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ABSTRACT

A 3700 km2 area adjacent to the Firth of Clyde, Scotland, is examined to constrain the development and 

dynamics  of  the  western  central  sector  of  the  last  British  and  Irish  Ice  Sheet.   Results  from 

geomorphological mapping, lithostratigraphic investigations, three-dimensional geological modelling 

and  field  observations  are  combined  to  produce  an  empirically  constrained,  five-stage  conceptual 

model of  ice sheet  evolution.  (A) Previously published dates on interstadial  organic deposits  and 

mammalian fossils suggest that the Main Late Devensian (MLD) (MIS 2) glaciation of central Scotland 

began after 35 ka cal BP.  During build-up, ice advanced from the western Scottish Highlands into the 

Clyde and Ayrshire basins.  Glaciomarine muds and shelly deposits scavenged from the Firth of Clyde 

were redeposited widely as shelly tills and glacial rafts.  Ice advance against reverse slopes generated, 

and subsequently overtopped,  ice-marginal  sediment accumulations.   We hypothesise that  some of 

these formed pre-cursor ridges which were moulded into suites of ribbed moraine during the glacial 

cycle.  (B) Sustained stadial conditions at the Last Glacial Maximum (LGM) (c. 30 - 25 ka cal BP) 

resulted in development of a major dispersal centre over the Firth of Clyde and Southern Uplands.  This 

dispersal centre locally preserved previously-formed subglacial bedforms, and fed a wide corridor of 

fast-flowing ice east towards the Firth of Forth.  (C) Initial deglaciation promoted a substantial re-

configuration of the ice surface, with enhanced westward drawdown into the outer Firth of Clyde and 

eastward  migration  of  an  ice  divide  towards  the  Clyde-Forth  watershed.   (D)  Renewed ice  sheet 

thickening over the Firth of Clyde may have accompanied growth of the Irish Ice Sheet during the 

Killard  Point  Stadial  (c.  17.1 -  15.2 cal  ka  BP);  it  was  associated  with  limited  bed modification. 

Subsequent  ice  sheet  retreat  was  characterised  by  substantial  meltwater  production,  ponding  and 

erosion.  (E)  Late stages of MLD ice sheet retreat were punctuated by one or more significant ice 

margin oscillations.  Discovery of De Geer moraines at the site of a former proglacial lake in western 

Ayrshire allows glacier flow at the ice margin to be approximated as ≤ 290 m a  -1 during one such 

oscillation.  Such velocities were probably enabled by basal sliding and shallow sediment deformation. 

At this stage those parts of the MLD ice sheet margin that were grounded in the Firth of Clyde  were 

extremely vulnerable to  collapse.    Final  disintegration of  glacier  ice in the Clyde basin probably 

occurred  early  in  the  Lateglacial  Interstadial  (Greenland  Interstadial-1),  coinciding  with  marine 

incursion to c. 40 m above present day sea level. 
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1. Introduction

Detailed  geomorphological  investigations,  aided  by  increasingly  powerful  remote  sensing 

datasets,  have  revealed  complex  flow  signatures  from former  ice  sheets  (e.g.  Clark  and 

Stokes, 2001; De Angelis and Kleman, 2007; McCabe, 2008; Greenwood and Clark, 2009a). 

Such evidence is essential in order to test and refine numerically-driven ice sheet models, 

which can simulate dynamic cycles and major ice flow configuration changes (e.g. Boulton 

and Hagdorn, 2006; Hubbard et al., 2009).  The last British and Irish Ice Sheet (BIIS) is now 

known to have undergone substantial  changes  in  geometry and flow during its  evolution 

(Bowen et al., 2002; Bradwell et al., 2008; Evans et al, 2009; Greenwood and Clark, 2009b). 

However, terrestrial evidence is fragmentary, and coherent, time transgressive reconstructions 

are lacking for many key sectors.  Interpretations conflict  owing to the isolated nature of 

individual studies, and uncertainty remains over whether events identified in the geological 

record were local phenomena resulting from internal glacier readjustments, or ice sheet-wide 

events controlled by climatic response (e.g. Sissons, 1964, 1976; Paterson, 1974; McCabe et 

al., 2007b; Peacock et al., 2007).   

This study attempts to address these issues for west central Scotland (Figs 1, 2) - an area of 

some 3700 km2 which was subjected to interactions between major accumulation zones of the 

last  BIIS.   By  combining  geomorphological,  lithostratigraphical,  and  three-dimensional 

geological modelling investigations with existing research, we reassess the palaeoglaciology 

of this formerly dynamic ice sheet zone.  Specifically, this paper aims to: (i) identify evidence 

for  spatially  and  temporally  variable  ice  flow  patterns,  major  geometry  changes,  and 

oscillatory events that accompanied build up and decay of the BIIS in west central Scotland; 

(ii) take account of published evidence from surrounding areas to test for indicators of more 

widespread ice sheet reorganisation(s); (iii) provide a coherent, conceptual model of ice sheet 

evolution for this zone of the last BIIS; and (iv) enable better understanding of the three-

dimensional distribution of glacigenic, glaciolacustrine and glaciomarine sediments beneath 

greater Glasgow required for applied geological investigations.

2. Background

This section reviews the key published evidence relating to the Main Late Devensian (MLD) 

ice sheet glaciation of west central Scotland.  In this paper, dates are quoted in radiocarbon 

years and calibrated to calendar years before present where appropriate, using the curves of 

Stuiver et al. (2005) and Fairbanks et al. (2005).  Radiocarbon ages from marine samples are 

quoted assuming a 400-year reservoir age correction, except where indicated otherwise.    
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The  western  central  lowlands  of  Scotland  have  been  recognised  as  an  area  affected  by 

complex ice-flow patterns since J. Geikie (1863) described it as the “debatable ground over 

which glaciers of the Highlands or Southern Uplands (Fig. 1) prevailed according to their 

contemporary  strengths”.   Highland-sourced  ice  initially  extended  south-eastwards  to  the 

northern flanks of the Southern Uplands as suggested by the distribution of indicator erratics 

and  the  widespread  occurrence  of  ‘lower’  tills  of  north-western  provenance  underlying 

‘upper’ tills derived from the south (Price, 1975; Sutherland and Gordon, 1993).  Southern 

Uplands ice became more dominant later, deflecting Highland ice both to the east and south-

west. The easterly diverted flow left a strong imprint on the landscape of the Clyde basin, in 

the form of extensive, drumlin assemblages (Rose, 1987; Hall et al., 1998; Rose and Smith, 

2008).  

Former  changes  in  ice  flow direction are  particularly  apparent  in  central  Ayrshire  where 

evidence from erratics, stratigraphy, cross-cutting striae and roches moutonées demonstrate 

that  ice  firstly  flowed onshore  towards  the  south-east  and  then offshore  south-westwards 

(Richey et al., 1930).  Highland-sourced ice initially penetrated at least as far south as Nith 

Bridge (Fig. 2), carrying shells that were probably scavenged from the Firth of Clyde (Holden 

and Jardine, 1980; Sutherland, 1993). This early, on-shore flow of ice resulted in widespread 

deposition of shelly tills and rafts of glaciomarine clay, notably at Afton Lodge and Greenock 

Mains (Fig. 2) (Smith, 1898; Holden, 1977; Abd-Alla, 1988; Gordon, 1993a,b). Evidence for 

a  later,  onshore  readvance  of  Highland-sourced  ice  at  the  latter  locality  (Holden,  1977) 

implies that active ice occupied the Firth of Clyde and Ayrshire Lowlands after the eastern 

central lowlands had deglaciated (Sutherland, 1984).

