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ABSTRACT
This study investigated several factors that may influence driver actions throughout the 
yellow interval at urban signalised intersections. The selected samples include 2,168 ob-
servations. Almost 33% of drivers stopped ahead of the stop line, 60% passed the intersection 
through the yellow interval, and 7% passed after the yellow interval was complete (red light 
running, RLR violations). Binary logistic regression models showed that the chance of pas-
sing went up as vehicle speed went up and down as the gap between the vehicle and the traffic 
light and green interval went up. The movement type and vehicle position influenced the 
passing probability, but the vehicle type did not. Moreover, multinomial logistic regression 
models showed that the legal passing probability declined with the growth in the green time 
and vehicle distance to the traffic signal. It also increased with the growth in the speed of ap-
proaching vehicles. Also, movement type directly affected the chance of legally passing, but 
vehicle position and type did not. Furthermore, the driver’s performance during the yellow 
phase was studied using the k-nearest neighbours algorithm (KNN), support vector machines 
(SVM), random forest (RF) and AdaBoost machine learning techniques. The driver’s action 
run prediction was the most accurate, and the run-on-red camera was the least accurate.
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1. INTRODUCTION
At signalised intersections, the yellow phase plays a significant transitional role between the green and red 

intervals. When a signal light changes from green to yellow, drivers must decide whether to cross the intersec-
tion safely or stop before the stop line. Also, drivers at the onset of the yellow phase need to interact with other 
drivers in front and back to prevent unsafe decisions [1]. Wrong driver decisions during the yellow interval 
may lead to right-angle crashes, left-turn crashes, rear-end crashes, or red-light running (RLR) violations. RLR 
and inconsistent stopping behaviour are considered risky causes of traffic crashes at signalised intersections 
[1]. Several RLR violations happened due to drivers' presence in the dilemma zones during the yellow period. 
At the onset of the yellow phase, dilemma zones occur upstream of the intersection approach [2]. A dilemma 
zone is formed when the driver approaches the intersection at a speed greater than the speed limit; conversely, 
an “option zone” is formed when the driver traverses slower than the speed limit [3]. Li and Wei [4] showed 
that dynamic dilemma zone models could predict the dilemma zone more accurately than the traditional di-
lemma zone and the type II dilemma zone models, which is the area where more than 10% but less than 90% 
of drivers would choose to stop at the start of the yellow interval. Driver behaviour during the yellow interval 
can be categorised as aggressive, normal or conservative based on stop/go decisions and distance to the stop 
line at the beginning of the yellow interval [5].
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Several studies developed linear, non-linear and logistic regression models to represent and predict driver 
behaviour in dilemma zones based on several influencing factors at urban, suburban and rural signalised inter-
sections. Results found that RLR enforcement cameras increase driver-stopping decisions and decrease RLR 
violations [6–9]. Rakha et al. [10] found that the dilemma zone for the older drivers was larger and closer to the 
intersection than for the younger drivers. Also, results showed that the most significant factors affecting driver 
behaviour through the yellow phase, stop/go decisions and RLR violations were delay [8], approaching speed 
[11–15], acceleration and deceleration of vehicles [9, 13, 16], traffic conditions [8, 9], weather conditions [9], 
perception-reaction times [16], time to stop line at the beginning of yellow interval [10, 14, 17, 18], vehicle 
position and distance to stop line [9, 11–15, 17, 19], vehicle type [9, 11, 12, 14, 15, 17], intersection type [11, 
12], roadway grade [18], duration of yellow interval [11, 12] presence of interruptions such as vehicles, bicyc-
les or pedestrians on the side street [17], driver age and gender [14, 20].

Driving simulators were also used in several studies to investigate driver behaviour in dilemma zones. 
According to Swake et al. [21], driver decisions, deceleration rates and brake response duration all influence 
driver behaviour. Also, they state that driving simulators are a good way to predict how drivers will act in 
certain situations. Choudhary and Velaga [22] revealed that phones and music players’ distractions decrease 
the probability of yellow signal crossing, where the crossing possibility was positively associated with driving 
speed and negatively associated with time to stop line, type of manoeuvre and the presence of the distractions. 
Bryant et al. [23] concluded that the clearance interval at signalised intersections should consider the truck’s 
characteristics and how the driver acts. With the right design, trucks can get through the intersection before 
the green light changes to let other cars go. Hussain et al. [1] suggested that RLR violations were significantly 
decreased by installing red-LED earth lights combined with the regular traffic signal and RLR camera warning 
support. Also, it was seen that when the green signal was set to flash, people stopped in different ways. Baner-
jee et al. [24] investigated how red-light violation warning (RLVW) systems affect the way drivers act. Results 
showed that the tested system slowed down approaching vehicles by a lot, giving drivers more time to come to 
a safe stop at the red-light intersection.

Many countermeasures were tested to reduce RLR violations in the field and a simulated environment. Naj-
mi et al. [25] showed that dilemma zones at signalised roundabouts were shorter and closer to the stop-line than 
regular signalised intersections because drivers move more conservatively at the roundabouts with a safer stop-
ping ability. Also, Wang et al. [16] concluded that implementing five seconds of yellow interval proposed the 
best results for reducing risky behaviour at high-speed intersections. Moreover, Sun et al. [26] recommended 
an exclusive heavy vehicle lane as a future safety countermeasure to reduce vehicle conflict and intersection 
delay. Furthermore, Zhang et al. [9] focused on reducing RLR by installing red-light cameras and countdown 
timers to increase stopping behaviour at the onset of the yellow interval and reduce risky driving behaviour. 
Finally, Ni et al. [27] stated that a mandatory stop during a solid yellow light could control aggressive drivers 
efficiently, which reduces the approaching speeds significantly and enhances the acceptance of more signifi-
cant headways between vehicles. However, it increased the rear-end collision probability, raising the demand 
for more drivers’ educational programs for traffic safety and conservative behaviours.

