So =
span(tz, wypp) and 3-dimensional projections onto S = span({; },.p , wMDP)
with D = {1,2} of training data X (class 1: blue circles, class 2: red circles)
and independent test data ) (class 1: blue crosses, class 2: red crosses) under

the model in Example [2]

the sense that Angle(t;, uy) KR /2 asp — oo for 2 < i < n—2. For this case,
let D= {1}. We can check that even if 0(21)’1 #* 0(22)71, projections of indepen-
dent test data Y onto S = span({Q;},cp,wnmpp) = span(ii, wmpp) tend to
be distributed along two parallel lines, while those of training data X are piled
on two distinct points along wypp. This result is consistent with the findings

of |Chang et al| [2021] where X1y = X(qy; see Figure (1.1, Also, the direction

of these lines are asymptotically parallel to Psui, which is the projection of

common leading eigenvector uy onto S; see Proposition [1]

Example 2 Two classes do not have a common leading eigenvector, that is,
u)1 # Ug),1, such that the angle between vy and w9y is w/4. Under this
model, the common leading eigenspace has the dimension m = 2 (In contrast,
m = 1 in the model of Example .

In this case, the angle between W; and U = span(u(y)1,U(9),1) converges

12 3 .H *: 1_'.]'| 'a:-1r w

e



to a random quantity between 0 and 7w/2 for i = 1,2, while the other sam-
ple eigenvectors are strongly inconsistent with U. Let D = {1,2}. In Fig-
ure independent test data ) projected onto S; = span(Qi, wypp) and
Sy = span(lg, wnmpp) are also concentrated along lines, but in both subspaces
these lines are not parallel to each other. However, within the 3-dimensional
subspace S = span({;};cp , wMpp) = span(Uy, G2, wyvpp), there are two par-
allel 2-dimensional planes including these lines, one for each line. In fact, Y is
distributed along the direction Psu(yy 1, while Vs is distributed along the direc-
tion Psuy) 1. Thus, these lines are asymptotically contained in 2-dimensional

affine subspaces, that are parallel to PsU = span(Pgu(l)J, Pgu(gm).

We formally state the above results. Write the scaled training data piling

distance as
ke = p 2 lwlipp (X1 — Xo)|. (3.2)

For Y € Y and a subspace S of R?, let Y5 = p~1/2PsY’, which is a scaled pro-
jection of Y onto S. Similarly, write Xs = p~/2PsX. Recall that uy, ..., u,,
are orthogonal basis of the common leading eigenspace U = span(uy, ..., uy).
Let projections of u; onto S as u; s = Psu; and write Uy s = [u1s,. .., Ups).
The following proposition states that for m = 1,2, projections of ) onto the
(m + 1)-dimensional subspace & = span(ty, ..., Q,,, wmpp) are distributed
along two m-dimensional affine subspaces, which become parallel to each other,

and also to PsU = span(uys, ..., Un,s), as p increases.

Proposition 1 Suppose Assumptions ﬂ hold and assume T = 72 and

mq = meo = 1. Also,
(i) if m =1, let S = span(ay, wympp) and Ly = {uLgt + vpwnpp + Xs : t € R},

(ii) if m =2, let S = span(Qy, Gg, wypp) and Ly = {ULst + vpwnvpp + Xs it € RQ}

X 3 11 &=L —
. M-S0 8 5



fork = 1,2 where v1 = kyhp (n2(1 — cos® )é?) and vy = Kop (=m(1 — cos? ¢)§?).
Then for any independent observation Y € Y and for any € > 0,

lim P < inf ||Ys —al > ¢ln(Y) = /c) =0

p—00 a€ly

fork=1,2.

Note that if m = 1, then Y is concentrated along the line Ly in & =
span(ty, wypp), for k = 1,2. If m = 2, then )} is concentrated along a line
Lj,, which is parallel to Psu(y); in S = span(t, g, wypp), for k& = 1,2. Then
each of the 2-dimensional subspaces L; and Lo contains L) and L), respectively,
and these subspaces are parallel to each other.

We now assume that two covariance matrices have unequal tail eigenvalues,
that is, 72 # 72. Without loss of generality, we assume 72 > 72. In this case,
asymptotic properties of sample eigenvectors of Sy, are quite different from

the case of 712 = 722. See Remark

Remark 1 Let Y = mY1 U + Yo (1 —=U) = (y1,. .. ,yp)—r € RP, where Y1,Y5
are two independent Np(0,,I,) random vectors, U = 0 with probability wo, U =
1 with probability w1 and U is independent of Y1,Ys. Note that the population

covariance matriz Xy = Cov(Y) = (m7{ + mo73)L,. Then, the p-mizing
condition for Z = (z1,...,2p) | = Z(IS/QY may or may not hold depending on

whether 7 = 13 or not. Specifically, Z satisfies

1 mme (T2 — 72)2
Cov(z2,22) = ———— _Couv(y?,y?) = —=1 27
( ) _]) (7_[_17_12 + 7T2T22)2 (yz y]) (71_17_12 + 7T27'22)2

Then in case of ¥ = 73, the sequence {z1,22,...} is p-mizing since for all
i # 7, Cov(z?,z?) = 0. However, in case of 7 # 72, the p-mizing condition

does not hold for any permuted sequence of {z1, 22, ...} since Cov(22, zj2) >0

for all i # j.

X 3 11 &=L —
’ M-S0 8 5



This fact is relevant to different asymptotic behaviors of eigenvectors of Sy

depending on whether 7'12 = 722 or not. Assume that for k =1,2, Xp1,..., X,

are independent Np(0,, 721,) random vectors. For the case where T8 = 75 =:
72, [Hall et al. [2005] showed that data from both classes are asymptotically
located at the vertices of an n-simplex of edge length \@T\/ﬁ and data points
tend to be orthogonal to one another, when p is extremely large. Hence, the
sample eigenvectors 0y, ..., Uy_9o tend to be an arbitrary choice, since all data
points are indistinguishable whether they come from the first class or the second
class.

On the other hand, for the case where T2 > 72, they showed that data from
the first class tend to lie deterministically at the wvertices of an ni-simplex
of edge length \@7'1\/]3, while data from the second class tend to lie deter-
ministically at the vertices of an na-simplex of edge length \/572\/13 and all
pairwise angles are asymptotically orthogonal. Hence, data from the first class
can asymptotically be explained only by the first (ny — 1) sample eigenvectors
in S1 = {Q1..., 0,1}, while data from the second class can be explained
only by the rest of sample eigenvectors in Sy = {Qy,,...,Up—2}. Also, these

etgenvectors can be arbitrarily chosen in each set.

We will see that how assuming unequal tail eigenvalues affects data piling

of independent test data.

Example 3 We consider both classes have a common leading eigenvector,

that is, w1 = )1 = W, but this time we assume > 72

2 = 72 in Example .

instead of
In this case, both of 0y and G,, are not strongly inconsistent with uy,

while g, ..., 0,1 and Oy, 41, ..., Uy—2 are strongly inconsistent with u;. Let

D = {1,n1}. In Figure independent test data Y projected onto S,, =

5 &1

| 7=

=

!

11’
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Figure 3.2 2-dimensional projections onto & = span(aj,wypp) and
Sn, = span(Qy,,wypp) and 3-dimensional projections onto § =

span({Q;};cp , wmpp) with D = {1,n;} of training data X’ (class 1: blue cir-
cles, class 2: red circles) and independent test data ) (class 1: blue crosses,

class 2: red crosses) under the model in Example

span(y,, , wypp) as well as those onto Sy = span(Qy, wypp) are also concen-
trated along parallel lines, one for each class. Thus, within the 3-dimensional
subspace S = span({W; },cp , wmpp) = span(ly, U, , wMDP), the lines are par-
allel to each other. Also, they are asymptotically parallel to Psuy, which is the
projection of the common leading eigenvector uy onto S. It implies that the
variation of data along u; is captured not only by 0y but also by Gy, .

To understand this phenomenon, we focus on the geometric representation
of HDLSS data. | Jung et al| [2012] showed that in one class case, HDLSS data
from strongly spiked covariance model can asymptotically be decomposed into
random and deterministic parts; the random wvariation remains in span(uy),
while the deterministic structure (that is, the simplex described in Remark
remains in the orthogonal complement of span(uy). For sufficiently large p,

uy explains the most important variation along uy in the data from both
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classes, while Qg, ..., 0y, —1 account for the deterministic simplex with edge
length \/57'1\/]3 for data only from the first class. Then Gy, explains remain-
ing variation along uy in the data from both classes, which is smaller than
the variance 7'12 of the first class but larger than the variance 7‘22 of the second
class. Lastly, Op,+1, ..., Qn—2 account for the deterministic simplex with edge
length \@TQ\/T? for data only from the second class. We emphasize that this
result can be obtained with probability 1. Note that if 7& = 72, then only Wy
explains variation along u; in the data, while the other sample eigenvectors

explain the deterministic simplex for data from both classes.