Most evidence for these switches in flow relates to the last, MLD glaciation when the BIIS is 

thought to have reached the continental shelf edge to the north-west of the British Isles and 

merged with ice from Fennoscandia in the North Sea Basin (Graham et al., 2007; Bradwell et 

al.,  2008).  However,  there  is  an  unusually  high  concentration  of  mammalian  fossil 

occurrences and other organic remains within glacigenic sequences that have survived the 

MLD glaciation, particularly in the Ayrshire Lowlands and the lower Clyde valley (Bishop 

and Coope, 1977; Sutherland and Gordon, 1993). Early age determinations from bones of 

woolly  rhinoceros  from  Bishopbriggs  (Rolfe,  1966)  and  reindeer  antler  fragments  from 

Sourlie (Fig. 2) (Jardine et al., 1988) yielded ages of c. 27 -30 ka 14C BP.  A revised age of 

31.1 ka  14C BP (c. 35 ka cal BP) has recently been published for the Bishopbriggs sample, 

following  ultrafiltration  pre-treatment  (Jacobi  et  al.,  2009).  This  age  is  similar  to  those 

obtained from organic remains within fully investigated interstadial profiles beneath till at 

Balglass (Fig.1) (Brown et al., 2007) and Sourlie (Bos et al., 2004).  Collectively, these dates 
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suggest that the MLD ice sheet did not become established in the area until after c. 35 ka cal 

BP, contrary to the conclusions of Bowen et al.  (2002) .   However, numerical modelling 

experiments simulate minor glacial advances into the area prior to the main sustained advance 

in the Late Devensian (Hubbard et al., 2009). Indeed, the moderately-weathered Lawthorn 

Diamicton that underlies the interstadial deposits at Sourlie, and the Ballieston Till Formation 

(see below), which occurs within concealed depressions beneath Glasgow, must relate to an 

earlier expansion of glacier ice. 

There is general agreement that the MLD ice sheet withdrew towards the west and northwest 

during deglaciation of the area (Price, 1983; Sutherland, 1984). Ice-marginal lakes formed 

where ice impeded drainage, firstly on the watershed between the catchments of the Avon 

Water and River Irvine, in Glengavel (Fig. 2), where laminated glaciolacustrine silts occur to 

an elevation of at least 205 m above sea level (a.s.l.) (Nickless et al., 1978). This lake came 

into  existence  shortly  after  Highland  and  Southern  Uplands-sourced  ice  had  separated 

(Phemister  in Richey, 1926; McLellan, 1969; Martin, 1981). Water held within the upper 

Avon  Valley  merged  with  a  much  larger  lake,  ‘Lake  Clydesdale’  (Bell,  1874),  which 

eventually occupied the Clyde valley and its tributaries upstream of Glasgow. The level of 

Lake Clydesdale probably dropped in stages as north-westward retreat of the ice margin in the 

lower Clyde Valley made available spillways to the east at progressively lower elevations of 

200, 165, 102, and 85m a.s.l. respectively (Paterson et al., 1998, fig. 12). The lake finally 

drained eastwards via a col in the upper Kelvin valley at about 45 m a.s.l. (Forsyth et al., 

1996; Hall et al., 1998). 

Lake Clydesdale probably existed during the creation of the Main Perth Shoreline in the Forth 

estuary (Sissons and Smith, 1965; Sutherland, 1984), and possibly into the beginning of the 

Lateglacial Interstadial (GI-1) (Peacock, 1999, 2003).  The timing, contemporary sea level 

and manner in which the late-glacial sea eventually invaded Lake Clydesdale is disputed (see 

Peacock, 2003 for review), but it is generally accepted that the transgression had occurred by 

13.1 - 12.514C ka BP (based on uncorrected, reported ages from marine shells) (Peacock, 

1971,  2003;  Peacock et  al.,  1977;  Browne et  al.,  1977;  Rose,  2003).   The presence of a 

radiocarbon plateau at  this  time,  and uncertainty regarding the reservoir  correction at  the 

Greenland Stadial-2 (GS-2) to GI-1 boundary, preclude a more precise chronology based on 
14C dates  alone  (Peacock,  2003).   Final  disintegration  of  ice  blocking  the  Clyde  estuary 

resulted  in  the  level  of  Lake  Clydesdale  falling  from  45  m  to  no  less  than  40  m,  the 

contemporary sea level (Peacock, 2003). Sea level then fell rapidly, but further discussion of 

the subsequent, complex sea-level history of the area is not presented here, nor discussion of 

events during the Loch Lomond Stadial (Greenland Stadial-1, GS-1), when ice readvanced 
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from the Loch Lomond basin to the northwest of Glasgow (Rose et al., 1988; Evans, 2003; 

Rose and Smith, 2008). 

3. Lithostratigraphy of west central Scotland

Despite the success of modern geomorphological analysis in distiguishing the relative ages of 

landforms, it is essential also to consider the known sequence of deposits (lithostratigraphy) 

in order to determine a robust event stratigraphy. Detailed lithostratigraphical knowledge also 

underpins sophisticated three-dimensional modelling of Quaternary deposits (e.g. J.E. Merritt 

et al., 2007). The lithostratigraphy for the Clyde and Ayrshire basins presented here (Fig 3) 

develops  that  of  Sutherland (1999)  and  follows  a  new top-down,  nationwide  framework 

(McMillan et al., 2005, in press; www.bgs.ac.uk/lexicon).

The  Clyde  lithostratigraphy  is  based  on  formations  proposed  by  Rose  (1981,  1989)  and 

Browne  and  McMillan  (1989a).  The  lowermost  Ballieston  Till  Formation consists  of 

consolidated sandy silty clay diamicton with isolated boulders and pebbles. It is dark greyish 

brown at  depth,  but reddish brown at  the surface possibly due to weathering (oxidation). 

Sections in the till revealed numerous joints, many of which were striated and polished on 

their  surfaces.   Boreholes  and temporary sections from Glasgow revealed up to 15 m of 

consolidated,  laminated,  unfossiliferous,  silty  glaciolacustrine  clays  with  dropstones 

(Broomhill Clay Formation) overlying the Ballieston Till (Browne and McMillan, 1989a). 

These authors suggested that the laminations are varves, representing 600 - 1000 years of 

sedimentation.  Importantly, these glaciolacustrine clays occur to depths of c. 25 m below 

present sea level, requiring a low contemporary sea level at the time of deposition.  Where 

observed, the Broomhill Clay is overlain by the regional till of the area, the Wilderness Till 

Formation.   However, in parts of northern Glasgow, the latter rests on bedded, bouldery 

gravelly sands of the Cadder Sand Formation.  These sands have yielded bones and teeth of 

woolly rhinoceros, (Rolfe, 1966).  The Wilderness Till is described by Rose et al. (1988) as a 

defomation till, but it also includes tectonised thrust slices of sand and laminated clay from 

underlying units.  In Glasgow, it is a sandy silty clay diamicton with pebbles and isolated 

boulders.  The colour varies, depending on local bedrock.  In eastern Glasgow the Wilderness 

Till is overlain by the Broomhouse Sand and Gravel Formation, much of which forms ice-

contact topography (eskers, mounds, flat-topped kames and kettleholes).  These deposits have 

been  extensively  removed  for  aggregate.   The  Broomhouse  Sand  and  Gravel  Formation 

includes deltaic sands and glaciolacustrine laminated clays (Ross Sand and  Bellshill Clay 

members,  respectively),  which  were  deposited  in  an  ice-dammed  lake,  ‘Glacial  Lake 

Clydesdale’ (Bell, 1874), whilst the MLD ice sheet margin retreated from the position of 

eastern Glasgow.  
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In west central Scotland, raised glaciomarine deposits of late-glacial age are assigned to the 

Clyde  Clay Formation  (McMillan  et  al.,  in  press)  in  which  two principle  members  are 

recognised, the Paisley Clay and Linwood Clay.  The former member generally comprises 

thinly laminated clays and silts with dropstones.  This member is generally poor in fauna, 

only yielding the cold-water foraminifera Elphidium clavatum in significant numbers.  It has 

been mapped in areas around the Clyde estuary up to altitudes of c. 40 m a.s.l. (Browne and 

McMillan, 1989a).  The Linwood Clay Member is confined to western areas of the Clyde 

estuary where it commonly overlies the Paisley Clay.  It consists of more thickly bedded silts 

and clays  with a  richer faunal  assemblage.  (e.g.  Browne and McMillan,  1989a;  Peacock, 

2003).

