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Identification of material properties is one of the key issues in composite materials research. This 

information is the most important database for an accurate Computer-Aided Engineering (CAE) 

simulation and various design enhancement purposes. For example, it can be used to estimate 

deflections and stress state of composite structure under static or dynamic load. The mechanical 

properties of composite materials depend on diverse factors such as configuration of the laminates, 

constituent materials used, production method adopted, etc. Hence, it is generally impossible to find 

these properties in standard tables. Conventional testing approach tends to be time-consuming, 

expensive and destructive. Moreover for properties such as shear modulus, these tests often yield poor 

results. As an alternative, a hybrid approach which utilises experimental and numerical techniques is 
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proposed. This approach is a rapid, inexpensive and non-destructive evaluation of the mechanical 

properties of composite materials which involves both Experimental Modal Analysis (EMA) and Finite 

Element Analysis (FEA). Experimental modal data which consists of natural frequencies and mode 

shapes of an orthotropic composite plate are utilised for correlation purpose with its Finite Element 

(FE) model in CAE environment. This finite element model of the composite plate is continuously 

updated and achieves less than 5% in difference of natural frequencies and over 70% in Modal 

Assurance Criterion (MAC). Material properties such as Young’s moduli, in-plane shear modulus and 

Poisson ratio of the composite plate are then successfully determined using the well-correlated FE 

model. 

Keywords: orthotropic composite plate, non-destructive evaluation, experimental modal data, 

Experimental Modal Analysis, Finite Element Analysis, model updating 

 

Introduction 

Composite materials are composed of two or more different materials at macro-scale with each of the 

materials will contribute to the final properties. When the materials are combined, composites are 

generally more superior as compared to the individual components. Composite structures are usually 

constructed in multiple laminates where each layer is oriented specifically to achieve optimal strength 

and stiffness performance. Composites are preferred in applications due to their high strength-to-weight 

ratio, high-stiffness-to-weight ratio, high wear resistance, high corrosion resistance. 

 

The determination of mechanical properties is one of the important parts in composite materials 

research. Production method, materials used, and laminates configuration of the composites are among 

the contributing factors in changing the mechanical properties of composite materials. These properties 

are could not be found in any standard databases and tables.  Conventional test procedures based on 

static loading are destructive, time and cost consuming. In addition, these tests often produce poor 



results especially in determining properties such as shear modulus. This has encouraged the 

development of specific methods to improve the accuracy in the identification method.
1
 

 

Alternatively, mixed of numerical and experimental techniques is gaining popularity among researchers 

to be applied in their research. Modal analysis is a rapid, cheap and non-destructive evaluation 

approach to determine the mechanical properties of composite materials. The elastic constant that 

represents the local and global properties of a structure panel can be determined in a single test.  

 

Researchers like Fayyadh et al.
2
, Ismail

3
, Ismail et al.

4, 5
, Ismail and Ong

6
, Ong et al.

7
 and Rahman et 

al.
8
  have demonstrated the application of modal parameters from modal analysis using vibration theory 

in fault identification of various structures. Vibration theory can also be used to develop a non-

destructive test to determine the dynamic elastic constant namely longitudinal Young’s modulus, 

transverse Young’s modulus, in-plane shear modulus and Poisson’s ratio of a composite plate. The 

analytical approaches based on the Rayleigh–Ritz
9-11

 or Rayleigh
12, 13

 methods and the numerical 

approaches based on the finite element method
14-17

 have been applied to determine the elastic constants 

of materials. The calculated analytical and numerical natural frequencies are compared with the 

measured natural frequencies to find the corresponding elastic constants. Deobald and Gibson
18

 

analysed a thin orthotropic composite plate with different boundary conditions. Rayleigh-Ritz 

technique was used to model the vibration of rectangular orthotropic plates. Natural frequencies from 

the analytical model were verified by Experimental Modal Analysis (EMA) and Finite Element 

Analysis (FEA). The plate vibration model was then used to determine the elastic constants. Zubaidah 

et al.
19

 used an inverse method based on Fourier series to determine the material properties of 

orthotropic plates. An example was presented to demonstrate the accuracy and convergence of the 

solutions by the combined use of analytical model and FEA modal data. Hwang et al.
20

 and Maletta and 

Pagnotta
21

 proposed a non-destructive numerical method based on a hybrid genetic algorithm. 



Vibration testing combined with this numerical method is a potential alternative approach for 

determining elastic constants of materials. Wolf and Carne
22

, Yu et al.
23

, DeWilde et al.
24, 25

, Khov et 

al.
26

 are other researchers who involve in determining the elastic constants of composite materials using 

vibration technique. Other techniques such as lamb and ultrasonic waves are other possible approach 

used in determination of elastic constants of composites
27

 . Current researches only focused and utilised 

one modal parameter i.e. natural frequency in determining the material properties of composite plates. 