Example 4 Two classes do not have a common leading eigenvector, that is,
U, # W), such that leading eigenvectors of each class form an angle of
m/4, but this time we assume T8 > 735 instead of ¢ = 735 in Ezample @

As in the previous examples, 01 estimates the largest variation within the
common leading eigenspace U from the data. However, in this example, the
remaining variation may be either larger or smaller than 72 in contrast to the
other examples. If the remaining variation within U is smaller than 7’12, then
this variation is captured by Oy, , while Gy explains the deterministic simplex
of data from the first class. Otherwise, Qg captures the remaining variation,
while Gy, explains the deterministic simplex of data from the first class. The
other remaining sample eigenvectors are strongly inconsistent with U.

In Figure independent test data ) projected onto S; = span(Qy, wympp)
and Sp, = span(Qy,,wmpp) are concentrated along lines, but in both sub-
spaces these lines are not parallel to each other. Also, independent test data
Y projected onto So = span(Qg, wnmpp) are concentrated along lines, which
18 parallel to wypp, but these lines can completely overlap. However, within
the 3-dimensional subspace Sy, = span(li,Qy,, wmpp), there are two par-

allel 2-dimensional planes respectively including those lines. Similar to Fx-
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ample @ Vi is distributed along the direction Ps, , u) 1, while Yo is dis-
tributed along the direction Ps, , w) 1. Thus, these lines are asymptotically
contained in 2-dimensional affine subspaces, that are parallel to P317n12/1 =
span(Ps, , w1, Ps,, o)1)

Note that Gy instead of Gn, can capture the remaining variability within
U depending on the true leading principal components scores of training data
X. Then 2-dimensional parallel affine subspaces can be observed in Si2 =
span(ty, G2, wvmpp) nstead of S, = span(ay, Gy, , wypp). However, we can
always observe 2-dimensional parallel affine subspaces in S = span({;},.p , wnmDP)

where D = {1,2,n1}.

The following proposition states that even if 72 > 72, projections of Y

onto &, which is a low-dimensional subspace of Sx, are distributed along two
parallel affine subspaces as p increases. However, in this case, S is not the

subspace spanned by the first m eigenvectors of Sy and wypp.

Proposition 2 Suppose Assumptions ﬂ hold. Also, assume 72 > 75 and

mip = myg = 1.
(i) If m =1, let S = span(0y, Uy, , wvpp) and Ly, = {ul’gt + vwvpp + Xs i t € R}

(ZZ) Ifm=2,letS = span(ﬁl,ﬁQ,ﬁm,wMDp) and Ly, = {Ul,gt + VpWMDP —|—X3 :t e Rz}

for k = 1,2 where v1 = kypp(n2(l — cos? )82 — (12 — 72)/n) and vy =

kaipp (—m1 (1 —cos? )62 — (12 —72) /n). Then, for any independent observation
Y € Y and for any € > 0,
lim P < inf ||Ys —al > ¢ln(Y) = k:> =0

p—0 aGLk

fork=1,2.
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Figure 3.3 2-dimensional projections onto & = span(ai,wypp), S2 =

span(tg, wypp) and S, = span(,,,wypp) and 3-dimensional projections
onto S, = span(ly, Uy, , wmpp) of training data A’ (class 1: blue circles,
class 2: red circles) and independent test data ) (class 1: blue crosses, class 2:

red crosses) under the model in Example
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3.2 Main Theorem

In this chapter, we extend Propositions [I] and [2] to the general cases where
my1 > 1 and mg > 1. We first characterize the signal subspace S for general
cases where m; > 1 and mg > 1. For this, we investigate the asymptotic
behavior of sample eigenvalues and eigenvectors of Sy,. For each k = 1,2,
denote the ny x my matrix of the leading my, principal component scores of
the kth class as Wy = [0(1)12(k),15 - - - > T(k),my 2(k),my, |- Als0, denote the scaled
covariance matrix of the leading my, principal component scores of the kth class

as

1
b, = W(Tk) (L, — n—kJnk)W(k) (3.3)

where J,,, is the matrix of size nj x nj; whose all entries are 1. Note that
@, ®, are symmetric positive definite matrices with probability 1. Let W =

[R(l)W(Tl) R(Q)W(TQ)]T and

=W (I, - )W (3.4)

1
EJnl On1 Xng

where J = . Finally, let

1
Oannl niz‘]ng

@ + 71, ‘I’}/QRI[)R@)‘I%Q

' RLRW®” o+ L,

Note that ® and ®,, -, are also symmetric positive definite matrices with prob-

D= (3.5)

ability 1. For any square matrix M € R (1 € N), let ¢;(M) and v;(M) denote
the ith largest eigenvalue of M and its corresponding eigenvector, respectively.
The following lemma shows asymptotic behavior of sample eigenvalues of Sy .

Throughout, we assume 77 > 72.

Lemma 3 Suppose Assumptions 13 hold. Then, the following hold as p —

Q.
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(i) If 72 = 72 =: 72, then conditional to W) and Wy,

. op | i(®)+T 1<i<m,
PN
72, m+1<i:<n-—2.

(ii) If 72 > 72, then conditional to W) and Wy,

¢i((I)T1,TQ)7 1 S 1 S ko:
7'12, k0+1§i§k0+(n1—m1—1),
¢i—(n1—m1—1)(q)7'177'2)7 kO + (nl - ml) <i<mni+my— 17

7'22, ny+mg <1 <n—2,

\
where ko (mq1 < ko < mi+mya) is an integer which satisfies op, (Pry rp) >

7_12 2 ¢k0+1('1)7—1,7—2) if we denote ¢m1+m2+1(q)71,7'2) = 0.
Remark 2 (i) If 72 = 73 =: 72, then

6i(®)+ 72, 1<i<m,

bi (q)ﬁ ,T2 ) =

72, m+1<1<mqg+mo.

Thus, Lemma/[ (i) can be seen as a special case of Lemma[d (it).
(i) If 73 > 72 and m = mq, then ko in Lemma@ (1) is my with probability

1 by Weyl’s inequality.

Lemma [3] shows that the asymptotic behavior of sample eigenvalues of Sy
is quite different depending on whether both covariance matrices have equal
tail eigenvalues or unequal tail eigenvalues. If 72 = 72, then the first m sample
eigenvalues explain true leading principal component scores of both classes,
while the other sample eigenvalues do not. In contrast, if 72 # 73, we observe

a counter-intuitive phenomenon that some non-leading sample eigenvalues can
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explain true leading principal component scores instead of some leading sample

eigenvalues.

The following lemma gives the limiting angle between 11; and the common

leading eigenspace U.

Lemma 4 Suppose Assumptions [1-{5 hold. Then, the following hold as p —

Q.

(i) If ¥ = 73 =: 72, then conditional to W 1y and W ),

cos (Angle(i;, U)) 2
0, m+1<i<n-—2

where

¢i(P)

@@517§>& (3.6)

C; =

(ii) If 78 > 72 and m > my, then conditional to W) and Wy,
cos (Angle(a;,U))

Di) 1§Z§k0,

0, ko+1<i<ky+ (ni—mi—1),

v

Di_(ny—mi-1), ko+(n1—m1) <i<ng+mg—1,

0, ni+mg <i<n-—2

where ko is defined in Lemmal[3 (i) and

1/2 ~
12 Ry @ ik (B, o) |12
¢i(¢7’1 ,T2)

D; = > 0. (3.7)

Here, Ui((I)Tl,Tz) = (61'1((1)7'1,7'2)—'—761'2((I’T1,7'2)T)T with 61'1((}7'1,72) e R™

and ﬁiQ(q)n,Tg) € R™2,

x;rx_-! _-Clll_ 1_] :J] T]'I
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We define an index set D C {1,...,n — 2} for general cases where m; >
1 and mg > 1. Let ¢ € D if and only if there exists ¢ > 0 such that
pllrgoP(cos (Angle(q;,U)) > €) > 0. In contrast, ¢ ¢ D if and only if q; is
strongly inconsistent with the common leading eigenspace I/ in the sense that
Angle(t;,U) SR /2 as p — oo. In other words, @; with ¢ ¢ D is a noisy direc-
tion which does not capture important variability within the common leading
eigenspace U, while @; with ¢ € D may explain important variability.

Note that if we further assume m = m; (that is, U = U,)) in Lemma
(ii), then 1i,...,0,, explain the most important variation within ¢, while
Uy, ..., Up,+my—1 €xplain the remaining variation within ¢/. The other sample
eigenvectors do not explain the variability. Hence, (mj +ms2) sample eigenvec-
tors are needed to explain the variation within & (See Example [3)).

