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ABSTRACT: This review illuminates the pivotal synergy between
machine learning (ML) and biopolymers, spotlighting their
combined potential to reshape sustainable energy, fuels, and
biochemicals. Biobased polymers, derived from renewable sources,
have garnered attention for their roles in sustainable energy and
fuel sectors. These polymers, when integrated with ML techniques,
exhibit enhanced functionalities, optimizing renewable energy
systems, storage, and conversion. Detailed case studies reveal the
potential of biobased polymers in energy applications and the fuel
industry, further showcasing how ML bolsters fuel efficiency and
innovation. The intersection of biobased polymers and ML also
marks advancements in biochemical production, emphasizing
innovations in drug delivery and medical device development.
This review underscores the imperative of harnessing the convergence of ML and biobased polymers for future global sustainability
endeavors in energy, fuels, and biochemicals. The collective evidence presented asserts the immense promise this union holds for
steering a sustainable and innovative trajectory.

1. INTRODUCTION
In the quest for a sustainable future, numerous challenges have
been encountered.1,2 Global reliance on nonrenewable energy
sources has exacted a significant toll on the environment.3−5

Traditional materials, primarily derived from finite resources,
exacerbate the environmental burden, contributing to pollution
and resource depletion.6,7 The promise of biobased polymers,
sourced from renewable biomass, is overshadowed by various
obstacles, including their production, modification, and
application in diverse fields.8 ML, a subset of artificial
intelligence, involves the development of algorithms and
statistical models that enable computers to perform tasks
without explicit instructions.9−11 Instead, these systems learn
from and make predictions or decisions based on data. This
technology has become increasingly pivotal in various sectors,
including energy, materials, and biotechnology.12−17 The
integration of ML offers a pioneering approach, potentially
overcoming these barriers by optimizing biopolymer character-
istics and their applications in energy, fuel, and biochemical
domains.18−20 However, a substantial research gap persists in
the comprehensive understanding and effective deployment of
this synergistic relationship.

In various sectors, initial strides toward integrating biobased
polymers for sustainable energy, fuels, and biochemicals are

being made.21,22 Table 1 shows the Source and Overview of
Biobased Polymers. The production and modification of these
polymers are currently being refined, contributing to the
gradual mitigation of the associated challenges. Despite these
endeavors, optimizing biobased polymers for diverse applica-
tions remains a significant hurdle.23,24 Parallel efforts are
observed in the realm of ML where advanced algorithms and
computational models are being developed to enhance the
characteristics and applications of biobased polymers.25−27 ML
strategies for the improved production and application of
biobased polymers are emerging. These efforts symbolize the
budding synergy between ML and biobased polymers,
showcasing the collective stride toward a sustainable future.

In this comprehensive review, an exhaustive and critical
examination of the advancement and synergy of ML and
biobased polymers is conducted. Insight into the inherent
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attributes of biobased polymers and their cardinal role in
bolstering sustainability in diverse applications is offered. The
profound influences of ML on the enhancement of biobased
polymers are elucidated. Discussions highlight the prominent
role of biobased polymers in sustainable fuels and their
production, alongside the substantial impact of ML on fuel
efficiency and innovation. The notable contributions of both
domains to the advancement of biochemical production are
expounded. A conclusion is presented, summing the findings
and providing a directional path for future research, solidifying
the belief in the continuous collaborative growth of ML and
biobased polymers for a sustainable global future.

This compelling review culminates in affirming the
indispensable role played by the convergence of ML and
biobased polymers in energy, fuels, and biochemicals. This
review fills a gap in the current literature by providing a unique,
integrated perspective on ML and biobased polymers, a
combination scarcely addressed in existing studies, offering
timely insights into emerging interdisciplinary solutions for
sustainability. The path toward a more sustainable and
innovative future is presented by thoroughly exploring the
intersection of these two critical domains. The detailed analysis
presented within these pages aims to inform and spur further
research and development in these vital areas. The criticality of
this synergy underscores a compelling opportunity for the

global research community, highlighting the potential for
enhanced exploration and investment in these areas, pivotal for
driving sustainable advancements and innovations.

2. BIOBASED POLYMERS AND SUSTAINABILITY
A global shift toward sustainability is being witnessed.40−42 An
essential role in this transformative move is played by biobased
polymers, which are derived from biological sources rather
than petroleum bases.43,44 Derived from biomass, these
polymers are considered the more sustainable option, thereby
increasing utilization across various industries.45 In this
significant transition, biobased polymers’ properties, character-
istics, and diverse applications are analyzed, highlighting their
impactful role in advancing the sustainable agenda for the
energy, fuel, and biochemical industries.46 In their essence,
biobased polymers carry properties that address many
environmental concerns.47 Being biodegradable, a significant
reduction in waste pollution is associated with their use.48,49

These polymers exhibit a commendable balance between
lightness and strength and their flexibility, making them
adaptable to a wide range of applications.50 Their diverse
properties open avenues for customizations suitable for specific
needs, reinforcing their potential and adaptability across
multiple sectors.

A swift surge in the application of biobased polymers in the
energy sector is noted.51,52 The efficiency and durability of
renewable energy systems such as solar panels and wind
turbines are being enhanced by integrating biobased
polymers.53,54 These polymers further facilitate the fostering
of sustainable energy technologies, emphasizing their signifi-
cant role in promoting renewable energy systems and
contributing to the global sustainability movement. A marked
influence of biobased polymers in the fuel industry is
observed.55 The enhancement in the production of biofuels
is ascribed to the effective catalytic properties exhibited by
these polymers. The efficient conversion of biomass to fuels is
being facilitated, demonstrating their crucial contribution to
bolstering sustainable fuel production.55,56 This is an essential
step in the global move toward more sustainable and cleaner
energy solutions, further reinforcing the pivotal role played by
biobased polymers.

The realm of biochemicals is not untouched by the extensive
benefits of biobased polymers. Their use in developing
biodegradable and ecofriendly packaging materials is reducing
the environmental load considerably.57,58 Moreover, a
significant contribution to the production of sustainable
chemicals and materials is made by these polymers, showcasing
their extensive and versatile applications.59 In the domain of

Table 1. Source and Overview of Biobased Polymers

source of
biobased
polymers biopolymer types potential application reference

Corn starch Polylactic acid (PLA) Biodegradable packaging,
agricultural products

28

Sugar cane Biopolyethylene (bio-
PE)

Food packaging, cosmetics,
personal care, automotive
parts, toys, agricultural
and industrial purposes

29

Microalgae Polyhydroxy alkanoates
(PHA)

Medical devices,
Biodegradable packaging

30

Cellulose Cellulose acetate Food packaging 31
Soybeans Polyhydroxyerethane

(PHU)
Adhesives and coatings 32

Potatoes Starch-based
biopolymers

Biodegradable packaging
films

33

Castor oil Polyamide 11 (PA11),
Polyurethane (PU)

Footwear and automotive
parts

34−36

Chitin from
shrimps
and crabs

Chitosan Drug delivery and dressings 37

Whey Whey protein-based
films

Food packaging 38

Macroalgae Alginate, agar,
carrageenan

Edible films and lectins 39

Table 2. ML’s Capability in Property Prediction and Optimization Potential for Materials Science and Engineering

property or feature ML’s role in enhancement potential impact references

Material design Guiding innovative design approaches Enhanced material functionality 61, 84
Mechanical properties Predicting and optimizing strength and durability Improved product reliability and lifespan 85, 86
Thermal properties Forecasting and enhancing heat resistance Wider application range 87, 88
Environmental compatibility Assessing and improving biodegradability Increased sustainability 89, 90
Production efficiency Enhancing process parameters for efficient production Reduced production cost and time 91, 92
Performance characteristics Ensuring robust and efficient material properties Enhanced operational efficiency 79, 93
Application specific customization Tailoring polymers for specific applications Improved performance in diverse applications 94, 95
Cost-efficiency Optimizing for low-cost production and material use Economic and competitive advantages 96, 97
Integration in renewable energy systems Customizing materials for energy systems Augmented renewable energy efficiency 98, 99
Integration in energy storage Developing advanced components for energy storage Enhanced energy storage capacity and efficiency 73, 100
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energy storage and conversion, biobased polymers are making
substantial contributions.60 High-efficiency batteries and
supercapacitors are being developed with these polymers,
exhibiting advancements in energy storage solutions and
contributing to the sustainable energy ecosystem.19,51

The encompassing role of biobased polymers in propelling
global sustainability efforts is emphasized. From the energy
sector to biochemicals, their diverse applications foster
advancements in sustainable technologies and materials,
leading the path toward a more environmentally conscious
future. The ongoing research and exploration in biobased
polymers signify the continuous enhancement and discovery of
their potential, promising a sustainable and innovative future.

3. ML: REVOLUTIONIZING MATERIAL SCIENCE
In the evolving panorama of material science, the influence of
ML stands out, predominantly steering the enhancement and
development of sustainable materials and biobased poly-
mers.61−65 The prospect of designing advanced materials
with precise properties for specific applications is heightened
by employing ML algorithms for property prediction and
optimization.11,66,67 A comprehensive analysis of large data sets
performed by ML efficiently discerns patterns and correlations
that might remain unnoticed by conventional methods.68

Through this, expedited and more informed decisions are
made in the development of biobased polymers for diverse
applications. Table 2 shows the ML capability in property
prediction and optimization potential for materials science and
engineering.

In the sector of renewable energy systems, a remarkable
enhancement is noticed in the integration of biobased
polymers, courtesy of ML interventions.69,70 Renewable energy
apparatuses like solar cells and wind turbines are experiencing
a boost in operational efficiency by incorporating ML-
optimized biobased polymers.71,72 By understanding the
intricate material properties and performance characteristics,
ML aids in customizing biobased polymers to complement the
unique requirements of different renewable energy systems.27

This cooperation between ML and biobased polymers is
proving to be instrumental in augmenting the sustainability
and efficiency of renewable energy systems, contributing
significantly to global sustainable energy goals.

Shifting the focus to energy storage, ML’s impact in the
refinement of biobased polymers for this purpose is
substantial.73 The ML algorithms, proficient in analyzing and
predicting material behaviors, play a crucial role in the
development of biobased polymer components for advanced
batteries and energy storage systems.27,74 The accurate
prediction capabilities of ML aid in ensuring the robustness
and efficiency of these storage solutions, further emphasizing
ML’s role in promoting the sustainability of energy storage
technologies.75,76 Real-time monitoring and predictive main-
tenance, facilitated by ML, enhance the lifespan and reliability
of these energy storage systems, showcasing the comprehensive
benefits of ML’s integration.77,78

In energy conversion systems, the contribution of ML to the
progress of biobased polymers is crucial.79 The role of
biobased polymers in fuel cells and other energy conversion
devices is optimized by employing ML for the precise tailoring
of material properties.80,81 The potential of ML in guiding the
development of high-performance, sustainable biobased
polymer components for energy conversion is significant. It
ensures the efficiency and sustainability of these systems, thus

playing a crucial role in enhancing overall energy conversion
processes and technologies.79

Further, integrating ML in the realm of biobased polymers
fosters innovation in material design and performance. ML’s
capability in property prediction and optimization guides the
development of biobased polymers with enhanced features for
diverse energy applications.82,83 The concurrent evolution of
both these domains, facilitated by ML, ensures the timely
advancement and integration of efficient and sustainable
biobased polymers in the global energy landscape.

In summation, the integration of ML in material science,
particularly in enhancing and developing biobased polymers,
marks a significant leap toward comprehensive sustainability
and efficiency in energy systems. Ensuring the continued
collaboration and innovation in these intertwined domains is
fundamental for the realization of global sustainable energy
objectives, underscoring the essential role of ML in this
endeavor.

4. ENERGY AND FUELS
4.1. Biobased Polymers for Sustainable Energy. The

integration of biobased polymers such as chitosan, lignin,
polypyrrole, PLA, PHA, and microalgae-derived biopolymers
in the field of sustainable energy reveals significant promise for
enhancing the performance and environmental compatibility of
renewable energy systems, energy storage, and energy
conversion.101−104 Within the renewable energy sector, these
polymers actively participate in constructing more efficient,
environmentally friendly solar cells.105 Their application is seen
in organic photovoltaic cells, which serve as the active layer,
enabling the absorption and conversion of solar energy to
electricity.106,107 For instance, in the fabrication of organic
photovoltaic cells, chitosan is often employed due to its
excellent film-forming properties and biocompatibility, enhanc-
ing the cell’s ability to absorb and convert solar energy.108,109

Additionally, PLA is another biobased polymer frequently used
in these cells for its environmental sustainability and efficiency
in aiding the conversion process from solar to electrical
energy.110,111

In the realm of energy storage, biobased polymers show
significant potential for the development of advanced,
sustainable batteries.112 Utilizing biobased polymers for
making electrodes and electrolytes in batteries has witnessed
notable advancements, contributing to the production of high-
performance energy storage devices.22,113 The introduction of
these ecofriendly materials in batteries effectively supports the
reduction of hazardous waste and the overall environmental
footprint.114 This application stands as a testament to the
beneficial amalgamation of biobased polymers and energy
storage systems. Additionally, the role of biobased polymers in
energy conversion is crucial and is gradually gaining attention.
These materials contribute to the enhancement of fuel cells
and other energy conversion devices, ensuring higher efficiency
and sustainability. Biobased polymers function as essential
components in the membranes of fuel cells, promoting the
efficient conversion of chemical energy to electrical en-
ergy.101,115 By replacing conventional, petroleum-based
materials with biobased alternatives in these applications, the
industry makes substantial strides toward a more sustainable
and ecofriendly future.

