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Abstract

In this thesis, we compute the twisted covariant form hierarchies (TCFHs) of minimal
supergravity theories in four and five dimensions, as well as, eleven-dimensional super-
gravity and the internal space of its warped AdS backgrounds. As a consequence, the
form bilinears satisfy a generalised conformal Killing-Yano equation with respect to the
TCFH connection. Then, we find the (hidden) symmetries generated by the form bilin-
ears in spinning particle actions propagating in certain supersymmetric backgrounds of
D = 4, N = 2 and D = 5, N = 1 minimal supergravities, M-brane backgrounds which
include the M2-brane, M5-brane, pp-wave and KK-monopole, maximal supersymmetric
AdS backgrounds and some AdS backgrounds that arise as near horizon geometries of
intersecting M-branes. In addition, we explore whether the form bilinears are sufficient
to prove the integrability of particle probe dynamics on M-brane backgrounds. More-
over, we show that the covariantly constant forms of heterotic backgrounds with SU(2)
and SU(3) holonomy generate a W-symmetry algebra in two-dimensional non-linear su-
persymmetric sigma models with the previous backgrounds as target spaces and analyse
the consistency conditions of the chiral anomalies arising from all symmetry generators
required for the closure of the algebra.
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Chapter 1

Introduction

The notion of symmetry has evolved as our comprehension of nature improves, from
being closely related to harmony, unity and beauty in Plato’s theories to our current
most common definition as “invariance under a group of transformations.” Symmetries
play a fundamental role in our understanding of Physics and often they help to describe
a system. These are extremely useful since they can be applied in diverse contexts, from
relativistic to non-relativistic theories, as well as, classical and quantum regimes.

Symmetry is a powerful tool to study physical systems since it imposes constraints
that limit the types of quantities that may appear in a theory or the form of its equations
of motion or Lagrangian. It is often related to conserved quantities and allows us to get
insights of certain properties of physical theories. It is instructive to explain the work done
in this thesis to distinguish between two types of symmetries in physical systems, Noether-
type symmetries and gauge symmetries. The first ones are continuous global symmetries
that leave the action invariant and by Noether’s theorem give conserved quantities. These
are physical symmetries which sometimes are also referred to as rigid symmetries. While
gauge symmetry is a local symmetry that strictly speaking is a redundancy in the way we
describe a system rather than a symmetry that transforms a physical state into a different
physical state of the system. One identifies all the states related by a gauge transformation
with the same physical state. To see this consider Maxwell’s equations of motion which
do not uniquely define the evolution of the gauge potential Aµ but rather its equivalence
class subject to a gauge transformation. Many properties desired in physical theories such
as Lorentz invariance, locality and unitarity can be described manifestly in the dynamics
using the redundancy of gauge fields. For instance, in electromagnetism gauge symmetry
allows us to describe a photon with a four component field that transforms under the
Lorentz group and remove two of its degrees of freedom to leave only two polarisation
states.

In this thesis, for the most part we consider Noether-type symmetries which are not
apparent in the spacetime but arise by analysing the dynamics of test particles propa-
gating in different gravitational backgrounds. In this context these symmetries are often
called “hidden symmetries.” The ones analysed here are associated either with Killing-
Stäckel or Killing-Yano tensors found in relativistic and spinning particles propagating
on supersymmetric backgrounds. The generalised Killing-Yano forms investigated here
emerge from a geometric structure called twisted covariant form hierarchy (TCFH) and
the probe actions studied are expressed as one-dimensional non-linear supersymmetric
sigma models.

Killing-Stäckel and (conformal) Killing-Yano forms have a long and distinguished his-
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tory in general relativity as they have been used to investigate the integrability and
separability properties of many classical equations, like the geodesic, Hamilton-Jacobi,
Klein-Gordon, Dirac and Maxwell equations, on black hole spacetimes, see selected refer-
ences [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and reviews [11, 12]. In particular, Killing-Stäckel tensors
generate (hidden) symmetries for relativistic particle probes propagating on gravitational
backgrounds and so symmetries of the geodesic flow. While Killing-Yano forms, which
can be thought of as the “square root” of Killing Stäckel tensors, generate (hidden) sym-
metries for spinning particle probes [13, 14, 15] propagating on gravitational backgrounds
[16]. For some other applications, see also [17, 18, 19, 20, 21].

More recently, it has been demonstrated in [22] that the conditions imposed by the
Killing spinor equations on the (Killing spinor) form bilinears of any supergravity theory,
which may include higher order curvature corrections, can be arranged as a twisted
covariant form hierarchy (TCFH) [23]. This means that these conditions can be written
as

DF
XΩ = iXP +X ∧Q , (1.1)

for every spacetime vector field X, where Ω is a multiform with components the form
bilinears, P and Q are appropriate multi-forms which depend on the bilinears and the
fields of the theory. Note that X also denotes the associated 1-form constructed from the
vector field X after using the spacetime metric g, X(Y ) = g(X, Y ). Furthermore DF is
a connection on the space of forms which depends on the fluxes F of the supergravity
theory that it is not necessarily form degree preserving. A consequence of the TCFH is
that the form bilinears Ω satisfy a generalisation of the conformal Killing-Yano equation
with respect the DF connection

(DF
XΩ)k = iX((d

DF
Ω)k+1)−

1

n− k + 1
X ∧ (δD

F
Ω)k−1 , (1.2)

as one can easily verify by skew-symmetrising and taking the contraction with respect
to the spacetime metric of (1.1)1. This raises the question of whether the form bilinears
generate symmetries in appropriate probes propagating on supersymmetric backgrounds.
Chapters 3-5 investigate the conditions under which such symmetries2 occur in 4- and
5-dimensional minimal supergravities [27], as well as 11-dimensional supergravity [28] and
the internal space of its warped AdS backgrounds [29].

Symmetries generated by Killing-Yano forms in sigma models were studied before the
realisation of TCFHs, see [30, 31, 32, 33]. In particular, it has been known for a while
that covariantly constant forms3 with respect to a connection with torsion, ∇̂ = ∇ +
1
2
H, generate symmetries in two-dimensional non-linear supersymmetric sigma models.

Such connection corresponds to the TCFH for heterotic supergravity. Therefore, as an
additional application of the TCFHs, chapter 6 focuses on the W-symmetry algebra
generated by ∇̂-parallel forms and their chiral anomalies in (1,0) sigma models with
heterotic backgrounds with SU(2) and SU(3) holonomy as target spaces [34].

This thesis is organized as follows. In chapter 2, we provide a review of the basics
about Killing-Stäckel tensors, Killing-Yano forms, 11d supergravity, the chiral anomaly,

1An alternative way to state the above condition is that the highest weight representation in the
decomposition of the tensor DFΩ in orthogonal irreducible representations vanishes.

2This has also been explored in Type II supergravity theories [24, 25, 26]
3Covariantly constant forms can be seen as a special case of the Killing-Yano equation (2.11) with

vanising right-hand side.
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W-symmetries and the main developments utilized for the analysis done in the following
chapters are introduced, such as the definition of TCFHs, the construction of spinning
particles as one-dimensional non-linear supersymmetric sigma models and Wess-Zumino
consistency conditions. Next, in chapter 3, we present the TCFHs of D = 4, N = 2
and D = 5, N = 1 minimal supergravities and the spinning particle actions invariant
under symmetries generated by the TCFHs of these theories. In chapter 4, we present
the TCFH of D = 11 supergravity and compute the Killing-Stäckel, Killing-Yano and
closed conformal Killing-Yano tensors of all spherical symmetric M-branes which include
M2-brane, M5-brane, KK-monopole and pp-wave, and demonstrate that their geodesic
flows are completely integrable by giving all independent conserved charges in involution.
Then we turn back our attention to the TCFH and analyse the symmetries generated
by the Killing spinor bilinears in each M-brane. In chapter 5, we present the TCFH of
the internal space of all warped AdS backgrounds of 11-dimensional supergravity and
explore the hidden symmetries of spinning particle probes propagating on these back-
grounds. We give examples of hidden symmetries for probes on some AdS backgrounds
arising as near horizon geometries of intersecting M-branes as well as the maximal super-
symmetric AdS backgrounds. Afterwards, in chapter 6, we show that the sigma models
with supersymmetric heterotic backgrounds with SU(2) and SU(3) holonomy as target
spaces are invariant under a W-symmetry algebra generated by the covariantly constant
forms of these backgrounds. We prove that the chiral anomalies of all these symmetries
are consistent at one-loop in perturbation theory and explore the conditions required to
cancel them. Finally, in chapter 7 we explore the question of whether the form bilinears
are sufficient to prove the integrability of particle probe dynamics on supersymmetric
backgrounds and provide the conclusions of this thesis and some future directions.
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Chapter 2

Review of background material

2.1 Killing-Stäckel and Killing-Yano tensors

Spacetime symmetries are transformations which preserve the spacetime geometry. Killing
vectors (isometries) are responsible for continuous symmetry transformations called ex-
plicit symmetries. However, there are other types of symmetries that do not manifest
explicitly in spacetime, i.e. do not generate spacetime diffeomorphisms, but can be dis-
covered by studying the dynamics of the system. These symmetries are described with
tensors of rank 2 or higher called Killing-Stäckel (KS) tensors and we refer to them as
hidden symmetries. For a classical system, these are transformations that left invariant
the dynamics; whereas for a quantum system, they are related to a set of phase space
operators that commutes with the evolution operator and maps solutions into solutions.

Historically, Carter’s work in 1968 had an influence on the study of hidden symme-
tries in the following years. He derived an additional integral of motion quadratic in
momentum, nowadays known as Carter’s constant, by showing the separability of the
Hamilton-Jacobi and Klein-Gordon equations in the Kerr geometry [1, 2]. Followed in
1970 by Walker and Penrose’ demonstration that the Kerr metric admits a rank 2 KS
tensor responsible for the extra integral of motion [35]. Then Penrose [3] and Floyd [4] in
1973 showed that the KS tensor can be obtained from ”squaring” a Killing-Yano (KY)
tensor. Several discoveries regarding the separability and integrability of dynamical sys-
tems, Killing-Stäckel and Killing-Yano tensors have taken place since Carter’s work. In
the context of higher-dimensional black holes and the desire for a better understanding
of the nature of gravitational theory, this topic has gained interest due to the discovery
of non-trivial hidden symmetries in higher-dimensional rotating black holes which are
related to the existence of KS and KY tensors. Moreover, the most general Kerr-NUT-
(A)dS spacetimes admit a special geometric object called principal tensor which uniquely
determines the geometry. In the sense that from it, one can construct a set of hidden and
explicit symmetries. This principal tensor can be identified as a rank 2 closed conformal
Killing-Yano (CCKY) tensor. For a detailed review of hidden symmetries in this context
check [11, 12]

Phase space formalism is a natural choice to describe dynamical symmetries. It re-
quires a symplectic manifold equipped with a symplectic form and a Hamiltonian function.
In general, without further structures, all dynamical symmetries are described infinites-
imally by flows in phase space that leave the symplectic structure and the Hamiltonian
invariant. However, if one can identify the phase space as the cotangent bundle, T ∗M ,
of a well-defined configuration space, M , then a distinction between explicit and hidden
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2.1. KILLING-STÄCKEL AND KILLING-YANO TENSORS

symmetries arises. In natural Hamiltonian systems,1 explicit symmetries are those that
admit conserved quantities linear in momenta, while conserved quantities of higher order
in momenta are defined as hidden symmetries.

We called conserved quantities or constants/integrals of motion to those observables
K which remains constant along the dynamical trajectories (geodesics). These quantities
must (Poisson) commute with the Hamiltonian.

Killing vectors:
Continuous transformations of the spacetime into itself preserving the metric g are called
isometries. These are generated by base manifold (configuration space) vectors K =
Kµ(x) ∂

∂xµ
satisfying

∇(µKν) = 0 ⇐⇒ ∇µKν = ∇[µKν] . (2.1)

After projecting the Hamiltonian vector field of explicit symmetries into the configu-
ration space, it reduces to a quantity that depends only on the spacetime variables, i.e.
independent of momenta. Thus, we say that these symmetries are well-behaved trans-
formations of the phase space into the base manifold. Let us give an example, consider
a free relativistic particle with Hamiltonian H = 1

2m
gabpµpν and the existence of Killing

vectors, such that the constants of motion can be expressed as C = Kµpµ, {C,H} = 0.
The corresponding Hamiltonian vector field reads XC = Kµ∂xµ − ∂Kν

∂xµ
pν∂pµ . It is com-

mon to find in the literature that upon a canonical projection to the spacetime manifold,
π : T ∗M → M , π∗XC reduces to the Killing vector, K = Kµ∂xµ . However, it is more
precise to say that π∗XC is the vector field that is π-related2 to XC as the push-forward
map π, in general, does not map vector fields to vector fields.3

One can also see that a transformation is well defined in spacetime when the variation
δxµ is not proportional to p and δH = 0. In our previous example, this is the case since
we get

δxµ = ϵξµ , δpµ = −ϵ ∂ξ
ν

∂xµ
pν , , δH = 0 , (2.2)

where ϵ is an infinitesimal parameter.

Killing tensors:
Conserved quantities of higher order in momenta lead to hidden symmetries described by
Killing tensors. For every integral of motion that is monomial in momenta, there exists
a Killing tensor. Suppose there is an integral of motion C = Kµ1···µs(x)pµ1 · · · pµs , then
its Poisson bracket with the Hamiltonian for the free relativistic particle gives

{C,H} = ∇µ0Kµ1···µspµ0pµ1 · · · pµs . (2.3)

For C to be a constant of motion, it must Poisson commute with the Hamiltonian. Since
this must hold for an arbitrary number of pa’s, the tensor K must satisfy

∇(µ0Kµ1···µs) = 0 . (2.4)

1Physical systems with a metric defined on configuration space and Hamiltonian function quadratic
in momenta. From now on we will consider only natural Hamiltonians and drop the word natural.

2A vector field X on M and a vector field Y on N are φ-related if for all f ∈ C∞(N), X(π∗f) =
φ∗(Y (f)) or equivalently φ(Xm) = Yφ(m) for all points m ∈M .

3There are two problems: if π is not surjective there is no candidate to define the push-forward for
the section M → T ∗M away from the image of π. If π is not injective there may be more than one
candidate over some points in the image of π.
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2.1. KILLING-STÄCKEL AND KILLING-YANO TENSORS

This equation defines a symmetric tensor of rank s called Killing-Stäckel tensor. For s = 1
we recover Killing vectors, hence KS tensors are symmetric generalizations of the latter
ones. The phase space symmetry associated is generated by the Hamiltonian vector field

XC = sKµν2···νspν2 · · · pνs∂xµ −
∂Kν1···νs

∂xµ
pc1 · · · pνs∂pµ . (2.5)

After projecting into the base manifold gives

π∗XC = sKµν2···νspν2 · · · pνs∂xµ . (2.6)

Here again, one should say that π∗XC is the vector field that is π-related toXC . For s ≥ 2,
π∗XC cannot be seen as a pure spacetime quantity since it still depends on momenta.
Hidden symmetries do not have a simple description in spacetime.

As before, the same conclusion can be derived from the perspective of the canonical
transformations generated by the conserved quantity C

δxµ = ϵsKµν2···νspc2 · · · pνs , δpµ = −ϵ∂K
ν1···νs

∂xµ
pν1 · · · pνs . (2.7)

Now both variations are proportional to p, and hence its transformation to the spacetime
is not well defined.

A symmetrized product of two KS tensors gives again a KS tensor of rank s = s1+s2.
If a KS tensor can be decomposed in terms of symmetrized products other KS tensors
and Killing vectors it is called reducible.

Conformal Killing vectors and Killing-Stäckel tensors:
These are generalizations for the propagation of light of the objects previously discussed
given by

∇(µ0Kµ1···µs) = g(µ0µ1αµ2···µs), (2.8)

where α is a symmetric tensor of rank s − 1. It is related to the divergence of K and
derivatives of its traces. For s = 1 we get conformal Killing vectors whereas for s > 2 we
obtain conformal Killing-Stäckel (CKS) tensors. They provide conserved quantities along
null geodesics [35, 36]. Similarly, one can get another CKS tensor by the symmetrized
product of CKS tensors and for s ≥ 2 they give rise to hidden symmetries.

Conformal Killing-Yano forms:
One way to define the Killing-Yano tensor is by studying the decomposition of the covari-
ant derivative of an antisymmetric form ω into its irreducible parts [37]. The Killing-Yano
family is given by the decomposition depending only on the exterior derivative and the
divergence (co-derivative) parts. The most general case is called conformal Killing-Yano
(CKY) p-form given by

∇µωµ1···µp = ∇[µωµ1···µp] +
p

D − p+ 1
gµ[µ1∇νω|ν|µ2···µp] (2.9)

or in differential notation

∇Xω =
1

p+ 1
iXdω − 1

D − p+ 1
αX ∧ δω . (2.10)
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2.1. KILLING-STÄCKEL AND KILLING-YANO TENSORS

Killing-Yano forms are those with vanishing co-derivative

∇µωµ1···µp = ∇[µωµ1···µp] ⇐⇒ ∇Xω =
1

p+ 1
iXdω . (2.11)

Note that this equation is the antisymmetric generalisation of the Killing vector equation
[38]. On the other hand, if the covariant derivative depends only on the divergence part
we get closed conformal Killing-Yano (CCKY) forms [39, 40]

∇µωµ1···µp =
p

D − p+ 1
gµ[µ1∇νω|ν|µ2···µp] ⇐⇒ ∇Xω = − 1

D − p+ 1
αX ∧ δω . (2.12)

Properties:

� The Hodge dual of a CKY form is again a CKY form.

� The Hodge dual of a CCKY form is a KY form.

� (C)KY “square” to (C)KS, i.e. the symmetrized product of two (C)KY p-forms, ω1

and ω2, is a rank 2 (C)KS tensor.

Kµν = ω
(µ
(1)ρ2···ρpω

ν)ρ2···ρp
(2) . (2.13)

� Having two CCKY p-form and q-form. Their exterior (wedge) product is a CCKY
(p+ q) form

Principal tensor:
A principal h is a non-degenerate4 CCKY 2-form satisfying

∇ρhµν = gρµξν − gρνξµ , ξµ =
1

D − 1
∇νhνµ , (2.14)

where the indices are raised with g and it can be shown that ξ is a Killing vector called
the primary Killing vector. In order to check this one needs to plug the expression above
in the Killing vector equation (2.1) and use the Einstein space condition, Rµν = Λgµν ,
where Λ is the cosmological constant.

From a principal tensor h one can construct a sequence of various symmetry objects
called the Killing tower [8, 41, 42].

Here we will show a sketch of the objects we can build:

� CCKY h(j) of rank 2j by taking its wedge powers

h(j) =
1

j!
h∧j . (2.15)

� KY forms ω(j) of rank (D − 2j) by taking the Hodge duals

ω(j) = ∗h(j) . (2.16)

4The condition of non-degeneracy implies that h has the maximal (matrix) rank and the maximal
number of functionally independent eigenvalues.
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2.2. SEPARABILITY AND INTEGRABILITY

� Rank 2-KS tensors K(j) by the symmetrized product of two KY

Kµν
(j) =

1

(D − 2j − 1)!
ω(j)(µ

ρ2···ρD−2j−1
ω(j)ν)ρ2···ρD−2j−1 . (2.17)

� Rank 2-CKS tensors Q(j) by the symmetrized product of two CCKY

Qµν
(j) =

1

(2j − 1)!
h(j)(µρ2···ρD−2j−1

h(j)ν)ρ2···ρD−2j−1 . (2.18)

� Killing vectors f(j)

f(j) = K(j) · ξ . (2.19)

where “ · ” means the contraction of two tensors in adjacent indices.
All the description discussed until now is for vacuum solutions, in the presence of

fluxes, at the classical level is not always possible to build symmetries to generalised the
ones presented without flux and at the quantum level there might be anomalies. There
are different generalisations of KS and KY tensors, in supergravity theories, one is that of
a connection twisted by a 3-form torsion [43, 44, 45, 46] which can be identified naturally
with one of the fluxes in the theory. For instance in 5D minimal supergravity the torsion
can be identified with 1√

3
∗ F . However, the generalisation used in this thesis arises from

the twisted covariant form hierarchies which will be introduced later.

2.2 Separability and Integrability

Integrable systems are nonlinear differential equations which in principle can be solved
analytically. This means that the solution can be reduced to a finite number of algebraic
operations and integrations. A very informal and naive approach to integrability can be
stated in the following ways:

� Classical level: An integrable system is a dynamical system in which all its classical
solutions can be expressed in a closed form in terms of simple functions.

� Quantum level: An integrable system requires that the eigenvalues and eigenfunc-
tions of a set of characteristic observables can be evaluated in a closed form.

Integrals of motion facilitate the study of dynamical systems. A dynamical system with N
degrees of freedom is called completely integrable if the number of independent integrals
of motion that are in involution (Poisson commuting) is equal to the number of degrees
of freedom, as a consequence, its solution can be written in terms of integrals. This result
is known as the Liouville theorem.

The existence of a principal tensor and therefore a Killing tower implies complete
integrability of geodesic motion in all dimensions.

Another method to study the geodesic motion in any dimension is using the Hamilton-
Jacobi equation. This a partial differential equation for Hamilton’s principal function
S(q, t)

∂S

∂t
+H(xµ,

∂S

∂xν
, t) = 0 . (2.20)
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2.2. SEPARABILITY AND INTEGRABILITY

A complete integral is defined as a function S = S̄(t, qµ, Pν) + C, where Pν and C are
constants. The complete integral can be interpreted as the generating function of a
canonical transformation between the original Hamiltonian system and a new one with
variables Qµ, Pν and H ′. The relations between the variables are given by

pν(t, q, P ) =
∂S

∂qν
,

Qµ(t, q, P ) =
∂S

∂Pµ
,

H ′ = H +
∂S

∂t
. (2.21)

The function S generates a canonical transformation that trivialises the system since eq.
(2.20) implies H ′ = 0. Then Q and P are constants of motion after assuming that the
second equation in (2.21) is invertible one gets q = q(Q,P, t) and p = p(Q,P, t)

For a time-independent Hamiltonian, the principal function can be solved with the
ansatz S(q, P, t) = W (q, P )− Et. The Hamilton-Jacobi equation reads

H(qµ,
∂S

∂qν
) = E , (2.22)

where the function S is called Hamilton’s characteristic function and the constant E is
the energy.

For a natural Hamiltonian with a positive definite, time-independent Riemannian
metric and orthogonal coordinates such that gµν = 0 for µ ̸= ν, the coordinate system is
separable if the Hamiltonian-Jacobi equation

1

2
gµν

∂S

∂qµ
∂S

∂qν
= E , (2.23)

admits a complete solution of the form

S(q, P ) =
n∑
µ=1

Sµ(q
µ, P ) , (2.24)

with det
[
∂2S
∂P∂q

]
̸= 0.

The Hamiltonian-Jacobi equation is separable on a Riemannian manifold if and only
if it admits r Killing vectors κ(i) (i = 0, · · · r − 1) and D − r rank 2 Killing tensors K(α)

(α = 1, · · ·D − r), all of them independent and satisfy the following two properties

� All mutually (Nijenhuis-Schouten) commute[
K(α), K(β)

]
NS

= 0 ,
[
κ(i), K(β)

]
NS

= 0 ,
[
κ(i), κ(j)

]
NS

= 0 . (2.25)

� Killing tensors Kα have in common D − r eigenvectors mα, such that[
K(α), K(β)

]
= 0 ,

[
K(α), κ(i)

]
= 0 , g(m(α), κ(i)) = 0 . (2.26)
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2.3. KERR GEOMETRY

2.3 Kerr geometry

The Kerr geometry was the first example where it was realized that the existence of
Killing-Stäckel and Killing-Yano tensors play a big role in the integrability of the geodesic
flow. This discovery motivated several discoveries about the separability and integrability
of dynamical systems and put Killing-Yano tensors on the map for many physicists. For
these reasons, it is instructive to discuss the Kerr geometry from a perspective of hidden
symmetries. The details of the Kerr metric can be found in standard textbooks [47, 48,
49, 5]

The Kerr metric is the most general stationary vacuum solution of Einstein’s equation
in an asymptotically flat spacetime describing a rotating black hole with a regular event
horizon. In Boyer-Lindquist coordinates it is given by

g = −
(
1− 2Mr

Σ

)
dt2 − 4Mra sin2 θ

Σ
dtdϕ+

A sin2 θ

Σ
dϕ2 +

Σ

∆r

dr2 + Σdθ2 , (2.27)

where Σ = r2+a2 cos2 θ, ∆r = r2−2Mr+a2, A = (r2+a2)2−∆ra
2 sin2 θ. Note that it has

two commuting Killing vectors, ξ(t) = ∂t and ξ(ϕ) = ∂ϕ, since it is independent of t and ϕ.
The first one generates translations in time while the second one is the generator of axial
rotations. The conditions to specify these Killing vectors uniquely5 are the following: ξ(t)
is timelike at infinity, meaning the metric is stationary, and the integral lines of ξ(ϕ) are
closed. In the exterior of the black hole, the points where ξ(ϕ) = 0, i.e. when θ = 0, π,
form a regular two-dimensional geodesic submanifold, called the axis of symmetry; the
metric is axisymmetric. The induced metric in the axis is

γ = −Fdt2 + F−1dr2 , F =
∆r

r2 + a2
. (2.28)

The Kerr metric is characterized by two parameters, the mass, M , and rotation pa-
rameter, a ≤ M , associated with the angular momentum of the black hole, J = aM .
Taking the limit r → ∞, the metric simplifies to

g ≈ −
(
1− 2M

r

)
dt2 − 4Ma sin2 θ

r
dtdϕ+ dr2 + r2

(
dθ2 + sin2 θdϕ2

)
. (2.29)

The Boyer-Lindquist form gives the Kerr metric in a convenient coordinate system
that generalises the Schwarzschild coordinates. However, one can perform a coordinate
transformations in which the hidden symmetry is more evident.

y = a cos θ , ψ =
ϕ

a
, τ = t− aϕ . (2.30)

Then the Kerr metric reads

g =
1

Σ

[
−∆r

(
dτ + y2dψ

)2
+∆y

(
dτ − r2dψ

)2]
+ Σ

[
dr2

∆r

+
dy2

∆y

]
, (2.31)

where Σ = r2+y2, ∆r = r2−2Mr+a2 and ∆y = a2−y2. These coordinates (τ, r, y, ψ) are
sometimes referred as canonical coordinates. It is common not to specify the functions

5Any linear combination of the Killing vectors with constant coefficients is again a Killing vector.
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2.3. KERR GEOMETRY

∆r and ∆y and work with arbitrary functions instead. The downside is that in this form
the metric is not a solution to Einstein’s equations, and it is called off-shell metric.

The metric (2.31) admits a principal tensor [11]

h = ydy ∧
(
dτ − r2dψ

)
− rdr ∧

(
dτ + y2dψ

)
, (2.32)

which can be generated from a potential b, h = db, given by

b = −1

2

[(
r2 − y2

)
dτ + r2y2dψ

]
. (2.33)

It can be verified by a straightforward computation that h satisfies the CCKY equation.
In addition, one can construct the following Killing tower from it.

� Killing-Yano tensor f = ⋆h

f = rdy ∧
(
dτ − r2dψ

)
+ ydr ∧

(
dτ + y2dψ

)
. (2.34)

� Conformal Killing tensor Qµν = hµρhν
ρ

Q =
1

Σ

[
r2∆r

(
dτ + y2dψ

)2
+ y2∆y

(
dτ − r2dψ

)2]
+ Σ

[
y2dy2

∆y

− r2dr2

∆r

]
. (2.35)

� Killing tensor Kµν = fµρfν
ρ

K =
1

Σ

[
y2∆r

(
dτ + y2dψ

)2
+ r2∆y

(
dτ − r2dψ

)2]
+ Σ

[
r2dy2

∆y

− y2dr2

∆r

]
. (2.36)

� A primary Killing vector ξµ(τ) =
1
3
∇νh

νµ = ∂µτ .

� Secondary Killing vectors ξµ(ψ) = −Kµ
νξ
ν
(τ) = ∂µψ.

The primary Killing vector is timelike at infinity, as expected since the metric is
stationary. Furthermore, one can construct a Killing vector as a linear combination,
ξ(ϕ) = a−1ξψ − aξ(τ) = ∂ϕ whose fixed points form the axis of symmetry and its integral
lines are closed cycles, indicating the metric is axisymmetric.

The Killing vectors, ξ(τ) and ξ(ψ), the Killing tensor, K, and the metric, g, are all
independent and mutually (Nijenhuis-Schouten) commute. As a consequence, the follow-
ing integrals of motion associated with these objects are independent and in involution,
hence, the geodesic motion is completely integrable [1, 2, 35, 3, 4].

gµνpµpν = −m2 , Kµνpµpν = K , pτ ≡ ξµ(τ)pµ = −E ,

pψ ≡ ξµ(ψ)pµ = Lψ = aLϕ − a2E , (2.37)

where pµ is the four-momentum of a free relativistic particle with mass m, and E and
Lϕ are its energy and angular momentum, respectively. The conserved quantity K is the
analogue of the Carter constant for the off-shell metric.
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2.4 Non-linear sigma models

Non-linear sigma models have been studied for more than 60 years, going back to the
work of Gell-Mann and Lévy [50]. Since then they have found widespread applications.
In this brief review, we have skipped some details and encourage the reader to check [51,
52, 53, 54] and references within.

A non-linear sigma model is a scalar field theory whose fields take values in a Rie-
mannian manifold M , called the target space. The action of a theory of n free scalar
fields X i(x), i = 1, . . . n, in a d-dimensional spacetime N with coordinates xµ, µ, ν, · · · =
0, 1, . . . d− 1, and metric γµν is given by

S =
1

2
µ2−d

∫
ddx

√
γγµνgij(X(x))∂µX

i∂νX
j . (2.38)

The fields X i can be thought of as coordinates of the curved manifold M with metric
gij. The X i are dimensionless and the mass scale µ is required to make the action
dimensionless. Note that this coupling makes the theory non-renormalizable for d ≥ 3
whereas in d = 2 is absent and hence renormalizable. It is common to choose units where
µ = 1.

The action is independent of the choice of coordinates on M and N since it is invariant
under the general coordinate transformation

X i → X ′i, gij(X) → g′ij(X
′) = gkℓ

∂Xk

∂X ′i
∂Xℓ

∂X ′j , (2.39)

or, for some transformation with respect to an infinitesimal vector field vi

X ′i = X i + vi(X), g′ij(X
′) = gij − 2∇(ivj)(X) . (2.40)

Two sigma models with metrics gij and g′ij, which are related by coordinate trans-
formations as in (2.39) or (2.40) are equivalent; hence, they describe the same physics.
Consider the action (2.38) with metric as in (2.40), then it satisfies

S[ϕ, g′ij(X)] = S[X̃, gij(X̃)] , (2.41)

where X̃ i = X i − vi. This means that S[X, g′(X)] is related to (2.38) by redefining
X i → X̃ i. Thus the sigma model is determined by an equivalence class of metrics related
by diffeomorphisms.

In addition, one can introduce a spacetime reparameterization invariant term, called
the Wess-Zumino term, constructed from the alternating tensor on N ϵµν···ρ, providing
that n ≤ d.

SWZ =
q

n!

∫
dnx

√
γϵµ1···µnbi1···in(X)∂µ1X

i1 · · · ∂µnX in , (2.42)

where q is a constant. This action is M-coordinate independent if b is a n-form on M ,
b = 1

n!
bi1···indϕ

i1 ∧ · · · ∧ dϕin . The variation of this term under shifts b → b + dλ for any
(n− 1) form λ is only a surface term

δbi1···in = ∂[i1λi2 ···in] . (2.43)
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2.4. NON-LINEAR SIGMA MODELS

The field equation for X i obtained from δ(S + SWZ) is given by

−gij
(

1
√
γ
∂µγ

µν√γ∂νXj + Γjkℓ∂µX
k∂µXℓ

)
+q

(n+ 1)

n!
Hi1···inϵ

µ1···µn∂µ1X
i1 · · · ∂µnX in = 0 , (2.44)

where H = db is the field strength. It is well known that if H is closed but not exact, the
charge q must be quantized to have a consistent quantum theory. If b is globally defined
then there is no quantization condition. The field equation (2.44) is well-defined since it
does not depend explicitly on b. However, the action (2.42) is not well defined since it
involves b, so one could find potential obstacles in quantization.

One can couple spacetime fermions λA(x) labelled by an internal index A = 1, . . . , r
to the sigma model through

SF = i

∫
ddx

√
γGAB(ϕ(x))λ̄

AρµDµλ
B , (2.45)

where ρµ denotes the spacetime gamma matrices6 satisfying ρµρν + ρνρµ = 2γµν and the
covariant derivative is Dµλ

A = ∇µλ
A + Ai

A
B(X(x))∂µX

iλB. Here ∇µ is a derivative
covariant with respect to spacetime Lorentz transformations7.

2.4.1 1D-Supersymmetric non-linear sigma models

In this thesis, we write the actions for supersymmetric sigma models using superfields,
which has the advantage that supersymmetry is manifest and writing down the actions
is straightforward. First, let us review some basic aspects about supersymmetry and
Minkowski superspace [55, 56, 57, 58, 59, 60].

At the algebra level, supersymmetry is an extension of the d-dimensional Poincaré
algebra which incorporates anticommuting charges Q. The graded Poincaré algebra is
generated by the Lorentz generators,M , the translation generators, P , and the supersym-
metry generators, Q. It might include an internal symmetry group G and central charge
generators, Y and Z, which commute with all other generators. The central charges exist
only in extended supersymmetry, N > 1.

Supersymmetry is inherently manifest in superspace by construction. Besides the even
coordinates xµ from Minkowski space, superspace introduces odd Grassmann coordinates
carrying a spinor index, θα. Minkowski superspace can be defined as the coset space (super
Poincaré group)/(Lorentz group).

A superfield is a function encoding the spacetime coordinates and the Grassmann
coordinates, X = X(x, θ). Superfields can be expanded in a terminating Taylor series in
θ.8 In particular for 1-dimension and N = 1, we have

Xµ(t, θ) = Xµ|+ θDXµ| =: xµ(t) + θλ(t) , (2.46)

where | indicates the part independent of θ, i.e. |θ = 0. The number of supersymmetries
N is given by the α-index in θα and is the same as that on Qα. The supercharges Q
are defined to anti-commute with the supersymmetry covariant derivatives, {D,Q} = 0.

6Here following standard notation γµν corresponds to the spacetime metric
7This means that ∇µ is built as an Ehresmann connection on a bundle of orthonormal frames.
8This is a consequence of Grassmann coordinates being nilpotent.
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2.5. SYMMETRIES IN PROBE ACTIONS

These objects can be written in terms of differential operators. For 1-dimension and N=1,
the supersymmetry charge and the covariant derivative D are given by

Q = i
∂

∂θ
+ θ

∂

∂t
, D =

∂

∂θ
+ iθ

∂

∂t
, (2.47)

which satisfy the supersymmetry algebra {Q,Q} = 2i∂t = 2P and D2 = i∂t. The com-
ponents of the superfield in (2.46) are derived by projecting out the θ-independent part.
This means that the leading term X| = x is a bosonic scalar field and the components
DX| = λ are fermionic (Grasmmann odd) since the operators D are odd. The physical
fields with propagating degrees of freedom are x and λ.

The action of the 1d, N = 1 supersymmetric sigma model reads

S = − i

2

∫
dtdθgµνDX

µ∂tX
ν , (2.48)

where ∂t =
∂
∂t
. Note that this action contains the bosonic action after integrating over

the odd coordinate, θ, using the properties of the Berezin integral and expanding in the
components of the superfield X

S = − i

2

∫
dtD (gµνDX

µ∂tX
ν) |

=

∫
dt

1

2
gµν∂tx

µ∂tx
ν︸ ︷︷ ︸

Bosonic action

+
i

2
gµνλ

µ∂tλ
ν − i

2
∂ρgµνλ

ρλµ∂tx
ν



=

∫
dt

1

2
gµν∂tx

µ∂tx
ν +

i

2
gµνλ

µ∇tλ
ν︸ ︷︷ ︸

Spinning particle action

 , (2.49)

where ∇tλ
ν = ∂tλ

ν + Γνρσ∂tx
ρλσ. Therefore, the non-linear supersymmetric sigma model

in 1 dimension describes spinning particle actions.
The most general N = 1 sigma model in 1d [61] with dimensionless couplings and

attaching mass zero to X and introducing a fermionic superfield ψ with mass dimension
[1
2
] is given by

S = −i
∫
dtdθ

(
1

2
gµνDX

µ∂tX
ν +

1

3!
cµνρDX

µDXνDXρ − i

2
habψ

a∇ψb + 1

3!
labcψ

aψbψc

+fµa∂tX
µψa +

i

2!
mµabψ

aψbDXµ +
1

2!
nµνaDX

µDXνψa
)
, (2.50)

where ∇ψa = Dψa +DXµAµ
a
bψ

b, with A being a connection.

2.5 Symmetries in probe actions

We have introduced Killing-Stäckel and the Killing-Yano family from the Hamiltonian
formalism. However, in this thesis we look at the symmetries generated by Killing-Yano
forms in spinning particle probe actions propagating in supersymmetric backgrounds. We
shall summarise the applications of KS, KY and CKY tensors in generating symmetries
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for particle actions. Consider the action of a relativistic particle probe propagating on a
spacetime M with metric g

S =
1

2

∫
dt gµν ẋ

µ ẋν , (2.51)

where ẋ denotes the derivative of the coordinate x with respect to t. The equations of
motion are those of the geodesic flow on M with affine parameter t. Given a rank k KS
tensor on M , i.e. a symmetric (0, k) tensor d on M which satisfies

∇(µdν1ν2···νk) = 0 , (2.52)

where ∇ is the Levi-Civita connection of g, the action (2.51) is invariant under the
infinitesimal transformations

δxµ = ϵdµν1···νk−1
ẋν1 · · · ẋνk−1 , (2.53)

with parameter ϵ. The associated conserved charge is

Q(d) = dν1ν2···νk ẋ
ν1 ẋν2 · · · ẋνk . (2.54)

For k = 1, d is a Killing vector field. The symmetrised tensor product of two KS tensors
is also a KS tensor. Hidden symmetries are those generated by rank k ≥ 2 KS tensors d
with d ̸= g.

Recall that a spinning particle probe propagating on a spacetime M with metric g is
described by the action

S = − i

2

∫
dt dθ gµν DX

µ Ẋν , (2.55)

where t and θ are the even and odd coordinates of the worldline superspace, respec-
tively, X are worldline superfields X = X(t, θ) and D2 = i∂t. Spinning particles are
supersymmetric extensions of relativistic particles.

Given a KY form, α, on M , the infinitesimal transformation

δXµ = ϵ αµν1···νk−1
DXν1 · · ·DXνk−1 , (2.56)

with parameter ϵ leaves the spinning particle action (2.55) invariant9.

δS = − i

2

∫
dt dθ (−2δXµgµν ∇tDX

ν)

= i

∫
dt dθgµν(ϵα

µ
ν1···νk−1

DXν1 · · ·DXνk−1)∇tDX
ν

= i

∫
dt dθ

ϵ

k
ανν1···νk−1

∇t(DX
ν1 · · ·DXνk−1DXν)

= −i
∫

dt dθ
ϵ

k
∇µανν1···νk−1

∂tx
µDXν1 · · ·DXνk−1DXν

= −
∫

dt dθ
ϵ

k(k + 1)
∇µανν1···νk−1

D(DXµDXν1 · · ·DXνk−1DXν)

9It is clear that this result can be extended to sigma models in two dimensions with adequate mod-
ifications to DX and ∂tX such that the corresponding superspace differential operators anti-commute
with the supercharges Q.
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= 0 ⇐⇒ ∇µανν1···νk−1
= ∇[µανν1···νk−1] , (2.57)

where ∇tDX
ν = ∂tDX

ν + Γνρσ∂tX
ρDXσ. The associated conserved charge is

Q(α) = (k + 1)αν1ν2···νk∂tX
ν1DXν2 · · ·DXνk − i

k + 1
(dα)ν1···νk+1

DXν1 · · ·DXνk+1 .(2.58)

Observe that Q(α) is preserved, DQ(α) = 0, subject to the equations of motion of (2.55).
Note that if dα = 0 and so α is covariantly constant (or equivalently parallel) with respect
to the Levi-Civita connection, then

Q̃(α) = αν1ν2···νkDX
ν1DXν2 · · ·DXνk , (2.59)

is also conserved subject to the field equations of (2.55), ∂tQ̃(α) = 0. There are several
generalisations of the KS and CKY tensors, see e.g. [62, 43, 44, 46, 18, 63, 30, 31].

The commutator algebra of transformations (2.56) generated by spacetime forms has
been examined in detail in [32, 33]. Given two symmetries (2.56) generated by the k-form
α and ℓ-form β, the commutator contains two types of terms. One term depends on the
Nijenhuis tensor of α and β and the other term is the transformation

δXµ = ϵ(α ·s β)µνλ1...λk+ℓ−4
∂tX

νDXλ1 . . . DXλk+ℓ−4

, (2.60)

generated by the tensor

(α ·s β)µνλ1...λk+ℓ−4
= αµκ[λ1...λk−2

βκ|ν|λk−1...λk+ℓ−4] + ανκ[λ1...λk−2
βκ|µ|λk−1...λk+ℓ−4] , (2.61)

where ϵ is an infinitesimal parameter. Clearly if α and β are rank 2 KY tensors, then
α ·s β is a KS tensor. In the case that both α and β are covariantly constant with respect
to the Levi-Civita connection, the Nijenhuis tensor vanishes and so the transformation
(2.60) is a symmetry of the spinning particle action (2.55). This will be the case for
all symmetries generated by the form bilinears of pp-wave and KK-monopole solutions
covered in Chapter 4.

