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We have performed precision measurements of the double-spin virtual-photon asymmetry A1 on the 
neutron in the deep inelastic scattering regime, using an open-geometry, large-acceptance spectrometer 
and a longitudinally and transversely polarized 3He target. Our data cover a wide kinematic range 
0.277 ≤ x ≤ 0.548 at an average Q 2 value of 3.078 (GeV/c)2, doubling the available high-precision 
neutron data in this x range. We have combined our results with world data on proton targets to 
make a leading-order extraction of the ratio of polarized-to-unpolarized parton distribution functions 
for up quarks and for down quarks in the same kinematic range. Our data are consistent with a previous 
observation of an An

1 zero crossing near x = 0.5. We find no evidence of a transition to a positive slope 
in (�d + �d̄)/(d + d̄) up to x = 0.548.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Ever since the European Muon Collaboration determined that 
the quark-spin contribution was insufficient to account for the spin 
of the proton [1,2], the origin of the nucleon spin has been an 
open puzzle; see Ref. [3] for a recent review. Recently, studies of 
polarized proton–proton collisions have found evidence for a non-
zero contribution from the gluon spin [4,5] and for a significantly 
positive polarization of ū quarks [6]. The possible contribution of 
parton orbital angular momentum (OAM) is also under investiga-
tion. In the valence quark region, combining spin-structure data 
obtained in polarized-lepton scattering on protons and neutrons 
allows the separation of contributions from up and down quarks 
and permits a sensitive test of several theoretical models.

In deep inelastic scattering (DIS), nucleon structure is con-
ventionally parameterized by the unpolarized structure functions 
F1(x, Q 2) and F2(x, Q 2), and by the polarized structure functions 
g1(x, Q 2) and g2(x, Q 2), where Q 2 is the negative square of the 
four-momentum transferred in the scattering interaction and x is 
the Bjorken scaling variable, which at leading order in the infinite-
momentum frame equals the fraction of the nucleon momentum 
carried by the struck quark. One useful probe of the nucleon spin 
structure is the asymmetry A1 = (σ1/2 −σ3/2)/(σ1/2 +σ3/2), where 
σ1/2(3/2) is the cross section of virtual photoabsorption on the 
nucleon for a total spin projection of 1/2 (3/2) along the virtual-
photon momentum direction. At finite Q 2, this asymmetry may be 
expressed in terms of the nucleon structure functions as [7]

A1(x, Q 2) =
[

g1(x, Q 2) − γ 2 g2(x, Q 2)
]
/F1(x, Q 2), (1)

where γ 2 = 4M2x2c2/Q 2 and M is the nucleon mass. For large 
Q 2, γ 2 � 1 and A1(x) ≈ g1(x)/F1(x); since g1 and F1 have the 
same Q 2 evolution at leading order and at next to leading or-
der (NLO) [8–10], A1 may be approximated as a function of x
alone. Through Eq. (1), measurements of A1 on proton and neu-
tron targets also allow extraction of the flavor-separated ratios 
of polarized to unpolarized parton distribution functions (PDFs), 
(�q(x) + �q̄(x))/(q(x) + q̄(x)). Here, q(x) = q↑(x) + q↓(x) and 
�q(x) = q↑(x) − q↓(x), where q↑(↓)(x) is the probability of finding 
the quark q with a given value of x and with spin (anti)parallel to 
that of the nucleon. This Letter reports a high-precision measure-
ment of the neutron A1, An

1, in a kinematic range where theoretical 
predictions begin to diverge.

A variety of theoretical approaches predict that An
1 → 1 as 

x → 1. Calculations in the relativistic constituent quark model 
(RCQM), for example, generally assume that SU(6) symmetry is 
broken via a color hyperfine interaction between quarks, lowering 

the energy of spectator-quark pairs in a spin singlet state relative 
to those in a spin triplet state and increasing the probability that, 
at high x, the struck quark carries the nucleon spin [11].