Other useful modelling techniques were used to represent and predict motorist performance in dilemma zo-
nes at traffic signals, such as artificial neural networks [28], fuzzy logic and decision tree modelling [15, 28, 29, 
30], hidden Markov modelling [31] and other machine learning (ML) algorithms [32–40]. Results showed that 
these techniques could produce a high accuracy level similar to the linear, non-linear and logistic regression 
models. Elhenawy et al. [32–34] specified that driver aggressiveness at signalised intersections significantly 
affected the driver’s stop/go decisions and positively increased the models’ accuracy. They also verified that all 
modelling approaches generated similar prediction accuracy. Khanfar et al. [35] studied the driving behaviour 
at signalised intersections using unsupervised ML and a driving simulator dataset. The approach confirmed 
that driving behaviour reflects drivers’ habits and character rather than the signal condition; however, it still 
represents the nature of the intersection, which requires drivers to be more careful. Tawfeek [37] modelled 
the speed of unassisted drivers using ML as the yellow light turned on to improve connected and autonomous 
vehicle implementations at signalised intersections and enhance driver comfort. The findings suggest that the 
speed at the yellow light can be estimated using observations that account for the perceptual ability of drivers. 
Karri et al. [38, 39] examined driving behaviour (safe and unsafe stopping)at signalised intersections using ML 
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based on the driving features. Findings showed that the suggested method could assist in developing a system 
to alert drivers reaching signalised intersections, thereby reducing rear-end collisions and crashes.

The primary goal of this study is to investigate the main factors that may influence driver actions througho-
ut the yellow interval of the traffic signal at urban intersections in Jordan. This paper classified driver actions 
during the yellow interval at traffic signals into: “stopping before the stop line,” “crossing the intersection 
before the end of the yellow phase” and “crossing the intersection after the end of the yellow phase.” This 
paper developed logistic regression and ML models to investigate the relationships between motorist actions 
through the yellow interval and influencing factors. The rest of this article is organised as follows: Section 2 
introduces the methodology used for modelling driver actions using logistic regression and ML techniques, 
including binary logistic regression, multinomial logistic regression, k-nearest neighbours algorithm (KNN), 
support vector machines (SVM), random forest (RF) and AdaBoost. It also defines the study area and the data 
collected in this work. Section 3 shows the modelling results by analysing the methods employed. Finally, 
Section 4 introduces the essential conclusions of this paper.

2. METHODOLOGY
Eight intersections controlled by traffic signals with channelised right-turn movements (Figure 1) were cho-

sen in Irbid City, Jordan [41]. Four of them were fully actuated with RLR cameras, and RLR cameras did not 
control the rest. Intersection characteristics were also gathered, including the speed limit (60 km/h), lanes on 
the studied approach, lanes crossed, approach width (meters), width of lane (meters), flow (vehicles/hour/
lane), number of approaches on the intersection and pavement marking conditions. An approach operating ve-
hicle speed was measured using a laser radar gun. Three-legged and four-legged intersections were considered. 
Data were gathered during peak hours in fine weather and dry road conditions. Table 1 presents the summary of 
data collection.

Table 1 – Intersection characteristic and traffic signal timing data

In
te

rs
ec

tio
n

Studied 
approach

No. of 
lanes 

crossed

No. of 
lanes

Width 
of lane 

[m]

Width of 
intersection 

[m]

Traffic 
flow 

[veh/h]

No. of 
phases

No. of 
legs

Operating 
speed 
[km/h]

Grade

T1 NB 8 3 3 23.2 476 4 4 34 Level

T2 SB 9 2 3.5 37 382 4 4 39 Upgrade

T3 WB 9 4 3 31 394 4 4 47 Level

T4 NB 8 3 3.57 39 502 4 4 43 Level

T5 EB 5 4 2.925 32 342 3 3 37 Level

T6 EB 5 4 3.12 33.5 359 3 3 41 Level

T7 WB 6 3 2.933 27.5 221 4 4 29 Level

T8 EB 10 3 3 43.7 272 4 4 35 Level

In
te

rs
ec

tio
n

Cycle range
[s]

Red 
period

[s]

Yellow 
period

[s]

Green 
period

[s]
Green split

All red 
period

[s]
RLR Green 

flash
Pavement 
markings Pedestrians

T1 131 95 4 30 0.229 2 Yes Yes Yes Low

T2 139 102 3 32 0.23 2 Yes Yes Yes Medium

T3 109 75 2 30 0.275 2 Yes Yes Yes Low

T4 146 104 3 37 0.253 2 Yes Yes Yes Low

T5 64 44 5 15 0.234 0 No Yes No Low

T6 82 56 3 21 0.256 2 No No No Low

T7 112 82 2 26 0.232 2 No Yes Yes Heavy

T8 126 95 3 26 0.206 2 No Yes No Low

* NB: Northbound, WB: Westbound, SB: Southbound, EB: Eastbound.
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T1 (32°32’36.6”N 35°52’50.4”E) T2 (32°31’54.0”N 35°51’08.9”E)

T3 (32°32’05.3”N 35°51’36.3”E) T4 (32°32’33.3”N 35°51’31.8”E)

T5 (32°33’00.2”N 35°51’44.2”E) T6 (32°32’41.3”N 35°52’29.2”E)

T7 (32°33’24.3”N 35°50’58.2”E) T8 (32°33’26.7”N 35°51’47.8”E)

Figure 1 – Bird’s-eye view of the studied intersections
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Binary and multinomial logistic regression models were developed to predict motorist actions throughout 
the yellow interval of the traffic signals at urban intersections, whether or not they have RLR cameras. Logistic 
regression can be represented as the following formula (Equation 1) [42]:

( ) 0 1 1 2 2ln
1 n n

PLogit P X X X
P

β β β β = = + + +…+ − 
        

 
(1)

where P is the probability of a decision to pass (Y=1), β0 is the model constant, β0 is the coefficient of variable 
and Xi represents the predictor variable.