Consider a dynamical system with 2n-dimensional phase space P . This is completely
integrable, according to Liouville, provided that P admits n independent functions (ob-
servables) Qr, r = 1, . . . , n, including the Hamiltonian, in involution. Qr are independent
provided that the map Q : P → Rn, where Q = (Q1, . . . , Qn), has rank n. Moreover Qr

are in involution, iff {Qr, Qs}PB = 0, i.e. Poisson bracket of any two Qrs’ vanishes
10.

Returning to the relativistic particle, the conserved charges (2.54) can be written in
phase space variables as

Q(d) = dν1···νkpν1 · · · pνk , (2.62)

where pµ is the conjugate momentum of xµ and we have raised the indices of d with the
spacetime metric g. These clearly commute with the Hamiltonian H = 1

2
gµνpµpν as they

are constants of motion. Furthermore the Poisson bracket algebra of two constants of
motion Q(d1) and Q(d2) is {Q(d1), Q(d2)}PB = Q([d1, d2]NS), where

([d1, d2]NS)
ν1···νk+ℓ−1 = kd

µ(ν1···νk−1

1 ∂µd
νk···νk+ℓ−1)
2 − ℓd

µ(ν1···νℓ−1

2 ∂µd
νk···νk+ℓ−1)
1 , (2.63)

is the Nijenhuis-Schouten bracket of the KS tensors d1 and d2. Observe that if d1 is a
vector, then [d1, d2]NS = Ld1d2, i.e. the Nijenhuis-Schouten bracket is the Lie derivative
of d2 with respect to the vector field d1. Therefore two charges are in involution provided
that the Nijenhuis-Schouten bracket of the associated KS tensors vanishes.

10Complete integrability is related to the separability of the equations of motion of a dynamical system.
In the phase space coordinates (Q1, . . . , Qn, ψ1, . . . , ψn) defined by the charges Q1, . . . , Qn and the action-
angle coordinates (ψ1, . . . , ψn) adapted to the Hamiltonian vector fields, XQi

= ∂ψi
, the time evolution

of the system is at most linear.
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2.6 Supersymmetric backgrounds

A supergravity background is an n-tuple (M , g , F , ϕ) satisfying the classical equations
of motion for the bosonic fields, i.e. the metric g, scalar fields ϕ and fluxes F in the
theory. If these solutions also preserve some residual supersymmetry of the original
supergravity theory, they are called supersymmetric backgrounds. The SUSY variations
leave the fields invariant and transform bosons into fermions and vice versa, however
classically the fermonic fields must vanish, which in turn implies that the supersymmetry
variations of the bosons are identically zero. On the other hand, the SUSY variations of
the gravitino and the remaining fermions λ will give rise to a parallel transport equation
for the supercovariant connection, D, and some algebraic equations depending on the
fields, respectively. These vanishing conditions of the SUSY variations of the fields are
called the Killing spinor equations (KSEs).

δψM |ψ,λ=0 = Dµϵ = 0 , δλµ|ψ,λ=0 = Aµϵ = 0 , (2.64)

where A is a Clifford algebra element that depends on the fields and the supercovariant
connection is

Dµ := ∇µ + σµ(e, F ), (2.65)

where ∇ is the spin connection of the spacetime acting on spinors

∇µ := ∂µ +
1

4
Ωµ,αβΓ

αβ , (2.66)

and σ(e, F ) is a Clifford algebra element which depends on the coframe e and the fluxes
F .

In other words, the classical solution (M , g , F , ϕ) is supersymmetric if there exists
a nonzero spinor ϵ which is parallel with respect to the supercovariant connection and
satisfies the constraints imposed by the algebraic KSEs. The amount of linearly inde-
pendent solutions ϵ admitted by the KSEs is called the number, N , of supersymmetries
preserved. Thus, we call Killing spinors those nonzero spinors ϵ which are parallel (or
covariantly constant) with respect to the supercovariant connection, D, and satisfy the
algebraic KSEs.

Before proceeding let us clarify that the usual geometrical notion of Killing spinor is
given by

∇Xϵ = ηX · ϵ (2.67)

for a vector field X, where η ∈ C and · is the Clifford product. The word Killing is
standard in the supergravity literature and alludes to the property that these spinors
are “square roots” of Killing vectors, i.e. the one form, Kϵ, defined for all X ∈ TM by
Kϵ = ⟨ϵ,X · ϵ⟩11 is dual to a Killing vector field.

The linearity of KSEs and especially the gravitino KSE which is a parallel transport
equation uniquely defines a Killing spinor on all points of spacetime from its value at any
given point. As a consequence, the dimension of the vector space formed by the Killing

11The notation ⟨·, ·⟩ indicates Dirac inner product, i.e. ⟨ϵ, ϵ⟩ := ⟨Γ0ϵ, ϵ⟩
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spinors is at most the rank of the spinor bundle S of which ϵ is a section. The amount of
supersymmetries preserved can be defined by the fraction ν as the ratio

ν =
dim(Killing spinors)

rank S
. (2.68)

The maximal amount of sypersymmetries preserved by a supergravity background is
given by the number of supersymmetry charges of the theory, i.e. the number of compo-
nents of the spinor representation in given dimensions times the number of gravitinos. In
the absence of other fermionic fields beside the gravitino, as it happens in 11 dimensional
supergravity, the kernel of the connection D corresponds to the parallel sections of the
spinor bundle, i.e. the Killing spinors, and maximally supersymmetric solutions are those
which saturate the kernel. However, generally the kernel of D cannot be identified with
the Killing spinors for all supergravity theories since one must take into consideration
the remaining algebraic KSEs. In general, maximal supersymmetry implies the flatness
of the connection D and the determination of such backgrounds requires the analysis of
the integrability conditions. In addition, one can find generic supergravity backgrounds
that do not preserve any amount of sypersymmetry.

The integrability conditions of the KSEs are useful to study the holonomy and the
field equations of supersymmetric backgrounds. Schematically these conditions can be
expressed as

Rµνϵ = [Dµ,Dν ]ϵ = 0 , [Dµ,A] = 0 , [A,A] = 0 . (2.69)

First, let us consider the (reduced) holonomy group, hol(∇), of the spin connection
∇ for a d-dimensional spacetime

[∇µ,∇ν ]ϵ =
1

4
Rµν

αβΓαβ . (2.70)

This corresponds to vacuum solutions, i.e. the fluxes vanish, F = 0, and Γαβ are the
generators of the Spin(d − 1, 1) algebra. As a consequence, hol(∇)⊆ Spin(d − 1, 1).
However, for generic supergravity backgrounds, one has to consider the presence of fluxes,
F ̸= 0. In this case, the integrability condition for the gravitino KSE includes more
Cifford algebra element terms due to σ in (2.65) and the holonomy, hol(D), generically
is contained in a GL group instead of a Spin group. The computation of the Lie algebra
of hol(D) is determined by the span of the values of the supercovariant curvature R and
its covariant derivatives DkR evaluated on spacetime vector fields12, in general, these
expressions are given by all possible skew-symmetric products of gamma matrices. As
a consequence of Clifford algebra representation theory, the hol(D) is the Lie algebra
generated by all the anti-symmetric product of gamma matrices {1,Γα,Γαβ, ...} which is
identified as a gl(n,F) algebra and leads to the claim that the holonomy is contained in
a GL(n,F) group, where n is associated with the dimension of the gamma matrices. As
an example the holonomy of the supercovariant derivative for 11d [64, 65, 66] and type
II [67] supergravities is SL(32,R) and a list of lower dimensional supergravities is given
in [68].

Another key feature employed in the analysis of the supersymmetric solutions is
the gauge symmetry in the KSEs. These gauge transformations transform a spacetime
coframe e, fluxes F and spinor ϵ but leave the KSE covariant

12This is a consequence of the Ambrose-Singer theorem.
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Dµ(e,F) → U−1Dµ(e,F)U = Dµ(e
′,F ′) , Aµ → U−1Aµ(e,F)U = Aµ(e

′,F ′) . (2.71)

The holonomy group of D in most supergravity theories is bigger than the gauge
group, which always contains Spin(d− 1, 1) as a subgroup.

2.7 Twisted Covariant Form Hierarchies

It has been known for sometime that Killing spinor bilinears constructed from Killing
spinors ϵ

τ k =
1

k!
⟨ϵ,ΓN1···Nk

ϵ⟩dxN1 ∧ · · · ∧ dxNk , (2.72)

satisfy the CKY equation. This can be seen as follows if ϵ satisfies the geometric Killing
condition, see (2.67)

∇Mϵ+ ηΓMϵ = 0 . (2.73)

Then, using the Dirac inner product ⟨·, ·⟩, a direct computation

∇MτN1...Nk
= ⟨∇Mϵ,ΓN1...Nk

ϵ⟩+ ⟨ϵ,ΓN1...Nk
∇Mϵ⟩ , (2.74)

reveals that for Lorentzian signature manifolds

∇Xτ
k =

(
η̄ − (−1)kη

)
iXτ

k+1 +
(
η̄ + (−1)kη

)
αX ∧ τ k−1 , (2.75)

whereas for Euclidean signature manifolds

∇Xτ
k = −

(
η̄ + (−1)kη

)
iXτ

k+1 −
(
η̄ − (−1)kη

)
αX ∧ τ k−1 , (2.76)

where ∇ is the Levi-Civita connection, iX is the inner derivation on the space of forms
with the vector field X and αX(Y ) = g(X, Y ).

Comparing the equations above with (2.10) one concludes that the bilinear τ k satisfies
the CKY equation. However, the KSEs of generic supergravity theories impose more
complicated conditions on the Killing spinor bilinears and a suitable generalisation of the
CKY is required.

Let M be a n-dimensional manifold with metric g and signature (r, s), Λ∗
c(M) be the

complexified bundle of all forms on M and F a multi-form, i.e. a collection of (complex)
forms of non-necessarily different degrees. A twisted covariant form hierarchy (TCFH)
with F is a collection of forms χp [23], with possibly different degrees p which satisfy

∇F
X({χp}) = iXP(F , {χp}) + αX ∧Q(F , {χp}) , (2.77)

where P ,Q : Γ(Λ∗
c(M)) → Γ(Λ∗

c(M)) and ∇F , the covariant hierarchy connection, is a
connection acting on Γ(⊕mΛ∗

c(M)) constructed from the Levi-Civita connection and F .
Such connection is not necessarily degree preserving.

In supergravity theories, F are the form field strengths and {χp} are the Killing spinor
bilinears. Comparing the left and right-hand sides of (2.77) one finds [22](

∇F
X {χq}

)
|p =

1

p+ 1

(
iXd

F({χq})
)
|p −

1

n− p+ 1
αX ∧

(
δF({χq})

)
|p−1 , (2.78)
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where (· · · )|p denotes a restriction of the expression to p-forms, dF and δF are the ex-
terior derivative and the adjoint constructed using ∇F

X . This equation can be seen as a
generalisation of the CKY equation which differs with respect to other generalisations
since it relates a collection of forms with possibly different degrees and the connection
∇F
X may not be degree preserving in contrast to the conditions on a form with a definite

degree imposed by the standard CKY and other generalisations.
It should be noted that equation (2.78) is implied by (2.77) however one must impose

additional conditions to guarantee the converse is true

1

p+ 1

(
iXd

F({χq})
)
|p = (iXP) |p , − 1

n− p+ 1

(
δF({χq})

)
|p−1 = Q|p−1 . (2.79)

Thus there might be solutions of (2.78) which are not solutions of (2.77).
Let us give a sketch of how to prove that KSEs of a supergravity theory give rise to a

TCFH, one starts with the structure of a supercovariant connection of such theories, see
[22] for all the details of this proof.

DX = ∇X + c (iXH) + c (αX ∧ G) , (2.80)

where c denotes the Clifford algebra element associated with the multiforms iXH =∑
p iXH

p, G =
∑

pG
p made with the p-form field strengths Hp and Gp. ∇X usually is

the Levi-Civita connection but it can also be twisted by a gauge connection.
Then, considering the Killing spinor form bilinears {χp} with respect to Dirac inner

product

∇Xχ
p = − 1

p!

(
⟨c(iXH)ϵ,ΓA1...Apϵ⟩+ ⟨ϵ,ΓA1...Apc(iXH)ϵ⟩

)
eA1 ∧ · · · ∧ eAp

− 1

p!

(
⟨c(αX ∧G)ϵ,ΓA1...Apϵ⟩+ ⟨ϵ,ΓA1...Apc(αX ∧G)ϵ⟩

)
eA1 ∧ · · · ∧ eAp , (2.81)

where {eA} is a (pseudo)-orthonormal frame adapted to the spacetime metric. Here note
that since the action of multiforms H and G is linear on the right-hand side, it is sufficient
to take them as single forms H = Hℓ and G = Gℓ of degree ℓ.

After using the Hermiticity properties of the inner product, the definition of the form
bilinears and extensive Clifford algebra manipulation one derives the expression

∇Xχp +

(∑
q

(
(c1qiXH + c2qiXG) · χq + (c̃1qiXH̄ + c̃2qiXḠ) · χq

))
|p =

−iX

(∑
q

(c3qG · χq + c̃3qḠ · χq)

)
|p

−αX ∧

(∑
q

(c4qG · χq + c̃4qḠ · χq)

)
|p−1 , (2.82)

where c1q, c̃
1
q, c

2
q, c̃

2
q, c

3
q, c̃

3
q, c

4
q, c̃

4
q are combinatorial coefficients which depend on p, ℓ and the

Dirac inner product ⟨·, ·⟩ and whose values can be omitted for the proof, H̄ and Ḡ are
the comples conjugates of H and G, respectively.

Finally, the expression above defines a TCFH (2.78) with the following identifications

∇F
Xχ

p ≡ ∇Xχp +

(∑
q

(
(c1qiXH + c2qiXG) · χq + (c̃1qiXH̄ + c̃2qiXḠ) · χq

))
|p ,
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(iXP) |p ≡ −iX

(∑
q

(c3qG · χq + c̃3qḠ · χq)

)
|p ,

Q|p−1 ≡ −αX ∧

(∑
q

(c4qG · χq + c̃4qḠ · χq)

)
|p−1 , (2.83)

where F = {H,G}ind are the linearly independent field strengths.
Let us give some remarks about this proof. Note that no restriction on the signature

of the spacetime were imposed, the proof works for all (r, s)-signature manifolds. Further-
more, all the arguments used can be generalized to Killing spinor bilinears constructed
from different Killing spinors η, ϵ with respect to any Spin invariant inner product, i.e.
χp = 1

p!
⟨η,ΓA1...Apϵ⟩seA1 ∧ · · · ∧ eAp . One can also generalise it to include supergravity

with higher-order corrections since the supercovariant connections are expected to have
the same general structure as in (2.80). The main goal of this connection is to give a
geometrical interpretation to the form bilinears as generalised CKY forms with respect
to the TCFH connection ∇F . Taking this into consideration, there might be terms F ·χp
which generate an ambiguity in the definition of ∇F , note that

iX (F · χp) = iXF · χp , (2.84)

e.g. terms for which all the indices of χp are contracted to indices of F since these
terms can be placed on the connection side or on the right-hand side and in both cases
the bilinears satisfy a generalised CKY equation. If all such terms contribute to ∇F

the TCFH is defined with respect to a maximal connection whereas if all those terms
contribute to P the TCFH is defined with respect to a minimal connection.

Another feature of the TCFHs arising from supergravity theories is that depending
on the set of bilinears {χp} chosen, one can have the Hodge duality operation on {χp}
as an automorphism if such set consists of all the bilinears and their Hodge duals, in
this case the hierarchy is twisted by F . On the other hand, if one chooses the set
{χp} up to a Hodge duality operation, it might not be an automorphism of the TCFH
which now will be twisted by F and its dual ∗F . Furthermore, the fluxes of the theory
can be chosen such that the supercovariant derivative DX depends only on iXF , as a
consequence there is a choice {χp}for which the associated TCFH is a parallel transport
equation with respect to ∇F connection. This can be done with an appropriate basis
for the fluxes and bilinears, some examples include the TCFH of heterotic supergravity
whose ∇F connection is identified with ∇H = ∇ + 1

2
H, where H is the three-form flux

which is understood as torsion. Another example can be found in the appendix A.2 where
we construct such TCFH for minimal 4d supergravity.

As an example, consider the TCFH associated with the one- and two-form Killing
spinor bilinears of 11-dimensional supergravity13. First, the conditions imposed on the
two-form by the supercovariant derivative read

∇µων1ν2 =
1

3 · 3!
Fµρ1ρ2ρ3τ

ρ1ρ2ρ3
ν1ν2 −

1

3
Fµν1ν2ρk

ρ

− 1

3 · 3!
τµ[ν1

ρ1ρ2ρ3Fν2]ρ1ρ2ρ3 +
1

3 · 4!
gµ[ν1τν2]

ρ1ρ2ρ3ρ4Fρ1ρ2ρ3ρ4 , (2.85)

Here, k, is a one-form killing spinor bilinear, ω is a two-form and τ is a five-form. Then

13The full TCFH of 11d supergravity will be presented in Chapter 4
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after some manipulation

DF
µ ων1ν2 ≡ ∇µων1ν2−

1

2 · 3!
Fµρ1ρ2ρ3τ

ρ1ρ2ρ3
ν1ν2 = −1

3
Fµν1ν2ρk

ρ

− 1

2 · 3!
τ[µν1

ρ1ρ2ρ3Fν2]ρ1ρ2ρ3 +
1

3 · 4!
gµ[ν1τν2]

ρ1ρ2ρ3ρ4Fρ1ρ2ρ3ρ4 , (2.86)

This expression is not degree preserving. Now look at the connection side of the TCFH,
the underlined term twists the Levi-Civita connection and is responsible for this expres-
sion to satisfy a generalised CKY equation since it arises by reorganizing the terms of this
type such that the antisymmetrization bracket includes the index of the supercovariant
derivative. Similarly, the TCFH of the one form bilinear is given by

DF
µ kν ≡ ∇µkν =

1

6
Fµναβω

αβ − 1

6!
∗Fµνρ1ρ2ρ3ρ4ρ5τ

ρ1ρ2ρ3ρ4ρ5 , (2.87)

In this case, the TCFH connection is the standard Levi-Civita connection. We have
included this equation to remark on the fact that the connection side is different for every
bilinear in the theory. Nevertheless, these forms satisfy a generalised CKY equation

DF
µ kν = DF

[µkν], DF
µ ων1ν2 = DF

[µων1ν2] −
1

5
gµ[ν1DFρων2]ρ . (2.88)

Note there are terms having all the indices in the form bilinears contracted, these terms
can contribute to the connection or the right-hand side. The maximal TCFH connection
arises when all such terms are included in the connection side.

∇F
µ kν ≡ ∇µkν −

1

6
Fµναβω

αβ +
1

6!
∗Fµνρ1ρ2ρ3ρ4ρ5τ

ρ1ρ2ρ3ρ4ρ5 = 0 ,

∇F
µ ων1ν2 ≡ ∇µων1ν2−

1

2 · 3!
Fµρ1ρ2ρ3τ

ρ1ρ2ρ3
ν1ν2 +

1

3
Fµν1ν2ρk

ρ

= − 1

2 · 3!
τ[µν1

ρ1ρ2ρ3Fν2]ρ1ρ2ρ3 +
1

3 · 4!
gµ[ν1τν2]

ρ1ρ2ρ3ρ4Fρ1ρ2ρ3ρ4 , (2.89)

satisfying the following CKY equations

∇F
µ kν = 0, ∇F

µ ων1ν2 = ∇F
[µων1ν2] −

1

5
gµ[ν1∇Fρων2]ρ . (2.90)

Finally, let us give some comments about the curvature associated to the TCFH
connection and explain how to compute it for certain cases. In general, the curvature
characterises a connection and is related to parallel transport around a loop. In order to
calculate it, we usually take the commutator of two covariant derivatives which measures
the difference between parallel transporting a tensor in two opposite orderings. The
TCFH connection is not degree preserving which makes unclear what connection must
be used to derive the curvature and how such TCFH connection acts on the fluxes and the
metric. To illustrate this consider again the TCFH of the two-form in 11d supergravity
(2.86). Then if one takes the commutator

[DF
µ′ ,DF

µ ]ων1ν2 = DF
µ′DF

µ ων1ν2 −DF
µDF

µ′ων1ν2

= DF
µ′

(
−1

3
Fµν1ν2ρk

ρ − 1

2 · 3!
τ[µν1

ρ1ρ2ρ3Fν2]ρ1ρ2ρ3
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+
1

3 · 4!
gµ[ν1τν2]

ρ1ρ2ρ3ρ4Fρ1ρ2ρ3ρ4

)
− (µ↔ µ′) . (2.91)

Immediately, we can see that one must act with a different TCFH connection for each
term in the second equality. Therefore, in general, the standard procedure to compute
the curvature associated with the TCFH seems to be not applicable. Now let us assume
there is a theory where the TCFH reads

∇µkν −
1

2
Fµρω

ρ
ν = 0 , ∇µων1ν2 − Fµ[ν1kν2] = 0 . (2.92)

The curvature expression of the two-form reads

[∇µ′ ,∇µ]ων1ν2 = ∇µ′∇µων1ν2 −∇µ∇µ′ων1ν2
= ∇µ′(Fµ[ν1kν2])− (µ↔ µ′)

= ∇µ′Fµ[ν1kν2] +
1

2
Fµ[ν1|Fµ′ρ|ω

ρ
ν2] − (µ↔ µ′)

2Rµ′µ
ρ
[ν1ω|ρ|ν2] = ∇µ′Fµ[ν1kν2] +

1

2
Fµ[ν1|Fµ′ρ|ω

ρ
ν2] − (µ↔ µ′) , (2.93)

where we used the fact that the bilinears are parallel and replace DF with the Levi-Civita
connection ∇. This approach can be extended to TCFHs for which the Killing spinor
bilinears are not DF -covariantly constant.

2.8 11D Supergravity

The eleven-dimensional construction of supergravity [69] can be seen as the effective
theory of M-theory obtained from the strong coupling limit of Type IIA string theory
[70, 71]. Consider 11d supergravity compactified on a circle with radius R11, then the
D0-brane is identified with the first Kaluza Klein excitation of the supergraviton given by
M2

N = ( N
R11

)2 and R11 = ℓsgs. Taking the limit R11 → ∞ implies the decompactification of
the eleventh circular dimension, leading to an eleven-dimensional theory called M-theory
whose low energy limit is 11d supergravity. The M2- and M5-branes [72, 73], as well as
their superpositions and intersections [74, 75, 76] are some examples of supersymmetric
solutions of 11d supergravity. These have a wide range of applications regarding the
existence of M-theory and the web of string dualities and more recently in the AdS/CFT
correspondence. There are several detailed review articles and books that discuss M-
theory and the web of dualities [77, 78, 79, 80, 81, 82, 83] and describe the sypersymmetric
solutions of 11d supergravity [84, 85].

Let us review the main aspects of 11d supergravity. The bosonic flied content includes
the metric g and a 4-form field strength F .The action for these fields [69, 86] is∫

M

(
1

2
Rdvol− 1

4
F ∧ ⋆F +

1

12
F ∧ F ∧ A

)
, (2.94)

where F = dA, A is the 3-form gauge potential, R is the scalar curvature of the metric
and dvol is the spacetime volume form.

The field equations read

d ⋆ F = −1

2
F ∧ F ,

29



2.8. 11D SUPERGRAVITY

Rµν =
1

12
Fµ

ρ1ρ2ρ3Fν
ρ1ρ2ρ3 − 1

144
gµνFρ1ρ2ρ3ρ4F

ρ1ρ2ρ3ρ4 . (2.95)

We will work throughout this thesis with the Clifford algebra

ΓαΓβ + ΓβΓα = +2ηαβ1 , (2.96)

with the mostly plus signature of the metric η. The Clifford algebra Cliff(R10,1) is iso-
morphic (as an algebra) to Mat(32,R)⊕Mat(32,R) which has two irreducible (pinor)
representations S± corresponding to each factor in the decomposition above and given
by the standard action of Mat(32,R) on R

32. These are distinguished by the action of
volume element Γ12 = ±1. There is a unique real-spinor S (Majorana) representation of
Spin(10, 1) ⊂ Cliffeven(R10,1) =Mat(32,R).

The supercovariant connection is

Dµ = ∇µ +
1

288
(Γµ

ν1ν2ν3ν4Fν1ν2ν3ν4 − 8Fµν1ν2ν3Γ
ν1ν2ν3) (2.97)

The supercovariant curvature reads [87]

Rµν =
1

4
Rµν,αβΓ

αβ +
2

(288)2
Fα1α2α3α4Fβ1β2β3β4ϵµν

α1α2α3α4β1β2β3β4
δΓ

δ

+
48

(288)2

(
4Fµα1α2α3F

α1α2α3
βΓ

β
ν − 4Fνα1α2α3F

α1α2α3
βΓ

β
µ

−36FαβµγF
αβ

νδΓ
γδ + Fα1α2α3α4F

α1α2α3α4Γµν

)
+

1

36

(
∇µFνα1α2α3 −∇νFµα1α2α3

)
Γα1α2α3

− 8

3(288)2

(
Fβ1β2β3β4Fγ1γ2γ3νϵµ

β1β2β3β4γ1γ2γ3
α1α2α3 − (ν ↔ µ)

)
Γα1α2α3

− 1

432

(
4Fβα1α2α3F

β
µνα4Γ

α1α2α3α4

+3Fβγα1α2F
βγα3

νΓ
α1α2

µα3 − 3Fβγα1α2F
βγα3

µΓ
α1α2

να3

)
− 1

288

(
∇µFα1α2α3α4Γ

α1α2α3α4
ν − (ν ↔ µ)

)
− 1

5!(72)2

(
−6Fµβ1β2β3Fνγ1γ2γ3ϵ

β1β2β3γ1γ2γ3
α1α2α3α4α5

−6Fµδβ1β2F
δ
γ1γ2γ3ϵν

β1β2γ1γ2γ3
α1α2α3α4α5

−6Fνδβ1β2F
δ
γ1γ2γ3ϵµ

β1β2γ1γ2γ3
α1α2α3α4α5

+9Fδκβ1β2F
δκ
γ1γ2ϵµν

β1β2γ1γ2
α1α2α3α3α4α5

)
Γα1α2α3α4α5 . (2.98)

Contracting with Γν and using the Bianchi identity of the curvature tensor Rµ[νρσ] one gets
an expression in terms of the field equations and Bianchi identity for the field strength
[88]

ΓνRµν = EµνΓ
ν − 1

36
LFα1α2α3

(
Γµ

α1α2α3 = 6δα1
µ Γα2α3

)
+

1

6!
BFα1α2α3α4α5

(
Γµ

α1α2α3α4α5 − 10δαµΓ
α2α3α4α5

)
, (2.99)
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where

Eµν =: Rµν =
1

12
Fµ

ρ1ρ2ρ3Fν
ρ1ρ2ρ3 − 1

144
gµνFρ1ρ2ρ3ρ4F

ρ1ρ2ρ3ρ4 ,

LFµνρ = ⋆(d ⋆ F := −1

2
F ∧ F )µνρ ,

BFµ1µ2µ3µ4µ5 := (dF )µ1µ2µ3µ4µ5 . (2.100)

The expression above vanishes provided the background satisfies the equations of motion
and F is closed as in 11d supergravity.

The Lie algebra of the holonomy group of the supercovariant connection, hol(D), is
given by all possible products of gamma matrices of first order and above in (2.98), i.e.
the expression does not contain terms proportional to 132. Thus the trace

tr(R(X, Y )) = 0 , (2.101)

on the spinor indices vanishes. Hence the values of R(X, Y ) are spanned by the subset
Mat0(32,R) ⊂Mat(32,R) of 32× 32 matrices with vanishing trace. One can identify the
Lie algebra sl(32,R) = Mat0(32,R) of SL(32,R). Therefore the reduced holonomy group
of D is contained in SL(32,R), hol(D) ⊆ SL(32,R) [64, 65, 66].

2.9 Holography M-branes

The AdS/CFT correspondence [89, 90] associates the vacuum state of a conformal field
theory (CFT) to a gravitational solution that contains an anti-de-Sitter (AdS) subspace.
The latter is known as the gravitational dual of the correspondence and its fluctuations
are related to the gauge invariant operators of the CFT. This correspondence allows to
model strong coupling effects in CFT’s in terms of gravitational theory considerations
which are out of reach of perturbation theory.

The AdS/CFT correspondence in its simplest form proposed that in the large N limit,
the non-Abelian gauge theory on a stack of N branes in string/M-theory is equivalent to
the string/M-theory living on the near horizon geometry of the branes, see Table 2.114.

Eleven-dimensional supergravity has four types of elementary solutions preserving
half supersymmetry: M2-brane, M5-brane, pp-wave and Kaluza-Klein monopole. For
now, we will focus on the M2-brane and M5-brane near horizon geometries are super-
symmetric solutions of the type AdSp+2 × Sd−n, where p indicates the brane, and their
worldvolume theory is a superconformal field theory. In such cases, there is a holographic
duality between M-theory in AdS space and the superconformal field theory (SCFT) at
the boundary. The AdS supersymmetry in p + 2 dimensions can be matched with the
superconformal symmetry in p+ 1 dimensions.

Case Near Horizon Geometry Gauge theory

N D3-branes Type IIB on AdS5 × S5 4d N=4 Super-Yang-Mills
N M2-branes M-theory on AdS4 × S7 ABJM model
N M5-branes M-theory on AdS7 × S4 6d N=(2,0) theory

Table 2.1: Basic examples of the AdS/CFT.

14A large number of extensions and generalisations have been done since the AdS/CFT inception.
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M2-brane
A system of N parallel M2-branes is described by

g = h−
2
3ηµνdx

µdxν + h
1
3 (dr2 + r2dΩ2

7) , F = ±dx0 ∧ dx1 ∧ dx2 ∧ dh−1 , (2.102)

where µ, ν = 0, 1, 2. Taking the harmonic function to depend only on the transverse
radial coordinate r

h = 1 +
a6

r6
, a6 ≡ 25π2Nℓ6p , (2.103)

where ℓp is the Planck-length.
In the near horizon limit

lim
r→0

h(r) ∼ a6

r6
, (2.104)

the metric becomes

g = a−4r4g2+1 + a2r−2dr2 + a2gS7 , (2.105)

where g2+1 = ηµνdx
µdxν . Note that the last term is the metric on S7 with radius a,

whereas the first two terms under a change of coordinates, u = r2

4RAdS
with RAdS = a

2
,

give the metric on 4d AdS spacetime with radius RAdS.

gAdS = R2
AdS

[
du2

u2
+

(
u

RAdS

)2
g2+1

R2
AdS

]
. (2.106)

Therefore, the near horizon geometry is of the form AdS4 × S7 with the radii of
curvature 2RAds = RS7 = ℓp(32πN)

1
6 . The bosonic symmetry is SO(3, 2) × SO(8). In

addition, this is a maximally supersymmetric solution preserving 32 supercharges which
implies just by symmetry arguments that the field theory describing a stack of M2-branes
must be some N=8 3d SCFT. The SO(3, 2) part is identified with the conformal group
of the 3d SCFT and SO(8) with the R-symmetry.

The relation between the parameters of the field theory and supergravity indicates
that one might trust the supergravity description, as long as the radius of the AdS space
is much larger than the Planck scale, which happens in the large N limit.

The M2-brane is a solution that preserves 16 supersymmetries and it interpolates
between two maximally supersymmetric solutions, AdS4 × S7 in the near horizon limit,
and flat Minkowski space far away from the brane, limr→0 h(r) ∼ 1.

M5-brane
A stack of N parallel M5-branes is described by

g = h−
1
3ηµνdx

µdxν + h
2
3 (dr2 + r2dΩ2

4) , F = ± ⋆5 dh , (2.107)

where µ, ν = 0, 1, 2, 3, 4, 5. We can choose the harmonic function to depend only on the
transverse radial coordinate r

h = 1 +
a3

r3
, a3 ≡ πNℓ3p , (2.108)
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where ℓp is the Planck-length.
Taking the near horizon limit

lim
r→0

h(r) ∼ a3

r3
, (2.109)

the metric becomes

g = a−1rg5+1 + a2r−2dr2 + a2gS4 , (2.110)

where g5+1 = ηµνdx
µdxν . Here the last term is the metric on S4 with radius a, whereas

the first two terms under a change of coordinates, u2 = 2RAdSr with RAdS = 2a, produce
the metric on 7d AdS spacetime with radius RAdS.

gAdS = R2
AdS

[
du2

u2
+

(
u

RAdS

)2
g5+1

R2
AdS

]
. (2.111)

Hence, the near horizon geometry is of the form AdS7 × S4 with the radii of curva-
ture RAds = 2RS4 = 2ℓp(π

2N)
1
3 . The bosonic symmetry is SO(6, 2) × SO(5). As in the

previous case, this is a maximally supersymmetric solution preserving 32 supercharges.
Symmetry arguments tell us that the field theory describing a stack of M5-branes must
be some N=(2,0) 6d SCFT. The SO(6, 2) part is identified with the conformal group of
the 6d SCFT and SO(5) with the R-symmetry.

Similar to the M2-brane case, one might trust the supergravity description of the
M2-brane in the large N limit when the radius of the AdS space is much larger than the
Planck scale. The M5-brane also interpolates between two maximally supersymmetric
solutions, AdS7 × S4 in the near horizon limit, and flat Minkowski space far away from
the brane.

2.10 AdS Backgrounds of 11D Supergravity

The most general expression of the metric and the 4-form flux of all the warped AdS
backgrounds in 11-dimensional supergravity can be expressed as near horizon geometries
using Gaussian null coordinates [91, 92] as

ds2 = 2e+e− + δije
iej = 2du(dr + rh− 1

2
r2∆du) + ds2(S) ,

F = e+ ∧ e− ∧ Y + re+ ∧ dhY +X , (2.112)

where we have introduced the frame

e+ = du , e− = dr + rh− 1

2
r2∆du , ei = eiJdy

J ; gIJ = δije
i
Ie
j
J (2.113)

and

ds2(S) = gije
iej . (2.114)
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is a metric on the near horizon section S given by r = u = 0. The dependence on the
coordinates r, u is given explicitly, h = hie

i and dhY = dY − h ∧ Y . In addition, ∆, h, Y
and X are a 0-form, 1-form, 2-form and 4-form respectively that depend only on the
coordinates y of S.

An example of a near horizon geometry is the metric

ds2 = A2ds2(AdSn) + ds2(M11−n) (2.115)

on a warped product of AdSn with an internal space M11−n, where A is the warp factor
which depends only on the coordinates of M11−n. The AdSn ×w M

11−n backgrounds are
invariant under the isometry group SO(n−1, 2) of AdSn. After imposing this symmetry,
the expression (2.112) for AdS2 now reads

ds2 = 2du(dr + rh− 1

2
r2∆du) + ds2(M9) ,

F = e+ ∧ e− ∧ Y +X , (2.116)

with h = −d logA2 = d log∆, dhY = 0 and where A, Y and X are a 0-form, 2-form and
4-form on M9 respectively.

The expression (2.112) for the rest of AdSn, n > 2 reads

ds2 = 2du(dr + rh) + A2(dz2 + e
2z
ℓ

n−3∑
a=1

(dxa)2) + ds2(M11−n) ,

F = dvol(AdSn) ∧W +X = e+ ∧ e− ∧ Y +X , (2.117)

with ∆ = 0, h = −(2
ℓ
dz + d logA2), dhY = 0 and where ℓ is the radius of AdS, W,X and

Y are a (4− n)-form, 4-form and 2-form respectively.

Y = dz ∧W , (n = 3) ; Y = W (A2e
z
ℓ dz ∧ dx1) , (n = 4) ;

Y = 0 , (n > 4) . (2.118)

Later W will be identified with the 1-form Q or the 0-form S when we work in AdS3 or
AdS4 respectively.

Now let us turn to the KSEs of D = 11 supergravity given by15

∇µϵ−
(

1

288
/ΓF µ −

1

36
/F µ

)
ϵ = 0 , (2.119)

where ∇ is the spin connection and F is the 4-form field strength of the theory and ϵ is a
Majorana Spin(10, 1) spinor16. The KSEs evaluated on the ansatz (2.112) are integrable
along the lightcone directions to yield

ϵ = ϵ+ + ϵ− , Γ±ϵ± = 0 ,
ϵ+ = ϕ+ + uΓ+Θ−ϕ− , ϵ− = ϕ− + rΓ−Θ+ϵ+ , (2.120)

15See Appendix A.1 for the forms notation.
16Here we used the standard terminology in supergravity. More precisely, these should be pinors as

one requires the odd part of the Clifford algebra.
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where Γ± are lightcone projections, ϕ± depend only on the coordinates y of S and

Θ± =
1

4
/h+

1

288
/X ± 1

12
/Y . (2.121)

Furthermore, one can show after plugging (2.120) in (2.119) and using the Bianchi
identities and field equations, see [93] for a more detailed description of the analysis, the
remaining independent KSEs are

D±
i ϕ± ≡ ∇̃iϕ± +Ψ±

i ϕ± = 0 , (2.122)

where

Ψ±
i = ∓1

4
hi −

1

288
/ΓX i +

1

36
/X i ±

1

24
/ΓY i ∓

1

6
/Y i . (2.123)

In addition, one derives two useful integrability conditions of the solution of the KSEs
along the remaining AdS directions.(

1

2
∆ + 2(

1

4
/h− 1

288
/X +

1

12
/Y )Θ+

)
ϕ+ = 0 ,(

−1

2
∆ + 2(−1

4
/h+

1

288
/X +

1

12
/Y )Θ−

)
ϕ− = 0 (2.124)

Then one must reduce the KSEs from S to the internal manifold, evaluate (2.122) along
the z-direction to find

∂zϕ± = Ξ±ϕ± , (2.125)

where

Ξ± = −1

2
Γz /∂A∓ 1

2ℓ
+

1

288
AΓz /X ± 1

6
/Z , (2.126)

where /Z is taken according to the corresponding value of Y in (2.118). Taking the second
derivative with respect to z and using (2.124) gives

∂2zϕ± ± 1

ℓ
∂zϕ± = 0 . (2.127)

This can be solved to yield

ϕ± = σ± + e∓
z
ℓ τ± , (2.128)

where

∂zσ± = ∂zτ± = 0 ,

Ξ±σ± = 0 , Ξ±τ± = ∓1

ℓ
τ± . (2.129)

The remaining xa coordinates of AdS do not generate additional integrability conditions
and after integrating them one gets expressions similar to the second line in (2.129). For
more details see [94] and references within. Hence spinors for AdSn≥4 can be written

ϕ+ = σ+ − 1

ℓ
xaΓazτ+ + e

−z
ℓ τ+ , ϕ− = σ− + e

z
ℓ (−1

ℓ
xaΓazσ− + τ−) , (2.130)

and the independent KSEs are given by

D±
i σ± = 0 , D±

i τ± = 0 , (2.131)

and the algebraic ones are

Ξ±σ± = 0 , Ξ± ± 1

ℓ
τ± = 0 . (2.132)
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2.11 Anomalies

The basic idea of an anomaly can be explained as follows. Consider a quantum theory
whose classical action is invariant under a symmetry group G, δScl = 0. Thus, an anomaly
is the failure of a symmetry of the classical theory to be preserved in the quantum effective
action. If the symmetry G is global, then anomalies in G imply that classical rules
are not obeyed in the quantum theory and previously forbidden processes may occur.
However, it does not indicate an inconsistency of the theory. On the other hand, if G is
an anomalous gauge symmetry, this would indicate an inconsistency in the theory since
gauge symmetries are redundancies of our theory that help us to remove negative norm
states and to prove unitarity and renormalizability. Therefore, all gauge anomalies must
vanish if one tries to build a consistent theory. The best way to ensure gauge symmetries
are non-anomalous is to work with Dirac fermions and gauge fields which couple to left-
handed and right-handed fermions in the same manner. For a review of anomalies, see
[95, 96]

Below, we will explain the chiral anomaly as it provides the introductory background
required to understand the anomalies analysed in chapter 6, which occur as a consequence
of the presence of worldsheet chiral fermions in the sigma model action.

2.11.1 Chiral anomaly

Let us introduce the Chiral anomaly following Fujikawa’s method [97, 98, 99, 100] and
for simplicity let us carry out the computation in 4 dimensions. Consider

e−W [A] =

∫
DΨDΨ̄e−

∫
d4xΨ̄i /∇Ψ , (2.133)

where /∇ = γµ(∂µ + ωµ + Aµ). One can always compactify the space in such a way that
the geometry (spin connection) plays no role.