 A gravelly silty clay diamicton, the Gartocharn Till Formation, occurs around the southern 

shores  of  Loch Lomond,  locally  including  marine foraminifera  and broken marine shells 

entrained by erosion of  units  from the Clyde Clay Formation (Rose et  al.,  1988).   Plant 

detritus found beneath the Gartocharn Till has been radiocarbon dated at 10.6 14C ka BP (c. 

12.5 cal  ka BP) (Rose et  al.,  1988),  confirming that  the  till  was deposited as glacier  ice 

readvanced during the Loch Lomond Stadial (GS-1).    

           

The Quaternary lithostratigraphy of central Ayrshire follows McMillan et al. (in press) and is 

based mainly on the succession that was exposed in an opencast coal site at Sourlie, near 

Irvine (Fig. 2) (Jardine et al., 1988; Sutherland, 1999).  The site was excavated into the north-

western side of Sourlie Hill, one of a swarm of broadly eastward orientated drumlins. The 

importance of the site lay in the discovery of thin lenses of organic material (Sourlie Organic 

Silt Formation) occurring between two units of till. These lenses yielded a very rich flora 

and fauna deposited within a shallow pond in a treeless,  low-shrub to sedge-moss tundra 

environment, and included bones of woolly rhinoceros and reindeer. Radiocarbon dates on 

antler fragments, plant debris and bulk organic matter suggest a Middle Devensian age (Bos 

et al., 2004). 

The basal unit comprises up to 7.5 m of very stiff, dark grey, silty sandy stony clay diamicton 

('lodgement till'),  the  Littlestone Till  Formation,  which locally encloses deformed sheets 

(glacial rafts?) of sand up to 7.5 m thick. The till is overlain by up to 3.5 m of unstratified, 

clay-rich  gravel  and  clayey  sand  (Lawthorn  Diamicton  Member  of  the  Littlestone  Till 

Formation), interpreted as an 'ablation deposit' by Jardine et al. (1988), but probably better 

described today as glacigenic debris flow deposits.  The Lawthorn Diamicton is overlain by 
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up to 5.5 m of the partially cross-stratified Armsheugh Sand and Gravel Formation that is 

interpreted by Jardine et al. (1988) to have formed as glaciofluvial outwash.  The Middle 

Devensian Sourlie Organic Silt Formation occupies shallow depressions within the surface of 

the sand and gravel.  The organic deposits are overlain by up to 3.5 m of pinkish brown, very 

stiff, pebbly sandy silty clay diamicton containing clasts of local sandstone, mudstone, coal 

and dolerite, ‘far travelled sedimentary, igneous and metamorphic rocks’ and shell fragments, 

including sparse paired valves of marine molluscs yielding Late Devensian amino acid ratios 

(Jardine et al., 1988). This unit, the  Eglinton Shelly Till Member of the Wilderness Till 

Formation, is correlated here with other widespread occurrences of shelly till  in Ayrshire 

(Smith,  1898;  Sutherland and  Gordon,  1993),  that  elsewhere  contains  rafts  of  cold-water 

marine silts and clays, notably at Afton Lodge, near Ayr (Gordon, 1993a).  The uppermost 

glacigenic  unit  at  Sourlie  comprises  up  to  12  m of  stiff,  dark  grey  ‘lodgement  till’,  the 

Auchenwinsey Till Member of the Wilderness Till Formation.  It forms most of the drumlin 

into which the opencast site was excavated. 

4. Methods

4.1. Remote sensing evidence

Remote sensing datasets were interrogated within ESRI Arc Map 9.2. Digital surface models 

(DSMs) and georectified 1:10,000 monoscopic aerial photographs were analysed to identify 

glacial landforms in the study area.  The surface models,  built  from NEXTMap® Britain 

topographic data (1.5 m vertical and 5 m horizontal resolution) were illuminated from the NW 

and NE to ensure capture of landforms with differing alignments.  The DSM was analysed at 

several scales, ranging from 1:10,000 to 1:200,000.  During larger-scale analyses, horizontal 

resolution  was  reduced  to  50  m.   Within  the  Glasgow  area  two  additional  versions  of 

elevation data were used.  One was a hill-shaded digital terrain model (DTM), for which data 

are processed to smooth abrupt surface features (e.g.  buildings) allowing clearer  (but less 

accurate) visualisation of the ground surface.  The second was the unprocessed, orthorectified 

radar data, which was effective in picking out glacial landforms within built up areas.  

4.2. Three-dimensional geological evidence

Over 60,000 borehole records exist  for  Glasgow and the surrounding area.    The British 

Geological Survey (BGS) is currently creating a suite of three-dimensional Quaternary and 

bedrock models, based on the borehole data (J.E. Merritt et al., 2005; J.E. Merritt et al., 2007) 

using the modelling software tool, GSI3D (Sobisch, 2000; Kessler et al., 2006).  In this study, 

outputs from these three-dimensional geological models were used for two purposes: (i) to 

confirm the basic composition of landforms, thereby enabling more confident discrimination 

between  true  glaciogenic  features  and  bedrock  controlled  features;  and  (ii)  to  aid 
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interpretation and identification in areas where subglacial landforms are masked by younger 

deposits (Fig. 4), or modified at surface due to urban development.  A comprehensive UK 

database containing borehole records (BGS Borehole Geology) was interrogated throughout 

the investigation to provide additional information about the surface and subsurface sediments 

in the mapping area.  

4.3 Field evidence

The greater Clyde basin area was resurveyed in the field at 1:10,000 scale over a 5 year 

period  in  the  1980s.   The  programme  also  included  investigation  of  sedimentological, 

geotechnical and palaeontological characteristics of sixteen cored boreholes, and studies from 

numerous  temporary sections.  This  work  resulted in  production  of  Quaternary geological 

maps of  the  region (Browne and McMillan,  1989b).   These  field  data  provide important 

constraints for the work presented here.

4.4 Data compilation 

All  landforms  and  mapped  sediment  distributions  were  captured  in  a  spatially  attributed 

ArcGIS© database.   Landforms  mapped  include:  ribbed  moraine,  streamlined  bedforms, 

meltwater  channels,  moraine  ridge  complexes  and  narrow  transverse  ridges.  Existing 

Quaternary geological maps of the area (e.g. British Geological Survey, 1987, 1993a, 1993b, 

2002;  Browne  and  McMillan,  1989b)  were  consulted  throughout  the  study.   A  recently 

compiled  2-D  digital  geological  map  of  Britain  at  1:50:000  scale  (DiGMapGB 50)  was 

interrogated in the GIS and forms the basis for mapped distributions of glaciofluvial, deltaic, 

and raised marine sediments, and areas where bedrock occurs at or near the surface.  

5. Results

A glacial geological and geomorphological map of the greater Clyde basin is shown in Figure 

5.  Some detail is lost reproducing the map at this scale, and numerous smaller features such 

as minor meltwater channels and individual moraine crests, are not shown. It is intended that 

a  detailed,  larger  format  glacial  geological  and  geomorphological  map  will  be  available 

elsewhere.   The  morphological,  spatial  and,  where  known,  basic  sedimentological 

characteristics of landform assemblages are described below. 

5.1. Ribbed moraine:

Suites  of  southwest  to  northeast  aligned,  broad  transverse  ridges  occupy  the  Clyde  and 

Ayrshire basins up to an elevation of c. 200 m a.s.l.  These ridges are 0.4-1.2 km in width, 

0.4-6.5 km in length and up to 40 m in height.  On a morphological basis, the ridges can be 

described as ribbed moraine, and their dimensions are entirely consistent with those reported 
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by  Dunlop  and  Clark  (2006).  Occupying  areas  principally  underlain  by  Carboniferous 

sedimentary rocks and basalts, the ribbed moraine maintain a long-axis alignment that does 

not concord with variations in bedrock strike.   Three-dimensional geological models (e.g. 

Fig. 4) in the Clyde basin indicate that these ridges commonly consist of glacial sediments 

assigned to the Wilderness Till Fm; thus their form is not considered to be controlled by 

bedrock structure.   