Modal parameter such as mode shape or the combination of both natural frequencies and mode shapes 

are rarely used in elastic constants determination. 

 

In this paper, a non-destructive evaluation of the mechanical properties of composite materials which 

involves EMA and Finite Element (FE) model updating method is proposed. This approach utilises 

both measured natural frequencies and mode shapes and compares with the corresponding numerical 

data. The FE model of the composite plate is continuously updated in Computer-Aided Engineering 

(CAE) environment based on the experimental modal data i.e. natural frequencies as well as mode 

shapes. Model updating process will stop once the FE model show close correlation with the 

experimental modal data in terms of percentage difference in natural frequencies and mode shape 

correlation in Modal Assurance Criterion (MAC). Material properties such as Young’s moduli, in-plane 

shear modulus and Poisson ratio of the composite plate could be determined based on the updated FE 

model. 

 

Background theories 

Experimental Modal Analysis 

Experimental Modal Analysis (EMA) is an investigation on vibration characteristics of elastic 

structures. It involves experimental methods in investigating the oscillation behaviour of component 



structures by describing a system with its modal parameters; its natural frequencies, natural damping 

and mode shapes.  

 

Carrying out measurement using Fast Fourier Transformation (FFT) analyser on a continuous system, 

the Frequency Response Function (FRF) being an estimated quantity is obtained over a number of 

averages. In general, the measured FRF matrix [ ( )]ωZ , relates the displacement response vector 

  ωX of a linear and time-invariant structure due to excitation force vector   ωQ as, 

        ωωω QX Z , (1) 
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Equation (2) describes the relationship between the element of FRF matrix ( )ijZ ω  and the modal 

parameters, namely the r th mode of natural frequency orω , mode shape rφ  and damping rσ . Number 

of mode r  = 1, ..., n . ω  is angular frequency. i  is imaginary part. Subscripts i  and j are response 

Degree of Freedom (DOF) and force DOF respectively. 

Accelerometers are commonly used for EMA. By using differentiation in frequency domain
28

, 

displacement response vector can be converted to acceleration response vector as follows: 

     ωωω XX
2 . Hence, the Accelerance FRF matrix can be related to Admittance FRF matrix as 

follows: 2[ ( )] = - [ ( )]ω ω ωA Z . The measured Accelerance FRF matrix [ ( )]ωA  relates the acceleration 

response matrix and force matrix as follows:         ωωω QX A . Element of Accelerance FRF 

matrix is shown as follows:  
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Finite Element Modal Analysis 



For a system with n  degrees of freedom, the action equation for undamped free vibrations take the 

general form 

      0 XX KM  . (4) 

Assume that in natural vibration all masses follow the harmonic function to produce a set of algebraic 

equations, equation (4) can be stated as  

2( - ) = 0ij or ij rK ω M φ , (5) 

where 2= -r ij or ijH K ω M is the element of characteristic matrix. For non-trivial solutions of equation (5), 

the determinant of the characteristic matrix is set equal to zero giving 
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If the polynomial cannot be factored, its n  roots 2

1oω , 2

2oω , ..., 2

orω , ...,  2

onω
 
could be determined by 

numerical procedure. Such roots, which were referred to previously as characteristic values, are also 

called eigenvalues. Vectors of modal amplitudes, any one of which is represented by rφ  are called 

characteristic vectors or eigenvectors. 

 

It is important to remark that the stiffness depends on the linear elastic parameters that are to be 

identified 

= ( , , , )x y xy xyK K E E G υ , (7) 

where xE  is longitudinal Young’s modulus. yE  is transverse Young’s modulus. xyG is in-plane shear 

modulus. xyυ  is Poisson’s ratio. 

 

Sensitivity Analysis 



When the relation between a non‐proportional parameter and the structural matrices is too complicated 

to obtain an explicit formula, a finite difference approach can be used. This is for example the case for 

parameters like orthotropic material constants. The sensitivity matrix  S  is usually a rectangular matrix 

and is obtained as: 
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where αR  is the responses or resonance frequency and βP  is parameter consist of elastic constants.   = 

1, …, total number of responses and   = 1, …, total number of parameters. Δ is finite difference. 

 

Using finite differences to derive element structural matrices is a much faster approach than computing 

finite differences of the response values. For example, when the derivatives of the mass and stiffness 

matrices in equation (8) are approximated using finite differences, the following form of the equation is 

obtained: 
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where αf  is the resonance frequency in Hz. 