The classical action
∫
d4xΨ̄i /∇Ψ is invariant under

Ψ → eiγ
5αΨ , Ψ̄ → Ψ̄eiγ

5α , (2.134)

where γ5 is chirality gamma matrix operator. We can expand the spinors in terms of
Dirac eigenspinors

Ψ =
∑
i

aiψi , Ψ̄ =
∑
i

b̄iψ̄ , (2.135)

where ai and b̄i are Grassmann-valued numbers. The operator /∇ has eigenspinors satis-
fying

i /∇ψi = λiψi , (2.136)

since i /∇ is Hermitian, λi is real. If we consider a compact manifold, ψi can be normalized

⟨ψi|ψj⟩ =
∫
d4xψ†

i (x)ψj(x)δij = δij . (2.137)

Consider the transformations

Ψ(x) → Ψ(x) + iα(x)γ5Ψ(x) , Ψ̄(x) → Ψ̄(x) + iΨ̄(x)α(x)γ5 . (2.138)
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Then ∫
d4xΨ̄i /∇Ψ →

∫
d4xΨ̄i /∇Ψ+ i

∫
d4x

(
αΨ̄γ5i /∇Ψ+ Ψ̄i /∇(αγ5Ψ)

)
=

∫
d4xΨ̄i /∇Ψ+

∫
d4xα(x)∂µj

µ
5 (x) , (2.139)

where ∂µj
µ
5 (x) = Ψ̄(x)γµγ5Ψ(x).

In quantum theory, there is a change in the path integral measure∫
DΨDΨ̄ =

∫ ∏
i

daidb̄i →
∫ ∏

i

da′idb̄
′
i . (2.140)

From the orthonormality of ψi, we find that

a′i = ⟨ψi|Ψ′⟩ = ⟨ψi|(1 + iαγ5)Ψ⟩
=
∑
j

⟨ψi|(1 + iαγ5)ψj⟩aj ≡
∑
j

cijaj , (2.141)

where cij = δij + iα⟨ψi|γ5ψj⟩. Then∏
da′j = (det cij)

−1
∏

dai = e−tr ln cij
∏
dai

≈ e−itrα⟨ψi|γ5ψj⟩
∏

dai

= e−iα
∑

i⟨ψi|γ5ψi⟩
∏

dai . (2.142)

Similar Jacobian computation can be done the change b̄i → b̄′i. Thus,∏
i

daidb̄i →
∏
i

da′idb̄
′
ie

−2i
∫
d4xα(x)

∑
ψ†
n(x)γ

5ψn(x) . (2.143)

Now, the effective action reads

e−W [A] =

∫ ∏
i

daidb̄ie
−

∫
d4xΨ̄i /∇Ψ

=

∫ ∏
i

da′idb̄
′
ie

−
∫
d4xΨ̄i /∇Ψ−

∫
d4xα(x)∂µj

µ
5 (x)−2i

∫
d4xα(x)A(x) , (2.144)

where A ≡
∑

i ψ
†
i (x)γ

5ψi(x). Since α(x) is arbitrary, the axial current is not conserved
in quantum theory. This is called the chiral anomaly.

∂µj
µ
5 (x) = −2iA(x) . (2.145)

Note that the integral (2.143) is not well defined and must be regularized17. After
introducing a Gaussian cut-off∫

d4xA =
∑

⟨ψi|γ5e−( i
/∇
Λ

)2ψi⟩|Λ→∞ , (2.146)

17We will skip the details of this computation.
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where Λ is a regularisation scale. Then, one can prove that the contribution to the right
hand side of (2.146) comes only from the zero-energy modes. After applying the fact that
(i /∇)2 = −∇µ∇µ − 1

4
[γµ, γν ]Fµν , where Fµν = [∇µ,∇ν ], one gets

A(x) =
∑
i

⟨ψi|x⟩⟨x|γ5e
∇2+1

4 [γµ,γν ]Fµν

Λ2 |ψi⟩|Λ→∞ . (2.147)

After some computation, it can be shown that one gets the well-known result

A(x) = − 1

32π2
trϵµνρσFµνFρσ . (2.148)

Dealing with anomalies [101, 102] implies the computation of trFn, and finding ways
to cancel such terms. It is instructive to explain the relation of this expression with
Chern-Simons forms as it is a crucial part of the anomaly cancellation method.

We define18

P2n = trFn , F = dA+ A ∧ A , D = d+ [A, ·] , (2.149)

where A is a Lie-algebra valued one form connection and the graded commutator satisfies
[α, β] = α ∧ β − (−1)pqβ ∧ α for a g-valued p-form, α, and a g-valued q-form, β.

Note that

dP2n = dtrFn = ntr(dFFn−1) = ntr(DFFn−1) = 0 , (2.150)

where we have used the Bianchi identity, DF = 0, in the last step.
Let A1, A2 be two connections on a principal bundle P over a manifold, M , and let

A(t), 0 ≤ t ≤ 1, be an interpolation between A1, A2, A(t = 0) = A1, A(t = 1) = A2. We
can define P2n(t) for each value of t. Then

d

dt
Ft = d

(
dA(t)

dt

)
+
dA(t)

dt
A(t) + A(t)

dA(t)

dt

= Dt

(
dA(t)

dt

)
. (2.151)

Thus

d

dt
P2n(t) =

d

dt
trFn

= ntr

(
d

dt
F(t)Fn−1(t)

)
= ntr

(
Dt

(
dA(t)

dt

)
Fn−1(t)

)
= ndtr

(
dA(t)

dt
Fn−1(t)

)
, (2.152)

where we have used in the last step the Bianchi identity and the fact that Dt commutes
with the tr operator. Then, integrating from t = 0 to t = 1

P2n(A2)− P2n(A1) = dn

∫ 1

0

dttr

(
dA(t)

dt
Fn−1(t)

)
= dQ0

2n−1(At,Ft) , (2.153)

where Q0
2n−1 is the Chern-Simons form.

18There are different ways to define P , here we follow the notation where the subscript indicates the
degree of the form.
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2.12 Wess-Zumino consistency conditions and De-

scent equations

The anomaly equation under infinitesimal gauge transformations of the fermionic effective
action implicitly is given by [101]

δvΓ[A] =

∫
trvα(A) = W [v, A] , (2.154)

where α(A) is a local functional which corresponds to the anomaly. The commutator of
two infinitesimal gauge transformations [δu, δv] gives another infinitesimal gauge trans-
formation

[δu, δv] = δ[u,v] . (2.155)

As a consequence, we have

δuW [v,A]− δvW [u,A] = W ([u, v], A) . (2.156)

This statement is known as the Wess-Zumino consistency conditions. These can be
written in terms of differential forms (Chern-Simons forms) in what is called the descent
equations19.

δQ0
2n−1(v, A) + dQ1

2n−2(v,A) = 0 ,
δQ1

2n−2(v, A) + dQ2
2n−3(v,A) = 0 ,

· · · ,
δQ2n−2

1 (v, A) + dQ2n−1
0 (v,A) = 0 ,

δQ2n−1
0 (v, A) = 0 , (2.157)

where the upperscript index indicates up to which power of v we can include in the terms
(ghost number20), whereas the subscript indicates the degree of the form.

2.13 W-symmetries

W-algebras first appeared in 2-dimensional conformal field theory. Usually, they are
introduced with the standard example of W3-algebra [103, 104]. However, here we will
explain them with 2 examples applied to non-linear sigma modes.

Consider a non-linear two-dimensional sigma model defined on some D-dimensional
target space M with metric gµν [105].

S0 =
1

2

∫
d2xgµν∂=|X

µ∂=X
ν , (2.158)

where the two-dimensional space-time has null coordinates xµ = (x=|, x=). If dµνρ is a
covariantly constant symmetric tensor on M , ∇µdνρσ, then the sigma model is invariant
under the semi-local transformations

δXµ = k=∂=|X
µ + λ==d

µ
νρ∂=|X

ν∂=|ϕ
ρ , (2.159)

19The details of this computation can be found in [101, 102, 100]
20In the language of Faddeev-Popov and BRST formulation.
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where the parameters satisfy

∂=k= = 0 , ∂=λ== = 0 . (2.160)

The conserved currents are the energy-momentum tensor and one constructed from the
tensor d given respectively by

T=|=| =
1

2
gµν∂=|X

µ∂=|X
ν , W=|=|=| =

1

3
dµνρ∂=|X

µ∂=|X
ν∂=|X

ρ . (2.161)

In general, the closure of two symmetries as in (2.159) will lead to an infinite sequence
of currents. However, if the tensor d satisfies

d(µν
τdσ)ρτ = κgµνgσρ , (2.162)

then the algebra closes to give

[δk1 + δλ1 , δk2 + δλ2 ] = δk3 + δλ3 , (2.163)

where

k3 = k2∂=|k1 + 4κ(λ2∂=|λ1)T=|=| − (1 ↔ 2) ,
λ3 = 2λ2∂=|k1 + k2∂=|λ1 − (1 ↔ 2) . (2.164)

This type of algebra, where the parameters depend on the currents, is often called a
W-algebra21 of the sigma model.

Now, let us consider the N = 1 supersymmetric sigma model defined on some D-
dimensional target space M

S1 =

∫
d2σd2θgµνD+X

µD−X
ν , (2.165)

where (σ=, σ=|, θ+, θ−), D2
+ = i∂=| , D

2
− = i∂=, {D+, D−} = 0. The sigma model is

invariant under the following transformations

δLX
µ = aLL

µ
λ1...λℓD+X

λ1 . . . D+X
λℓ ,

δTX
µ = 2iα

T
∂=|X

µ +D+αT
D+X

µ , (2.166)

provided that L is covariantly constant, where aL is the parameter chosen such that δLX
µ

is even under Grassmannian parity and aT is a parameter with even Grassmannian parity.
The corresponding charges associated to these transformations are given by

JL = Lµ1...µℓ+1
D+X

µ1...µℓ+1 , T = gµνD+X
µ∂=|X

ν , (2.167)

which are conserved, i.e D−JL = 0, D−T = 0. For a Calabi-Yau target space where the
holonomy group is SU(3), we will give only the commutator between two δL symmetries
to illustrate the additional symmetries, admitted in certain supersymmetric non-linear
sigma models, which are of W -type. For more details check [106].

For aL with even Grassmannian parity we have

[δL, δL] = δI , (2.168)

with aI = − ℓℓ̇!
2ℓ−1 (a

′
LD+aL−aLD+a

′
L)J

ℓ−1
I , where δI is the transformation generated by the

complex structure which is associated with the Kähler form and JI is its corresponding
charge. While for odd aL

[δL, δL] = δT + δI , (2.169)

with aT = − ℓℓ̇!
2ℓ
a′LaLJ

ℓ−1
I and aI = − ℓ(ℓ−1)ℓ!

2ℓ−2 a′LaLTJ
ℓ−2
I .

21The W-algebras found in sigma models are the classical Poisson versions of those in Conformal Field
Theory.
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Chapter 3

Symmetries, spinning particles and
the TCFH of D=4,5 Minimal
supergravities

3.1 Introduction

The presence of the TCFH, and consequently, the existence of generalized CKY for
all supersymmetric solutions raises the question on whether the form bilinears can be
used to investigate the separability properties1 of many classical equations, like the
Hamilton-Jacobi, Klein-Gordon, Dirac and Maxwell equations, of these backgrounds,
and on whether they generate symmetries in spinning particles propagating on such back-
grounds. In this chapter, we shall demonstrate that the form bilinears of a large class of
supersymmetric D = 4, N = 2 and D = 5, N = 1 minimal supergravity backgrounds
generate symmetries in spinning particle actions with appropriate couplings. The key
observation is that some of the conditions for invariance of the particle actions of [61]
under some fermionic transformations can also be expressed as TCFHs. In this case, the
associated TCFH connection depends on the couplings of the particle action and acts
on forms that determine the infinitesimal fermionic symmetries of the system. Thus the
task is to match the TCFHs of supersymmetric backgrounds with those of the spinning
particle symmetries after an appropriate identification of the supergravity fields with the
couplings of the particle system and of the form bilinears with the forms that generate
the fermionic symmetries, respectively. We shall demonstrate that this can be achieved
in a variety of cases. We shall also comment on the use of the form bilinears to investigate
the separability properties of supersymmetric backgrounds.

3.2 Minimal D=4, N=2 supergravity

The supercovariant connection of minimal D = 4, N = 2 supergravity is

Dµ ≡ ∇µ +
i

4
FabΓ

abΓµ , (3.1)

1The separability properties of differential operators are described by separability structures. Sepa-
rability structures are classes of separable charts for which the differential operators allow a separation
of variables. For each separability structure there exists a family of separable coordinates that admits a
maximal number of, r, ignorable coordinates.
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3.2. MINIMAL D=4, N=2 SUPERGRAVITY

where F is a 2-form field strength, dF = 0. The field equations also imply that F is
co-closed, d∗F = 0. If ϵ is a Killing spinor, Dµϵ = 0, the form bilinears of the theory up
to a Hodge duality are

f = ⟨ϵ, ϵ⟩ , h = ⟨ϵ,Γ5ϵ⟩ , k = ⟨ϵ,Γaϵ⟩ ea ,
Y 1 = ⟨ϵ,ΓaΓ5ϵ⟩ ea , Y 3 + iY 2 = ⟨ϵ̃,ΓaΓ5ϵ⟩ ea ,
ω1 =

1

2
⟨ϵ,Γabϵ⟩ ea ∧ eb , ω3 + iω2 =

1

2
⟨ϵ̃,Γabϵ⟩ ea ∧ eb , (3.2)

where the spacetime metric g = ηabe
aeb with ea = eaµdx

µ a local co-frame, ⟨·, ·⟩D is the
Dirac inner product, C is a charge conjugation matrix such that C ∗ Γa = −ΓaC∗ and
C ∗ C∗ = −1, and ϵ̃ = C ∗ ϵ. C = Γ3 in the conventions of [107], where ∗ indicates
complex conjugation of the following object. Observe that if ϵ is a Killing spinor so is ϵ̃.
The TCFH of the theory [22] reads

∇µf = iFµνk
ν , ∇µh = ∗Fµνk

ν , ∇µkν = ifFµν − h ∗Fµν ,

∇µY
r
ν + 2∗Fµρω

rρ
ν = 2∗F[µ|ρ|ω

rρ
ν] −

1

2
gµν

∗Fρλω
rρλ , r = 1, 2, 3 ,

∇µω
r
νρ − 4 ∗Fµ[νY

r
ρ] = −3 ∗F[µνY

r
ρ] − 2 gµ[ν

∗Fρ]λY
rλ , r = 1, 2, 3 . (3.3)

In what follows we shall also consider the TCFH associated with the dual 2-forms χr of
ωr which can be defined as

χ1 = − i

2
⟨ϵ,ΓabΓ5ϵ⟩ ea ∧ eb , χ3 + iχ2 = − i

2
⟨ϵ̃,ΓabΓ5ϵ⟩ ea ∧ eb . (3.4)

One can show that the Killing spinor equations imply the TCFH

∇µY
r
ν + 2Fµρχ

rρ
ν = 2F[µ|ρ|χ

rρ
ν] −

1

2
gµνFρλχ

rρλ , r = 1, 2, 3

∇µχ
r
νρ − 4Fµ[νY

r
ρ] = −3F[µνY

r
ρ] − 2 gµ[νFρ]λY

rλ , r = 1, 2, 3 . (3.5)

It is clear from (3.3) that k is a Killing vector which also leaves F invariant, LKF = 0.
To determine whether the above TCFH generates symmetries in a particle system

propagating in the supersymmetric backgrounds of D = 4, N = 2 supergravity consider
the worldline action

S =

∫
dtdθ

(
− i

2
gµνDX

µ∂tX
ν + iqµνDX

µDXνψ +
1

2
ψDψ

)
, (3.6)

where X is a bosonic and ψ is a fermionic superfield that depend on the worldline time t
and the odd coordinate θ and D = ∂θ + iθ∂t with D

2 = i∂t. The fields have components
X = X|, λ = DX|, ψ = ψ| and A = Dψ|, where the restriction means evaluation at
θ = 0. X and A are worldline bosons while the rest of the components are worldline
fermions. The couplings of the theory are the spacetime metric g and the 2-form q which
depend on X. Later q will be identified with either F or its dual ∗F . This action is
manifestly invariant under one worldline supersymmetry. To write the action above we
adopted the reality conditions2

(i∂t)
∗ = i∂t , θ∗ = θ , X∗ = X , ψ∗ = −ψ , (χλ)∗ = χ∗λ∗ , (3.7)

2The reality conditions are anti-linear maps that square to −1.
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for every two worldline fermions χ and λ. With these reality conditions, the coupling
of the theory g and q are real. Such a choice of reality conditions is not unique. For
example, one could have chosen ψ∗ = ψ at the cost of removing the imaginary unit i from
the coupling term q(DX)2ψ in the action. However, such a choice is not suitable for the
application we are investigating. The action (3.6) is a special case of a general class of
actions for spinning particles presented in [61].

Identifying q with either F or ∗F , the Killing vector k of the TCFH (3.3) generates
the infinitesimal transformation

δXµ = akµ , δψ = 0 , (3.8)

which is a symmetry of the action. Thus the isometries of the supersymmetric back-
grounds of D = 4, N = 2 supergravity generate a symmetry in the particle system action
(3.6).

It remains to see whether the remaining conditions of the TCFH (3.3) are associated
with symmetries. For this consider the fermionic transformations

δXµ = iαIµνDX
ν + αLµψ , δψ = iαMµ∂tX

µ , (3.9)

where I, L andM depend on X and α is an anti-commuting infinitesimal parameter. The
reality condition for α is chosen as α∗ = −α which has as a consequence the presence
of an imaginary unit in the IDX term of the infinitesimal transformation of X. Again
this is essential for the application we shall present below. With this choice of reality
condition the tensors I, L and M are real. After some simplification, the conditions for
the invariance of the action (3.6) under the infinitesimal transformations (3.9) can be
expressed3 as

∇µIνρ − 4qµ[νMρ] = −6q[µνMρ] , I[νρ] = Iνρ ,
Lµ = −Mµ , ∇µMν + 2qµρI

ρ
ν = 0 , dqλ[µνI

λ
ρ] = 0, Lµqµν = 0 . (3.10)

Note that if instead we had chosen as reality conditions ψ∗ = ψ and α∗ = α with the
rest remaining the same, the sign of the term qI in the conditions above would have been
different. The differential conditions as stated in (3.10) on the tensors associated to the
infinitesimal transformations (3.9) are in a TCFH form with connection which depends
on the coupling q of the theory.

The associated conserved charge, Q, of the symmetry generated by (3.9) is

Q = IµνDX
µ∂tX

ν +
i

6
(dI)µνρDX

µDXνDXρ − iMµ∂tX
µ ψ − 1

2
(dM)µνDX

µDXν ψ .(3.11)

It can be verified using the equations of motion of (3.6) and (3.10) that DQ = 0.
To compare (3.3) with (3.10), one has to consider three copies of the transformation

(3.9) generated by the tensors Ir and M r, r = 1, 2, 3 and set

Ir = ωr , M r = Y r , q = ∗F . (3.12)

With these identifications the connection part of the TCFHs in (3.3) and (3.10) match.
However, consistency requires that the right-hand-side of the last two equations in (3.3)
must vanish. As a result, ωr, Y r are parallel with respect to the TCFH connection. Note

3The are many inequivalent ways to write the conditions for the invariance of the action (3.6) under
the transformations (3.9). However, the form given below is suitable for the investigation of this example.
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also that d∗F = 0 as a consequence of the field equations and so the last condition in
(3.10) is satisfied.

The commutators of the symmetries (3.9) can be easily computed [61]. After the
identification (3.12) and for the backgrounds investigated below, it can be easily seen
that they do not close to the standard supersymmetry algebra {Qr, Qs} = δrsH in one
dimension. This is in agreement with the commutators of the fermionic symmetries
generated by KY forms in [16].

The supersymmetric solutions of minimal D = 4, N = 2 supergravity have been
classified in [108]. A class of backgrounds for which the right-hand side of the last two
equations in (3.3) vanishes are those that admit a null Killing spinor, i.e. a spinor
for which the bilinear K is null. For all such backgrounds, one can demonstrate as a
consequence of the Killing spinor equations that the non-vanishing components of the
fluxes and form bilinears are

k = k−e
− , Y r = Y r

− e
− , ωr = ωr−i e

− ∧ ei ,
F = F−i e

− ∧ ei , ∗F = ∗F−i e
− ∧ ei , (3.13)

see [107] for more details, where (e+, e−, ei) is a co-frame such that the metric g =
2e+e−+δije

iej, i, j = 1, 2, i.e. the form bilinears and the flux F are null forms. Using this,
one can easily verify that the right-hand-side of the last two equations in (3.3) vanishes.
Therefore particles systems described by (3.6) propagating on backgrounds with a null
Killing spinor and couplings the spacetime metric g and q = ∗F admit symmetries (3.9)
generated by the associated form bilinears. Such solutions include for example pp-wave
type of backgrounds.

One can also consider the symmetries generated by the TCFH (3.5). The investigation
for this is similar to the one we have presented above for the TCFH (3.3). The only
difference is that in this case Ir = χr and q = F . Thus again the spinning particles
described by the action (3.6) with couplings the spacetime metric g and q = F admit
symmetries (3.9) generated by the form bilinears Y r and χr.

A similar analysis can be performed for supersymmetric backgrounds with a time-
like Killing spinor, i.e. k is a time-like vector. However in this case one can show that
either the condition ∗FµνY

rν = 0 which arises from the comparison of (3.3) with (3.10)
or FµνY

rν = 0 which arises from the comparison of (3.5) with (3.10), for all r = 1, 2, 3,
require that F = 0. This is because the 1-forms Y r are spacelike and span the three
spatial directions of the spacetime, see [107]. The only solutions with F = 0 are locally
isometric to Minkowski spacetime.

3.3 Minimal D=5, N=1 supergravity

Next let us turn to investigate the TCFH of D = 5, N = 1 minimal supergravity. The
supercovariant connection of the theory is

Dµ ≡ ∇µ −
i

4
√
3

(
Γµ

νρFνρ − 4FµνΓ
ν
)
. (3.14)

If ϵ is a Killing spinor, Dµϵ = 0 the independent (Killing spinor) form bi-linears up to a
Hodge duality operation are

f = ⟨ϵ, ϵ⟩ , k = ⟨ϵ,Γaϵ⟩ ea , ω1 =
1

2
⟨ϵ,Γabϵ⟩ ea ∧ eb ,
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ω2 + iω3 =
1

2
⟨ϵ,Γabϵ̃⟩ ea ∧ eb , (3.15)

where ea, a = 0, 1, 2, 3, 4 is a co-frame such that the metric is g = ηabe
aeb, ϵ̃ = Γ12∗ϵ in the

conventions of [107]. The spinor representation is quaternionic and D acts quaternionic-
linearly, so its kernel is a quaternionic vector space. The supersymmetric backgrounds
have been classified in [109].

The conditions imposed by the Killing spinor equation on the form bilinears have
been derived in [109]. Writing them in a TCFH form, one finds [22] that

∇µf = − 2i√
3
Fµνk

ν , ∇µkν =
1√
3
∗Fµνρk

ρ − 2i√
3
Fµνf ,

∇µω
r
νρ − 2

√
3 ∗Fλµ[νω

rλ
ρ] = −2

√
3 ∗Fλ[νρω

rλ
µ] +

2√
3
gµ[ν

∗Fρ]αβω
rαβ , (3.16)

where µ, ν, ρ = 0, 1, 2, 3, 4 are spacetime indices and r = 1, 2, 3. In what follows, it is also
useful to state the TCFH for the form bilinears

λ1 =
1

3!
⟨ϵ,Γabcϵ⟩ ea ∧ · · · ∧ ec , λ2 + iλ3 =

1

3!
⟨ϵ,Γabcϵ̃⟩ ea ∧ · · · ∧ ec , (3.17)

which are Hodge duals to ωr. This reads

∇µλ
r
ν1ν2ν3

− 3
√
3 ∗Fαµ[ν1λ

rα
ν2ν3] = −4

√
3 ∗Fα[µν1λ

rα
ν2ν3] + 2

√
3gµ[ν1

∗Fν2|αβ|λ
rαβ

ν3] .(3.18)

To find whether the above TCFHs are associated with symmetries of a particle system
propagating on the spacetime consider the action

S = −1

2

∫
dtdθ

(
i gµνDX

µ∂tX
ν +

1

6
cµνρDX

µDXνDXρ
)
, (3.19)

where the superfields X are as in (3.6) and c is a spacetime 3-form which depends on X.
Actions with such couplings have been considered before in [61]. This action is manifestly
invariant under one supersymmetry.

Next consider the fermionic symmetry

δXµ = αIµνDX
ν , (3.20)

where the infinitesimal parameter α satisfies the reality condition α∗ = α. Invariance of
the action under this fermionic symmetry implies [62] that

∇̂µIνρ = ∇̂[µIνρ] , Iµν = I[µν] ,
diIc− 3iIdc = 0 , (3.21)

where

∇̂µX
ν = ∇µX

ν +
1

2
cνµρX

ρ , (3.22)

is a connection with skew-symmetric torsion c and iI denotes the inner derivation4 with
respect to I. The associated conserved charge, Q, is

Q = IµνDX
µ∂tX

ν +
i

9
(dI)µνρDX

µDXνDXρ +
i

6
IλµcλνρDX

µDXνDXρ , (3.23)

4The inner derivation of a n-form χ with respect to the vector (k − 1)-form L is iLχ =
1

(k−1)!(n−1)!L
ν
µ1...µk−1

χνµk...µn+k−2
dxµ1 ∧ · · · ∧ dxµk+n−2 .
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where DQ = 0 subject to the equations of motion and the conditions in (3.21).
One can also consider the invariance of the action (3.19) under the infinitesimal

(bosonic) transformations

δXµ = aLµνρDX
νDXρ . (3.24)

These transformations leave the action invariant provided [30] that

Lµνρ = L[µνρ] , ∇̂µLν1ν2ν3 = ∇̂[µLν1ν2ν3] , diLc+ 4iLdc = 0 . (3.25)

We shall explore these in relation with the TCFH in (3.18). The conserved charge is

Q = Lµ1µ2µ3DX
µ1DXµ2∂tX

µ3 − i

16
(dL)µ1...µ4DX

µ1 . . . DXµ4

− i

8
cλµ1µ2Lλµ3µ4DX

µ1DXµ2DXµ3DXµ4 . (3.26)

To identify the symmetries of a particle system with action (3.19) propagating in the
supersymmetric D = 5, N = 1 supergravity background, one has to match the conditions
of the TCFH (3.16) with those of the invariance (3.21) of the particle system (3.19). For
this let us consider three independent transformations (3.20) generated by the tensors Ir,
r = 1, 2, 3 and identify Ir with the 2-form bilinears ωr of TCFH, i.e. Ir = ωr. Comparing
the TCFH connection on ωr with that on Ir in (3.21), one concludes that the coupling c
of the particle system should be chosen as

c = 2
√
3 ∗F . (3.27)

Then consistency of (3.16) with (3.21) after this identification requires that

∗Fραβω
rαβ = 0 , diωr

∗F − 3iωrd∗F = 0 . (3.28)

These two conditions impose strong restrictions on the possible backgrounds for which
the particle system (3.19) admits (3.20) as a symmetry.

Before we turn to investigate (3.28) for various backgrounds, observe that k is a Killing
vector that leaves F invariant. As a result δXµ = akµ is a symmetry of (3.19).

To find the backgrounds that satisfy (3.28), let us begin with the supersymmetric
backgrounds of D = 5, N = 1 supergravity that admit a time-like Killing spinor, i.e.
a Killing spinor such that vector bilinear k is time-like [109]. For such backgrounds,
without loss of generality the Killing spinor can be chosen as ϵ = 1V 5 in the conventions
of [107], where V is a spacetime function and the metric and 2-form flux are given as

ds2 = −V 4(dt+ β)2 + V −2d̊s2 ,

F =

√
3

2
de0 − 1

3
(dβ)asd , (3.29)

with k = ∂t and e0 = V 2(dt + β), where (dβ)asd is the anti-self dual component of dβ
and d̊s2 is a 4-dimensional hyper-Kähler metric. In our conventions ωr are self-dual and
in addition dωr = 0, ikω

r = 0 and

ωrρµω
sρ
ν = δrs(V 4gµνkµkν) + ϵrsqV

2ωqµν . (3.30)

5The Killing spinor can be expanded in the space of forms as ϵ = a1 + aiei +
1
2a
ijei ∧ ej , where ei

denotes an orthonormal coframe and a, ai, aij are complex valued functions. Then, one can prove that
the representative of the gauge group of the theory on the space of spinors can be chosen as ϵ = 1V .
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Also one finds that Lkωr = 0.
The first condition in (3.28) implies that

V = const , (dβ)ijω
rij = 0 . (3.31)

As V is constant set for convenience V = 1. Furthermore, the equations of motion imply
that (dβ)asd = 0. As dωr = 0, set

dβ = urω
r , (3.32)

where u is a constant vector. Without loss of generality pick (ur) = (1, 0, 0). Implement-
ing all the restrictions mentioned above, the resulting solution is expressed as

ds2 = −(dt+ β)2 + d̊s2 , F =

√
3

2
ω1 . (3.33)

The solution can be viewed locally as a circle fibration over a 4-dimensional hyper-Kähler
manifold whose fibre U(1) curvature is given by ω1. It turns out that the last condition
in (3.28) is also satisfied for the transformations (3.20) generated by ω2 and ω3. Thus the
action (3.19) with couplings given in (3.33) is invariant under the transformations (3.20)
generated by ω2 and ω3.

Note that this is unlike what has been encountered before in the context of super-
symmetric sigma models where two supersymmetries of the type (3.20) generated by
I2 and I3, respectively, always imply the existence of a third supersymmetry generated
by I2I3. However to derive this, there have been some assumptions. In particular, it
had been taken that I2 and I3 are invertible and the sigma model manifold is (almost)
hyper-complex. However here ω2 and ω3 are not invertible as spacetime tensors and ω1

is singled out as the curvature of the U(1) bundle over the hyper-Kähler manifold.
It remains to solve (3.28) for D = 5, N = 1 supergravity backgrounds that admit a

null Killing spinor. In such a case the Killing vector bilinear k = ∂u is null and one can
show that there is a co-frame

e+ = du+ V dv + nIdx
I , e− = h−1dv , ei = hδiIdx

I , i = 1, 2, 3 , (3.34)

where (u, v, xI), I = 1, 2, 3 are the spacetime coordinates and V, h, nI depend only on xI

and v. Moreover one has that

ωr = e− ∧ er , (3.35)

and

ds2 = 2e−e+ + δije
iej ,

F = − 1

4
√
3
ϵ̊I
JKh−2(dn)JKdv ∧ dxI −

√
3

4
ϵ̊IJ

K∂Khdx
I ∧ dxJ , (3.36)

where ϵ̊ is the Levi-Civita tensor of the flat metric.
The first condition in (3.28) for all ωr implies that h must depend only on v, h = h(v).

It turns out that this condition is also sufficient for the second condition in (3.28) to be
satisfied. There are many solutions with h = h(v). For example one can take n = 0,
h = 1 in which case the field equations imply that V is a harmonic function on R3 with
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delta function sources and the solution a multi pp-wave. Another solution is to take
h = 1, n = n(xI). Then the field equations imply, see e.g. [107], that

∂IdnIJ = 0 , ∂I∂JV =
1

6
dnIJdnIJ , (3.37)

i.e. dn satisfies the Maxwell equation and V the Poisson equation on R3. For a solution
set nI = λIJx

J , λ constant 2-form and V = (1/3)δIJλIKλJLx
KxL + V0, where V0 is a

harmonic function on R3 with delta-function sources.
The commutators of two (3.20) transformations can easily be computed and involve

the Nijenhuis tensor of the I’s that generate the transformations. In the examples ex-
plored above, these do not satisfy the standard supersymmetry algebra in one dimension.
This can be easily seen as ωr does not satisfy the algebra of imaginary unit quaternions,
see (3.30). Nevertheless the commutator is a symmetry of the action (3.19).

Next, let us consider whether the 3-form bilinears (3.17) generate symmetries for the
action (3.19). For this consider three transformations as in (3.24) generated by the tensors
Lr and identify Lr = λr. Then consistency of (3.18) with (3.25) requires that

c = 2
√
3∗F , diλr

∗F + 4iλrd
∗F = 0 , Fγµω

rγ
ν − Fγνω

rγ
µ = 0 . (3.38)

The third condition above arises from the requirement that the last term in the TCFH
(3.18) must vanish.

There are solutions to the conditions (3.38) for supersymmetric backgrounds with
both a timelike and null Killing spinors. In the former case, the last condition in (3.38)
together with the field equations imply that V = 1 and (dβ)ads = 0. Without loss of
generality one again can choose dβ = ω1. The spinning particles described by the action
(3.19) on such such backgrounds are invariant under the transformation generated by
λ1 but they are not invariant under the transformations generated by λ2 and λ3. For
backgrounds with a null Killing spinor, one again finds as a consequence of the last
equation in (3.38) that h = h(v). Then the analysis proceeds as for the symmetries
generated by ωr giving the same backgrounds as solutions.

A dynamical system with a 2n-dimensional phase space is Liouville integrable or
equivalently completely integrable provided it admits n independent conserved charges,
including the Hamiltonian, which are in involution, i.e. all n conserved charges Poisson
commute. This definition can be extended to the spinning particle systems described by
the actions (3.6) and (3.19). The phase space of these systems is a supermanifold with
dimension (2D|κ), where D is the spacetime dimension and κ is the number of worldline
fermions. A generalisation of the Liouville’s definition is to declare that such spinning
particle systems are completely integrable provided that they admit (D|[κ+1

2
]) indepen-

dent conserved charges in involution including the Hamiltonian. This is a rather strong
concept of complete integrability as there is no dynamics in the worldvolume fermion
directions because the Lagrangians of spinning particle systems are at most linear in the
worldvolume fermion velocities. Alternatively one can declare that the spinning particle
systems described by the actions (3.6) and (3.19) are completely integrable provided that
they admit D independent (even) conserved charges in involution including the Hamil-
tonian, where the Poisson bracket used is that of the phase space supermanifold of these
systems. This concept of integrability is weaker than that of the direct generalisation of
the Liouville’s definition. One can easily construct first order systems coupled to second
order ones where the Hamilton-Jacobi equation can be separated under the weaker defi-
nition of integrability. The complete integrability of the spinning particle systems, under

48



3.3. MINIMAL D=5, N=1 SUPERGRAVITY

either of the two definitions, implies that the underlying bosonic system which can be
obtained by setting all worldline fermions to zero must also be completely integrable. We
shall use this below to determine whether the TCFHs imply the complete integrability
of the spinning particle systems associated with supergravity backgrounds.

The 2-form bilinears of bothD = 4 andD = 5 supergravities that generate symmetries
in the spinning particle actions we have investigated are not principal. This means that
they do not have 2 independent eigenvalues. The existence of a principal CCKY form on
a background implies the separability of the geodesic equations and some of the classical
field equations, see e.g. [12, 11]. Therefore one should not expect that the backgrounds
we have investigated exhibit similar separability properties unless they admit additional
symmetries, e.g. additional rotation or axial symmetries. To give an explicit example
consider the solution of D = 5 supergravity which is locally a circle bundle over a 4-
dimensional hyper-Kähler manifold. We have found that a particle system in such a
background admits additional fermionic symmetries. However if one chooses as a hyper-
Kähler manifold one without additional isometries, e.gK3, one should not expect that the
geodesic equations of the 5-dimensional solution to be separable. In turn the associated
spinning particle system described by the action (3.19) is not completely integrable.

The separability properties of D = 5 N = 1 supergravity backgrounds have been
investigated before in [43, 44, 46]. These authors explored the properties of the general-
ized CKY equation which is the CKY equation with respect to a connection with skew-
symmetric torsion, like ∇̂ in (3.22). In particular, they considered generalized closed CKY
2-forms, i.e. 2-forms which are closed with respect to d̂ the exterior covariant derivative
associated to ∇̂. The 2-form bilinears ωr we have considered here do not satisfy the same
conditions as the generalized closed CKY forms. In particular, ωr satisfy the generalized
CKY equation as a consequence of (3.16) with skew-symmetric torsion c given in (3.27).
However for general supersymmetric solutions ωr do not satisfy the closure (or indeed the
co-closure) condition with respect to ∇̂, i.e. d̂ωr ̸= 0. Of course as a consequence of the
TCFH in (3.16) ωr are closed, dωr = 0, in the standard sense. Therefore the gravitational
backgrounds investigated in [43, 44] and in this chapter are different.
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Chapter 4

TCFHs, hidden symmetries and
M-theory backgrounds

4.1 Introduction

One purpose of this chapter is to present the full TCFH of 11-dimensional supergravity.
We shall find that the reduced holonomy of the minimal1 TCFH connection is included
in SO(10, 1) × GL(517) × GL(495) while the reduced holonomy of the maximal TCFH
connection is included in GL(528)×GL(496). The latter holonomy is the same as that of
the maximal connection of IIA and IIB TCFH [24]. Then we shall explore the question on
whether the TCFH conditions can be identified with the invariance conditions of a probe
action under transformations generated by the form bilinears. As the supersymmetric
backgrounds of 11-dimensional supergravity have not been classified, we shall focus our
investigation on the M-brane solutions2 which include the M2- and M5-branes as well as
the pp-wave and KK-monopole.

Before we proceed with the investigation of the TCFH for M-branes, we shall give
the KS tensors and KY forms associated with the complete integrability of the geodesic
flow of spherically symmetric M-brane solutions, i.e. those that depend on a harmonic
function with one centre. The geodesic equations of these backgrounds are separable in
angular variables. Here we shall present all independent conserved charges which are in
involution. Moreover, we shall demonstrate that a relativistic particle probe propagating
on spherically symmetric M-branes admits an infinite number of hidden symmetries gen-
erated by KS tensors. In addition, we shall find that the spinning particle probe action
admits 28, 27 and 24 symmetries generated by KY forms on the pp-wave, M2-brane and
M5-brane backgrounds, respectively. Spinning particle probes exhibit enhanced worldline
supersymmetry propagating on the KK-monopole.

After this, we shall return to investigate under which conditions the form bilinears
of M-brane backgrounds, which may now depend of a general harmonic function and so
they are not necessarily spherically symmetric, generate symmetries for spinning particle
type of probes. For this, we match the conditions required for a transformation generated
by the form bilinears to leave a spinning particle probe action invariant with the TCFH
conditions on the form bilinears. We shall find that all form bilinears of pp-wave and
KK-monopole backgrounds generate symmetries for the spinning particle probes. This is
because as a consequence of the TCFH and the vanishing of the 4-form field strength for

1See [22] for the definition of these connections.
2These have been instrumental in the understanding of string dualities [110, 111].
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these solutions, the form bilinears are covariantly constant with respect to the Levi-Civita
connection. Furthermore, we demonstrate that there are Killing spinors such that the
1-form, 2-form and 3-form bilinears of the M2-brane are KY forms and so generate sym-
metries for spinning particle probes propagating on this background. A similar analysis
for the M5-brane reveals that only the 1-form bilinear generates symmetries for spinning
particle probes. To demonstrate these results, we have computed all the form bilinears
of M-brane backgrounds using spinorial geometry [112].

This chapter is organised as follows. In section 2, we present the TCFH of 11-
dimensional supergravity and give the reduced holonomy of TCFH connections. In section
3, we give the KS and KY tensors of spherically symmetric M-brane backgrounds and
prove the complete integrability of their geodesic flows. In section 4, we identify the form
bilinears of M-branes that generate symmetries for probe actions, and in section 5 we give
our conclusions. In appendix A, we give the form bilinears of the M5-brane. In appendix
B, we explore the symmetries of spinning particle probes with 4-form couplings.

4.2 The TCFH of D=11 supergravity

The supercovariant connection of 11−dimensional supergravity [69] is

Dµ = ∇µ +
1

288
(Γµ

ν1ν2ν3ν4Fν1ν2ν3ν4 − 8Fµν1ν2ν3Γ
ν1ν2ν3) , (4.1)

where ∇ is the spin connection of the spacetime metric and F is the 4-form field strength
of the theory. The reduced holonomy of supercovariant connection on generic backgrounds
is included in SL(32,R) [65, 66].

Supersymmetric backgrounds with N -dimensional space of Killing spinors, ϵr, r =
1, . . . , N , are those that admit N linearly independent solutions to the KSE, Dµϵ

r = 0,
where ϵ is a Majorana spin(10, 1) spinor3. Given N Killing spinors, one can construct
the form bilinears

f rs = ⟨ϵr, ϵs⟩ , krsµ = ⟨ϵr,Γµϵs⟩ , ωrsµν = ⟨ϵr,Γµνϵs⟩ , φrsµ1µ2µ3 = ⟨ϵr,Γµ1µ2µ3ϵs⟩ ,
θrsµ1µ2µ3µ4 = ⟨ϵr,Γµ1µ2µ3µ4ϵs⟩ , τ rsµ1µ2µ3µ4µ5 = ⟨ϵr,Γµ1µ2µ3µ4µ5ϵs⟩ . (4.2)

Note that the form bilinears k, ω and τ are symmetric in the exchange of ϵr and ϵs while
the rest are skew-symmetric. There is no classification of supersymmetric solutions of
11-dimensional supergravity. However, there are many partial results. For example, the
maximally supersymmetric solutions have been classified in [87] and the KSE has been
solved for one Killing spinor in [88, 113, 112], see review [107] for the current state of the
art.

