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ABSTRACT 
 
The discrete wavelet transform (DWT) has been extensively studied and developed in various 
scientific and engineering fields. The multiresolution and local nature of the DWT facilitates 
applications requiring progressiveness and the capture of high-frequency details. However, 
the intensive computation of DWT caused by multilevel filtering/down-sampling will become 
a significant bottleneck in real-time applications when the data size is large. This paper 
presents a SIMD-based parallel processing framework as a commodity solution to this 
problem, that is based on the consumer-level programmable graphic processing unit (GPU) 
on personal computers. Simulation tests show that, in contrast to those CPU-based solutions 
for DWT, this GPU-based parallel processing framework can bring a significant performance 
gain on a normal PC without extra cost.  
 
Keywords discrete wavelet transform, filtering, parallel processing, graphic processing unit  
 
 

1     INTRODUCTION 
 

The discrete wavelet transform (DWT) has been extensively applied in engineering, especially in 
image classification, characteristic extraction, image de-noising, and image compression. The main 
reason for DWT’s popularity is the fact that DWT can extract the maximum energy from a signal just 
using several transform coefficients, which is also the reason why DWT was adopted as the core 
engine in JPEG2000 [1], the second generation of the popular JPEG still image encoding standard. 
The traditional DWT employs Filter Bank Scheme (FBS) that is a recursive process that uses high-
pass and low-pass filtering iteratively and inevitably brings intensive computation. To reduce the 
computational size of the DWT, Sweldens proposed an algorithm called Lifting Scheme (LS) that has 
been a great success [2]. In contrast to FBS, LS has two remarkable advantages in actual 
applications: 
 
 1. the filtering series of LS are less than FBS since LS just uses a half of filtering series of FBS; 
 2. LS can be used in Integer Wavelet Transform (IWF), which is of great importance for image 
compression with non-distortion. 
 
Although LS decreases the number of filtering series in the DWT, for high-definition image or video 
with enormous number of pixels, LS still can’t achieve real-time or interactive performance. 
Vishwanath et al. presented a hardware implementation of the DWT that employs VLSI architecture to 
further promote computational efficiency [3]. Unfortunately, the VLSI architecture has proved an 
expensive solution since many more memory units are needed. In recent years, the rapid 
improvement in the performance of PC-grade graphics processing units (GPU), their natural data 
parallelism and improved programmability, have made GPU a competitive platform for computationally 
demanding tasks in a wide variety of application domains. Many researchers and developers have 
become interested in harnessing the power of commodity graphics hardware for general-purpose 
computing, known as General Purpose Graphics Processing Unit (GPGPU). As a powerful and 
inexpensive solution, GPGPU has been applied in the area such as linear algebra, differential 
equation solving, physically based simulation, signal and image processing [4]. The main 
characteristic of GPGPU is its adoption of the data parallel computation that is achieved by the stream 
processing, which was the foundation for GPGPU’s superior computational efficiency over CPU-based 
approach. 
 
In this paper, a Single Instruction Multiple Data (SIMD) based parallel processing framework and its 
corresponding prototype for implementing hardware-accelerated DWT is presented. This prototype 
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makes use of programmability of consumer-level GPU to carry out the DWT on a GPU. We evaluated 
the performance of our proposed prototype by comparing with the results obtained by Wavelet toolbox 
in MATLAB.  

 
The remainder of this paper is organized as follow: Section 2 gives a brief introduction to DWT, 
Section 3 presents the framework and prototype of the new GPU-accelerated 2D DWT technique that 
is developed by employing shading language -- Cg, Section 4 evaluates the performance of the 
proposed prototype with Section 5 concludes and highlights the future works. 
 

2     TWO- DIMENSIONAL DWT 
 
Given a signal s of length N, the 1D-DWT produces a pyramidal decomposition of s which consists of 
log2N levels at most. Level j generates a pair of approximation coefficients cAj  and detail coefficients 
cDj from the approximation band of the previous level j–1, i.e. cAj-1, where cAj is a coarse-grained 
representation of its predecessor cAj-1, and cDj contains the high-frequency details that have been 
removed [5]. So the decomposition of signal s analyzed at level j has the following structure: [cAj, cDj, 
..., cD1]. As shown in Fig.1, this structure contains for j = 3 the terminal nodes of the following tree. 
 
For 1D-DWT, cAj and cDj are produced by convolving cAj-1 with a low-pass filter (denoted by Lo_D) 
and a high-pass filter (denoted by Hi_D) respectively. The detailed procedure of decomposition at 
level j is depicted as Fig.2. 
 
