
 Journal of Informatics
 Electrical and Electronics Engineering, 2023,
 Vol. 04, Iss. 03, S. No. 075, pp. 1-13
 ISSN (Online): 2582-7006

ISSN (Online) : 2582-7006

1
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

Optical Character Recognition
Development Using Python

Prakhar Sisodia1, Syed Wajahat Abbas Rizvi2

1,2Department of Computer Science and Engineering, Amity School of Engineering and Technology Lucknow, Amity Univer-
sity Uttar Pradesh, India

How to cite this paper: P. Sisodia
and S. W. A. Rizvi, “Optical Charac-
ter Recognition Development Using
Python,” Journal of Informatics
Electrical and Electronics Engineer-
ing (JIEEE), Vol. 04, Iss. 03, S No.
075, pp. 1–13, 2023.

https://doi.org/10.54060/jieee.202
3.75

Received: 01/04/2023
Accepted: 01/06/2023
Online First: 08/08/2023
Published: 25/11/2023

Copyright © 2023 The Author(s).
This work is licensed under the
Creative Commons Attribution
International License (CC BY 4.0).
http://creativecommons.org/licens
es/by/4.0/

 Abstract

Optical Character Recognition (OCR) is a technology used to convert scanned or digital
images into editable text. OCR has become an increasingly important tool in the fields
of data extraction and information retrieval, allowing for quick and efficient conver-
sion of scanned documents and digital images into text. In this paper, we explore the
use of the Python programming language to implement OCR algorithms and systems.
We provide a comprehensive overview of existing Python libraries and packages used
for OCR, including Tesseract and pytesseract, along with their strengths and limita-
tions. We also examine the different OCR approaches and techniques, including tem-
plate matching, feature extraction, and encrypting/decrypting the OCR parsed files
and discuss their implementation in Python. Finally, we present a case study of a sim-
ple OCR system built using Python and evaluate its performance on a sample dataset.
The results of our study highlight the potential of Python for OCR implementation and
demonstrate its feasibility for real-world applications.

Keywords

pytesseract, flask, opencv-python, pypdf, pdfplumber, pymupdf, scikit-learn scipy mat-
plotlib, youtbe-dl and shutil

1. Introduction

Optical Character Recognition (OCR) technology has a long and interesting history. The first OCR systems were developed in

the early 1900s, but they were limited in their ability to recognize text accurately. In the 1960s, OCR technology began to

evolve rapidly with the advent of computers, leading to the development of more advanced OCR systems. During the 1970s,

1prakhar.sisodia22@gmail.com, 2swarizvi@lko.amity.edu

Open Access

https://doi.org/10.54060/jieee.2023.75
https://doi.org/10.54060/jieee.2023.75
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

P. Sisodia and S. W. A. Rizvi

ISSN (Online) : 2582-7006

2
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

OCR systems became more sophisticated, incorporating features such as document layout analysis and font recognition. In

the 1980s, OCR technology continued to advance, with the development of more advanced algorithms for character recogni-

tion, as well as the introduction of OCR software for personal computers. The 1990s saw the rise of digital imaging and the

widespread adoption of OCR technology in a variety of industries, including government, finance, and healthcare [1-2].

 In recent years, OCR technology has advanced significantly with the advent of deep learning and machine learning algo-

rithms. Today, OCR systems can recognize text in a variety of languages and scripts and are used in a wide range of ap- plica-

tions, from document scanning and archiving to data extraction and information retrieval. The development development of

OCR technology is expected to further improve its accuracy and efficiency, making it an increasingly important tool for busi-

nesses and individuals alike [2-6].

 Some recent developments in the field of OCR includes Improved Text Recognition in Complex Scenes, Handwritten Text

Recognition, Integration with Augmented Reality, Integration with Internet of Things (IoT). The section of this paper is orga-

nized as follows, and part 2 contains related works on optical character recognition his- tory and its presence in python pro-

gramming language. In section 3, the methodology adopted with driving code for the OCR process, section 4 reviews the

mechanism of OCR engine along with future scope of OCR development using py- thon. Section 5 concludes the paper with

future research.