The TCFH of 11−dimensional supergravity for the form bilinears which are symmetric
in the exchange of the two Killing spinors has been given in [22]. Here we shall present
the TCFH for all form bilinears. The TCFH of 11−dimensional supergravity expressed
in terms of the minimal connection DF

µ reads

DF
µ kν

..= ∇µkν =
1

6
Fµναβω

αβ − 1

6!
∗Fµνρ1ρ2ρ3ρ4ρ5τ

ρ1ρ2ρ3ρ4ρ5 ,

DF
µ ων1ν2

..= ∇µων1ν2 −
1

2 · 3!
Fµρ1ρ2ρ3τ

ρ1ρ2ρ3
ν1ν2 = −1

3
Fµν1ν2ρk

ρ

3Here we follow standard terminology. We can be more precise and call these pinors as we need to
know how they act in the whole Clifford algebra.
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− 1

2 · 3!
τ[µν1

ρ1ρ2ρ3Fν2]ρ1ρ2ρ3 +
1

3 · 4!
gµ[ν1τν2]

ρ1ρ2ρ3ρ4Fρ1ρ2ρ3ρ4 ,

DF
µ τν1ν2ν3ν4ν5

..= ∇µτν1ν2ν3ν4ν5 + 5Fµ[ν1ν2ν3ων4ν5] −
5

6
∗Fµ[ν1ν2ν3|ρ1ρ2ρ3|τν4ν5]

ρ1ρ2ρ3 =

−1

6
∗Fµν1ν2ν3ν4ν5ρk

ρ +
5

2
F[µν1ν2ν3ων4ν5] −

5

6
τ[µν1

ρ1ρ2ρ3∗Fν2ν3ν4ν5]ρ1ρ2ρ3

−10

3
gµ[ν1ω

ρ
ν2Fν3ν4ν5]ρ −

5

18
gµ[ν1τν2

ρ1ρ2ρ3ρ4∗Fν3ν4ν5]ρ1ρ2ρ3ρ4 ,

DF
µ f

..= ∇µf =
1

18
Fµν1ν2ν3φ

ν1ν2ν3 ,

DF
µ φν1ν2ν3

..= ∇µφν1ν2ν3 −
3

4
Fµ[ν1|ρ1ρ2|θ

ρ1ρ2
ν2ν3] =

1

6
gµ[ν1Fν2|ρ1ρ2ρ3|θ

ρ1ρ2ρ3
ν3]

− 1

36
∗Fµν1ν2ν3ρ1ρ2ρ3φ

ρ1ρ2ρ3 − 1

2
F[µν1|ρ1ρ2|θ

ρ1ρ2
ν2ν3] −

1

3
Fµν1ν2ν3f ,

DF
µ θν1ν2ν3ν4

..= ∇µθν1ν2ν3ν4 −
1

3
∗Fµ[ν1ν2ν3|ρ1ρ2ρ3|θ

ρ1ρ2ρ3
ν4] + 3Fµ[ν1ν2|ρ|φ

ρ
ν3ν4] =

1

18
gµ[ν1

∗Fν2ν3ν4]ρ1ρ2ρ3ρ4θ
ρ1ρ2ρ3ρ4 − 5

18
∗F[µν1ν2ν3|ρ1ρ2ρ3|θ

ρ1ρ2ρ3
ν4]

−gµ[ν1Fν2ν3|ρ1ρ2|φρ1ρ2ν4] +
5

3
F[µν1ν2|ρ|φ

ρ
ν3ν4] , (4.3)

where for simplicity we have suppressed the indices r and s on the form bilinears with
label the independent Killing spinors. In our conventions ϵ0123456789♮ = −1, ∗Fµ1···µ7 =
1
4!
ϵµ1···µ7

ν1···ν4Fν1···ν4 and Γ♮ ..= Γ0...9, where ♮ denotes the 11th direction. Clearly, the
equations above are of the form stated in (1.1), where Ω is the multiform spanned by
the form bilinears (4.2), Q can be read from the terms in the right-hand side of (4.3)
that explicitly contain the spacetime metric g and P is spanned by the remaining terms
on the right-hand side of (4.3). Clearly (4.3) provides a geometric interpretation of the
conditions induced by the KSE on the form bilinears as it relates them to a generalisation
of the CKY equations.

Viewing DF
µ as degree non-preserving connection on k-forms, k = 0, 1, 2, 3, 4, 5, the

reduced holonomy of DF
µ factorises as the connection preserves the subspaces of k-degree

forms for k = 1, 2, 5 and for k = 0, 3, 4, i.e. it preserves the subspaces of the form bilinears
which are symmetric and skew-symmetric under the exchange of the two Killing spinors.
This is also the case for the maximal connection defined in [22] which we do not consider
here in detail. In addition, DF

µ preserves the subspace of 1-forms, and the subspace of
2- and 5-forms, and acts trivially on 0-forms. As a result the reduced holonomy of DF

µ

is included in SO(10, 1) × GL(517) × GL(495) group. Note that the reduced holonomy
of the maximal connection is included in GL(528)×GL(496) as it does not preserve the
subspace of 1-forms but instead, it mixes them with the subspace of 2- and 5-forms and
it acts non-trivially on 0-forms. The reduced holonomy of the maximal connection is the
same as that of the maximal TCFH connections of type IIA and type IIB supergravities
[24]. Of course, for special backgrounds, the holonomy of DF reduces further.

4.3 Symmetries of probes on M-brane backgrounds

4.3.1 Symmetries and integrability

In the examples that follow below, the complete integrability of the geodesic flow of the
spacetimes considered is due to the large number of isometries that these spacetimes
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admit4. As the Lie algebra of these isometries is not abelian, the associated conserved
charges are not in involution. Nevertheless, it is possible to use these charges to construct
new ones associated with KS tensors which are in involution, see the example below.

4.3.2 Complete integrability of black hole geodesic flow

Before we proceed to investigate the symmetries of probes on M-theory backgrounds, let
us present some examples. The standard example is the integrability of the geodesic flow
of the Kerr black hole. However more suitable for the results that follow are the examples
of Schwarzschild and Reissner-Nordström black holes in four and higher dimensions. The
metric of both these solutions in four dimensions can be written as

g = −A(r)dt2 + A−1(r)dr2 + r2(dθ2 + sin2 θdϕ2) . (4.4)

The associated geodesic equations of the metric above can be explicitly separated in the
stated coordinates. However, it is instructive to provide a symmetry argument for the
complete integrability of the geodesic equations.

The isometry group of the above backgrounds is R× SO(3). There are two commut-
ing isometries given by k0 = ∂t and k1 = ∂ϕ which give rise to the conserved charges
K0 = pt and K1 = pϕ. These together with the Hamiltonian H = 1

2
gµνpµpν give three

conserved charges in involution. Note that [Kr, H]NS = Lkrgµνpµpν = 0, r = 0, 1, as kr
are isometries. It remains to find a fourth conserved charge in involution for the complete
integrability of the geodesic system. For this consider the Killing vector fields

k1 = ∂ϕ , k2 = − sinϕ cot θ∂ϕ + cosϕ∂θ , k3 = cosϕ cot θ∂ϕ + sinϕ∂θ , (4.5)

which generate the SO(3) isometry group and notice that [ka, kb] = −ϵabckc. Then another
conserved charge can be constructed utilising the (quadratic) Casimir operator of the Lie
algebra of SO(3) which can be used to construct a symmetric tensor that commutes with
all the isometries of the background. As the quadratic Casimir is proportional to the
identity matrix in the basis chosen for the Lie algebra, the associated symmetric tensor
is

d = δabka ⊗ kb =
1

sin2 θ
(∂ϕ)

2 + (∂θ)
2 . (4.6)

This is a KS tensor because ka are Killing vectors. Thus

Q(d) =
1

sin2 θ
p2ϕ + p2θ , (4.7)

is a conserved charge of the geodesic flow of the metric (4.4). It turns out that Kr, H
and Q(d) are independent and in involution implying that the geodesic equations are
completely integrable for any function A = A(r) in (4.4).

The metric (4.4) also admits a CCKY 2-form [11]. This is given by

β = rdt ∧ dr , (4.8)

which can be verified after a computation. The dual

α = ∗β = r3 sin θdθ ∧ dϕ , (4.9)

4See 2.5 for a review of the main concepts used in this chapter.
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is a KY 2-form. As a result, it generates a symmetry for the spinning particle action
(2.55) given by the infinitesimal variation in (2.56). There are four additional KY 1-
forms constructed from the Killing vector fields k0, k1, k2, k3 using the metric. All of
which generate symmetries for the action (2.55). One can also square the KY tensor
(4.9) to construct a KS tensor. It turns out that this is not independent from (4.6).

The analysis we have done can be extended to black holes in higher than four dimen-
sions. Indeed consider the metric

g = −A(r)dt2 + A−1(r)dr2 + r2g(Sn) , (4.10)

where g(Sn) is the round metric on Sn with n ≥ 2. Again the geodesic equation can
be separated in angular coordinates and the geodesic flow is completely integrable. The
above metric admits a R× SO(n+ 1) group of isometries. Viewing Sn embedded as the
hypersurface,

∑
i(x

i)2 = 1, in Rn+1, the Killing vectors of the spacetime metric g can be
written as

k0 = ∂t , kij = xi∂j − xj∂i , i < j , (4.11)

where i, j = 1, . . . , n+1 and xi = xi. Note that kij are tangent to S
n as (d(x2−1))(kij) =

2xkdx
k(kij) = 0. The associated conserved charges are Q0 = pt and Qij = xipj − xjpi,

where pi is the momentum on Sn and so xipi = 0. These conserved charges are not in
involution. However

Q0 , Dm =
1

4

∑
i,j≥n+2−m

(Qij)
2 , m = 2, . . . , n+ 1 , (4.12)

are independent conserved charges of the geodesic flow and in involution which together
with the Hamiltonian, H, of the geodesic motion imply the complete integrability of the
geodesic flow of the metric (4.10).

To explain the choice of Dm charges in (4.12), note that Dn+1 is the Hamiltonian of
the geodesic flow on Sn and it is constructed using the quadratic Casimir operator of
so(n+ 1). The so(n+ 1) algebra admits a decomposition

so(2) ⊂ so(3) ⊂ · · · ⊂ so(n) ⊂ so(n+ 1) . (4.13)

The Dm conserved charge is constructed using the quadratic Casimir operator of the
so(m) subalgebra of so(n+1). At each stage as the quadratic Casimir operator of so(m)
is invariant under so(m), it is also invariant under the so(m − 1) subalgebra of so(m).
Therefore the quadratic Casimir operator of so(m− 1) commutes with that of so(m). As
a consequence, Dm−1 is in involution with Dm. This method of constructing observables
in involution has been generalised and used in [114] to investigate the integrability of
geodesic flows on homogeneous manifolds.

Moreover, a direct computation reveals that β in (4.8) is a CCKY form for the metric
(4.10) and therefore its dual α is a KY n-form. It turns out that β in (4.8) is a CCKY
with respect to a metric as in (4.10) with g(Sn) now replaced with the metric, g(N), of
any n-dimensional manifold N provided it is independent from the coordinates r and t.

4.3.3 Hidden symmetries and spherically symmetric M-branes

Next, let us turn to investigate the symmetries of relativistic and spinning particle probes
described by the actions (2.51) and (2.55), respectively, propagating on M-branes. The
focus will be on those KS and KY tensors which give rise to conserved charges related to
the integrability of the geodesic flow on some of these backgrounds.
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M-theory pp-waves

The M-theory pp-wave solution is

g = 2du(dv +
1

2
h(y, v)du) + δijdy

idyj , (4.14)

with F = 0, where (u, v, y) are the coordinates of 11-dimensional spacetime and h is a
Harmonic function on R9, ∂2yh = 0. As the ∂2yh = 0 condition appears in other M-brane
backgrounds below, the solutions of this equation that we shall be considering on Rn,
n > 2, are

h = q0 +
ℓ∑

m=1

qm
|y − ym|n−2

, q0 = 0, 1 , (4.15)

where qm are constants, | · | is the Euclidean norm on Rn and ym are the centres or
positions of the harmonic function h.

Here we shall investigate the symmetries of probes propagating on a spherically sym-
metric pp-wave, i.e. a pp-wave that depends on a harmonic function with one centre.
After a coordinate transformation to put the centre at 0, h = q

|y|7 , where q is constant

denoting the momentum of the pp-wave. This solution has an R2 × SO(9) symmetry
generated by the Killing vector fields k+ = ∂u, k− = ∂v and

kij = yi∂j − yj∂i , i < j , (4.16)

where yi = yi. The latter vector fields are generated by the action of SO(9) on the y
coordinates.

Clearly all the above vector fields generate symmetries for the probe action (2.51)
with conserved charges

Q± = Q(k±) = p± , Qij = Q(kij) = yipj − yjpi . (4.17)

In addition, one can demonstrate with a direct calculation that

di1···k = yj1 . . . yjqaj1...jq ,i1...ik , (4.18)

are KS tensors of the pp-wave spacetime provided that the constant tensor a satisfies the
condition5

a(j1...jq ,i1)...ik = aj1...(jq ,i1...ik) = 0 . (4.19)

These in turn generate transformations as those in (2.53) which leave the action (2.51)
invariant. The associated conserved charges are given in (2.54) or equivalently in (2.62).
It is evident from the above analysis that a probe described by the action (2.51) and prop-
agating on this pp-wave spacetime, and so the geodesic flow, admits infinite number of
hidden symmetries. Note that KS and KY tensors on 4-dimensional pp-wave spacetimes
have been investigated before, see e.g. [115, 116].

Although the probe (2.51) admits an infinite number of symmetries propagating on
a pp-wave background, it does not immediately imply that the dynamics is completely

5For q = k, the (0, 2q) tensors that lie in the irreducible representation of GL(9) associated with the
2 rows and q columns Young tableau solve the condition on a. A similar statement is true for the KS
tensors of the M2- and M5-branes below.
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integrable. Clearly the conserved charges Qij = Q(kij) and Q± = Q(k±) generated by
the vector fields kij and k± are not in involution-the Poisson bracket algebra of Qij is
so(9). However, Qij can be used to construct conserved charges which are in involution.
In particular, one can show that the 10 conserved charges

Q± , Dm =
1

4

∑
i,j≥10−m

(Qij)
2 , m = 2, . . . , 9 , (4.20)

are in involution. These together with the Hamiltonian of the geodesic system H =
1
2
gµνpµpν give 11 independent conserved charges in involution leading to the complete

integrability of the geodesic flow. As in the black hole analysis, D9 is the Hamiltonian
of the geodesic flow on S8 which is constructed from the quadratic Casimir operator of
so(9).

Turning to the investigation of the symmetries of the probe (2.55) propagating on a
pp-wave, one has to determine the KY tensors of the background. One can verify after
some calculation that

β(φ) = yidy
i ∧ φ ∧ du ∧ dv , (4.21)

are CCKY forms for any constant k-form φ on R9, where yi = yi. As a result α(φ) = ∗β(φ)
are KY forms. These generate the transformations (2.56) which leave the spinning par-
ticle action (2.55) invariant with associated conserved charges given in (2.58). Therefore
the probe (2.55) propagating on a pp-wave background admits 28 linearly independent
conserved charges6 generated by the KY forms α(φ).

M2-branes

The M2-brane solution [72] can be expressed as

g = h−
2
3ηabdσ

adσb + h
1
3 δijdy

idyj , F = ±dσ0 ∧ dσ1 ∧ dσ2 ∧ dh−1 , (4.22)

where σa, a = 0, 1, 2, are the worldvolume coordinates of the brane, yi, i = 1, . . . , 8, are
the transverse coordinates and h is a harmonic function ∂2yh = 0 on the transverse space
R8. An explicit expression for h is as in (4.15) with q0 = 1 and n = 8.

For the spherically symmetric M2-brane solution that we shall consider in this section
h = 1 + q

|y|6 . This solution is invariant under the action of the SO(1, 2) ⋉ R3 × SO(8)
group, where the Poincaré group acts on the worldvolume coordinates of the M2-brane
while SO(8) acts on the transverse coordinates with standard rotations. The Killing
vector fields are ka = ∂a, kab = σa∂b − σb∂a and kij = yi∂j − yj∂i, where σa = ηabσ

b

and yi = yi. It is clear that the probe (2.51) propagating on this background admits
symmetries generated by these vector fields and the associated conserved charges are

Qa = Q(ka) = pa , Qab = σapb − σbpa , Qij = Q(kij) = yipj − yjpi . (4.23)

As for the pp-wave, the probe (2.51) admits additional symmetries generated by KS
tensors. To find these tensors we use an ansatz which preserves the worldvolume Poincaré
symmetry of the solution. Then after some computation, one can verify that

da1...a2mi1...ik = h
1
3
(k−2m)yj1 . . . yjqaj1...jq ,i1...ikη(a1a2 . . . ηa2m−1a2m) , (4.24)

6The maximal number of independent KY k-forms [17] on a n-dimensional spacetime is (n+1)!/((k+
1)!(n− k)!).
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are KS tensors provided that the constant tensors a satisfy

a(j1...jq ,i1)...ik = aj1...(jq ,i1...ik) = 0 . (4.25)

These in turn give additional conserved charges (2.54) for the relativistic particle probe
(2.51). Therefore the probe (2.51), and so the geodesic flow on this M2-brane, admits an
infinite number of hidden conserved charges.

The dynamics of the relativistic particle (2.51) propagating on this M2-brane back-
ground, and so the geodesic flow, is completely integrable. Indeed one can verify after
some calculations that the conserved charges

Qa , Dm =
1

4

∑
i,j≥9−m

(Qij)
2 , m = 2, . . . , 8 , (4.26)

are in involution. These together with the Hamiltonian of the relativistic particle (2.51)
yield 11 independent conserved charges in involution.

Next, let us turn to investigate the symmetries of the spinning particle probe (2.55)
propagating on the spherically symmetric M2-brane. Clearly the Killing vector fields
of the M2-brane generate symmetries for the probe (2.55). Additional symmetries are
generated by the KY forms of this M2-brane. To find these, we adapt an ansatz which
is invariant under the worldvolume Poincaré group of the M2-brane. Then after some
computation, one finds that

β(φ) = h
1
6
(k−4)yidy

i ∧ φ ∧ dvol(R2,1) , (4.27)

are CCKY tensors of the M2-brane for any constant k-form φ on R8, where dvol(R2,1)
is the volume form of R2,1. As a result α(φ) = ∗β(φ) are KY tensor and so spinning
particle action (2.55) is invariant the under transformation (2.56) generated by α(φ).
The associated constants of motion are given in (2.58). These KY tensors generate 27

linearly independent hidden symmetries for the action (2.55). .

M5-branes

The M5-brane solution [73] is

g = h−
1
3ηabdσ

adσb + h
2
3 δijdy

idyj , F = ± ⋆5 dh , (4.28)

where σa, a = 0, . . . , 5, are the worldvolume coordinates, yi, i = 1, . . . , 5, are the trans-
verse coordinates, the Hodge duality operation has been taken with respect to the flat
metric on the transverse space R5 and h is a harmonic function, ∂2yh = 0, on R5. h is
given in (4.15) with n = 5 and q0 = 1.

For the spherically symmetric M5-brane solution that we consider here, h has one
centre and so it can be arranged such that h = 1 + q

|y|3 . Such a solution admits a

SO(1, 5) ⋉ R6 × SO(5) isometry group. The Killing vector fields are ka = ∂a, kab =
σa∂b − σb∂a and kij = yi∂j − yj∂i, where yi = yi and σa = ηabσ

b. The transformations
generated by these vector fields leave invariant the relativistic particle action (2.51) and
the associated conserved charges are

Qa = pa , Qab = σapb − σbpa , Qij = yipj − yjpi . (4.29)
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As for M2-branes, relativistic particles propagating on the above M5-brane background
admit additional symmetries associated with KS tensors. Adapting again an ansatz which
is invariant under the worldvolume Poincaré symmetry and after some computation one
finds that

da1...a2mi1...ik = h
1
3
(2k−m)yj1 . . . yjqaj1...jq ,i1...ikη(a1a2 . . . ηa2m−1a2m) , (4.30)

are KS tensors provided that the constant tensors a satisfy

a(j1...jq ,i1)...ik = aj1...(jq ,i1...ik) = 0 . (4.31)

Clearly, these generate infinitely many hidden symmetries for the relativistic particle
action (2.51). So the geodesic flow on the spherically symmetric M5-brane has infinite
many conserved charges.

Furthermore, one can show that the dynamics of relativistic particles propagating
on this M5-brane is completely integrable. Indeed one can verify that the 10 conserved
charges

Qa , Dm =
1

4

∑
i,j≥6−m

(Qij)
2 , m ≥ 2, . . . , 5 , (4.32)

are in involution. These together with the Hamiltonian of (2.51) yield 11 independent
conserved charges in involution as required for complete integrability.

As for the M2-brane, the spinning particle action (2.55) admits, in addition to the
symmetries generated by the Killing vectors field of the M5-brane, hidden symmetries
generated by KY forms. To find these we adapt an ansatz which is invariant under the
worldvolume Poincaré group of the M5-brane. Then after some computation, one can
verify that

β(φ) = h
1
3
(k−1)yidy

i ∧ φ ∧ dvol(R5,1) , (4.33)

are CCKY forms for any constant k-form φ on R5. As a result α(φ) = ∗β(φ) are KY forms
and so generate symmetries (2.56) for the spinning particle probe (2.55) with conserved
charges (2.58). These KY forms generate 24 linearly independent hidden symmetries.

KK-monopoles

The KK-monopole solution is

g = ηabdσ
adσb + g(4) , g(4) = h−1(dρ+ ω)2 + hδijdy

idyj , (4.34)

with F = 0, where σa, a = 0, . . . , 6, are the worldvolume coordinates and g(4) is in general
the Gibbons-Hawking hyper-Kähler metric with ⋆3dh = dω. h is a harmonic action on
R3, ∂2yh = 0. An expression for h can be found in (4.15) for n = 3.

Here we shall consider the KK monopole solution with g(4) the Taub-NUT metric. In
such a case h has one centre and so one can set without loss of generality h = 1+ q

|y| . The

isometry group of the solution is SO(1, 6) ⋉ R7 × SO(2) × SO(3). As for the solutions
investigated already, the Killing vector fields generated by the Poincaré subgroup acting
on the worldvolume coordinates are ka = ∂a and kab = σa∂b − σb∂a. To give the vector
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fields generated by the SO(2) × SO(3) subgroup, write the Taub-NUT metric g(4) is
angular coordinates as

g(4) = h−1(dρ+ q cos θdϕ)2 + h
(
dr2 + r2(dθ2 + sin2 θdϕ2)

)
, (4.35)

with |y| = r. Then the Killing vector fields generated by SO(2)× SO(3) are given by

k̃0 = ∂ρ , k̃1 = ∂ϕ , k̃2 = − sinϕ cot θ∂ϕ + cosϕ∂θ + q
sinϕ

sin θ
∂ρ ,

k̃3 = cosϕ cot θ∂ϕ + sinϕ∂θ − q
cosϕ

sin θ
∂ρ . (4.36)

The SO(3) Killing vector fields are as in (4.5) with the addition of a component along ∂ρ
because ω is not invariant under (4.5) but instead it is invariant up to a gauge transfor-
mation.

As the relativistic particle action (2.51) is invariant under all these isometries, the
associated conserved charges are Qa = pa, Qab = σapb − σbpa Q̃0 = pρ and Q̃r = k̃irpi,
r = 1, 2, 3, where σa = ηabσ

b and k̃r are given in (4.36). The background admits several
KS tensors. As the solution is a product R6,1 ×N , where N is the Taub-NUT manifold,
one can consider the KS tensors of R6,1 and N separately. One can easily verify that the
symmetric tensors

da1...ak = σb1 . . . σbqcb1...bq ,a1...ak , (4.37)

are KS tensors7 provided that the constants c satisfy cb1...(bq ,a1...ak) = 0. N also admits
three KS tensors given in [118] which we shall not explicitly state them here. They
are constructed from the Kähler forms and the KY tensor of N given below. All these
isometries and KS tensors generate infinite number of symmetries for the relativistic
particle action (2.51).

The dynamics of the relativistic particle probe (2.51), or equivalently the geodesic
flow, is completely integrable on this background. Indeed the commuting isometries
of the KK-monopole are ka = ∂

∂σa , k̃0 = ∂ρ and k̃1 = ∂ϕ. These together with the
Hamiltonian of the geodesic system give ten conserved charges in involution. There is
an additional independent conserved charge in involution associated with the quadratic
Casimir of SO(3) and constructed using the Killing vector fields (4.36) as

D =
1

sin2 θ
(pϕ − q cos θpσ)

2 + p2θ + q2p2σ , (4.38)

which proves the statement. The integrability of the geodesic flow on the Taub-NUT
space has been known for some time, see [118].

The SO(1, 6)⋉R7×SO(2)×SO(3) isometries mentioned above also generate symme-
tries for the spinning particle probe (2.55) propagating on the KK-monopole background.
Such probes have additional hidden symmetries. For example, it is well known that gGH

is a hyper-Kähler metric for any (multi-centred) harmonic function h. The associated
Kähler forms are

κ(i) = (dρ+ ω) ∧ dyi − 1

2
h ϵijkdy

j ∧ dyk . (4.39)

7There is a systematic investigation of KS tensors on Minkowski spacetime as well as on some black
hole spacetimes. For example there is a 20 dimensional space of rank 2 conformal KS tensors on 4-
dimensional Minkowski spacetime, see for a summary [117]. But the approach adopted here suffices.
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These 2-forms are anti-self-dual on the transverse directions of the KK-monopole, par-
allel with respect to the Levi-Civita connection and the associated complex structures
satisfy the algebra of imaginary unit quaternions. As a result, these Kähler forms can
be thought as KY tensors and so generate symmetries (2.56) for the probe action (2.55)
with conserved charges (2.58).

The KK monopole admits additional KY tensors. These are those of R6,1 and those
of N . Observe that

α =
1

k!

(
χa1...ak + σbφb,a1...ak

)
dσa1 ∧ · · · ∧ dσak , (4.40)

are KY tensors of R6,1 for any constant tensors χ, φ with the latter to satisfy φb,a1...ak =
φ[b,a1...ak] [17]. If N is the Taub-Nut space, it is known [118], see also [119], that

α̃ = (dρ+ q cos θdϕ) ∧ dr + r(2r + q)(1 +
r

q
) sin θdθ ∧ dϕ , (4.41)

is the KY form. All these KY forms generate symmetries for the spinning probe action
(2.55). Incidentally the three KS tensors mentioned above are constructed from squaring
α̃ with κ(i).

4.4 Hidden symmetries from the TCFH

4.4.1 Hidden symmetries and M-theory pp-waves

Assuming that the pp-wave propagates in the 5th direction8 and allowing the pp-wave
metric (4.14) to depend on a (multi-centred) harmonic function as in (4.15) with q0 = 0
and n = 9, the Killing spinors of the background are constant, ϵ = ϵ0 and satisfy the
condition9 Γ05ϵ0 = ±ϵ0. To solve this condition, we shall use spinorial geometry and write
ϵ0 = η+e5∧λ, where η and λ are Majorana10 spin(9) spinors11, i.e. η, λ ∈ Λ∗(R⟨e1, . . . , e4⟩)
with the reality condition imposed by the anti-linear operation Γ6789∗. Choosing the plus
sign in the condition for ϵ0, this can be solved to yield ϵ = ϵ0 = η, i.e. Γ05ϵ0 = ϵ0 implies
that λ = 0.

Given the solution of the condition on ϵ implied by the KSE, it is straightforward to
compute all the bilinears of the background. In particular one finds that f rs = 0 for all
Killing spinors and the rest of the form bilinears (4.2) can be written as

(e0 − e5) ∧ ϕrs (4.42)

where

ϕrs =
1

k!
⟨ηr,Γi1...ikηs⟩H ei1 ∧ · · · ∧ eik , k = 0, 1, 2, 3, 4 , (4.43)

8This choice of worldvolume directions for the pp-wave, and those of the rest of M-branes below, may
seem unconventional. But they are convenient as they are aligned with the basis used for the description
of spinors in the context of spinorial geometry that we utilise to solve the conditions on the Killing
spinors.

9All gamma matrices considered from in section 4 and appendix A.4 are in a frame basis.
10Note that the reality condition on ϵ in the spinorial geometry basis is Γ6789 ∗ ϵ = ϵ which in turn

implies that η and λ are real as well.
11As before, more precisely these are pinors as we need to know how η and λ act on the odd part of

the Clifford algebra.
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⟨·, ·⟩H is the Hermitian inner product restricted on the Majorana representation of spin(9)
and i1, . . . , ik = 1, 2, 3, 4, 6, 7, 8, 9, ♮. Moreover (e0, e5, ei) is a pseudo-orthonormal frame
such that −e0 + e5 =

√
2 du, e0 + e5 =

√
2 (dv + 1

2
hdu) and ei = dyi after a relabelling of

the transverse coordinates y of the spacetime. For example krs = ⟨ηr, ηs⟩H (e0 − e5) and
so on.

It remains to specify the k-form bilinears ϕrs. It turns out that these span all the
constant forms on the transverse space of the pp-wave up and including those of degree
4. To see this decompose ϕrs = e♮ ∧ αrs + βrs, where αrs and βrs have components
only along the directions transverse to e♮. The tensor product of two Majorana spin(8)
representations, ∆16, can be decomposed as

∆16 ⊗∆16 = ⊕8
k=0Λ

k(R8) . (4.44)

Therefore the forms βrs which are up to degree 4 span all forms of the same degree on
R8 subspace transverse to e♮. On the other hand the Hodge duals of the forms αrs span
all forms of degree 5 and higher in R8. Thus the space of all bilinears of a pp-wave spans
a 28-dimensional vector space.

As for the pp-waves we have been considering the 4-form field strength F vanishes,
all the form bilinears are covariantly constant with respect to the Levi-Civita connection.
As a result, all of them generate symmetries for the spinning particle probe action (2.55).
The associated conserved charges are given in (2.58). They also generate symmetries for
string probes as well similar to those investigated in [24]. The algebra of symmetries can
be of W-type and has been described in [33, 32].

4.4.2 Hidden symmetries and the KK-monopole

Choosing the worldvolume directions of the KK-monopole along 012567♮ and allowing h
in (4.34) to be any multi-centred harmonic function as in (4.15) with n = 3, the Killing
spinors ϵ = ϵ0 of the background satisfy Γ3489ϵ0 = ±ϵ0, where ϵ0 is a constant spinor.
To solve this condition with the plus sign, we shall use spinorial geometry and write
ϵ0 = η1 + e34 ∧ λ1 + e3 ∧ η2 + e4 ∧ λ2, where η and λ are Dirac spinors of spin(6, 1), i.e
η, λ ∈ Λ∗(C⟨e1, e2, e5⟩). To begin, let us assume that ϵ0 is a complex spinor and impose
the reality condition at the end. Then Γ3489ϵ0 = ϵ0 implies that η2 = λ2 = 0 and so
ϵ0 = η + e34 ∧ λ, where η = η1 and λ = λ1. The reality condition on ϵ0, Γ6789 ∗ ϵ0 = ϵ0,
implies that λ = −Γ67η

∗. Therefore the spinors that solve the Killing spinor condition
are

ϵ0 = η − e34 ∧ Γ67η
∗ , (4.45)

where η is any Dirac spin(6, 1) spinor.
The non-vanishing Killing spinors bilinears read

f rs = 2Re⟨ηr, ηs⟩ , krs = 2Re⟨ηr,Γaηs⟩ea ,
ωrs =

1

2
Re⟨ηr,Γabηs⟩ea ∧ eb − 2Re⟨ηr, λs⟩(e3 ∧ e4 − e8 ∧ e9)

−2Im⟨ηr, ηs⟩(e3 ∧ e8 + e4 ∧ e9)− 2Im⟨ηr, λs⟩(e3 ∧ e9 − e4 ∧ e8) ,
φrs =

1

3
Re⟨ηr,Γabcηs⟩ea ∧ eb ∧ ec − 2Im⟨ηr,Γaηs⟩(e3 ∧ e8 + e4 ∧ e9) ∧ ea

−2Im⟨ηr,Γaλs⟩(e3 ∧ e9 − e4 ∧ e8) ∧ ea ,

61



4.4. HIDDEN SYMMETRIES FROM THE TCFH

θrs =
1

12
Re⟨ηr,Γabcdηs⟩ea ∧ eb ∧ ec ∧ ed − Re⟨ηr,Γabλs⟩ea ∧ eb ∧ (e3 ∧ e4 − e8 ∧ e9)

−Im⟨ηr,Γabηs⟩ea ∧ eb ∧ (e3 ∧ e8 + e4 ∧ e9)− Im⟨ηr,Γabλs⟩ea ∧ eb ∧ (e3 ∧ e9 − e4 ∧ e8)
+2Re⟨ηr, ηs⟩e3 ∧ e4 ∧ e8 ∧ e9 ,

τ rs =
1

60
Re⟨ηr,Γa1...a5ηs⟩ea1 ∧ · · · ∧ ea5 + 2Re⟨ηr,Γaηs⟩ea ∧ e3 ∧ e4 ∧ e8 ∧ e9

−1

3
Re⟨ηr,Γabcλs⟩ea ∧ eb ∧ ec ∧ (e3 ∧ e4 − e8 ∧ e9)

−1

3
Im⟨ηr,Γabcηs⟩ea ∧ eb ∧ ec ∧ (e3 ∧ e8 + e4 ∧ e9)

−1

3
Im⟨ηr,Γabcλs⟩ea ∧ eb ∧ ec ∧ (e3 ∧ e9 − e4 ∧ e8) , (4.46)

where ⟨·, ·⟩ is the Dirac inner product, a, b, c = 0, 1, 2, 5, 6, 7, ♮, ea = dxa, and ei, i =
3, 4, 8, 9, is an orthonormal frame of g(4) in (4.34), e.g.

e3 = h−
1
2 (dρ+ ω) , e4 = h

1
2dy4 , e7 = h

1
2dy7 , e8 = h

1
2dy8 , (4.47)

after a relabelling of the coordinates of the spacetime. The bilinears of the spinors η span
all real forms on the worldvolume R6,1 of the KK-monopole solution. The argument is
similar to that produced for the pp-wave.

As for the KK-monopole solution, the 4-form field strength vanishes F = 0, a con-
sequence of the TCFH is that all the form bilinears in (4.46) are covariantly constant
with respect to the Levi-Civita connection. As a result, they generate symmetries (2.56)
for the spinning particle probe (2.55). The conserved charges are given in (2.58). The
algebra of symmetries can be a W-type of algebra [33, 32].

4.4.3 Hidden symmetries and the M2-brane

Choosing the M2-brane worldvolume directions along 05♮, the Killing spinors of the so-
lution are ϵ = h−

1
6 ϵ0, where ϵ0 is a constant spinor satisfying the condition Γ05♮ϵ0 =

±ϵ0 and h is a (multi-centred) harmonic function as in (4.15) with n = 8. To solve
the condition with the plus sign use spinorial geometry to write ϵ0 = η + e5 ∧ λ,
where η, λ ∈ Λ∗(R⟨e1, e2, e3, e4⟩). Then the condition Γ05♮ϵ0 = ϵ0 implies that η, λ ∈
Λev(R⟨e1, e2, e3, e4⟩), i.e. η, λ are Majorana-Weyl spin(8) spinors, where the reality con-
dition is imposed with the anti-linear map Γ6789∗.

Using the solution of the condition on the Killing spinors and setting ϕrs = h−
1
3 ϕ̊rs

for for all bilinears ϕrs, one can easily find

f̊ rs = −⟨ηr, λs⟩H + ⟨λr, ηs⟩H ,
k̊rs = (⟨ηr, ηs⟩H + ⟨λr, λs⟩H)e0 + (−⟨ηr, ηs⟩H + ⟨λr, λs⟩H)e5 + (⟨ηr, λs⟩H + ⟨λr, ηs⟩H)e♮ ,
ω̊rs = (⟨ηr, λs⟩H + ⟨λr, ηs⟩H)e0 ∧ e5 + (⟨ηr, ηs⟩H − ⟨λr, λs⟩H)e0 ∧ e♮

+(−⟨ηr, ηs⟩H − ⟨λr, λs⟩H)e5 ∧ e♮ +
1

2
(−⟨ηr,Γijλs⟩H + ⟨λr,Γijηs⟩H)ei ∧ ej ,

φ̊rs =
1

2
(⟨ηr,Γijηs⟩H + ⟨λr,Γijλs⟩H)e0 ∧ ei ∧ ej +

1

2
(−⟨ηr,Γijηs⟩H + ⟨λr,Γijλs⟩H)e5 ∧ ei ∧ ej

+
1

2
(⟨ηr,Γijλs⟩H + ⟨λr,Γijηs⟩H)e♮ ∧ ei ∧ ej + (−⟨ηr, λs⟩H + ⟨λr, ηs⟩H)e0 ∧ e5 ∧ e♮ ,

θ̊rs =
1

2

(
(⟨ηr,Γijηs⟩H + ⟨λr,Γijλs⟩H)e0 ∧ e5 + (⟨ηr,Γijηs⟩H − ⟨λr,Γijλs⟩H)e0 ∧ e♮

−(⟨ηr,Γijηs⟩H + ⟨λr,Γijλs⟩H)e5 ∧ e♮
)
∧ ei ∧ ej
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− 1

4!
(⟨ηr,Γi1...i4λs⟩H − ⟨λr,Γi1...i4ηs⟩H)ei1 ∧ · · · ∧ ei4 ,

τ̊ rs =
1

2
(−⟨ηr,Γijλs⟩H + ⟨λr,Γijηs⟩H)e0 ∧ e5 ∧ e♮ ∧ ei ∧ ej +

1

4!

(
⟨ηr,Γi1...i4ηs⟩H(e0 − e5)

+⟨λr,Γi1...i4λs⟩H(e0 + e5) + (⟨ηr,Γi1...i4λs⟩H + ⟨λr,Γi1...i4ηs⟩H)e♮
)
∧ ei1 ∧ · · · ∧ ei4 ,(4.48)

where (ea, ei) is the pseudo-orthonormal frame with ea = h−1/3dσa, a = 0, 5, ♮, and
ei = h1/6dyi i, j, k, ℓ = 1, 2, 3, 4, 6, 7, 8, 9, after an appropriate relabelling of the coordi-
nates of the spacetime. As the product of two positive chirality Majorana-Weyl spin(8)
representations, ∆+

8 , is decomposed as

⊗2∆+
8 = Λ0(R8)⊕ Λ2(R8)⊕ Λ4+(R8) , (4.49)

it is expected that the form bilinears above span all the 0-, 2- and self-dual 4-forms along
the transverse directions of the M2-brane.

It remains to find which of the above form bilinears are KY tensors with respect to the
Levi-Civita connection so that generate symmetries for the spinning particle probe (2.55).
To begin as the 1-form bilinears k are Killing they generate symmetries for the action
(2.55) and the associated conserved charges are given in (2.58). For the bilinear ω to be
a KY form, it is required that the terms in the TCFH connection that are proportional
to F as well as those in the TCFH that contain explicitly the spacetime metric g must
vanish. After some investigation, these terms vanish provided that the components, τabcij,
of the form bilinear τ are zero, τabcij = 0. This in turn implies that ωij = 0. Setting
ωij = 0, ω = 1

2
ωabe

a ∧ eb is a KY tensor and generates a symmetry transformation (2.56)
for the action (2.55) with associated conserved charge given in (2.58). Note that ω has
components only along the worldvolume directions of the M2-brane. There are Killing
spinors such that ω ̸= 0, even though ωij = 0, as a consequence of the decomposition
(4.49). A similar investigation reveals that τ cannot be a KY form as the conditions
arising from the analysis of the TCFH imply that τ = 0.

Next φ is a KY form with respect to the Levi-Civita connection provided that the
terms proportional to F in the TCFH connection as well as those in the TCFH that
contain explicitly the spacetime metric g vanishes. This is the case provided that the
components, θabij, of θ vanish, θabij = 0. This in turn implies that φaij = 0. Therefore
φ = 1

6
φabce

a ∧ eb ∧ ec is a KY form and so generates a symmetry for the spinning particle
probe action (2.55) with conserved charge (2.58). Note again that the KY form φ has
components only along the worldvolume directions of M2-brane and that there are Killing
spinors such that φ ̸= 0 even though φaij = 0 as a consequence of (4.49). A similar
investigation concludes that θ, as τ , cannot be a KY form.

4.4.4 Hidden symmetries and the M5-brane

Choosing the worldvolume directions of the M5-brane along 012567, the Killing spinors
of the background are ϵ = h−

1
12 ϵ0, where the constant spinor ϵ0 satisfies the condition

Γ3489♮ϵ0 = ±ϵ0 and h is a multi-centred harmonic function as in (4.15) with n = 5.
To continue it is convenient to solve the condition on ϵ0 with a plus sign by taking
ϵ0 to be complex and impose the reality condition on ϵ0 at the end. Indeed for ϵ0
complex, one can use spinorial geometry to write ϵ0 = η1 + e34 ∧ λ1 + e3 ∧ η2 + e4 ∧
λ2, where η1, η2, λ1, λ2 ∈ Λ∗(C⟨e1, e2, e5⟩). Then the condition Γ3489♮ϵ0 = ϵ0 implies
that η1, η2, λ1, λ2 ∈ Λev(C⟨e1, e2, e5⟩), i.e. η1, η2, λ1, λ2 are positive chirality spinors of
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spin(5, 1). Next imposing the reality condition on ϵ0, Γ6789 ∗ ϵ0 = ϵ0, one finds that
λ1 = −Γ67(η

1)∗ and λ2 = −Γ67(η
2)∗. Hence the spinors that solve the Killing spinor

condition are

ϵ0 = η1 − e34 ∧ Γ67(η
1)∗ + e3 ∧ η2 − e4 ∧ Γ67(η

2)∗ , (4.50)

where η1, η2 are any positive chirality spin(5, 1) spinors. The form bilinears of the M5-
brane expressed in terms of the η1 and η2 spinors can be found in appendix A.4.