The 2D-DWT is usually obtained by applying a separate 1D transform along the horizontal and vertical 
directions. The most common approach, known as the square decomposition, alternates between 
computations on image rows and columns [6]. This process is applied recursively to the quadrant 
containing the coarse scale approximation in both horizontal and vertical directions. This way, the data 
on which computations are performed is reduced to a quarter in each decomposition step. It is noted 
that there are four coefficients, approximation coefficients cAj, horizontal detail coefficient cHj, vertical 
detail coefficient cVj, and diagonal detail coefficient cDj, are produced in square decomposition at level 
j, which is shown in Fig.3. 
 
The detailed procedure of producing cAj, cHj, cVj, and cVj is shown in Fig.4. Fig.5 shows the 
decomposition tree of 2D-DWT where j = 2. 
 

3     GPU COMPUTING MODEL 
 

In this section, we give a brief review on the GPU architecture and programming model, which outlines 
a high-level description of the traditional rendering pipeline and illustrates how DWT can be mapped to 
the GPU using a stream programming model. 
 
The rendering pipeline of a GPU contains three parts: vertex processing, rasterization, and fragment 
processing. The inputs to this pipeline are vertices from a 3D polygonal mesh together with attached 
information such as their colors and texture coordinates, and the output is a 2D array of pixels to be 
displayed on the screen. 
 
During vertex processing, the geometry engine in the pipeline operates on incoming stream of 
vertices, mainly computing linear transformations, such as translation, rotation and projection of the 
vertices. After perspective transformation, which is the final step of the vertex processing stage, 
rasterization converts geometric data into fragments. Each fragment corresponds to a square pixel in 
the resulting image. These fragments produced by rasterization are written into the frame buffer(color 
buffer). Then in the stage of fragment processing, the color of each fragment is computed using 
texture mapping and other mathematical operations. the output from the fragment processing stage is 
combined with the existing data stored at the associated 2D locations in the frame buffer (color buffer) 
to produce the final colors [7]. 
 
Until only a few years ago, commercial GPUs were implemented using a fixed-function rendering 
pipeline. However, most GPUs today include fully programmable Vertex and Fragment stages. The 
programs that they execute are usually called vertex and fragment programs (or shaders), 
respectively, and can be written using C-like high-level languages such as Cg. This is the feature that 
allows for the implementation of nongraphics applications on the GPUs. In contrast to CPU 
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programming model that is based on instruction, programmable GPU model is based on processing 
data streams [8]. The core of the latter processing style is that the processor is first configured by the 
instructions and then a data stream is processed by a number of depth-parallel units in a pipeline. 
Given sufficient memory bandwidth and multiple processing pipelines, data processing can also be 
parallelized in breadth by distributing the execution among several pipelines. Commodity GPUs adopt 
breadth parallelism using Single Instruction Multiple Data (SIMD) processing units with multiple-
component vectors. Their pipeline arrangements are similar to vector processors with multiple 
pipelines. 
 
As stated in Section 2, the DWT is practically done by an input signal filtering and a down-sampling 
step. The down-sampling step need to locate texture coordinates correctly when issuing texture 
mapping instructions. For this problem, a direct solution is to issue position-dependent down-sampling 
by means of predicated execution and indirect texture lookup with pre-computed texture coordinates.  
Wang et al. adopted this approach in their GPU implementation of the Filter Bank Scheme (FBS) of 
DWT [9]. Besides down-sampling, they also used this approach to implement image edge expansion 
that is essential in the DWT. The shortcoming of this approach is that it does not efficiently exploit all 
the hardware resources available in current GPUs such as the hardware interpolators of texture 
coordinates. Furthermore, predicated execution limits the effective performance of the GPU’s fragment 
programming. Except filtering, modern graphics hardware also supports resampling for image transfer 
operation, which we will utilize for down-sampling in DWT. Thus our solution for hardware based DWT 
will implement image edge expansion, filtering and down-sampling on GPU without pre-computing 
texture coordinates or establishing texture lookup tables in advance. 
 