2. Problem Analysis

OCR (Optical Character Recognition) is a technology that allows the recognition of text within digital images or scanned

documents, and the conversion of that text into machine-readable characters. While OCR technology has made significant

advancements in recent years, there are still several common problems associated with its use, including: Quality of the

Source Image: The quality of the source image is critical for accurate OCR. Poor quality images with low resolution, blurred

text, or skewing can make it difficult for OCR software to recognize characters correctly. Character Recognition Errors: OCR

technology can sometimes misinterpret characters, leading to errors in the output. For example, similar looking characters

such as 'l' and '1' or 'O' and '0' can be easily misinterpreted [1, 8-10].

 Formatting Issues: OCR software can struggle with formatting issues, such as columns, tables, and font styles, which can

make it difficult to accurately recognize and convert text language and Character Set Support: OCR software may not support

all languages and character sets, which can result in inaccurate recognition of characters or an inability to recognize them at

all.

 Handwriting Recognition: OCR technology struggles with handwritten text recognition. Even with the best OCR software,

it's challenging to recognize handwriting with high accuracy. Noise and Distortion: Noise and distortion in the source im- age,

such as smudges, stains, and creases, can cause OCR technology to misinterpret characters or fail to recognize them at all.

Overall, OCR technology has made significant advancements in recent years, but there are still several challenges that need

to be addressed to improve its accuracy and reliability [4].

3. Literature Review

Optical Character Recognition (OCR) using Python provides an overview of the various Python libraries and packages availa-

ble for OCR, as well as the current state of the art in OCR using Python. One of the most widely used OCR libraries in Python is

Tesseract, which is an open-source OCR engine developed by Google. Tesseract provides a high level of accuracy and sup-

ports a variety of languages and scripts, making it a popular choice for OCR applications. The Python binding for Tesseract,

pytesseract, provides a simple interface for integrating Tesseract into Python applications. Another popular OCR library in

Python is OpenCV, which is an open-source computer vision library. OpenCV provides a range of image processing and com-

 P. Sisodia and S. W. A. Rizvi

ISSN (Online) : 2582-7006

3
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

puter vision algorithms, including object detection and segmentation, which can be used to improve the accuracy of OCR.

The integration of OpenCV with Tesseract or pytesseract provides a powerful tool for OCR applications. Other OCR libraries in

Python include OCRopus, a Python-based OCR engine developed by Google, and pyOCR, a Python wrapper for the Tesseract

OCR engine [9-14]. These libraries provide alternative options for OCR implementation in Python and offer different levels of

functionality and accuracy. In recent years, there has been growing interest in the use of deep learning algorithms for OCR.

Python provides a number of deep learning libraries, such as TensorFlow and PyTorch, which can be used to build OCR sys-

tems. These libraries allow for the training of deep learning models for OCR and can be used to improve the accuracy and

efficiency of OCR systems. Overall, the literature survey highlights the versatility of Python for OCR implementation, with a

range of libraries and packages available for OCR, including Tesseract and OpenCV, as well as deep learning libraries such as

TensorFlow and PyTorch. Python provides a simple and flexible platform for OCR implementation, making it an attractive

option for OCR applications in a variety of domains.

4. Aims and Objectives

Optical Character Recognition (OCR) using Python provides an overview of the various Python libraries and packages availa-

ble for OCR, as well as the current state of the art in OCR using Python. One of the most widely used OCR libraries in Python is

Tesseract, which is an open-source OCR engine developed by Google. Tesseract provides a high level of ac- curacy and sup-

ports a variety of languages and scripts, making it a popular choice for OCR applications. The Python binding for Tesseract,

pytesseract, provides a simple interface for integrating Tesseract into Python applications. Another popular OCR library in

Python is OpenCV, which is an open-source computer vision library. OpenCV provides a range of image processing and com-

puter vision algorithms, including object detection and segmentation, which can be used to improve the accuracy of OCR.