 

Finite Element Model Updating 

Values of selected parameters are adjusted through model updating to minimize the correlation 

coefficient of reference. Linear term of Taylor series expansion is used to show the functional 

relationship between predicted analytical parameters and experimental modal characteristics. The 

relation can be expressed as: 

: 



         ouae PPRR  S , (10) 

 

    PR ΔSΔ  , (11) 

where: 

 eR
 : reference system responses vector (experimental data). 

 aR
 : predicted system responses vector with initial parameter values,

 oP
  

 uP
 : updated parameter values. 

 S  : sensitivity matrix. 

It is to be noted that equation (10) implies that responses occur in pairs, i.e. the corresponding analytical 

response must exist if experimental response is used as reference. 

 

Procedures 

Experimental Modal Analysis 

Figure 1 shows the set-up of the composite plate. Composite type used is Carbon Fibre – Epoxy Resin 

Matrix with square dimension of 300mm in width. The thickness of the composite plate is 3.5mm.  The 

composite plate was clamped at all 4 edges. In this research, modal analysis using Frequency Response 

Function (FRF) measurement techniques based on Fast Fourier Transformation (FFT) was used in 

determining the dynamic characteristics namely the natural frequencies, mode shapes and damping. 

The test method used is called impulsive excitation techniques
29

. The measured input is force from a 

modally tuned impact hammer and the measured output is acceleration from a uni-axial accelerometer. 

Data was obtained by using a DASYLab-National Instruments data acquisition system together with 

the impact hammer and the accelerometer. Impact hammer was connected to channel 1 of the National 

Instrument (NI) dynamic analyser and accelerometer was connected to channel 2 for capturing vertical 

direction response. The accelerometer was set at point 16 as the fixed response. The experiment was 



carried out by fixing the accelerometer and roving the impact hammer from point 1 until point 25. The 

sampling rate used was 2048 samples per seconds with block size of 4096 samples. This yields 

frequency resolutions of 0.5 Hz and 2 seconds of time record length to capture every response signal. 

Five averages or impacts were taken at each measurement point. The signals were processed by a self-

developed virtual instruments application programme in DASYLab to generate FRF and Coherence 

Functions. The acquired data was then sent to modal analysis software called ME’Scope to perform 

post-processing and curve-fitting for the extraction of modal frequency, modal damping and modal 

shape.  

 

Figure 1: Composite Plate Set-up 

 

Finite Element Modal Analysis 

A Finite Element (FE) model was built according to the geometrical properties, boundary conditions 

and material properties of the composite plate. The model was constrained at the 4 edges as in actual 

set-up. Initial values of material properties were assigned accordingly in the FE model. Longitudinal 

and transverse Young’s moduli were initially set as 70GPa respectively. Meanwhile, initial values for 

shear modulus and Poisson’s ratio were assigned at 5GPa and 0.1. When the FE model was completely 

defined, the structural element matrices and the numerical natural frequencies and mode shapes were 

computed. 

 

 

 

Modal Correlation 

Both the numerical and experimental databases are now complete and automatic mode shape pairing 

can be done. The standard requirement is to have a discrepancy of less than 5% in terms of resonance 



frequencies of matching mode shapes. The common target is for natural frequency predictions to be 

within 5% of the measured value. This is considered to be very good, while natural frequency 

predictions within 10% were considered marginal, but acceptable.
30

 The Modal Assurance Criterion 

(MAC) was used as a quantitative approach to show the correlation of mode shape vectors between 

Experimental Modal Analysis (EMA) and Finite Element Modal Analysis. Computation of MAC is fast 

and does not require the mass and stiffness matrices. The off‐diagonal terms of the MAC‐matrix 

provide a mean to check linear independence between modes. MAC values range between 0 and 1, and 

should be interpreted as follows: MAC = 1 means the two mode shapes are identical or perfect 

correlated and MAC = 0 means the two mode shapes are completely different. Historically, when MAC 

values are greater than 0.7, the correlation of two modes are considered to be reasonable. Values greater 

than 0.85 are considered to be very good, it indicates close correlation of mode shapes.
30

 

 

Finite Element Model Updating 

The purpose of this analysis is to adjust the global orthotropic material properties. This is because, 

compared to other possible parameter types like mass density or shell thickness, these properties are 

most uncertain. Initial values were assigned from the manufacturers specifications. 