In perturbative quantum chromodynamics (pQCD), valid at 
large x and large Q 2 where the coupling of gluons to the struck 
quark is small, the leading-order assumption that the valence 
quarks have no OAM leads to the same conclusion about the spin 
of the struck quark [12,13]. Parameterizations of the world data, 
in the context of pQCD models, have been made at NLO both with 
and without this assumption of hadron helicity conservation. The 
LSS (BBS) parameterization [14] is a classic example of the for-
mer; Avakian et al. [15] later extended that parameterization to 
explicitly include Fock states with nonzero quark OAM. Both pa-
rameterizations enforce An

1(x → 0) < 0 and An
1(x → 1) → 1 and 

predict limx→1(�d + �d̄)/(d + d̄) = 1. However, the OAM-inclusive 
parameterization predicts that (�d + �d̄)/(d + d̄), which is nega-
tive at low x, crosses zero at significantly higher x than predicted 
by LSS (BBS). Recently, the Jefferson Lab Angular Momentum (JAM) 
Collaboration performed a global NLO analysis at Q 2 = 1 (GeV/c)2

to produce a new parameterization [16], and then systematically 
studied the effects of various input assumptions [17]. Without 
enforcing hadron helicity conservation, JAM found that the ratio 
(�d + �d̄)/(d + d̄) remains negative across all x; regardless of this 
initial assumption, the existing world data can be fit approximately 
equally well with or without explicit OAM terms of the form given 
by Ref. [15]. The scarcity of precise DIS neutron data above x ≈ 0.4, 
combined with the absence of such data points for x � 0.6, leaves 
the pQCD parameterizations remarkably unconstrained.

The statistical model treats the nucleon as a gas of mass-
less partons at thermal equilibrium, using both chirality and DIS 
data to constrain the thermodynamical potential of each parton 
species. At a moderate Q 2 value of 4 (GeV/c)2, An

1(x → 1) →
0.6 · �u(x)/u(x) ∼ 0.46 [18]. Statistical-model predictions are thus 
in conflict with hadron helicity conservation. A modified Nambu–
Jona-Lasinio (NJL) model, including both scalar and axial-vector 
diquark channels, yields a similar prediction for An

1 as x → 1 [19]. 
A recent approach based on Dyson–Schwinger equations (DSE) pre-
dicts An

1(x = 1) = 0.34 in a contact-interaction framework, and 0.17 
in a more realistic framework in which the dressed-quark mass is 
permitted to depend on momentum [20]; the latter prediction is 
significantly smaller than either the statistical or NJL prediction at 
x = 1. However, existing DIS data do not extend to high enough x
to definitively favor one model over another.

Measurements of the virtual-photon asymmetry A1 can be 
made via doubly polarized electron–nucleon scattering. With both 

http://creativecommons.org/licenses/by/4.0/
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Fig. 1. Kinematics for the measurement in the laboratory frame. The electron’s initial 
momentum 
k and final momentum 
k′ define the scattering plane. The polarization 
plane is defined by 
k and the target spin 
S . The scattering angle is denoted θ , while 
the angle φ lies between the scattering and polarization planes.

beam and target polarized longitudinally with respect to the beam-
line, A‖ = (σ ↓⇑ − σ ↑⇑)/(σ ↓⇑ + σ ↑⇑) is the scattering asymme-
try between configurations with the electron spin anti-aligned 
(↓) and aligned (↑) with the beam direction. Meanwhile, A⊥ =
(σ ↓⇒ −σ ↑⇒)/(σ ↓⇒ +σ ↑⇒) is measured with the target spin ori-
ented horizontally, perpendicular to the incident beam direction 
and on the side of the scattered electron. A1 may be related to 
these asymmetries through [7]:

A1 = 1

D (1 + ηξ)
A‖ − η

d (1 + ηξ)
A⊥, (2)

where the kinematic variables are given in the laboratory frame by 
D = (E − εE ′)/(E(1 + εR)), η = ε

√
Q 2/(E − εE ′), d =

D
√

2ε/(1 + ε), and ξ = η(1 + ε)/2ε . Here, E is the initial elec-
tron energy; E ′ is the scattered electron energy; ε = 1/[1 + 2(1 +
1/γ 2) tan2(θ/2)]; θ is the electron scattering angle, shown in 
Fig. 1; and R = σL/σT , parameterized via R1998 [21], is the ra-
tio of the longitudinal to the transverse virtual photoabsorption 
cross sections.

