
University of Huddersfield Repository

Su, Yang, Xu, Zhijie, Jiang, Xiang and Pickering, Jonathan

Discrete wavelet transform on consumer-level graphics processing unit

Original Citation

Su, Yang, Xu, Zhijie, Jiang, Xiang and Pickering, Jonathan (2008) Discrete wavelet transform on
consumer-level graphics processing unit. In: Proceedings of Computing and Engineering Annual
Researchers' Conference 2008: CEARC’08. University of Huddersfield, Huddersfield, pp. 40-47.
ISBN 978-1-86218-067-3

This version is available at http://eprints.hud.ac.uk/3682/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Huddersfield Repository

https://core.ac.uk/display/59839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

School of Computing and Engineering Researchers’ Conference, University of Huddersfield, Nov 2008

Discrete Wavelet Transform on Consumer- Level Graphics
Processing Unit

Yang Su, Zhijie Xu, Xiangqian Jiang and J. Pickering

University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK

ABSTRACT

The discrete wavelet transform (DWT) has been extensively studied and developed in various
scientific and engineering fields. The multiresolution and local nature of the DWT facilitates
applications requiring progressiveness and the capture of high-frequency details. However,
the intensive computation of DWT caused by multilevel filtering/down-sampling will become
a significant bottleneck in real-time applications when the data size is large. This paper
presents a SIMD-based parallel processing framework as a commodity solution to this
problem, that is based on the consumer-level programmable graphic processing unit (GPU)
on personal computers. Simulation tests show that, in contrast to those CPU-based solutions
for DWT, this GPU-based parallel processing framework can bring a significant performance
gain on a normal PC without extra cost.

Keywords discrete wavelet transform, filtering, parallel processing, graphic processing unit

1 INTRODUCTION

The discrete wavelet transform (DWT) has been extensively applied in engineering, especially in
image classification, characteristic extraction, image de-noising, and image compression. The main
reason for DWT’s popularity is the fact that DWT can extract the maximum energy from a signal just
using several transform coefficients, which is also the reason why DWT was adopted as the core
engine in JPEG2000 [1], the second generation of the popular JPEG still image encoding standard.
The traditional DWT employs Filter Bank Scheme (FBS) that is a recursive process that uses high-
pass and low-pass filtering iteratively and inevitably brings intensive computation. To reduce the
computational size of the DWT, Sweldens proposed an algorithm called Lifting Scheme (LS) that has
been a great success [2]. In contrast to FBS, LS has two remarkable advantages in actual
applications:

 1. the filtering series of LS are less than FBS since LS just uses a half of filtering series of FBS;
 2. LS can be used in Integer Wavelet Transform (IWF), which is of great importance for image
compression with non-distortion.

Although LS decreases the number of filtering series in the DWT, for high-definition image or video
with enormous number of pixels, LS still can’t achieve real-time or interactive performance.
Vishwanath et al. presented a hardware implementation of the DWT that employs VLSI architecture to
further promote computational efficiency [3]. Unfortunately, the VLSI architecture has proved an
expensive solution since many more memory units are needed. In recent years, the rapid
improvement in the performance of PC-grade graphics processing units (GPU), their natural data
parallelism and improved programmability, have made GPU a competitive platform for computationally
demanding tasks in a wide variety of application domains. Many researchers and developers have
become interested in harnessing the power of commodity graphics hardware for general-purpose
computing, known as General Purpose Graphics Processing Unit (GPGPU). As a powerful and
inexpensive solution, GPGPU has been applied in the area such as linear algebra, differential
equation solving, physically based simulation, signal and image processing [4]. The main
characteristic of GPGPU is its adoption of the data parallel computation that is achieved by the stream
processing, which was the foundation for GPGPU’s superior computational efficiency over CPU-based
approach.

In this paper, a Single Instruction Multiple Data (SIMD) based parallel processing framework and its
corresponding prototype for implementing hardware-accelerated DWT is presented. This prototype

40

School of Computing and Engineering Researchers’ Conference, University of Huddersfield, Nov 2008

makes use of programmability of consumer-level GPU to carry out the DWT on a GPU. We evaluated
the performance of our proposed prototype by comparing with the results obtained by Wavelet toolbox
in MATLAB.