The infusion of ML with materials further catalyzes these
advancements, providing an avenue for optimized material
design and utilization.116 Sophisticated algorithms and models
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facilitate the precise tailoring of biobased polymer properties to
meet specific energy-related applications. ML assists in
predicting and enhancing the performance, functionality, and
environmental impact of these polymers within diverse energy
systems.117 Through this synergy, the potential for innovation
and development in utilizing biobased polymers for sustainable
energy is boundless.

In conclusion, the amalgamation of biobased polymers with
sustainable energy applications bolstered by advancements in
ML exemplifies a promising pathway for the future. These
polymers’ incorporation into renewable energy systems, energy
storage, and energy conversion technologies demonstrates
tangible benefits for these systems’ efficiency, performance, and
environmental sustainability. The continued exploration,
research, and development in this domain are imperative to
fully unlock and harness the potential of biobased polymers for
a more sustainable and energy-efficient future. The commit-
ment to this exploration and innovation will invariably lead to
achieving global sustainability goals, ensuring a cleaner,
greener, and more efficient energy landscape for future
generations.

4.2. Case Studies of Advanced Biobased Polymers for
Energy Applications. Exploring biobased polymers for
energy-related applications holds significant promise in the
journey toward sustainable energy solutions. Advanced
biobased polymers, thoroughly investigated through various
case studies, unveil opportunities for enhanced ionic
conductivity, increased efficiency and longevity of energy
devices, and improvement in other critical parameters,
ultimately contributing to the evolution of green energy
technologies.

The work by Rudhziah et al.118 presented an innovative
exploration into the realm of biopolymer electrolytes,
specifically focusing on blends of carboxymethyl kappa-
carrageenan and carboxymethyl cellulose. The blending was
found to enhance material properties, particularly conductivity.
The research reported a remarkable finding of the highest
room temperature ionic conductivity, achieving 2.41 × 10−3 S
cm−1 at 30 wt % of ammonium iodides. This result is indicative
of the impactful role of salt concentration on ionic
conductivity. A meticulous evaluation of the polymer-salt
interaction revealed a significant interaction with NH4I salt,
which was instrumental in increasing the O−H band,
indicating a noteworthy interaction with the biopolymer
chain oxygen atoms. This aspect demonstrated the essential
role of NH4I in the enhanced conductivity of the blended
biopolymer electrolyte. It was established that the system’s
conductivity heightened with the increase in temperature,
reaffirming the Vogel−Tammann−Fulcher relation and
uncovering an activation energy of a low 0.010 eV for the
highest conducting sample. Future research could delve into
the potential optimization of the biopolymer blend ratios and
the concentration of NH4I to enhance the electrolyte’s
conductivity and overall efficiency.

In the work by You et al.,119 the utilization of a biopolymer
heparin sodium (HS) interfacial layer to enhance the efficiency
and longevity of methylammonium lead trihalide (MAPbI3)
perovskite solar cells is meticulously analyzed. The HS layer’s
application evidently mitigated the traps at the perovskite-TiO2
cathode interface, resulting in a significant boost in power
conversion efficiency from 17.2% to a commendable 20.1%.
Remarkably, the HS interfacial layer’s role in retarding device
degradation is clear, with devices maintaining 85% efficiency

after 70 days of exposure to ambient conditions. The intricate
methods employed, including density functional theory
calculations, affirmed HS’s passivation of MAPbI3 and TiO2
surfaces, interacting with undersaturated ions and thereby
enhancing the overall device performance. Furthermore,
elucidating reduced hysteresis and enhancing device parameter
consistency post-HS layer addition solidify the findings. The
comprehensive assessment, including photoluminescence spec-
troscopy and time-resolved PL decay kinetics, reinforced HS’s
critical role in promoting charge transfer, reducing surface
charge trapping, and improving film quality by diminishing
void density. The evident increase in recombination resistance
from 1345 Ω to 2138 Ω with HS, highlighted in the Nyquist
plots, further supports the assertion of HS’s impactful role in
enhancing perovskite solar cell performance. In terms of
stability, the HS interlayer proves crucial. A compelling 90% of
initial performance is retained after 70 days in a nitrogen
atmosphere, a notable improvement over the reference cell’s
60% efficiency retention. These robust findings underscore the
HS layer’s crucial role in significantly enhancing perovskite
solar cells’ efficiency and durability.

In the work by Rasal et al.,120 a novel and nature-inspired
approach utilizing polydopamine (PDA)-based additives in
polysulfide electrolytes was explored to enhance the efficiency
and stability of quantum dot-sensitized solar cells (QDSSCs).
The work reports a significant enhancement in the conversion
efficiencies with P-PDA and Se-PDA electrolytes, yielding
7.83% and 8.59%, respectively, compared to a 7.62% efficiency
from the reference electrolyte. This improvement is attributed
to the suppression of electron−hole recombination at the
TiO2/QDs/electrolyte interface by the PDA-based additives.
Moreover, the PDA-based additives greatly contributed to the
performance stability of QDSSCs, with P-PDA and Se-PDA
devices retaining 91% and 79% of their original performance
after 60 h, contrasting sharply with the 11% retention of liquid
electrolytes. The technical aspects were meticulously detailed
in the work. The Se-PDA showed distinct sharp peaks at
certain degrees, confirming successful Se doping on P-PDA
nanoparticles. Additionally, XPS results suggested that PDA’s
strong chelating properties may be responsible for the
interactions between Se ions and P-PDA, a finding crucial
for understanding the mechanism underlying the observed
performance improvements. The study also reported improved
water dispersibility and homogeneity with PEG-NH2 function-
alization and Se doping, resolving the issue of partial water
solubility of PDA nanoparticles, a critical factor for ensuring
uniform application and consistent performance of the
modified electrolytes in QDSSCs. For future work, it would
be imperative to explore the environmental footprint of using
PDA-based additives and Se doping in polysulfide electrolytes.
Further research could also focus on the optimization of the
PDA and Se concentrations to enhance both the efficiency and
stability of QDSSCs even further.

The work by Yuan et al.121 scrutinizes the development and
assessment of advanced biobased polythiophenes (PTs) for
enhancing organic solar cells (OSCs) efficiency. The work
discusses the introduction of new PTs (P5TCN-Fx) with
cyano-group substitutions and varying fluorination degrees for
heightened efficiency in OSCs. The cyano-group awards PTs
deep energy levels, and backbone fluorination elicits robust
interchain interaction, leading to a marked polymer crystal-
linity improvement. Significantly, several PTs have registered
over 16% efficiency in binary OSCs, with a noteworthy 17.2%
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power conversion efficiency (PCE) observed for P5TCN-F25
via a ternary blend design. This progress is underscored by a
comparison of the synthetic complexity (SC) and the number-
average molecular weights (Mn’s) of the polymers. P5TCN-Fx
shows a lower SC (49.2%) than other studied polymers and
Mn’s ranging between 70 and 96 kDa, indicating efficient and
stable polymer structures. Despite the decline in solubility after
fluorination, all PTs remain adequately soluble for solution
processing from common organic solvents. The study reveals
an increase in thermal stability (above 430 °C) and melting
and crystallization temperatures, showcasing the polymers’
suitability for long-term OSC operation. However, it is worth
noting the decreased homologous orbital (HOMO) energy
levels with increased fluorination and a discernible aggregation
at room temperature, particularly for higher fluorinated
versions (P5TCN-F35 and F50). These polymers require
elevated temperatures (55 and 65 °C, respectively) for
deaggregation. In terms of future research, exploring the
nuanced interplay between fluorination degrees and the
resultant polymer properties will be crucial. This includes a
deeper investigation into the balance between solubility,
thermal stability, and energy levels to further optimize PTs
for enhanced OSC efficiency while maintaining cost-effective-
ness and long-term operational stability.

In the work by Abdulwahid et al.122 on advanced biobased
polymers for energy, the use of potato and chitosan starch,
doped with NH4SCN as the host electrolyte, portrays an
innovative approach to developing electrochemical energy
storage devices. The researchers produced novel plasticized
solid biopolymer electrolytes with nontoxic glycerol, which
were used as mediators in electric double-layer capacitor
(EDLC) applications. This methodology significantly reduced
crystallinity, as confirmed by XRD patterns, enhancing the ion
conductivity (1.62 × 10−3 S cm−1) and large electrochemical
potential stability (2.1 V), especially for the PSBE composition
with 24 wt % Gly. However, ion movement restrictions were
observed for Gly-loaded samples (32 and 40 wt %), impacting
ion transport and conductivity negatively. The assembled
EDLC device displayed a specific capacitance of 16.1 Cspc F/g
at a 10 mV/s scan rate, exhibiting stable and high performance
over 2500 cycles.

In the critical examination by Aziz et al.123 on the MC:Dex
polymer blend electrolyte system with NH4I salt for EDLC
applications, notable results and techniques unfold. The XRD
and FTIR analyses unveiled the complexation of MC:Dex
polymer blend and NH4I salt, with a discernible decline in
crystallinity upon increasing salt concentration. Remarkably,
the electrolyte composition with 40 wt % NH4I showcased an
apex in ionic conductivity at 1.12 × 10−3 S/cm and a stability
window of 1.27 V, presenting itself as predominantly ionic.
These outcomes highlight its potential for high-performance
EDLCs. The EDLC, equipped with activated carbon electrodes
and utilizing the highest-conducting electrolyte system,
exhibited an initial specific capacitance of 79 F/g, an energy
density of 8.81 Wh/kg, and a power density of 1111.1 W/kg at
a current density of 0.2 mA/cm2. The electrochemical stability
assessment of the MC:Dex:NH4I system under the LSV
method underscored its stability up to 1.27 V, aligning it as apt
for proton-based energy devices. Despite these advancements,
the EDLC performance observed a diminishing trend in
prolonged cyclic tests. For future research, the exploration into
enhancing the cyclic durability of the EDLCs developed with
this electrolyte system would be paramount. Diving deeper

into understanding the ion dynamics and electrode/electrolyte
interplay could unearth avenues to bolster the electrochemical
stability and overall performance of such advanced biobased
polymers for energy storage applications.

The work by Dannoun et al.124 delves into the use of
plasticized proton conducting polymer composite (PPC) for
advancing supercapacitors, addressing the inefficiencies
associated with polymer-based electrolytes. The exploration
and analysis of a blended methylcellulose and dextran solution
impregnated with ammonium thiocyanate and zinc metal
complex have yielded notable results. The ionic conductivity of
the resultant system was recorded at a notable 3.59 × 10−3 S/
cm. The study’s methodological approach, involving various
analyses like transference number measurement and electro-
chemical impedance spectroscopy, has robustly supported
these findings. Moreover, the glycerol plasticizer shown to
enhance transport possesses an ionic mobility of 5.77 × 10−5

cm2 V−1 s−1 and a diffusion coefficient of 1.48 × 10−6 cm2 s,
supporting an overall carrier density of 3.4 × 1020 cm−3.
Additionally, the linear sweep voltammetry results indicate
stability up to 2.05 V, underscoring the material’s suitability for
energy devices. The absence of Faradaic peaks in the cyclic
voltammetry plot and the low equivalence series resistance of
65 Ω reported in the galvanostatic charge−discharge experi-
ment further reinforce the potential of PPC in the enhance-
ment of energy devices, showing average energy density and
specific capacitance of 15 Wh/kg and 128 F/g respectively.
Future research could delve deeper into optimizing the ionic
conductivity and enhancing the overall electrochemical
stability beyond the reported 2.05 V.

The work by Monisha et al.125 explored the development of
a proton-conducting solid biopolymer electrolyte by employing
a solution casting technique. They utilize cellulose acetate
(CA) and ammonium thiocyanate (NH4SCN) for the creation
of the polymer electrolyte. Their comprehensive XRD analysis
significantly highlights an increase in the amorphous nature of
the CA complex with an escalation in NH4SCN salt
concentration, leading to higher ionic conductivity. Further,
the work documents the testing of electrical conductivity using
an AC impedance analyzer, showcasing an increase in ionic
conductivity with heightened salt concentration up to
50CA:50NH4SCN, which exhibits a maximum ionic con-
ductivity value of 3.31 × 10−3 S cm−1. The detailed
electrochemical impedance spectroscopy analysis bolsters
these results, emphasizing a decline in resistance from 924 to
8.6 Ω with increased NH4SCN concentration. Such technical
aspects underscore the potential application in developing fuel
cells and primary proton batteries. Additionally, the authors
provide an insightful observat ion regarding the
50CA:50NH4SCN polymer electrolyte, which displays the
highest ionic conductivity (3.31 × 10−3 S cm−1) at room
temperature, significantly outperforming pure CA (1.285 ×
10−7 S cm−1). This notable finding is attributed to the
transition from a semicrystalline phase to an amorphous phase
of the polymer complex, combined with an increase in charge
carrier concentration.