In this paper, the dependent variable was categorical. So, binary and multinomial logistic regression models 
are the best choices for predicting the probability of a categorical dependent variable [42]. Also, they were se-
lected to overcome the problem of violating the linearity assumption. The proposed models involved two types 
of variables: categorical and continuous. Table 2 describes all the variables involved in the proposed models.

Previous research has widely used several ML classification algorithms. To predict driver behaviour, the 
commonly used KNN, SVMs, RF and AdaBoost are used in this paper. The same training dataset was em-
ployed to train the different ML techniques, and the models’ performance was reported using the same testing 
dataset.

The KNN algorithm is a straightforward non-parametric modelling technique [43]. It is based on the proba-
bility that similar data points belong to the same cluster. KNN begins by locating the K nearest neighbourhoods 
of the training dataset and then predicts the major class within the K nearest neighbours. Due to its simplicity 
and ability to predict in less time, it has been chosen as one of the best data mining algorithms [44].

Table 2 – Description of variables in binary and multinomial regression models

Variable Variable Type Unit

Speed Continuous km/h

Vehicle distance to stop line Continuous Meter

Volume in selected approach Continuous veh/h/lane

Yellow period Continuous Second

Green period Continuous Second

Red period Continuous Second

Cycle period Continuous Second

Green split Continuous Unitless

Vehicle type Categorical 0 pc (regular cars),1 taxi, 2 pickup,
3 truck, 4 van, 5 bus

Intersection type Categorical 0 3 legs, 1 4 legs

Type of movement Categorical 0 left, 1 U-turn, 2 through

Vehicle position Categorical 0 platoon, 1 not platoon

Lane width Continuous Meter

Intersection width Continuous Meter

No. of lanes in Categorical 2 two-lanes, 3 three-lanes, 4 four-lanes

No. of lanes crossed Categorical 0 5-lanes, 1 6-lanes, 2 8-lanes,
3 9-lanes, 4 10-lanes

Grade Categorical 0 level, 1 upgrade, 2 downgrade

RLR cameras Categorical 0 yes, 1 no

Pavement marking Categorical 0 yes, 1 no

Green flash Categorical 0 yes, 1 no

Pedestrians Categorical 0 low, 1 medium, 2 heavy
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The KNN accuracy depends on choosing the best cluster size; the optimum K was selected based on pre-
diction accuracy. Afterwards, the response (i.e. driver action in our problem) is classified by considering the 
majority vote of the K closest points within the class as shown in Equation 2; where R is the number of assigned 
classes based on checking the model accuracy for each value, test

jy  is the test observation which is assigned to 
class R based on the majority of class R voting after training the model using train

jx  as input variables and train
jy   

as response variable [45].

1
train
j k

test train
j j

X R

y y
R ∈

= ∑
 

(2)

The SVM algorithm is a supervised learning method that sorts data into groups based on how different the 
groups are. Equation 3 shows that the algorithm looks for the hyperplane (also called a “splitter”) that is the 
closest to the training data. The SVM looks for the weight (w) with the most significant margin near the hyper-
plane and meets the two constraints (see Equations 4 and 5 [46]).

min
2

N
T

nw,b,
n

 w  w  c 
ξ

ξ
=

 
 


+


∑
 

(3)

subjected to:
( )( ) 1 1T

n n n y w  X b   , n , , N  φ ξ+ ≥ − = ……  (4)

0 1n  , n , N  ξ ≥ = …  (5)
w – set of parameters used to define class boundaries
c – penalty parameter
ξn – parameter to express the margin error
b – intercept is linked with the hyperplane functions to change data from X space
ϕ(Xn) – transform data from X space to Z space
yn – target value

The objective function is simplified by adding the two terms in Equation 2. Primarily, the first term aims to 
clarify the difference between classes. Reducing its length is identical to enlarging the gap between classes. 
The other term aims to reduce the penalty (regularisation) parameter times the error term. The penalty term 
is intended to address overfitting, whereas the term c is intended to optimise the performance of the model. 
Therefore, n represents the index of the data observation, w denotes the decision border between classes, c 
denotes the regularisation (or penalty) parameter and jn represents the margin violation error parameter. K is 
the number of observations in the X space that the ϕ(Xn) function moved to another space. The transformation 
is done to make a Z space that can be used to make class boundaries easier to define. On the other hand, certain 
functions (i.e. kernels) can be used directly to create transformations more easily, as demonstrated in this paper. 
Meanwhile, Equation 2 can be solved using kernels or ϕ(Xn) to transform data to the Z plane. Before model con-
struction, the kernel type should be determined (i.e. linear). One kernel could work better than another. Some 
realistic recommendations propose using different kernels at various data sizes and problems [46].

Random forest (RF) is a successful ensemble prediction technique. Breiman [47] used the strong law of 
large numbers (SLLN) to demonstrate that there is no overfitting of RFs as more trees are established. The 
fundamental concept underlying ensemble approaches is that creating many simple models will improve ove-
rall performance. An RF is a collection of unpruned decision trees with random feature selection at each split. 
Classification and regression tree (CART), a well-known ML technique, is a frequently used decision tree in 
RFs [48]. In ensemble terms, RFs start with the CART, which refers to the weak model.