The remainder of this paper is organized as follow: Section 2 gives a brief introduction to DWT,
Section 3 presents the framework and prototype of the new GPU-accelerated 2D DWT technique that
is developed by employing shading language -- Cg, Section 4 evaluates the performance of the
proposed prototype with Section 5 concludes and highlights the future works.

2 TWO- DIMENSIONAL DWT

Given a signal s of length N, the 1D-DWT produces a pyramidal decomposition of s which consists of
log2N levels at most. Level j generates a pair of approximation coefficients cAj and detail coefficients
cDj from the approximation band of the previous level j–1, i.e. cAj-1, where cAj is a coarse-grained
representation of its predecessor cAj-1, and cDj contains the high-frequency details that have been
removed [5]. So the decomposition of signal s analyzed at level j has the following structure: [cAj, cDj,
..., cD1]. As shown in Fig.1, this structure contains for j = 3 the terminal nodes of the following tree.

For 1D-DWT, cAj and cDj are produced by convolving cAj-1 with a low-pass filter (denoted by Lo_D)
and a high-pass filter (denoted by Hi_D) respectively. The detailed procedure of decomposition at
level j is depicted as Fig.2.

The 2D-DWT is usually obtained by applying a separate 1D transform along the horizontal and vertical
directions. The most common approach, known as the square decomposition, alternates between
computations on image rows and columns [6]. This process is applied recursively to the quadrant
containing the coarse scale approximation in both horizontal and vertical directions. This way, the data
on which computations are performed is reduced to a quarter in each decomposition step. It is noted
that there are four coefficients, approximation coefficients cAj, horizontal detail coefficient cHj, vertical
detail coefficient cVj, and diagonal detail coefficient cDj, are produced in square decomposition at level
j, which is shown in Fig.3.

The detailed procedure of producing cAj, cHj, cVj, and cVj is shown in Fig.4. Fig.5 shows the
decomposition tree of 2D-DWT where j = 2.

3 GPU COMPUTING MODEL

In this section, we give a brief review on the GPU architecture and programming model, which outlines
a high-level description of the traditional rendering pipeline and illustrates how DWT can be mapped to
the GPU using a stream programming model.

The rendering pipeline of a GPU contains three parts: vertex processing, rasterization, and fragment
processing. The inputs to this pipeline are vertices from a 3D polygonal mesh together with attached
information such as their colors and texture coordinates, and the output is a 2D array of pixels to be
displayed on the screen.

During vertex processing, the geometry engine in the pipeline operates on incoming stream of
vertices, mainly computing linear transformations, such as translation, rotation and projection of the
vertices. After perspective transformation, which is the final step of the vertex processing stage,
rasterization converts geometric data into fragments. Each fragment corresponds to a square pixel in
the resulting image. These fragments produced by rasterization are written into the frame buffer(color
buffer). Then in the stage of fragment processing, the color of each fragment is computed using
texture mapping and other mathematical operations. the output from the fragment processing stage is
combined with the existing data stored at the associated 2D locations in the frame buffer (color buffer)
to produce the final colors [7].

Until only a few years ago, commercial GPUs were implemented using a fixed-function rendering
pipeline. However, most GPUs today include fully programmable Vertex and Fragment stages. The
programs that they execute are usually called vertex and fragment programs (or shaders),
respectively, and can be written using C-like high-level languages such as Cg. This is the feature that
allows for the implementation of nongraphics applications on the GPUs. In contrast to CPU

41

School of Computing and Engineering Researchers’ Conference, University of Huddersfield, Nov 2008

programming model that is based on instruction, programmable GPU model is based on processing
data streams [8]. The core of the latter processing style is that the processor is first configured by the
instructions and then a data stream is processed by a number of depth-parallel units in a pipeline.
Given sufficient memory bandwidth and multiple processing pipelines, data processing can also be
parallelized in breadth by distributing the execution among several pipelines. Commodity GPUs adopt
breadth parallelism using Single Instruction Multiple Data (SIMD) processing units with multiple-
component vectors. Their pipeline arrangements are similar to vector processors with multiple
pipelines.