If m > my, then for given training data X', (m1 4+ ms) sample eigenvectors,
which are ..., 0k, and g4 (n—my)s - - -5 Unyg+my—1, €xplain the variation
within U. However, ko (m1 < kg < mj + mg) is a random number depending
on true leading principal component scores W ;) and W y). This fact implies
that, in general, if P(kg = i) > 0 for all my < kg < mq + mg, then (mq + 2mo)
sample eigenvectors, which are 0y, ..., Qm;+m, and Up,, ..., Upy4my—1, are all
needed to explain the variation within ¢ (See Example [4)).

From Lemma @, we can characterize D for general cases where m; > 1 and
mgy > 1. We summarize D in Table [3.T] for each case. In general, we define the

signal subspace S as

S = span({Q; };cp , wmDP), (3.8)

which is obtained by removing the noisy directions in the sample space Sx.
We now confirm that projections of ) onto S in (3.8)), which is a low-

dimensional subspace of the sample space Sx, are distributed along parallel
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Condition D |D|
2 =73 {1,...,m} m
2 > 73
{1,...,m1,n1,...,n1—|—m2—1} mi + mo
m=m
7'12>7'22
{1,...,m1+m2,n1,...,n1+m2—1} m1 + 2me
m > mq

Table 3.1 The index set D for each case.

affine subspaces, one for each class, and that those affine subspaces do not

coincide. Recall that kypp is the training data piling distance defined in ([3.2)).

Theorem 5 Suppose Assumptions ﬂ hold. Let S = span({Q;};cp , WMDP)
with D be given in Table[3.1] for each case. Also, let

Ly = {Uist + vpwnpp + Xs : t € R}
for k =1,2 where
vi = fiypp (12(1 — cos? )8% — (rf — 73)/n)
and
Vs = Kyipp (=m(1— cos? )82 — (1 — 7'22)/71)
Then for any independent observation Y € Y and for any € > 0,
pli_{gOIP’ <aieank IYs —al| > ¢|n(Y) = k) =0

fork=1,2.

Remark 3 Write the projections of ug,; (k =1,2) onto a subspace S of RP

as Uy is = Psugy: and Ugy1s = [Uy1,8, - - -5 Ukymy,s) for k=1,2. Then
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projections of Y1 are distributed along an my-dimensional affine subspace LY,
which is parallel to span(U yy 1 s), while projections of Yo are distributed along
an ma-dimensional affine subspace L'y, which is parallel to span(U(Z)’LS). For

each k = 1,2, the m-dimensional affine subspace Ly, contains L.

Theorem b| tells that independent test data are asymptotically distributed
along parallel m-dimensional affine subspaces L1 and Lo in S. It implies that
if we find a direction w € S such that w is asymptotically orthogonal to L4
and Lo, then P,) yields the second data piling and in turn achieves perfect
classification of independent test data. Since dimS — m > 1, there always
exists a direction w € S which yields second data piling. Among second data
piling directions, we will find a second maximal data piling direction, which
provides asymptotic maximal distance between the two piles of independent

test data among second data piling directions.
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Chapter 4

Estimation of Second Maximal
Data Piling Direction

In this chapter, we propose novel algorithms to estimate a second maximal
data piling direction. Let V = [qy,...,(y—2, wnpp], which collects an or-
thonormal basis of the sample space Sx. Also, in this chapter, we assume that
an independent test dataset ) is available to us (It is possible by splitting
the original training dataset X into the new training dataset X and the test
dataset )). Denote the horizontally concatenated data matrix of the given

independent test dataset ) by
Y = [}/117 e 7Y1n’{,Y21>- . 7)/271;]

The pxn* data matrix Y consists of the n* := nj+nj observations independent
to X and arranged so that 7(Yy;) = k for any k,j. We assume that n} is
fixed and nj > my, for k = 1,2. Write class-wise sample mean vectors Y, =

ny ! Z;Li 1 Yij. We define the within-scatter matrix of ) as

Siv=(Y-Y)(Y-Y)',
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where Y = [Y] Y] and Y}, = }7161;[Z for k=1,2.

We will find a sequence of directions {w} € 2Q0x which yields second data
piling for given independent test dataset ). The condition that p 2wT(Y -
Y’") L 0asp — oo for any Y, Y’ € Y with m(Y) = n(Y”) is equivalent to the

condition that
1
“w' Sw 2o
p

as p — oo. Thus, we define the collection of sequences of second data piling

directions for ) as

- 1
A:{{w}e‘)ﬂx:wTS%inasp%oo}.
p

For any {w} € Wy, we can write w = Va for some a = (ay, ..., a,_2,ampp) ' €

R™~1. Without loss of generality, we assume aypp > 0 for all p. For {w} € A,

we can write
1 1 1
“w'Slyw=-a'V'S};Va=a' (VTS*WV) a. (4.1)
p p b

Note that the (n — 1) x (n — 1) matrix p~ 'V S}, V can be understood as the
scatter of the independent test data ) projected onto the sample space Sx.
Theorem [6] shows that independent test data ) are asymptotically supported

on a m-dimensional subspace in Sx.

Theorem 6 p_lVTS}jVV converges to a rank m matriz in probability as p —

Q.

We write an eigen-decomposition of pilVTSf,VV = QHQT, where H =
Diag(hi,...,hy—1) arranged in descending order, and Q= [Ql Qg] with Q; =

[a1,...,Qm] and Q, = [@m+1s - - - An—1]. Meanwhile, a can be written as a =
Q.= Z?:_ll 1;q; for some sequence of ¢ = (t1,...,4,_1)". Since
1 1 n—1 m
“w'SHw=a' <VTS}'§VV> a= Z hi? = Z hit2 + 0,(1)
p p ‘ °
=1 =1

-1
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by Theorem |§| and , {w} € A if and only if t1,...,tm 20 as p — 0.
In other words, for any given {w} € A, there exists a sequence of directions
{v} such that v € span(VQy) for all p and |jw — v|| 250 as p — oo. This fact
plays a crucial role in our next observation: {w} € A is indeed asymptotically

orthogonal to the common leading eigenspace U.

v

Theorem 7 Suppose Assumptions «@ hold. For any given {w} € A, wTuj

0 for1<j<m.

Furthermore, {w} € A can also achieve perfect classification of any inde-
pendent observation Y, which is independent to both of X and ). Theorem
confirms that we can achieve perfect classification if we choose a so that for

w = Va, {w} € A and lim,_,~ anpp > 0.

Theorem 8 Suppose Assumptions ﬂ hold. For any given {w} € A, write

n—2

w = Va = E akﬁk + aAaNMDPWMDP
k=1
. T P
with a = (a1,...,ap—2,ampp) ' and assume aypp — Yupp as p — oo. Then

for any independent observation Y, which is independent to both of X and Y,

R R UL (1 (1 — cos® 9)0° — (rf = 73)/m),  w(Y) =1,

NG MR (—ppy (1 — cos? @) — (rf = 7§) /n), w(Y) =2,

K

as p — 00, where k is the probability limit of kmpp defined in .

Theorem [§ also shows that an asymptotic distance between the two piles
of independent test data, which are independent to both of X and Y, can be
maximized if {w} € A with w = Va has a maximal limit of aypp. Theorem |§|
confirms that a projection of wypp onto span(VQg) is an estimate of a second

mazimal data piling direction. Recall that V Qs is obtainable by using & and
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Y, and the dimension of span(VQg) is n — m — 1. It implies that a second
maximal data piling direction can be obtained by projecting wypp onto the

nullspace of the common leading eigenspace U.

Theorem 9 Suppose Assumptions ﬂ hold. Write eyipp = (0, 5, 1)T so0
that wyipp = Vempp. Also, let {wsvpp} be a sequence of directions such that

WSMDP = VaSMDp where

P pan(Qz) ©MDP _ Q2Q, enpp c !
span(Q2) SMDP|| [|Q2QJ enpp |

asMDP = ||

Then {w} € A is a sequence of second mazimal data piling directions if and

only if ||w — wsmpp]| 250 as p — 00.

We have shown that a second maximal data piling direction in the sample
space Sy can be obtained with a help of independent test data. As such, we
randomly split X}, which is the original training dataset of the kth class, into
training dataset X}, ; and test dataset X}, 4 so that the sample size of test data
of kth class ny . is larger than my, for £ = 1,2. Then we can find a second
maximal data piling direction in the sample space of X = & 4 U Xy, with
a help of Xje = X7 e U X ge.

The fact that the sample size of HDLSS data is very small implies that
classification using one data split may be unreliable (albeit theoretically true).
In order to resolve this concern, we repeat the above procedure several times
and set a final estimate of a second maximal data piling direction as the average
of estimates of a second maximal data piling direction obtained from each
repetition. A detailed algorithm is given in Algorithm [I] In practice, we should
estimate my, mo and m, which are the true numbers of leading eigenvalues
of X1y, B9 and (o) = 1131y + m2X(y) for Algorithm [T} Estimating those
numbers is feasible by Kritchman and Nadler| [2008|, [Leek! [2010], [Passemier
and Yao| [2014] and [Jung et al.| [2018].
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Algorithm 1 Second Maximal Data Piling (SMDP) algorithm (Type I)
Require: Original training data matrix of the kth class Xy, for k =1, 2.