Experiment E06-014 ran in Hall A of Jefferson Lab in Febru-
ary and March 2009 with the primary purpose of measuring a 
twist-3 matrix element of the neutron [22]. Longitudinally polar-
ized electrons were generated via illumination of a strained super-
lattice GaAs photocathode by circularly polarized laser light [23]
and delivered to the experimental hall with energies of 4.7 and 
5.9 GeV. The rastered 12–15 μA beam was incident on a target of 
3He gas [24], polarized in the longitudinal and transverse direc-
tions via spin-exchange optical pumping of a Rb–K mixture [25]
and contained in a 40-cm-long glass cell. The left high-resolution 
spectrometer [26] and BigBite spectrometer [27] independently de-
tected scattered electrons at angles of 45◦ on beam left and right, 
respectively.

The longitudinal beam polarization was monitored continuously 
by Compton polarimetry [28,29] and intermittently by Møller po-
larimetry [30]. In three run periods with polarized beam, the lon-
gitudinal beam polarization Pb averaged 0.74 ±0.01 (E = 5.9 GeV), 
0.79 ± 0.01 (E = 5.9 GeV), and 0.63 ± 0.01 (E = 4.7 GeV). A feed-
back loop limited the charge asymmetry to within 100 ppm. The 
target polarization Pt , averaging about 50%, was measured period-
ically using nuclear magnetic resonance [31] and calibrated with 
electron paramagnetic resonance; in the longitudinal orientation, 
the calibration was cross-checked with nuclear magnetic resonance 
data from a well-understood water target.

The raw asymmetry Araw
‖(⊥) was corrected for beam and target 

effects according to Acor
‖(⊥) = Araw

‖(⊥)/[Pb Pt fN2 (cosφ)]. The dilution 
factor fN2 ≈ 0.920 ± 0.003, determined from dedicated measure-
ments with a nitrogen target and found to be approximately con-
stant across our x range, corrects for scattering from the small 
amount of N2 gas added to the 3He target to reduce depolariza-
tion effects [32]. The angle φ, which appears in Acor⊥ , is defined in 
Fig. 1.

Data for the asymmetry measurements were taken with the 
BigBite detector stack, which in this configuration included eigh-

teen wire planes in three orientations, a gas Čerenkov detec-
tor [33], a pre-shower + shower calorimeter, and a scintillator 
plane between the calorimeter layers. The primary trigger was 
formed when signals above threshold were registered in geomet-
rically overlapping regions of the gas Čerenkov and calorimeter. 
Wire-plane data allowed momentum reconstruction with a reso-
lution of 1% [33]. With an angular acceptance of 65 msr, BigBite 
continuously measured electrons over the entire kinematic range 
of the experiment, and the sample was later divided into x bins of 
equal size. The variation over the BigBite acceptance of the mea-
sured asymmetry in each bin was found to be negligible [33].

Pair-produced electrons, originating from π0 decay, contami-
nate the sample of DIS electrons, especially in the lowest x bins. 
We measured the yield of this process by reversing the BigBite po-
larity to observe e+ with the same acceptance as that seen by e−
in normal running. A fit to these data, combined with data from 
the left high-resolution spectrometer and with CLAS EG1b [34]
data taken at a similar scattering angle, was used to fill gaps in the 
kinematic coverage of these special measurements. The resulting 
ratio fe+ = Ne+/Ne− quantifies the contamination of the electron 
sample with pair-produced electrons. The underlying double-spin 
asymmetry Ae+

of the π0 production process was measured to be 
1–2% using the positron sample obtained during normal BigBite 
running, and cross-checked against the reversed-polarity positron 
asymmetry for the available kinematics.

The contamination of the scattered-electron sample with π−
was below 3% in all x bins, limited primarily by the efficiency of 
the gas Čerenkov in eliminating pions from the online trigger. Due 
to the low contamination level, the asymmetry in pion production 
had a negligible (� 1%) effect on A‖ and A⊥ , and the pion cor-
rection to the asymmetry was therefore treated as a pure dilution 
fπ− . Contamination of the positron sample with π+ resulted in 
the dilution factor fπ+ . Particle identification was the dominant 
overall source of systematic error in this measurement.