CART partitions the feature space into two regions to optimise its objective function locally (children). 
This procedure is repeated for every child until the termination criteria are met. Cases from each region have 
(nearly) identical outcomes. Using the assumption that the training dataset consists of H cases, P predictors and 
M trees to generate for each of the M iterations, the RF classification algorithm is as follows:
−	 Build a bootstrap trial from the first dataset by randomly selecting H cases and replacing them. The subset 

must comprise around 66 percent of the initial training set; the left cases should be duplicated.
−	 For certain numbers, p  predictor variables are chosen randomly from all predictor variables at each node.
−	 From the p  predictor variables, the best predictor variable is employed to generate a binary split on that 

node.
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−	 Avoid value-complexity pruning and keep the tree in its current state, along with other constructed trees 
from prior iterations. During the testing phase, the recently delivered case is moved down each tree. By 
supplying a class label, each tree votes for one class. RF determines the class with the most votes. This 
method will be evaluated as part of this research effort because it can improve driver stop/run behaviour 
modelling.
The adaptive boosting (AdaBoost) algorithm is an incremental contribution-based ML algorithm [48]. Ada-

Boost was developed in response to whether it was possible to combine a cluster of “weak” learner algorithms 
with low accuracy to generate a learning algorithm with a high one. Prior to the running of AdaBoost, the 
conventional ML technique consisted of selecting the highest-discriminating class of features. In other terms, 
algorithms should be classified. AdaBoost employs a collection of weak classifiers, each of which is trained 
on the same training dataset but has a different weight distribution. Every learner concentrates on the instances 
where the previous learner failed. AdaBoost’s output is the weighted average of all weak learners’ outputs. It 
has a minor misclassification than the sum of weak learners and a generalisation error limit [48, 49].

In a classification problem, the output could be a true positive prediction (TP), a true negative prediction 
(TN), a false positive prediction (FP) or a false negative prediction (FN). These distinct outcomes were utilised 
to compute the various evaluation metrics. Precision, recall, F1-score and support are the evaluative metrics 
(Equations 6–8). Precision and recall are two methods for evaluating the performance of a classifier in binary 
and multiclass classification problems. Precision is determined by dividing the number of accurate positives 
by the accurate and false positives summation. Recall is the proportion of correctly classified instances (true 
positives) to the total instances that should have been classified as positive (true positives plus false negatives). 
The F1-score is utilised to evaluate the accuracy of a model on a dataset. It assesses classification systems that 
categorise instances as “positive” or “negative”. The F-score combines the model’s precision and recall [40]. 
Support refers to the number of actual class occurrences in the dataset. It is the count of true instances for each 
class. These indices are calculated as follows:

TPPrecision   
TP NP

=
+  

(6)

TPRecall  
TP FN

=
+  

(7)
 

F1-score1 2 Precision RecallF score  
Precision Recall

⋅
− = ⋅

+
 (8)

These metrics are essential for evaluating the performance of classification models, and they help in under-
standing how well a model is doing in correctly identifying positive and negative cases.

3. RESULTS AND DISCUSSION
The data extraction process yielded a total of 2,168 samples, including stop, pass and RLR violations. Only 

721 (33%) drivers stopped ahead of the stop line, 1,296 (60%) passed the intersection through the yellow 
interval and 151 (7%) passed after the yellow interval was complete (RLR violations). According to the fin-
dings, drivers had more potential to stop ahead of the stop line during the yellow interval on intersections 
with RLR cameras, green light flashing, heavy pedestrian activity, pavement markings and intersections with 
four approaches. In addition, platoon-positioned vehicles had more pass actions (69.8%) than non-platoon-po-
sitioned vehicles (46.6%). Moreover, the van carried the most significant percentage of pass action among all 
vehicle types (68.1%), while the taxi was the lowest (54.5%). In contrast, the pass rates for trucks and pickups 
were 64% and 65.9%, respectively. The percentages for straight, left and U-turn manoeuvres were 58.4%, 
61.3% and 57.8%, respectively. However, straight movement had the highest RLR violation rate (8.6%). Table 
3 displays the frequencies and percentages of driver actions for the studied intersections.

3.1 Binary logistic regression models
In the Statistical Package for the Social Sciences (SPSS), sequential logistic regression models were made 

to predict how drivers would do during the yellow phase. Two models were considered. Model one top-level 
logit, including a stop or go action, and model two bottom-level logit models, including only legal passes 
through the yellow phase or RLR violations. Figure 2 shows a two-step decision process for binary logistic 
regression.



Promet ‒ Traffic&Transportation. 2023;35(6):838-854.  Human – Transport Interaction

845

Model-I (stop and pass action) looked at 2,168 observations, including people stopping before the stop line 
and passing through the intersection. Also, Model-II (legal pass and RLR violations), which looked at 1,450 
observations, only looked at legal passes through the intersection during the same phase and RLR violations. 
Model-I and Model-II have different sample sizes because the driver takes different actions during the same 
phase in each model. Table 4 presents the binary logistic regression analysis for Model-I and Model-II.

Table 3 – Descriptive statistics for the major categorical variables

Influencing parameters
Action

Total
Stop Pass RLR

Presence of RLR cameras
Yes (33.3%) 406 (56.3%) 305 (42.2%) 11 (1.5%) 722

No (66.7%) 315 (21.8%) 991 (68.5%) 140 (9.7%) 1446

Presence of flash green device
Yes (68.1%) 622 (42.1%) 772 (52.3%) 83 (5.6%) 1477