The research by Harikumar and Batabyal126 portrayed a
novel study into creating a flexible, transparent, and
biodegradable supercapacitor electrode using a pectin bio-
polymer and a biocompatible electrolyte. The work compre-
hensively explored pectin biopolymer-based electrodes due to
their stability and specific capacitance. Notably, the pectin
electrode with 10% graphite retained an impressive 98.74%
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capacitance after 2500 cycles at 11.48 mF/cm2, showcasing its
potential for enduring efficiency in energy storage. Moreover,
the specific capacitances of supercapacitors, especially the PP
supercapacitors, displayed encouraging results, showing 7.25
and 4.64 mF/cm2 specific capacitance at 10 and 100 mV/s
respectively with a notable capacitance retention of 86.8%. In
terms of technical highlights, the methodological use of EDX
and elemental mapping is crucial for showcasing a uniform
distribution of various elements, aiding the establishment of
the most effective supercapacitors. The work commendably
indicates the enhanced ionic movement during charging and
discharging to maintain the GCD shape after numerous cycles.
For future research, the practical application of these advanced
biobased polymer supercapacitors should be a primary focus.
This includes testing under various environmental and
operational conditions to ensure versatility and reliability.
Furthermore, refining the graphite-to-pectin weight ratios and
exploring alternative biocompatible materials can unearth more
optimized solutions for sustainable and efficient energy storage
systems, contributing to the advancement of ecofriendly
technology in the energy sector.

In conclusion, the comprehensive investigation of energy-
related advanced biobased polymer case studies elucidates the
paramount importance of these materials in enhancing the
performance and sustainability of energy devices. The revealed
advancements pave the way for further research, aiming to
optimize and expand the utilization of biobased polymers,
fortifying their crucial role in the future of sustainable energy
solutions.

4.3. Biobased Polymers in the Fuel Industry. A
substantial contribution is being made by biobased polymers
in developing sustainable fuels.18,127,128 Figure 1 shows the
biobased polymer process in the fuel industry. Extracted from
biological sources, these polymers align with environmental
sustenance.129 The in-depth exploration of biobased polymers’
roles in sustainable fuel production and enhancement is
presented in this section, illuminating their fundamental
contributions and future prospects. The biobased polymers,
derived from renewable biological resources, are marking a
crucial shift toward sustainable fuel production.18,130,131 Their

role in enhancing the production process of biofuels is
prominent. The contribution of these polymers to the efficient
conversion of biomass into fuel is being acknowledged,
underscoring their critical role in promoting the production
of environmentally friendly fuels. The promising potential of
these polymers to improve and increase the output of biofuel
production is being recognized, opening new avenues for
sustainable fuel production and environmental protection.
Among these biobased polymers, cellulose, PHA, and PLA are
particularly notable for their roles in fuel industry applications,
offering innovative pathways in producing sustainable fuels.

A growing usage of biobased polymers in biofuel production
processes is being witnessed. The polymers are aiding in
developing efficient and advanced biofuel production tech-
nologies. Their use in the production process enhances the
overall efficiency, thereby contributing to the increased
production of sustainable fuels. These advancements are vital
in promoting ecofriendly fuels and addressing global energy
demands without harming the environment. The practical
applications of biobased polymers in fuel production processes
showcase their substantial impact on the industry. Innovative
biofuel production methods and technologies are being
developed, credited to integrating these polymers. The
advancements include enhanced production efficiency, in-
creased output, and improved environmental sustainability.
Promoting these advancements by biobased polymers is
essential in establishing a solid foundation for sustainable
fuel production, highlighting their crucial role in the industry.

Furthermore, the role of biobased polymers in fuel
production is not limited to biofuels. These polymers
significantly contribute to other sustainable fuel production
processes, including creating hydrogen fuel and other
alternative, sustainable fuel sources.132,133 Specifically, bio-
based polymers like cellulose and lignin-derived materials are
instrumental in the catalytic processes crucial for hydrogen
production, enhancing hydrogen generation efficiency from
biomass. Additionally, these polymers contribute to developing
advanced bioelectrochemical systems, enabling more effective
energy extraction from alternative sustainable fuels and thus
broadening the scope of their application in the energy sector.

Figure 1. Biobased polymers process in the fuel industry.
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The impact of biobased polymers on these alternative fuel
production methods is being realized, supporting the
continued growth and advancement of sustainable fuel
technologies and promoting environmental sustainability. In
summary, it has been demonstrated that biobased polymers
play an indispensable role in the evolution of the fuel industry.
Their contributions, extending beyond biofuel production to
encompass alternative sustainable fuel sources, including
hydrogen fuel, are pivotal in the transition toward a more
ecoconscious energy sector. Incorporating these polymers not
only enhances the efficiency and output of biofuel production
but also signifies a leap forward in environmental stewardship.

4.4. Case Studies of Biobased Polymers in the Fuel
Industry. In pursuing ecofriendly alternatives within the fuel
industry, significant emphasis has been placed on developing
and assessing biobased polymers. Various case studies in this
section rigorously investigate the efficient conversion of
biomass and biopolymers into sustainable fuels, showcasing
innovative methods and catalysts that have the potential to
revolutionize the fuel industry.

The work by Liu et al.134 offers a comprehensive
investigation into the production of high-density aviation fuel
from cellulose, a bountiful, nonedible biomass. The process
involves converting cellulose to 2,5-hexanedione with a yield of
71.4%, followed by obtaining a mixture of C12 and C18
branched polycycloalkanes with a carbon yield of 74.6% using
the aldol method. The polycycloalkane mixture demonstrated
low freezing points and high density, marking its potential as
an advanced aviation fuel. The article underscores the
utilization of HCl and Pd/C for cellulose hydrolysis and
hydrogenation, attaining a carbon yield of 64.2% under specific
conditions. The study further explores the effectiveness of the
HCl + Pd/C catalyst in the hydrogenolysis of other
carbohydrates, achieving carbon yields ranging from 40.4% to
74.0%. Further research could focus on exploring alternative
catalysts and methods that may enhance the overall efficiency
and sustainability of the fuel production process. In the context
of producing high-density polycycloalkanes, the work presents
the efficacy of both pure and metal-modified MgO as catalysts,
achieving a conversion of 99.1% and a carbon yield of 98.3%.
The bimetallic Cu-Ni/MgO-p catalysts showcased the highest
total carbon yields, indicating their superior performance in
producing C12 and C18 oxygenates. For future research,
exploring more environmentally benign catalysts and further
optimizing the fuel production process, focusing on max-
imizing yield while minimizing environmental footprint,
remains paramount.

The work by Riaz et al.18 posits a novel exploration into the
potential of PHAs in biofuel production. These bacterial
polymers exhibit versatility and compatibility for methyl
esterification, making them suitable candidates for biofuel
production, akin to biodiesel but with higher oxygen content
and absent nitrogen or sulfur. The work delineates the
production of hydroxyalkanoates methyl ester (HAME) and
hydroxybutyrate methyl ester (HBME) from PHAs, showcas-
ing a promising path for sustainable fuel generation. Notably,
the work highlights a significant increase in combustion heat by
30% when HBME was blended with ethanol. The essential
point is that the work asserts that these PHA-based biofuels do
not necessitate significant purification, suggesting a possible
cost-effective production pathway, utilizing wastewater as a
source, thereby negating competition with food resources.
Furthermore, the optimization of the production parameters is

meticulously discussed. A notable highlight is the discernible
increase in HBME yield, rising from 12.8 to 70.7% with a
reaction time increase from 10 to 50 h. The document lays a
foundation demonstrating the influence of diverse factors such
as reaction time, temperature, and catalyst type on the yield of
HAME-based biofuels. The presence of low cetane numbers
and high heat of vaporization in oxygenated additives like HA
esters may pose challenges in diesel engine fuelling.

The work by Akinwumi et al.135 addresses the production
and utilization of PHA-based biofuels, analyzing their pros,
cons, and commercial viability. The PHA methyl esterification
process, used to produce biofuels like 3HBME and 3HAME, is
examined for its sustainable and petroleum-free approach. The
work reveals that despite low octane and cetane numbers,
which hinder performance, alternative PHAs with longer
carbon lengths may provide improved biofuel qualities. This
feature is critical for advancing biobased polymers in the fuel
industry, indicating a need for more extensive research on
various PHA types and their corresponding biofuel character-
istics. The work uncovers crucial data, such as the significant
increase in combustion heat when 3HBME and 3HAME are
blended with ethanol, demonstrating the potential efficacy of
these biofuels. However, it also highlights the issues of high
production costs, estimated at $1,200/ton, which could limit
the broad-scale application of this technology. The detailed
analysis of HBME as a potential fuel additive is noteworthy,
emphasizing its superior flashpoint, oxygen content, and
temperature properties compared to ethanol. Despite these
positive aspects, the low octane and cetane numbers and
potential phase separation issues underscore the need for
further development and optimization of PHA-based biofuels.
In addressing the production process, the work reports on the
effectiveness of both acid and alkali catalysts in PHA
conversion to biofuels. The elucidation of the method
involving chloroform solvent, methanol, and acid or base for
esterification at 67 °C for 50−100 h is meticulously outlined.
Explaining the subsequent processes, such as the separation
and vacuum evaporation, adds depth to understanding the
biofuel production methodology. Furthermore, the work sheds
light on the comprehensive characterization of PHA-based
biofuel, elaborating on its physicochemical properties,
including dynamic viscosity, flashpoint, and oxygen content.
The comparison with petrol, ethanol, and diesel strengthens
the argument for the potential use of HBME as a fuel additive
despite the highlighted challenges, such as its lower cetane
number and research octane number, necessitating additives.

The work by Xu et al.136 provides a comprehensive
exploration into the solvent-free catalytic hydrogenolysis of
PLA powder. Achieving a 100% conversion with a carbon
utilization of 99%, the study presents an ecofriendly and
efficient process. The fuel produced exhibited an HHV of 29.9
MJ/kg, and the carbon recovery for discarded PLA straws was
reported to be 95%. One significant aspect is the meticulous
scrutiny of reaction temperatures to optimize the hydro-
genolysis process. The decomposition temperature of PLA,
which was affected by the addition of Pd/C, lowered to 351
°C, underscoring the catalytic effect on the degradation of PLA
powder. A careful selection of the reaction temperature range
(170−300 °C) was employed, ensuring the complete
conversion of PLA powder, yielding mainly light-yellow liquid
products and CO-enriched gas. The extensive experiments
indicated that hydrogen pressure was pivotal in enhancing the
liquid product yield, from 69.6 ± 6.2 wt % to 93.9 ± 5.7 wt %
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upon increasing H2 pressure. This indicates the potential
scalability and reliability of this method. Furthermore, utilizing
different catalysts besides Pd/C, such as Raney Co, Raney Ni,
and Cu/Zn/Al, underlines the versatility of the hydrogenolysis
process. The liquid products derived exhibit a considerable
HHV of 29.9 MJ/kg, highlighting their practical utility in the
fuel industry. Future research could delve deeper into
enhancing the hydrogenolysis process by exploring novel
catalysts that could optimize the reaction conditions and
product yield.

Tseng et al.137 examined the biological decomposability of
PLA by thermophilic methane fermentation (TMF) and
analyzed the microorganisms involved in PLA decomposition.
The research utilized disposable cutlery and pure poly L-lactic
acid (PLLA) pellets for both small and large-scale batch tests,
observing a 70−77% decomposition of PLA by TMF based on
weight changes, and CH4 yield ranged from 321−343 mL
CH4/g PLA consumed, a significant figure underscoring the
potential for methane production from PLA. The study
identified a considerable role of microbial activity, specifically
lactic acid-consuming bacteria, in enhancing PLA decom-
position doubling the physicochemical degradation rate. The
research unveiled that Methanothermobacter, a hydrogenotro-
phic methanogen, was the primary archaea in methane
production from PLA degradation. The bacterial microflora
involved in the depolymerization of PLA and/or degradation
of LA were also analyzed, and bands such as B1, B7, B8, and
B9 were identified as dominant in the PLA decomposition
process by TMF. The bacterial genera involved included
Def luviitoga, Anaerosalibacter, Tepidimicrobium, and Jonquetella.
Interestingly, bands B2 and B3, associated with genera
Streptococcus and Tumebacillus, were observed to become
dominant during PLA degradation, although they had not been
previously reported in PLA degradation, indicating potential
new pathways for PLA decomposition. The exploration of
carbon-13 isotope tracing in future studies is poised to
elucidate the production of CH4 and CO2 from PLA
decomposition, and the isolation and evaluation of Tepid-
imicrobium’s LA-consuming ability will fortify the findings of
this study. The efficient PLA treatment by TMF is emphasized,
and the critical role of microbial activity in this process is
unambiguously highlighted, proposing a potential sustainable
avenue for biofuel generation from biobased polymers. Further
research into the precise microbial pathways and mechanisms,
along with the optimization of TMF for PLA degradation,
stands out as a crucial future direction to enhance the viability
of this biotechnological approach for sustainable biofuel
production.