The ribbed moraine are extensively remoulded with development of, or modification into, 

elongate streamlined bedforms (described below).  A 50-m-long temporary section within a 

broader zone of drumlinised ribbed moraine ridges was described by McMillan and Browne 

(1983) and Browne and McMillan (1989a).   Here, a 2- to 5-m thick surface carapace of red-

brown sandy clayey till of the Wilderness Till Fm sharply truncates a series of underlying 

sediments (Fig. 6). The lower sediments comprise till, bedded gravels, sands and clay, and 

form a series of thrust slices dipping steeply westwards.  Two normal faults occur in these 

lower sediments, on the western side of the thrust stack. 

5.2. Streamlined bedforms:

Streamlined bedforms are well developed within the Clyde and Ayrshire basins, around the 

margins of the Southern Uplands, and to the southeast of the Lochwinnoch Gap (Figs. 2, 5). 

In the latter area they occur where till is thin and patchy, and locally are strike parallel to the 

gently dipping Clyde Plateau Volcanic Formation.  In that locality, bedforms are probably 

influenced by bedrock structure.  Cover of Quaternary sediments is much thicker over the 

basins to  the north and south,  which are  underlain mainly by Carboniferous  sedimentary 

rocks.   That  bedforms  in  the  Clyde  Basin  are  of  glacial  origin  is  supported  by  three-

dimensional geological models, which show that the landforms principally consist of glacial 

sediments assigned to the Wilderness Till Fm (Fig. 4).  Many of the streamlined bedforms in 

the basins are superimposed on, or consist of, re-shaped sections of the ribbed moraine (Fig. 

7).  

Numerous geomorphologically-based ice sheet reconstructions use the approach of grouping 

bedforms into coherent ‘flowsets’ or ‘swarms’ (e.g. Boulton and Clark, 1990; De Angelis and 

Kleman, 2007; Stokes et al., 2009; Greenwood and Clark, 2009a).  The streamlined bedforms 

identified  here  can  be  broadly  divided  into  six  flowsets  based  on  their  geographical 

distribution,  trend,  morphology  and  spatial  relationships  with  other  geomorphological 

features (Fig 8, Table 1):

5.2.1. Flowset I
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Streamlined bedforms assigned to flowset-I comprise a suite of drumlins trending towards the 

east and east-northeast, and are generally confined to the northeast side of the River Clyde. 

They have a mean length of 826 m, and a mean elongation ratio (ER) of 3.7.  Bedforms in this 

group have been described previously by Rose (1987) and Rose and Smith (2008).   

5.2.2. Flowset II

Streamlined  bedforms  assigned  to  flowset-II  comprise  a  more  subdued  assemblage  of 

drumlins trending towards the north and north-northeast.  These bedforms curve along the 

northwest margins of the Southern Uplands, showing a very slight divergence at the elevated 

ground to the north of Greenock Mains.  They are distinct from flowset-I on the basis of 

shorter length (mean: 563 m) and of lower ERs (mean 2.9).  Flowset-II tentatively includes 

two similarly aligned, but more isolated streamlined bedforms to the northeast of Corse Hill. 

5.2.3. Flowset III

Flowset III comprises ice-moulded bedrock and crag-and-tail forms over higher elevations 

and drumlins in the lower basin areas.  They are well-preserved, and trend in a south to west-

northwest direction, forming an overall convergent pattern towards the southwest (Fig. 8). 

Subsets (III-a – III-e) are identifiable within flowset-III on the basis of slight variations in 

alignment and differences in morphological characteristics.  For example, subsets III-b and 

III-c have a considerably longer mean length (> 1 km) (Table 1).   This probably reflects 

thinner till cover, and local concordance with strike of the gently dipping volcanic rocks. 

Although  some  of  these  bedforms  may  be  influenced  by  bedrock  structure  over  higher 

elevations,  a  consistent  convergent  trend is  maintained in  the  lower-lying  sediment-filled 

basins.  The transition between individual  subsets is  largely gradational;  thus,  they are all 

incorporated within flowset-III.

5.2.4. Flowset IV

Flowset-IV comprises  a  small  cluster  of  streamlined  bedforms  c.  12  km south  from the 

Blantyreferme  Moraine  (see  below).   These  bedforms  trend  in  an  east  to  east-southeast 

direction.   They possess  the shortest  lengths  (mean 321 m) of all  the  flowsets  identified 

(Table 1).   

5.2.5. Flowset V

Flowset-V comprises a well-defined suite of streamlined bedforms trending towards the east. 

They are generally confined to the western side of the Kilmarnock Moraine Belt (Fig 8) (see 

below);  only a  few isolated bedforms occur  on the  immediate  eastern side.   Streamlined 

bedforms belonging to flowset-V overprint those of flowset-III (Figs 8, 9)
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5.2.6. Flowset VI  

Flowset  VI  comprises  well-defined drumlins  trending in  a  southeast  direction.   They are 

confined to the Clyde basin, and extend eastward as far as the Blantyreferme Moraine (see 

below).  Overprinting of flowset-VI bedforms onto the generally longer flowset-I bedforms is 

apparent in parts of the Clyde basin, a characteristic described by Rose and Letzer (1977) and 

Rose and Smith (2008).    

5.3. Glaciofluvial assemblages:

Glaciofluvial assemblages described here include both moundy, kettled, ice-contact deposits 

and terraced outwash spreads, both assigned to the Broomhouse Sand and Gravel Formation. 

It is worthy of note that glaciofluvial deposits portrayed on BGS maps may include deltaic 

sequences  that  formed  in  ice-marginal  or  proglacial  lakes;  only  widespread,  fine-grained 

deposits are generally identified as ‘glaciolacustrine’. Major belts of glaciofluvial deposits 

occur principally in the valleys of the Clyde, Kelvin and Avon (British Geological Survey, 

1993a, 1993b, 1994). Many of the deposits in the southeast of the area are associated with 

systems of north-easterly-descending ice-marginal meltwater channels, notably southeast of 

Eaglesham and south of Strathaven (Richey et al., 1930; Paterson et al., 1998), where they fall 

from about 320 to 260 m a.s.l. (Fig. 10A). Further significant belts of mounds and undulating 

spreads  of  sand  and  gravel  occur  in  the  upper  Ayr  and  Nith  valleys  (British  Geological 

Survey, 1982).  These deposits  are also associated with coherent  systems of ice-marginal 

meltwater channels, which in the upper Ayr valley descend from about 300 to 250 m a.s.l. 

towards the east.   Further sets of eastward descending marginal meltwater channels exist in 

the Nith valley at altitudes from about 300 m down to 200 m a.s.l.  

5.4. Moraine ridge complexes:

Three major moraine complexes have been identified in the Ayrshire and Clyde basins, at 

Kilmarnock,  Blantyreferme  and  Eaglesham  respectively  (Figs.  2,  5).   The  Kilmarnock 

Moraine Belt (KMB, Fig. 5) extends for approximately 14 km in a south-southwest to north-

northeast direction, and ranges from 5 to 20 m in height.  To the northeast of Kilmarnock, the 

belt reaches a maximum width of nearly 800 m, where it forms multiple crests.  Borehole 

records indicate that at least part of the complex comprises clay and sandy clay, while records 

immediately northwest  of  the ridge reveal  till  interbedded with sandy clay.    Flat  terrain 

immediately southeast of the complex is underlain by up to 7 m of sands, laminated silts and 

clays.

11

380

385

390

395

400

405

410



The  Blantyreferme  Moraine  (BM,  Fig.  5)  was  first  recognised  by  Clough  et  al.  (1911). 

Forming  a  near-symmetrical,  cross-valley  ridge,  it  is  aligned  south-southwest  to  north-

northeast extending for over 2 km, and reaching nearly 20 m in height.  Field mapping has 

revealed the feature to be of variable lithology, comprising till,  sand and gravel and also 

laminated clay and silt (Browne and McMillan, 1989a).   

The Chapelton Moraine Belt (CMB, Fig. 5) comprises a string of ridges and mounds that lie 

to the east of Eaglesham on the northern slopes of Corse Hill (Richey et al., 1930; Paterson et 

al., 1998).  These landforms, which include esker fragments, were formed at the southern 

margin of Highland-sourced ice early in the deglaciation of the area. They descend eastwards 

from about 305 to 260m a.s.l. and were described by Sissons (1963, 1964, 1967a) as part of 

his more widespread evidence for the supposed ‘Perth Readvance’ (Simpson, 1933).