No (31.9%) 99 (14.3%) 524 (75.8%) 68 (9.8%) 691

Presence of pedestrian

Low (85.82%) 576 (31.0%) 1156 (62.1%) 129 (6.9%) 1861

Medium (6.5%) 87 (61.3%) 53 (37.3%) 2 (1.4%) 142

High (7.6%) 58 (35.2%) 87 (52.7%) 20 (12.1%) 165

Presence of pavement marking
With (40.9%) 464 (52.3%) 392 (44.2%) 31 (3.5%) 887

Without (59.1%) 257 (20.1%) 904 (70.6%) 120 (9.4%) 1281

Intersection type
3-leg (59.2%) 256 (20%) 894 (69.7%) 133 (10.4%) 1283

4-leg (40.8%) 465 (52.5%) 402 (45.4%) 18 (2.0%) 885

Vehicle type

PC (70.8%) 513 (33.4%) 911 (59.3%) 111 (7.2%) 1535

Taxi (11.4%) 102 (41.5%) 134 (54.5%) 10 (4.1%) 246

Pickup (3.8%) 21 (30.9%) 54 (65.9%) 7 (5.1%) 82

Van (5.2%) 26 (23.0%) 77 (68.1%) 10 (8.8%) 113

Truck (6.3%) 42 (30.9%) 87 (64.0%) 7 (5.1%) 136

Bus (2.5%) 17 (30.9%) 32 (58.2%) 6 (10.9%) 55

Turning movement type

Left (47.7%) 345 (33.4%) 633 (61.3%) 55 (5.3%) 1033

U-Turn (4.2%) 32 (35.6%) 52 (57.8%) 6 (6.7%) 90

Through (48.2%) 344 (33.0%) 610 (58.4%) 90 (8.6%) 1044

Vehicle position
Platoon (56.8%) 306 (24.9%) 859 (69.8%) 66 (5.4%) 1231

Not platoon (43.2%) 415 (44.3%) 437 (46.6%) 85 (9.1%) 937

Grade

Level (93.5%) 634 (31.3%) 1243 (61.4%) 149 (7.4%) 2026

Upgrade (6.5%) 87 (61.3%) 53 (37.3%) 2 (1.4%) 142

Downgrade (0%) 0 0 0 0

Figure 2 – Step decision process for binary logistic regression
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For Model-I, the negative sign of the variable’s vehicle distance to the stop line and the green interval in-
dicates that the probability of passing action increases with the raising of these variables. The positive sign of 
the variable operating vehicle speed suggests that the likelihood of passing action increases with the raising 
of this variable. Moreover, the passing probability is found to be safely affected by the presence or absence of 
RLR cameras, movement type and vehicle position. The reference movement type and vehicle position were 
taken through movement, not platoon position. The platoon vehicle was more likely to pass than not, given the 
platoon vehicle’s position. Also, the left movement was more likely to pass than the U-turn movement. Finally, 
drivers at locations with no RLR cameras had a greater chance of passing than locations with RLR cameras.

The odds ratio of the operating vehicle speed means that for each unit raised in the variable operating ve-
hicle speed, the odds of passing probability increase by 1.081 times. Also, the chance of passing decreases by 
0.913 times for every unit where the distance between the vehicle and the stop line increases. For Model-II, the 
negative sign of the variable “vehicle distance” to the stop line at the beginning of the yellow interval indicates 
that the probability of legally passing an action decrease with the increase in this variable. The positive sign of 
the variables operating vehicle speed and yellow interval suggests that the likelihood of passing legally incre-
ased with the raising of these variables. Moreover, the passing likelihood was safely influenced by movement 
type. The reference movement type was taken as a through movement; the left movement was more likely to 
pass than the U-tern movement.

The odds ratio of the operating vehicle speed means that for each unit raised in the variable operating ve-
hicle speed, the odds of passing probability increase by 1.222 times. Also, for each unit raised in the variable 
“vehicle distance”, the odds of passing probability decrease by 0.747 times.

Table 5 shows the classification predicted for Models I and II. The overall prediction accuracy for Model-I 
and Model-II was 76.7% and 94.4%, respectively, indicating that the prediction results are close to reality. The 
Negelkerke R-squared for Model-I and Model-II was found to be 0.364 and 0.645.

3.2 Multinomial logistic regression models
MLR (multinomial logistic regression) models were made to predict how drivers would do during the 

yellow phase. In the proposed model, driver actions, including stopping before the stop line, passing through 
the intersection, and breaking RLR rules, were considered. Figure 3 shows the step-decision process for multi-
nomial logistic regression.

Table 4 – Estimated parameter of binary regression for Model-I and Model-II

Model Changing Β S.E Wald DF Sig. Exp (Β)

Model-I

Operating speed (S) 0.078 0.024 10.364 1 0.001 1.081

Vehicle distance (D) -0.091 0.007 189.127 1 0.0 0.913

Green interval (G.I) -0.084 0.039 4.545 1 0.003 0.920

Movement type 37.939 2 0.0

Movement type 1, M1, left (0) -0.698 0.117 35.313 1 0.0 0.498

Movement type 2, M2, U-turn (1) -0.832 0.295 7.990 1 0.005 0.435

Vehicle position 1, platoon, V.p1 (0) 0.694 0.116 35.731 1 0.0 2.002

Presence of RLR cameras, P. of RLR (1) -1.284 0.529 5.889 1 0.015 0.277

Constant 1.175 1.421 0.683 1 0.409 3.237

Model-II

Operating speed (S) 0.200 0.058 11.852 1 0.001 1.222

Vehicle distance (D) -0.291 0.022 176.281 1 0.0 0.747

Yellow interval (Y.I) 0.746 0.193 15.004 1 0.0 2.109

Movement type 13.056 2 0.001

Movement type 1, M1, left (0) -0.798 0.289 7.629 1 0.006 0.450

Movement type 2, M2, U-turn (1) -2.001 0.680 8.671 1 0.003 0.135
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Driver behavior 

Stop Legal pass RLR-violations

Figure 3 – Step decision process for multinomial logistic regression

The proposed model describes the driver actions as “stop” (Y=0), “pass through the yellow phase” (Y=1) 
and “RLR violations” (Y=2). Also, two types of variables were included in the proposed models: categorical 
and continuous variables. Multinomial logistic regression analysis for a stop to RLR violations and a legal pass 
to RLR violation models are presented in Table 6.