The integration of OpenCV with Tesseract or pytesseract provides a powerful tool for OCR applications. Other OCR libraries in

Python include OCRopus, a Python-based OCR engine developed by Google, and pyOCR, a Python wrapper for the Tesseract

OCR engine. These libraries provide alternative options for OCR implementation in Python and offer different levels of func-

tionality and accuracy. In recent years, there has been growing interest in the use of deep learning algorithms for OCR.

Figure 1. Optical Character Recognition

 Python provides a few deep learning libraries, such as TensorFlow and PyTorch, which can be used to build OCR systems.

These libraries allow for the training of deep learning models for OCR and can be used to improve the accuracy and efficiency

of OCR systems. Overall, the literature survey highlights the versatility of Python for OCR implementation, with a range of

libraries and packages available for OCR, including Tesseract and OpenCV, as well as deep learning libraries such as Tensor-

Flow and PyTorch. Python provides a simple and flexible platform for OCR implementation, making it an attractive option for

P. Sisodia and S. W. A. Rizvi

ISSN (Online) : 2582-7006

4
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

OCR applications in a variety of domains.

 Overall, the main aim and objectives of OCR technology are to automate the recognition and conversion of text-based da-

ta, improving the efficiency, accuracy, and accessibility of text-based information. OCR technology has made significant ad-

vancements in recent years, but there are still several challenges that need to be addressed to improve its accuracy and reli-

ability.

5. Methodology Adopted

The following (packages/modules) would need to be installed in order to build the OCR Application successfully and achieve

the desired results from each of the added functionalities. These include Apache Tika, Requests, Warnings, Pytesseract, PIL,

OS, along with I/O, flask, opencvpython, pypdf, pdfplumber, pymupdf, scikit-learn scipy matplotlib, youtube_dl and shutil

too. Where necessary, we will import them and use them appropriately. Apache Tika is a library that is used to identify report

types and extract content from various document designs. Tika uses various record parsers that are already in use as well as

archive-type information discovery techniques to locate and segregate content inside. With the help of Tika, one may devel-

op a general-purpose kind finder and content extractor to partially remove organized text and metadata from a variety of

records, including calculation sheets, text reports, photos, PDFs, and even setups for visual and aural information. Tika pro-

vides a single traditional programming interface for parsing various record designs. For each archive format, specific parser

libraries already exist. This vast array of parser libraries is encapsulated by a single point of contact known as the Parser in-

terface.

 Before starting for approach, we will use warnings module of python again, Warning - is not the same as mistake in a pro-

gram. If a mistake occurs, the Python application terminates immediately. It isn't deadly to Caution then again. Despite

showing a specified message, the programme continues. Warnings are issued to caution the patron of a particular circum-

stances which aren't precisely exemptions. Regularly A warning appears on the off chance that A warning appears utilization

of programming component such as /capability/class and so forth is found. is an OCR component of python. In other words, it

will recognize and "read" the text included in the images. The Tesseract-OCR engine from Google is covered by Py-

thon-tesseract. It can read all image formats supported by the Cushion and Leptonic imaging libraries, including jpeg, png, gif,

bmp, spat, and others, making it useful as a standalone conjuring con- tent to tesseract. Additionally, if used as content, Py-

thon-tesseract will print the perceived text rather than writing it to a document. The PIL library is an open-source library for

handling and transforming image files in Python. The OS library allows us to interact with the system’s operating system files

to get the job done without OS having to interfere with the processes of the working code to give the desired results. The

Python’s io module helps to deal with document related information and result activities. Pypdf is a python open-source pdf

library which allows every operation associated to a pdf done by using its methods/functions present inside the library.