The study by Saha et al.138 stands out for exploring Lewis
acidic metal chlorides in producing biofuel precursor, 5-
hydroxymethylfurfural (HMF), from carbohydrates and
biopolymers. The research reveals the superiority of Zr(O)Cl2
as a catalyst, achieving 63% and 42% HMF yield from fructose
and glucose, respectively, in a water-MIBK biphasic solvent
system. This yield is impressively heightened to 84% and 66%
in a [BMIM]Cl-MIBK biphasic solvent, showcasing the
impactful role of solvents in catalytic efficiency. However,
although thoroughly investigated, pH’s impact on the catalytic
process demonstrates some ambiguity. Despite the lower pH of
Zr(O)Cl2 leading to higher HMF yields, the trend does not
consistently follow for all metal chloride catalysts. This
suggests that other unaccounted factors could be influencing
the catalytic effectiveness. The work emphasizes the superior

HMF yield when using microwave-assisted heating compared
to conventional oil-bath heating, and it elaborates on a detailed
mechanism for the isomerization of glucose into fructofur-
anose, followed by the production of HMF, further solidifying
the study’s comprehensiveness. The recycling aspect of
Zr(O)Cl2 catalyst, which sustains activity across five cycles
with only a 4% loss, is a promising finding for sustainable
biofuel production. Yet, the formation of CMF and LA as side
products indicates potential avenues for optimization to
enhance the yield and purity of HMF. For future research,
exploration into the anomalies in the catalytic effectiveness
related to pH and different metal chloride catalysts is essential
to optimize the process further. It would also be valuable to
investigate the intricate impact of various solvents and heating
methods on the HMF yield and potential ways to mitigate side
reactions that result in CMF and LA, ensuring a more efficient
and sustainable biofuel production using biobased polymers.

The study by Cheng et al.139 on the synthesis of five
Brønsted-Lewis acidic ionic liquids and their use in converting
cellulose to levulinic acid (LA), a key intermediate in the fuel
industry. The cellulose to LA conversion, in pure water
without additives at 180 °C for 10 h, yielded over 49% more
LA than utilizing Brønsted-Lewis IL [HO3S-(CH2)3-py]Cl-
FeCl3, highlighting the efficiency and potential ecofriendliness
of this method. Despite the formation of some solid residues,
identified as benzene or amorphous fused benzene rings, the IL
reusability and catalytic performance remained consistent after
five reuses, an essential factor for sustainable and practical
application in industry. The study’s methodologies are
thoroughly outlined, including the preparation of the
Brønsted-Lewis acidic IL and the testing of its catalytic
properties. The results show that the synthesized ILs had Lewis
acidic centers, with ZnCl2 being the strongest, followed by
FeCl3, CuCl, and CrCl3. A cellulose conversion exceeding 70%
and the highest LA yield of 57.6% were achieved, supporting
the efficacy of the Brønsted-Lewis acidic ILs in cellulose to LA
conversion. Furthermore, the IL [HO3S-(CH2)3-py]Cl-FeCl3
showed the best catalytic performance among all investigated,
with cellulose conversion at 71.4% and LA and glucose yields
at 49.1% and 10.2%, respectively. Future research in this area
could focus on optimizing IL structures for maximized LA
yield and cellulose conversion.

The work by Khan et al.140 offers several valuable insights
and findings in the realm of sustainable technology. The
research focuses on utilizing cellulose for the production of
levulinic acid (LA) through the use of dicationic ionic liquids
as a catalyst. Notably, a significant catalytic activity for cellulose
to LA conversion was achieved with [C4(Mim)2][(2HSO4)-
(H2SO4)2], showcasing a 55% conversion rate at 100 °C within
3 h, without requiring an additional catalyst or solvent. This
aspect underscores the potential efficacy and efficiency of the
utilized ionic liquids, contributing positively to the sustain-
ability and feasibility of the method. The research also provides
a profound insight into the influence of factors such as IL type,
amount, temperature, and reaction time on catalytic con-
version, thereby ensuring a comprehensive exploration of the
subject. The experiments performed at varying temperatures
between 80 and 120 °C revealed an optimal yield at 100 °C,
emphasizing the importance of temperature control in
enhancing the LA yield.

In sum, the meticulously conducted case studies demon-
strate significant advancements in biobased polymer con-
version for fuel production. Despite the promising results,
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several research gaps and opportunities for optimization and
enhancement are highlighted. Continual exploration in this
realm is vital for realizing more sustainable and efficient fuel
production processes using biobased polymers, contributing
substantially to global environmental conservation efforts.

4.5. ML in Energy Systems. In recent years, a marked
advancement in ML application in energy systems has been
observed.141,142 Significant enhancements in the efficiency and
sustainability of these systems have been realized by harnessing
the predictive and analytical capabilities of ML algo-
rithms.141,142 The optimization of renewable energy produc-
tion, particularly from solar and wind sources, stands as a
striking illustration of this trend.143,144 Real-time data are
analyzed to predict energy output, allowing for more efficient
grid integration and energy distribution.145 This analysis
primarily utilizes data such as weather forecasts, historical
energy usage patterns, and real-time sensor readings from
energy generation equipment. Moreover, the capacity for
accurate energy consumption forecasting by industries and
households has been augmented. This improvement enables
more effective demand-side management and aids in
minimizing energy wastage, underscoring the crucial role
played by ML in bolstering the efficiency and sustainability of
energy systems.146

The domain of energy storage, too, has been positively
impacted by the integration of ML.75,76,78 Enhanced perform-
ance and lifespan of batteries are achieved through the real-
time analysis and monitoring facilitated by ML, ensuring
optimal functioning and reliability of energy storage systems.
These improvements are largely attributed to predictive
maintenance strategies, where ML algorithms anticipate
maintenance needs and schedule interventions to prevent
failures. Additionally, degradation modeling of battery
components, enabled by ML, aids in understanding and
mitigating wear and tear, further enhancing lifespan and
performance. Strategies for effectively managing and maintain-
ing these systems have been formulated, leading to substantial
improvements in their overall efficiency and longevity. These
advancements resonate with the global impetus toward
bolstering the efficiency and sustainability of energy systems
by leveraging cutting-edge technologies, exemplified by the
integration of ML.

Moreover, in the field of energy conversion, ML has
emerged as a transformative tool.79,147,148 It aids in the
refinement and optimization of energy conversion processes,
ensuring maximized output and minimized waste. The fine-
tuning of these processes, facilitated by ML, underscores its
pivotal role in enhancing the efficiency and sustainability of
energy conversion systems. Furthermore, its application in the
assessment and optimization of novel energy conversion
technologies expedites their development and integration
into the existing energy infrastructure. This dynamic illustrates
the substantial contribution of ML in advancing the efficiency
and sustainability of energy conversion systems. In the realm of
enhancing biobased polymers for energy applications, ML has
displayed a substantial capacity for innovation. It has facilitated
the rapid, efficient design and assessment of biobased polymers
for diverse applications in renewable energy systems, energy
storage, and energy conversion.27,149 This accelerated develop-
ment and optimization process ensures the timely integration
of these ecofriendly and efficient materials into the energy
landscape, further augmenting the sustainability and efficiency
of energy systems globally.

In summary, from optimizing renewable energy production
and consumption to ensuring the peak performance of energy
storage systems and from refining energy conversion processes
to advancing the development and integration of biobased
polymers, ML has emerged as a critical ally in the global
pursuit of a more efficient, sustainable, and ecofriendly energy
future. The continued exploration and harnessing of its
immense potential are paramount to realizing these global
aspirations, reaffirming the indispensability of ML in the
evolution of energy systems toward unparalleled efficiency and
sustainability.

4.6. ML for Fuel Development. In the ever-evolving
landscape of fuel development, the substantial influence of ML
is being acknowledged.14,150 A significant surge in efficiency,
sustainability, and innovation in fuel development is being
observed, owing to the integration of advanced ML
algorithms.67 An exploration into the multifaceted impact of
ML on fuel development is explored in this section,
underlining its pivotal role in reshaping and enhancing the
industry.

The enhancement of fuel development processes is seen as a
direct consequence of ML.151,152 By processing vast data sets
and deriving actionable insights, ML is aiding in the
optimization of fuel production processes.14 These advance-
ments result in heightened efficiency, thereby reducing
resource utilization and promoting environmental sustain-
ability. Furthermore, the role of ML in the predictive
maintenance of fuel production machinery is being realized,
preventing unforeseen downtime and ensuring consistent and
optimal production.153,154 The technology is enabling the rapid
development and testing of novel fuel formulations, contribu-
ting to the emergence of more efficient and environmentally
friendly fuel alternatives. The ability of ML algorithms to
analyze and model complex chemical reactions is being
leveraged, resulting in the accelerated discovery and develop-
ment of new fuels.98,155 This innovative approach drives the
industry forward, ensuring it stays abreast of the growing global
energy demands while maintaining sustainability.

Moreover, the integration of ML in fuel development is
promoting sustainability.156 Through the optimized use of
resources and enhanced production efficiency, ML is
contributing to the reduction of the environmental impact of
fuel production. It aids in the development of cleaner, more
sustainable fuels by analyzing and predicting the environmental
impact of various fuel types, thereby guiding the industry
toward more ecofriendly alternatives.157,158 This commitment
to sustainability is crucial in addressing the urgent global
environmental challenges faced today. In conclusion, the
incorporation of ML within the realm of fuel development is
bringing forth substantial advancements in efficiency, sustain-
ability, and innovation. Its role in enhancing and optimizing
fuel production processes, promoting the discovery of new
fuels, and guiding the industry toward ecofriendly alternatives
highlights its crucial significance in the ongoing and future
developments within the fuel industry. The sustained
exploration and integration of ML within the industry hold
the promise of a more efficient, innovative, and sustainable
future for fuel development.

4.7. Case Studies of ML Applied in Biopolymers for
Fuel Development and Energy applications. 4.7.1. ML
Applied to Biopolymers for Energy Applications. In the
exploration of biopolymers for fuel and energy applications,
ML emerges as a paramount tool. Significant advancements are
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realized in fuel development, with ML optimizing biopolymer-
based solid polymer electrolytes, enhancing fuel cell perform-
ance, and predicting ionic conductivity within biopolymer
electrolytes for zinc-ion batteries. This section meticulously
discusses various case studies to delineate the impact and
potential of ML in biopolymer research for fuel and energy
applications. Figure 2 shows the ML enhancement process of
biopolymers in energy applications.

The study by Adam et al.159 embarks on the optimization of
cellulose and its derivatives-based solid polymer electrolytes
(SPEs), leveraging ML. The research employs response surface
methodology (RSM) and artificial neural networks (ANNs) for
predicting and optimizing PC/MC-based SPE complexed with
potassium phosphate (K3PO4) and glycerol. The study reveals
significant influences of K3PO4 and glycerol on SPE’s ionic
conductivity and potential window, especially with higher
potassium salt content. An optimal interaction of ∼3 × 10−4 S
cm−1, 4.19 V is achieved at 60 wt % K3PO4 and 41.37 wt %
glycerol, revealing effective numerical optimization. The
research provides a detailed insight into the role of each
variable, showing limited effects at low concentrations while
pointing out the increasing ionic conductivity with a surge in
salt concentration. This aspect is crucial as it highlights the
interplay of these materials in enhancing ionic conductivity.
The effectiveness of glycerol and K3PO4 in impacting the ionic
conductivity and potential window is meticulously analyzed,
giving readers a profound understanding of their roles and
interactions. It is intriguing to note the linear correlation in the
residuals of the two models, indicating a normal distribution of
errors. In addressing ionic conductivity, the research
demonstrates the minimal impact at low K3PO4 concen-
trations, a crucial observation for practical application. It
portrays the intricate relationship between K3PO4 and glycerol,
signifying their significant interaction in the PE. The detailed
analysis using contour plots splendidly illustrates the

interaction dynamics, helping to visualize the parameter
synergy, a crucial aspect for material engineers. One significant
highlight is the demonstrated accuracy of the ANN model in
predicting ionic conductivity and potential window with high
R2 values of 0.999 and 0.998, respectively, showing a minuscule
error margin. This accuracy is a compelling achievement in the
realm of SPEs, as it provides a robust model for further
experimental designs. Future research could be directed toward
understanding the mechanical properties of these SPEs and
their compatibility with other materials for diverse energy
applications. This could pave the way for the development of
more efficient and sustainable energy storage devices employ-
ing biopolymers. In essence, the work stands out for its in-
depth analysis, the employment of ML tools, and clear,
demonstrable results, setting a precedent for future research in
the realm of biopolymer-based SPEs for energy applications.

The work by Tian et al.160 presents a significant stride
toward enhancing the efficacy of polymer electrolyte
membrane (PEM) fuel cells. The work adeptly combines
ANN and genetic algorithm (GA) to forecast and augment
PEM fuel cell performance. Leveraging a robust 3D multi-
physics model, the work meticulously trains the ANN, yielding
a prediction error below 2.5% and 1.5% under varying current
densities. The authors reveal a peak power of approximately
0.78 W/cm2 at 368.8 K, achieved using the ANN-GA method,
a pivotal insight for practical system design and expeditious
control in fuel cell applications. The examination of diverse
operational temperatures also provides essential perspectives
on fuel cell performance. The work establishes a nonlinear
relationship between temperature and maximum power,
further underlining the temperature’s critical influence on
fuel cell output. Notably, a maximum power increase is
identified until around 363−373 K, after which a subtle decline
is observed. Such granular insights, notably the detailed
analysis of relative humidity impacts on anode and cathode

Figure 2. ML enhancement process of biopolymer in energy applications.
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sides, offer substantial contributions to fuel cell operational
understanding. The work demonstrates a thorough approach,
utilizing the ANN-GA framework to confirm results with the
3D multiphysics model, showcasing robust alignment and
underscoring the ANN-GA’s prediction accuracy. In practice,
the model enables swift adjustments to alterations in
environmental temperature, a crucial capability for real-world
fuel cell applications. For future work, it would be interesting
to delve deeper into exploring the impacts of varying
environmental factors and their intricate interplay on the fuel
cell performance and how the ANN-GA model can be further
optimized to adapt to these multifaceted conditions.