Require: The number of repetitions K, estimated my, mo and m
1: for j=1,...,K do

. . Xk,tr = [Xk,lv e 7X/€,"k,w]
2: Randomly split X, into so that ny e > my

Xite = [Xf 1, .,X;mk’te]
3: Set N = N1 + N2 trs Xk,tr = n,;lxm,lnk,” and Xk,t,. = )_(k,t,.lzk’”
4: Set Sy = Zizl(xk,tr — Xotr) Xptr — Xgor) | and der = Xy 4 — Xo 1
5: Write an eigen-decomposition of S by S;. = UAUT = ﬂl Al IAJI where
A = Diag(\1, ..., A, —2,0,...,0) arranged in descending order, and U = [U; Uy]
with Uy = [iy, ..., 0, 2], Uz = [y, 1,...,10,)
Set wypp = |U2UJ dy || U5 U; dyy and sypp = p~ /2| U U dy ||
Set V = [qy,...,04y,,—2, WMDP]

and Xk,te = X}C,telT

Nk, te Nk, te

Set Ste = Zizl(xk,te - Xk,te)(Xk,te - Xk,te)T
10: Write an eigen-decomposition of p~ 'V TS,V by p~ VTS, V = QHQT where
H = Diag(hy,...,hn, _1) arranged in descending order, and Q = [Q; Qg] with

v —1
Set X te = nk’texmel

Ql = [QM .. '7él'm] and QQ = [(im-‘,-h e ,(in”—l]

11:  Set ajsupp = [[Q2Q3 empr|| "' Q2Q3 empp where enpp = (0,_5,1) "
12: Set Wj SMDP = Vaj,SMDP

— -1 S o
13: Set Xj,SMDP = Ny, (nl,ter,tr + ”2,trX27tT)

14: Set ay, = —p~ ! ZZ;‘;;L 5\(1@),1 where 5\(1@),1 is Ith largest eigenvalue of

Sk,tr = (Xk,tr - Xk,tr)(Xk,tr - Xk:,tr)T

15: Set gj.smpp = (nrkmpp) ! (eyppaj,smpp) (G1 — d2)
16: end for

17: Set wgmpp = K1 Z]K=1 W;,SMDP

18: Set Xgypp = K ! Zﬁil ijSMDpXj,SMDP and gsmpp = K~* Z;il J5,SMDP
19: Use the following classification rule:

L, p Y} (wdyppY — Xsmpp) — gsmpp > 0,
dsmpp-1(Y; X) = (4.2)

2, p Y2 (wdhyppY — Xsmpp) — gsmpp < 0.

¥ T 11 &=L —
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Algorithm 2 Second Maximal Data Piling (SMDP) algorithm (Type II)

Require: Original training data matrix of the kth class Xy, for k =1, 2.

Require: The number of repetitions K, estimated m

1:

10:

11:
12:
13:

14:
15:
16:
17:

for j=1,...,K do
Xk:,tr = [Xk,h ce vXk?,nk,tr]

Randomly split X} into so that ny e > my
X te = [Xl:,h s ’XZ,nk,,,J
_ . < _
Set Nty = N tr + ng tr, Xk,tr =Ny Xk,tr]-nkwtr and Xk,tr = Xk,t'r’]-;ll—km‘

Set Sy, = Zizl(xk,tr — Xptr) Xioytr — Xper) T and dyyr = X140 — Xogr

Write an eigen-decomposition of Si. by S;. = UAUT = leAlleT where
A= Diag(j\l, R j\n”_% 0,...,0) arranged in descending order, and U= [ﬂl Ijz]
with Uy = [@y, ..., Uy, 2], Us = [0, 1. .., 1)

Set wypp = |U2UJ dyr || 1 UL U7 dy

Set V = [ay,...,4p,,—2, WMDP]

Set Xk,te = n;%exkytelnkwte and kate = Xhtel;[km

Set S = Zi;l(xk,te — Xk,te)(xk,te - Xk,te)T

Write an eigen-decomposition of p~'V T8,V by p~ VTS, .V = QHQ where
H = Diag(hy,...,hn,.—1) arranged in descending order, and Q = [Q: Q] with
Qi =[an -, @n) and Q2 = [&m+1,- -, Gy, 1]

Set a; smMpp = HQzQ;—eMDPH_leQ;eMDP where enpp = (0,]_,,1) "

Set wj smpp = Va; smpp

Apply Linear Discriminant Analysis to p~!/ 2wISMDPXtG where X, =
(X1 te X2te] and achieve a classification threshold b;.
end for
Set wsmpp = K1 Zfil W, SMDP
Set bsmpp = K130 1 b;
Use the following classification rule:

1, p Y?wdyppY > bsupp,

psmpp-11(Y; X) = (4.3)
2, p‘l/ngMDpY < bsMDP-

2] O 1 &) -
31 M= ]-'II oF W



Algorithm [I] ensures perfect classification of independent test data under
the HDLSS asymptotic regime by Theorem [§ In Algorithm I} we also estimate
a bias term as gjsmpp for each repetition. In fact, we do not need to estimate
this term since projections of X;. onto weypp converges two distinct points for
each class, one for each class. In Algorithm [2] we simply achieve a threshold
for binary classification of this one-dimensional well-separated data by using
Linear Discriminant Analysis (LDA) by [Fisher| [1936]. Taking this approach
eliminates the need to estimate m; and msy. A detailed algorithm is given in

Algorithm

) =11 =
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Chapter 5

Simulation

In this chapter, we numerically show that ¢gyvpp.r in and ¢sMmpp-11 in
(4.3) can achieve asymptotic perfect classification under various heterogeneous
covariance models. We compare classification rates of SMDP algorithms with
several other classification rules, which are the maximal data piling classifica-
tion rule (MDP) by |Ahn and Marron| [2010], the projected ridge classification
rule (PRD) by |Chang et al. [2021], Distance Weighted Discrimination (DWD)
by [Marron et al. [2007], Transformed Distance-Based Discriminant Analy-
sis (T-DBDA) by |Aoshima and Yata [2019] and Transformed Geometrical
Quadratic Discriminant Analysis (T-GQDA) by [Ishii et al.| [2022].

Our model, which assumed to be satisfying Assumptions is that
Xij ~ Np(by, Zy) for kb = 1,2, j = 1,...,20 and p = 10,000. We set
By = p—l/Z(\/gl;—/S,O;rp/g)T, H(2) = 0p. Note that in this case 62 =1. )
and X (5) will be given differently for each setting.

In Setting I, we assume two population have the common covariance ma-

T [,
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trix, that is,
2
2(1) = 2(2) = Zaizu,;u; + 7'21p
i=1

where (07,02) = (20p, 10p),

V3L, Oy
1 \/5117/4 0,4
VP 0,/4 \/5110/4
| Opa ﬂlp/‘l_

(ur,u2) =

and 72 = 30. In Setting II, we assume heterogeneous covariance models with

equal tail eigenvalues, that is, 72 = 72 =: 72. To be specific, we assume

3
X = Z (7(21),iu(1),iu(Tl),i + 7L, (5.1)
i=1
and
3
) = Z 0(22),iu(2)7iu(T2),z' + 722111 (5.2)
i=1

where (0(21)’1, 0(21)’2, 0(21)73) = (0(22)’1, 0(22),2, 0(22)’3) = (20p, 10p, 5p),

\/ilp/‘l 0p/4 1p/4

(@)1, u)2,91)3) = — v/ »/ v/l
vP Opa V21,4 1y

[ Op/a ﬂlp/4 —1,/4]

Ly V2L, Oy
1 (1,4 0,/4 V21,

(u(2),17 u(2)’2, U.(Q)’?)) = — p/ D/ p/

\/ﬁ 1p/4 —\/§1P/4 0p/4

_lp/ 4 Op/ 4 - 21p/ 4]
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and 7'12 = 722 =: 72 = 30. In Setting III, we assume heterogeneous covariance

models with unequal tail eigenvalues, that is, 72 > 2. We continue to assume
3() in and () in , but 72 = 30 and 73 = 15 for Setting III. Note
that in Settings II and III, m > max (mj,m2) in contrast to Setting I where
m = mj = mo.

To clearly check classification performances of each classification rule, we
use the true numbers of m1, ms and m for ¢svpp.1 and gsyipp-11- Also, we use
the true number of strongly spiked eigenvalues for T-DBDA and T-GQDA.
For ¢sympp-1 and ¢smpp-11, we set 114 = nate = 6 so that Xj. consists of
30% of original training data X. Also, we set K = 10 in Algorithms [1| and
The classification rates are obtained using 1,000 independent observations
(500 independent observations for each class). We repeat this procedure 100
times and average classification rates to estimate classification accuracy of
each classification rule.