5.1. Working

Figure 2. Importing of required components

 P. Sisodia and S. W. A. Rizvi

ISSN (Online) : 2582-7006

5
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

This code imports the Tika parser module, the requests library, and the Tika library itself. The Tika library provides a toolkit

for detecting and extracting metadata and text content from various types of files, including PDFs, Microsoft Office docu-

ments, and other popular formats. The parser module within Tika provides a simple interface for using Tika to parse files and

extract their content. The requests library is a popular Python library for making HTTP requests, including downloading files

from the internet. While it is not strictly necessary for using Tika, it can be useful for downloading files to parse with Tika.

Overall, this code sets up the necessary libraries to use Tika for parsing files, and it also provides a way to download files from

the internet if needed.

Access to Files

Different Ways to access the file:

Figure 3. Ways to access filetypes.

The first code snippet shows how to download a file from the internet using the requests library, and then pass its contents

to the Tika parser to extract text. You will need to replace "the url to your file" with the actual URL of the file you want to

download. The second code snippet shows how to extract text from a local file on your computer using the Tika parser. You

will need to replace "path to your file" with the actual path to the file you want to parse. In both cases, the result of the

parsing operation will be stored in the "results" variable as a dictionary containing various metadata about the file, as well as

the extracted text content.

Figure 4. Definition of helping functions

These are two functions that use the Tika parser module to extract text from files, either from a web URL or from a local file

path. The "get_data_from_web" function takes a URL as input, downloads the file contents using the requests library, passes

them to the Tika parser using the "from_buffer" method, and returns the results as a dictionary. The

P. Sisodia and S. W. A. Rizvi

ISSN (Online) : 2582-7006

6
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

"get_data_from_given_path" function takes a file path as input, uses the Tika parser to extract text from the file using the

"from_file" method, and returns the results as a dictionary. Both functions return the results as a dictionary containing vari-

ous metadata about the file, as well as the extracted text content.

5.2. PDF document

5.2.1. From the web

Figure 5. Pseudo code for the web PDF

Here we have defined the "get_data_from_web" function as shown in the previous message, this code downloads the PDF

file located at "pdf_url", extracts its text content using the Tika parser, and then prints the text content to the console.

The "results" variable should contain a dictionary with metadata about the file and the extracted text content. You can access

the extracted text content using the "content" key of the dictionary, and then strip any leading or trailing whitespace using

the "strip" method before printing it to the console.The Tika parser may take some time to process the PDF file, especially if

it is large or has complex formatting. The resulting text may also contain errors or formatting issues depending on the quality

of the original PDF file.

5.2.2. From the local destination

Figure 6. Pseudo code for the local PDF

For instance, if we have a dedicated file path in our system then "get_data_from_given_path" function as shown in the pre-

vious message, this code extracts the text content from the PDF file located at "pdf_file_path" using the Tika parser, and then

prints the text content to the console. The "results" variable should contain a dictionary with metadata about the file and the

extracted text content. You can access the extracted text content using the "content" key of the dictionary, and then strip

any leading or trailing whitespace using the "strip" method before printing it to the console. The Tika parser may take some

time to process the PDF file, especially if it is large or has complex formatting. The resulting text may also contain errors or

formatting issues depending on the quality of the original PDF file.

5.3. DOCX document

Figure 7. Pseudo code for docx document

 P. Sisodia and S. W. A. Rizvi

ISSN (Online) : 2582-7006

7
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

Assuming that we have docx files then "get_data_from_given_path" function as shown in a previous message, this code ex-

tracts the text content from the Microsoft Word document located at "docx_file_path" using the Tika parser, and then prints

the text content to the console. The "results" variable should contain a dictionary with metadata about the file and the ex-

tracted text content. You can access the extracted text content using the "content" key of the dictionary, and then strip any

leading or trailing whitespace using the "strip" method before printing it to the console. The Tika parser may take some time

to process the Word document, especially if it is large or has complex formatting. The resulting text may also contain errors

or formatting issues depending on the quality of the original Word document.