 

The sensitivities for non‐proportional parameter types like , , ,x y xy xyE E G υ  cannot be computed directly 

using a differential formulation as it is done for proportional parameters for example, the isotropic 

Youngʹs modulus. Therefore, the sensitivities are computed using a perturbation method. This method 

requires a perturbation coefficient (in percentage) which will be applied on the parameter value to 

compute a finite difference sensitivity value. 

 

Results and Discussions 



When initial values of elastic properties were assigned on the FE model, total of 6 experimental modes 

were used as reference response. In this case, the model updating procedure only requires 4 reference 

responses i.e. mode shapes to be selected to obtain a unique solution to obtain the 4 elastic constants 

namely longitudinal Young’s modulus, transverse Young’s modulus, in-plane shear modulus and 

Poisson’s ratio (4 global parameters and 4 responses). 

 

The mode shapes pairing as shown in Table 1 shows that all the 6 modes are considered well correlated, 

giving MAC values of over 70%. The highest experimental mode shape that can be paired with 

computational mode is mode 4 with MAC value of 98.8%. However, second and third modes show 

disagreement in the modal correlation process. Mode 2 and 3 of FE Modal Analysis correlated with 

Mode 3 and 2 of EMA respectively. MAC values chart is shown in Fig. 2(a). Meanwhile, the 

percentage error of natural frequencies above 10% showing bad agreement between the FE model and 

actual composite plate set up. FE model updating was performed in order to obtain a better correlation 

results. As shown in Table 1, the correlation results show significant improvement in percentage error 

in natural frequencies between FE Modal Analysis and EMA with the discrepancy of less than 5%. On 

the other hand, mode shape pairing shows minimal changes where the MAC values remain the 

achievement of 70% and above. The MAC values chart after FE model updating is shown in Fig. 2(b). 

It is worthwhile to mention here that first mode is showing slightly lower correlation in MAC because 

the mode itself is not sensitive enough to be excited. The fixed response at Point 16 was attached at the 

nodal point of the first mode where minimal response due to impact was captured at the particular 

point. Detailed mode shape pairings of all the 6 modes are shown in Fig. 2(c). Overall modal 

correlation results after FE model updating are considered acceptable and good correlation between FE 

modal analysis and EMA has been achieved. 

 

 



Table 1: Modal Correlation between EMA and FEA before and after model updating 

  Before Model Updating After Model Updating 

  
Natural Frequencies  

(Hz) 
    

Natural Frequencies  

(Hz) 
    

Mode FEA  EMA Difference (%) MAC FEA EMA Difference (%) MAC 

1 113.93 98.43 15.75 69.1 99.83 98.43 1.42 68.7 

2 204.74 177.66 15.25 76.1 178.66 170.95 4.51 74.1 

3 204.74 170.95 19.77 75.8 184.93 177.66 4.09 74.3 

4 318.46 286.13 11.3 98.8 281.65 286.13 -1.56 98.6 

5 408.69 371.87 9.9 96.7 358.96 371.87 -3.47 96 

6 507.7 454.58 11.68 95.9 445.3 454.58 -2.04 95.5 

 

Figure 2: (a) MAC before model updating, (b) MAC after model updating  

(c) Mode shapes correlation between EMA and FEA 

The material properties, i.e. longitudinal Young’s modulus, transverse Young’s modulus, in-plane shear 

modulus and Poisson’s ratio were determined with the updated and well-correlated FE model. The 

results are shown in Table 2. There are around 10% to 30% changes in these properties as compared to 

the initial assigned values. These predicted material properties shall reflect the actual elastic constants 

of the composite plate without destroying the material. 

 

Table 2: Updated material properties of the composite plate 

Type Old (Pa) Actual (Pa) Difference (%) 

xE  7.00E+10 5.60E+10 -19.97 

yE  7.00E+10 4.90E+10 -30.00 

xyG  5.00E+09 4.01E+09 -19.72 

xy  1.00E-01 7.89E-02 -21.06 

 

 



Conclusion 

A hybrid non-destructive approach has been presented for determining the material properties of an 

orthotropic composite plate based on experimental modal data and FEA. This approach is fast and 

inexpensive in updating the FE model. The convergence between the experimental modal data and FEA 

is very satisfactory after model updating which achieves less than 5% in difference of natural 

frequencies and over 70% in MAC for all the 6 vibration modes. Material properties of the orthotropic 

composite plate have been successfully determined using this hybrid approach. 

 

Acknowledgement 

The authors wish to acknowledge the financial support and advice given by Postgraduate Research 

Fund (PV086-2011A), Research Fund Assistance (BK031-2013) and Advanced Shock and Vibration 

Research (ASVR) Group of University of Malaya  

 

References 

1. L. Pagnotta: International Journal of Mechanics, 2008, 2(4), 129-140. 

2. M. M. Fayyadh, H. A. Razak, and Z. Ismail: Archives of Civil and Mechanical Engineering, 

2011, 11(3), 587-609. 