Table 6 – Estimated parameters of multinomial logistic regression for “Stop Action” and “Legal-Pass Action” models

Model Variable Β S.E Wald D.F Sig. Exp(β)
95% C.I for 

Exp(β)
Low Up

Model-I
Vehicle distance (D) -0.192 0.021 87.363 1 0.00 0.825 0.792 0.859

Vehicle position, 
platoon, V.P1 (0) -0.794 0.245 10.520 1 0.001 .452 0.280 0.730

Model-II

Approach speed (S) 0.405 0.136 8.860 1 0.003 1.499 1.148 1.957

Vehicle distance (D) -0.380 0.022 288.288 1 0.0 0.684 0.655 0.715

Green interval (G.I) -3.684 1.525 5.834 1 0.016 0.025 0.001 0.499

Movement type1, M1, 
left (0) -0.705 0.256 7.561 1 0.006 0.494 0.299 0.817

Movement type 2, M2, 
U-turn (1) -1.410 0.617 5.221 1 0.22 0.244 0.073 0.818

For the action model, the negative sign of the “vehicle distance” indicates that the probability of a stop ac-
tion for RLR violations decreases with the increase in this variable. Moreover, for the legal-pass action model, 
the stopping possibility was discovered to be safely affected by vehicle position. Also, for a legal-pass action, 
the negative sign of the variable’s “vehicle distance” and green interval indicates that the probability of a le-
gally passing action decreases with the increase in these variables. The positive sign of the variable operating 
vehicle speed suggests that the likelihood of legally passing action increased with this variable’s increase. In 
addition, movement type had an impact on the passing likelihood.

The odds ratio of the operating vehicle speed means that for each unit increase in the variable operating 
vehicle speed, the odds of a legal passing probability increase by 1.957 times. Also, for each unit raised in the 

Table 5 – Classification of predicted for Model-I and Model-II

Model Action Percentage correct

Model-I

Stop 51.6% -2 log likelihood
(2097.703)

Cox and snell R2

(0.262)
Nagelkerke R2

(0.364)

Pass 88.8%

Overall percentage 76.7%

Model-II

RLR violation 60.9% -2 log likelihood
(421.008)

Cox and snell R2

(0.315)
Nagelkerke R2

(0.645)

Legal pass 98.3%

Overall percentage 94.4%
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variable “vehicle distance”, the odds of a legal passing probability decrease by 0.715 times. Table 7 shows the 
classification of predicted stop-action and legal-pass action models.

Table 7 – Classification results, R-squared and models summary

Action Percentage correct

Stop 60.2%

Legal-pass 88.6%

RLR violations 49%

Overall percentage 76.4%

Model -2 log likelihood Cox and Snell  
R-squared

Nagelkerke  
R-squared Mc Fadden

1 1745.320 0.483 0.589 0.384

Model Equation

Binary logistic 
regression

Model-I
stop- and pass- 

action

Logit (P) = Ln [Pi/(1-Pi)] = 1.175 + 0.078 S − 0.091 D − 0.084 
G.I − 0.698 M1 − 0.832 M2 + 0.694V.P1 1.284 P.of RLR 76.7%

Model-II
legal-pass and 
RLR violations

Logit (P) =Ln [Pi/(1-Pi)] = 0.20 S – 0.291 D + 0.746 Y.I – 0.798 
M1 – 2.001 M2 94.4%

Multinomial 
logistic 

regression

Stop action 
model P (Stop/RLR) = – 0.192 D – 0.794 V.P1

76.4%
Legal-pass 

action model
P (Legal pass / RLR) = 0.405 S – 0.380 D – 3.684 G.I – 0.705 

M1 – 1.410 M2

The total prediction accuracy was 76.4%, indicating that the prediction results were close to reality. Table 

7 also shows R-squared results for stop action and legal-pass action models. The Mc Fadden R-squared was 
found at 0.384, which indicates that it is effective enough to forecast driver performance through the yellow 
phase.

3.3 Machine learning (ML) models
This section discusses the outcomes of the Python-based ML methods applied in this paper. The first step 

in modelling data was feature engineering. It began with a data type check, followed by a report of the original 
data correlation matrix and a review of the problem’s most relevant variables. Figure 4 shows the correlation 
matrix of the original dataset for the different collected variables.

All the various variables have different correlation values. Red interval, no. of lanes crossed, cycle length, 
green interval, pavement markings, intersection type and presence of RLR cameras are highly inversely cor-
related variables. The number of lanes is related to driver behaviour. Nonetheless, the most relevant variables 
were chosen using the P-value and F-score. The selected characteristics were determined based on P-values 
and F-scores exceeding 0.05 and 5, respectively.

Table 8 presents the original variables along with their P-values and F-scores. There were 2,168 total instan-
ces in this dataset, out of which 1,734 (80%) random data were used for training, and the remaining 434 (20%) 
were used for testing and validating the model. According to Table 8, the chosen variables are the intersection 
type, green interval, cycle length, number of lanes crossed, number of lanes in, location, volume in selected 
approaches, lane width, grade, vehicle position, and the existence of RLR cameras, pavement marking, green 
flash, yellow interval and pedestrians. These variables were selected as the X matrix, while driver actions were 
chosen as their output. This study used four methods: KNN, SVM, RF and AdaBoost.
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Table 8 – Variables with their P-value and F-score

Input variable P-value F-score Input variable P-value F-score

Presence of RLR cameras 1.00E-62 298.3186 Grade 5.66E-13 52.60281

Intersection type 1.06E-57 272.2201 Vehicle position 2.81E-10 40.17894

Presence of pavement marking 1.98E-54 255.3854 Presence of green flash 4.56E-08 30.10771