5.4. Image document

5.4.1. From the local destination

Figure 8. Pseudo code for the local image

Here is a Python class called "OCR" that uses the pytesseract library to perform OCR (optical character recognition) on imag-

es. The class has an "extract" method that takes a filename as input, sets the path to the Tesseract OCR executable using the

"tesseract_cmd" variable, and then uses the "image_to_string" method from the pytesseract library to extract text from the

image. The "image_to_string" method performs OCR on the image and returns the extracted text as a string. This text is then

returned by the "extract" method. The class also has an "init" method that sets the path to the Tesseract OCR executable.

Note that this path may need to be modified depending on the location of the Tesseract OCR executable on your system. In

the last two lines of the code, an instance of the OCR class is created, and the "extract" method is called on an image file

named "ivory_coast.png". The extracted text is then printed to the console. The accuracy of the OCR process will depend on

the quality of the input image, the resolution of the image, and the complexity of the text being recognized. The pytesseract

library may also require additional configuration or training to recognize certain types of text or fonts.

5.4.2. From the Web

Figure 9. Pseudo code for the web image

P. Sisodia and S. W. A. Rizvi

ISSN (Online) : 2582-7006

8
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

This code performs OCR on an image that is located at "img_url" on the internet using the pytesseract library. The "requests"

library is used to download the image from the internet, and the "PIL" (Python Imaging Library) is used to open the down-

loaded image. The "image_to_string" method from the pytesseract library is used to extract text from the opened image, and

the resulting text is stored in the "text" variable. Finally, the extracted text is printed to the console. The accuracy of the OCR

process will depend on the quality of the input image, the resolution of the image, and the complexity of the text being rec-

ognized. The pytesseract library may also require additional configuration or training to recognize certain types of text or

fonts.

5.5. Extraction of Contents from PDF

5.5.1. Extracting text from image in PDF

Figure 10. Pseudo code for extracting text from image

Here, the code is attempting to use the "pypdf" library to read a PDF file named "JIEEE Paper Template-OTH.pdf" and extract

text and images from the file. The "PdfReader" method from the "pypdf" library is used to read the PDF file, and the "pages"

attribute is used to access the individual pages of the PDF. The code then loops through all the pages of the PDF and prints

the extracted text for each page to the console using the "extract_text()" method of the "page" object. Next, the code at-

tempts to extract images from the PDF using the "images" attribute of the "page" object. For each image in the page, the

code writes the image data to a file with the same name as the image using a "with" statement and the "write" method of

the file object. However, there is one thing to note because the "pypdf" library has been deprecated and is no longer main-

tained. Instead, we have used the PyPDF2 or PyMuPDF library to read and manipulate PDF files in Python.

5.5.2. Extracting tables from PDF

Figure 11. Pseudo code for extracting tables from PDF

This code uses the "pdfplumber" library to open and read a PDF file named "JIEEE Paper Template-OTH.pdf". The "pdfplumb-

 P. Sisodia and S. W. A. Rizvi

ISSN (Online) : 2582-7006

9
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

er.open()" method is used to open the PDF file, and the "with" statement is used to ensure that the PDF file is properly closed

after the file has been processed. The code then loops through all the pages of the PDF using the "pages" attribute of the PDF

object. For each page, the "extract_tables()" method is used to extract any tables present on the page. The resulting tables

are printed to the console using the "print()" statement. Here, the "extract_tables()" method can only extract tables that are

present in the PDF file as separate table objects. If a table is embedded in an image or is part of a larger block of text, it may

not be possible to extract the table using this method.

5.5.3. Extracting links from PDF

Figure 12. Pseudo code for extracting links from PDF

This code here is using the "fitz" library to open and read a PDF file named "JIEEE Paper Template-OTH.pdf".

The "fitz.open()" method is used to open the PDF file, and the resulting object is assigned to the variable "doc". The code

then loops through all the pages of the PDF using the "range()" function and the "doc.page_count" attribute. For each page,

the "load_page()" method is used to load the page into memory, and the "get_pixmap()" method is used to convert the page

into a pixmap image. The resulting image is saved as a PNG file using the "save()" method. The code then loops through all

the pages of the PDF again and uses the "get_links()" method to extract any hyperlinks present on the page. The resulting

hyperlinks are printed to the console using the "print()" statement. One thing to note here is this code only extracts hyper-

links that are explicitly defined as such in the PDF file. If a hyperlink is embedded in an image or is part of a larger block of

text, it may not be possible to extract the hyperlink using this method.