As stated in Section 2, the DWT is practically done by an input signal filtering and a down-sampling
step. The down-sampling step need to locate texture coordinates correctly when issuing texture
mapping instructions. For this problem, a direct solution is to issue position-dependent down-sampling
by means of predicated execution and indirect texture lookup with pre-computed texture coordinates.
Wang et al. adopted this approach in their GPU implementation of the Filter Bank Scheme (FBS) of
DWT [9]. Besides down-sampling, they also used this approach to implement image edge expansion
that is essential in the DWT. The shortcoming of this approach is that it does not efficiently exploit all
the hardware resources available in current GPUs such as the hardware interpolators of texture
coordinates. Furthermore, predicated execution limits the effective performance of the GPU’s fragment
programming. Except filtering, modern graphics hardware also supports resampling for image transfer
operation, which we will utilize for down-sampling in DWT. Thus our solution for hardware based DWT
will implement image edge expansion, filtering and down-sampling on GPU without pre-computing
texture coordinates or establishing texture lookup tables in advance.

In common GPU programming model, the GPU performs computations through the use of streams
and kernels. A stream, that is abstracted as texture, is an ordered collection of elements requiring
similar processing. A kernel, that is expressed as texture, is a data-parallel function that processes
input streams and produces new output streams. The fragment programs are coded using a high-level
shading programming language such as Cg. However, we must still use a 3D graphics API such as
OpenGL to organize data into streams, transfer those data streams to and from the GPU as 2D
textures, upload kernels, and perform the sequence of kernel calls dictated by the application flow.
Based on these notations, the flow of hardware based DWT can be summarized as follow.

Step 1: Upload the raw data/image and parameters of the high and lowpass filters into GPU’s memory
to form textures respectively;

Step 2: Invoke the boundary extension kernel to extend the edge of raw data/image, which includes
the left, right, top, and bottom edge extension. The actual extension length is determined by kernel
length of the decomposition filter. Suppose the kernel length of the decomposition filter is j then the
extension length should be j –1. Fig.6 shows the results of symmetrical periodic extension where j=3.

Step 3: Invoke the filtering and down-sampling kernel to obtain approximation and detail
coefficients,i.e., cAj, cHj, cVj, and cVj , at level j. Fig.7 shows the OpenGL commands and Cg code
that issue horizontal filtering and down-sampling (Vertical filtering and down-sampling are analogous
with those in horizontal direction.

Step 4: Store the approximation and detail coefficients of the various decomposition levels in
corresponding location of a colour buffer for displaying.

4 PERFORMANCE EVALUATION

We evaluated our framework of hardware based DWT with Daubichies 4 wavelet on a PC equipped
with Nvidia’s GeForce 7900 GTX. The test image has a size of 800×432 that is shown in Fig.8. Fig.9-
11 show the decomposition results at level 1, 2, 3 by using our proposed framework.

The execution time of our hardware based DWT was compared with the software based DWT. We
used two images with the size of 800×432 and 1280×960 for comparison respectively. Table 1 lists the
execution time and accelerating factor at decomposition level 1, 2 and 3. It can be seen from Table 1
that the hardware based DWT has a better accelerating factor when the data size is larger and/or the
decomposition level is lower. As the decomposition level increases, the image size is reduced in a

42

School of Computing and Engineering Researchers’ Conference, University of Huddersfield, Nov 2008

ratio of a quarter, thus the acceleration performance of hardware based DWT is not as great as that at
lower levels.