Green interval 8.67E-54 252.1052 Yellow interval 4.04E-05 16.92263

Cycle length 2.37E-53 249.8698 Presence of pedestrian 0.01559 5.85778

No. of lanes crossed 2.14E-52 244.9839 Green split 0.033383 4.531813

Red interval 9.26E-52 241.7396 Vehicle type 0.047264 3.940452

No. of lanes ln 4.35E-37 168.1459 Movement type 0.142152 2.156078

Location 2.45E-34 154.6135 Avg. operating speed 
[km/h] 0.1598 1.977477

Volume in selected approach 6.43E-20 85.13198 Vehicle distance to stop 
line 0.497443 0.460544

Lane width 1.54E-14 59.86941 Intersection width 0.922979 0.00935

Table 9 presents the overall classification report and confusion matrix of the test data. This table 
demonstrates four metrics: precision, recall, F1-score and support.

The KNN was used to evaluate which of three possible driver actions occurred. A 10-fold cross-validation 
was used to select the best model for each value of K, and the 10-fold with the highest average accuracy was 
selected. The optimal value of K was determined by comparing different values of K to overall classification 
accuracy. Figure 5 illustrates the classification accuracy of KNN with varying K neighbours.

As illustrated in Figure 5, using pooled features in the proposed hierarchical framework yielded higher clas-
sification accuracy than just time-domain features. The optimal K was determined to be nine, with an accuracy 
of 67.5%.

Figure 4 – Correlation matrix



Promet ‒ Traffic&Transportation. 2023;35(6):838-854.  Human – Transport Interaction

850

Regarding SVM, a 10-fold cross-validation was used to get the optimal model for each value of K. The 
model with the highest average accuracy across all 10 folds was chosen. In addition, different kernels were 
used to train the model, and the best kernel was RBF with a gamma of 0.001, with an accuracy of 68.2%. In 
RF, many trees were trained, with the best accuracy of 69.58% coming from 400 trees. Finally, the AdaBoost 
method achieved an accuracy of 69.58%. The driver action run prediction had the highest accuracy for all me-
thods (KNN, SVM, RF and Adaboost). In contrast, the run-on-red camera had the lowest precision because the 
number of its samples in the train and test data is low, and that is normal since not many people run on a red 
camera. The overall accuracy of all models was 68.7%.

The correct configuration of optimal ML models is crucial for practitioners implementing them. For exam-
ple, practitioners can replicate these results with SVM by employing a 10-fold cross-validation approach and 
choosing the best kernel (RBF with a gamma of 0.001). This method suits scenarios where a balance between 
precision and recall is essential. On the other hand, with the knowledge that 400 trees yield the best accura-
cy, practitioners can set up their RF classifier accordingly. RF is known for its robustness and is suitable for 
handling large datasets. Also, the AdaBoost ensemble method achieved a competitive accuracy score. It can 
be applied when emphasis needs to be placed on the classification of harder-to-detect instances. Moreover, 

Table 9 – Classification report and confusion matrix

Precision Recall F1-score Support 0 1 2

KNN

0 0.59 0.51 0.55 138 70 68 0

1 0.71 0.84 0.77 264 41 223 0

2 0 0 0 32 7 25 0

SVM

0 0.73 0.36 0.48 138 49 89 0

1 0.67 0.94 0.78 264 17 247 0

2 0 0 0 32 1 31 0

RF

0 0.66 0.53 0.59 138 73 65 0

1 0.71 0.87 0.78 264 35 229 0

2 0 0 0 32 3 29 0

AdaBoost

0 0.66 0.53 0.59 138 73 65 0

1 0.71 0.87 0.78 264 35 229 0

2 0 0 0 32 3 29 0

 Accuracy       +/- 3xstd

Figure 5 – Classification accuracy of KNN
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the selection of K is vital for KNN and impacts the model’s performance. The experiments found K=9 to be 
optimal for this specific dataset. Practitioners should consider a similar tuning process when applying KNN to 
their data.

Overall, the investigated models, binary logistic regression, multinomial logistic regression and the ML 
models, can be applied in practice in three major approaches.

Classification of driver actions. The primary application of the investigated models is in classifying driver 
actions based on data obtained from various sensors or sources. For instance, these models can be deployed in 
a real-time setting within a vehicle to predict and classify driver actions such as “run” actions. This prediction 
can be utilised for several practical purposes, including:
−	 driver assistance systems - these models can be integrated into driver assistance systems, providing real-

time feedback to the driver. For example, if the model predicts a “run” action, it can trigger warnings or 
corrective actions, such as automatic braking or steering assistance, to prevent accidents.

−	 traffic safety - the models’ ability to predict driver actions can contribute to improving overall traffic safety. 
Law enforcement or traffic management authorities can use this information to identify and address risky 
behaviour patterns, making roads safer for all users.

−	 insurance industry - insurance companies could leverage this model to assess driver behaviour and risk. 
It could be used to offer more accurate and personalised insurance premiums based on individual driving 
habits, ultimately promoting safer driving practices.

−	 fleet management - companies with large vehicle fleets can use these models to monitor driver behaviour 
and enhance the efficiency and safety of their operations. It can help identify drivers who consistently 
exhibit risky behaviour and may require additional training or supervision.
Optimal model selection. Detailed information about the optimal models and their configurations is crucial 

for practitioners who want to implement these techniques.
Data considerations. It is essential to mention that the models’ performance may vary depending on the 

quantity and quality of training data. In cases like “run-on-red camera”, where the sample size is limited, prac-
titioners should be cautious about the model’s reliability for such specific scenarios.