The 1-form bilinears krs are isometries and so generate symmetries for the spinning
particle probe action (2.55). Next for the bilinear ω to be a KY tensor, and so generate a
symmetry for the spinning particle probe (2.55), the term that contains F in the minimal
TCFH connection DF and the term proportional to the spacetime metric g in the TCFH
(4.3) must vanish. This is the case provided that the component, τijkℓa, of τ vanishes.
However this in turn implies that ω = 0 and so ω does not generate a symmetry. It turns
out θ, like ω, does not generate a symmetry for the probe (2.55) because the conditions
required by the TCFH for θ to be a KY form are too restrictive and yield θ = 0. Next
φ is a KY form as a consequence of TCFH provided that θiabc = θaijk = 0. This implies
φaij = 0 and leaves the possibility that the remaining component of φ φ = 1

3!
φabce

a∧eb∧ec
is a KY form. However after some computation12 one can verify that there are no Killing
spinors such that φ ̸= 0. A similar conclusion holds for the τ form bilinear.

4.5 Summary

We have presented the TCFH of 11-dimensional supergravity and we have demonstrated
that the form bilinears of supersymmetric backgrounds of the theory satisfy a generalisa-
tion of the CKY equation with respect to a connection that depends on the 4-form field
strength. We have also given the reduced holonomy of the minimal and maximal TCFH
connections for generic backgrounds.

As KY forms with respect to the Levi-Civita connection generate symmetries for
spinning particle actions, we investigated the question on whether the form bilinears of
11-dimensional supergravity generate symmetries for suitable particle probes propagating
on supersymmetric backgrounds. For this we focused on M-branes which include the pp-
wave, M2- and M5-brane, and KK-monopole solutions. As all the form bilinears of pp-
wave and KK-monopole solutions are covariantly constant with respect to the Levi-Civita
connection, they generate symmetries for the spinning particle action with only a metric
coupling. For the M2-brane, there are Killing spinors such that the 1-form, 2-form and
3-form bilinears are KY tensors and therefore generate symmetries for the same spinning
particle action. For the M5-brane only the 1-form bilinears generate symmetries for the
spinning particle action.

We also took the opportunity to demonstrate the complete integrability of the geodesic
flow of spherically symmetric pp-wave, M2- and M5-brane, and KK-monopole solutions.
For this we presented a large class of KS and KY tensors on all these backgrounds.
Relativistic particles on these solutions admit an infinite number of symmetries generated
by KS tensors. We have also explicitly given all independent and in involution conserved
charges of the geodesic flow on these backgrounds.

12This computation uses spinorial geometry to solve the conditions φaij = 0. Geometrically the
solutions lie in the intersection of conics. Using these solutions one can verify that φ = 0.
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Chapter 5

The TCFHs of D=11 AdS
backgrounds and hidden symmetries

5.1 Introduction

This chapter intends to give the TCFHs on the internal space of all warped AdS back-
grounds of 11-dimensional supergravity theory. This will put the conditions on the form
bilinears implied by the KSEs in a firm geometric basis. For this, we shall use the solution
of the (gravitino) KSE of the theory along the AdS subspace of a background presented
in [94]. Then we shall explore some of the properties of the TCFH connections which
include their (reduced) holonomy for generic internal spaces. In addition, we shall ex-
amine the conditions under which the form bilinears give rise to KY or CCKY forms1.
The existence of such forms will imply in turn the presence of constants of motion in
the propagation of spinning particles on the internal spaces of such backgrounds. We
shall present several backgrounds with KY forms arising from the TCFH of their internal
space. These include the maximally supersymmetric AdS solutions of the theory as well
as the near-horizon geometries of some intersecting M-brane configurations.

This chapter is organised as follows. In sections 2, 3 and 4, we present the TCFH of
warped AdS2, AdS3 and AdS4 backgrounds of 11-dimensional supergravity, respectively,
and investigate some of the properties of the TCFH connections. In section 5, we give
the TCFHs and investigate their properties of the remaining AdS backgrounds. In sec-
tion 6, we explore the hidden symmetries of probes that arise from the TCFH of some
solutions that include the maximally supersymmetric AdS backgrounds as well as some
AdS backgrounds which are the near horizon geometries of intersecting M-branes, and in
section 7 we give our conclusions.

5.2 The TCFH of warped AdS2 backgrounds

5.2.1 Fields and Killing spinors

The bosonic fields of 11-dimensional supergravity for warped AdS2 backgrounds, AdS2×w

M9, can be written as

g = 2e+e− + δije
iej , F = e+ ∧ e− ∧ Y +X , (5.1)

1The Hodge dual of a CCKY form is a KY form.
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where Y and X are a 2-form and 4-form on the internal space M9 with metric g(M9) =
δije

iej, respectively,

e+ = du , e− = dr + rh− 1

2
r2ℓ−2A−2du , ei = eiJdy

J , (5.2)

is a null pseudo-orthonormal frame on the spacetime with ei an orthonormal frame on
the internal spaceM9, h = −d logA2 and A is the warp factor which is a function onM9.
The yI are coordinates on M9 and (u, r) are the remaining coordinates on the spacetime.
It can be seen after a change of coordinates that the above metric can be rewritten in the
standard warped product form, g = A2gℓ(AdS2)+g(M

9), where gℓ(AdS2) is the standard
metric on AdS2 of radius ℓ.

The KSE of 11-dimensional supergravity can be solved along the AdS2 subspace of
AdS2 ×w M

9 [94] and the Killing spinors ϵ can be expressed as ϵ = ϵ1 + ϵ2 with

ϵ1 = ϕ− + uΓ+Θ−ϕ− + ruΓ−Θ+Γ+Θ−ϕ− , ϵ2 = ϕ+ + rΓ−Θ+ϕ+ . (5.3)

where ϕ± are spinors that depend only on the coordinates of M9 and satisfy the light-
cone projections Γ±ϕ± = 0, where Γ± have been adapted to the frame2 (5.2) and Θ± are
Clifford algebra elements that depend on the fields. For the explicit expressions of Θ± as
well as for the spinor notation we use below, see [94]. The dependence of Killing spinors
in (5.3) on the (u, r) coordinates is explicit as it is that of the fields in (5.1). In addition,
the (spacetime) gravitino KSE implies that ϕ± satisfy the KSEs

D±
i ϕ± = 0 , D±

i ≡ ∇i +Ψ±
i , (5.4)

on the internal space M9, where ∇ is the Levi-Civita connection of the metric g(M9)
induced on the spin bundle and

Ψ±
i = ∓1

4
hi −

1

288
/ΓX i +

1

36
/X i ±

1

24
/ΓY i ∓

1

6
/Y i . (5.5)

The TCFHs on M9 that we shall explore below are associated with the supercovariant
connections D±.

5.2.2 The TCFH on the internal space

To begin, the internal space M9 of warped AdS2 backgrounds is a Euclidean signature
9-dimensional manifold. Therefore, one has n = 9 and ηij = δij. After integrating the
gravitino KSE of 11-dimensional supergravity over the AdS2 subspace, which has been
summarised in the previous section, the Killing spinors ϕ± on M9 satisfy the KSEs (5.4).
To proceed a basis in the space of form bilinears on the internal space M9, up to Hodge
duality, is

f±r,s = ⟨ϕr±, ϕs±⟩ , k±r,s = ⟨ϕr±,Γiϕs±⟩ ei ,

θ±r,s =
1

4!
⟨ϕr±,Γijkℓϕs±⟩ ei ∧ ej ∧ ek ∧ eℓ , ω±r,s =

1

2
⟨ϕr±,Γijϕs±⟩ ei ∧ ej ,

φ±r,s =
1

3!
⟨ϕr±,Γijkϕs±⟩ ei ∧ ej ∧ ek , (5.6)

2From here on, the gamma matrices are always adapted to a (pseudo-)orthonormal frame.
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where all (time-like) space-like gamma matrices are (anti-)Hermitian with respect to the
inner product ⟨·, ·⟩. As the Killing spinors of 11-dimensional supergravity are real, note
that the bilinears f , k and θ are symmetric in the exchange of spinors ϕr± and ϕs± and
the rest are skew-symmetric.

After using that ϕr± with ϕs± are Killing spinors of the supercovariant connections D±,
one finds that the TCFH of the form bilinears (5.6) that are symmetric in the exchange
of ϕr± with ϕs± is

D(±)F
i f± ≡ ∇if

± ± ∂i logAf
± = ± 1

144
∗Xiℓ1ℓ2ℓ3ℓ4θ

±ℓ1ℓ2ℓ3ℓ4 ± 1

3
Yiℓk

±ℓ ,

D(±)F
i k±j ≡ ∇ik

±
j ± ∂i logAk

±
j − 1

12
Xiℓ1ℓ2ℓ3θ

±ℓ1ℓ2ℓ3
j

=
1

18
Xℓ1ℓ2ℓ3[iθ

±ℓ1ℓ2ℓ3
j] +

1

144
δijXℓ1ℓ2ℓ3ℓ4θ

±ℓ1ℓ2ℓ3ℓ4 ± 1

3
Yijf

± ± 1

12
Yℓ1ℓ2θ

±ℓ1ℓ2
ij ,

D(±)F
i θ±j1j2j3j4 ≡ ∇iθ

±
j1j2j3j4

± ∂i logAθ
±
j1j2j3j4

± 3

2
∗Xℓ1ℓ2i[j1j2θ

±ℓ1ℓ2
j3j4]

+2Xi[j1j2j3k
±
j4]

+
1

3
∗Yℓ1ℓ2ℓ3i[j1j2j3θ

±ℓ1ℓ2ℓ3
j4]

= ±5

3
∗Xℓ1ℓ2[ij1j2θ

±ℓ1ℓ2
j3j4] +

5

6
X[ij1j2j3k

±
j4]

± 1

6
∗Xij1j2j3j4f

±

∓2

3
δi[j1

∗Xj2j3|k1k2k3θ
±ℓ1ℓ2ℓ3

j4] +
2

3
δi[j1Xj2j3j4]ℓk

±ℓ − 1

18
δi[j1

∗Yj2j3j4]ℓ1ℓ2ℓ3ℓ4θ
±ℓ1ℓ2ℓ3ℓ4

+
5

18
∗Y[ij1j2j3|ℓ1ℓ2ℓ3|θ

±ℓ1ℓ2ℓ3
j4] ∓ 2δi[j1Yj2j3k

±
j4]
. (5.7)

While the TCFH on the bilinears which are skew-symmetric in the exchange of ϕr± with
ϕs± is

D(±)F
i ω±

j1j2
≡ ∇iω

±
j1j2

± ∂i logAω
±
j1j2

− 1

2
Xℓ1ℓ2i[j1φ

±ℓ1ℓ2
j2] ∓

1

2
Yiℓφ

±ℓ
j1j2

= −1

4
Xℓ1ℓ2[ij1φ

±ℓ1ℓ2
j2] ∓

1

12
∗Xij1j2ℓ1ℓ2ω

±ℓ1ℓ2 − 1

18
δi[j1Xj2]ℓ1ℓ2ℓ3φ

±ℓ1ℓ2ℓ3

±1

6
δi[j1φ

±ℓ1ℓ2
j2]Yℓ1ℓ2 ±

1

2
Yℓ[iφ

±ℓ
j1j2] ,

D(±)F
i φ±

j1j2j3
≡ ∇iφ

±
j1j2j3

± ∂i logAφ
±
j1j2j3

± 3

4
∗Xℓ1ℓ2i[j1j2φ

±ℓ1ℓ2
j3]

−3

2
Xℓi[j1j2ω

±ℓ
j3] ∓

3

2
Yi[j1ω

±
j2j3]

= ±2

3
∗Xℓ1ℓ2[ij1j2φ

±ℓ1ℓ2
j3] −

2

3
Xℓ[ij1j2ω

±ℓ
j3] ±

1

6
δi[j1

∗Xj2j3]ℓ1ℓ2ℓ3φ
±ℓ1ℓ2ℓ3

−1

4
δi[j1Xj2j3]ℓ1ℓ2ω

±ℓ1ℓ2 − 1

36
∗Yij1j2j3ℓ1ℓ2ℓ3φ

±ℓ1ℓ2ℓ3 ∓ Y[ij1ω
±
j2j3]

∓ δi[j1Yj2|ℓ|ω
±ℓ
j3] ,(5.8)

where ∗X is the Hodge dual3 of X and similarly for the other fields. In the TCFH above
we have suppressed the r, s indices on the bilinears that count the number of Killing
spinors.

The TCFH above has been expressed in terms of the minimal connection D(±)F , see
[22] for the definition. As expected, D(±)F is not form degree preserving connection.

As the action of D(±)F
i on the space of forms preserves the subspaces of symmetric and

skew-symmetric bilinears in the exchange of ϕr and ϕs Killing spinors and acts trivially
on the scalars f , the reduced holonomy4 of the connection is included in (the connected

3In our conventions Γi1...i9ϕ± = ±ϵi1...i9ϕ± with ϵ123456789 = 1.
4From here on with the term holonomy we shall always refer to the reduced holonomy of the TCFH

connection, i.e. the connected component of the identity of the holonomy group.
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component of the identity) GL(135)×GL(120). Note that the holonomy of the maximal
TCFH connection, see again [22], is contained in GL(136) × GL(120) as it acts non-
trivially on the scalars.

An alternative way to see that the holonomy ofD(±)F is included inGL(135)×GL(120)
is to observe that ϕ± can be thought of as Majorana spinors of spin(9). It is well known
that the tensor product of two spin(9) Majorana representations, ∆16, decomposes as

∆16 ⊗∆16 = ⊕4
k=0Λ

k(R9) , (5.9)

where Λk(R9) is the irreducible representation of spin(9) on the space of k-degree forms
on R9. The action of the supercovariant connection on the tensor product of two spin
bundles, i.e. on a bispinor, preserves the symmetric and skew-symmetric subspaces. As
the rank of the spin bundle is 16, these sub-bundles have rank 136 and 120, respectively.
So the holonomy of all connections of the TCFH is included in GL(136)×GL(120).

Although the form bilinears are CKY forms with respect to the TCFH connection
D(±)F as expected, it is clear from the TCFH (5.7) and (5.8) that they are neither KY nor
CCKY forms for generic supersymmetric backgrounds. However, we shall demonstrate
that for special solutions several terms in the TCFH vanish and as a result some bilinears
become either KY or CCKY forms.

5.3 The TCFH of warped AdS3 backgrounds

5.3.1 Fields and Killing spinors

The bosonic fields of 11-dimensional supergravity for a warped AdS3 background, AdS3×w

M8, can be written as

g = 2e+e− + (ez)2 + δije
iej , F = e+ ∧ e− ∧ dz ∧Q+X , (5.10)

where the metric, g(M8), on the internal space M8 is g(M8) = δije
iej and Q and X are

a 1-form and a 4-form on M8, respectively. Moreover,

e+ = du , e− = dr − 2ℓ−1rdz − 2rd lnA , ez = Adz , ei = eiJdy
J , (5.11)

is a null pseudo-orthonormal frame on the spacetime with ei an orthonormal frame on
M8, y are coordinates on M8 and (u, r, z) are the remaining coordinates of the spacetime
and A is the warp factor. As for the AdS2 backgrounds in the previous section, there is a
coordinate transformation such that the spacetime metric g can be put into the standard
warped form, g = A2gℓ(AdS3) + g(M8), where gℓ(AdS3) is the standard metric on AdS3

with radius ℓ.
The gravitino KSE of 11-dimensional supergravity can be solved [94] along the AdS3

subspace of a AdS3 ×w M
8 background with fields (5.10). The Killing spinors ϵ can be

expressed as, ϵ = ϵ(σ±) + ϵ(τ±), with

ϵ(σ±) = σ+ + σ− − ℓ−1A−1uΓ+zσ− ,
ϵ(τ±) = e−

z
ℓ τ+ − ℓ−1A−1re−

z
ℓΓ−zτ+ + e

z
ℓ τ− , (5.12)

where σ± and τ± spinors satisfy the lightcone projections Γ±σ± = Γ±τ± = 0, and depend
only on the coordinates of M8. In addition, they satisfy the KSEs

D±
i σ± = D±

i τ± = 0 , (5.13)
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on the internal space M8, where

D±
i ≡ ∇i ±

1

2
∂i logA− 1

288
/ΓX i +

1

36
/X i ∓

1

12
A−1Γz /ΓQi ±

1

6
A−1ΓzQi , (5.14)

are the supercovariant connections on M8 and ∇ is the connection induced on the spin
bundle from the Levi-Civita connection of the metric g(M8). Furthermore, σ± and τ±
satisfy an additional algebraic KSE on M8 arising from the integration of the gravitino
KSE of 11-dimensional supergravity along the z coordinate. These algebraic KSEs have
been explained in detail in [94] and they will be used in the examples below to produce
the right counting for the number of Killing spinors of the AdS backgrounds but they do
not contribute to the TCFH below.

5.3.2 The TCFH on the internal space

A basis in the space of form bilinear on the internal space M8 is

f±r,s = ⟨ϕr±, ϕs±⟩ , f̃±r,s = ⟨ϕr±,Γzϕs±⟩ , k±r,s = ⟨ϕr±,Γiϕs±⟩ ei ,

θ±r,s =
1

4!
⟨ϕr±,Γijkℓϕs±⟩ ei ∧ ej ∧ ek ∧ eℓ , φ̃±r,s =

1

3!
⟨ϕr±,ΓijkΓzϕs±⟩ ei ∧ ej ∧ ek ,

k̃±r,s = ⟨ϕr±,ΓiΓzϕs±⟩ ei , ω±r,s =
1

2
⟨ϕr±,Γijϕs±⟩ ei ∧ ej ,

ω̃±r,s =
1

2
⟨ϕr±,ΓijΓzϕs±⟩ ei ∧ ej , φ±r,s =

1

3!
⟨ϕr±,Γijkϕs±⟩ ei ∧ ej ∧ ek , (5.15)

where ϕ± stands5 for either σ± or τ±. The first five form bilinears are symmetric in the
exchange of ϕr± with ϕs± while the rest are skew-symmetric.

The TCFH expressed6 in terms of the minimal connection is

D(±)F
i f± ≡ ∇if

± ± ∂i logAf
± = ± 1

36
∗Xi

ℓ1ℓ2ℓ3φ̃±
ℓ1ℓ2ℓ3

∓ 1

3
A−1Qif̃

± ,

D(±)F
i k±j ≡ ∇ik

±
j ± ∂i logAk

±
j − 1

12
Xiℓ1ℓ2ℓ3θ

±ℓ1ℓ2ℓ3
j

= − 1

18
X[i|ℓ1ℓ2ℓ3|θ

±ℓ1ℓ2ℓ3
j] +

1

144
δijXℓ1ℓ2ℓ3ℓ4θ

±ℓ1ℓ2ℓ3ℓ4 ∓ 1

6
A−1Qℓφ̃

±ℓ
ij ,

D(±)F
i θ±j1j2j3j4 ≡ ∇iθ

±
j1j2j3j4

± ∂i logA∓ 3 ∗Xℓi[j1j2φ̃
±ℓ
j3j4] + 2Xi[j1j2j3k

±
j4]

+
1

3
A−1 ∗Qℓ1ℓ2ℓ3i[j1j2j3θ

±ℓ1ℓ2ℓ3
j4]

= ∓10

3
∗Xℓ[ij1j2φ̃

±ℓ
j3j4] +

5

6
X[ij1j2j3k

±
j4]

∓ 2δi[j1
∗Xj2j3|ℓ1ℓ2|φ̃

±ℓ1ℓ2
j4] +

2

3
δi[j1Xj2j3j4]ℓk

±ℓ

− 1

18
A−1δi[j1

∗Qj2j3j4]ℓ1ℓ2ℓ3ℓ4θ
±ℓ1ℓ2ℓ3ℓ4 +

5

18
A−1 ∗Qℓ1ℓ2ℓ3[ij1j2j3θ

±ℓ1ℓ2ℓ3
j4] ,

D(±)F
i φ̃±

j1j2j3
≡ ∇iφ̃

±
j1j2j3

± ∂i logA φ̃
±
j1j2j3

± 3

4
∗Xℓ1ℓ2i[j1θ

±ℓ1ℓ2
j2j3]

= ± ∗Xℓ1ℓ2[ij1θ
±ℓ1ℓ2

j2j3] −
1

3
Xij1j2j3 f̃

± ± 1

6
∗Xij1j2j3f

± ± 1

3
δi[j1

∗Xj2|ℓ1ℓ2ℓ3|θ
±ℓ1ℓ2ℓ3

j3]

− 1

36
A−1 ∗Qij1j2j3ℓ1ℓ2ℓ3φ̃

±ℓ1ℓ2ℓ3 ∓ A−1δi[j1Qj2k
±
j3]
,

D(±)F
i f̃± ≡ ∇if̃

± ± ∂i logAf̃
± =

1

18
Xiℓ1ℓ2ℓ3φ̃

±ℓ1ℓ2ℓ3 ∓ 1

3
A−1Qif

± ,

5One can also consider mixed σ± and τ± form bilinears. The TCFH is the same as the one stated
below for the form bilinear basis above.

6In our conventions ΓzΓi1...i8ϕ± = ±ϵi1...i8ϕ± with ϵ12345678 = 1.
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D(±)F
i ω±

j1j2
≡ ∇iω

±
j1j2

± ∂i logAω
±
j1j2

− 1

2
Xℓ1ℓ2i[j1φ

±ℓ1ℓ2
j2] ±

1

2
A−1Qiω̃

±
j1j2

= −1

4
Xℓ1ℓ2[ij1φ

±ℓ1ℓ2
j2] −

1

18
δi[j1Xj2]ℓ1ℓ2ℓ3φ

±ℓ1ℓ2ℓ3 ∓ 1

6
∗Xij1j2ℓk̃

±ℓ

±1

3
A−1δi[j1ω̃

±ℓ
j2]Qℓ ±

1

2
A−1Q[iω̃

±
j1j2]

,

D(±)F
i φ±

j1j2j3
≡ ∇iφ

±
j1j2j3

± ∂i logAφ
±
j1j2j3

− 3

2
Xℓi[j1j2ω

±ℓ
j3] ±

3

2
∗Xℓi[j1j2ω̃

±ℓ
j3]

= ±4

3
∗Xℓ[ij1j2ω̃

±ℓ
j3] −

2

3
Xℓ[ij1j2ω

±ℓ
j3] ±

1

2
δi[j1

∗Xj2j3]ℓ1ℓ2ω̃
±ℓ1ℓ2 − 1

4
δi[j1Xj2j3]ℓ1ℓ2ω

±ℓ1ℓ2

− 1

36
A−1 ∗Qij1j2j3ℓ1ℓ2ℓ3φ

±ℓ1ℓ2ℓ3 ∓ A−1δi[j1Qj2 k̃
±
j3]
,

D(±)F
i k̃±j ≡ ∇ik̃

±
j ± ∂i logAk̃

±
j =

1

6
Xijℓ1ℓ2ω̃

±ℓ1ℓ2 ∓ 1

12
∗Xijℓ1ℓ2ω

±ℓ1ℓ2 ± 1

6
A−1Qℓφ

±ℓ
ij ,

D(±)F
i ω̃±

j1j2
≡ ∇iω̃

±
j1j2

± ∂i logAω̃
±
j1j2

∓ 1

2
∗Xℓ1ℓ2i[j1φ

±ℓ1ℓ2
j2] ±

1

2
A−1Qiω

±
j1j2

= ∓1

2
∗Xℓ1ℓ2[ij1φ

±ℓ1ℓ2
j2] −

1

3
Xij1j2ℓk̃

±ℓ ∓ 1

9
δi[j1

∗Xj2]ℓ1ℓ2ℓ3φ
±ℓ1ℓ2ℓ3 ± 1

2
A−1Q[iω

±
j1j2]

±1

3
A−1δi[j1ω

±ℓ
j2]Qℓ , (5.16)

where ∗X is the Hodge dual of X on the internal space M8 and similarly for the other
fields. We have also suppressed the r, s indices on the form bilinears that count the
number of Killing spinors.

The action of the minimal TCFH connection on the space of forms preserves the
subspaces of forms with are symmetric and skew-symmetric in the exchange of the Killing
spinors ϕr± and ϕs±. Furthermore, it preserves the subspaces of 1-forms k̃±, where it acts
as the Levi-Civita connection up to a rescaling with the warp factor A, and acts trivially
on the scalars f± and f̃±. Therefore the reduced holonomy is included in GL(134) ×
SO(8) × GL(112). The reduced holonomy of the maximal TCFH connection instead is
included in GL(136) × GL(120) because it preserves only the subspaces of forms which
are symmetric and skew-symmetric in the exchange of the Killing spinors ϕr± and ϕs±.

The holonomy of the TCFH connection can be understood in a way similar to that of
AdS2 backgrounds. As ϕ± can be viewed as Majorana spin(8) spinors, it is known that
the product of two such Majorana representations, ∆16, can be decomposed in terms of
form representations, Λk(R8), of spin(8) as

∆16 ⊗∆16 = ⊕8
k=0Λ

k(R8) . (5.17)

As the supercovariant derivative preserves the space of symmetric and skew-symmetric
bi-spinors, it is clear that the holonomy of all TCFH connections will be included in
GL(136) × GL(120), where 136 is the rank of the sub-bundle of symmetric bi-spinors
while 120 is the rank of the sub-bundle of skew-symmetric bi-spinors.

As expected all form bilinears are CKY forms with respect to the TCFH connections
D(±)F in agreement with the general result in [22]. Apart from A±1k̃± which is a Killing
1-form, the TCFH does not imply that the remaining form bilinears are KY forms for
generic supersymmetric backgrounds. However, we shall demonstrate that many of them
are either KY or CCKY forms for some AdS3 solutions of 11-dimensional supergravity.
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5.4 The TCFH of warped AdS4 backgrounds

5.4.1 Fields and Killing spinors

The bosonic fields of 11-dimensional supergravity of warped AdS4 backgrounds, AdS4×w

M7, can be written as

g = 2e+e− + (ez)2 + (ex)2 + g(M7) , F = S e+ ∧ e− ∧ ez ∧ ex +X , (5.18)

with g(M7) = δije
iej, where S and X are a 0-form and 4-form on the internal space M7,

respectively. In addition,

e+ = du , e− = dr − 2ℓ−1rdz − 2rd lnA , ez = Adz , ex = Ae
z
ℓ dx ,

ei = eiJdy
J , (5.19)

is a null pseudo-orthonormal frame on the spacetime with ei an orthonormal frame onM7,
y are coordinates on M7 and (u, r, z, x) are the remaining coordinates of the spacetime,
and ℓ is the radius of AdS4. As in previous cases, after a coordinate transformation, the
spacetime metric can be written in the standard warped form with warp factor A2.

The gravitino KSE of 11-dimensional supergravity can be explicitly integrated along
the (u, r, z, x) coordinates and the Killing spinors can be written as, ϵ = ϵ(σ±) + ϵ(τ±),
see [94], with

ϵ(σ±) = σ+ + σ− − ℓ−1e
z
ℓ xΓxzσ− − ℓ−1A−1uΓ+zσ− ,

ϵ(τ±) = e−
z
ℓ τ+ − ℓ−1A−1re

z
ℓΓ−zτ+ − ℓ−1xΓxzτ+ + e

z
ℓ τ− , (5.20)

where the spinors σ± and τ± depend only on the coordinates of M7 and satisfy the
light-cone projections Γ±σ± = 0 and Γ±τ± = 0. Furthermore, these spinors satisfy the
KSEs

D±
i σ± = 0 , D±

i τ± = 0 , (5.21)

on the internal space M7, where the supercovariant connection is

D±
i ≡ ∇i ±

1

2
∂i logA− 1

288
/ΓX i +

1

36
/X i ±

1

12
SΓizx , (5.22)

with ∇ induced by the Levi-Civita connection of the metric g(M7) on M7. The spinors
σ± and τ± satisfy an additional algebraic KSE which arises from the integration of the
gravitino KSE of 11-dimensional supergravity along the z coordinate. These algebraic
KSEs can be found in [94] and they are essential for the correct counting of Killing spinors
for warped AdS backgrounds.

5.4.2 The TCFH on the internal manifold

A basis in the space of form bilinears on the internal space M7 is

f±r,s = ⟨ϕr±, ϕs±⟩ , k±r,s = ⟨ϕr±,Γiϕs±⟩ ei , ω̃±r,s =
1

2
⟨ϕr±,ΓijΓzxϕs±⟩ ei ∧ ej ,

φ̃±r,s =
1

3!
⟨ϕr±,ΓijkΓzxϕs±⟩ ei ∧ ej ∧ ek , k̃±r,s = ⟨ϕr±,ΓiΓzxϕs±⟩ ei ,

ω±r,s =
1

2
⟨ϕr±,Γijϕs±⟩ ei ∧ ej , φ±r,s =

1

3!
⟨ϕr±,Γijkϕs±⟩ ei ∧ ej ∧ ek ,
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f̃±r,s = ⟨ϕr±,Γzxϕs±⟩ . (5.23)

where ϕ± stands7 for either σ± or τ±. Note that the bilinears f , k ω̃ and φ̃ are symmetric
in the exchange of spinors ϕr± and ϕs± while the rest are skew-symmetric.

The TCFH expressed in terms of the minimal connection can be written as8

D(±)F
i f± ≡ ∇if

± ± ∂i logAf
± = ± 1

12
∗Xiℓ1ℓ2ω̃

±ℓ1ℓ2 ,

D(±)F
i k±j ≡ ∇ik

±
j ± ∂i logAk

±
j ∓ 1

4
∗Xiℓ1ℓ2φ̃

±ℓ1ℓ2
j

= ±1

6
Sω̃±

ij ∓
1

3
∗Xℓ1ℓ2[iφ̃

±ℓ1ℓ2
j] ∓

1

18
δij

∗Xℓ1ℓ2ℓ3φ̃
±ℓ1ℓ2ℓ3 ,

D(±)F
i ω̃±

j1j2
≡ ∇iω̃

±
j1j2

± ∂i logAω̃
±
j1j2

− 1

2
Xℓ1ℓ2i[j1φ̃

±ℓ1ℓ2
j2]

= −1

4
Xℓ1ℓ2[ij1φ̃

±ℓ1ℓ2
j2] −

1

18
δi[j1Xj2]ℓ1ℓ2ℓ3φ̃

±ℓ1ℓ2ℓ3 ± 1

6
∗Xij1j2f

± ∓ 1

3
Sδi[j1k

±
j2]
,

D(±)F
i φ̃±

j1j2j3
≡ ∇iφ̃

±
j1j2j3

± ∂i logAφ̃
±
j1j2j3

− 3

2
Xℓi[j1j2ω̄

±ℓ
j3] ∓

3

2
∗Xi[j1j2k

±
j3]

= ∓4

3
∗X[ij1j2k

±
j3]

− 2

3
Xℓ[ij1j2ω̃

±ℓ
j3] ∓ δi[j1

∗Xj2j3]ℓk
±ℓ

−1

4
δi[j1Xj2j3]ℓ1ℓ2ω̃

±ℓ1ℓ2 − 1

36
∗Sij1j2j3ℓ1ℓ2ℓ3φ̃

±ℓ1ℓ2ℓ3

D(±)F
i ω±

j1j2
≡ ∇iω

±
j1j2

± ∂i logAω
±
j1j2

− 1

2
Xℓ1ℓ2i[j1φ

±ℓ1ℓ2
j2]

= −1

4
Xℓ1ℓ2[ij1φ

±ℓ1ℓ2
j2] −

1

18
δi[j1Xj2]ℓ1ℓ2ℓ3φ

±ℓ1ℓ2ℓ3 ∓ 1

6
∗Xij1j2 f̃

± ± 1

3
Sδi[j1 k̃

±
j2]
,

D(±)F
i φ±

j1j2j3
≡ ∇iφ

±
j1j2j3

± ∂i logAφ
±
j1j2j3

− 3

2
Xℓi[j1j2ω

±ℓ
j3] ±

3

2
∗Xi[j1j2 k̃

±
j3]

= ±4

3
∗X[ij1j2 k̃

±
j3]

− 2

3
Xℓ[ij1j2ω

±ℓ
j3] ± δi[j1

∗Xj2j3]ℓk̃
±ℓ

−1

4
δi[j1Xj2j3]ℓ1ℓ2ω

±ℓ1ℓ2 − 1

36
∗Sij1j2j3ℓ1ℓ2ℓ3φ

±ℓ1ℓ2ℓ3 ,

D(±)F
i f̃± ≡ ∇if̃

± ± ∂i logAf̃
± = ∓ 1

12
∗Xiℓ1ℓ2ω

±ℓ1ℓ2 ,

D(±)F
i k̃±j ≡ ∇ik̃

±
j ± ∂i logAk̃

±
j ± 1

4
∗Xiℓ1ℓ2φ

±ℓ1ℓ2
j

= ±1

3
∗Xℓ1ℓ2[iφ

±ℓ1ℓ2
j] ±

1

18
δij

∗Xℓ1ℓ2ℓ3φ
±ℓ1ℓ2ℓ3 ∓ 1

6
Sω±

ij , (5.24)

where ∗X and ∗S are the Hodge duals of X and S on the internal space M7, respectively,
and we have suppressed the r, s indices on the form bilinears that label the number of
Killing spinors.

The action of the minimal TCFH connection on the space of forms preserves the
subspaces of symmetric and skew-symmetric bilinears in the exchange of ϕr± and ϕs±
Killing spinors and acts trivially on the scalars f and f̃ . As a consequence, the holonomy
of the connection is included in GL(63)×GL(63). Note that the TCFH on the 0-, 1- and
3-form bilinears which are symmetric in the exchange of ϕr± and ϕs± is almost identical
to that of the corresponding form bilinears which are skew-symmetric in the exchange of
the same spinors. The difference is a sign in the terms containing the fluxes S and ∗F .
The holonomy of the maximal TCFH connection is included in GL(64) × GL(64) since
it acts non-trivially on the scalars.

7Unlike the case of warped AdS3 backgrounds, the σ± and τ± Killing spinors of all warped AdSk,
k > 3, backgrounds are related with Clifford algebra operations.

8In our conventions ΓzxΓi1i2i3i4i5i6i7ϕ± = ±ϵi1i2i3i4i5i6i7ϕ± with ϵ1234567 = 1
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The spinors σ± and τ± are associated with the (reducible) Majorana representation
∆16 of spin(8). This decomposes under spin(7) as ∆16 = ∆8 ⊕ ∆8, where ∆8 is the
(irreducible) Majorana representation of spin(7). Moreover, the tensor product of two
such representations, ∆8, decomposes in terms of form representations as

∆8 ⊗∆8 =
3∑

k=0

Λk(R7) . (5.25)

Clearly the TCFH includes two copies of the forms that appear in the above decomposi-
tion. This implies that the holonomy of the maximal TCFH connection to be included
in GL(64)×GL(64).

5.5 The TCFH of warped AdSk, k = 5, 6, 7, back-

grounds

5.5.1 Fields and Killing spinors

The fields of 11-dimensional supergravity for warped AdSk ×w M
11−k, k = 5, 6, 7, back-

grounds can be written as

g = 2e+e− + (ez)2 +
∑
a

(ea)2 + g(M11−k) , F = X , (5.26)

with g(M11−k) = δije
iej, where X is a 4-form on the internal space M11−k. The null

pseudo-orthonormal frame (e+, e−, ez, ea, ei) is expressed as

e+ = du , e− = dr − 2ℓ−1rdz − 2rd lnA , ez = Adz ,
ea = Ae

z
ℓ dxa , ei = eiJdy

j , (5.27)

where y are coordinates of the internal space M11−k and (u, r, z, xa) are the rest of the
coordinates of the spacetime, ℓ is the radius of AdS subspace and A is the warp factor.

As in all previous cases, the KSEs of 11-dimensional supergravity can be integrated
over the AdS subspace and the Killing spinors can be expressed as, ϵ = ϵ(σ±)+ ϵ(τ±), see
[94], with

ϵ(σ±) = σ+ + σ− − ℓ−1e
z
ℓ xaΓazσ− − ℓ−1A−1uΓ+zσ− ,

ϵ(τ±) = e−
z
ℓ τ+ − ℓ−1A−1re−

z
ℓΓ−zτ+ − ℓ−1xaΓazτ+ + e

z
ℓ τ− , (5.28)

where the σ± and τ± spinors satisfy the lightcone projections Γ±σ± = Γ±τ± = 0, and
depend only on the coordinates of M11−k. In addition, they satisfy the KSEs

D±
i ϕ± = 0 , (5.29)

along the internal space M11−k, where the supercovariant connection is

D±
i ≡ ∇i ±

1

2
∂i logA− 1

288
/ΓX i +

1

36
/X i , (5.30)

∇ is the connection on the spin bundle of M11−k induced from the metric g(M11−k) and
ϕ± stands from either σ± or τ±. Note that for warped AdS7 backgrounds the term /ΓX
in the supercovariant connection vanishes. As in previous cases, σ± and τ± satisfy an
additional algebraic KSE which arises from the integration of the gravitino KSE of 11-
dimensional supergravity along the z coordinate and can be found in [94]. It will be used
to determine the number of Killing spinors in some examples below.
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5.5.2 The TCFH of warped AdS5 backgrounds

A basis in the space of form bilinears on the internal space M6 is

f±r,s = ⟨ϕr±, ϕs±⟩ , k±r,s = ⟨ϕr±,Γiϕs±⟩ ei , k̃±r,s = ⟨ϕr±,ΓiΓ(3)ϕ
s
±⟩ ei ,

ω̃±r,s =
1

2
⟨ϕr±,ΓijΓ(3)ϕ

s
±⟩ ei ∧ ej , ω±r,s =

1

2
⟨ϕr±,Γijϕs±⟩ ei ∧ ej ,

φ±r,s
ijk =

1

3!
⟨ϕr±,Γijkϕs±⟩ ei ∧ ej ∧ ek , f̃±r,s = ⟨ϕr±,Γ(3)ϕ

s
±⟩ , (5.31)

where Γ(3) = Γzx1x2 , i.e. it is the product of gamma matrices along the directions ez

and ea for a = 1, 2. The first four bilinears are symmetric in the exchange of ϕr± and ϕs±
spinors while the rest are skew-symmetric.

The TCFH expressed9 in terms of the minimal connection is

D(±)F
i f± ≡ ∇if

± ± ∂i logAf
± = ±1

6
∗Xiℓk̃

±ℓ ,

D(±)F
i k±j ≡ ∇ik

±
j ± ∂i logAk

±
j ± 1

2
∗Xiℓω̃

±ℓ
j

= ±2

3
∗X[i|ℓ|ω̃

±ℓ
j] ∓

1

6
δij

∗Xℓ1ℓ2ω̃
±ℓ1ℓ2 ,

D(±)F
i k̃±j ≡ ∇ik̃

±
j ± ∂i logAk̃

±
j =

1

6
Xijℓ1ℓ2ω̃

±ℓ1ℓ2 ± 1

6
∗Xijf

± ,

D(±)F
i ω̃±

j1j2
≡ ∇iω̃

±
j1j2

± ∂i logAω̃
±
j1j2

± ∗Xi[j1k
±
j2]

= −1

3
Xij1j2ℓk̃

±ℓ ± 2

3
δi[j1

∗Xj2]ℓk
±ℓ ± ∗X[ij1k

±
j2]
,

D(±)F
i ω±

j1j2
≡ ∇iω

±
j1j2

± ∂i logAω
±
j1j2

− 1

2
Xℓ1ℓ2i[j1φ

±ℓ1ℓ2
j2]

= −1

4
Xℓ1ℓ2[ij1φ

±ℓ1ℓ2
j2] −

1

18
δi[j1Xj2]ℓ1ℓ2ℓ3φ

±ℓ1ℓ2ℓ3 ,

D(±)F
i φ±

ℓ1ℓ2ℓ3
≡ ∇iφ

±
ℓ1ℓ2ℓ3

± ∂i logAφ
±
ℓ1ℓ2ℓ3

− 3

2
Xℓi[j1j2ω

±ℓ
j3]

= −1

4
δi[j1Xj2j3]ℓ1ℓ2ω

±ℓ1ℓ2 − 2

3
Xℓ[ij1j2ω

±ℓ
j3] ± δi[j1

∗Xj2j3]f̃
± ,

D(±)F
i f̃± ≡ ∇if̃

± ± ∂i logAf̃
± = ∓1

6
∗Xℓ1ℓ2φ

±ℓ1ℓ2
i , (5.32)

where ∗X is the Hodge dual of X on M6 and we have suppressed the indices r, s of the
form bilinears.

As expected, the minimal connection of the TCFH D(±)F is not form degree preserv-
ing. On the other hand, its action closes on the form bilinears which are either symmetric
or skew-symmetric in the interchange of spinors ϕr± and ϕs±. The holonomy of D(±)F is
contained in SO(6) × GL(21) × GL(35) as in addition it acts with the Levi-Civita con-
nection on the 1-form bilinear A k̃ and trivially on the scalar bilinears f and f̃ . Note that
the holonomy of the maximal TCFH connection is contained in GL(28) × GL(35) as it
only closes on the symmetric and skew-symmetric form bilinears under the exchange of
spinors ϕr± and ϕs±.