3. Z. Ismail: Measurement, 2012, 45(6), 1455–1461. 

4. Z. Ismail, Z. Ibrahim, A. Z. C. Ong, and A. G. A. Rahman: Journal of Bridge Engineering, 

2012, 17(6), 867-875. 

5. Z. Ismail, H. A. Razak, and A. G. A. Rahman: Eng Struct, 2006, 28(11), 1566-1573. 

6. Z. Ismail and Z. C. Ong: Measurement, 2012, 45(5), 950-959. 

7. Z. C. Ong, A. G. A. Rahman, and Z. Ismail: Experimental Techniques, 2012, (In Press). 

8. A. G. A. Rahman, Z. Ismail, S. Noroozi, and O. Z. Chao: International Journal of Damage 

Mechanics, 2013, 22(6), 791-807. 

9. L. R. Deobald and R. Gibson: Journal of Sound and Vibration, 1988, 124(2), 269-283. 

10. T. Lai and T. Lau: International Journal of Analytical and Experimental Modal Analysis, 1993, 

8, 15-33. 

11. P. Pedersen and P. S. Frederiksen: Measurement, 1992, 10(3), 113-118. 

12. K. E. Fällström: Polymer composites, 1991, 12(5), 306-314. 

13. E. O. Ayorinde and R. F. Gibson: Composites Engineering, 1993, 3(5), 395-407. 

14. S.-F. Hwang and C.-S. Chang: Composite Structures, 2000, 49(2), 183-190. 

15. T. Lauwagie, H. Sol, G. Roebben, W. Heylen, Y. Shi, and O. Van der Biest: NDT & E 

International, 2003, 36(7), 487-495. 



16. A. Wereszczak, R. Kraft, and J. Swab: 'Flexural and torsional resonances of ceramic tiles via 

impulse excitation of vibration', 27th Annual Cocoa Beach Conference on Advanced Ceramics 

and Composites-B: Ceramic Engineering and Science Proceedings, 2009, Wiley. com, 207. 

17. L. Pagnotta and G. Stigliano: Experimental techniques, 2010, 34(2), 19-24. 

18. L. R. Deobald and R. F. Gibson: J Sound Vib, 1988, 124(2), 269-283. 

19. Z. Ismail, H. Khov, and W. L. Li: Measurement, 2013, 46(3), 1169-1177. 

20. S. F. Hwang, J. C. Wu, and R. S. He: Compos Struct, 2009, 90(2), 217-224. 

21. C. Maletta and L. Pagnotta: International Journal of Mechanics and Materials in Design, 2004, 

1, 199-211. 

22. J. A. Wolf Jr. and T. G. Carne: 'Identification of the elastic constants for composites using 

modal analysis', Meeting of Society for Experimental Stress Analysis, San Francisco, 

California, 1979. 

23. L. Yu, V. Zelenev, and L. M. Electrova: Soviet Phys.-Acoust., 1973, 18(3), 339–341. 

24. W. P. DeWilde, B. Narmon, H. Sol, and M. Roovers: 'Determination of the material constants 

of an anistropic lamina by free vibration analysis', Proceedings of the 2nd International Modal 

Analysis Conference, Orlando, Florida, 1984, 44-49. 

25. W. P. DeWilde, H. Sol, and M. van Overmeire: 'Coupling of Lagrange interpolation Modal 

Analysis and sensitivity analysis in the determination of anisotropic plate rigidities', 

Proceedings of the 4th International Modal Analysis Conference, Los Angeles, California, 

1986. 

26. H. Khov, W. L. Li, and R. F. Gibson: Compos Struct, 2009, 90(4), 474-481. 

27. K. Lasn, A. Klauson, F. Chati, and D. Décultot: Mechanics of Composite Materials, 2011, 

47(4), 435-446. 

28. J. H. Rainer: Building Research Note, 1986, 233, 24. 

29. W. G. Halvorsen and D. L. Brown: Sound and Vibration, 1977, 11(11), 8-21. 

30. J. P. De Clerck and G. Center: 'Vibration Model Validation Based on Statistical Confidence of 

Modal Property Predictions', Proceedings of the 21th International Modal Analysis Conference, 

Orlando, Florida, USA, 2003. 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 1: Composite Plate Set-up 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 2: (a) MAC before model updating, (b) MAC after model updating 

(c) Mode shapes correlation between EMA and FEA 
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