Table [5.1] shows all simulation results from Setting I to Setting III. We
remark that PRD by |Chang et al|[2021] yields nearly perfect classification
not only in case of ;) = Xy but also in case of ;) # Xy and =
2. However, this classification rule achieves poor classification performances
when 712 #* 722. In contrast, we can check that ¢gyvpp-r and ¢gvpp-11 achieve
nearly perfect classification in all of the settings. These results confirm that
our approach, projecting wypp onto the nullspace of the common leading

eigenspace, successfully works under various heterogeneous covariance models.

2] O 1 &) -
35 M= ]-'II oF W



Setting | ¢supp1 | dsmppar | MDP | PRD | DWD | T-DBDA | T-GQDA
0.999 0.999 | 0.859 | 0.999 | 0.701 | 0.784 0.678
! (0.001) | (0.001) | (0.102) | (0.001) | (0.097) | (0.101) | (0.083)
0.975 0974 | 0.728 | 0982 | 0.622 | 0.654 0.870
" (0.014) | (0.014) | (0.076) | (0.008) | (0.055) | (0.055) | (0.042)
0.993 0.993 | 0.669 | 0.576 | 0.620 | 0.654 0.991
. (0.005) | (0.006) | (0.004) | (0.004) | (0.056) | (0.060) | (0.012)

Table 5.1 Estimates of the classification accuracy of Setting I to Setting III are
given in the first row of each cell, and standard errors are given in the second

row of each cell.
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Chapter 6

Discussion

In this work, we proposed Second Maximal Data Piling (SMDP) algorithms,
which estimate a second maximal data piling direction by projecting wypp
onto the nullspace of the common leading eigenspace, based on a data-splitting
approach, and compute discrimination rules based on the estimated directions.
The resulting classifiers can achieve asymptotic perfect classification for gen-
eralized heterogeneous spiked covariance models.

There has been relatively scarce works on a binary classification problem
for cases where X ;) or ¥(9) has strong spikes, which reflects much more re-
alistic and interesting situations for HDLSS data. |Aoshima and Yata| [2019]
proposed a distance-based classifier, while [Ishii et al.| [2022] proposed geomet-
rical quadratic discriminant analysis for this problem. Both assumed not only
the dimension of data p but also training sample sizes of each class n; and
ny tend to infinity to achieve perfect classification. Ishii [2020] proposed an-
other distance-based classifier which achieves perfect classification even when

n1 and ng are fixed, but limited to the one-component covariance model (with
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my; = mg = 1). All of these works were based on a data transformation
technique, which essentially projecting the independent test data onto the
nullspace of the leading eigenspace. Our results were also based on a similar
idea of removing the leading eigenspace, but we further suggested the con-
cept of double data piling phenomenon and revealed the relationship between
the maximal data piling direction of training data and the second maximal
data piling direction of independent test data under generalized heterogeneous

spiked covariance models.
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Appendix A

Asymptotic Properties of
High-dimensional Sample
Within-scatter Matrix

For any vector v € R! (I € N), let [v]; denote the ith element of v. For any
matrix M € RV (1, € N), let [M]; and [M}? denote the ith row and the
jth column of M, respectively. Also, let [M]; ; denote the (i, j)-coordinate of
M. Let 1; € R! (and 0; € RY) denote a vector whose all entries are 1 (and
0, respectively). Write an (I x ) identity matrix as I;, and an (I x I') matrix
whose entries are all zero as Q.

Recall that the matrix of true principal component scores of Xy, is Z) =
_1
(®)
Jth principal component scores of the kth class. We write z,; = n,;lz(Tk)’ilnk.

A UE;) (Xk—u(k)l;[k) = [2(k),1- - > Z(k)’p]T € RP*™ where z(y) ; is a vector of
Also, denote a vector of true principal component scores of independent ob-
servation Y by ¢ = ((1,...,()". Note that each element of Zy and ( is
uncorrelated, and has mean zero and unit variance.

The following lemma follows directly from Lemma C.1. of |Chang et al.

3 fi i
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[2021].

Lemma 10 Suppose Assumptions[|—[5 hold. For k = 1,2, the following hold

as p — 0.

(i) p 1;J,TU I/QC — > 1Uk)ZCOSQ 0G

(i1) pilp,TU(k)A%QZ(k) it D ik Oy €08 O, 6z(k)l
(ii1) P By A D> S 02, 2 i

(iv) p~'Z], A Lk —>Zl 10 (k)zz(k) + 771,

From now on, we examine asymptotic properties of the sample within-
scatter matrix Sy = (X — X)(X - X)T = 3077 Xiﬁiﬁ;. Since the dimension
of Sy grows as p — 0o, we instead use the n x n dual matrix, Sp = (X —
X)T(X — X), which shares its nonzero eigenvalues with Sy. We write the
singular-value-decomposition of X — X = ﬂ1D1V1r = > 12 dzuZ , Where
1; is the ith eigenvector of Syy, d; is the ith largest nonzero singular value,
and v; is the vector of normalized sample principal component scores. Write

v = (A;rl, ZTQ) where v;1 € R™ and v;2 € R™. Then for 1 <7 <n —2, we

can write
2 / 1
A — N 1/2 A
o =d; {(X - =5 kz A G 2w T = -In)Vir (A1)
Recall that W(k) = [U(k),lz(k),l, R U(k),mkz(k),mk] is a ng X my matrix of

the leading my principal component scores of the kth class for each k = 1, 2.

Lemma 11 Suppose Assumptions [1—[5 hold. Then,

So,11 So,12
pilsD £> Sy = ’ ’

So21 So,22
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as p — oo where

1 1
Soii = (I, — —J,. ) (W W/ 27, YL, — —J,,.
0ii = (In; = - Jn ) (Wiy Wiy + 7710 ) (In, = —-Jn))

% 7
fori=1,2 and

1 1
SO,U = (Ini - ;an)(W(Z)RE)R(])WES))(ITZJ - ;Jnj)
J

1

for1 <i#£j <2

1/2

Proof Observe that X—X = X(I,,—J) = [U(l)A(l)

1/2
Za) U)A ) Ze)(In—J).

Then we can write

- - 1/2 1/2
S _q, 3 P12 A Zg) P2 A UL U A Zo) .
p o -17T A1/2UT U A1/2Z 17T A7 n .
P L) Yo Y mha) L) P ZiyAR)Zp)

By Lemma (10| (d), we have p_IZE;)A(i)Z(i) EiR W(i)WEE) + 721, as p — oo.
Thus, it suffices to show that p~1Z) A{{YU [ Uy Al Zs) = Wy R Ry Wy,
as p — 00. Write Uy o = [Wk) my415- - - U(k),p) 0 that Uy = [Ugy 1 Uy o).

Also, write A ()1 = Diag(A) 15+ - Ak),my ) a0d Ay 2 = Diag(A () mp+15 -+ Ak ,p)-

Finally, write Z(k),l = [z(k),h - 7Z(k),mk]—r and Z(k)’Q = [Z(k)7mk+1, - ,Z(k%p]—r

Z) 1
so that Z) = (k) . Then, we can decompose Z(Tl)A%{)QU(Tl)U(g)Ag)QZ(Q) =
Z).2
2 o 1/2 1/2 .
Zi,j:l Aij where Aij = Zz—l),iA(l),iUz—l),iU(2)»jA(2),jZ(Q),j for 1,7 = 1,2. We

claim that (a) pilAlg,pflAzl,pflAQQ £> On1><n2 and (b) pilAH ﬂ) W(l)R(Tl)R(Q)WE;)

as p — oo. We first prove the claim (a). By Assumption there exists M} < oo
such that 7(z),; < My, for all 7. Thus,

P ’E | Ara||h = pninatrace(Ulyy ;U 1A 1)1 Uy 1 U2 2A2).2)

mi1 P
:P_Q”W?Z Z (p"(Ql),l + 7(21),1)?22),1’(“a),l“<2),l')2
=1 1U'=mao+1

¥ [, ]
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< p72n1n2m1(p0(21)71 + MEHMZ — 0

as p — oo where || - ||z denotes the Frobenius norm of a matrix. Thus,
_ P _ P .

p 1A, — O, xny @ p — 00, and p 1A — O, xn, can be shown in a
- - _ _ P
similar manner. Similarly, we can show that p—2E || Aga||% — 0 and p~ 1Ay —

O,,, xn, as p — o0 and we complete the proof of the claim (a). The claim (b) is
P

easily proved by the fact that p~ Ay = p~1Z /] AV RPTR@®ALZ Zip) —

(1), 175(1),177(1) 7H(2)77(2),1

W(l)R(Tl)R(Q)WEB) as p — Q. |

For the proof of Lemma |3| and Lemma 4, we will use the fact that d; Lif
\/m, Vi Lif v;(Sp) for 1 <i < n—2as p— oco. Recall that for any square
matrix M, ¢;(M) and v;(M) denote the ith largest eigenvalue of M and its
corresponding eigenvector, respectively. Also, let v;;(M) be the jth coefficient
of v;(M). We write v;(So) = (4;1(So) ", 72(So) )T where 9;1(Sg) € R™ and
9i2(So) € R"2. Also, write v;(®,, 1) = (0i1(®rymp) ", Vi2(®ry ) )T where

171'1(‘1)7—177—2) € R™ and ?N)Z'Q(q)ﬁﬂ—z) e R™M2,

A.1 Proof of Lemma [3

Proof Recall that Sy shares its nonzero eigenvalues with Sp, and since ¢; is a
continuous function of elements of a symmetric matrix, we have ¢;(p~'Sy) KR
$i(Sp) as p — oo for 1 < i < m — 2. First, assume 7% = 75 =: 72. Then,
So = (I, = H(WW T +721,)(I, — J). In a similar way to the proof of Lemma
C.2. of |Chang et al.|[2021], we have ¢;(Sg) = ¢;(®) + 72 for 1 < i < m and
$i(So) =12 form+1<1i<n-—2and Lemma (i) is proved.