5.5.3 The TCFH of warped AdS6 backgrounds

A basis in the space of form bilinears on the internal space M5 is

f±r,s = ⟨ϕr±, ϕs±⟩ , k±r,s = ⟨ϕr±,Γiϕs±⟩ ei , f̃±r,s = ⟨ϕr±,Γ(4)ϕ
s
±⟩ ,

9In our conventions Γ(3)Γi1...i6ϕ± = ±ϵi1...i6ϕ± and ϵ123456 = 1.
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k̃±r,s = ⟨ϕr±,ΓiΓ(4)ϕ
s
±⟩ ei ,

ω±r,s =
1

2
⟨ϕr±,Γijϕs±⟩ ei ∧ ej , ω̃±r,s =

1

2
⟨ϕr±,ΓijΓ(4)ϕ

s
±⟩ ei ∧ ej , (5.33)

where the first four form bilinears are symmetric in the exchange of ϕr± and ϕs± spinors
while the rest are skew-symmetric and Γ(4) = Γzx1x2x3 .

The TCFH expressed10 in terms of the minimal connection, D(±)F , is

D(±)F
i f± ≡ ∇if

± ± ∂i logAf
± = ±1

6
∗Xif̃
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±
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±
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∗X[ik̃

±
j] ∓

1

3
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± ± ∂i logAf̃
± = ±1

6
∗Xif

± ,

D(±)F
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±
j ± ∂i logAk̃

±
j ∓ 1

2
∗Xik

±
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3
∗X[ik

±
j] ∓

1

3
δij

∗Xℓk
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D(±)F
i ω±

j1j2
≡ ∇iω

±
j1j2

± ∂i logAω
±
j1j2

∓ 1

2
∗Xiω̃

±
j1j2

= ∓ ∗X[iω̃
±
j1j2]

∓ 2

3
δi[j1ω̃

±ℓ
j2]

∗Xℓ ,

D(±)F
i ω̃±

j1j2
≡ ∇iω̃

±
j1j2

± ∂i logAω̃
±
j1j2

∓ 1

2
∗Xiω

±
j1j2

= ∓ ∗X[iω
±
j1j2]

∓ 2

3
δi[j1ω

±ℓ
j2]

∗Xℓ ,(5.34)

where ∗X is the Hodge dual of X and we have suppressed the r, s indices on the form
bilinears as in previous cases.

Unlike previous cases, the minimal TCFH connection D(±)F for AdS6 backgrounds is
form degree preserving. Furthermore, its action can be diagonalised on the forms

ζ±(+) = ζ± + ζ̃± , ζ±(−) = ζ± − ζ̃± , (5.35)

where ζ± stands for either k± or ω±, i.e. one has that

D(±)F
i ζ±(+) = ∇iζ

±
(+) ± ∂i logAζ

±
(+) ∓

1

2
∗Xiζ

±
(+) ,

D(±)F
i ζ±(−) = ∇iζ

±
(−) ± ∂i logAζ

±
(−) ±

1

2
∗Xiζ

±
(−) . (5.36)

Such a connection arises provided one gauges the scale transformation ζ → s ζ accompa-
nied with ∗X → ∗X ± 2s−1ds, where the sign is plus for ζ+(+) and ζ

−
(−) while it is minus

for the rest of the form bilinears. Clearly, there are two sectors and the holonomy of the
connection in each sector is SO(5)× (R− {0}).

5.5.4 The TCFH of AdS7 backgrounds

A basis in the space of spinor bilinears on the internal space M4 is

f±r,s = ⟨ϕr±, ϕs±⟩ , k±r,s = ⟨ϕr±,Γiϕs±⟩ ei , f̃±r,s = ⟨ϕr±,Γ(5)ϕ
s
±⟩ ,

k̃±r,s = ⟨ϕr±,ΓiΓ(5)ϕ
s
±⟩ ei , ω±r,s =

1

2
⟨ϕr±,Γijϕs±⟩ ei ∧ ej , (5.37)

where the first three are symmetric in the exchange of spinors ϕr± and ϕs± while the rest
are skew-symmetric and Γ(5) = Γzx1x2x3x4 .

The TCFH expressed11 in terms of the minimal connection D(±)F is

10In our conventions Γ(4)Γi1...i5ϕ± = ±ϵi1...i5ϕ± with ϵ12345 = 1.
11In our conventions Γ(5)Γi1...i4ϕ± = ±ϵi1...i4ϕ± and ϵ1234 = 1.
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D(±)F
i f± ≡ ∇if

± ± ∂i logAf
± = 0 ,

D(±)F
i k±j ≡ ∇ik

±
j ± ∂i logAk

±
j = ∓1

3
δij

∗Xf̃± ,

D(±)F
i f̃± ≡ ∇if̃

± ± ∂i logAf̄
± = ±1

3
∗Xk±i ,

D(±)F
i ω±

j1j2
≡ ∇iω

±
j1j2

± ∂i logAω
±
j1j2

= ±2

3
δi[j1 k̄

±
j2]

∗X ,

D(±)F
i k̃±j ≡ ∇ik̃

±
j ± ∂i logAk̃

±
j = ∓1

3
∗Xω±

ij , (5.38)

where ∗X is the Hodge dual of the 4-form X on the internal space M4.
It is clear that the (reduced) holonomy of D(±)F is contained in SO(4). Furthermore,

A±1k± and A±1ω± are CCKY forms. Therefore, their dual in M4 are KY. In addition,
A±1k̃± are KY tensors. It is well-known KY tensors generate symmetries in spinning
particle actions.

5.6 Probes and symmetries

5.6.1 Relativistic and spinning particles

We have integrated the KSE of 11-dimensional supergravity along the AdSk subspace
of a warped spacetime, AdSk ×w M

11−k, and found the TCFHs on the internal space
M11−k. To investigate whether the form bilinears of the TCFHs on the internal space
generate symmetries for spinning particle actions, we have to integrate the dynamics of
the spinning particle along the AdSk subspace and describe the effective dynamics of the
system on the internal space M11−k.

For this consider first the dynamics of a relativistic particle on a warped spacetime,
N ×w M , with metric g = A2h + γ, where h is a metric on N and γ is a metric on M
and A is the warped factor. Varying the action

S =
1

2

∫
dt gµν ẋ

µẋν , (5.39)

one finds that the equations of motion are

∇h
t (A

2ρ̇a) = 0 , ∇γ
t ẏ

I − 1

2
γIJ∂JA

2 habρ̇
aρ̇b = 0 , (5.40)

where ∇h and ∇γ denote the Levi-Civita connections of h and γ, respectively, ρa are
coordinates on N and yI are coordinates on M . It is clear that

Q2 =
1

2
A4habρ̇

aρ̇b , (5.41)

is conserved as a consequence of the field equation on N . Then notice that the dynamics
of the relativistic particle on M can be described by the effective action

SM =
1

2

∫
dt
(1
2
γIJ ẏ

I ẏJ −Q2A−2
)
. (5.42)

The action apart from the usual kinetic term exhibits a potential depending on the warped
factor. There are various sectors to consider parameterised by the value of Q2. If either
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Q2 = 0, which is the case for ρ constant, or A2 is constant, AM becomes the standard
action for geodesic motion on M possibly shifted by an ignorable constant.

A similar analysis can be performed for a spinning particle probe [13] propagating on
a spacetime with metric g described by the action

S = − i

2

∫
dt dθ gµν DX

µ Ẋν , (5.43)

where (t, θ) are worldline superspace coordinates, X are worldline superfields X = X(t, θ)
and D is a worldline superspace derivative with D2 = i∂t.

The equations of motion of the spinning particle (5.43) propagating on a warped
spacetime N ×w M , as for the relativistic particle above, are

∇h(A2ρ̇a) +∇h
t (A

2Dρa) = 0 , ∇γ ẏI =
1

2
γIJ∂JA

2habDρ
aρ̇b . (5.44)

In this case, there is not a simple description of the effective dynamics on M as for the
relativistic particle described by the action (5.42). However, note that ρ equals to a
constant is a solution of the equations of motion above. So if either ρ is constant or
the warp factor A is constant, the effective dynamics of the spinning particle on M is
described by the action

SM = − i

2

∫
dt dθ γIJ Dy

I ẏJ . (5.45)

It is well known that the action above is invariant under an infinitesimal transformation

δyI = ϵ αIJ1···Jm−1Dy
J1 · · ·DyJm−1 , (5.46)

provided that α is a KY form [16], where ϵ is the infinitesimal parameter.
There is an extensive list of 11-dimensional supersymmetric AdS solutions, see e.g.

[120, 121, 122, 123, 124, 125]. The purpose here is to give some examples of TCFHs and
investigate their properties instead of being comprehensive. So we shall focus below on
the TCFH of the maximally supersymmetric AdS solutions and some AdS solutions that
arise as near-horizon geometries of intersecting M-branes.

5.6.2 Maximally supersymmetric AdS backgrounds

AdS4 × S7

The TCFH of warped AdS4 backgrounds with only electric flux, i.e. X = 0 in (5.18), can
be written as

D(±)F
i f± ≡ ∇if

± ± ∂i logAf
± = 0 ,

D(±)F
i k±j ≡ ∇ik

±
j ± ∂i logAk

±
j = ±1

6
Sω̃±

ij ,

D(±)F
i ω̃±

j1j2
≡ ∇iω̃

±
j1j2

± ∂i logA ω̃
±
j1j2

= ∓1

3
Sδi[j1k

±
j2]
,

D(±)F
i φ̃±

j1j2j3
≡ ∇iφ̃

±
j1j2j3

± ∂i logA φ̃
±
j1j2j3

= − 1

36
∗Sij1j2j3ℓ1ℓ2ℓ3φ̃

±ℓ1ℓ2ℓ3

D(±)F
i ω±

j1j2
≡ ∇iω

±
j1j2

± ∂i logAω
±
j1j2

= ±1

3
Sδi[j1 k̃

±
j2]
,

D(±)F
i φ±

j1j2j3
≡ ∇iφ

±
j1j2j3

± ∂i logAφ
±
j1j2j3

= − 1

36
∗Sij1j2j3ℓ1ℓ2ℓ3φ

±ℓ1ℓ2ℓ3 ,
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D(±)F
i f̃± ≡ ∇if̃ ± ∂i logA f̃

± = 0 ,

D(±)F
i k̃±j ≡ ∇ik̃

±
j ± ∂i logA k̃

±
j = ∓1

6
Sω±

ij . (5.47)

It is clear from the TCFH above that A±1k, A±1k̃, A±1φ and A±1φ̃ are KY forms, and
A±1ω and A±1ω̃ are CCKY forms. As A±1ω and A±1ω̃ are CCKY forms their duals in
the internal space are KY forms. The holonomy of the TCFH connection is included in
SO(7).

The maximally supersymmetric AdS4 solution is a Freund-Rubin type of background
with internal space M7 the round 7-sphere, M7 = S7, and the warp factor A constant.
All the forms bilinears above generate symmetries for the spinning particle probe action
(5.45). Note that the form bilinears on S7 are not necessarily invariant forms under the
SO(8) isometry group of S7.

AdS7 × S4

The maximally supersymmetric AdS7 solution is again a Freund-Rubin type of back-
ground with internal space M4 the round 4-sphere, M4 = S4, and the warp factor A
constant. An inspection of the TCFH of warped AdS7 backgrounds in (5.38) reveals that
the bilinear k̃± is a KY form, and k± and ω± are CCKY forms. Again the duals ∗k± and
∗ω± of k± and ω± in S4, respectively, are KY forms and so k̃±, ∗k± and ∗ω± generate
symmetries for the spinning particle probe action (5.45).

5.6.3 AdS backgrounds from intersecting branes

More examples of AdS backgrounds emerge as near-horizon geometries of intersecting
M-branes [126]. We shall not explore all the possibilities, see [127] for more examples.
Instead we shall focus on the AdS2 and AdS3 solutions that arise as near-horizon geome-
tries of the intersection of three M2-branes on an 0-brane, the intersection of an M2-brane
and M5-brane on a 1-brane and the intersection of three M5-branes on a 1-brane config-
urations.

AdS2 solution from intersecting M2-branes

One could take the near horizon geometry of the three intersecting M2-brane solution
on a 0-brane and proceed to examine the associated TCFH. Instead, we shall write an
ansatz for the fields which includes the solution. In particular, we set

g = gℓ(AdS2) + g(S3) + g(R6) , F = dvolℓ(AdS2) ∧ Y , (5.48)

where gℓ(AdS2) and dvolℓ(AdS2) is the standard metric and volume 2-form on AdS2 with
radius ℓ, respectively, g(S3) is the round metric on S3 of unit radius, g(R6) is the Euclidean
metric on R6 and Y is a constant 2-form on R6. Using the scale symmetry g → Ω2g and
F → Ω3F of 11-dimensional supergravity as well as some coordinate transformations,
one can show that the near horizon geometry of three M2-branes, with arbitrary charge
densities, intersecting on a 0-brane solution can be cast into the above form. Clearly for
this ansatz X = 0 in (5.1) and we have set A = 1.

Focusing on the ϕ+ Killing spinors, the gravitino KSE along the directions of R6

implies that Y is a non-degenerate 2-form and proportional to a Kähler form λ on R6

associated with the Euclidean metric, i.e. Y = γλ, γ ∈ R. Furthermore ϕ+ has to satisfy
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the conditions Γ1234ϕ+ = ηϕ+ and Γ1256ϕ+ = ζϕ+, where η, ζ = ±1 and we have arranged
such that R6 lies in the directions 1, . . . , 6. Then the warp factor field equation in [94]
implies that γ2 = ℓ−2. Next the field equation along S3, which is the round unit sphere,
gives ℓ−2 = 4. All the remaining KSEs and field equations are satisfied without further
conditions. Therefore, the background (5.48) with the above choice of parameters admits
4 ϕ+ Killing spinors. The solution also admits 4 more ϕ− Killing spinor and so it preserves
1/4 of the supersymmetry.

Next notice that the supercovariant derivative along S3 can be written as

D±
α = ∇S3

α ± 1

24
Γα /Y , (5.49)

where α here labels the three orthonormal directions tangential to S3. Note that Γα /Y =
/Y Γα. Moreover, considering only those components of the form bilinears that lie on S3,
i.e.

k±rsα = ⟨ϕr±,Γαϕs±⟩ , ω±rs
αβ = ⟨ϕr±,Γαβϕs±⟩ , φ±rs

αβδ = ⟨ϕr±,Γαβδϕs±⟩ , (5.50)

one can demonstrate that k and φ are KY forms while ω is CCKY form. Therefore, all
of them or their Hodge duals on S3 generate symmetries for the probe action (5.45).

AdS3 solution from M2- and M5-branes

An ansatz which includes the near horizon geometry of an M2-brane intersecting an
M5-brane on a 1-brane is

g = gℓ(AdS3) + g(S3) + g(R5) , F = dvolℓ(AdS3) ∧Q+ dvol(S3) ∧ P , (5.51)

i.e. Q,X ̸= 0 in (5.10), where gℓ(AdS3) and dvolℓ(AdS3) are the standard metric and
volume 3-form of AdS3 with radius ℓ, respectively, and g(R5) is the Euclidean metric
on R5. Similarly, g(S3) and dvol(S3) are the metric and volume 3-form of unit round
3-sphere, respectively, and the 1-forms P and Q are constant and lie along the same
direction in R5, e.g. P = p dw and Q = q dw with p, q constants.

Focusing on the KSEs on σ+ and setting without loss of generality A = 1, the in-
tegrability of the gravitino KSE along the R5 directions implies that p2 = q2. More-
over, one has to also consider the algebraic KSE Ξ+σ+ = 0 which arises from the in-
tegration of the KSE of 11-dimensional supergravity along the z direction of AdS3. As
Ξ+ = −(2ℓ)−1 + 1

288
Γz /X + 1

6
/Q, see [94], the algebraic KSE can be arranged as(

− 1

ℓ
Γw +

p

6
ΓzΓ(3) +

1

3
q
)
σ+ = 0 , (5.52)

where Γ(3) is the product of the three gamma matrices along orthonormal directions
tangential to S3.

As p2 = q2 to solve (5.52) let us set p = q. The other case p = −q can be treated in
a similar way. Then decompose (5.52) into eigenspaces of Γw and ΓzΓ(3). Using Γ2

w = 1
and (ΓzΓ(3))

2 = 1 and ΓwΓzΓ(3) = ΓzΓ(3)Γw, we have that

−η1
ℓ
+ ζ

q

6
+

1

3
q = 0 , (5.53)

where Γwσ+ = ησ+ and ΓzΓ(3)σ+ = ζσ+ with η, ζ = ±1. There are four cases to consider
leading to q = ±2ℓ−1 and q = ±6ℓ−1. Two of these solutions are related to the other
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two by a change of the overall sign of the 4-form field strength F . So there are only two
remaining independent solutions. Furthermore the q = ±6ℓ−1 solution is ruled out by
the warp factor field equation [94]. In addition, the field equation along S3 implies that
p2 = 4. As q = ±2ℓ−1, one finds that ℓ2 = 1, which is the near-horizon geometry of
the M2- and M5-brane intersection on a 1-brane solution. This solution preserves 1/2 of
supersymmetry as each of the KSEs on σ± and τ± give 4 independent solutions.

As in the previous AdS2 case, we next consider the KSE along the S3 directions whose
supercovariant derivative can be put in the form

D+
α = ∇S3

α + ΓαΓz(
1

6
pζ +

1

12
q)η , (5.54)

where α labels the three othonormal directions tangential to S3. Considering the form
bilinears (5.50) with ϕ+ = σ+, it is easy to show that k and ω are CCKY forms on S3. As
a result, their Hodge duals on S3 are KY forms and generate symmetries for the probe
action (5.45). The bilinear φ is also a CCKY form but its dual is a scalar.

5.6.4 AdS3 solution for intersecting M5-branes

An ansatz which includes the near horizon geometry of three M5-branes intersecting on
a 1-brane is

g = gℓ(AdS3) + g(S2) + g(R6) , F = dvol(S2) ∧W , (5.55)

i.e. Q = 0 in (5.10), where gℓ(AdS3) is the metric of AdS3 with radius ℓ, g(S2) and
dvol(S2) are the metric and volume 2-form of round 2-sphere with unit radius, respec-
tively, g(R6) is the Euclidean metric on R6 and W is a constant non-degenerate 2-form
on R6.

To continue let us focus on the gravitino KSE on σ+. The integrability condition of
this equation along the R6 directions implies that W = γλ and that Γ1234σ+ = ησ+ and
Γ1256σ+ = ζσ+, where λ is a Kähler form of the Euclidean metric on R6 and we have
chosen R6 along the 123456 directions. Without loss of generality, one can always choose
λ = λ1dx

1 ∧ dx2 + λ2dx
3 ∧ dx4 + λ3dx

5 ∧ dx6 with λ1, λ2, λ3 = ±1. Then the algebraic
KSE, Ξ+σ+ =

(
− (2ℓ)−1 + (288)−1Γz /X

)
σ+ = 0, implies, after imposing ΓzΓ12Γ(2)σ+ =

θσ+, θ = ±1, that either γ = ±6ℓ−1 or γ = ±2ℓ−1, where Γ(2) is the product of two
gamma matrices along two orthonormal directions tangential to S2. The warp factor
field equation is not satisfied for γ = ±6ℓ−1. While for γ = ±2ℓ−1, the Einstein equation
along S2 gives ℓ = 2. This is the solution that describes the near horizon geometry of
three intersecting M5-branes and preserves 1/4 of supersymmetry.

After imposing all the conditions above on σ+ appropriate for this solution, the grav-
itino KSE along S2 can be written as

D+
α = ∇α ±

1

2
ϵαβΓ

βΓ12 , (5.56)

where a, b are restricted along two orthonormal tangential directions of S2. Next it is
straightforward to show that the 1-form bilinears restricted on S2 are KY forms and
the 2-form bilinears restricted on S2 are CCKY forms. So the 1-form bilinears generate
symmetries for the probe action (5.45).
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5.7 Summary

We have presented the TCFH of all supersymetric AdS backgrounds of 11-dimensional
supergravity. Therefore, we have demonstrated that all the form bilinears on the internal
space of these backgrounds are CKY forms with respect to the TCFH connection. This
provides a geometric interpretation for all the conditions on these form bilinears implied
by the KSE of the theory. We have also given the reduced holonomy of the TCFH
connections for generic supersymmetric backgrounds and we have found that it factorises
on the space of symmetric and skew-symmetric form bilinears under the exchange of the
two Killing spinors. We have illustrated our results with some examples that include
the maximally supersymmetric AdS backgrounds of 11-dimensional supergravity as well
as some other AdS backgrounds that arise as near horizon geometries of intersecting M-
branes. We have found that some of the form bilinears on these backgrounds are KY
forms and so generate symmetries for spinning particle probes propagating on the internal
spaces.
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Chapter 6

W-symmetries, anomalies and
heterotic backgrounds with SU
holonomy

It is well known that 2-dimensional supersymmetric sigma models with couplings a metric,
g, and a Wess-Zumino term, b, are invariant under symmetries generated by ∇̂-covariantly
constant forms [128, 129, 106, 130, 131], where ∇̂ is a metric connection with torsion,
H = db. The sigma model target spaces considered so far are manifolds Nn that admit
such a connection ∇̂ whose holonomy is included in the groups U(n

2
), SU(n

2
), Sp(n

4
),

Sp(n
4
) · Sp(1), G2(n = 7) and Spin(7)(n = 8). We call these symmetries, holonomy

symmetries, since they arise from the reduction of the holonomy of ∇̂ to a subgroup of
O(n). It has been found that the algebra of holonomy symmetries is a W-algebra [106,
130, 131], i.e. the structure constants of the algebra depend on the conserved currents of
the theory. The structure of these algebras has been explored both in the classical and
quantum theory, see [106, 130, 131, 132, 133, 134, 135]. More recently in [136], some of
these backgrounds have been considered as target spaces of heterotic sigma models and
the chiral anomalies of these symmetries have been investigated.

Symmetries of heterotic sigma models are expected to be anomalous in the quantum
theory because of the presence of chiral worldsheet fermions in the sigma model actions
[137, 138, 139]. Preservation of the geometric interpretation of these theories requires the
anomaly cancellation of some of these symmetries. Certainly, after assigning an anoma-
lous variation to the sigma model coupling constant b [140], the anomalies of spacetime
frame rotations and the gauge sector transformations are cancelled. A consequence of
this variation, is a non-tensorial transformation law for H which appears as a coupling in
many vertices in the background field method of quantising the theory. The covariance
in the quantum theory is restored by modifying H with appropriate Chern-Simons terms
[141, 142] at all loops.

According to the classification of supersymmetric heterotic backgrounds [143, 144], a
more general class of spacetimes can be used as target spaces of heterotic sigma models
than those previously considered in the literature and stated above, for a review see
[107]. These backgrounds exhibit a variety of ∇̂-covariantly constant forms constructed
as Killing spinor bilinears all of which have been identified. All these forms generate
holonomy symmetries in heterotic sigma models. The purpose of this work is to identify
the algebra of symmetries generated by the covariantly constant form bilinears, as well as,
to find and investigate their chiral anomalies using Wess-Zumino consistency conditions.
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We shall demonstrate that the anomalies are consistent at one loop in the sigma model
perturbation theory. Furthermore, they cancel at the same order by either the addition of
plausible finite local counterterms in the sigma model effective action or by the assumption
that the transformations are appropriately quantum mechanically corrected.

In this chapter, we shall focus on two classes of heterotic supersymmetric backgrounds
those for which the connection with skew-symmetric torsion, ∇̂, has holonomy included
in SU(2) and in SU(3). The spacetime, M10, of the former backgrounds can be locally
described as a principal bundle whose fibre is a 6-dimensional Lorentzian Lie group G
with self-dual structure constants and base space a 4-dimensional conformally hyper-
Kähler manifold [143, 144, 107]. The holonomy symmetries of sigma models on SU(2)
holonomy backgrounds are generated by 1-forms and 2-forms. The 1-forms are those
associated with vector fields generated by the action of G on M10 with respect to the
spacetime metric g. In the SU(3) holonomy case, the spacetime is locally a principal
bundle with fibre a 4-dimensional Lorentzian Lie group G and base space a conformally
balanced Kähler manifold with torsion [143, 144, 107]. The holonomy symmetries are
generated by four 1-forms which are associated with the vector fields generated by G on
M10 with respect to g as well as one 2-form, I, and two 3-forms, L1 and L2.

We find that the closure of the algebra of holonomy symmetries in both cases requires
the inclusion of additional generators. The incorporation of right-handed worldsheet
translations and supersymmetry transformations generated by the right-handed energy-
momentum tensor, T , as well as the symmetries generated by the second Casimir operator
of the Lie algebra of G are required for the closure of the algebra of symmetries since the
sigma models we shall consider manifestly exhibit a (1,0) worldsheet supersymmetry. In
addition, the closure of the algebra of symmetries of the sigma model on SU(3) holonomy
backgrounds requires the symmetries generated by the conserved current which is the
product, TJI , of T with the conserved current, JI , of the symmetry generated by the
2-form I. In both cases, the symmetry algebra is a W-algebra because the structure
constants of the algebra depend on the symmetries’ currents.

To analyse the chiral anomalies of the holonomy symmetries, we assume that there is a
regularisation scheme which manifestly preserves the (1,0) quantum-mechanically world-
sheet supersymmetry of the theory. The fact that the perturbation theory for the model
can be done in (1,0) superfields justifies this. The anomalous part of the effective action
for spacetime frame rotations and gauge transformations has been computed in [101, 145].
After possibly including appropriate finite local counterterms [145] in the effective action
of the theory, the anomaly of spacetime frame rotations and transformations of the gauge
sector can be brought into the standard form given here in (6.30) and (6.31), respectively.
Then, the use of Wess-Zumino consistency conditions allows to show that the anomalies
of the holonomy symmetries of the sigma model generated by the ∇̂-covariantly constant
forms can be expressed in terms of the Chern-Simons form of an appropriate connection
as in (6.33) up to possibly spacetime frame rotation and gauge transformation invari-
ant terms, see also [136]. Similar arguments apply to the anomalies of the additional
symmetries required for the closure of the algebra of holonomy transformations.

We show that if the associated Chern-Simons terms are expressed in terms of the frame
connection associated with the connection with torsion −H, ∇̌, and the connection that
appears in the classical action of the gauge sector, all these anomalies are consistent at
one loop. In fact, the anomalous part of the effective action is naturally expressed in
terms of these connections [145]. The cancellation of anomalies is done in two different
ways. One way assumes that the form generators of the holonomy symmetries receive
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quantum mechanical corrections such that to the given order in perturbation theory
they are covariantly constant with respect to a new connection ∇̂ℏ with skew-symmetric
torsion Hℏ which includes the Chern-Simons form. Such a modification of the torsion
is also justified as part of the anomaly cancellation mechanism for the spacetime frame
rotation and gauge anomalies of the theory mentioned above. It is also consistent with
the fact that the Killing spinor equations of heterotic supergravity retain their form [146]
up to and including two loops in the sigma model perturbation theory provided that
the 3-form field strength H is replaced by Hℏ. Such a replacement is a consequence of
the cancellation of gravitational anomalies for heterotic supergravity [141]. For certain
symmetries, the anomaly cancellation is based on the existence of finite local counterterms
which can be added to the effective action. Under particular assumptions, we show that
these finite local terms can be used to remove the anomalies of the symmetries generated
by 1-forms and 2-forms.

This chapter is organised as follows. In section 1, we introduce the action of the
heterotic sigma model and present its sigma model and holonomy symmetries. We also
give the main formulae for the anomalies, present the consistency conditions and discuss
the mechanisms for anomaly cancellation. In section 2, we present the commutators of
the symmetries of the sigma model with target space the heterotic backgrounds with
SU(2) holonomy. We also give the anomalies of these symmetries, prove that they are
consistent and describe their cancellation. In section 3, we describe similar results for
the symmetries and anomalies of sigma models with target space heterotic backgrounds
with SU(3) holonomy. In section 4, we provide a summary.

6.1 Classical symmetries of chiral sigma models

6.1.1 Action and sigma model symmetries

The classical fields of the (1,0)-supersymmetric 2-dimensional sigma models that we shall
investigate are maps,X, from the worldsheet superspace Ξ2|1 with coordinates (σ=, σ=|, θ+)
into a spacetimeM , X : Ξ2|1 →M , and Grassmannian odd sections ψ of a vector bundle
S−⊗X∗E over Ξ2|1, where S− is the anti-chiral spinor bundle over Ξ2|1 and E is a vector
bundle over M . An action1 for these fields [140] is

S = −i
∫
d2σdθ+

(
(gµν + bµν)D+X

µ∂=X
ν + ihabψ

a
−D+ψ

b
−

)
, (6.1)

where g is a spacetime metric, b is a locally defined 2-form on M such that H = db is a
globally defined 3-form, D2

+ = i∂=|, h is a fibre metric on E and

D+ψ
a
− = D+ψ

a
− +D+X

µΩµ
a
bψ

b
− , (6.2)

with Ω a connection on E with curvature F . We take without loss of generality that
Dµhab = 0. We shall refer to the part of the action with couplings h and D as the gauge
sector of the theory. Note that

δS = −i
∫
d2σdθ+

(
δXµSµ +∆ψa

−Sa

)
, (6.3)

1The action can include a potential term [147]. But we shall not consider this here.
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where

∆ψa
− ≡ δψa

− + δXµΩµ
a
bψ

b
− , (6.4)

is the covariantisation of δψ− and

Sµ = −2gµν∇̂=D+X
ν − iψa

−ψ
b
−D+X

νFµνab ,
Sa = 2iD+ψ

a
− , (6.5)

are the field equations. In addition, the connection, ∇̂, is

∇̂νZ
µ = ∇νZ

µ +
1

2
Hµ

νλZ
λ , (6.6)

where ∇ the Levi-Civita connection on M with respect to the metric g and H is the
torsion of ∇̂ which is skew-symmetric.

The transformations of the fields X and ψ, as well as the coupling constants g, b,
h and Ω, that leave the action (6.1) invariant, are known as sigma model symmetries.
This is to distinguish them from the standard symmetries of a field theory which act
only on the fields and leave the action invariant. Clearly, such transformations are the
diffeomorphisms of the target space M as well as the gauge transformations of the gauge
sector. The fields and coupling constants under infinitesimal diffeomorphisms generated
by the vector field v transform as

δXµ = vµ , δgµν = −Lvgµν , δbµν = −Lvbµν ,
δψa

− = wa
bψ

b
− , δΩµ

a
b = −LvΩµ

a
b − ∂µw

a
b + wa

c Ωµ
c
b − Ωµ

a
cw

c
b ,

δhab = −Lvhab − wc
ahcb − hacw

c
b , (6.7)

where it is assumed that the diffeomophisms generated by the vector field v lift to the
vector bundle E and generate a fibre rotation2 w = w(v). The fields and coupling
constants under the infinitesimal gauge transformations of the gauge sector transform as

δuψ
a
− = uabψ

b
− , δuΩµ

a
b = −∂µuab + uacΩµ

c
b − Ωµ

a
c u

c
b ,

δuhab = −ucahcb − hacu
c
b , (6.8)

where u is the infinitesimal parameter, and the remaining fields and couplings of the
theory remain inert.

In quantum theory, it is practical to introduce a frame on the tangent bundle of the
spacetime. This is because it is convenient to express the quantum fiield in a frame basis
when computing the effective action using the background field method, see section 6.1.3
for more details. In such a case, if we write the metric as gµν = ηABe

A
µe

B
ν , then the action

of infinitesimal spacetime frame rotations will be

δℓe
A
µ = ℓABe

B
µ , δℓωµ

A
B = −∂µℓAB + ℓAC ωµ

C
B − ωµ

A
C ℓ

C
B , (6.9)

where ℓ is the infinitesimal parameter and ω is a frame connection of the tangent bundle
which we shall always assume preserves the spacetime metric. Of course, ω transforms
under diffeomorphisms as Ω in (6.7), as well as the spacetime (co-)frame eA.

The commutator of two gauge transformations (6.8) is [δu, δu′ ] = δ[u,u′], where [·, ·] is
the usual commutator of two matrices. A similar result holds for the commutator of two
spacetime frame rotations (6.9). In addition to these, there is a gauge symmetry

δbµν = (dm)µν , (6.10)

associated with 2-form gauge potential, where m is a 1-form on the spacetime.

2Typically, one sets w(v) = 0 as w(v)s generate gauge transformations which are independent sigma
model symmetries of the system.
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6.1.2 Holonomy symmetries

Consider the infinitesimal transformation generated by the vector ℓ-form, L,on the sigma
model target space.

δLX
µ = aLL

µ
λ1...λℓD+X

λ1 . . . D+X
λℓ ≡ aLL

µ
LD+X

L , ∆Lψ
a
− = 0 , (6.11)

where aL is the parameter chosen such that δLX
µ is even under Grassmannian parity,

the index L is the multi-index L = λ1 . . . λℓ and D+X
L = D+X

λ1 · · ·D+X
λℓ . The action

(6.1) is invariant under such transformations [106, 131] if L is an (ℓ + 1)-form, after
lowering the vector index with the metric g, and

∇̂νLλ1...λℓ+1
= 0 , Fν[λ1L

ν
λ2...λℓ+1] = 0 . (6.12)

The second condition3 above has appeared in [136] and generalises the condition required
for the model to admit (2,0) worldsheet supersymmetry, see [147]. Moreover, the param-
eter aL satisfies ∂=aL = 0, i.e. aL = aL(x

=|, θ+). It is straightforward to observe that for
ℓ = 0, L = K is a Killing vector field and iKH = dK. As H is a closed 3-form, LKH = 0.

The existence of ∇̂-covariantly constant forms implies the reduction4 of the holonomy
group of ∇̂ to a proper subgroup of SO. This occurs in several scenarios that include
string compactifications on special holonomy manifolds. The geometry of all supersym-
metric heterotic backgrounds has recently been shown in [143, 144] to be characterised
by the reduction of the holonomy group of the ∇̂ connection to a subgroup of SO(9, 1).
As a result of this reduction, ∇̂-covariantly constant forms on the spacetime which are
constructed as Killing spinor bilinears exist. In addition, the second condition in (6.12) is
a consequence of the gaugino Killing spinor equation. Therefore, the action (6.1) exhibits
symmetries associated with all these covariantly constant forms which will be investigated
below.

The commutator of two transformations (6.11) on the field X has been explored in
detail in [134]. Here, we shall summarise some of the formulae and emphasise some
differences as some assumptions made previously on the algebraic properties of the ∇̂-
covariantly constant tensors are not valid for those of general supersymmetric heterotic
backgrounds. Moreover, we shall describe the commutator of the transformations on the
field ψ. The commutator of two transformations (6.11) on the field X generated by the
vector ℓ-form L and the vector m-form M can be written as

[δL, δM ]Xµ = δ
(1)
LMX

µ + δ
(2)
LMX

µ + δ
(3)
LMX

µ , (6.13)

with

δ
(1)
LMX

µ = aMaLN(L,M)µLMD+X
LM , (6.14)

(δ
(2)
LMX)µ =

(
−maMD+aL(L ·M)νL2,µM2

3This can also be written as iLF = 0, where iL is the inner derivation of F with respect to the vector ℓ-
form L. In general, the inner derivation of a p-form, P , with respect to L is iLP = 1

ℓ!(p−1)!L
ν
LPνP2

dxLP2 ,

where P2 = µ2 . . . µp.
4The structure group of the spacetime reduces as well. The structure group is a subgroup of the

holonomy group of any connection.
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+ℓ(−1)(ℓ+1)(m+1)aLD+aM(L ·M)µL2,νM2

)
D+X

νL2M2 ,(6.15)

and

(δ
(3)
LMX)µ = −2iℓm(−1)ℓaMaL(L ·M)(µ|L2|,ν)M2∂=|X

νD+X
L2M2 , (6.16)

where

(L ·M)λL2,µM2 = Lρλ[L2M
ρ
|µ|M2] , (6.17)

and

NµLMdx
LM =

(
−HµνρL

ν
LM

ρ
M +mLνLHνµ1

ρMµρM2 − ℓMν
MHνλ1

ρLµρL2

+ℓmHρ
λ1µ1(L ·M)(µ|L2|,ρ)M2

)
dxLM

=
(
− (ℓ+m+ 1)H[µ|νρ|L

ν
LM

ρ
M ] + ℓmHρ

λ1µ1(L ·M)(µ|L2|,ρ)M2

)
dxLM .(6.18)

The multi-index M stands for M = µ1 . . . µm while the multi-indices L2 and M2 stand
for L2 = λ2 . . . λℓ and M2 = µ2 . . . µm, respectively. The tensor N(L,M) is the Nijenhuis
tensor of the vector-forms L andM which has been rewritten using that L andM are ∇̂-
covariantly constant. This concludes the description of the commutator of two holonomy
symmetries. The conserved current of a symmetry generated by the (ℓ+ 1)-form L is

JL = Lµ1...µℓ+1
D+X

µ1...µℓ+1 . (6.19)

In can be easily seen that ∂=JL = 0 subject to field equations (6.5).
The investigation of the commutator (6.13), requires to include the symmetries gen-

erated by the vector (q+1)-form

Sµνρ1...ρq = gµλSλ,νρ1...ρq = δµ[νQρ1...ρq ] . (6.20)

It turns out that if Q is a ∇̂-parallel q-form and iQF = 0, i.e. it satisfies (6.12), one can
show that the infinitesimal transformation

δSXµ = αS∇̂+D+X
νSν,µQD+X

Q +
(−1)q

q + 1
∇̂+(αSSµ,νQD+X

νQ)

− q + 3

3(q + 1)
αSH[µνρQQ]D+X

νρQ ,

∆ψa
− = −(−1)q

q + 1
αSQQFµν

a
bψ

b
−D+X

Qµν , (6.21)

is a symmetry of the action. To prove the invariance of the action (6.1) under the trans-
formations (6.21), the Bianchi identity below is needed. This identity will be important
later for the analysis of the anomaly consistency conditions.

R̂µ[ν,ρσ] = −1

3
∇̂µHνρσ , (6.22)

where H is taken to be a closed form, dH = 0. The associated conserved current is TJQ,
where T is the right-handed (super) energy-momentum tensor

T+=| = gµνD+X
µ∇̂+D+X

ν − 1

3
HµνρD+X

µνρ , (6.23)
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which does not depend on the left-handed fermionic superfield ψ. It can be easily demon-
strated using (6.22) that ∂=T = 0 subject to the field equations (6.5). Note that the
infinitesimal transformation generated by T is

δTX
µ = 2iα

T
∂=|X

µ +D+αT
D+X

µ , ∆Tψ
a
− = −α

T
Fµν

a
bψ

b
−D+X

µν , (6.24)

which is a right-handed worldsheet translation followed by a right-handed supersymmetry
transformation. The proof that the action (6.1) is invariant under (6.24) again requires
the use of the Bianchi identity (6.22).

To proceed, the commutator (6.13) has to be re-organised as a sum of variations
where each variation is independently a symmetry of the action. Such a re-organisation
has first been proposed for the models with H = 0 in [148] and later in the models with
H ̸= 0 in [134]. However, the ∇̂-covariantly constant forms of general supersymmetric
heterotic backgrounds that we shall be discussing, do not satisfy the necessary conditions
mentioned in these references. Locally, all supersymmetric heterotic backgrounds with
compact holonomy group are fibrations with fibre a group manifold5 [143, 144, 107].
The conditions mentioned in [148, 134] fail along the fibre directions but still apply
provided that the right-hand-side of the commutator (6.13) is restricted along orthogonal
directions to those of the fibres. Because of this, the formulae in [134] are still useful for
the analysis. Eventually, the whole commutator (6.13) of holonomy symmetries generated
by the ∇̂-covariantly constant forms of general supersymmetric heterotic backgrounds can
be rewritten as a sum of symmetries. But as we shall demonstrate, this will require the
addition of new generators which will be investigated on a case-by-case basis.

Next, let us consider the commutator of two (6.11) transformations on the field ψ. As
∆Lψ = ∆Mψ = 0, one finds that

[δL, δM ]ψa
− = −Ωµ

a
b[δL, δM ]Xµψb − Fµν

a
bδLX

µδMX
νψb

− . (6.25)

Therefore, the commutator may give rise to a non-trivial transformation, ∆LM , on ψ
given by

∆LMψ
a
− = −FµνabδLXµδMX

νψb
− . (6.26)

Such a transformation, which appears on the right-hand side of the commutator of two
holonomy transformations, may have been expected for consistency as the invariance of
the action under (6.24) and (6.21) require such a contribution.

For the analysis of anomalies described below, it is necessary to find the commutators
of sigma model and holonomy symmetries. As it can always be arranged for the diffeo-
morphism sigma model symmetries not to be anomalous up to possibly the addition of a
finite local counterterm in the effective action [101], it remains to describe the commuta-
tor of gauge transformations (6.8) and (6.9) with the holonomy symmetries (6.11). It is
straightforward to see that they commute

[δℓ, δL] = [δu, δL] = 0 , (6.27)

on both X and ψ fields.

5The spacetime of these backgrounds is a principal bundle, P , with fibre a Lorentzian Lie group, G,
and base space, B, a suitable Riemannian manifold with skew-symmetric torsion. In general, the total
space, E, may not be necessarily of product form, G×B, either topologically or metrically.
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6.1.3 Anomaly consistency conditions

The background field method [149, 150, 151] allows to retain most of the geometric
properties of sigma models in the quantum theory. This involves the splitting of the (total)
field of the theory into a background field, that is treated classically, and a quantum field
that is quantised. However, the understanding of the quantum theory presents several
challenges as this splitting is non-linear for sigma models. These challenges include the
non-linear split symmetry [152] needed to control the counterterms to correctly subtract
the ultraviolet infinities and determine the effective action, Γ, from the 1PI diagrams
with only external background lines6. After writing the theory in terms of background
and quantum fields and considering the effective action constructed from 1PI diagrams
with external background lines only, some of the symmetries of the theory, like those of
spacetime frame rotations and gauge sector transformations, act linearly on the quantum
fields, for a detailed discussion see [154]. Investigation of such symmetries is significantly
simpler. Unfortunately, this does not apply to the holonomy symmetries, where the
induced transformations on the quantum fields are non-linear, and a much more in-
depth analysis is required [148]. To proceed, we shall consider the effective action, Γ,
computed from 1PI diagrams with only external background lines. Then, after stating
the spacetime frame rotations and gauge transformation anomalies, which we take to
be expressed in terms of the background fields, we shall use Wess-Zumino consistency
conditions to determine the anomalies of the holonomy symmetries. From now on, it will
be assumed that all fields that are included in the expression for the anomalies as well
as those that appear in the various transformations required for the investigation are the
background fields.