In summary, the investigated models’ practical applications extend to driver assistance systems, traffic 
safety, insurance, fleet management and more. The detailed model configurations and optimal parameters pro-
vided in the paper can serve as a valuable starting point for practitioners looking to implement similar systems 
in their respective domains.

4. CONCLUSIONS 
The objective of this study was to construct statistical models representing the relationships between vario-

us parameters and driver actions during the yellow interval at urban intersections controlled by traffic signals, 
whether or not they have red-light running (RLR) cameras. A video camera was utilised and positioned at 
an appropriate height ahead of the intersection to observe traffic signals, driver actions and parameters that 
may influence driver behaviour. Around 2,168 observations of motorist behaviour have been gathered from 
the data. Results showed that only 33% of drivers stopped ahead of the line, 60% passed the intersection in the 
yellow interval, and 7% passed after the yellow interval was complete (RLR violations). The following are the 
main findings:
−	 The likelihood of vehicles stopping before the line through the yellow interval with RLR cameras, the green 

flash tool, multiple pedestrians, pavement markings and intersections with four legs.
−	 At 68.1%, vans had the most significant proportion of pass actions among all vehicle types. In comparison, 

the taxis experienced the lowest pass rate, at 54.5%, although trucks and pickups had comparable pass rates, 
at 64% and 65.9%, respectively.

−	 The pass rates for through, left and U-turn manoeuvres were 58.4%, 61.3% and 57.8%, 
respectively. Nevertheless, the through direction had the most significant percentage of RLR violations. In 
addition, platoon-positioned vehicles had more pass actions (69.8%) than non-platoon-positioned vehicles 
(46.6%).

−	 The prediction accuracy of binary logistic regression Model-I was 76.7%, and Model-II’s was 94.4%. 
Model-I (stop and pass action) indicated that the probability of a pass action increased with the rise in speed 
and dropped with the growth in the green interval and the length to the stop line. Also, the presence of RLR 
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cameras, movement type, and vehicle position significantly influenced the passing probability, but vehicle 
type did not.

−	 The binary logistic regression Model-II (legal pass and RLR violations) showed that the likelihood of 
legally passing rose with the increase in vehicle speed and yellow interval and dropped as the distance 
from the stop line increased. Also, movement type had a meaningful impact on the passing probability, but 
vehicle type and vehicle position did not.

−	 The prediction accuracy of the proposed multinomial logistic regression model was 76.4%, and McFadden’s 
R-square was 0.384. The proposed models showed that the likelihood of stopping before the stop line 
declined with the increase in vehicle distance to the stop line. Also, vehicle position had an essential effect 
on the stopping probability, but movement and vehicle types did not. The likelihood of passing in the yellow 
interval decreased with the increase in vehicle distance to the stop line and green interval and increased with 
the increase in speed. Moreover, movement type had a meaningful impact on the passing probability, but 
vehicle position and vehicle type did not.

−	 This paper also used the commonly utilised KNN, SVM, RF and AdaBoost ML techniques to predict driver 
behaviour. The same training dataset was employed to train the different ML methods, and the models’ 
performance was reported using the same testing dataset. As a result, the driver action run prediction had 
the highest accuracy, while the run-on-red camera had the lowest precision. The overall accuracy of all 
models was 68.7%.
Additional research is suggested to explore the influence of geometric design features, asphalt conditions, 

the characteristics of drivers, whether there are any passengers in the vehicle and the usage of mobile phones 
throughout the day.
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باستخدام الانحدار اللوجستي  المحكومة بإشارات ضوئية التقاطعات الحضرية علىنمذجة سلوك السائق 
  والتعلم الآلي.

 أحمد هاني العمري*، براء المستريحي، عرين الجمال، تقوى الحديدي، معتصم عبيدات.

 
 الخلاصة

الأصفر عند التقاطعات  مرحلة اللون خلالبحثت هذه الدراسة في العديد من العوامل التي قد تؤثر على تصرفات السائق 
% من 33توقف ما يقرب من أظهرت النتائج و عينة 2168العينات المختارة  شملت. بإشارات ضوئيةالمحكومة الحضرية 

% عبروا 7، وعلى الاشارة الضوئية الأصفراللون  مرحلة% عبروا التقاطع خلال 60في حين السائقين قبل خط التوقف، 
. أظهرت نماذج الانحدار اللوجستي الثنائي لحمراء(بما يسمى قطع الاشارة االضوء الأحمر،  بدايةالأصفر ) اللونبعد اكتمال 

أن فرصة المرور ارتفعت مع ارتفاع سرعة السيارة وانخفاضها مع زيادة الفجوة بين السيارة وإشارة المرور والفاصل 
، لكن نوع المركبة لا نجاح العبور بسلاملى احتمالية يؤثر عنوع الحركة وموقع المركبة كذلك أظهرت النتائج أن الأخضر. 

الوقت  زيادةيؤثر. علاوة على ذلك، أظهرت نماذج الانحدار اللوجستي متعدد الحدود أن احتمال المرور القانوني انخفض مع 
. كما أنها تزداد مع نمو سرعة المركبات المقتربة. كما أن نوع الحركة أثر الضوئيةالأخضر ومسافة السيارة إلى الإشارة 

ى فرصة المرور بشكل قانوني، لكن موقع السيارة ونوعها لم يؤثرا. علاوة على ذلك، تمت دراسة أداء بشكل مباشر عل
(، وتقنيات التعلم الآلي RF(، و)SVM(، و)KNNباستخدام خوارزمية ) اللون الاصفرالسائق خلال مرحلة 

(AdaBoost) تراقب قاطعي التي  تالكاميراليها المواقع التي تعمل ع. كان توقع حركة السائق هو الأكثر دقة، وكانت
 هي الأقل دقة. الاشارة الحمراء
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