The work by Jha et al.161 predicted the capacitance variation
of lignin-based supercapacitors. The work has adroitly utilized
four ML algorithms, including linear regression (LR), support
vector machine (SVM), decision tree (DT), and ANN, ranking
their accuracy as LR < SVM < DT < ANN. This is validated
using the F-test, wherein ANN emerges as the most precise,
reliable, and robust model, capable of anticipating specific
capacitance variation even for material ratios not in the training
set. In their methodology, the data set is divided into 80% for
training and 20% for validation, which prevents model
overfitting, ensuring higher prediction accuracy for optimal
material weight percentage and specific capacitance (SPC)
variation. The ANN model’s superior performance is evident
with the lowest root mean square error (RMSE) deviations of
0.234, 0.240, and 1.384 mF cm−2 for SC1, SC2, and SC3,
despite training with reduced data. ANN’s models for SC1 and
SC2 displayed impressive R2 values of 0.676 and 0.979 and
RMSE values of 0.209 and 0.234, respectively. Furthermore,
the ANN model predicts capacitance retention with significant
accuracy, reflecting an understanding of nonlinear systems
unattainable by parametric modeling. Further exploration of
the ANN’s robustness and accuracy with other biopolymer-
based supercapacitors and varying compositions will enhance
the understanding and applicability of ML in enhancing energy
applications of biopolymers.

The work by Wei et al.162 revealed a significant exploration
into the potentialities of ML for predicting ionic conductivity
within biopolymer electrolytes for zinc-ion batteries. Utilizing
the gradient-boosting decision tree algorithm, the authors
constructed models to predict the contribution of polymer
functional groups to ionic conductivity, yielding promising and
vital results. The synthesized and sulfonated series of cross-
linked polymers denoted as SPTPT delivered noteworthy
outcomes. The prepared membrane displayed a Zn2+

conductivity of 12 mS cm−1 and a proton (H+) conductivity
of 22 mS cm−1 in water at 30 °C, marking an encouraging
achievement in the advancement of polymer electrolytes for
zinc-ion batteries. The research demonstrated that the Zn/
MnO2 flow battery, utilizing the proposed membrane as the
electrolyte, delivered a peak power density of 150 mW cm−2

and a significant specific capacity of 1.95 mAh cm−2. This
resulted in a robust cycling capacity retention rate of 71% after
1000 cycles at 30 mA cm−2, signifying the potential for
enhanced longevity and reliability in real-world applications.
Notably, the tpt-SPTPT membrane exhibited exceptional ionic
conductivity, offering 17 mS cm−1 to Zn2+ and 42 mS cm−1 to
H+ at 80 °C under 100% RH. Moreover, the tpt-SPTPT-based
Zn/Zn flow battery showcased an admirable corrosion
potential increase and reduced overpotential of nucleation,
highlighting its operational efficiency and stability. These
compelling results underscore the innovative integration of ML

within the realm of materials engineering for energy
applications. Future research could potentially delve deeper
into enhancing the algorithm’s predictive capabilities and
exploring additional biopolymer candidates for diversified
energy storage solutions.

The insightful case studies accentuate the indispensable role
of ML in advancing biopolymer research for fuel and energy
applications. These investigations not only highlight the
optimization and prediction capabilities of ML models but
also pave the path for future endeavors. Evidently, ML stands
as a robust ally, promising enhanced efficiency and innovation
in biopolymers for fuel development and diverse energy
applications.

4.7.2. ML Applied to Biopolymer Fuel Applications. The
surge in environmental concerns has necessitated innovations
in sustainable energy, with particular emphasis on biopolymer
fuels. The section illuminates the intersection of ML and
biopolymer fuel applications. Herein, pioneering strides are
expounded upon, providing a compelling narrative on the
optimization of lignin depolymerization and hydrothermal
liquefaction using sophisticated ML models.

The work by Liu et al.163 is an exhaustive exploration into
the optimization of lignin depolymerization, focusing on
influencing factors for enhancing yields of bio-oil and high-
value aromatic products through lignin hydrogenolysis. The
study effectively utilizes ML models, namely xgboost, to
simulate and predict optimal reaction parameters. The R2

scores reflecting the reliability of these models are notably
high, 0.92 for solid residue and 0.88 for aromatic yield,
revealing a strong reliability in predictions. Crucially, the
research highlights the paramount impact of the lignin-to-
solvent ratio and average pore size on lignin hydrogenolysis
results. It underscores that an optimal lignin-to-solvent ratio
hovers around six, while the catalyst’s pore size significantly
influences the solid yield, positioning these factors as central in
refining the hydrogenolysis process. Moreover, the ML models
reveal that nickel and ruthenium exert higher effects on the
models’ output than other metals. However, the work indicates
some limitations in its scope, particularly in the potential
variation of lignin sources, which were not entirely considered
in the models. The study’s results are instrumental for
advancing the field, providing clear insights into parameter
significance, and offering direction for further optimization in
industrial applications. Yet, it leaves room for expanding
research into exploring diverse lignin sources and their distinct
impacts on the hydrogenolysis process. Future research can
delve into the comprehensive examination of various lignin
types beyond alkaline and kraft lignin to ensure broader
applicability and robustness in the ML models’ predictive
capabilities for lignin hydrogenolysis.

The work by Shafizadeh et al.17 explores the use of ML in
characterizing and quantifying hydrothermal liquefaction
byproducts. The document provides an insightful analysis,
demonstrating the application of ML models to optimize the
biocrude oil yield, a significant aspect of fuel development. The
work outlines that the Gaussian process regression (GPR)
model showed the most promise, with a correlation coefficient
above 0.926 and a mean absolute error below 0.031,
showcasing robust predictive capabilities. The analysis of
optimal biomass components for the highest biocrude oil yield,
standing at 48.7−53.5%, presents clear, impactful statistics that
reinforce the work’s findings. It notes optimal conditions for
biocrude oil production, specifically emphasizing biomass
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composition and operational conditions such as temperature
(394−400 °C) and pressure (30.0−35.6 MPa). The article also
elaborates on the process optimization and feature importance
analysis, showing that biomass composition had a more
significant impact on biocrude oil yield (58.18%) compared to
operating conditions (41.82%). The article further provides
practical data on how various factors, such as increasing
biomass oxygen over 42%, could detrimentally affect biocrude
oil yield. These specifics offer crucial insights for practical
implementation, supporting the avoidance of nonoptimal
conditions for biocrude production. Future research could
focus on the development of universal ML models for
nonwater hydrothermal liquefaction solvents, a potential area
noted by the authors. The integration of ML in real-time
monitoring and control of hydrothermal liquefaction reactors,
as suggested in the article, could substantially enhance biofuel
quality and quantity, presenting an exciting avenue for
subsequent exploration and development.

In the work by Kartal et al.,27 a novel application of artificial
neural networks (ANNs) using the TensorFlow library is
employed to model the thermal degradation of essential
biomass biopolymers: hemicellulose (HC), cellulose (CL), and
lignin. With an exceptional R2 value above 0.998, the ANN
model impressively demonstrates its robustness in predicting
differential thermogravimetric (DTG) curves for HC, CL, and
lignin, facilitating instantaneous calculation of biopolymer
fractions in degraded biomass, a feat not previously achieved. A
meticulous laboratory setup, including precise thermal
conditioning and measurement using the NETZSCH STA
409 PC Luxx, underscores the reliability of the data used for
ML training and evaluation. The neural network topology,
incorporating layers with 5, 150, and 100 neurons,
demonstrates a deft balance between complexity and computa-
tional efficiency, contributing to the model’s exemplary
predictive performance. In testing, R2 values consistently
above 0.998 highlights the model’s excellent generalizability to
unseen data, reinforcing its potential for broader application in
biomass characterization and fuel development. Notably, the
study reveals subtle variabilities in prediction accuracy among
different biopolymers, with CL showing the most predictable
DTG points and lignin the least. The findings suggest a more
pronounced challenge in estimating lignin thermal degrada-
tion, underscoring an area warranting further research. The
innovative application of ANN for the analysis of biopolymer
thermal degradation signals a significant stride in enhancing
the efficiency of biomass-based thermal processes, setting a
firm foundation for the advancement of renewable fuel
technologies while also elucidating clear pathways for future
research, particularly in the nuanced prediction challenges
presented by specific biopolymers such as lignin.

The work by Vinitha et al.164 utilizes an ML-based
optimized decision-making system (OD-MS) to enhance the
yield of glucose and ethanol from biomass. With a substantial
data set of 250 experimental results, the study claims a
remarkable 95% accuracy in predicting the optimal conditions
for enzymatic hydrolysis saccharification and fermentation,
achieving an R2 value of 0.97623. The intricate model
considers various parameters, such as cellulose content,
temperature, and pH levels, and their influence on yield. For
instance, an increase in cellulose (>73%) and specific
temperature (55−60 °C) and pH (7−9) conditions for
saccharification markedly enhanced the yield. However, a
critical examination of the study reveals areas where the

application and interpretation of ML could potentially be
refined. The work states that a reduction in hemicellulose and
lignin to below 10% will result in enhanced yields, confirming
this with glucose yields exceeding 50 g/L and ethanol yields
over 40 g/L under these conditions. While these numbers are
compelling, the work could provide more insight into the
robustness of the model against varying biomass types and
conditions. The real-world biomass samples might not always
align with the ideal conditions prescribed, thereby affecting the
practical applicability of the model’s predictions. A notable
strength of the work is the comprehensive 3-D surface analysis,
lending a visual and quantitative dimension to the relation
between various factors like cellulose content, temperature,
and yield. This kind of multidimensional analysis is pivotal for
the holistic understanding and optimization of biopolymer
processing for fuel development. In future research, a more
diverse range of biomass types and real-world conditions
should be incorporated to enhance the model’s robustness.
Additionally, the model could be expanded to predict other
essential metrics of the biofuel production process.

The work by Castro Garcia et al.165 elaborates on the
underutilized potential of lignin, a significant component of
plant matter, in depolymerization for renewable aromatic
chemicals and biofuel production. The research emphasizes
using ML to develop predictive models for bio-oil and solid
residue yields using limited reaction variables. These models,
exhibiting an R2 score of 0.83 and 0.76 for bio-oil and solid
residue, respectively, were validated through experimental
comparisons. The study emphasizes temperature and reaction
time as critical predictive variables for experimental outcomes.
The models displayed good performance in predicting bio-oil
yields, with an R2 of 0.836 and RMSE of 10.522, notably at
lower to middle bio-oil yields (20−60 wt %). Key variables
include reactor volume to H2O volume ratio, ratios of lignin to
H2O, lignin to catalyst, temperature, and reaction time.
However, the research revealed the complexity and variability
in the role of these variables, reflecting on the diverse nature of
lignin and its solubility, highlighting the challenges in
comparing one variable to another within a limited
experimental space. The study recommends the establishment
of concrete guidelines for reporting in lignin depolymerization,
underscoring the critical importance of specific variables like
the reactor-H2O volume ratio and reaction time and their
intricate interplay in influencing bio-oil and solid residue
yields. Nevertheless, while the ML models provided significant
insights and predictions, deviations in experimental results
from model predictions, particularly in bio-oil yield, call for
careful consideration and further refinement in modeling
approaches. For future research, the emphasis should be laid
on the advancement of ML models to enhance the precision of
predictions, alongside a more detailed exploration of the key
variables and their interactions. The work hints at the need for
a more comprehensive and clearer understanding of lignin’s
diverse characteristics and behavior in depolymerization
reactions, as well as the crucial role of reaction variables in
optimizing bio-oil and solid residue yields for sustainable fuel
development.

In conclusion, the exploration of ML in enhancing
biopolymer fuel applications heralds a promising horizon.
While significant advancements have been observed, especially
in optimizing reaction parameters and understanding biomass
composition, the need for continual refinement in ML models
is paramount. The unfolding journey bears potential for a
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cleaner and more sustainable energy frontier, driven by a
deeper grasp of biopolymer properties and innovative
computational approaches.

In summarizing the potential of ML in enhancing
biopolymer fuel applications, it is crucial to acknowledge
inherent challenges and propose clear future research
directions. Implementing ML in this field often encounters
obstacles such as the variability of biomass materials, the
complexity of biological processes, and the need for extensive
data to train accurate models. These challenges necessitate a
more nuanced approach to data collection and model training,
ensuring that models are both robust and adaptable to diverse
conditions. Looking ahead, research should focus on
developing universal ML models that can adapt to various
biomass types and conditions, enhancing the predictive
accuracy for different biopolymers. Additionally, expanding
the scope to include real-time monitoring and control in
biopolymer processing using ML can significantly improve
both the quality and efficiency of biofuel production. This
approach not only addresses current limitations but also sets a
solid foundation for advancing sustainable fuel technologies,
contributing to a cleaner energy future.