The final physics asymmetries A‖(⊥) , which are listed in Table 1, 
include internal and external radiative corrections �ARC

‖(⊥)
as well 

as background corrections:

A‖(⊥) = Acor
‖(⊥) − fe+ Ae+

‖(⊥)

1 − fπ− − fe+ + fπ+ fe+
+ �ARC

‖(⊥). (3)

To compute �ARC
‖(⊥) , the asymmetries were reformulated as po-

larized cross-section differences using the F1F209 [35] parameter-
ization for the radiated unpolarized cross section. The polarized 
elastic tail was computed [36] and found to be negligible in both 
the parallel and perpendicular cases; therefore, this tail was not 
subtracted. Radiative corrections were then applied iteratively, ac-
cording to the formalism first described by Mo and Tsai [37,38] for 
the unpolarized case, and checked by the Akushevich et al. [39]
formalism for the polarized case. The DSSV global NLO analy-
sis [40,41] was used as an input for the DIS region; the integration 
phase space was completed in the resonance region with the MAID 
model [42], and in the quasi-elastic region with the Bosted nu-
cleon form factors [43] smeared with a scaling function [44]. The 
final results were then converted back to asymmetries. The contri-
bution of these corrections to the uncertainty on A‖(⊥) , estimated 
by varying the input models and radiation thicknesses of materials 
in the beamline and along the trajectory of the scattered elec-
trons, was � 2%. Energy-loss calculations were performed within 
the radiative-correction framework and not as part of the accep-
tance calculation; the effect of interbin migration due to energy 
loss was found to be small, and was neglected in the analysis. 
Smearing effects across individual x bins, due to the finite detec-
tor resolution, contributed a negligible amount to the uncertainty. 
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Table 1
DIS asymmetries A‖ and A⊥ measured on 3He at two beam energies.

E (GeV) 〈x〉 〈Q 2〉 (GeV/c)2 A‖ ± stat ± syst A⊥ ± stat ± syst

4.74 0.277 2.038 −0.008 ± 0.015 ± 0.007 −0.002 ± 0.008 ± 0.003
0.325 2.347 −0.009 ± 0.009 ± 0.003 −0.001 ± 0.005 ± 0.002
0.374 2.639 0.005 ± 0.007 ± 0.002 −0.011 ± 0.004 ± 0.002
0.424 2.915 −0.025 ± 0.007 ± 0.005 −0.003 ± 0.004 ± 0.002
0.473 3.176 −0.021 ± 0.008 ± 0.003 −0.005 ± 0.004 ± 0.001

5.89 0.277 2.626 0.019 ± 0.027 ± 0.010 0.010 ± 0.008 ± 0.003
0.325 3.032 −0.017 ± 0.012 ± 0.003 0.004 ± 0.004 ± 0.001
0.374 3.421 −0.006 ± 0.009 ± 0.002 −0.001 ± 0.003 ± 0.001
0.424 3.802 −0.020 ± 0.009 ± 0.003 −0.004 ± 0.003 ± 0.001
0.474 4.169 −0.021 ± 0.010 ± 0.006 0.000 ± 0.003 ± 0.001
0.524 4.514 0.002 ± 0.012 ± 0.002 0.000 ± 0.004 ± 0.001
0.573 4.848 0.003 ± 0.015 ± 0.003 0.003 ± 0.004 ± 0.001

A detailed discussion of the radiative corrections may be found in 
Ref. [45].

Polarized 3He targets are commonly used as effective polar-
ized neutron targets because, in the dominant S state, the spin of 
the 3He nucleus is carried by the neutron. To extract the neutron 
asymmetry An

1 from the measured asymmetry A
3He
1 on the nuclear 

target, we used a model for the 3He wavefunction incorporating 
S , S ′ , and D states as well as a pre-existing �(1232) component 
[46]:

An
1 =

F
3He
2

[
A

3He
1 − 2

F p
2

F
3He
2

P p Ap
1

(
1 − 0.014

2P p

)]

Pn F n
2

(
1 + 0.056

Pn

) . (4)