Table 1. Execution times in ms per 2D wavelet step

800×432 image 1280×960 image

Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

Software based DWT 100.8ms 9.25ms 0.77ms 834.6ms 69ms 3.8ms

Hardware based DWT 16ms 3.7ms 0.7ms 78ms 15ms 2ms

Accelerating factor 6.3 2.5 1.1 10.7 4.6 1.9

5 CONCLUSIONS AND FUTURE WORK

We have developed a simple and cost-effective solution to implement 2D DWT on the consumer-level
GPU. It can be implemented on any SIMD-based GPU, which are commonly included in PCs. Different
wavelet filter kernels and boundary extension schemes can be easily incorporated by modifying the
filter kernel values and parameter respectively. We have demonstrated it achieved a great
acceleration performance in contrast to the software based DWT.

Reconstruction is an inverse process of decomposition in wavelet transform. The next stage of our
work will be on the issue of using a GPU for reconstruction by making use of the existing framework,
with the key task of accomplishing up-sampling for reconstruction. We will also try to find an efficient
partitioning of the algorithms for wavelet transform. We will investigate which part of the work will be
done on GPU and which can be left to CPU. Our goal is to perform the whole transformation on the
GPU in order to free up the CPU for other processing tasks. Under this assumption, the partitioning
should enlarge the size of the streams to maximize the granularity of the parallelism and leave only
the flow-control activity to the CPU.

REFERENCES

[1] Acharya T., Tsai P. JPEG2000 Standard for Image Compression: Concepts, Algorithms and VLSI
Architectures, Wiley-Interscience, 2004.

[2] Sweldens W., The Lifting Scheme: A Construction of Second Generation Wavelets, SIAM J. Math.
Analysis, vol. 29, no. 2, pp. 511-546.

[3] Vishwanath M., Owens R. M. (1995), VLSI architecture for the discrete wavelet transform, IEEE
Transactions on Circuit & System, Vol.42, No.5, pp.305-316.

[4] Owens J. D., Luebke D., Govindaraju N., et al.(2007), A Survey of General-Purpose Computation
on Graphics Hardware, Computer Graphics Forum, Vol. 26, No. 1,pp. 80 -113.

[5] Antonini M., Barlaud M., Mathieu P. (1992), Daubechies Image Coding Using Wavelet Transform,
IEEE Transactions on Image Processing, Vol.17, No.1, pp.205-230.

[6] Gonnet C., Torresani B. (1994), Local frequency analysis with two-dimensional wavelet transform,
Signal Processing, Vol. 37 , No. 3, pp.389-404.

[7] Montrym J., Moreton H.(2005), The GeForce 6800, IEEE Micro Magazine, Vol.25, No.2, pp. 41-51.

[8] Strzodka R., Doggett M., Kolb A.(2005), Scientific Computation for Simulation on programmable
Graphics Hardware, Simulation Modelling Practice and Theory, Vol.13, No.8, pp.667-681.

43

http://www.nvidia.com/page/geforce_8800.html
http://portal.acm.org/author_page.cfm?id=81100624342&coll=GUIDE&dl=GUIDE&trk=0&CFID=68237599&CFTOKEN=33816355

School of Computing and Engineering Researchers’ Conference, University of Huddersfield, Nov 2008

[9] Wong T. T., Leung C. S., Heng P. A., and Wang J. Q.(2007), Discrete Wavelet Transform on
Consumer-Level Graphics Hardware, IEEE Transaction on Multimedia, Vol. 9, No. 3, pp. 668-673.

S

cA1 cD1

cA2 cD2

cA3 cD3

Fig.1 The decomposition tree of 1D-DWT

Fig.2 The procedure of decomposition in 1D-DWT

Fig.3 Square decomposition

44

School of Computing and Engineering Researchers’ Conference, University of Huddersfield, Nov 2008

Fig.4 The procedure of decomposition in 2D-DWT

Fig.5 The decomposition tree of 2D-DWT

Fig.6 Boundary extension

Fig.7 OpenGL commands and Cg code for horizontal decomposition

45

School of Computing and Engineering Researchers’ Conference, University of Huddersfield, Nov 2008

Fig.8 The original image (800×432) for testing

Fig.9 Coefficients at decomposition level 1

46

School of Computing and Engineering Researchers’ Conference, University of Huddersfield, Nov 2008

47

Fig.10 Coefficients at decomposition level 2

Fig.11 Coefficients at decomposition level 3