A further,  near-coherent  chain  of  moraine  ridges  occurs  in  the  upper  Ayr  valley,  above 

Greenock Mains. Individual ridges, up to 250 m in length, extend from c. 4 km north of 

Greenock Mains eastward for c. 8 km, declining in altitude from 310 to 270 m a.s.l.  Suites of 

eastward declining, marginal meltwater channels occur on the northern and southern flanks of 

the upper Ayr valley, at altitudes of about 305 to 270 m a.s.l.  Those on the northern side 

merge with the moraine ridges to the north of Greenock Mains (Fig. 10B).   

5.5. Glaciolacustrine assemblages:

Extensive spreads of  fine-grained glaciolacustrine  sediment of  the Bellshill  Clay Member 

occur at surface southeast and east of the Blantyreferme Moraine (Fig. 5).  Glaciolacustrine 

sediments also crop out  locally  on the  western flanks  of  the  Kelvin valley (Browne and 

McMillan, 1989a; Hall et al., 1988) and along the margins of the Irvine valley downstream of 

Darvel (Nickless et al., 1978).

The glaciolacustrine assemblages in the Clyde basin commonly pass up and laterally into flat-

topped, deltaic deposits of the Ross Sand Member (Browne and McMillan, 1989a; Martin, 

1981).   Formerly  exposed  sections  revealed  sands  and  gravelly  sands  forming  dipping 

foresets of Gilbert-type deltas (Fig 11, A and B).  The deltaic deposits locally exceed 20 m in 

thickness in the eastern Clyde basin (Browne and McMillan, 1989a).   

5.6. Narrow transverse ridges:

Two suites of previously unreported, closely spaced, narrow, linear transverse ridges occupy 

parts of the lower Irvine valley (Fig. 12) and the southern entrance to the Lochwinnoch Gap. 

The former, situated on the western side of the KMB trend broadly from south-southwest to 

12

415

420

425

430

435

440

445



north-northeast, and the latter trend broadly west to east.  Those in the lower Irvine valley 

occur between about 30 m and 150 m a.s.l., while those south of the Lochwinnoch Gap lie 

between about 35 m and 140 m a.s.l.   The former have a mean width of 75 m, a mean height 

of 2.4 m, and generally possess a symmetrical cross-profile (Fig. 13).   Many of the ridges are 

continuous for over 400 m, maintaining their alignment across topographic undulations of up 

to 20 m in height. No sections have yet been observed within any of the landforms.  However, 

borehole evidence from the Kilmarnock area demonstrates that surface sediments in the area 

of these narrow ridges comprise silts, sands and till.  In places, the narrow transverse ridges 

are clearly superimposed on streamlined bedforms assigned to flowset V (Fig 12).

5.7. Raised marine deposits:

The lithostratigraphy of raised marine deposits in the Clyde basin has been described above. 

Field mapping has identified deposits of the Paisley Clay Member occupying extensive areas 

of the Clyde basin up to c. 40 m a.s.l. (Browne and McMillan, 1989a).  Three-dimensional 

geological modelling supports the field interpretation and reveals thick spreads of silts and 

clay,  often  partially  masking  the  underlying,  drumlinised  landscape  (Fig.  4).   Further 

discussion  of  the  distribution  of  raised  marine  deposits  and  associated  features  is  not 

presented here.      

6. Interpretation of events in west central Scotland

6.1. Pre-Late Devensian Glaciation

Evidence for a pre-Late Devensian, MIS 4 or older glacial advance-retreat cycle has briefly 

been discussed in section 2. It led to the deposition of the Ballieston Till Formation in the 

Clyde basin, and the Littlestone Till Formation in Ayrshire; it probably involved a substantial 

advance  of  ice  from the  northwest.  The  apparently  weathered  top  of  the  Ballieston  Till 

suggests that there was a significant period of exposure before deposition of the overlying, 

glacitectonised, thinly laminated, glaciolacustrine sediments of the Broomhill Clay Formation 

in the Bellshill area (Figure 11C).  

6.2. Late Devensian Glaciation; Stage A.  (Fig.14A; build-up to LGM)

If the laminae in the Broomhill Clay Formation are correctly interpreted as varves, at least 

600 to 1000 years elapsed before emplacement of the overlying Wilderness Till Formation 

(Browne and McMillan, 1989a).  These glaciolacustrine sediments may document ponding 

during the earliest stages of ice advance into the area.  Their occurrence to depths of 25 m 

below present sea level, suggests that at the contemporary relative sea level was at least 25 m 
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lower  than  present  because  there  is  no  known barrier  that  could  have  prevented  marine 

invasion. 

Instances  exist  where  streamlined  bedforms  from each  flowset  are  superimposed  on  the 

ribbed moraine ridges (e.g. Fig 7).  Therefore, ridge formation must have occurred prior to the 

earliest phases of preserved streamlining in the study area.  Regional geological evidence (e.g. 

Price, 1975; Sutherland, 1984; Sutherland and Gordon 1993) (Fig. 15) along with numerical 

ice sheet models (Hubbard et al., 2009) indicate that initial MLD ice-sheet advance into the 

area was from the northwest, broadly perpendicular to the ribbed moraine.  We suggest this 

was the period of ribbed moraine formation (Fig 14A), when the ice front advanced against a 

reverse slope, building (then overtopping) sediment ridges through folding and thrusting of 

proglacial  sediments.  A similar  mechanism is  invoked for the formation of  ‘cupola hills’ 

elsewhere  (Benn and Clapperton,  2000;  Benn and Evans,  1998).  The sediments  formerly 

exposed at Holmbrae Road in Glasgow (Fig. 6) (McMillan and Browne, 1983) are consistent 

with this interpretation.  Initial advance lead to thrusting of the gravel, sand and clay beds in 

the eastern side of the section.  The two normal faults may have been activated during a minor 

ice margin retreat, prior to overriding and deposition of the upper (Wilderness) till.    The 

concept that some ribbed moraine originate as overridden ice marginal moraines has been 

proposed by Möller (2006).  However, rigorous investigation of the sediments is required to 

test this hypothesis for these particular ribbed moraine suites.

That  landforms  from  such  an  early  stage  of  glaciation  could  survive  is  supported  by 

preservation  of  Middle  Devensian  deposits  in  the  area,  together  with  the  widespread 

occurrences of shelly diamicton (Eglinton Shelly Till) and glacial rafts of glaciomarine mud 

that were most likely scavenged from the Firth of Clyde during this early build-up stage. 

Their survival was probably aided by the development of an ice divide over the Firth of Clyde 

during  the  LGM  (see  below),  beneath  which  there  was  minimal  subglacial  landscape 

modification.

6.3. Late Devensian Glaciation; Stage B.  (Fig.14B; LGM)

The drumlins of flowset-I must have begun to form after ice in the Clyde basin had become 

sufficiently thick to over-top the main Clyde-Forth drainage divide, allowing fast, essentially 

non-topographically  constrained  ice  flow  beyond.   A  significant  dispersal  centre  had 

developed over the Southern Uplands had occurred by this stage, contributing to deflection of 

ice in the Clyde basin toward the east, as evidenced by the well documented Dubawnt-type 

train (cf. Dyke and Morris, 1988) of essexite erratics that were dispersed from their source 
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near Lennoxtown (Fig. 15) into the Firth of Forth (Peach, 1909: Shakesby, 1978, Evans et al., 

2005). Striae patterns (Paterson et al., 1998) (Fig. 5) also document this flow.  

Streamlined bedforms belonging to flowset-II were formed by north-eastward flow towards 

the Firth of Forth, driven by thicker ice to the southwest.  This flow would have deposited 

Southern Upland till, with north-orientated clasts over the lower shelly tills (possibly of the 

Eglington  Shelly  Till  Member)  as  described  at  Nith  Bridge  (Holden  and  Jardine,  1980; 

Sutherland, 1993) (Fig 16).   