Next, assume 72 > 72. Then,

W(l)W(Tl) + 721, W(l)R(Tl)R(Q)W(E)

W(Q)R(TQ)R(DW(TD W(Q)W(TQ) + 721,

So=1,-J)

T [,
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First, let u = (u] ,OT )T € R™ be an unit vector satisfying W(Tl)(In1 -
%Jm)ul = 0, and 1, u; = 0. Then,

Sou = (In1 - %Jnl)(w(l)wa) + TIQInl)(Inl - nil‘]nl)ul — 2 u1 — 12y
- — 1 — 1
(Tny — %an)W@)Ré)R(l)Wa)(Im - n%']m)ul 0n,
(A.2)

It implies that Sg has an eigenvalue 7‘12 of multiplicity (n;—mj—1). Likewise, we
can show that Sy has an eigenvalue 72 of multiplicity (ng —ma —1). Lastly, let
u; = (u;},uh)" € R (1 <i < my+ms) be an unit vector with u;; = (I,, —
LI, W0y @ %50(®r,0) and wip = (T, — 2 30,) Wiy 85 2502(®1, 1)

Then,

—1/2 ~ 1/2 1/2~
(Im - n%‘]m)w(l)i)l / (((I)l + 7-1217711)1)1'1((1)7'1772> + (I)l/ R(Tl)R(2)(I)2/ viQ(q)ﬁﬂ'z))

Sou,; =
—1/2 1/2 1/2 ~ ~
(Im - %Jm)w(?){b / ((I)Q/ R(T)R(l)q)l/ ’Uﬂ(q)ﬂ'lﬂ?) + (‘1)2 + TQQImQ)U’LQ(¢7177—2))

—1/2~
(Lny — n%']m)w(l)q)l / 0i1(®ry )

= ¢i(‘I)T1,T2) 1 ~1/2.-
(Inz - qTQJTLz)W(Z)(I’Q Ul?(q)ﬂ'lﬂ'z)

(bl( T1,7'2)

(A.3)
for all 1 < i < my + ma. Thus, Sy has eigenvalues ¢;(®;, ,) for 1 < i <
m1 + ma. In summary, Sy has eigenvalues 72 of multiplicity (nq —mq — 1), 7
of multiplicity (ne —mg — 1) and ¢;(®,, 5,) for 1 < i < my + mg. Note that

@, ;, can be decomposed as follows:

B B b, @1/2R?)R(2)¢1/2 n 7121m1 Om1 Xmeo
1,72 T 1/2 /2
(I' / RE;)R( 1) / [ 2% Omngl 7_221m2
=®p + N.
Since
/7 o R/ /7 o
&, — 1 mi1Xmsa 1) 1 mixXms
D= 1/2 T (R(l) R(Q)) 1/2 ’
Om2><m1 (1’2 R(2) Omg Xmi (§2
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® p is of rank m and shares its nonzero eigenvalues with ®. By Weyl’s inequal-
ity, we have ¢, (®r, 7)) > Gy s (BD) + Gy (N) > 77 and Gy my (Pry 7)) >
Gy +ms (PD) + Gy +msy(N) > 72, Hence, if we denote dpm, +myt1(®rymy) =0,
then there exists ko (m1 < ko < mj + mg) such that ¢p, (P, ) > 75 >

®ko+1(Pr ) and we have Lemma (3| (ii). [ |

A.2 Proof of Lemma [4]

Proof From (|A.1)), we can write

M) P& 1
Th i 1/2 L, BT
u; u; = (p ) ; \f u; U(k)A(k) Z( )(Ink nkJnk)VZ’k'

Note that p_l/QUIU(k)Ang(k) can be decomposed into two terms:

mg
1/2 1 1/2 I T 1/2
f u; Ugo Ay Z) = Z\/ﬁu (k) i\l 200+ Z 5 )0
=1 i=mi+1

for 1 < j < m. The first term converges as p — oo:
L T 1/2 P
2 75w N 7 Rl Wi (A4)

The second term converges to zero in probability since for any € > 0, by

Chebyshev’s inequality,

2
P P
LT 1/2 1 T
P Z =4y u(k)vi)\(k),iz(k’)vi >€e] = TE Z Wy U(k),iT(k),i%(k),i
VP pe
i=mp+1 i=mp+1
1 p
= ?E Z (ujTu(k),i)27(2k),iZ(T1€),¢Z(k),i + Z (ujTu(k),z’)(ujTu(k),l)T(k),iT(k),lZ(Tk),iZ(k),l
p i=mpt1 i+ 1<iA<p
1 P nkMQ
= -k Z (“JT“(k),i)27(2k)7i2(11;),iz(k),i = 2k —0
pe i=mp+1 pe
(A.5)
¥ 3 =11 = —
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as p — oo. By combining (A.4]) and (A.5)), we have

1/2 A
\f w U A Z) L R Wy

as p — oo for k =1, 2. Hence,

w55 ¢i(So)"2e] WT (L, — J)ui(So) (A.6)

as p — oo for 1 < j < m where e; € R™ is a vector whose jth coordinate is 1

and other coordinates are zero. Hence, if 72 = 73 =: 72, then

u; u; — (A.7)
0, m+1<i1<n—2
where
o oi(®)
G =\ @) 2 )

for 1 <i,j <m.If 7# > 72, then

D'j7 1§Z§k07

2,

0, ko+1<i<ko+ (ni—mi—1),

Di_(ny—mi—1),j> ko +(n1—m1) <i<ng+mo—1,

0, ni+me<i<n-—2

where ko (m1 < ko < mj + mg) is defined in Lemma [3| (ii) and

2
Di,j = Z k:) k 'Uzk((I)Tl 7—2) (Ag)
=1

¢Z( 7'177'2

for 1 <i<mji+meo and 1 <j < m. Note that
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Note that Lemma[d] can also be used to investigate the asymptotic behavior
of @1, d, where d is the sample mean difference vector. Lemma [12{ will be used

frequently in the proof of main lemmas and theorems.

Lemma 12 Suppose Assumptions ﬂ hold. Then conditional to W 1y and

W g), the following hold as p — oco.
(i) If 7 =73 =: 72, then

S G, 1 <i<m,

p—l/szﬁi i J=1"7>%71
0, m+1<i<n—2
for1 <j <mwherer; = cos 0;0+3 1 [R)jk01) k20) k= 2ot [R@)5.60(2) £ 2(2) 5
and C;; is defined in [A.7).
(i) If 72 > 73, then
> 173 Di 1 << ko,
0, ko+1§i§k0+(n1—m1—1),

p_l/QdelZ' £>
Z;nzl TjDi—(nl—ml—l),j7 ko + (n1 — ml) <1< ny+mg—1,

0, ni+mo<i<n-—2

for 1 < j < m where kg is defined in Lemma @ (it), rj is defined in

Lemma (19 (i) and D;; is defined in (A.9).