Suppose that the classical theory is invariant under the symmetry algebra whose
variations on the fields satisfy the commutation relations

[δA, δB] = δ[A,B] , (6.28)

where δA (δB) is a transformation on the (background) fields generated by A (B) generator
with parameter a

A
(a

B
) and [A,B] is the commutator of the two generators. If these

symmetries are anomalous in the quantum theory, i.e. δAΓ = ∆(a
A
), then applying the

commutator (6.28) on Γ, one finds that

δA∆(a
B
)− δB∆(a

A
) = ∆(a

[A,B]
) . (6.29)

These relations between anomalies are known as Wess-Zumino anomaly consistency con-
ditions7. A solution of these conditions will yield an expression for the anomaly of a
symmetry in terms of the fields.

It is well known that the anomaly associated with the gauge transformations (6.9)
is determined by the descent equations [101] starting from a 4-form, P4(R) = tr(R(ω) ∧
R(ω)), which is proportional to the first Pontryagin form of the manifold, where R is the
curvature of a connection ω. As this is closed, one can locally write P4(R) = dQ0

3(ω),
where Q0

3 is the Chern-Simon form. As P4 is invariant under the gauge transformations
(6.9), one has that dδℓQ

0
3(ω) = 0 and so δℓQ

0
3(ω) = dQ1

2(ℓ, ω). The gauge anomaly8 is

6Potential anomalies in the shift symmetry have been examined in [153].
7It is customary in the investigation of Wess-Zumino consistency conditions for anomalies to use the

BRST formalism. We shall not do this here. Instead, we shall use the commutators as these emphasise
the geometry structure of the theory.

8For applications to string theory, replace in the formulae below ℏ with α′.
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given by

∆(ℓ) =
iℏ
4π

∫
d2σdθ+Q1

2(ω, ℓ)µνD+X
µ∂=X

ν , (6.30)

where the numerical coefficient in front is determined after an explicit computation of
the term in the effective action that contributes to the anomaly. A similar calculation
reveals that the anomaly of the gauge transformation (6.8) is

∆(u) = − iℏ
4π

∫
d2σdθ+Q1

2(Ω, u)µνD+X
µ∂=X

ν . (6.31)

The connection that appears in the expressions for the anomalies is not uniquely defined
since it can be altered upon adding a finite local counterterm in the effective action
[101]. Later, this flexibility in choosing the connection that appears in the expressions
for the anomaly will be used to demonstrate the consistency of Wess-Zumino conditions.
Furthermore, notice that despite the Chern-Simons form having a standard expression,
Q0

3 is specified up to an exact form, Q0
3 → Q0

3 + dW . It turns out that this can be
used to cancel some of the anomalies by adding an appropriate finite local counterterm
constructed from W in the effective action.

As the commutator of gauge symmetries with the holonomy symmetries vanishes
(6.27), the anomaly consistency conditions (6.29) in this case imply that

δℓ∆(a
L
)− δL∆(ℓ) = 0 , (6.32)

and similarly for the gauge transformations (6.8), where ∆(a
L
) is the anomaly of the

holonomy symmetry generated by L. A solution to both consistency conditions is

∆(a
L
) =

iℏ
4π

∫
d2σdθ+Q0

3(ω,Ω)µνρδLX
µD+X

ν∂=X
ρ +∆inv(aL

) , (6.33)

up to possibly δℓ- and δu-invariant terms, ∆inv(aL
), where Q0

3(ω,Ω) = Q0
3(ω) − Q0

3(Ω).
This form of the holonomy symmetry anomaly is also consistent with the second com-
mutator in (6.27). From here on, we shall take ∆inv(aL

) = 0.
In the case that L is a Killing vector field K, L = K such that iKP4 = 0, one has that

LKP4 = 0 and so dLKQ0
3 = 0. Thus LKQ0

3(ω) = dQ1
2(aK

, ω). Then it is straightforward
to show that the anomaly can be wirtten as

∆(aK) =
iℏ
4π

∫
d2σdθ+Q1

2(ω, aK)µνD+X
µ∂=X

ν . (6.34)

∆(aK) satisfies the consistency conditions that arise from the commutator of isometries
of the sigma model target space.

It remains to investigate the consistency of (6.33) with respect to the commutators
of holonomy symmetries. Consider two holonomy symmetries generated by the forms L
and M . After a direct computation, one finds that

δL∆(a
M
)− δM∆(a

L
) =

iℏ
4π

∫
d2σdθ+P4(R,F )µνρσδLX

µδMX
νD+X

ρ∂=X
σ

+
iℏ
4π

∫
d2σdθ+Q0

3(ω,Ω)µνρ[δL, δM ]XµD+X
ν∂=X

ρ , (6.35)
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where P4(R,F ) = P4(R) − P4(F ). It turns out that the above consistency condition is
more general. If the anomaly of two transformations δ1 and δ2 is given as in (6.33), then
their mutual consistency condition will be given as in (6.35) with δL = δ1 and δM = δ2.

A comparison of (6.35) with the anomaly consistency condition (6.29) suggests the
terms that contain P4(R,F ) in the right-hand side of (6.35) may potentially give rise to
an inconsistency. In fact, the consistency condition is more subtle as it also depends on
whether the individual symmetries that appear on the right-hand side of the commutator
[δL, δM ] are anomalous. If they are not anomalous, then the whole right-hand side of (6.35)
must vanish for consistency. It is clear that the study of these consistency conditions
depends on the symmetries that arise in the commutator [δL, δM ]. This in turn depends
on the geometry of the heterotic backgrounds, particularly the details of the properties
of L and M forms.

6.1.4 Anomaly cancellation and consistency conditions revis-
ited

The number of Killing spinors and the holonomy of ∇̂ for heterotic backgrounds are
thought to be preserved in some form under quantum corrections to possibly all orders in
perturbation theory. There are two scenarios of how this can happen. Let us focus on the
anomaly cancellation at one loop to explain them. We shall comment in the concluding
remarks about anomaly cancellation in higher orders. First, one may expect that finite
local counterterms could remove the anomalies. This is mostly the case whenever there
is a renormalisation scheme that prevents L, the symmetry generator, from receiving
quantum corrections. To illustrate this, consider a spacetime Rk × N10−k and L = I a
complex structure on N10−k. In this scenario, the part of the sigma model action on N10−k

has a second supersymmetry generated by I and the theory is (2,0) supersymmetric.
In complex coordinates that I is constant, the (2,0) supersymmetry transformations are
linear in the fields. Therefore, one should not expect these transformations to be corrected
in the quantum theory. Furthermore, since the perturbation theory can be set up using
(2,0) superfields, one should not expect a (2,0) supersymmetry anomaly. These manifestly
preserve the symmetry. Thus, there must be a renormalisation scheme that manifestly
preserves the (2,0) supersymmetry. Indeed, it has been shown that if the perturbation
theory is set up in (1,0) superfields, then the anomaly (6.33) of the symmetry generated
by I is cancelled by a finite local counterterm [142, 154].

Secondly, it is plausible that L will receive quantum corrections. This scenario is
consistent with the fact that the Killing spinor equations of heterotic supergravity retain
their form up to and including two loops9 in the sigma model perturbation theory [146].
These quantum corrections require to replace H with Hℏ. Let us denote the quantum
corrected L with Lℏ. Then note that (6.33) in terms of Lℏ can be rewritten as

δℏLΓ = δℏL(Γ
(0) + ℏΓ(1)) = ∆L(aL) =⇒

−i
∫
d2σdθ+

(
aL

2(−1)ℓ

ℓ+ 1
∇̂ℏ
µL

ℏ
L+1∂=X

µD+X
L+1 − iaLL

ℏµ
LF

ℏ
µνabψ

aψbD+X
Lν

+2i∆ℏ
Lψ

a
−Dℏ

+ψ−a

)
= 0 +O(ℏ2) , (6.36)

9Therefore, from the supergravity perspective, the anomalies cancel up to and including two loops in
the sigma model perturbation theory.
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where ∇̂ℏ is the quantum corrected connection10 with skew-symmetric torsion

Hℏ = H − ℏ
4π
Q0

3(ω,Ω) +O(ℏ2) . (6.37)

Similarly, Dℏ is the quantum corrected connection of the gauge sector and for the holon-
omy symmetries ∆ℏ

Lψ = 0. Nevertheless, as we shall see later, this term must be
added as it contributes to the commutator of two holonomy symmetries. Observe that
dHℏ = − ℏ

4π
P4(ω,Ω), i.e is not closed. It is evident that the anomaly is cancelled,

δℏLΓ = 0+O(ℏ2), provided that Lℏ is covariantly constant with respect to ∇̂ℏ, ∇̂ℏLℏ = 0,
and iLℏF ℏ = 0, i.e. the second condition in (6.12) is satisfied with F = F ℏ and L = Lℏ.

Note that the correction of H as in (6.37) is also required to restore the tensorial
properties of the 3-form coupling H. A non-trivial transformation on H at one loop
arises as a consequence of the anomalous variations to b [140] at the same loop order,
δℓb =

ℏ
4π
Q1

2(ℓ, ω) and δub = − ℏ
4π
Q1

2(u,Ω), which are needed to cancel the frame rotations
and gauge anomalies, respectively. The transformation of H is cancelled in Hℏ by the
zeroth order variation of the Chern-Simons term. Hence Hℏ is invariant under such a
transformation up to order O(ℏ2). This appropriately persists to all loop orders [142,
154].

The cancellation of holonomy anomalies described above is also consistent with the
corrections to the heterotic supergravity up and including two loops in the sigma model
perturbation theory. It is known that the Killing spinor equations of the theory remain
unaltered to this loop order provided one replaces the 3-form field strength H with Hℏ

[146]. The Killing spinors ϵ are consequently parallel with respect to the spin connection
of ∇̂ℏ, ∇̂ℏϵ = 0. Thus, the Killing spinor bilinears can automatically be identified with
Lℏ and they are covariantly constant with respect to ∇̂ℏ. Finally, the gaugino Killing
spinor equation of the theory implies that iLℏF ℏ = 0.

To continue, let us review the consistency condition (6.35) considering the implications
of corrections on L and M . It can be re-derived by varying (6.36) with δℏM and taking
the commutator. After assuming that iLℏF ℏ = iMℏF ℏ = 0, the final expression can be
cast into the form

−i
∫
d2σdθ+

(
− 2gµν [δ

ℏ
L, δ

ℏ
M ]Xµ∇̂ℏ

=D+X
ν + dHℏ

µνρσδ
ℏ
LX

µδℏMX
νD+X

ρ∂=X
σ

+2i(∆ℏ
LMψ

a
− + F ℏ

µν
a
bψ

b
−δ

ℏ
LX

µδℏMX
ν)Dℏ

+ψ−a

)
= 0 +O(ℏ2) , (6.38)

where ∆ℏ
LMψ

a
− ≡ δℏLMψ

a
− + Ωℏ

µ
a
bδ

ℏ
LMX

µψb
− and it should be read as the covariantisation

of the right-hand side of the commutator on ψ (6.25) after it has been decomposed as a
sum of individual symmetries.

The symmetries appearing in the right-hand side of the commutator [δℏL, δ
ℏ
M ] will

determine how we may proceed. It turns out that, provided our previous assumption
that iLℏF ℏ = iMℏF ℏ = 0, the term in (6.38) involving variations of the field ψ is always
satisfied in all cases. In all examples, we shall be considering, the commutator on X will
read

[δℏL, δ
ℏ
M ] = δℏN + δℏS + δℏJP , (6.39)

10It is expected that both g and b are also corrected in quantum theory to gℏ and bℏ, respectively. This
is especially the case whenever one searches for a scheme to make the theory manifestly superconformal,
i.e. a scheme that the beta function vanishes. So ∇̂ℏ should be taken with respect to gℏ and bℏ. But for
simplicity in what follows, we shall drop the ℏ superscript from g and b.
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where δℏN is a symmetry generated by a ∇̂ℏ-covariantly constant form N with parameter
aN constructed from those of δℏL and δℏM , and δℏS is a transformation given in (6.21) with
a parameter αS constructed again from those of δℏL and δℏM . Next δℏJP is a transformation
again generated by ∇̂ℏ-covariantly constant forms collectively denoted by P but now
with parameters constructed from those δℏL and δℏM and some conserved currents J of the
theory. The structure of δℏJP will be explained below. We will label, type I, type II, and
type III, the three different types of transformations that take place on the right side
of a commutator. Naturally, a typical commutator will close to a linear combination of
all 3 types of transformations. The consistency condition in each case will be separately
treated.

Type I: If a commutator closes to a δℏN type of symmetry, then the consistency con-
dition (6.38) is

P (ω,Ω)µν[ρ|σ|L
µ
LM

ν
M ] = 0 , (6.40)

as the first term vanishes because N is ∇̂ℏ covariantly constant and ∂=aN = 0. Note that
the condition is expressed in terms of L and M as P (ω,Ω) is first order in ℏ.

Type II: If the commutator closes to a δℏS symmetry, the first term in (6.38) contributes
to the consistency condition since the Bianchi identity (6.22) is involved to prove that a
S type symmetry leaves the classical action invariant. Note that the Bianchi identity is
modified to

R̂µ[ν,ρσ] = −1

3
∇̂µHνρσ −

1

6
dHµνρσ , (6.41)

for dH ̸= 0. This is the case here as dHℏ ̸= 0. Therefore the consistency condition now
reads

αS
(−1)q

3(q + 1)
P (ω,Ω)σ[ρλτQQ] + aMaLP (ω,Ω)µν[ρ|σ|L

µ
LM

ν
M ] = 0 , (6.42)

where αS is expressed in terms of aL and aM , and the indices satisfy λτQ = LM .
Type III: Finally, suppose that a commutator closes to a δℏJP type of symmetry which

has to be analysed as a straightforward modification of a transformation generated by a
a covariantly constant form P by allowing the parameter aP to depend on σ=, ∂=aP ̸= 0,
is not always11 a symmetry of the classical action. Thus, it is not expected to be a
symmetry of the quantum theory. However, since the commutator of two symmetries δL
and δM of a classical action is also a symmetry of the theory, δJP must be a symmetry
as well. To achieve this, there should exist L′ and M ′ ∇̂-covariantly constant forms that
satisfy (6.12) such that

δJP = (m′ + 1)cL′JL′δM ′ + (ℓ′ + 1)cM ′JM ′δL′ , (6.43)

for some constants cL′ and cM ′ and with parameters related12 as (−1)(ℓ
′+1)(m′+1)cL′aM ′ =

cM ′aL′ , where JL′ is the current associated to L′ as in (6.19) and similarly for JM ′ . Indeed,
one has that

δJPS = −i
∫
d2σdθ+

(
δJPX

µSµ
)

11Though in some cases, aP depends on the currents of the theory in such a way that δℏJP is a symmetry,
see SU examples below.

12As the transformation δJP arises in the right hand side of the commutator [δL, δM ], the parameters
aL′ and aM ′ are expressed in terms of aL and aM and so they are related.
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= −i
∫
d2σdθ+

(
− 2(−1)ℓ

′m′
cM ′aL′∂=(JM ′JL′)

)
= 0 , (6.44)

where we have used the condition on F in (6.12) for both the forms L′ and M ′ Repeating
this computation in the quantum theory reveals that the first term in the consistency
condition vanishes and (6.40) must be satisfied.

The treatment of type III commutators discussed above can be extended to include
cases with currents, JA and JB, associated with the symmetries, δA and δB, respectively,
which are not necessarily generated by a ∇̂-covariantly constant form, i.e. δJP = cBJAδB+
cAJBδA. Note that one may let the parameter aB to depend on σ= in order to calculate
the current for a symmetry generated by the variation δB. Then it is known that

δBS ∼
∫
d2σdθ+∂=aBJB . (6.45)

Using the above formula of calculating a current and after replacing aB with JAaB, where
now ∂=aB = 0, and similarly for JA, one finds that

δJPS ∼
∫
d2σdθ+aA∂=(JAJB) = 0 , (6.46)

after an appropriate choice of constants cA and cB and a relation amongst the parameters
aA and aB. However if the Bianchi identity (6.22) is used to arrange the δJP variation of
the action as above, then the consistency of anomalies will require the condition (6.42)
instead of (6.40).

6.2 Anomalies and holonomy SU(2) backgrounds

6.2.1 Summary of the Geometry

The spacetime of supersymmetric heterotic backgrounds for which the holonomy of ∇̂
is included in SU(2) admits six ∇̂-parallel 1-forms ea, a = 0, . . . , 5 and three ∇̂-parallel
2-forms Ir such that the Lie bracket algebra of the associated vector fields ea to ea is a
6-dimensional Lorentzian Lie algebra with self-dual structure constants Ha

bc. As a result
ea are Killing vector fields13. In addition, we have that LeaH = 0. Moreover,

ieaIr = 0 , LeaIr = 0 . (6.47)

Furthermore, the endomorphisms (vector 1-forms) Ir, g(X, IrY ) = Ir(X, Y ), satisfy

IrIs = −δrs(1− ea ⊗ ea) + ϵrs
t It . (6.48)

These backgrounds admit 8 Killing spinors and all these forms arise as Killing spinor
bilinears.

The metric and 3-form field strength of the backgrounds can be written as

g = ηabe
aeb + g̃ , H =

1

3
ηabe

a ∧ deb + 2

3
ea ∧ F b + H̃ , (6.49)

13So far, we have used K to denote the Killing vector fields and we shall continue to do so in the
analysis of the anomalies that will follow. But here, we stress with ea that these 1-forms can be used as
part of a pseudo-orthonormal (co-)frame on the spacetime.
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where η is the Minkowski space metric and g̃ = δije
iej with ei an orthonormal (co)-frame

orthogonal to ea. Moreover, Fa = dea− 1
2
Ha

bce
b∧ec = 1

2
Ha

ije
i∧ej and ieaH̃ = ieaF b = 0.

Furthermore, LeaH̃ = 0 and Fa is an (1,1)-form14 with respect to all three endomorphisms
Ir, i.e. F(IrX, IrY ) = F(X, Y ) ( no summation over r).

The Killing spinor equations also restrict the curvature of connection, F , of the gauge
sector. The conditions are that ieaF = 0 and F (IrX, IrY ) = F (X, Y ) ( no summation
over r). Therefore, F is anti-self dual in the directions orthogonal to the orbits of the
isometry group.

The geometry of such spacetime, M10, locally can be modelled as that of a principal
bundle over and HKT 4-dimensional manifold N4 with metric g̃ and torsion H̃, princi-
pal bundle connection ea whose curvature is F and fibre a group manifold, G, whose
(Lorentzian) Lie algebra is R6, sl(2,R)⊕ su(2) or cw6 with self-dual structure constants.
Moreover N4 is conformally hyper-Kähler, i.e there is a hyper-Kähler metric on N4, g̊,
such that g̃ = e2Φg̊, where Φ is the dilaton. The hypercomplex structure on N4 is spanned
by the three endomorphisms Ĩr and the associated Kähler forms I̊r are closed. For more
details on the geometry of supersymmetric heterotic backgrounds with SU(2) holonomy,
see [143, 144, 107]. Note that M10 may not be a product G×N4 either topologically or
metrically. The curvature F may not be zero.

6.2.2 SU(2) holonomy symmetries and their commutators

The symmetries generated by the form bilinears ea and Ir are

δKX
µ = aa

K
eµa , δIX

µ = arI(Ir)
µ
νD+X

ν , (6.50)

with ∆Kψ = ∆Iψ = 0. Let us clarify our notation, we use the pseudo-orthonormal frame
(eA) = (ea, ei) and define δXA = eAµ δX

µ, D+X
A = eAµD+X

µ and ∂=|X
A = eAµ∂=|X

µ. In
this notation δKX

a = aa
K

and δIX
i = arI(Ir)

i
jD+X

j with all the other components of
the variations to vanish. The closure of the algebra of these transformations requires the
following symmetry15

δCX
a = α

C
∇̂+D+X

a + ∇̂+(αC
D+X

a) , (6.51)

with δCX
i = ∆Cψ = 0. The δC symmetry is associated with the quadratic Casimir

operator of the Lie algebra of isometries and the conserved current is

C = ηabe
a
µe

b
νD+X

µ∇̂+D+X
ν . (6.52)

It is straightforward to verify using the algebraic properties of the form bilinears that

[δK , δ
′
K ]X

µ = aa
K
a′b

K
[ea, eb]

µ = −aa
K
a′b

K
Hab

ceµc = δ′′KX
µ ,

[δK , δI ]X
µ = aa

K
arI(LeaIr)

µ
νD+X

ν = 0 , (6.53)

where (a′′
K
)c = −aa

K
a′b

K
Hab

c.

14Here, we have adopted the terminology of hypercomplex geometry to assign a holomorphic and anti-
holomorphic degree for forms even though Ir is not a hypercomplex structure over the whole spacetime.

15Although the variations of the symmetries on the fields are given in frame indices, for the compu-
tations of the commutators below it is convenient to re-express them in spacetime indices as those in
section 6.1.2.
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It remains to compute the commutator of two symmetries generated by Ir. To carry
out the above computation, it is helpful to notice that N(Ir, Is)

i
jk = 0. After some

computation, one finds that

[δI , δ
′
I ] = δT + δC + δK + δ′′I , (6.54)

where α
T
= a′sI a

r
Iδrs, αC

= −a′sI arIδrs, aaK = a′sI a
r
IδrsH

a
bcJ

b
KJ

c
K and a′′tI = −(a′sI D+a

r
I +

arID+a
′s
I )ϵrs

t. Notice that the parameter of the transformation δK in the right-hand side
of the commutator depends quadratically on the currents JK associated with isometries.
Nevertheless, δK with the above field-dependent parameter is a symmetry of the theory
because it can be rewritten as

δH̄X
a = a

H̄
Ha

bcD+X
bc , (6.55)

for some parameter a
H̄
, ∂=aH̄

= 0, generated by

H̄ =
1

3!
Habce

abc . (6.56)

H̄ is a ∇̂-covariantly constant form as a consequence of the Bianchi identity (6.22) and the
SU(2) holonomy of ∇̂. In principle, we could have introduced (6.55) as an independent
symmetry and compute its commutators. The advantage of this approach would be a
standard Lie algebra as the symmetry algebra of the sigma model, instead of the W-type
of algebra with current dependent structure constants that emerges in (6.54). Initially, we
followed this path, but we later came to the conclusion that it would be more economical
for the presentation that follows not to consider (6.55) as an independent symmetry and
express the commutator of two δI transformations as (6.54).

The commutator of two δI transformations on ψ (6.25) can be expressed as (6.54),
where

∆IIψ
a
− = ∆Tψ

a
− = −a′sI arIδrsFµνabψb

−DX
µν , (6.57)

and ∆Cψ = ∆′′
Iψ = 0.

The remaining commutators are

[δC , δI ] = 0 , [δK , δC ] = δ′K , [δC , δ
′
C ] = δ′′C + δ′′K , (6.58)

where a′aK = 2iαC∂=|a
a
K + D+αCD+a

a
K + 2Ha

bcαCD+a
b
KJ

c
K , a

′′
H̄

= α′′
C = D+α

′
CD+αC +

2i(α′
C∂=|αC − αC∂=|α

′
C) and a′′aK = α′′

CH
a
bcJ

b
KJ

c
K . Note again that the parameters of the

δ′K and δ′′K transformations are field dependent via the currents of the theory and so the
algebra of symmetries is a W-algebra. As we have explained the field dependent part of the
δ′′K transformation is a symmetry of the action as it can be interpreted as a δH̄ symmetry.
Similarly, for the field dependent part of δ′K transformation since δH⃗X

a = ab
H⃗
Ha

bcD+X
c

is a symmetry of the sigma model action generated by the ∇̂-covariantly constant 2-forms
H⃗a = −1

2
Habce

bc. But as we have already mentioned, we have not proceeded in this way.
Note also that for all transformations in (6.58) ∆ψ = 0 and ∆CI = ∆KC = ∆CC = 0.
Below, we shall demonstrate the symmetries generated by K and C are not anomalous
as their anomalies can be cancelled with the addition of a finite local counterterm in the
effective action of the theory.
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6.2.3 Anomalies and consistency conditions

The analysis of the anomalies of these models is similar to that of the standard (2,0)-
supersymmetric chiral sigma models in [142, 154]. However, there are some key differ-
ences. There are potentially anomalous isometries present in this class of sigma models.
In addition, I is not associated with a second supersymmetry as it is not a complex
structure over the whole spacetime – the commutator of two transformations generated
by I given in (6.54) also reflects this fact. Nevertheless, the analysis presented in [154] for
(2,0)-supersymmetric sigma models can be appropriately adjusted to apply to this case
as follows.

So far, the connection on M10 that contributes in the anomalies (6.30) and (6.33)
has been arbitrary. From now on, we shall set ω = ω̌, where ω̌ is the frame connection
associated with ∇̌, whose torsion is −H. It is well known that if dH = 0, then R̂µν,ρσ =

Řρσ,µν . Observe that iKP4(Ř, F ) = 0 as a consequence of the holonomy of ∇̂ being
contained in SU(2), the curvature 2-form Ř satisfies iKŘ = 0 and Ř(IrX, IrY ) = Ř(X, Y )
(no summation over r = 1, 2, 3). This in turn implies that iKP4(Ř) = 0 and as a result
of the gaugino KSE, iKP4(F ) = 0.

The potential anomalies associated with δK , δI , and δC are given as in (6.33) with δL
replaced with the symmetry under investigation. This is the case as those transformations
commute with both frame rotations δℓ and δu gauge transformations.

The commutators of δK with δK , δI and δC either vanish or close to a type I and a type
III transformation, see (6.53) and (6.58). The type III transformation is a symmetry with
the current dependent parameter stated. The condition (6.40) required for the consistency
of the anomalies is satisfied as a result of iKP4(Ř, F ) = 0. Similarly, for the commutator
of δC with δI in (6.58).

The commutator of two δC transformations in (6.58) closes to a type II and a type III
transformation generated by C and K, respectively. The latter is a symmetry regardless
of the current dependent parameters given in (6.54). It is straightforward to check that
the consistency condition (6.42) is also satisfied because iKP4(Ř, F ) = 0.

The commutator of two δI symmetries, (6.54), closes to a type I transformation gen-
erated by I, two type II transformations generated by T and C, respectively, and a type
III transformation generated by K. The latter is a symmetry with the current dependent
parameter indicated. In this scenario, the consistency condition needed is given in (6.42),
with the first term associated with the transformation generated by T . The contribution
of C and K transformations vanishes as iKP4(Ř, F ) = 0. Setting L = Ir and M = Is in
the second term in (6.42) demands that P4(Ř, F ) should be a (2,2)-form with respect to
all three endomorphisms Ir in order to be satisfied. It turns out that this is the case as a
consequence of the conditions Ř(IrX, IrY ) = Ř(X, Y ) and F (IrX, IrY ) = F (X, Y ) ( no
summation over r) of the curvature 2-forms.

Therefore, we have shown that the anomalies of all symmetries are consistent at least
at one loop. Following the analysis of section 6.1.4, it can be argued that the anomalies
of these symmetries are removed if the forms which generate the holonomy symmetries
get quantum corrected as explained before. In the next subsection we shall examine the
cancellation of some of these anomalies by adding finite local counterterms in the effective
action.
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6.2.4 Anomaly cancellation and finite local counterterms

The consistency and cancellation of anomalies for holonomy symmetries have already been
discussed in section 6.1.4. Here we shall explore whether the anomalies of the symmetries
generatedK, C and I can be cancelled under certain conditions with the addition of finite
local counterterms in the effective action. The global anomaly is cancelled provided that
P4(Ř, F ) is an exact 4-form. Next P4(Ř, F ) satisfies iKP4(Ř, F ) = 0 and LKP4(Ř, F ) = 0.
Therefore, there is a P̃4 on N

4 such that P4(Ř, F ) = π∗P̃4, where π is the projection from
the spacetime M10 to the orbit space, N4, of the group of isometries. As dP̃4 = 0, there
is Q̃0

3 such that P̃4 = dQ̃0
3. Therefore, one has

Q0
3(ω̌,Ω) = π∗Q̃0

3 + dW , (6.59)

where W is a 2-form on M10. This allows to add the finite local counterterm

Γfl
(1) = − iℏ

4π

∫
d2σdθ+WµνD+X

µ∂=X
ν , (6.60)

in the effective action. Adding this finite local couterterm implies that the anomalies of
all the symmetries written as (6.33) now will be given with π∗Q̃0

3 in place of Q0
3(ω̌,Ω).

This finite local counterterm removes the anomalies of the symmetries δK and δC since
iKπ

∗Q̃0
3 = 0. Thus, these transformations are not anomalous. The same would have been

the case, if we had considered the symmetries generated by H̄ and H⃗ as independent
symmetries.

It remains to investigate the cancellation of the remaining anomalies of the theory.
For this notice that the Hodge dual of P̃4 on N4 taken with respect to the hyper-Kähler
metric g̊, ⋆̊P̃4, is a scalar. As P̃4 is exact, ⋆̊P̃4 is not harmonic. Therefore, there exists16

a function f̃ on N4 such that ⋆̊P̃4 = ∇̊2f̃ , where ∇̊ is the Levi-Civita connection on N4

with respect to g̊. As a result, one can write

Q̃0
3 = −̊⋆df̃ + dX̃ , (6.61)

where X̃ is a 2-form on N4. Observe that Q̃0
3 can also be written as

Q̃0
3 = drY̊r + dX̃ , no summation over r , (6.62)

where Y̊r = I̊rf̃ and I̊r is the Kähler form of the hyper-Kähler metric g̊ on N4 associated
with the complex structure Ir, and dr = i

Ir
d− di

Ir
.

Next, adding the following finite local counterterm in the effective action

Γfl
(2) = − iℏ

4π

∫
d2σdθ+

(
(π∗X̃)µν + f (π∗g̊)µν

)
D+X

µ∂=X
ν , (6.63)

where f = π∗f̃ . It can be shown that the anomalies, ∆(aI), associated with the symme-
tries generated by Ir endomorphisms cancel as well.

The frame rotations and gauge transformations anomalies can be modified with the
inclusion of the finite local counterterms Γfl

(1) and Γfl
(2) as

δℓ(Γ + Γfl
(1) + Γfl

(2)) = ∆(ℓ) + δℓΓ
fl
(1) + δℓΓ

fl
(2) , (6.64)

16This is the case provided that N4 is compact. The same applies for N4 non-compact provided that
the operator ∇̊2 has an inverse and ⋆̊P̃4 is in the range of the operator. For a non-compact example take
N4 = R4

with the flat metric and P̃4 constructed using anti-self-dual instantons, see [155].
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and similarly for the gauge anomaly ∆(u). The cancellation of these anomalies is done
after assigning an anomalous variation to both the spacetime metric g and b coupling of
the sigma model action (6.1).

We can refine this approach if we assume the parameters of the frame rotations and
gauge transformations depend only on the coordinates of N4. In such a case notice that
Q0

3 can be written as

Q0
3(ω̌,Ω) = π∗(̊δ̊⋆f̃) + dπ∗X̃ + dW , (6.65)

where δ̊ is the adjoint of d on N4 with respect to the hyper-Kähler metric. If ℓ depends
only on the coordinates of N4, then

d(Q1
2(ℓ, ω̌)− δℓπ

∗X̃ − δℓW ) = π∗(̊δ̊⋆δℓf̃) , (6.66)

where we have used that ℓ does not depend on the fibre coordinates in the term on the
right-hand side.

As a consequence of the right-hand side vanishing along the orbits of the isometry
group, the same should hold for the left-hand side in the expression above. In addition,
the Lie derivative of the left-hand side vanishes along the directions of the orbits of the
isometry group. Therefore, d(Q1

2(ℓ, ω̌)−δℓπ∗X−δℓW ) is the pull-back of a 3-form on N4.
Assuming that it is the pull-back of an exact 3-form on N4 and using the orthogonality
of exact and co-exact forms on N4, one concludes that

Q1
2(ℓ, ω̌) = δℓπ

∗X + δℓW + dL , δℓf̃ = 0 , (6.67)

for some 1-form L on the spacetime. As a result, the finite local counterterms Γfl
(1) and Γfl

(2)

cancel also the spacetime frame rotation anomaly ∆(ℓ). The terms dL can be interpreted
as new anomalies, such as the holomophic anomalies in [142, 154]. These anomalies can
be cancelled by a gauge transformation (6.10) of the coupling b.

6.3 Anomalies and SU(3) holonomy backgrounds

6.3.1 Summary of geometry

The spacetime M10 of supersymmetric heterotic backgrounds for which the holonomy of
∇̂ is included in SU(3) admits four ∇̂-parallel 1-forms ea, a = 0, . . . , 3, one ∇̂-parallel
2-form I and a ∇̂-parallel complex 3-form L such that the Lie bracket algebra of the
associated vector fields ea of e

a is a 4-dimensional Lorentzian Lie algebra with structure
constants Ha

bc. As a result ea are Killing vector fields and ieaH = dea, and so LeaH = 0
as dH = 0. Moreover, one has that

ieaI = 0 , LeaI = 0 ; ieaL = 0 , LeaL = − i

6
ϵa
bcdHbcdL = − i

2
HaijI

ij . (6.68)

Notice that if the Lie algebra of the isometry group is not abelian, L is not invariant
under the action of the isometry group.

Furthermore, the algebraic properties of the ∇̂ covariantly constant forms include

I2 = −(1− ea ⊗ ea) , iIL = 3iL , (6.69)
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where g(X, IY ) = I(X, Y ). Therefore, L is a (3,0)-form17 with respect to the endomor-
phism I.

The metric and 3-form field strength of the backgrounds can be written as

g = ηabe
aeb + g̃ , H =

1

3
ηabe

a ∧ deb + 2

3
ea ∧ F b + H̃ , (6.70)

where g̃ = δije
iej, Fa = dea− 1

2
Ha

bce
b∧ec = 1

2
Ha

ije
i∧ej and g̃(ea, ·) = 0, ieaH̃ = ieaF b =

0. Moreover, LeaH̃ = 0 and Fa is an (1,1)-form with respect to the endomorphism I, i.e.
F(IX, IY ) = F(X, Y ). H̃ is a (1,2)- and (2,1)-form with respect to the endomorphism
I, i.e.

Hijk − 3Hpq[iI
p
jI
q
k] = 0 . (6.71)

The Killing spinor equations also restrict the curvature of connection, F , of the gauge
sector. The conditions are that ieaF = 0 and F (IX, IY ) = F (X, Y ) and iLF = 0.
Therefore, F has non-vanishing components only along the directions orthogonal to the
orbits of the isometry group and it is a (1,1)- and traceless-form with respect to the
endomorphism I, i.e. F satisfies a generalisation of the Hermitian-Einstein conditions of
an SU(3) instanton.

Locally, the geometry of the spacetime, M10, can be modelled as that of a principal
bundle over and 6-dimensional KT manifold N6 with metric g̃ and torsion H̃, princi-
pal bundle connection ea whose curvature is F and fibre a group manifold G whose
(Lorentzian) Lie algebra is R4, R⊕ su(2), sl(2,R)⊕u(1) or cw4, for more details see [143,
144, 107]. The spacetime M10 may not be necessarily of product form G × N6 either
topologically or metrically.

6.3.2 SU(3)-structure symmetries and their commutators

The symmetries generated by the ∇̂-covariantly constant form bilinears ea, I and L are

δKX
µ = aa

K
eµa , δIX

µ = aII
µ
νD+X

ν ,
δLX

µ = ar
L
(Lr)

µ
ν1ν2D+X

ν1ν2 , (6.72)

where L1 = ReL and L2 = ImL, r = 1, 2. We have normalised the form bilinears
such that in holomorphic frame indices Iαβ̄ = −iδαβ̄ and (L1) = (ϵαβγ, ϵᾱβ̄γ̄) and (L2) =
(−iϵαβγ, iϵᾱβ̄γ̄).

It is straightforward to verify using the algebraic properties of the form bilinears that

[δK , δ
′
K ] = δ′′K , [δK , δI ] = 0 , (6.73)

where (a′′
K
)c = −aa

K
a′b

K
Hab

c. The vanishing of the second commutator is a consequence
of LKI = 0 for heterotic backgrounds with SU(3) holonomy. For all transformations in
(6.73) ∆ψ = 0 and ∆KK = ∆KI = 0.

The commutator of two symmetries generated by I on X is

[δI , δ
′
I ] = δT + δC + δK , (6.74)

17Here, we have adopted the terminology of complex geometry to assign a holomorphic and anti-
holomorphic degree for forms even though I is not a complex structure over the whole spacetime.
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where δC is defined as in (6.51) after appropriately adapting the formulae for backgrounds
with holonomy SU(3), and α

T
= a′IaI , αC

= −a′IaI and aaK = a′IaIH
a
bcJ

b
KJ

c
K . The

δK transformation in the above commutator’s right-hand side could be written as a δH̄
transformation (6.55), which would result in field dependent structure constants and a Lie
algebra rather than the expected W-algebra structure. However, it is more practical to
present the commutator as a W-algebra. The commutator of two symmetries generated
by I on ψ can be given as in (6.74) provided that ∆IIψ

a
− = ∆Tψ

a
− = −a′IaIFµνabψb

−DX
µν

and ∆Cψ = ∆Kψ = 0, where we have used that F is a (1,1)-form with respect to the
endomorhism I and iKF = 0.

Next, consider the commutator of δK and δL symmetries. After using the conditions
on the geometry of SU(3) holonomy backgrounds, one finds that

[δK , δL] = δ′L , (6.75)

where a′rL = −1
3
aa

K
ϵrsa

s
L
HapqI

pq and ϵ is the Levi-Civita symbol with ϵ12 = 1. For all
transformations in (6.75) ∆ψ = 0 and ∆KL = 0.

The commutator of the symmetries generated by I and L reads

[δI , δL] = δ′L + δK , (6.76)

where

a′rL =
1

2
aIa

r
L
HapqI

pqJaK + 2as
L
D+aIϵ

r
s − aID+a

s
L
ϵrs , aaK = −1

6
aIa

r
L
Ha

pqI
pqJLr .(6.77)

To compute this commutator, we have used that N(I, Lr)
i
jkp = 0 and

Imi(L1)mjk = −(L2)ijk , Imi(L2)mjk = (L1)ijk ,

Ha[i|m|(L1)
m
jk] =

1

6
HapqI

pq(L2)ijk , Ha[i|m|(L2)
m
jk] = −1

6
HapqI

pq(L1)ijk .(6.78)

The commutator of these transformations on ψ is as in (6.76). Note that ∆IL =
0 as a consequence of iLF = 0 which is consistent with the vanishing of ∆ψ for all
transformations contributing to (6.76).

The symmetry algebra is W-type since its structure constants depend on the conserved
currents JK and JL of the theory.

It remains to compute the commutator of two transformations generated by L. In
particular, one finds that

[δL1 , δL2 ] = δS + δI + δK + δC , (6.79)

where the transformation δS is given in (6.20) and (6.21) for Q = −I, i.e.

Sµνρσ = −δµ[νIρσ] , (6.80)

αS = −6a1
L
a2

L
, a

I
= 4a1

L
a2

L
C − 4

3
a1

L
a2

L
HabcJ

a
KJ

b
KJ

c
K − 2a1

L
a2

L
JIJ

H
K , (6.81)

where JHK in a
I
is JHK = HaijI

ijD+X
a, and

a
C
= −2a1

L
a2

L
JI , ab

K
=

1

2
a1

L
a2

L
Hb

ijI
ijJ2

I + 2Hb
cdJ

c
KJ

d
Ka

1
L
a2

L
JI . (6.82)
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Notice that the parameters of the transformations that appear in the right-hand side of
the commutator depend on the currents JI and JK of the theory. Similarly, one finds
that

[δL1 , δ
′
L1
] = δI , [δL2 , δ

′
L2
] = δI , (6.83)

where aI = 2(a1
L
D+a

′1
L
− a′1

L
D+a

1
L
)JI and aI = −2(a2

L
D+a

′2
L
− a′2

L
D+a

2
L
)JI , respectively.

This summarises the calculation of the commutators of the original symmetries (6.72) of
the theory.

The commutators of δC with δK and δI are given as in (6.58) for the SU(2) case, i.e.
[δC , δI ] = 0 and [δK , δC ] = δ′k. In addition,

[δL, δC ] = δ′L + δK , (6.84)

where

a′rL = ϵrsa
s
L

(
αCD+J

a
K +

1

2
D+αCJ

a
K

)
HaijI

ij ,

aaK = Ha
ijI

ijϵrs
(1
3
asLαCD+JLr +

1

3
D+a

s
LαCJLr +

1

6
asLD+αCJLr

)
. (6.85)

This concludes the computation of all commutators of the symmetries of sigma models
on heterotic backgrounds with holonomy SU(3).