6.4. Late Devensian Glaciation; Stage C. (Fig.14C)

Streamlined bedforms from flowset-III document convergent south-westward and westward 

flow into the Firth of Clyde, and are consistent with patterns of glacial striations in the north 

Ayrshire basin (Paterson et al., 1998) (Fig. 5).  This evidence suggests that a major change in 

the ice sheet configuration had occurred, largely caused by drawdown to the west.  Subsets of 

flowset-III  probably  document  a  transgressive  phase  where  part  of  the  Southern  Upland 

dispersal centre was scavenged by this increasing drawdown as ice flowed westward over the 

south of Arran.  Westward transportation of Ailsa Craig erratics (Sissons, 1967a) (Fig. 15) 

would have occurred during this  flow phase.  By this stage, the north-eastward flow that 

generated  flowset-II  (Fig  14B  -  see  above)  must  have  switched  off,  allowing  eastward 

migration of the ice divide, beneath which minimal subglacial modification was occurring.

6.5. Late Devensian Glaciation; Stage D. (Fig.14D) 

A  further,  substantial  alteration  in  ice  sheet  configuration  and  local  basal  conditions  is 

indicated by the following suite of landforms: limited east-trending streamlining (flowset-IV), 

eastward descending marginal meltwater channels, eastward descending suites of ice contact

glaciofluvial landforms (including the Chapelton Moraine Belt), and minor eastward-pushing 

morainic assemblages in the Ayr valley.  Collectively, they demonstrate ice-divide migration 

back towards the west, coupled with ice-sheet thickening in the vicinity of the Firth of Clyde. 

The configuration is roughly that originally proposed for the ‘Perth Readvance’ in central 

Scotland (Sissons, 1963, 1964, 1967b). Of note is the limited bedform development from this 

stage,  with  only  a  small  patch  of  Group  IV  bedforms  occurring  in  the  east.   A  minor 

readvance is apparent in the Ayr valley near Greenock Mains where a coherent assemblage of 

meltwater  channels  and  moraine  ridges  indicate  a  late,  north-eastward  push  (Fig.  10B) 

(Holden and Jardine, 1980).

6.6. Late Devensian Glaciation; Stage E. (Fig.14E) 
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A subsequent phase of more persistent streamlining  is indicated by bedforms assigned to 

flowset-V and VI.   These bedforms are generally longer than those of flowset-IV to the east 

(Table  1).   Abrupt  termination  of  flowset-V  and  VI  just  beyond  (to  the  east  of)  the 

Kilmarnock and Blantyreferme moraine complexes demonstrates that the ice flow phase that 

generated them extended to these areas.  This flow phase probably included, or was followed 

by ice margin stabilisation at the moraines.  Cross-cutting of drumlins in the Glasgow area 

(e.g. Rose and Letzer, 1977) indicates that cessation of the formation of flowset-I drumlins 

must have occurred prior to formation of flowset-VI bedforms. 

To the east of the Kilmarnock and Blantyreferme moraine complexes (which may or may not 

be contemporaneous features),  vast  suites of  glaciolacustrine and deltaic sediments in the 

Clyde and Irvine valleys demonstrate existence of ice-dammed lakes. The narrow, closely-

spaced  ridges  observed  in  the  Kilmarnock  area  (Figs.  5,  12)  and  to  the  west  of  the 

Lochwinnoch Gap (Fig. 5) are similar in morphology to De Geer moraines, which form at, or 

close to the grounding line of calving glaciers (e.g. Lindén and Möller, 2005).  The scale of 

the landforms is consistent with that of De Geer moraines, as is their pattern trending across 

topographic  undulations  (e.g.  Todd  et  al.,  2007).  Given  the  abundant  evidence  for  ice-

dammed lakes in the area, and local borehole records of interbedded sands, silts and till, the 

landforms are interpreted as De Geer moraines. 

A simple estimate of calving speed can be calculated across a hypothetical calving margin 

similar to the one indicated by the De Geer moraines at Kilmarnock.  Warren and Kirkbride 

(2003) described an empirical linear relationship between water depth (DW) and calving speed 

(UC) for glaciers terminating in freshwater bodies:

UC = 17.4 + 2.3DW

DW can be approximated from the c. 150 m a.s.l. upper altitude of De Geer moraines (proxy 

for lake surface altitude) and the base of the Ayr valley (30 m a.s.l.).  Assuming a similar 

calving margin relationship, palaeo-calving rate is calculated to have been 293 m a-1 across 

the  deepest  part  of  the  lower  Ayr  valley.   Under  steady  state  conditions  (ice  front  not 

retreating, nor advancing), ice velocity at the margin would have been c. 290 m a-1.  These 

values are comparable with those of modern glaciers terminating in proglacial lakes on the 

eastern  side  of  the  South  Patagonian  Icefield  (e.g.  Warren  and  Aniya,  1999).   Ice  flow 

velocities  of  this  order  are  consistent  with  the  local  development  of  well-preserved 

streamlined bedforms assigned to flowset-V (Figs. 5, 8).  The survival, locally, of extended 
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Devensian sequences suggests that fast flow was enabled by basal sliding, and a relatively 

thin, near surface deforming layer.

The preservation of both pre-MLD sediments and landforms interpreted to have developed 

early in the MLD glaciation is intriguing.  Both the Clyde and Ayrshire basins lay directly in 

the path of ice sheet advance, and were subjected to more than one phase of relatively fast 

glacier  flow (described above).   Despite  thick ‘soft  sediment’  sequences  occupying these 

basins, it seems unlikely that widespread bed deformation occurred at any one time.  Rather, a 

mosaic (sensu Piotrowski et al., 2004) of deforming and stable spots (characterised by ice-bed 

separation and basal sliding) is envisaged, enabling some sediment/landform preservation.   

7. Towards a regional synthesis

In order to put our results into a more regional context (Fig.17) we briefly compare and test 

our deductions with some of those published recently for surrounding segments of the former 

BIIS.  Importantly,  our  history  of  events  for  west  central  Scotland  is  consistent  with  the 

paradigm of a mobile, dynamic BIIS (Bowen et al., 2002; Bradwell et al., 2008; McCabe, 

2008; Evans et al., 2009; Greenwood and Clark, 2009b). 

Recent numerical modelling experiments (Hubbard et al., 2009) simulate initial ice advance 

from the northwest into the Clyde and Ayrshire basins, accompanied by independent ice cap 

development  over  the  Southern  Uplands.   Our  hypothesis  for  pre-cursor  ribbed  moraine 

development partially through accumulation and over-riding of ice marginal sediments also 

requires  Southern  Uplands  ice  to  have  remained  a  confined,  independent  mass  while 

northwest-sourced ice entered the Clyde and Ayrshire basins(Fig. 14A).  Further support for 

this early configuration comes from erratic transport paths (Fig 15) where a distinct limit of 

Highland-sourced erratics has been identified (Fig. 5) (Eyles et al., 1949).   Coupling of the 

two ice masses is unlikely to have occurred until northwest-sourced ice reached at least the 

south-eastern fringes of the Ayrshire basin.  The subsequent development of a substantial ice 

divide over Arran and the Firth of Clyde with eastward flow across central Scotland by the 

LGM (Fig. 17B) has similarities with a recent reconstruction for northern England (Evans et 

al.,  2009)  in  which ice  sourced  over  southwest  Scotland and the  Lake District  is  driven 

eastwards  through  the  Stainmore  and  Tyne  gaps.   Importantly,  there  is  no  evidence  for 

eastward  transport  of  Arran  and  Ailsa  Craig  erratics  (Fig.  15),  limiting  the  westernmost 

position of the ice divide to the vicinity of Arran.         
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There is no direct evidence to constrain the timing of ice divide migration towards the east 

following the LGM (Fig. 17C). However, there is evidence of post LGM enhanced drawdown 

of ice towards shelf-edge fans on the continental shelf to the northwest (Bradwell et al., 2008) 

and  into  the  Irish  Sea  basin  (Eyles  and  McCabe,  1988;  Roberts  et  al.,  2007).   Our 

reconstruction  of  westward  flow over  the  North  Channel  towards  Ireland  at  this  time  is 

consistent with the view of Salt and Evans (2004).  Post-LGM, convergent westward flow 

may have been similar to that of an ephemeral ice stream (cf. Stokes et al., 2009) responding 

to break up and calving offshore to the northwest of Ireland.  This interpretation is consistent 

with the findings of Greenwood and Clark (2009b) that once the ice sheet was established, 

geometry was largely controlled by fast flow / streaming corridors, which in this instance 

forced the ice divide to the east.     