The effective proton and neutron polarizations were taken as 
P p = −0.028+0.009

−0.004 and Pn = 0.860+0.036
−0.020 [47]. F2 was parameter-

ized with F1F209 [35] for 3He and with CJ12 [48] for the neu-
tron and proton, while Ap

1 was modeled with a Q 2-independent, 
three-parameter fit to world data [1,2,34,49–53] on proton targets. 
Eq. (4) was applied separately to the data from the two beam 
energies, at the average measured Q 2 values of 2.59 (GeV/c)2

(E = 4.7 GeV) and 3.67 (GeV/c)2 (E = 5.9 GeV). The resulting neu-
tron asymmetry, the statistics-weighted average of the asymme-
tries measured at the two beam energies, is given as a function 
of x in Fig. 2 and Table 2 and corresponds to an average Q 2

value of 3.078 (GeV/c)2. Table 2 also gives our results for the 
structure-function ratio gn

1/F n
1 = [y(1 +εR)]/[(1 −ε)(2 − y)] · [A‖ +

tan(θ/2)A⊥], where y = (E − E ′)/E in the laboratory frame. This 
ratio was extracted from our 3He data in the same way as An

1.
Combining the neutron g1/F1 data with measurements on the 

proton allows a flavor decomposition to separate the polarized-
to-unpolarized-PDF ratios for up and down quarks, giving greater 
sensitivity than An

1 to the differences between various theoretical 
models. When the strangeness content of the nucleon is neglected, 
these ratios can be extracted at leading order as

�u + �ū

u + ū
= 4

15

g p
1

F p
1

(
4 + Rdu

)
− 1

15

gn
1

F n
1

(
1 + 4Rdu

)
(5)

�d + �d̄

d + d̄
= −1

15

g p
1

F p
1

(
1 + 4

Rdu

)
+ 4

15

gn
1

F n
1

(
4 + 1

Rdu

)
(6)

where Rdu ≡ (d + d̄)/(u + ū) and is taken from the CJ12 parame-
terization [48]; g p

1 /F p
1 was modeled with world data [34,51,52,57,

59] in the same way as Ap
1 . Measurements of g p

1 alone were not 
included in the fit so as not to introduce a model dependence in 
the choice of F1. An uncertainty of < 0.009 for (�u +�ū)/(u + ū)

and < 0.02 for (�d + �d̄)/(d + d̄) was attributed to the neglect 
of the strangeness contribution. Other systematic uncertainty con-
tributions were determined from the change in the result from 

Fig. 2. (Color online.) Our An
1 results in the DIS regime (filled circles), compared 

with world An
1 data extracted using 3He targets (SLAC E142 [54], SLAC E154 [55], 

Jefferson Lab E99-117 [56], and HERMES [57]) and using combined deuteron and 
proton data (SLAC E143 [51]). Statistical uncertainties are shown as error bars; our 
systematic uncertainties are given by the band below the data. Selected model pre-
dictions are also shown: RCQM [11], statistical [18,58], NJL [19], and two DSE-based 
approaches [20] (crosses at x = 1). Quark OAM is assumed to be absent in the LSS 
(BBS) parameterization [14], but is explicitly allowed in the Avakian et al. parame-
terization [15].

Table 2
An

1 and gn
1/F n

1 results.

〈x〉 An
1 ± stat ± syst gn

1/F n
1 ± stat ± syst

0.277 0.043 ± 0.060 ± 0.022 0.044 ± 0.058 ± 0.012
0.325 −0.004 ± 0.035 ± 0.009 −0.002 ± 0.033 ± 0.009
0.374 0.078 ± 0.029 ± 0.012 0.053 ± 0.028 ± 0.010
0.424 −0.055 ± 0.032 ± 0.014 −0.060 ± 0.030 ± 0.012
0.474 −0.044 ± 0.040 ± 0.016 −0.053 ± 0.037 ± 0.015
0.548 0.118 ± 0.072 ± 0.021 0.110 ± 0.067 ± 0.019

varying each input within its uncertainty. Our results are given 
in Table 3, and plotted in Fig. 3 along with previous world DIS 
data and selected model predictions and parameterizations. The 
(�u + �ū)/(u + ū) results, shown here for reference, are domi-
nated by proton measurements. The semi-inclusive DIS ratios from 
HERMES [60] and COMPASS [61] are constructed from the pub-
lished polarized PDFs, using the same unpolarized PDF parameter-
izations that were applied in the original analyses: CTEQ5L [62] in 
the case of the HERMES data, and MRST 2006 [63] for the COM-
PASS data. The uncertainties are therefore slightly larger than could 
be achieved from the raw data.