5. BIOCHEMICALS
5.1. Biobased Polymers and Biochemical Production.

Insights into utilizing biobased polymers permeate various
sectors, particularly emphasizing their crucial role in
biochemical production. This critical evaluation elucidates
their multifaceted applications, chiefly in drug delivery and
medical devices. The production of biobased polymers,
predominantly derived from biological resources, significantly
curtails the reliance on fossil fuels.166 Their biodegradability
and compatibility with the environment strengthen their
position as sustainable alternatives to conventional poly-
mers.167 The prominence of biobased polymers is further

heightened by the incorporation of ML, enhancing their
development and application.168

A diverse array of biobased polymers, such as PLA and
PHAs, offer unique characteristics that have been extensively
exploited in the biomedical field.169,170 In the arena of drug
delivery, the employment of these polymers facilitates the
controlled and targeted release of pharmaceutical agents.171

This capability ensures not only enhanced therapeutic efficacy
but also minimizes adverse effects. The biocompatibility and
biodegradability of biobased polymers remain paramount for
their utilization in medical devices.172 These materials
underpin the creation of prosthetics, sutures, and various
other medical implements, underscoring their indispensability
in healthcare.173

In conclusion, the critical role of biobased polymers in
biochemical production and beyond remains unequivocal.
Their beneficial attributes, such as biodegradability and
biocompatibility, coincide with the global impetus toward
sustainability. The intersection of ML technologies further
emboldens the advancements in biobased polymers, propelling
research and development in drug delivery, medical devices,
and energy solutions. The continual exploration and enhance-
ment of biobased polymers, augmented by ML, signal a
promising trajectory for realizing a sustainable future.

5.2. Case Studies of Advanced Biobased Polymers for
Biochemical Production. In recent years, advances in
biobased polymer biochemical production have been examined
meticulously. A focus has been laid on optimizing biodegrad-
able food packaging materials such as polylactic acid (PLA), its
reactions with food simulants, and enhancing its properties.
Additionally, exploring novel materials like Pennisetum
purpureum/Napier cellulose nanowhiskers (NWCs) PHA for
diverse applications, including ecofriendly packaging and
personalized implants, is gaining momentum. Figure 3 shows
the ML process in biobased polymers for biochemical
production.

Figure 3. ML process in biobased polymer for biochemical production.
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The work by Aznar et al.174 explored the utilization and
analysis of polylactic acid (PLA) for food packaging, an
emerging field due to its environmental benefits. The
methodological approach employed included the optimization
of a dissolution/precipitation sample treatment using dichloro-
methane/ethanol as solvent/antisolvent, with recovery rates
reported between 100.9−114.0%. The study is methodologi-
cally sound, identifying the main nonvolatile components of
PLA by UPLC-MS(QTOF) analysis. The investigation’s
unique aspect is the in-depth analysis of PLA-polyester blend
pellets and films. The outcomes detailed significant findings,
wherein the four most intensive compounds in pellet samples
were cyclic oligomers from the polyester blend, comprising
adipic acid (AA), phthalic acid (PA), and butanediol. The
research reported new compounds in migration solutions
resulting from PLA components reacting with food simulants.
In terms of migration experiments using different ethanol
percentages as food simulants, the results indicate the
emergence of new compounds, contributing to the study’s
comprehensive insights. Such compounds, specifically 14 new
ones, were potentially formed by reactions with the packaging
material components. A notable statistic is the similarity in
composition between pellets and films, with a Pearson
correlation factor of 0. 996. The work concludes effectively
by outlining the high intensities of cyclic oligomers from the
polyester part in PLA blend samples and migration studies,
offering essential data for further research and practical
applications. For future research, a profound exploration into
the reactions between PLA components and various food
simulants will be beneficial. Additionally, a detailed quantita-
tive assessment of detected compounds is essential for a
comprehensive material risk assessment, aiding in the further
enhancement and safe application of biobased polymers in
food packaging.

The work by Muller et al.175 fundamentally investigates the
potential of poly(lactic) acid (PLA) and starch as ecofriendly
replacements for conventional nondegradable petrochemical
polymers used in food packaging. The research analyzes the
barrier and mechanical properties of PLA and starch films,
utilizing strategies like blending or creating multilayer films,
which show promising results in enhancing polymer
compatibility and performance. Highlighting some notable
results, a smoother microstructure and a higher tensile strength
(68 MPa) were observed in the PLA-starch blend (55:45) with
0.5 wt % MDI, signifying improved compatibility and
mechanical properties. Yet, the use of MDI, classified as a
harmful substance, underscores a significant limitation for food
packaging applications, emphasizing the need for safer
alternatives. Another method explored was the use of maleic
anhydride for enhancing polymer phase interfacial adhesion,
resulting in a stable and homogeneous interface and enhancing
water resistance and tensile properties. However, despite these
advancements, the work reveals persistent challenges with
phase separation in the PLA-starch blends, necessitating
further research into innovative compatibilizers or treatment
methods to optimize the blends for practical application.
Moreover, the work demonstrates the improvement in
functional properties of multilayer assemblies due to the
complementary barrier capacity of each polymer, offering high
resistance to both polar and nonpolar molecules and thus
emerging as an effective packaging material. Furthermore, the
study illustrates the advancements with PLA-starch bilayer
films, showcasing improved tensile and water vapor barrier

properties, with a noteworthy increase in tensile strength and a
significant reduction in water vapor permeability in a 50−50
PLA-starch ratio. In terms of future research, exploring safer,
more effective compatibilizers is essential to overcome the
existing limitations of PLA-starch blends and multilayer films
for food packaging.

The study by Sucinda et al.176 introduces an inventive
approach for producing ecofriendly packaging material
reinforced with Pennisetum purpureum/Napier cellulose
nanowhiskers (NWCs) in a polylactic acid (PLA) matrix.
The bionanocomposite films exhibited promising thermal
stability ranging between 343−359 °C. Distinctive observa-
tions were made regarding the dispersion of NWC in the PLA
matrix. Optimal dispersion was noticed at 0.5−1.5 wt % NWC,
leading to a smoother and denser surface structure as opposed
to the 3.0 wt % NWC films, which had a rough surface due to
the aggregation of NWCs. The tensile strength peaked at 21.22
MPa with a modulus of 11.35 MPa for the PLA/1.0% NWC
film, demonstrating superior mechanical properties. Water
absorption was recorded highest at 1.94%, providing insights
into the hydrophilic behavior of the bionanocomposite films.
However, a decline in transparency to 16.16% at λ800 and
UVA and UVB transmittance to 7.49% and 4.02%, respectively,
was noted for PLA/3.0% NWC film. This aspect, although
beneficial for UV protection, may have limitations in specific
packaging applications demanding higher transparency. A
comprehensive evaluation, including FESEM analysis, revealed
a more uniform and compact surface structure with lower
NWC content. The study presents a critical analysis of the
integration of NWC in PLA to enhance its properties. Yet, the
agglomeration at higher wt % NWC indicates a crucial need for
research to optimize the NWC content for balanced
mechanical and physical properties. Further research might
explore the practical implications of these findings, particularly
the scalability of this technology for industrial applications and
assessing the long-term performance and biodegradability of
these bionanocomposite films in real-world conditions. The
critical exploration of other biobased nanofillers and their
comparative performance with NWC can be another potential
avenue for advancing this field of research. Additionally, the
environmental impact assessment over the life cycle of these
bionanocomposite films could provide a more holistic
understanding of their sustainability profile.

In the work by Zhang et al.,177 the spotlight is cast on PHA,
a category of biopolyesters known for their mechanical,
biodegradable, and tissue-compatible properties. A distinct
innovation seen within the work is the utilization of PHA,
particularly polyhydroxybutyrate (PHB) composites, for the
3D printing of personalized implants. This offers a remarkable
step forward by maintaining stable local pH during
degradation, thus ensuring cellular and immune system
tolerance. This innovation is further evident in the 3D-printed
custom tricalcium phosphate-PHB scaffolds, achieving success-
ful osteogenic differentiation. PHB’s application does not halt
here. It shows potential as an osteoplastic material, notably in
the construction of porous 3D implants that promote
attachment, proliferation, and directed differentiation. Beyond
3D printing, the work details other PHA production methods,
such as lithography and nanofiber creation. Lithography,
particularly soft lithographic methods, is harnessed to produce
PHBHHx microstructures. This technique demonstrates the
potential of PHA polymers to mimic the cellular micro-
environment, enhancing our understanding of microstructure-
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cell function relationships. Similarly, the work highlights the
use of PHA in nanofiber matrices. These matrices, emulating
the extracellular matrix, present a promising frontier for tissue
engineering due to their supportive role in cell growth and
their nontoxicity to NIH 3T3 mouse fibroblast cells. For
injectable implants, the use of PHBHHx dissolved in nontoxic
organic solvents forms a nontoxic film around the animal’s
injection site, preventing surgical tissue adhesion. In bone
tissue engineering, the combination of PHA with other
materials, such as hydroxyapatite, showcases enhanced cell
growth and alkaline phosphatase activity, reinforcing its
potential in the field of bone tissue engineering. Future studies
could explore the possibilities of combining PHA with other
biodegradable polymers to enhance its properties, potentially
leading to developing more advanced and effective biobased
polymers for biochemical production.

The work by Siracusa and Blanco29 presents a compre-
hensive examination of the progress of biobased polymers. It is
reported that biobased materials’ production is substantially
less, being under 2% of the total plastic production, despite an
astonishing ability to process large amounts of biomass. The
global production of polymers from natural resources like
starch and cellulose is about 20 million tons per year, a mere
7% of the total plastics production. The study highlights
significant advancements in processing technologies for
refining biomass feedstocks to obtain biobased monomers,
especially focusing on Bio-PE, Bio-PP, and Bio-PET. The
geographic analysis reveals the United States and Europe as
predominant in biobased plastic production, trailed by the Asia
Pacific region and South America. The work delineates
technological challenges, noting the variance in development
stages for diverse biobased polymers, from research and
development to large and commercial stages. The production
of Bio-PP is emphasized as especially difficult due to limited
knowledge and technological barriers. Furthermore, the work
discusses the impact of competition with food, feed, and
biofuels for raw materials, recognizing the potential of
lignocellulosic feedstocks as future starting chemicals. This
aspect highlights the technological complexities in trans-
forming cellulose into sugar monomers. The work also
provides a critical evaluation of environmental performance,
comparing various routes to obtain bio-PTA for the synthesis
of bio-PET, emphasizing the greenest route to be that using
orange peels. The study concludes by presenting an optimistic
scenario for the future of biobased plastics, projecting a rise in
worldwide capacity and emphasizing the importance of
biobased PE and PHA alongside PLA and starch plastics. It
underscores the interest in biobased durable plastics to curtail
waste, taking advantage of biomass from food and agricultural
waste. Despite the promising outlook, the work underscores
the challenges of reducing production and processing costs and
minimizing environmental impacts, crucial for commercial
applications of biobased polymers. For future research,
focusing on enhancing the technological efficiency of biomass
processing, exploring more sustainable and less competitive
feedstock alternatives, and comprehensive environmental
impact assessment of various biobased polymer production
routes will be crucial in advancing the sector and overcoming
delineated challenges.

The research by Tyagi et al.178 delves into the creation of
functionalized tissue paper by hydrophobic spray-coating of
chitosan (Ch) and cellulose nanocrystals (CNCs). A note-
worthy finding in the study is the impressive inhibition of

microbial growth by 98% with the ChCNC-coated tissue
paper. This statistic emphasizes the robust antimicrobial
activity of the developed material. The method of enhancing
the antimicrobial properties by plasma treatment showcases
innovation, enhancing the coating’s antimicrobial activity.
However, the variation in water absorption�with CNC
increasing it and Ch decreasing it�reveals a critical balance
that needs to be maintained for optimal performance. The
ChCNC-coated glass slide’s contact angle was found to be 41°,
a crucial statistic that indicates a balance between hydro-
philicity and hydrophobicity. Using various sophisticated
techniques such as SEM, ToF-SIMS, and Auger electron
microscopy reinforces the comprehensive assessment and
verification of the ChCNC-treated substrate’s morphology
and chemical characterization. Despite the commendable
antimicrobial activity, the study shows that only the
ChCNC-coated tissue paper inhibited the human hand-
collected microbial sample, which highlights a possible
limitation in its broad-spectrum antimicrobial activity. This
could be a vital area for future research�expanding the
antimicrobial spectrum of the ChCNC coating.

In the study by Aristri et al.,179 an emphasis on tannin-based
biopolyurethanes (bio-PUs) and their potential for environ-
mentally friendly applications is highlighted. The research
highlights the successful synthesis of tannin-based bio-PUs,
confirmed through various analytical techniques like FTIR,
DSC, TGA, MALDI-TOF mass spectrometry, and GPC.
Notably, a key finding is that as the tannin content increased,
the transition glass (Tg) temperature decreased from 32.91 to
11.91 °C, indicative of an increase in backbone stiffness and
chain interactions. This phenomenon emphasizes tannin
content’s role in enhancing bio-PU’s thermal properties. The
thermal analysis showed three degradation stages of PU resins,
with the initial one occurring at 220 °C, attributed to urethane
bond degradation. Significantly, no weight loss was observed,
in line with the low isocyanate concentration used in the PU
formation, highlighting the potential for a more stable and
sustainable product. The thermogravimetric analysis show-
cased the degradation of ester and carbonyl groups from
tannins at 290−300 °C, providing essential insights into the
thermal stability and potential applications of these bio-PUs in
various industrial sectors. Moreover, the research leveraged
MALDI-TOF to determine the condensed tannin oligomer’s
distribution and derivatives. The MALDI-TOF results reveal a
clear differentiation in the molecular weight ranges between
the tannin-based bio-PUs produced at room temperatures and
a reference mix, further accentuating the unique properties
attained through tannin incorporation. In view of future
research, a comprehensive investigation into the long-term
stability and performance of tannin-based bio-PUs in practical,
real-world applications is imperative. Additionally, exploration
into the optimization of tannin content for enhanced material
properties, alongside a detailed cost-benefit analysis, would
significantly contribute to the field, offering a more holistic
understanding and paving the way for the extensive industrial
adoption of tannin-based bio-PUs.