The past two decades have seen considerable advances towards understanding the dynamics 

and deglacial history of the Irish sector of the last BIIS, largely through the work of McCabe 

and co-workers (e.g. Knight and McCabe, 1997; McCabe et al, 1998, 2005, 2007a).  Bedform 

patterns demonstrate that an ice sheet dome existed in the vicinity of Lough Neagh for much 

of the glacial cycle (Fig. 17B,C,D) (Knight, 2002) and a variety of inverse ice sheet models 

reconstruct an ice ridge over the North Channel linking the Southern Uplands and Lough 

Neagh dispersal centres during, and following, the LGM (e.g Boulton et al.,  1991, 2002). 

Two major readvances interrupted decay of the Irish Ice Sheet: the Clogher Head Readvance 

(c. 15.0 - 14.2 14C, 18.5 - 16.7 cal ka BP), and the Killard Point Readvance (c. 14.2 - 13.0 14C, 

17.1 - 15.2 cal ka BP), the latter believed to be a direct response to Heinrich Event 1 in the 

North Atlantic (McCabe et al., 1998; McCabe and Clark 2003; McCabe et al., 2007a). We 

speculate that the strong westward ice flow during stage C (Fig. 17C) may have been in 

operation during deposition of a moraine at Corvish, County Donegal, during the Clogher 

Head Readvance (McCabe et al., 2007a).        

Our interpretation of subsequent westward migration of the Forth-Clyde ice divide towards 

Kintyre followed by topographically constrained eastward ice flow (Fig. 17D), is consistent 

with aspects of the reconstruction by Salt and Evans (2004) (their stages F and G).  Renewed, 

climatically-driven ice sheet growth over northeast Ireland during the Killard Point Stadial 

has been suggested by McCabe et al. (1998), and is supported by recent cosmogenic exposure 

ages of 15.6 10Be ka BP from moraine sequences in north-western Ireland (Clark et al., 2009). 

It  is  possible  that  the  thickening of  ice  over  Arran and the  Firth  of  Clyde deduced here 

occurred at a similar time (Fig. 17D).  
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It is noteworthy that the ice limits during our Stage D (and stage 3 of Paterson et al., 1998) are 

consistent with the ice sheet configuration in central Scotland suggested by Sissons (1963, 

1964, 1967b) during the hypothesised ‘Perth Readvance’. All require the presence of a large 

ice mass over the Firth of Clyde during deglaciation. Evidence for a significant readvance at 

Perth was questioned by Francis et al. (1970), Paterson (1974), Price (1983), and Sutherland 

(1984), and the concept was rejected by Sissons (1976).   McCabe et al. (2007b) recently cited 

new evidence in support of a readvance at Perth, which they correlate with the Killard Point 

Stadial in Ireland, concluding that it indicated an ice-sheet wide response to North Atlantic 

climate forcing.  However, the evidence at that location remains open to interpretation (see 

comments by Peacock et al.,  2007 and reply from McCabe et al.,  2007c).   The evidence 

presented here cannot support nor refute that a more widespread readvance of the eastern ice 

margin took place at this time.  However, the configuration depicted (Fig. 14D, 17D) would 

have had the effect of isolating ice masses on the eastern side of the Clyde-Forth drainage 

divide  from  their  western  source,  possibly  leading  to  development  of  widespread  ‘ice 

stagnation’ glaciofluvial topography, initially cited as one piece of evidence for the readvance 

(c.f. Sissons 1964).  

Local  readvances  have  been  proposed  to  have  occurred during  deglaciation at  Blackrock 

Ridge, at the head of Loch Indaal, Islay (Peacock and Merritt, 1997), Stranraer (Charlesworth, 

1926; Peacock and Everest, 2009), and at Armoy and east Antrim on the northeastern Irish 

coast (McCabe, 2008)  We suggest that moraine building at Blantyreferme and Kilmarnock 

(Fig. 5),  occurred during the same overall  phase of events.   Ice retreat from Loch Indaal 

occurred  possibly  only  a  few  hundred  radiocarbon  years  before  the  beginning  of  the 

Lateglacial Interstadial (GI-1) (Peacock, 2008), placing tentative chronological constraints on 

these late ice margin oscillations.   Work in progress suggests that the outer Firth of Clyde 

was probably deglaciated before the opening of GI-1, at c. 14.7 cal ka BP (J.D. Peacock, 

personal communication), with deglaciation of the Glasgow region occurring some time after. 

The Irish record suggests radically different local ice sheet geometries during build-up and 

decay  (McCabe,  2008;  Greenwood  and  Clark,  2009b).   In  contrast,  the  ice  sheet  decay 

geometry  in  west  central  Scotland  is  reconstructed  to  have  been  similar  to  the  build-up 

configuration (Fig. 14A, E).  This was likely a result of proximity to the western Highlands, 

where the ice sheet was well situated to survive rises in equilibrium altitude during initial 

warming.  Thus, the western Highlands and parts of Argyll were able to remain an important 

source area nourishing late stage ice margin oscillations. 
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8. Summary of regional events

Following ice sheet build up (Fig. 17A), a centre of relatively immobile ice existed over 

Argyll and west central Scotland (Fig.14B).  Ice from this centre later linked with dispersal 

centres over Lough Neagh, in Ireland, and over the hills of southwest Scotland and the Lake 

District.  Ice was driven eastward towards the Firth of Forth and through the Stainmore and 

Tyne Gaps (Fig. 17C) (Evans et al.,  2009). Ice divides then migrated both eastwards and 

southwards  as  a  result  of  enhanced  drawdown  of  ice  towards  shelf-edge  fans  on  the 

continental shelf, to the northwest, and into the Irish Sea basin (Fig.17C).  This reorganisation 

severely reduced the power of eastward flow towards the Firth of Forth and resulted in the 

generally accepted, relatively early deglaciation of eastern Scotland. A reversal of ice flow 

also occurred within the Vale of Eden and Solway Lowlands.

A major ice-surface high and ice divide developed over the outer Firth of Clyde, possibly 

during the Killard Point Stadial of Ireland.  The ice divide probably linked with dispersal 

centres over Lough Neagh and the Southern Uplands (Fig. 17D). The ice sheet surface now 

descended from west to east over west central Scotland.  On southern fringes of the Southern 

uplands, ice flow became topographically constrained (Salt and Evans, 2004), extending into 

the Solway Firth (Evans et al., 2009).  

Subsequent  local  readvances  at  east  Antrim,  Armoy,  Islay,  Stranraer,  Kilmarnock  and 

Blantyreferme  punctuated  late  stages  of  ice  sheet  decay.   Whether  these  ice  margin 

oscillations were synchronous and climatically driven, or diachronous and influenced by local 

factors such as topography and glacier bed hydrology, is uncertain.  The remaining ice mass is 

likely to have been extremely unstable during final retreat from the Clyde basin, with large 

portions of the bed below the contemporary sea level. 

10. Conclusions

The main conclusions from this research are as follows:

1.   Published  dates  on  preserved  interstadial  organic  deposits  show  that  the  Main  Late 

Devensian (MLD) (MIS 2) glaciation of central Scotland began after 35 ka cal BP. Some 

deposits of an earlier glaciation (MIS 4 or older) occur locally within the Clyde and Ayshire 

basins.

2. During a sustained build-up phase, ice advanced from the western Scottish Highlands into 

the Clyde and Ayrshire basins.  Glaciomarine muds and shelly deposits scavenged from the 

Firth of Clyde were redeposited widely across Ayrshire.  Ice advance against reverse slopes 
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enabled  the  build  up  of  marginal  sediment  sediment  accumulations.   Some  of  these 

accumulations probably formed pre-cursor ridges, moulded into suites of ribbed moraine by 

subsequent over-riding.