Proof Observe that d = X1—X = p+- U A Z 1)1, — £ U Ay Zoy L,

and
LdTa, = 2 u™a ——17 2] A SUL 1 — 1] 2 AL Uy
Y/ ALl \f m A0 COW T et A Re) Bt
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First, by (A.1]), we can write

N -1/2 /T 1/2 T 1/2
. WU GAY2Z ) U AY2Z
1 “Tﬁz:(&) ( mA Q) Za @20 2@ | ¢ .

p p p
Write ¢ = (cosfy,...,cos6,,)" € R™ and c; = (cos O(k),15- - -, COS H(k),mk)T S
R™*, Then we have

1 1/2 P
Z;”TU(’C)A(IQ) Z(k) — C;W&)(s

as p — oo from Lemma [10] (ii). Thus,

1 . _
%uTui Ly :(S0)26¢ "W (I, — J)v;(So) (A.10)

as p — oo. Also, by (A.1]), we can write

Lo T 1/2¢1T &
mpim ZoAm Vo

N\ —1/2 T T A1/2¢1T 1/2
| 71 AoZoy ZAYPUT Uy ALz
1 <A> iT ( LADZa) ZinAH U UpAg m)(hJ)%

p

ny m D p

From Lemma [10| (iv) and Theorem |11} we have
T
ZupAwZy p

) v — W(I)Wa) + 7121”1 (A'll)
and 1/2 1/2
Z AU U ALZ
ML) 1)@ 2@ P T T A.12
P — W(l)R(l)R(2)W(2) ( )
as p — oo for each k£ = 1,2. Combining (A.11)) and (A.12)) gives
L T o7 A 1/2¢:T &
mpim ZoAm VoW A13

P 12—
= $i(So)~ Py 1 Wy Ry WT (L, — 3)ui(So)
as p — oo. Similarly, we have
L o S o
@A) U)W

—1

n2p (A.14)
P _ _

= $i(S0) 0y 1, W) R W (T, — T)vi(So)
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as p — oo. Hence, by combining (A.10), (A.13]) and (A.14), we have

1
—d"y

VP

P _ _ _
= ¢i(So) 20T +ny 1) Wo)R() —ngy "1, W) R G))W T (L, — J)vi(So)

as p — oo and this completes the proof. |
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Appendix B

Technical Details of Main Results

In this section, we give the proofs of main theorems. Unless otherwise stated,
we only give the proofs for the case of 72 > 72 and m > m1. The proofs for the

other cases are quite similar to, but much simpler than, those for this case.

B.1 Proof of Theorem [5l
Proof For Y € ), assume 7(Y) = 1. Recall that in this case,
D=A{1,...,m +mg,ny,...,ny +mg — 1}
and S = span({;},cp , wmpp). Also, for given training dataset X', let
D ={i:1<i<koko+ (n1—mi)<i<ng+mg—1} (B.1)

where kg is defined in Lemma (ii). That is, cos(Angle(w;,U)) L Di>o0
for i € D' and cos(Angle(w;,U)) L0 fori ¢ D as p — oo. For notational
simplicity, we write D’ = {i1,...,%m, tm,} SO that i < ip if | < I'. Let t° =

(t1,... ,tm)T € R™ with t; = ncos ;0 + Z?:ll[R(l)]ij(l),k(Ck — 7]12(1)7;{) —
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N2 Y o 1[ ]]kO'(Q) kZ@2)k for 1 < j < m and 0 ULgtO + viwyppp + Xs-
Note that v € L;. We claim that ||Ys —1/0|| — 0 as p — oo. For this, we need
to show that (a) @, (Ys — oY) L, 0 for i € D and (b) wypp(Ys — v0) 250 as
p — 0.

First, we show that (a) @ (Vs — v°) = p~ 124 (Y — X) — 4/ U, st° o
for 1 <i < m as p — oco. Note that

_ 1 1 1
DS PN I 12, 1 B 1/2
\/ﬁuz Y -X)= \/Z—)uz (2p +U)A gy (€ = ~Zylny) = —U)A g Zg)1ny)

ma
= Palp+ Z“ 1) k0 1),k (G — MZ) k) — M2 Z 4 w9 k0 (2) 5 Z2) k + 0p(1).
VP k=1 k=1
(B.2)
From (A.10) and Lemma {4} we have
1o
—a,v-x)5% P B.3
N ﬁ Z j (B.3)

as p — 0o where ®;; = Zzzl[R(k)]jéi/%lk(@ﬁm) for 1 <1 < my +mg and
1 < j < m. Also, from Lemma [ we have

T DN

u; U st” — t; (I)l]
! V T177—2 Z
as p — oo. Hence, ﬁ;l—(Yg —0) = p_l/zﬁiTl(Y—X') - lAl;ll—ULgtO Li0asp — oo
for 1 <1 < my + mo. Similarly we can show that ﬁ;r (Ys — ) L0 as p— 00
fori e D\ D'

Next, we show that (b) wypp(Ys—22) = p~/ 2w pp (Y —X)—w)ppUr st —

v 50 as p — 00. We decompose p~/?w);pp(Y — X) into the two terms:

Lo e B (A% (00T - X)
\/}3 MDP(Y X) - Hﬂ2fj;—d” ( p p )
— L (K- )
KMDP
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where K] = d" (Y — X)/p and Ky = (U;U]d)" (Y — X)/p. By Lemma

and Lemma [TT], we have

1 1 1/2 1 1/2 !
K = Z) ([1, + fU(l)A(l/) (1)1n1 — EU(Q)A@/) Z(2)1n2>
1
<772u +Ugq 1/2(C - *Z Wlny) — nU(Q)Ag)ZZ(z)lm> (B.4)

P 2 2 7'1 —7'2
— 1-— 0% — tir;
n2( cos” ) n + E_ iy

as p — oo where 7; is defined in Lemma [12] Also, from Lemma

K, (O, 07Ta)T(Y - X) :Z’”:<1f;d> (1ﬁT(Y_X)> on(1)

A SV
P mi+mo2 m m 1
— Z Zzitjrj'éljélj'
=1 j—=1j'=1 ¢l(q)7'177'2)

(B.5)
as p — oo. Note that the limit of /@%ADP can be obtained from the limit of

p~1|d||? and p~!{|U, U] d||2. Then we have

1 1o o
KRDP = Z;Ildll2 -, d|f*

mi1+mao
i
(1~ o )0 + 2+ZZ%( 2 G@ >‘I’”‘I’”’)
T1T2

j=1j=1
2 2 (I)l/QRT
(1 a2 N2 L T T _ 1/2 1/2) -1 (1)
= (1 —cos™ ¢)o~ + T 1T Ly, (Ru)‘ﬁl R)®," ) 7 r, (1)1/2R(T2)
=: K2
(B.6)
as p — oo where r = (r1,...,7,) . Note that x2 > (1 — cos? )82 + 72/n1 +

T [, |
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72 /ny > 0. Combining (B.4), (B.5)) and gives

1 . . 1
—w Y -X)= K| — K
7 Mpp ( ) KMDP( 1 — K3)
p 1 7_2 _ 7_2 m m mi1+m2
= = {my(l —cos? )d? — L1 —2 4 Z Z tirj Z ———®; Py
K n == ¢l T1, 72)

(B.7)

as p — oo where ¢§;;, stands for the Kronecker delta. Similarly, we have

1 -
Zt { u/d—u/ U (Ule) }
VP
mi+ma

1 m m
£> E Z Z t; 3Ty < Z (bl )(I’lj(I’lj’>
i=1j'=1 e

wyppUst = Zt WD, =

_ K/MDP
7=1

(B.8)

as p — oo. From (B.7) and (B.8), we have wypp(Ys — 1/°) 250 as p — 00.

Hence, from (a) and (b), we have ||Ys — 1| Li0asp— oo for Y € Y with

7m(Y) = 1. Using similar arguments, we can show for Y € Y with 7(Y) = 2. R

B.2 Proof of Theorem

Write an eigen-decomposition of Sf, = (Y — Y)(Y - Y)' by IAJ’{./AX’{IAJ“{T,
where A] = Diag()\}, ..., \*._,) in which the eigenvalues are arranged in
descending order and U} = [a},..., 0. ,]. Also, write the singular-value-
decomposition of Y — Y = UiDiViT = Py 2 drwv: T where 0} is the ith
eigenvector of Sj;,, d; is the ith nonzero largest singular value, and vj is the
vector of normalized sample principal component scores. Denote true principal

components scores matrix of Yy = [Yi1, ... ,Y;,mz} by Z?k) = A(_l)/QU&)(
EYy) = [zE‘k) Do zZ‘k) p]T € RP*" and similar to 1} we can write

- 1 .
o = I/QZU A1/2 iy (T = T )95
k

)
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We write W’(kk) = {U(k),lz{k),p ce U(k),mkzikk),mk}’ WHT = [R(I)WET) R(Q)Wg)],

* * 1 1 gx * _ * T * *
o = Wi (L = 237 )W, @ = W*T (L. — J)W* and

* *x1/2 *x1/2
. T+ 7L, ?, / R(T1)R(2)q)2 /
TLT2 *1/2 *1/2 *
@' "R, R @} &%+ 721,

1
1
npdns

Recall that for given training dataset X', we define D’ in (B.1)) and write

where J* =
Ong xnjy

D' = {i1,... imy+msy} S0 that i < iy if [ < I'. Similarly, for given indepen-
dent test dataset ), let D* be an index set such that j € D" if and only
if the probability limit of cos(Angle(d},)) does not degenerate. Note that
the cardinality of D' is (m1 + ms2), and for notational simplicity, we write
D™ = {j1,-- -, Jmi+ms } S0 that j; < jy if I <1’

Proof First, we obtain the probability limit of ﬁjﬁj. From Lemma |11| and

Lemma (ii), the inner product fl;-rﬁ;f becomes

T [N 1 1/2 1 o1 1/2 1 N
u; u; = (p > <\/;5U(1)A(1) Z(l)(Im n Jn ) Vig + \/ﬁU(Q)A@) Z(2) (L, - Jnl)vz,2>
Co\ —1/2 . X , 1
) - V2gs (7 L J O 4 V2ge (1 . 2 3 o

( p > (ﬁU(l’Am (g = e dn Vi 75U @AG) 2 (es — 2 an)w?>
P 1 T T s T « »
— (W (L, = J)vi(So)) (W™ (I — J%)v;(Sg))
i(S0)9;(Sp) 70

as p — oo where S} is the probability limit of p~1(Y —Y)T (Y — Y). Hence,
from the proof of Lemma ﬁ?ﬁ; 20 as p—ooifi g D orj¢ D" Also,

for iy € D’ and ji € D', we have

m

~TaAax P 1 *
u; u;, — Z D1 Py, (B.9)
T Ja @) (@) i

as p — o0 where By, = 37 (R [k ® () 01 (@7, 7,) and By, = 7 [Rp) k@7 0i (@, ).