The work by Alinejad et al.180 gives an extensive and
detailed review of the substitution of lignin for polyol in
producing polyurethane products. Using lignin, an underutil-
ized renewable aromatic polymer, is a unique approach to
producing polymeric materials. The work outlines the
procedure of making rigid polyurethane foams with lignin,
emphasizing the significance of thermal conductivity in this
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process. Despite the environmental concerns surrounding
using certain blowing agents, the work indicates a transition to
more environmentally friendly options such as pentane and
water, ensuring sustainable production. The production
process explained in the document, beginning with water
and isocyanate, elucidates how the exothermic reactions
involved led to the creation of amine and CO2 and,
subsequently, the polyurethane. The work discloses the issues
with unmodified lignin�leading to brittle foams with low
compression strength, especially with incorporation over 30 wt
%. To counter this, chain extenders like castor oil,
polypropylene glycol triol, and butanediol have been
employed. The work’s extensive exploration of using various
lignins in rigid polyurethane foams shows a comprehensive
effort to ascertain optimal materials and procedures. Despite
detailed investigation, the study suggests the ambiguity in the
relationship between lignin properties and foam performance,
pointing to an area that needs more detailed research to
enhance understanding and refine processes. In the domain of
flexible polyurethane foams, the document offers an analysis of
lignin’s potential as a filler and cross-linker. Even though some
success was reported with modified lignins in enhancing
thermal stability and mechanical properties, complete replace-
ment with certain types of lignin resulted in inferior products.
The detailed comparison with control foams is appreciable for
its depth, providing clear insights into the practical advantages
and limitations of lignin use. As for the production of
polyurethane-lignin elastomers, the work reveals the con-
straints imposed by lignin’s high glass transition temperature
and low flexibility. Nevertheless, the findings that lignin fillers
enhance mechanical properties and tensile modulus signify its
potential use in polyurethane elastomer synthesis, contingent
on selecting appropriate types of lignin. Future research could
focus on improving the reactivity of lignin, exploring more
environmentally friendly modification methods, and detailed
investigations into the influence of lignin types and
modification methods on the properties of the resulting
polyurethane products.

In conclusion, significant progress is observed in the field of
advanced biobased polymer biochemical production, from
enhancement of PLA properties to exploration of new,
innovative materials and methodologies. Despite the advance-
ments, several challenges and areas for future research and
optimization are unveiled, emphasizing the continual need for
innovation and scrutiny in this critical field to ensure safety,
efficiency, and environmental sustainability.

5.3. ML in Biochemicals. The impact of ML on the
biochemical sphere has become increasingly profound. Its role
in boosting and fine-tuning biochemical production is
pivotal.181 An expansive collection of data inherent in
biochemical processes is effectively managed and analyzed
through ML algorithms. This data management allows for the
identification of patterns and trends that would be otherwise
obscure, granting an enhanced understanding of diverse
biochemical processes. Optimal conditions for biochemical
production are effectively identified through ML, facilitating
increased yields and process efficiency.69,70,182 Enhanced
efficiency conserves resources and substantially reduces
production time and costs. ML’s influence transcends tradi-
tional boundaries, imbuing the biochemical realm with
unprecedented precision and control.

In the biochemical industry, the production of enzymes,
amino acids, and other biobased materials is central.183,184 The

use of ML facilitates the prediction and optimization of
production parameters for these crucial biochemical entities.185

Accurate predictions ensure that the biochemical production
processes are not only streamlined but also made more
environmentally friendly and sustainable. Through ML, the
biochemical industry is rendered more adaptable to the
burgeoning demands for sustainability and efficiency.186 This
adaptation embodies a significant stride toward a more
sustainable and ecofriendly future in biochemical production.

Additionally, ML plays a fundamental role in the
optimization of fermentation processes, a core aspect of
biochemical production.155,187,188 The optimal conditions for
fermentation are crucial for maximizing yield and product
quality. ML algorithms help in determining these optimal
conditions, leading to enhanced production efficiency. The
precision afforded by ML ensures that the resources are used
judiciously, and waste is minimized, aligning biochemical
production with sustainability goals. The enhanced control
over fermentation processes is a noteworthy advancement in
biochemical production, offering a promising avenue for
further research and development.

ML further finds its application in biocatalysis, a significant
aspect of biochemical production.189−191 Through ML
algorithms, the most suitable catalysts for specific biochemical
reactions are efficiently identified, ensuring that the reactions
proceed optimally. This efficiency leads to enhanced
productivity and sustainability in biochemical production.
The integration of ML in this domain exemplifies the seamless
amalgamation of technology and biochemistry, heralding a new
era of enhanced and optimized biochemical production.

In essence, the infusion of ML into the biochemical sector
signifies a monumental leap toward optimized and sustainable
production. ML’s capability to analyze vast data sets, identify
patterns, and make accurate predictions is invaluable in
enhancing and fine-tuning biochemical production. Its role in
optimizing production parameters, fermentation processes, and
biocatalysis is instrumental in ensuring increased efficiency,
reduced waste, and alignment with sustainability goals. This
synergy between ML and biochemical production stands as a
beacon of progress, illuminating the path toward a more
sustainable and efficient future in biochemical production.

5.4. Case Studies of ML Applied to Biopolymer for
Biochemical Purposes. This section presents a critical
examination of various case studies addressing ML applications
to biopolymers for biochemical purposes. The focus remains
on understanding the effective utilization of different ML
models in enhancing and optimizing biopolymer properties
and processes. The breakthroughs, limitations, and future
perspectives are extensively analyzed, providing a well-rounded
view of the impact and potential of ML in the sphere of
biopolymer research and application.

The work by Löfgren et al.192 demonstrates an innovative
application of Bayesian optimization in enhancing the process
of lignin biorefinery for efficient biochemical applications. The
study focuses on optimizing AquaSolv omni biorefinery for
lignin, an abundant biopolymer, using a ML framework. This
approach enables linking various biorefinery conditions to the
experimental outputs effectively. The research reported the use
of Bayesian optimization for training two surrogate models for
lignin yield and β-O-4 content. The authors efficiently
visualized these models using 2D contour plots, revealing
substantial improvements in lignin yield and β-O-4 content as
new data were acquired using the CA strategy. The work’s
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most crucial highlight is the revelation of optimal processing
conditions for lignin yield and β-O-4 linkages for depolyme-
rization into platform chemicals, showing the profound impact
of ML in accelerating sustainable chemical processing
methods. Further insights from the work discuss the
comparison between two acquisition strategies, CA and PA,
providing a deeper understanding of their effectiveness in the
biorefinery process. The study illustrates that CA generates a
more accurate and developed surrogate model than PA,
proving to be a better acquisition strategy for BO-driven
experiments. This comparative analysis strengthens the work’s
contribution by demonstrating the relative efficacy of different
strategies in lignin biorefinery. However, despite these
commendable findings, the work could offer more extensive
insights into the potential impact of the optimized biorefinery
process on broader sustainable development and biochemical
applications. The study’s results significantly contribute to
enhancing lignin biorefinery, yet the discussion on its far-
reaching implications appears limited. In terms of future
research, the work sets a solid foundation for further
exploration of ML applications in optimizing other biopolymer
refineries. It opens avenues for investigating the effectiveness of
other ML algorithms in improving biopolymer refinery
processes and their subsequent impact on the production of
high-value byproducts. In summary, the study presents a
commendable integration of ML in optimizing biopolymer
biorefinery, providing valuable insights for enhancing lignin
yield and β-O-4 content effectively. The comparative analysis
of acquisition strategies further enriches the work’s contribu-
tion to the field while highlighting opportunities for expansive
future research in this domain.

The work by Patnode et al.193 focused on soy and zein for
the development of sustainable bioplastic films is not only
innovative but timely. The employment of ML to forecast and
enhance the properties of proteopposite films shows a
commendable intersection of materials science and computa-
tional technology. An R2 value of 0.85 underpins the model’s
accuracy, reinforcing the credibility of the ML predictions and
their practical application. The study eloquently blends
experimental and computational research to assess the
synergistic impact of zein, soy, and POBM-latexes in
proteopposite films. The work observed a significant enhance-
ment in the flexibility and moisture resistance of the soy-zein
films with the integration of POBM-latexes. Considering the
films’ targeted application in food packaging, this aspect is
pivotal, where these properties are paramount. Specifically, the
elongation at the break of the films surged by over 400%, a
staggering improvement that holds practical and industrial
relevance. Yet, the exploration did not end here; the study
delved deeper, examining the influence of POBM-latex particle
size, unveiling that smaller particle sizes afford greater
uniformity and enhanced interaction in the proteopposite
film structure. Despite the advancements and the high
prediction accuracy, there lies a necessity for further validation
and testing in real-world applications. This is crucial for
assessing Bioplastic films’ true efficacy and feasibility in
replacing traditional petrochemical food packaging. Moreover,
while the study delivers insights into the mechanical and
barrier properties of the modified soy-zein proteopposites, a
comprehensive assessment of their antimicrobial properties
and surface morphology remains uncharted, presenting a clear
pathway for future research endeavors. The comprehensive
ML-based QSAR model successfully predicted the mechanical

attributes of the films, showcasing a robust R2 value of 0.84,
emphasizing the model’s reliability in navigating the complex-
ities of bioplastic film properties.

In the work by Bejagam et al.,26 ML models were employed
to predict the melting temperature (Tm) of various PHAs,
utilizing a data set of experimentally measured Tm values,
molecular weights, and polydispersity indices for many PHA
homo- and copolymer chemistries. The model showcased
robust predictions with an average RMSE in Tm predictions of
8.47 °C for training and 10.69 °C for the test set,
demonstrating the model’s efficacy and lack of overfitting.
The work underlines the critical feature importance of first-
order topology (Chi1) and second-order shape/connectivity
indices (Kappa2) in the prediction models, emphasizing their
role in understanding the atomic spatial density in a fragment.
Furthermore, applying an evolutionary algorithm-based search
strategy optimizes polymer design by identifying candidates
that best meet the target chemical space criteria, underscoring
the model’s practical utility in real-world applications. In future
research, enhancing the model’s robustness through integra-
tion with other ML algorithms or expanding the data set for a
more comprehensive analysis would be a constructive step
forward. Moreover, assessing the model’s performance across
various biopolymer types and exploring its potential in
predicting other crucial properties beyond Tm could offer
more extensive insights and applications in the realm of
sustainable Bioplastic formulations and biochemical applica-
tions.

The work by Pilania et al.82 offers insight into the
application of ML to polyhydroxyalkanoate-based biopolymers,
emphasizing the prediction of glass transition temperature
(Tg). The work collected experimental Tg values, molecular
weights, and polydispersity indices for PHA-based polymers,
developing a fingerprinting scheme based on topology, shape,
and charge/polarity to represent polymers numerically. The
constructed model demonstrated the ability to efficiently
predict new PHA polymer properties with notable accuracy,
citing a Pearson correlation coefficient of 94.67%, RMSE of
4.80 K, and mean absolute error (MAE) of 18.99 K. The
uniqueness of this study lies in its methodical approach, using a
large feature space recursively to enumerate analytical
functions describing Tg, producing 283, 86.7 × 103, and 12.5
× 109 elements for various feature sets. The surrogate model,
combined with an evolutionary algorithm-based search
strategy, was able to find multicomponent polymer composi-
tions with a specified Tg efficiently. The model’s robustness is
confirmed by its consistent performance on 20 randomly
selected training/test splits, producing an average RMSE of
4.76 K and a variance of 1.19 K2. The research adequately
addresses the significance of Tg prediction for various
biopolymers, successfully utilizing ML models to forecast Tg
values and explore the chemical space of PHAs. Nevertheless, a
critical evaluation reveals that the model’s applicability may be
limited to the data and features utilized in the study. The
discussion emphasizes the model’s resistance to overfitting and
highlights the established parameters for the RF model,
including a maximum tree depth of 6 and the number of
estimators set to 35. However, these fixed parameters might
pose restrictions for other biopolymers not considered in this
study. In terms of future research, the exploration of other ML
algorithms for predicting different properties of biopolymers
beyond Tg and the enhancement of the current model for
broader chemical spaces could be undertaken.
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The work by Jiang et al.194 endeavored to predict the
performance properties of PHAs using a deep neural network
(DNN) model is remarkable. The methodological approach is
comprehensive, utilizing variables such as molecular weight
and monomer percentages to estimate PHA glass transition
temperatures (Tg). The study achieved a substantial R2 value of
0.869, MAE 4.010, and RMSE 5.339 K, demonstrating the
model’s high level of accuracy and reliability in prediction. This
approach outperformed other ML models, further solidifying
its credibility. However, the issue of model symmetry and
sensitivity to missing data require attention. The initial DNN
model did not capture symmetry, making it sensitive to
monomer order and highlighting a significant limitation.
Nevertheless, the researchers astutely addressed this by
retraining the model, achieving improved results with R2

increasing to 0.897. Although the DNN model’s performance
is laudable, the study illuminates the crucial aspect of
symmetry in ML models for biopolymer prediction. Moreover,
the investigation into the DNN model’s robustness with
missing or inaccurate data is praiseworthy, offering insights
into the potential practical challenges of employing ML in
predicting biopolymer properties. Despite the decrease in R2 to
0.5 with omitted variables, the research insightfully demon-
strates the critical role of fractional composition in the DNN
model, underscoring its importance in maintaining prediction
accuracy. Moving forward, potential research could delve
deeper into enhancing the DNN model’s robustness against
missing data. Furthermore, exploration of additional ML
frameworks might yield more streamlined or effective
approaches, potentially further improving the prediction
accuracy and reliability for biopolymer applications and
expanding the study’s implications for sustainable technology
and engineering.