5.6. Extraction of Transcripts from videos

Figure 13. Pseudo code for extracting transcripts

P. Sisodia and S. W. A. Rizvi

ISSN (Online) : 2582-7006

10
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

The code reads the transcript of a YouTube video using the YouTubeTranscriptApi library and stores the text in a list outls.

Then, it uses the CountVectorizer class from the sklearn.feature_extraction.text module to create a document-term matrix of

the transcript text. The CountVectorizer class is used to preprocess the text data, by tokenizing the text and converting it into

a matrix of word frequencies. The fit() method of the vectorizer object is called on the outls list to learn the vocabulary and

create the document-term matrix. Finally, the vocabulary of the document-term matrix is printed. The CountVectorizer class

provides many options for preprocessing text data, such as stop word removal, stemming, and n-gram generation. These

options can be specified using the constructor arguments or by calling the appropriate methods on the vectorizer object.

5.7. Extraction of text from videos

Figure 14. Pseudo code for extracting video link from its URL

The code here is using the yt-dlp library to download a video from the given YouTube URL in the MP4 format. The options for

the yt-dlp downloader are specified in the ydl_opts dictionary, which includes the format key set to "mp4". Then, an instance

of the YoutubeDL class is created with the ydl_opts dictionary as an argument. Finally, the download() method of this object

is called with a list of URLs to download. In this case, the list contains only one URL, which is the YouTube video with the ID

ktBoZ927Uow. When executed, the code will download the video to the current working directory.

Figure 15(a). Pseudo code for extracting text from videos

 P. Sisodia and S. W. A. Rizvi

ISSN (Online) : 2582-7006

11
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

Figure 15(b). Pseudo code for extracting text from videos

The code mentioned above is a script that extracts frames from a video and saves them as PNG images, crops the images to

remove empty spaces and saves them in a new folder, and then uses pytesseract to extract text from each image and save it

to a text file. Here's a step-by-step breakdown of what the script is doing:

i. Importing necessary modules: The script first imports several Python modules including PIL (Python Imaging Library),

pytesseract, os, cv2 (OpenCV), and shutil.

ii. Setting up file paths: The script sets up three file paths: one for the source video (src_vid), one for the extracted PNG

frames (image_frames), and two subfolders within the extracted frames folder (trimmed and untrimmed).

iii. Defining functions: The script defines several functions to carry out specific tasks, including:

• files(): This function sets up the image_frames folder and subfolders and returns the source video as a Vide-

oCapture object.

• process(): This function extracts frames from the source video using the VideoCapture object, saves every 875th

frame as a PNG in the untrimmed folder, and releases the VideoCapture object.

• get_text(): This function uses pytesseract to extract text from each image in the untrimmed folder and saves it

to a text file called output.txt.

• crop_images(): This function opens each image in the untrimmed folder, crops out any empty space using PIL,

and saves the cropped image in the trimmed folder with the same name as the original image.

iv. Main driver code: The script calls the files() function to set up the image_frames folder and get the source video,

then calls the process() function to extract frames from the video and save them as PNGs, the get_text() function to

extract text from the images and save it to a text file, and the crop_images() function to crop the images and save

them in the trimmed folder.

The main mechanism behind the proposed OCR Application involves the following steps:

• Pre-processing: The input image is cleaned and enhanced to improve the recognition process. This may involve re-

moving noise, correcting perspective, and adjusting the brightness and contrast of the image.

• Segmentation: The image is divided into smaller segments, such as lines, words, or individual characters. This is done

to make the recognition process more manageable.

• Feature Extraction: Features are extracted from each segmented image. These features are unique patterns and

characteristics of the characters that help to distinguish one character from another. This is done by computing

things like the shape, size, and orientation of the characters.