In common GPU programming model, the GPU performs computations through the use of streams 
and kernels. A stream, that is abstracted as texture, is an ordered collection of elements requiring 
similar processing. A kernel, that is expressed as texture, is a data-parallel function that processes 
input streams and produces new output streams. The fragment programs are coded using a high-level 
shading programming language such as Cg. However, we must still use a 3D graphics API such as 
OpenGL to organize data into streams, transfer those data streams to and from the GPU as 2D 
textures, upload kernels, and perform the sequence of kernel calls dictated by the application flow. 
Based on these notations, the flow of hardware based DWT can be summarized as follow. 
 
Step 1: Upload the raw data/image and parameters of the high and lowpass filters into GPU’s memory 
to form textures respectively; 
 
Step 2: Invoke the boundary extension kernel to extend the edge of raw data/image, which includes 
the left, right, top, and bottom edge extension. The actual extension length is determined by kernel 
length of the decomposition filter. Suppose the kernel length of the decomposition filter is j then the 
extension length should be j –1. Fig.6 shows the results of symmetrical periodic extension where j=3. 
 
Step 3: Invoke the filtering and down-sampling kernel to obtain approximation and detail 
coefficients,i.e.,  cAj, cHj, cVj, and cVj , at level j. Fig.7 shows the OpenGL commands and Cg code 
that issue horizontal filtering and down-sampling (Vertical filtering and down-sampling are analogous 
with those in horizontal direction. 
 
Step 4: Store the approximation and detail coefficients of the various decomposition levels in 
corresponding location of a colour buffer for displaying. 

 
4     PERFORMANCE EVALUATION 

 
We evaluated our framework of hardware based DWT with Daubichies 4 wavelet on a PC equipped 
with Nvidia’s GeForce 7900 GTX. The test image has a size of 800×432 that is shown in Fig.8. Fig.9-
11 show the decomposition results at level 1, 2, 3 by using our proposed framework. 
 
The execution time of our hardware based DWT was compared with the software based DWT. We 
used two images with the size of 800×432 and 1280×960 for comparison respectively. Table 1 lists the 
execution time and accelerating factor at decomposition level 1, 2 and 3. It can be seen from Table 1 
that the hardware based DWT has a better accelerating factor when the data size is larger and/or the 
decomposition level is lower. As the decomposition level increases, the image size is reduced in a 
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ratio of a quarter, thus the acceleration performance of hardware based DWT is not as great as that at 
lower levels. 

Table 1. Execution times in ms per 2D wavelet step 
 
 

800×432 image 1280×960 image 

Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 

Software based DWT 100.8ms 9.25ms 0.77ms 834.6ms 69ms 3.8ms 

Hardware based DWT 16ms 3.7ms 0.7ms 78ms 15ms 2ms 

Accelerating factor 6.3 2.5 1.1 10.7 4.6 1.9 

 
 

5     CONCLUSIONS AND FUTURE WORK 
 
We have developed a simple and cost-effective solution to implement 2D DWT on the consumer-level 
GPU. It can be implemented on any SIMD-based GPU, which are commonly included in PCs. Different 
wavelet filter kernels and boundary extension schemes can be easily incorporated by modifying the 
filter kernel values and parameter respectively. We have demonstrated it achieved a great 
acceleration performance in contrast to the software based DWT. 
 
Reconstruction is an inverse process of decomposition in wavelet transform. The next stage of our 
work will be on the issue of using a GPU for reconstruction by making use of the existing framework, 
with the key task of accomplishing up-sampling for reconstruction. We will also try to find an efficient 
partitioning of the algorithms for wavelet transform. We will investigate which part of the work will be 
done on GPU and which can be left to CPU. Our goal is to perform the whole transformation on the 
GPU in order to free up the CPU for other processing tasks. Under this assumption, the partitioning 
should enlarge the size of the streams to maximize the granularity of the parallelism and leave only 
the flow-control activity to the CPU. 
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Fig.1 The decomposition tree of 1D-DWT 
 
 
 
 
 
 
 

 
Fig.2 The procedure of decomposition in 1D-DWT 

 
 
 
 
 
 
 
 

 
 

Fig.3 Square decomposition 
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Fig.4 The procedure of decomposition in 2D-DWT 

 
 
 

 
 

Fig.5 The decomposition tree of 2D-DWT 
 
 
 
 

 
 

Fig.6 Boundary extension  
 
 
 
 

 
 

Fig.7 OpenGL commands and Cg code for horizontal decomposition  
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Fig.8 The original image (800×432) for testing 
 

 
 
 
 
 
 
 

 
 

Fig.9 Coefficients at decomposition level 1 
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Fig.10 Coefficients at decomposition level 2 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.11 Coefficients at decomposition level 3 
 