In conclusion, examining case studies reveals the pivotal role
ML holds in augmenting biopolymer research for biochemical
applications. Despite some limitations, the diverse machine-
learning approaches discussed significantly enhance the
prediction and optimization of biopolymer properties and
processes. The explored studies underscore the burgeoning
potential and avenues for further research in this innovative
intersection of ML and biopolymer, driving advancements in
sustainable and efficient biochemical applications.

6. FUTURE WORK
The intersection of ML and biobased polymers represents a
significant and rapidly evolving field for research. This
convergence unlocks unprecedented opportunities for devel-
oping sustainable energy, fuels, and biochemical solutions.12,195

As we delve into this dynamic domain, the potential for
innovative breakthroughs that can drive us toward a more
sustainable future is immense.

A significant avenue for future research lies in enhancing the
efficiency of biopolymers. ML has shown promise in
optimizing various properties of biopolymers, but there is
still room for improvement. Future studies could focus on
refining ML algorithms for more precise predictions and
optimizations of biopolymer properties, such as thermal
stability, mechanical strength, and degradation rates. For
instance, research could explore deep learning models to
predict the interplay of biopolymer molecular structures with
environmental factors, thereby enhancing their performance in
specific applications.196,197

The development of robust ML models relies heavily on the
availability and quality of data.198,199 One of the challenges in
this field is the limited access to comprehensive data sets that
capture the complexity of biopolymer systems. Future research
should prioritize the creation of extensive, high-quality data
sets. This could involve collaborations between academic and
industrial sectors to pool resources and data. Also, there is a
need for standardizing data collection and reporting methods
to ensure the consistency and reliability of the data used in ML
models.

Another critical research direction is the application of ML
in biopolymer recycling and waste reduction.12,200,201 As the
world grapples with plastic pollution, biopolymers offer a
sustainable alternative. ML can be leveraged to improve
recycling processes, optimize waste management systems, and
develop new biodegradable materials. Future research could
explore ML models that predict the recyclability of
biopolymers based on their chemical compositions and
environmental conditions.

The integration of ML in producing and processing
biopolymers is a promising research area. ML can be used to
optimize production parameters, reduce energy consumption,
and enhance the overall efficiency of biopolymer manufactur-
ing processes. Future studies could investigate the use of ML in
real-time monitoring and control of biopolymer production,
focusing on maximizing output while minimizing environ-
mental impact.

Biopolymers such as alginate, cellulose, PLA, chitosan, and
lignin have great potential in energy storage systems, such as
batteries and supercapacitors. ML can play a pivotal role in
enhancing the performance of these systems. Research should
be directed toward developing ML models that can accurately
predict and optimize the ionic conductivity, charge−discharge
cycles, and overall efficiency of biopolymer-based energy
storage systems.

Designing and developing novel biopolymers using ML
algorithms is an exciting future prospect. Using ML,
researchers can predict and create new biopolymer structures
with desired properties for specific applications. This approach
could revolutionize the field, developing innovative materials
for various industries, from healthcare to aerospace.
Furthermore, understanding the interactions between biopol-
ymers and other materials is crucial for broadening their
application scope. Future research could use ML to model and
predict the behavior of biopolymer composites, blends, and
hybrids.85,202,203 This would enable the development of
materials with tailored properties for specific uses, such as
biocompatible medical devices or high-performance construc-
tion materials.

While biopolymers are inherently more sustainable than
traditional polymers, there is a need to further enhance their
environmental friendliness. Future research could explore how
ML can be used to analyze and optimize the life cycle of
biopolymers, from production to degradation. This would
involve developing models to assess the environmental impact
of biopolymers and finding ways to reduce their carbon
footprint.

The use of biopolymers in drug delivery systems offers a
promising research avenue.204,205 ML can assist in designing
biopolymer-based carriers that optimize drug release profiles
and target specific tissues or cells. Future studies could develop
ML models that simulate the interactions between biopolymers
and various pharmaceutical compounds, aiding in creating
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more effective and safer drug delivery systems. Furthermore,
the exploration of ML applications in biocatalysis within
biochemical production is deemed promising, likely leading to
enhanced productivity and sustainability in biochemical
production.189,191,206

Finally, the future of ML and biopolymers research lies in
collaborative and cross-disciplinary efforts. Combining the
expertise of chemists, material scientists, computer scientists,
and engineers will be key to advancing this field. Collaborative
projects can lead to breakthroughs in understanding and
leveraging the capabilities of ML in biopolymer research,
leading to innovations that can significantly impact various
sectors and contribute to a sustainable future. In conclusion,
the path forward in converging ML and biopolymers has
exciting opportunities and challenges. By addressing these key
areas, the scientific community can unlock the full potential of
this synergy, paving the way for groundbreaking advancements
in sustainable materials and energy solutions.

7. CONCLUSION
The nexus between ML and biobased polymers heralds a
transformative phase in energy, fuels, and biochemicals.
Biobased polymers, with their sustainable origins, are
progressively influencing the energy and fuel domains. Their
integration with ML amplifies their inherent potential and
optimizes renewable energy processes, storage solutions, and
conversion mechanisms. Through diverse case studies, the
efficacy of these polymers in energy applications is
accentuated, while ML’s potential to enhance fuel efficiency
stands elucidated. The cusp of this synergy also brings to light
groundbreaking strides in biochemical production, notably in
drug delivery and medical instrumentation. It is evident that
the symbiotic relationship between ML and biobased polymers
offers a beacon for global sustainability in the energy and
biochemical realms. Embracing this amalgamation is para-
mount to ushering in an era of innovation and steadfast
commitment to a sustainable future.
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Biopolymers for surgical applications. Coatings 2022, 12 (2), 211.
(174) Aznar, M.; Ubeda, S.; Dreolin, N.; Nerín, C. Determination of

non-volatile components of a biodegradable food packaging material
based on polyester and polylactic acid (PLA) and its migration to
food simulants. Journal of Chromatography A 2019, 1583, 1−8.
(175) Muller, J.; González-Martínez, C.; Chiralt, A. Combination of

Poly(lactic) Acid and Starch for Biodegradable Food Packaging.
Materials 2017, 10 (8), 952.
(176) Sucinda, E. F.; Abdul Majid, M. S.; Ridzuan, M. J. M.; Cheng,

E. M.; Alshahrani, H. A.; Mamat, N. Development and character-
isation of packaging film from Napier cellulose nanowhisker
reinforced polylactic acid (PLA) bionanocomposites. Int. J. Biol.
Macromol. 2021, 187, 43−53.
(177) Zhang, J.; Shishatskaya, E. I.; Volova, T. G.; da Silva, L. F.;

Chen, G.-Q. Polyhydroxyalkanoates (PHA) for therapeutic applica-
tions. Mater. Sci. Eng. C 2018, 86, 144−150.
(178) Tyagi, P.; Mathew, R.; Opperman, C.; Jameel, H.; Gonzalez,

R.; Lucia, L.; Hubbe, M.; Pal, L. High-Strength Antibacterial
Chitosan-Cellulose Nanocrystal Composite Tissue Paper. Langmuir
2019, 35 (1), 104−112.
(179) Aristri, M. A.; Lubis, M. A.; Iswanto, A. H.; Fatriasari, W.; Sari,

R. K.; Antov, P.; Gajtanska, M.; Papadopoulos, A. N.; Pizzi, A. Bio-

Energy & Fuels pubs.acs.org/EF Review

https://doi.org/10.1021/acs.energyfuels.3c03842
Energy Fuels XXXX, XXX, XXX−XXX

X

https://doi.org/10.1016/j.epsr.2022.108863
https://doi.org/10.1016/j.epsr.2022.108863
https://doi.org/10.1016/j.epsr.2022.108863
https://doi.org/10.3390/en15020578
https://doi.org/10.3390/en15020578
https://doi.org/10.3390/en15020578
https://doi.org/10.3390/en15020578
https://doi.org/10.1016/j.egyr.2022.09.206
https://doi.org/10.1016/j.egyr.2022.09.206
https://doi.org/10.1109/TPEL.2016.2514370
https://doi.org/10.1109/TPEL.2016.2514370
https://doi.org/10.1109/TPEL.2016.2514370
https://doi.org/10.1109/ACCESS.2019.2894819
https://doi.org/10.1109/ACCESS.2019.2894819
https://doi.org/10.1016/j.dche.2023.100103
https://doi.org/10.1016/j.dche.2023.100103
https://doi.org/10.1016/j.cej.2023.144503
https://doi.org/10.1016/j.cej.2023.144503
https://doi.org/10.1080/17597269.2021.1894780
https://doi.org/10.1080/17597269.2021.1894780
https://doi.org/10.1016/j.rser.2021.111902
https://doi.org/10.1016/j.rser.2021.111902
https://doi.org/10.3390/su12198211
https://doi.org/10.3390/su12198211
https://doi.org/10.1016/j.renene.2020.09.034
https://doi.org/10.1016/j.renene.2020.09.034
https://doi.org/10.1016/j.renene.2020.09.034
https://doi.org/10.1016/j.scitotenv.2023.163972
https://doi.org/10.1016/j.scitotenv.2023.163972
https://doi.org/10.1016/j.energy.2022.125003
https://doi.org/10.1016/j.energy.2022.125003
https://doi.org/10.1016/j.energy.2022.125003
https://doi.org/10.1007/s11367-022-02030-3
https://doi.org/10.1007/s11367-022-02030-3
https://doi.org/10.1007/s11367-022-02030-3
https://doi.org/10.1016/j.jnoncrysol.2022.121597
https://doi.org/10.1016/j.jnoncrysol.2022.121597
https://doi.org/10.1016/j.jnoncrysol.2022.121597
https://doi.org/10.1016/j.jnoncrysol.2022.121597
https://doi.org/10.1016/j.apenergy.2021.116632
https://doi.org/10.1016/j.apenergy.2021.116632
https://doi.org/10.1016/j.apenergy.2021.116632
https://doi.org/10.1016/j.apenergy.2021.116632
https://doi.org/10.1021/acs.energyfuels.1c03270?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.energyfuels.1c03270?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.memsci.2023.121453
https://doi.org/10.1016/j.memsci.2023.121453
https://doi.org/10.1016/j.memsci.2023.121453
https://doi.org/10.3390/en16010256
https://doi.org/10.3390/en16010256
https://doi.org/10.1007/s13399-022-03163-z
https://doi.org/10.1007/s13399-022-03163-z
https://doi.org/10.1007/s13399-022-03163-z
https://doi.org/10.1007/s13399-022-03163-z
https://doi.org/10.1021/acsomega.3c04168?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.3c04168?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jclepro.2020.120536
https://doi.org/10.1016/j.jclepro.2020.120536
https://doi.org/10.1016/j.jclepro.2020.120536
https://doi.org/10.1016/j.envpol.2022.119600
https://doi.org/10.1016/j.envpol.2022.119600
https://doi.org/10.1016/j.envpol.2022.119600
https://doi.org/10.1002/mabi.202100340
https://doi.org/10.1021/acsbiomaterials.1c00757?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsbiomaterials.1c00757?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsbiomaterials.1c00757?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1080/00914037.2021.1944140
https://doi.org/10.1080/00914037.2021.1944140
https://doi.org/10.1016/j.carbpol.2022.120448
https://doi.org/10.1016/j.carbpol.2022.120448
https://doi.org/10.1080/15583724.2018.1484761
https://doi.org/10.3390/coatings12020211
https://doi.org/10.1016/j.chroma.2018.10.055
https://doi.org/10.1016/j.chroma.2018.10.055
https://doi.org/10.1016/j.chroma.2018.10.055
https://doi.org/10.1016/j.chroma.2018.10.055
https://doi.org/10.3390/ma10080952
https://doi.org/10.3390/ma10080952
https://doi.org/10.1016/j.ijbiomac.2021.07.069
https://doi.org/10.1016/j.ijbiomac.2021.07.069
https://doi.org/10.1016/j.ijbiomac.2021.07.069
https://doi.org/10.1016/j.msec.2017.12.035
https://doi.org/10.1016/j.msec.2017.12.035
https://doi.org/10.1021/acs.langmuir.8b02655?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.langmuir.8b02655?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3390/f12111516
pubs.acs.org/EF?ref=pdf
https://doi.org/10.1021/acs.energyfuels.3c03842?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Based Polyurethane Resins Derived from Tannin: Source, Synthesis,
Characterisation, and Application. Forests 2021, 12 (11), 1516.
(180) Alinejad, M.; Henry, C.; Nikafshar, S.; Gondaliya, A.; Bagheri,

S.; Chen, N.; Singh, S. K.; Hodge, D. B.; Nejad, M. Lignin-Based
Polyurethanes: Opportunities for Bio-Based Foams, Elastomers,
Coatings and Adhesives. Polymers 2019, 11 (7), 1202.
(181) Mowbray, M.; Savage, T.; Wu, C.; Song, Z.; Cho, B. A.; Del

Rio-Chanona, E. A.; Zhang, D. Machine learning for biochemical
engineering: A review. Biochem. Eng. J. 2021, 172, 108054.
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