Classification: The extracted features are then compared to a database of known characters. Based on the similarity be-

tween the features of the segmented characters and the reference characters, the system assigns a label to each character.

P. Sisodia and S. W. A. Rizvi

ISSN (Online) : 2582-7006

12
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

Post-processing: The recognized characters are then assembled into words and lines, and the final output is produced. This

may involve checking for spelling errors, correcting errors, and formatting the output.

6. Conclusion

Optical Character Recognition has been around for many years and has become increasingly important as the amount of dig-

ital information has grown. The future of OCR development using Python looks very promising as Python is a popular and

widely used programming language for various applications, including OCR. Here are a few areas where OCR development

using Python is expected to grow in the future: Improved Accuracy: With advancements in deep learning and computer vi-

sion, OCR algorithms will continue to improve their accuracy in recognizing text in images and PDFs, leading to even better

performance. Real-Time OCR: As the demand for real-time processing of images and videos increases, OCR systems will need

to adapt to real-time processing capabilities. Python's efficient programming and ability to handle real-time data processing

makes it a perfect choice for developing real-time OCR systems. Multilingual OCR: As the world becomes more connected

and globalized, the demand for OCR systems that can handle multiple languages will continue to grow. Python has strong

support for processing multiple languages, and this makes it an ideal platform for multilingual OCR development. Handwrit-

ing Recognition: With the increasing use of digital devices for notetaking, the demand for OCR systems that can recognize

handwritten text will continue to grow.

 Python's ability to integrate with machine learning libraries like TensorFlow and PyTorch makes it a great choice for devel-

oping handwriting recognition systems. Integration with Other Technologies: OCR technology will continue to be integrated

with other technologies like augmented reality, virtual reality, and the Internet of Things (IoT) to create new and innovative

applications. Python's ability to integrate with various technologies and its popularity as a programming language make it an

ideal choice for developing these kinds of applications.

 The topic of OCR (Optical Character Recognition) technology is one that is fast developing, and numerous ongoing research

projects are working to increase the accuracy, speed, and adaptability of OCR. Here are some of the most recent OCR re-

search trends: Deep learning-based OCR: Systems that can accurately recognize characters and words are being developed

using deep learning algorithms like CNNs and RNNs. To enhance OCR performance, researchers are experimenting with new

deep learning architectures, training methodologies, and data augmentation strategies. Multimodal OCR: To increase OCR

accuracy and make input methods more adaptable, multimodal OCR systems combine image recognition with speech recog-

nition or natural language processing. To improve OCR performance, researchers are investigating new multimodal OCR de-

signs, such as attention-based models. OCR systems that can recognize and translate text from a variety of languages are

becoming more and more crucial in today's globalized society. Using methods like language modelling, cross-lingual transfer

learning, and neural machine translation, researchers are creating multilingual OCR systems. OCR for low-resource languages:

OCR systems for low-resource languages encounter a number of difficulties, including a lack of standardization and a lack of

training data. Researchers are investigating techniques, such as transfer learning and unsupervised learning, to adapt current

OCR systems to low-resource languages. OCR systems for historical documents confront a number of difficulties, including

deterioration, noise, and differences in writing styles. The accuracy of OCR on historical documents is being improved by re-

searchers using techniques like picture enhancement, character identification based on context, and crowdsourcing. In gen-

eral, ongoing OCR research strives to increase OCR speed, accuracy, and adaptability as well as make OCR available for a

wider variety of applications and languages. OCR technology is expected to become more crucial as tasks related to digitaliza-

tion, automation, and data analysis progress.