3.  Sustained  stadial  conditions  at  the  Last  Glacial  Maximum (LGM) (30-25  ka  cal  BP) 

resulted in development of a major dispersal centre over the Southern Uplands and deflection 

of Highland ice towards the east  and northeast.   Relatively immobile ice beneath an ice-

surface ‘high’ positioned over Ayrshire and the western Clyde basin, preserved previously-

formed subglacial landforms and fed a wide corridor of fast-flowing ice towards the Firth of 

Forth. 

4. A substantial re-configuration of the ice surface over west central Scotland was caused by 

enhanced westward drawdown into the outer Firth of Clyde and eastward migration of an ice 

divide towards the Clyde-Forth watershed. This reorganisation is tentatively correlated with 

the Clogher Head Readvance established in the north of Ireland (c. 15.0 - 14.2 14C, 18.5 - 16.7 

cal ka BP).

5.  Renewed ice sheet thickening over the Firth of Clyde may have accompanied growth of 

the Irish Ice sheet during the Killard Point Stadial (c. 14.2 - 13.0 14C, 17.1 - 15.2 cal ka BP). 

Subsequent ice sheet retreat was initially characterised by substantial meltwater production, 

ponding and erosion.

6. One or more significant ice front oscillations occurred late during deglaciation. These were 

nourished by elevated source areas in the western Highlands and Argyll, which were well 

placed to survive initial warming.  The discovery of De Geer moraines in western Ayrshire 

allows ice margin velocity during one such oscillation to be calculated as ≤ 290 m yr  -1. 

These late oscillations probably occurred close to the opening of the Lateglacial Interstadial 

(GI-1). 

7.  Once  the  MLD ice  sheet  margin  had  retreated  into  the  inner  Firth  of  Clyde,  it  was 

extremely vulnerable to collapse, which may have occurred early in GI-1. It was accompanied 

by marine incursion of the lower Clyde Valley up to c. 40 m above present-day sea level. 
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Figure Captions

Figure 1. Regional context.  Box (labelled Figs. 2, 5, 14) shows location of study area in west 

central Scotland.  Proposed former glacier ice limits and ages from Sissons (1967b), Dawson 

(1982), Rose et al. (1988), Peacock and Merritt (1997), McCabe et al. (1998, 2003), Thomas 

et al. (2004), Ballantyne (2007), and McCabe (2008).   Key place names are shown.

Figure  2.  Topography  of  study  area  and  place  names  mentioned  in  text.   Locations  of 

subsequent  figures  are  shown.   Hill-shaded  digital  surface  model  built  from  Intermap 

Technologies NEXTMap® Britain topographic data. Northwest illumination.  

Figure  3.   Simplified  lithostratigraphy for  the  period  spanning  the  Main  Late  Devensian 

glaciation for the Clyde and Ayrshire basins.  Based on McMillan et al. (2005, in press).  For 

clarity only formations of primary relevance to this study are included.  Fm - Formation, Mbr 

- Member.  GICC05 - Greenland Ice Core Chronology 2005 events, after Lowe et al. (2008). 

Figure 4.  Three-dimensional Quaternary geological models revealing basic composition of 

geomorphological features in Glasgow area.  A.  Fence diagram revealing three-dimensional 

geology  of  Erskine  -  Renfrew  area.   Note  drumlins  entirely  comprise  sediments  of  the 

Wilderness Till Formation (in blue).  Cross sections are based on borehole records.  Vertical 

sticks represent individual boreholes  B.   Complete three-dimensional geological model for 

central Glasgow area showing Paisley Clay Mbr draped over drumlins comprising Wilderness 

Till Fm.  C.  Three dimensional geological model of Paisley area.  Paisley Clay Formation 

sediments (in green) and alluvial sediments (in yellow) are removed to more clearly reveal 

bedforms in the Wilderness Till  Formation (blue).   All  images are vertically exaggerated 

between 5 and 10 times.  

Figure 5.  Glacial geomorphology and geology of the Clyde and Ayrshire basins.  Erratic 

limits from Eyles et al. (1949) and glacial striations from Paterson et al. (1998).  

Figure 6.  Temporary section within zone of drumlinised ribbed moraine at Holmbrae Road, 

Glasgow.  Ice flow direction inferred from regional streamlining and sense of compression.

Figure 7. Streamlined bedforms superimposed on ribbed moraine.  See text for description. 

Hill-shaded digital  surface  models  built  from Intermap Technologies  NEXTMap® Britain 

topographic data.  Northwest illumination.    
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Figure 8.  Streamlined bedforms and flowsets identified in this study. fs - flowset.

Figure  9.  Cross  cutting  of  streamlined  bedforms  in  the  Ayshire  basin  to  the  west  of 

Kilmarnock.   

Figure 10.  A.  Ice-marginal meltwater channels clearly descending towards the NE, to the 

south of Strathaven.  B.  Assemblage of moraine ridges and NE declining marginal meltwater 

channels in the vicinity of Greenock Mains.  White arrows denote inferred final palaeo-ice 

flow  direction.   Hill-shaded  digital  surface  models  built  from  Intermap  Technologies 

NEXTMap® Britain topographic data.  Northwest illumination.        

Figure 11.  Deposits associated with ice-dammed lakes in the Clyde basin. Deltaic sediments 

of the Ross Sand Mbr revealed in former sand and gravel pits near Bishopbriggs (A) and 

Hamilton (B).  Photos from BGS archive image base.  C.  Lithostratigraphy including surface 

and buried glaciolacustrine deposits, revealed in the BGS Bellshill borehole. 

Figure  12.   A.   Hill-shaded  digital  surface  model,  built  from  Intermap  Technologies 

NEXTMap® Britian topographic data, revealing narrow transverse ridges in the vicinity of 

Kilmarnock.  Note overprinting of ridges on streamlined bedforms. B.  Interpretation of same 

area. 

Figure 13.  Cross-profile data extracted from the digital surface model revealing dimensions 

of the narrow transverse ridges.  

Figure  14.   Reconstructed stages,  showing the  evolution of the  last  BIIS in  west  central 

Scotland.  See text for discussion.  Hill-shaded digital surface models built from Intermap 

Technologies NEXTMap® Britain topographic data.  Northwest illumination.  

Figure 15.  Erratic transport paths in SW Scotland. From Eyles et al. (1949) and Sissons 

(1967a).  Note, erratic paths do not imply contemporaneous flow.  Rectangle delimits main 

study area as shown in Figs. 2 and 5.

Figure 16.  Section at Nith Bridge, from Holden and Jardine, (1980).

Figure 17.  Proposed evolution of the western sector of the last BIIS.  Arrows denote palaeo-

ice flow directions.  Dashed lines indicate approximate positions of ice divides.  See text for 

discussion.  
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Table  1.   Morphological  characteristics  of  streamlined  bedforms  in  study  area.   ER  - 

elongation ratio, St Dev - standard deviation. 
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Flowset Length Width ER

Range Mean St Dev Range Mean St Dev Range Mean St Dev

Fs - 1 370 - 1498 826 262 75 - 468 239 87 2.1 - 7.6 3.7 1.1

Fs - II 330 - 1195 563 187 65 - 443 307 83 1.6 - 7.7 2.9 1.0

Fs - III-a 350 - 2430 706 476 76 - 500 194 103 2.0 - 5.3 3.7 1.0

Fs - III-b 379 - 2391 1017 445 79 - 590 274 108 2.3 - 6.9 3.8 0.9

Fs - III - c 400 - 2600 1063 367 100 - 467 236 78 2.5 - 8.0 4.6 1.3

Fs - III-d 449 - 1214 766 226 118 - 469 250 88 1.7 - 5.7 3.3 0.9

Fs - III-e 372 - 1700 754 244 72 - 580 197 84 2.2 - 11.6 4.3 1.5
Fs - III 
(combined) 350 - 2600 877 384 72 - 590 230 96 1.7 - 11.6 4 1.3

Fs - IV 204 - 487 321 86 51 - 134 76 22 3.1 - 5.8 4.3 0.9

Fs - V 167 - 1142 540 179 61 - 290 127 39 2.3 - 8.0 4.3 1.1

Fs - VI 290 - 1206 660 155 80- 467 232 79 1.7 - 6.4 3.1 0.8

Table 1
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