Two dedicated DIS An
1 experiments [64,65] have been approved 

to run at Jefferson Lab in the coming years; one will use an 
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Table 3
(�u + �ū)/(u + ū) and (�d + �d̄)/(d + d̄) results. The reported systematic uncer-
tainties include those from all sources, including the fit to world proton data, the 
parameterization of Rdu , and neglect of the strangeness contribution.

〈x〉 �u+�ū
u+ū ± δstat ± δsyst

�d+�d̄
d+d̄

± δstat ± δsyst

0.277 0.423 ± 0.011 ± 0.031 −0.160 ± 0.094 ± 0.028
0.325 0.484 ± 0.006 ± 0.037 −0.283 ± 0.055 ± 0.032
0.374 0.515 ± 0.005 ± 0.044 −0.241 ± 0.048 ± 0.039
0.424 0.569 ± 0.005 ± 0.051 −0.499 ± 0.054 ± 0.051
0.474 0.595 ± 0.006 ± 0.063 −0.559 ± 0.070 ± 0.070
0.548 0.598 ± 0.009 ± 0.077 −0.356 ± 0.014 ± 0.097

Fig. 3. (Color online.) Our results (filled circles) for (�u + �ū)/(u + ū) (top, domi-
nated by proton measurements and shown here for reference) and (�d + �d̄)/(d +
d̄) (bottom). The error bars on our results reflect the statistical uncertainties. The 
upper bands show the total systematic uncertainties on our results, while the 
lower bands represent the portions of those uncertainties that arise from neglect-
ing the strange-quark contribution. Also plotted are inclusive DIS data (Jefferson 
Lab E99117 [47] and Jefferson Lab CLAS EG1b [34]), semi-inclusive DIS data (HER-
MES [60] and COMPASS [61], reconstructed as described in the text), and models 
and parameterizations as described in Fig. 2. The recent pQCD parameterizations 
from the JAM Collaboration were performed at Q 2 ≈ 1 (GeV/c)2 and are not plot-
ted with our higher-Q 2 data.

open-geometry spectrometer [64]. These experiments will push to 
higher x, achieving greater sensitivity via improved targets and 
particle identification, and will test the assumption of Q 2 inde-
pendence over a broad kinematic range; such tests are necessary 
as An

1 measurements begin to probe quark OAM and higher-twist 
effects.

Our results for An
1 and (�d + �d̄)/(d + d̄) support previous 

measurements in the range 0.277 ≤ x ≤ 0.548. The An
1 data are 

consistent with a zero crossing between x = 0.4 and x = 0.55, as 
reported by the Jefferson Lab E99-117 measurement [56]. Our data 
disfavor the original LSS (BBS) pQCD parameterization [14], while 
they are consistent with an extension that explicitly includes quark 
OAM [15]. Our leading-order extraction of (�d +�d̄)/(d + d̄) shows 
no evidence of a transition to a positive slope, as is eventually re-
quired by hadron helicity conservation, in the x range probed. It is 

not yet possible to definitively distinguish between modern mod-
els – pQCD, statistical, NJL, or DSE – in the world data to date, 
but our data points will help constrain further work in the high-x
regime. Our results were obtained with a new measurement tech-
nique, relying on an open-geometry spectrometer deployed at a 
large scattering angle with a gas Čerenkov detector to limit the 
charged-pion background.

Our data, in combination with previous measurements, suggest 
that additional neutron DIS measurements in the region 0.5 ≤ x ≤
0.8 will be of particular interest in establishing the high-x behav-
ior of the nucleon spin structure; in addition, an extension of the 
DSE-based approach [20] to x < 1 would be valuable. It is our hope 
that our data will inspire further theoretical work in the high-x DIS 
region.
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