 With this work, we have cultivated the application development project (OCR) utilizing python. We utilized the famous

libraries that are used to extract text data from images, docs, website’s URLs etc. We utilized python libraries like: Apache

 P. Sisodia and S. W. A. Rizvi

ISSN (Online) : 2582-7006

13
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

tika, requests, warnings, pytesseract, PIL, os, io, pypdf, pdfplumber, flask, open-cv, pymupdf, scikit-learn scipy matplotlib,

youtube-dl and shutil too. In this paper, we introduced Python as a practical language for instruction and practical program-

ming. We also observed the Python-introduced characteristics, features, and types of programming assistance. In agreement

with these qualities, we discovered Python to be a quick, amazing, versatile, basic, open-source language that maintains nu-

merous advancements. Then, various Python projects of different types were bought. The report has similarly examined how

a significant section of Python is being used by various associations. According to facts gathered from well-known and relia-

ble journals and locations, the paper has discussed the reasons why Python is the fastest-creating programming language.

Acknowledgments

The satisfaction that accompanies the successful completion of any task would be incomplete without the mention of people

whose ceaseless cooperation made it possible, whose constant guidance and encouragement crown all efforts with success.

I would like to thank Prof. (Dr.) Deepak Arora, Head of Department-CSE & IT, and Amity University for giving me the oppor-

tunity to undertake this work. I would also like to thank my faculty guide Dr. Syed Wajahat Abbas Rizvi who is the biggest

driving force behind my successful completion of the work. He has always been there to solve any query of mine and guided

me in the right direction regarding the work. Without his help and inspiration, I would not have been able to complete the

work. Also, I would like to thank my batch mates who guided me, helped me and gave me ideas and motivation at each and

every step.

References

[1]. A. L. Reibman and M. Veeraraghawan, “Reliability Modeling: an overview for system design,” IEEE Computer Society,
vol.24, no.4, pp.49-57, 1991.

[2]. J. L. Lions, “ARIANE 5 Flight - 501 Failures Report,” 2010.

[3]. M. R. Lyu, “Handbook of Software Reliability Engineering,” IEEE Computer Society Press Los Alamitos California, ISBN:
978-0070394001, pp.1-850, 1996.

[4]. S. R. Dalal, M. R. Lyu and C.L. Mallows, “Software Reliability,” John Wiley & Sons, 2014.

[5]. R. A. Khan, K. Mustafa and S. I. Ahson, “Operation Profile-a key Factor for Reliability Estimation,” University Press Gau-
tam Das and V. P. Gulati (Eds) CIT, vol.204, pp.347-354, 2004.

[6]. E. E. Ogheneovo, “Software Dysfunction: Why Do Software Fail?” Journal of Computer and Communications, vol.2,
pp.25-35, 2014.

[7]. S. W. A. Rizvi, V. K. Singh and R. A. Khan, “Revisiting Software Reliability Engineering with Fuzzy Techniques, Proc. of the
3rd IEEE Int. Conf. on Computing for Sustainable Global Development. Published by IEEE Xplore, New Delhi, India, 2016.

[8]. H. B. Yadav and D. K. Yadav, “Early Software Reliability Analysis using Reliability Relevant Software Metrics,” Interna-
tional Journal of System Assurance Engineering and Management, pp.1-12, 2014.

[9]. S. W. A. Rizvi and R. A. Khan, “Maintainability Estimation Model for Object-Oriented Software in Design Phase
(MEMOOD), Journal of Computing, vol.2, no.4, pp.26-32, 2010.

[10]. S. W. A. Rizvi and R. A. Khan, “A Critical Review on Software Maintainability Models,” Proceedings of the Conference on
Cutting Edge Computer and Electronics Technologies, pp.144-148, 2009.

[11]. H. Pham, “System Software Reliability,” London: Reliability Engineering Series Springer, 2006.

[12]. A. K. Pandey and N. K. Goyal, “Early Software Reliability Prediction,” Springer India, 2013.

[13]. A. L. Goel, “Software Reliability Models: Assumptions Limitations and Applicability,” IEEE Transaction on Software Engi-
neering, vol.11, no.12, pp.1411-1423, 1985.

[14]. H. B. Yadav and D. K. Yadav, “Early Software Reliability Analysis using Reliability Relevant Software Metrics,” Interna-
tional Journal of System Assurance Engineering and Manage, vol.8, no.4, pp.2097-2108, 2014.