¥ [ |
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Next, to obtain the probability limit of wMDPu note that

_— U,U]d 1 <1

1

T Aok T A*T T

w = d——u; U U d
P HUQUTdH KMDP ! >

73 \[J

Using similar arguments to the proof of Lemma for jp € D", we can show

that
R VI R p—— (B.10)
p : (?bll(@Tl,Tg) ]le
and
AT T T
U1U d= Z ak (u d> + o0p(1)
gy j/ 7 P
\[ l €D’ : p

m m 1
77&/@’@%@%/@*’
Z Z QS’L'((I)Tl,TQ) i
(B.11)
as p — oo where 7 is defined in Lemma Combining (B.10) and (B.11])

gives

m m
wipp ), L — > <5kk’ Z qu)ik’) T Ry,
'i\/m k=1k'=1 % 71’72)
(B.12)
as p — oo. In contrast, for j ¢ D", pil/zﬁ;Td it 0, pil/Qﬁ;foJlleTd 0
and thus wl\T/[DPﬁ* 20 as D — 00.

Let & ; be the probability limit of ﬁ u; and {vmpp,; be the probability
limit of wMDPﬁ;‘», and write §; = (E14s- -y &n—2j,émpp;) | for 1 < j < m.
Also, let V = [ay,..., 0,2, wypp] and denote the probability limit of the
(n—1) x (n—1) matrix p~ !V 'S#,V by L. Since ﬁiTﬁ;f L5 0and wl—\r/IDPﬁ; o

as p — oo for j ¢ D", we have §; = 0,1 for j ¢ D' and

mi1+ma

= > ou(®F )86

=1
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Meanwhile, we define the (n — 2) x m matrix €2; such that
[21]5,5 = [l (B.13)

for 1 <1 <mj+mgand 1< j<m where

~ 1

and [Q1];; = 0 for i ¢ D' and 1 < j < m. Also, we define the (n — 1) x m

matrix Q = [Q{ wi]" where

1 T~
w1 = (L - Q, O)r. (B.15)

Lastly, we define the (m; + mg2) x m matrix QT such that

. 1 .
[]ij = —F—=9;; (B.16)

¢i(®7, 1)
for 1 <i<mj+mo andlgjgm.Thenfromand (B.12)),
—_ ~ kT
= = I:Ejl7"‘7€jml+m2] :QQI . (B17)

Since both of €2 and Qy{ are of rank m, by Sylvester’s rank inequality, we have

rank(L) = rank(E) = span(Q) = m. [ |

B.3 Proof of Theorem

Proof For any given {w} € A, there exists {v} such that v € span(VQy)
and [|[w — v L, 0 as p — o0o. Thus it suffices to show that vy 20 as
p — 0o. Let v = Vb such that b € span(Qg). Note that for all 1 <7 <m, §q;

converges to v;(L) in the m-dimensional subspace span(Z) = span(£2). Hence,

T [,
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for b € span(Qg), b is asymptotically orthogonal to span(£2). From Lemma

and (B.8)), we have
v, =b VT =b' Q) +0,(1) &0 (B.18)

as p — 00. |

B.4 Proof of Theorem

Proof For any given {w} € A, we assume w = Vawherea = (a1, ..., a,_2,aMpp)

satisfies appp i tmpp as p — oo. Recall that there exists {v} such that

v € span(VQy) and |w — | L, 0 as p — oco. Write v = Vb with b =

(b1, ... bus,bapp) . Then |w — || = ||a— b £ 0 and bypp —> Yupp as
p — o0. Thus, by (B.3) and (B.7),
1 _

ST %) = \}ﬁvT(Y ~X) 4 0,(1)

and it suffices to obtain the probability limit of p~/2vT(Y — X). For any
observation Y, which is independent to both of X and Y, assume that 7(Y) =

1. Combining (B.3), (B.7) and (B.18) gives

1 T 5 T T
— Y - X bV Y - X
ﬁv( ) = 7 ( )
RS ¢MDP 9 o TE—T2
—Z M1 = cos® ¢)d? — =—2 ) + 0p(1)
P <n2<1_cos o211
K n

as p — oo where t; is defined in the proof of Theorem |5 Similarly, we can

show that

2 2
LTy -y B MO (g o2 )2 - T2
VP K n
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as p — oo for any observation Y, independent to both of X and ), with
m(Y) = 2.

B.5 Proof of Theorem

Proof From Theorem [8, for {w} € A with w = Va and ampp i UMDP
as p — 00, we can check that an asymptotic distance between the two piles
of independent test data is D(w) = s 1inpp(1 — cos? ¢)d2. Let wsmpp =
Vasypp = [|Q2Qg evpr || "' VQ2Qg enpp where eypp = (0, 5, 1)T. Note
that

T Q2QJ empp

AT
eMDP A 2 = |Qz empr||- (B.19)
1Q2Q5 enpp||

To derive the probability limit of | Q4 enpp||, we characterize an orthonor-
mal basis of span(£2)+, which is the orthogonal complement of the (n—m —1)-
dimensional subspace of span(€2). Note that span(£2;)+, which is the orthog-
onal complement of span(£2), is (n — m — 2)-dimensional subspace and let
{11 ¥p_m_21} be an orthonormal basis of span(£2;). Also, let t; =
(1,[);57 0)T e R forall 1 <i<mn—m—2. Theny,...,%,_,,_o are orthog-
onal to each other and 1p; € span(2)+ for all 1 <i <n—m — 2.

Now, let 1y = (%DOTJ, Yompp)' € R"1 such that
_ [ %oMmpP & “Ta
(Yol = TQI(Im — (2 ) )r

and [tpg 1]; = 0 for i ¢ D" and

Yo, MDP = (B.20)
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Note that 1), is a unit vector. Then since

Qe = Q1T¢o 1 + Yo,MDPW1

= LML QT (1, — (€] 62) e+ P2, — @] G2)e = 0,

we have 1, € span(Q)*. It is obvious that 1, is orthogonal to 1p; for all
1 <4< n—m-—2, and thus {wo,wl, . ,wn_m_Q} is an orthonormal basis

of span(Q)+. Hence,

n—m-—2

1Qg exppll 2> | [Wol2 1+ Y [Wil2 1 = dopp
=1

as p — oo and

D(wsnmpp) = M(l —cos? )02 =: v(1 — cos® )42 > 0
K
where
9 T T a1 2T~ ST\ /2
v = (H T (L — Q, Q70 Q1 (L, — () Q1) )r) (B.21)
with probability 1. For each p, let {wsmpp, f1,. .., fn—m—2} be an orthonormal
basis of Span(VQg) and {wsmpp, f1, .- fh—m-2,91,--.,9m} be an orthonor-

mal basis of Sx. For 1 < i < n—m — 2, write f; = HQQQ;aiH_IVQQQ;—aZ’.
To obtain D(f;), we need to derive the probability limit of

T Q2Q;ai B e;\—/[DPQ2Q;—ai
e\NIDP T~ = T = AT . (B22)
1Q2Q; al 1Qg ai

Since wgmpp is orthogonal to f;, we have

el\T/[DP Q2QQT !

1Q3 exop|l|Q ai

T
wsnppli

for all p. Note that HQ;eMDp || converges to a strictly positive random variable,

thus the probability limit of (B.22)) is zero and D(f;) =0for 1 <i<n—m—2.

1] =
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We now show that wsypp is a second maximal data piling direction. For
any given {w} € A, write w = apwsypp + ZZZ{"*Z aif; + >0 bigi. Recall
that for {w} € A, there exists {v} such that v € span(VQy) and |Jw —v|| Lo
as p — oo. Hence, b; = op(1) for 1 < ¢ < m and since D(f;) = 0 for

1 <4 < n—m— 2, using similar arguments in the proof of Theorem 3.3

of |Chang et al. [2021], we can show that D(w) < D(wsypp) for any {w} € A

and the equality holds when ||w — wsmppl| 20 as D — 00. [ |

6 . H k: 1_'.]| [
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