6.3.3 Anomalies and consistency conditions

Similar to the analysis for SU(2) holonomy backgrounds, the expression for the anomaly
of frame rotations ∆(ℓ) is given in terms of the connection ω̌ after possibly adding an
appropriate finite local counterterm in the effective action of the theory. Next, as the
commutators of frame rotations δℓ and gauge transformations δu with δK , δI and δL
vanish, the anomalies of the holonomy symmetries, ∆(aK), ∆(aI) and ∆(aL), are given
as in (6.33) for L = K, I, L1, L2. The commutator algebra of δK , δI , δL1 and δL2 impose
additional consistency conditions on these anomalies. Ihe commutators of δK with δK ,
δI , δL1 and δL2 , eqns (6.73) and (6.75), are easily shown to either vanish or close to a
type I transformation. Thus, the condition (6.40) is necessary for the anomalies to be
consistent. This is satisfied as iKP4(Ř, F ) = 0.

The commutator of two δI transformations in (6.74) closes to two type II transfor-
mations generated by T and C, respectively, and a type III transformation generated by
K. The latter is a symmetry with the indicated current dependence of the parameter.
The consistency of the anomaly requires that (6.42) for S = T and S = C is satisfied. It
turns out this is the case since iKP4(Ř, F ) = 0 and P4(Ř, F ) is (2,2)-form with respect
to the endomorphism I.

Next, consider the consistency condition on the anomalies that arise from the com-
mutators [δI , δL1 ] and [δI , δL2 ] in (6.76). In the former case, the commutator closes in a
type I transformation generated by L2 and a type III transformation, (6.43), generated
by L′ = K and M ′ = L1. For both cases, the consistency condition is given in (6.40)
for L = I and M = L1 which is satisfied as P4(Ř, F ), I and L1 are (2,2)-, (1,1)- and
(3,0)+(0,3)-forms with respect to the endomorphism I, respectively. The commutator
[δI , δL2 ] can be treated in a similar way.

The commutators [δL1 , δL1 ] and [δL2 , δL2 ] in (6.83) close to a type III transformation,
(6.43), generated by L′ = M ′ = I. In both scenarios, the consistency on the anomalies
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requires that (6.40) for L = M = L1 and L = M = L2, is satisfied. This is the case
because of the skew-symmetric properties of the above forms in the condition (6.40).

The commutator [δL1 , δL2 ] in (6.79) closes to type II transformations generated by
S in (6.80) and C, and type III transformations. The latter are associated with the
symmetries generated by the pair of tensors (A,B) = (I, C) and (L′,M ′) = (I,K), see
(6.46) and (6.43), respectively. After some computation, the consistency condition (6.42)
can be written as

−2

3
P4(Ř, F )[µ1µ2µ3|σ|Iµ4µ5] + P4(Ř, F )λρ[µ1|σ|(L1)

λ
µ2µ3(L2)

ρ
µ4µ5] = 0 . (6.86)

All P4(Ř, F ) which are (2,2)-forms with respect to the endomorphism I satisfy the expres-
sion above. This holds since Ř and F are (1,1)-forms with respect to I. The connections
Ř and F do not need to satisfy the traceless condition with respect to I despite what
might have been expected. We have shown that all the anomalies are consistent at least
at one loop. As a result, all of the anomalies cancel, assuming that the forms that gen-
erate the holonomy symmetries are corrected as stated in section 6.1.4. Similar to the
SU(2) case, some of these anomalies can also be removed with the addition of finite local
counterterms in the effective action and this will be described below.

6.3.4 Anomaly cancellation and finite local counterterms

Following the arguments used for the SU(2) case in section 6.2.4, it can be shown that
the anomalies of the symmetries generated by K, C and I cancel when appropriate finite
local counterterms are added to the effective action of the theory. First, P4(Ř, F ) can be
seen as the pull-back of a form P̃4(Ř, F ) on the orbit space N6 of the isometry group.
Then Q0

3(ω̌,Ω) can be written as in (6.59), i.e. Q0
3(ω̌,Ω) = π∗Q̃0

3 + dW , where now Q̃0
3 is

a 3-form on N6. Next, one can argue that both anomalies generated by K and C cancel
by including a finite local counterterm constructed from W in the effective action as in
(6.60).

The calculation of the finite local counterterms that are required to cancel the anomaly
associated with the symmetry generated by I can be done as in [154, 155] for the cancel-
lation of (2,0) supersymmetry anomaly in sigma models. Take P̃4(Ř, F ) as a 4-form on
N6 and note it is (2,2) with respect to the complex structure, I, on N6. Then, using the
local ∂∂̄-lemma P4 can be written as P̃4(Ř, F ) = ddI Ỹ . Therefore, Q̃0

3 = dX̃ + dI Ỹ for
some 2-form X on N6. Using this, one can construct a finite local counterterm

Γfl = − iℏ
4π

∫
d2σdθ+ (π∗Z̃µν + π∗X̃µν)D+X

µ∂=X
ν , (6.87)

that cancels the ∆(a
I
) anomaly, where Ỹ (·, ·) = Z̃(·, I·). It can be demonstrated that

using

δℓX̃ = Q̃1
2(ℓ) + dÃ+ dI Ṽ , δℓỸ = dṼ + dIiI Ṽ , (6.88)

and after varying the finite local counterterm with δℓ, one finds that the ∆(ℓ) anomaly
is cancelled. The dÃ terms can be absorbed in a gauge transformation, (6.10), of b while
the remaining terms can be removed by assigning anomalous variations to both g and b.
Note that the remaining holomorphic frame rotations give rise to Ṽ terms, see [142, 154].
A similar analysis can be done for the anomaly ∆(u) of the gauge sector transformations.
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6.4. SUMMARY

6.4 Summary

We have presented all the commutators of the symmetries, which are generated by the ∇̂-
covariantly constant forms, of sigma models with supersymmetric heterotic backgrounds
with SU(2) and SU(3) holonomy as target spaces. In both cases the algebra of trans-
formations is a W-algebra and its closure requires additional generators which we have
described. We have also given the Wess-Zumino consistency conditions of the anomalies
of these symmetries arising in quantum theory due to the presence of worldsheet chiral
fermions in the sigma model action. We have shown that these anomalies are consistent
up to at least one loop in perturbation theory. In addition, we have argued that these
anomalies can be cancelled by either adding finite local counterterms followed by suit-
able anomalous variations of the sigma model couplings or by an appropriate quantum
correction of the tensors that generate the associated symmetries in the quantum theory.
The latter is consistent with both the anomaly cancellation mechanism for the spacetime
frame rotation and gauge sector anomalies [140], as well as the preservation of the form
of the Killing spinor equations of heterotic supergravity up to and including two loops in
the sigma model perturbation theory [146].
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Chapter 7

Conclusion

Studying hidden symmetries in physical systems allows us to get new insights and a better
understanding of them. Chapters 3-5 of this thesis analysed the (hidden) symmetries
in spinning particle probes propagating on supersymmetric backgrounds generated by
Killing-Yano forms arising as a consequence of the TCFH. This in turn raises the question
of whether supersymmetry is closely related to integrability. This statement is too general
to be approached. First of all, there are many probe actions that can be consider, see
[61], and a choice has to be made. Moreover, as we have mentioned in chapter 3, there is
no clear straightforward generalisation of Liouville’s theorem to analyse the integrability
of the geodesic flow of spinning particles1 Thus, below we will address this question
by looking at the geodesic flow of free relativistic particles propagating in M-theory
backgrounds. Another issue raised by looking at the relation between supersymmetry
and integrability is whether one can determine the amount of supersymmetry required
for integrability.

Based on our work there are some partial answers to these questions but it is required
to examine case by case. We start by reflecting on some results found in the litera-
ture. There are no known examples of supersymmetric backgrounds preserving more
than 1

2
supersymmetry, whose geodesic flows are not integrable in 11D supergravity. All

AdSn × S11−n and plane wave solutions have integrable geodesic flows due to the large
amount of isometries. Moreover, it is known that all supersymmetric backgrounds which
preserve more than 1

2
supersymmetry are homogeneous spaces [157]. However, not all

homogeneous spaces have integrable geodesic flows. Therefore, it remains inconclusive
whether the geodesic flow of all the solutions preserving more than 1

2
supersymmetry in

11d supergravity is integrable.
The geodesic flow of many backgrounds preserving 1

2
supersymmetry is not integrable.

To illustrate this, consider the geodesic flow of systems of M-branes, in chapter 4, we
proved that the geodesic flow of solutions with one centre yk is integrable since these
solutions are spherically symmetric. Although, it is not expected that this remains true
for multi-centred solutions with centres at generic points as the large amount of sym-
metries exhibited will be lost. For spherically symmetric solutions, the transverse space
has isometry group, SO(10 − p), as the harmonic function, h, depends on |y|, which is
not invariant under translations. Then following the approach in [114], we have con-

1In [156] it was argued that the bosonic part of the motion of a spinning particle propagating in higher
dimensional rotating black holes is completely integrable due to the existence of hidden symmetries
constructed from a principal CKY. However, the CKY form emerging from the TCFH is not expected
to be principal as this requires that the form possess the maximal number of functionally independent
eigenvalues.
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structed the Casimir charges which together with the translations along the M-brane
directions proved the Liouville integrability. On the other hand, for multi-centre cases,
the transverse space loses the SO(10− p) isometry group, This implies that one cannot
construct the Casimir charges required to prove Liouville integrability. Suppose we have a
multi-M-brane system at the same centre, then if we move one apart, the isometry group
becomes SO(9 − p). If we continue setting M-branes apart, the isometry group keeps
being reduced to one of its subgroups according to the relative positions of the centres.
As a consequence, the amount of Casimir charges that can be constructed is continually
decreasing. However, the total number of charges required for Liouville integrability stays
the same. For this reason, we do not expect such cases to have integrable geodesic flows2.

Comparing the symmetries required for the integrability of the geodesic flow on M-
brane backgrounds with the symmetries generated by the form bilinears, one can see that
these contribute to different sectors in the probe dynamics. If a form bilinear generates a
symmetry for a particle probe, it will generate a symmetry on all M-brane backgrounds
including those that depend on multi-centred harmonic functions. It was found that the
KY forms responsible for the integrability of the geodesic flow of all spherical symmetric
M-branes differ from those constructed as Killing spinor bilinears. In addition to the KY
forms associated with the TCFH, we computed the most general solution of all the KS,
KY and CCKY tensors of M-branes using their standard definition of general relativity,
i.e. with respect to the Levi-Civita connection. In particular, the KS expressions we
have found should contain the rank 2 KS tensors related to the Casimir charges used
to proved the integrability of the spherically symmetric M-branes. Then, as KY forms
“square” to KS tensors, it is clear that the KY forms that yield the KS tensors associated
with the Casimir charges should be considered in the general KY solution derived. On
the other hand, the expressions obtained after squaring those KY forms constructed from
Killing spinors do not correspond to the KS tensors used to prove the integrability of
the geodesic flow. Therefore, generically form bilinears of supersymmetric backgrounds
are not responsible for the integrability properties of a probe, but generate additional
symmetries for probes, e.g. additional worldvolume supersymmetries, which characterise
the dynamics. In this context, supersymmetry and integrability seem to point to different
directions.

We have found that the Killing spinor bilinears generate symmetries in a variety of
probe actions:

� For minimal 4D, N=2 supergravity we have found probes for which all particle
systems propagating on backgrounds with a null Killing spinor admit symmetries
generated by the form bilinears. For backgrounds with a timelike Killing spinor all
solutions are locally isometric to Minkowski spacetimes.

� Similarly, we have found backgrounds of 5D, N=1 minimal supergravity admitting
a null or timelike Killing spinor for which the form bilinears generate symmetries
in the probe actions.

� Many of the form bilinears of M-brane backgrounds are either KY or CCKY.

� The form bilinears of some internal spaces of AdS backgrounds of 11D supergravity
are KY or CCKY.

2It might be possible that a two-centre M-brane system still has integrable geodesic flow. It remains
open to check this case explicitly.
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Clearly, from these results and those of [22], the TCFHs can be constructed for all su-
persymmetric theories that exhibit a gravitino KSE. As a consequence, all form bilinears
are generalised CKY forms with respect to some connection. However, given a TCFH of
a supersymmetric theory, there is not systematic way to construct a probe action which
exhibits symmetries generated by the form bilinears. In the minimal four dimensional
supergravity theory, the matching of the conditions to leave the spinning particle action
invariant with those arising from the TCFH required to consider the scenarios where the
right-hand side was vanishing as they only coincide in the connection side. Moreover,
in appendix A.2 we took the opportunity to construct an explicit example for which all
the bilinears are parallel with respect to the TCFH connection in D=4, N=2 minimal
supergravity and explain how the matching of the TCFH with the conditions for invari-
ance of the probe action leads to severe constraints on the backgrounds. Similar type
of constraints arise in appendix A.3 where we compute the TCFHs of D=5, N=2 and
D=4, N=1 gauged supergravity theories. Furthermore, in 11-dimensional supergravity,
one should also consider spinning particle probes that exhibit a 4-form coupling, as the
TCFH connection depends on the 4-form field strength of the theory. The expectation
would be that in this way one can better match the TCFH with the conditions for in-
variance of the probe action under transformations generated by the form bilinears. Such
a probe action has been presented in appendix A.5. However under some reasonable
assumptions on the couplings and on the transformations constructed from the form bi-
linears, one finds that the conditions for invariance of the probe action are too strong for
M-brane backgrounds and they do not match with those of TCFH. These cases do not
exhaust all possibilities of matching the TCFHs computed in this work with the condi-
tions required for the form bilinear to generate a symmetry for a spinning particle probe
constructed using the results of [61]. One can choose different TCFHs associated with
the same supergravity theory as well as different probe actions. Hence, it remains an
open question whether such a matching of conditions can be achieved in general.

Next, moving to generic heterotic backgrounds, the TCFH connection corresponds to
a connection with torsion3, ∇+ 1

2
H, for which all Killing spinor bilinears are parallel. This

allows for a more straightforward application since probes that are left invariant under
symmetries generated by CKY forms have not been found yet.4 For the two-dimensional
sigma models analysed in this work, the covariantly constant form bilinears generate
additional worldsheet symmetries.

Overall, we have concluded:

1. All spacetimes admitting a ∇F -parallel spinor are associated with a TCFH.

2. The Killing spinor bilinears generate symmetries in many probe actions propagating
on supersymmetric backgrounds. However, their contribution to the integrability
of the dynamics of probes is subtle.

3. There are different TCFHs associated with the same supergravity theory according
to the basis of Killing spinor bilinears chosen and a plethora of probe actions.
Thus, it remains an open question whether the conditions for invariance of the
probe actions can be matched with those of the TCFHs in most of the theories
analysed.

3Note that the TCFH expressions of heterotic backgrounds act on a single bilinear.
4In most of the cases investigated in chapters 3-5, we look at sectors where the terms involving the

metric were zero, and hence, the bilinears satisfied a KY equation rather than the CKY one.
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4. All the ∇̂-covariantly constant forms of non-linear supersymmetric two-dimensional
sigma models, where the target space is identified with heterotic backgrounds with
SU(2) and SU(3) holonomy, satisfy a W-algebra and its closure required additional
generators.

5. The anomalies of these symmetries are consistent up to at least one loop in per-
turbation theory. The cancellation of these anomalies can be done either with the
addition of finite local counterterms followed by suitable anomalous variations of
the sigma model couplings or with plausible quantum corrections of the symmetry
generators in the quantum theory.

7.0.1 Future directions

A more detailed picture of this work could emerge from the investigation of probe actions
that remain invariant under CKY forms or by finding some cases where the conditions
for invariance of the probe actions can be matched with those of the TCFHs.

One can keep exploring the role of hidden symmetries, KS, CKY and KY tensors
in supergravity and the interplay between separability/integrability in supergravity solu-
tions. For instance, recently an infinite family of asymptotically AdS3 × S3 supergravity
solutions was found in which the null geodesic problem is completely integrable because
of the existence of a non-trivial conformal KS tensor [158]. Turning back to the TCFH,
all the solutions of the generalized type CKY equation (2.78) are solutions of the TCFH
connection but the converse is not necessarily true. It will be interesting to explore some
of the latter solutions and their applications.

In [159] possible Lie (super)-algebraic structures on the space of parallel forms re-
stricted to the cone metric were discussed. The approach was to extend the Killing
superalgebras by considering higher-rank differential forms. As these forms obey compli-
cated partial differential equations which involve all forms at once, one way to overcome
this difficulty is to use the cone construction which establishes a one-to-one correspon-
dence between geometric Killing spinors on a spin manifold and parallel spinors on its
metric cone. In our case, it will be interesting to analyse whether our conformal Killing-
Yano forms satisfy an algebraic structure and whether they form a Lie superalgebra
together with the Killing spinors.

In addition, one can explore whether the symmetries associated with the TCFH satisfy
a W-symmetry algebra following the work done for heterotic backgrounds.

Moreover, in chapter 6, we have not considered the possibility that the spacetime frame
rotations and gauge transformation invariant terms of the effective action contribute to
the anomalies associated with the holonomy symmetries. These transformations can
potentially give rise to a ∆inv(aL

) term in (6.33). One can extend the work done to
include these terms, as well as sigma models with target spaces heterotic backgrounds
with G2 holonomy and non-compact holonomy groups such as SU(4)⋉R

8, Sp(2)⋉R
8 or

R
8.
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Appendix A

A.1 Notation for forms

Let M be a manifold with a (local) coframe ei and coordinates yI

χ =
1

k!
χI1···Ikdy

I1 ∧ · · · ∧ dyIk =
1

k!
χi1···ike

i1 ∧ · · · ∧ eik , (A.1)

Then, the exterior derivative and inner derivation read

dχ :=
1

k!
∂I1χI2···Ik+1

dyI1 ∧ · · · ∧ dyIk+1 , (A.2)

iXχ :=
1

(k − 1)!
Xjχji1···ik−1

ei1 ∧ · · · ∧ eik−1 , (A.3)

respectively. One can define a Clifford algebra element /χ

/χ := χi1···ikΓ
i1···ik (A.4)

where Γi, i = 1, · · ·n are the Dirac gamma matrices. In addition, we have introduced the
notation

/χi1
:= χi1···ikΓ

i2···ik , /Γχi1 := Γi1
i2···ik+1χi2···ik+1

(A.5)

A.2 Construction of a covariantly constant TCFH of

D=4, N=2 minimal supergravity

The supercovariant connection of minimal D = 4, N = 2 supergravity can be written as

Dµ ≡ ∇µ +
1

2
∗FMAΓ

AΓ5 −
i

2
FMAΓ

A . (A.6)

Now it is linear in gamma matrices and depends only on terms of the type iXF . There
is a choice of the Killing spinor bilinears such that the associated TCFH is a parallel
transport equation with respect to a connection ∇F . The basis of bilinears in order to
construct such connection is

f = ⟨ϵ, ϵ⟩D , h = ⟨ϵ,Γ5ϵ⟩D , k = ⟨ϵ,Γaϵ⟩D ea ,
Y = ⟨ϵ,ΓaΓ5ϵ⟩D ea , Y 3 + iY 2 = ⟨ϵ̃,ΓaΓ5ϵ⟩D ea ,
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A.2. CONSTRUCTION OF A COVARIANTLY CONSTANT TCFH OF D=4, N=2
MINIMAL SUPERGRAVITY

ω1 =
1

2
⟨ϵ,Γabϵ⟩D ea ∧ eb , ω3 + iω2 =

1

2
⟨ϵ̃,Γabϵ⟩D ea ∧ eb ,

χ1 =
1

2
⟨ϵ,ΓabΓ5ϵ⟩D ea ∧ eb , χ3 + iχ2 =

1

2
⟨ϵ̃,ΓabΓ5ϵ⟩D ea ∧ eb .

φ1 =
1

3!
⟨ϵ,Γabcϵ⟩D ea ∧ eb ∧ ec , φ3 + iφ2 =

1

3!
⟨ϵ̃,Γabcϵ⟩D ea ∧ eb ∧ ec , (A.7)

where the spacetime metric g = ηabe
aeb with ea = eaµdx

µ a local co-frame, ⟨·, ·⟩D is the
Dirac inner product, C is a charge conjugation matrix such that C ∗ Γa = −ΓaC∗ and
C ∗ C∗ = −1, and ϵ̃ = C ∗ ϵ. C = Γ3. Observe that if ϵ is a Killing spinor so is ϵ̃. The
TCFH of the theory reads

∇F
µ f = ∇µf − iFµνk

ν = 0 , ∇F
µ h = ∇µh− ∗Fµνk

ν = 0 ,

∇F
µ kν = ∇µkν − ifFµν + h ∗Fµν = 0 ,

∇F
µ Y

r
ν = ∇µY

r
ν + ∗Fµρω

rρ
ν − iFµρχ

rρ
ν = 0 , r = 1, 2, 3 ,

∇F
µ ω

r
νρ = ∇µω

r
νρ − 2 ∗Fµ[νY

r
ρ] − iFµλφ

rλ
νρ = 0 , r = 1, 2, 3

∇F
µ χ

r
νρ = ∇µχ

r
νρ − 2i Fµ[νY

r
ρ] − ∗Fµλφ

rλ
νρ = 0 , r = 1, 2, 3

∇F
µφ

r
νρλ = ∇µφ

r
νρλ + 3∗Fµ[νχ

r
ρλ] − 3iFµ[νω

r
ρλ] = 0 , r = 1, 2, 3 . (A.8)

The TCFH derived is parallel in all Killing spinor bilinears. However, finding a probe
action and suitable transformations which reproduce the TCFH remains a complicated
task. Below we provide two attempts

S =

∫
dtdθ

(
− i

2
gµνDX

µ∂tX
ν + Fµνψ

µ
1∂tϕ

ν + i∗Fµνψ
µ
2∂tX

ν

)
, (A.9)

under the variations

δXµ = aY µ + αωµλDX
λ + βχµλDX

λ + bφµλρDX
λρ ,

δψµ1 = aχµλDX
λ − 1

2
αφµλρDX

λρ + βYλDX
λµ + bωλρDX

λρµ ,

δψµ2 = aωµλDX
λ − αYλDX

λµ +
1

2
βφµλρDX

λρ + bχλρDX
λρµ , (A.10)

where a, b are commuting infinitesimal parameters whereas α, β are anti-commuting.
The conditions for the invariance of the action (A.9) under the variations (A.10) can be
expressed as

∇µYν +
∗Fµλω

λ
ν − iFµλχ

λ
ν = 0 , ∇µωνρ − 2 ∗Fµ[νYρ] − iFµλφ

λ
νρ = 0 ,

∇µχνρ − 2i Fµ[νYρ] − ∗Fµλφ
λ
νρ = 0 , ∇µφνρλ + 3∗Fµ[νχρλ] − 3iFµ[νωρλ] = 0 ,

∇[µF|ν|λ]Y
λ = 0 , ∇[µ

∗F|ν|λ]Y
λ = 0 , ∇[µF|ν|λ]ω

λ
ρ = 0 , ∇[µ

∗F|ν|λ]ω
λ
ρ = 0 ,

∇[µF|ν|λ]χ
λ
ρ = 0 , ∇[µ

∗F|ν|λ]χ
λ
ρ = 0 , ∇[µF|ν|λ]φ

λ
ρσ = 0 , ∇[µ

∗F|ν|λ]φ
λ
ρσ = 0 ,

FµνY
ν = 0 , ∗FµνY

ν = 0 , Fµνω
ν
λ = 0 , ∗Fµνω

ν
λ = 0 ,

Fµνχ
ν
λ = 0 , ∗Fµνχ

ν
λ = 0 , Fµνφ

ν
λσ = 0 , ∗Fµνφ

ν
λσ = 0 . (A.11)

The first two lines match exactly the TCFH connection for each bilinear. Nevertheless,
the last two lines are too severe on the backgrounds to admit non-trivial solutions. One
could try to use the following action

S = − i

2

∫
dtdθ (gµνDX

µ∂tX
ν + c1FµνDX

µDXνψ1 + c2
∗FµνDX

µDXνψ2) . (A.12)
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In this case, we found a problem defining the transformation of the superfields. Let
us focus on the two-form bilinear, ω. The corresponding connection is twisted by two
terms proportional to ∗FY and Fφ. But the latter term cannot be achieved by a simple
transformation as the ones consider below. This can be seen immediately since none of
the conditions to leave the action invariant will have a term proportional to ϕ∂tDXDX
and such terms are used to match the TCFH.

δXµ = αωµλDX
λ , δψ1 = αφλρσDX

λρσ , δψ2 = αYλ∂tX
λ . (A.13)

A.3 TCFH of gauged supergravities

The construction of the TCFH for gauged supergravities holds the same strategy ex-
plained in Chapter 2. We will provide two examples which we will relate with the probe
actions 3.6 annd 3.19.

A.3.1 D=5, N=2 Gauged Supergravity

The supercovariant derivative is given by [160]

DM ≡ ∇M +
i

8
XI(ΓM

AB − 4δM
AΓB)F I

AB − 3

2
iχVIA

I
M +

1

2
χVIX

IΓM . (A.14)

Consider the following bi-linears constructed from the Dirac inner product.

f = ⟨ϵ, ϵ⟩D , k = ⟨ϵ,ΓAϵ⟩D eA , ω =
1

2
⟨ϵ,ΓABϵ⟩D eA ∧ eB . (A.15)

Our conventions are ϵ01234 = 1, Γ4 = iΓ0123,
∗FMN = 1

2
ϵMNABF

AB.
Putting them into the TCFH form with respect to the minimal connection, one finds

that

DF
Mf ≡ ∇Mf = iXIF

I
MAk

A ,

DF
MkN ≡ ∇MkN − χVIX

IωMN = −1

2
XI

∗F I
MNAk

A + iXIF
I
MNf ,

DF
MωNR ≡ ∇MωNR + 3XI

∗F I
M [N |P |ω

P
R]

= 3XI
∗F I

P [NRω
P
M ] −XIgM [N

∗F I
R]PQω

PQ + 2χVIX
IgM [NkR] , , (A.16)

Note that the TCFH for the one form k includes a term where the index M is on the
two form ω, this contributes to the P term. Otherwise, we would have to include extra
bilinears which would be unnecessary since the remaining bilinears are dual to the ones
already defined.

For the TCFH associated with the two-form, one can use the same action (3.19)
and transformation laws as in the non-gauged case but now the three-form coupling c is
identified with c = 3XI

∗F I and one can follow with a similar analysis.

A.3.2 D=4, N=2 gauged supergravity

The supercovariant connection is [161]

DM = ∇M +
i

2
AMΓ5 + iℓ ξIA

I
M + ℓΓMξI(ImX

I + iΓ5ReX
I)
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+
i

4
ΓAB

(
Im
(
F−I
ABX

J
)
− iΓ5Re

(
F−I
ABX

J
))

ImNIJΓM , (A.17)

where

F±I
AB =

1

2
(F I

AB ± F̃ I
AB) , F̃ I

AB = − i

2
ϵAB

CDF I
CD , (A.18)

with ϵ0123 = 1 and Γ5 = iΓ0123.
From now on we set

F−
MN = F−I

MNX
JImNIJ , X = ξIX

I , (A.19)

to simplify the notation.
The bilinears are

f = ⟨ϵ, ϵ⟩D , k = ⟨ϵ,ΓAϵ⟩D eA , ω =
1

2
⟨ϵ,ΓABϵ⟩D eA ∧ eB ,

Y = ⟨ϵ,ΓAΓ5ϵ⟩D eA , h = ⟨ϵ,Γ5ϵ⟩D . (A.20)

Putting them into the TCFH form with respect to the minimal connection, one finds
that

DF
Mf ≡ ∇Mf + iAMh = −2iℓReXYM + 2iIm(F−

MA)k
A ,

DF
MkN ≡ ∇MkN + ℓReXϵMN

PQωPQ
= 2ℓImXωMN + 2iIm(F−

MN)f − 2Re(F−
MN)h ,

DF
MYN ≡ ∇MYN + 4Re(F−

MA)ω
A
N

= 2ℓgMN ImXh+ 2iℓgMNReXf − gMNRe(F
−
AB)ω

AB + 4Re(F−
[M |A|)ω

A
N ] ,

DF
MωNR ≡ ∇MωNR − 8Re(F−

M [N)YR] −
1

2
AMϵNRPQω

PQ

= +4ℓImXgM [NkR] + 2ℓRe ∗XMNRPk
P

−4gM [NRe(F
−
R]A)Y

A − 6Re(F−
[MN)YR] ,

DF
Mh ≡ ∇Mh+ iAMf = 2ℓImXYM + 2Re(F−

MA)k
A . (A.21)

Note that on the right-hand side for the one form k and the zero form h there are
terms where the index M appears on bilinears instead of the fluxes. This is because it is
interpreted as the P term. Since the remaining bilinears can be obtained by computing
the Hodge duals of the bilinears defined, it is not required to consider more bilinears
beyond the two-form.

One can use probe 3.6 and the same transformations. However, one needs to look
at sectors where the terms that do not resemble those which appear in (A.8) vanish.
As a consequence, this together with the conditions for invariance (3.10) impose severe
constraints on the backgrounds to admit non-trivial solutions. The task to find suitable
probe actions and transformations to match the TCFH with the conditions to leave the
action invariant for generic backgrounds remains open.

A.4 M5-brane bilinears

Using the solution (4.50) of the condition on the Killing spinors and setting ϕrs = h−
1
6 ϕ̊rs

for all bilinears ϕrs, one can easily find

f̊ rs = 0 , k̊rs = 2(Re⟨η1r,Γaη1s⟩+Re⟨η2r,Γaη2s⟩) ea ,
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ω̊rs = 2(Re⟨η1r,Γaη2s⟩+Re⟨η2r,Γaη1s⟩) ea ∧ e3
+2(Re⟨η1r,Γaλ2s⟩ − Re⟨η2r,Γaλ1s⟩) ea ∧ e4
+2(Im⟨η1r,Γaη2s⟩ − Im⟨η2r,Γaη1s⟩) ea ∧ e8
+2(Im⟨η1r,Γaλ2s⟩ − Im⟨η2r,Γaλ1s⟩) ea ∧ e9
+2(Re⟨η1r,Γaη1s⟩ − Re⟨η2r,Γaη2s⟩) ea ∧ e♮ ,

φ̊rs =
1

3
(Re⟨η1r,Γabcη1s⟩+Re⟨η2r,Γabcη2s⟩) ea ∧ eb ∧ ec

−2Re⟨η1r,Γaλ1s⟩(e3 ∧ e4 − e8 ∧ e9) ∧ ea
+2Re⟨η2r,Γaλ2s⟩(e3 ∧ e4 + e8 ∧ e9) ∧ ea
−2Im⟨η1r,Γaη1s⟩(e3 ∧ e8 + e4 ∧ e9) ∧ ea
+2Im⟨η2r,Γaη2s⟩(e3 ∧ e8 − e4 ∧ e9) ∧ ea
−2Im⟨η1r,Γaλ1s⟩(e3 ∧ e9 − e4 ∧ e8) ∧ ea
+2Im⟨η2r,Γaλ2s⟩(e3 ∧ e9 + e4 ∧ e8) ∧ ea
−2(Re⟨η1r,Γaη2s⟩ − Re⟨η2r,Γaη1s⟩)e3 ∧ e♮ ∧ ea
−2(Re⟨η1r,Γaλ2s⟩+Re⟨η2r,Γaλ1s⟩)e4 ∧ e♮ ∧ ea
−2(Im⟨η1r,Γaη2s⟩+ Im⟨η2r,Γaη1s⟩)e8 ∧ e♮ ∧ ea
−2(Im⟨η1r,Γaλ2s⟩+ Im⟨η2r,Γaλ1s⟩)e9 ∧ e♮ ∧ ea ,

θ̊rs =
1

3
(Re⟨η1r,Γabcη2s⟩+Re⟨η2r,Γabcη1s⟩)ea ∧ eb ∧ ec ∧ e3

+
1

3
(Re⟨η1r,Γabcλ2s⟩ − Re⟨η2r,Γabcλ1s⟩)ea ∧ eb ∧ ec ∧ e4

+
1

3
(Im⟨η1r,Γabcη2s⟩ − Im⟨η2r,Γabcη1s⟩)ea ∧ eb ∧ ec ∧ e8

+
1

3
(Im⟨η1r,Γabcλ2s⟩ − Im⟨η2r,Γabcλ1s⟩)ea ∧ eb ∧ ec ∧ e9

+
1

3
(Re⟨η1r,Γabcη1s⟩ − Re⟨η2r,Γabcη2s⟩)ea ∧ eb ∧ ec ∧ e♮

+2(Im⟨η1r,Γaλ2s⟩+ Im⟨η2r,Γaλ1s⟩)ea ∧ e3 ∧ e4 ∧ e8
−2(Im⟨η1r,Γaη2s⟩+ Im⟨η2r,Γaη1s⟩)ea ∧ e3 ∧ e4 ∧ e9
+2(Re⟨η1r,Γaλ2s⟩+Re⟨η2r,Γaλ1s⟩)ea ∧ e3 ∧ e8 ∧ e9
−2(Re⟨η1r,Γaη2s⟩ − Re⟨η2r,Γaη1s⟩)ea ∧ e4 ∧ e8 ∧ e9
−2Re⟨η1r,Γaλ1s⟩ ea ∧ (e3 ∧ e4 ∧ e♮ − e8 ∧ e9 ∧ e♮)
−2Re⟨η2r,Γaλ2s⟩ ea ∧ (e3 ∧ e4 ∧ e♮ + e8 ∧ e9 ∧ e♮)
−2Im⟨η1r,Γaη1s⟩ ea ∧ (e3 ∧ e8 ∧ e♮ + e4 ∧ e9 ∧ e♮)
−2Im⟨η2r,Γaη2s⟩ ea ∧ (e3 ∧ e8 ∧ e♮ − e4 ∧ e9 ∧ e♮)
−2Im⟨η1r,Γaλ1s⟩ ea ∧ (e3 ∧ e9 ∧ e♮ − e4 ∧ e8 ∧ e♮)
−2Im⟨η2r,Γaλ2s⟩ ea ∧ (e3 ∧ e9 ∧ e♮ + e4 ∧ e8 ∧ e♮) ,

τ̊ rs = −1

3
Re⟨η1r,Γabcλ1s⟩ea ∧ eb ∧ ec ∧ (e3 ∧ e4 − e8 ∧ e9)

+
1

3
Re⟨η2r,Γabcλ2s⟩ ea ∧ eb ∧ ec ∧ (e3 ∧ e4 + e8 ∧ e9)

−1

3
Im⟨η1r,Γabcη1s⟩ea ∧ eb ∧ ec ∧ (e3 ∧ e8 + e4 ∧ e9)

+
1

3
Im⟨η2r,Γabcη2s⟩ ea ∧ eb ∧ ec ∧ (e3 ∧ e8 − e4 ∧ e9)

−1

3
Im⟨η1r,Γabcλ1s⟩ea ∧ eb ∧ ec ∧ (e3 ∧ e9 − e4 ∧ e8)

+
1

3
Im⟨η2r,Γabcλ2s⟩ ea ∧ eb ∧ ec ∧ (e3 ∧ e9 + e4 ∧ e8)

−1

3
(Re⟨η1r,Γabcη2s⟩ − Re⟨η2r,Γabcη1s⟩)ea ∧ eb ∧ ec ∧ e3 ∧ e♮
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−1

3
(Re⟨η1r,Γabcλ2s⟩+Re⟨η2r,Γabcλ1s⟩)ea ∧ eb ∧ ec ∧ e4 ∧ e♮

−1

3
(Im⟨η1r,Γabcη2s⟩+ Im⟨η2r,Γabcη1s⟩)ea ∧ eb ∧ ec ∧ e8 ∧ e♮

−1

3
(Im⟨η1r,Γabcλ2s⟩+ Im⟨η2r,Γabcλ1s⟩)ea ∧ eb ∧ ec ∧ e9 ∧ e♮

+
2

5!

(
Re⟨η1r,Γa1...a5η1s⟩+Re⟨η2r,Γa1...a5η2s⟩

)
ea1 ∧ · · · ∧ ea5

+2(Re⟨η1r,Γaη1s⟩ − Re⟨η2r,Γaη2s⟩)ea ∧ e3 ∧ e4 ∧ e8 ∧ e9
−2(Im⟨η1r,Γaλ2s⟩ − Im⟨η2r,Γaλ1s⟩)ea ∧ e3 ∧ e4 ∧ e8 ∧ e♮
+2(Im⟨η1r,Γaη2s⟩ − Im⟨η2r,Γaη1s⟩)ea ∧ e3 ∧ e4 ∧ e9 ∧ e♮
−2(Re⟨η1r,Γaλ2s⟩ − Re⟨η2r,Γaλ1s⟩)ea ∧ e3 ∧ e8 ∧ e9 ∧ e♮
+2(Re⟨η1r,Γaη2s⟩+Re⟨η2r,Γaη1s⟩)ea ∧ e4 ∧ e8 ∧ e9 ∧ e♮ , (A.22)

where after a relabelling of the spacetime coordinates ea = h−1/6dσa, a = 0, 1, 2, 5, 6, 7,
and ei = h1/3dyi, i = 3, 4, 8, 9, ♮, is a pseudo-orthonormal frame of the M5-brane metric
(4.28).

A.5 Spinning particle probes with 4-form couplings

Following the use of spinning particle probes on 4- and 5-dimensional minimal supergrav-
ity backgrounds that exhibit 2-form couplings [27], one may be tempted to generalise
these to spinning particle probes that exhibit 4-form couplings. Such a generalisation
is desirable as the TCFH connection of 11-dimensional supergravity exhibits terms that
depend of the 4-form field strength F . One way to generalise (2.55) is to adapt the gen-
eral construction of [61] and introduce a fermonic superfield ψ of mass dimension [1/2].
Insisting for the couplings of the action to be dimensionless, a minimal choice for an
action with a 4-form coupling is

S = −1

2

∫
dtdθ [igµνDx

µ∂tx
ν − i

12
Fµνρσψ

µνρ∂tx
σ + βψµνρ∇ψµνρ] , (A.23)

with β a constant which will be specified later,

∇ψµνρ = Dψµνρ + 3DxλΓ
[µ
λµ′ψ

|µ′|νρ] , (A.24)

and Γ are the Christoffel symbols of the spacetime metric g. The numerical coefficient of
the coupling Fψ∂tx could be arbitrary but the above choice will suffice. Also one could
add additional terms in the action like F∇ψDx which we shall explore later. Other terms
include couplings of the type ∇FψDx. After a superspace partial integration these can
be re-expressed in terms of the Fψ∂tx and F∇ψDx couplings.

The variation of the action (A.23) can be expressed as

δS = −
∫
dtdθ [gµνδx

µSν +∆ψµνρSµνρ] , (A.25)

where

∆ψµνρ = δψµνρ + 3δxλΓ
[µ
λµ′ψ

|µ′|νρ] , (A.26)

δx and δψ are arbitrary variations of the fields and

Sµ = −i∇tDx
µ − i

24
∇µFνρσλψ

νρσ∂tx
λ − i

24
∇λF

µ
νρσψ

νρσ∂tx
λ
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− i

24
F µ

νρσ∇tψ
νρσ +

3

2
βψνρσDx

λRµ
λ,
ν
τψ

τρσ ,

Sµνρ = β∇ψµνρ − i

24
F µνρ

λ∂tx
λ , (A.27)

are the equations of motion of x and ψ, respectively.
The action (A.23) is manifestly invariant under one supersymmetry. For a probe

described by the action (A.23) propagating on an M-brane background with spacetime
metric g and 4-form field strength F to exhibit additional symmetries that are gener-
ated by the form bilinears ω and τ of 11-dimensional supergravity, one can consider the
infinitesimal transformations

δxµ = αωµνDx
ν + α c1 ωρσψ

µρσ ,
δψµνρ = α τµνρσλDx

σDxλ + α c2 τ
µνρ

σλψ
σλ
κDx

κ , (A.28)

where α is the supersymmetry parameter assigned mass dimension [−1/2] and c1, c2
are constants. These transformations are the most general ones allowed such that the
infinitesimal variations have the same mass dimension as those of the associated fields,
and ω and τ are dimensionless.

For the TCFH on ω to be interpreted as an invariance condition for the probe action
(A.23), the conditions that arise for the invariance of this action under the infinitesimal
variations (A.28) should match the TCFH. For this first notice that the equations of
motion (A.27) contain the spacetime curvature R. As such terms do not arise in the
TCFH, these terms in the invariance conditions must vanish. This requires that β = 0.
Moreover, if the action had contained a F∇ψDx coupling, this would have given rise
to a FR term in the equations of motion. Because the TCFH does not contain such a
term, the F∇ψDx coupling was neglected from the beginning. The remaining conditions
that arise from the invariance of the action (A.23) with β = 0 under the infinitesimal
transformations (A.28) read

∇µωνρ −
1

12
Fµλκστ

λκσ
νρ = 0 , c1ω[ρσgν]µ +

1

24
Fρσνκω

κ
µ = 0 ,

(2c1 + c2)Fλκ1κ2κ3τ
κ1κ2κ3

[ρσgν]µ +∇κFνρσλω
κ
µ −∇λFνρσκω

κ
µ = 0 ,

Fµ1µ2µ3[ν1ων2ν3] = 0 , − ω[µ1µ2∇µ3]Fν1ν2ν3λ +∇λFν1ν2ν3[µ1ωµ2µ3] = 0 . (A.29)

The first condition matches the expression of the TCFH connection on ω. However, the
second condition is rather strong on both M2- and M5-brane backgrounds to admit non-
trivial solutions. Moreover, this condition persists even if β ̸= 0 and the curvature terms
are included. This does not exclude the possibility that there may be backgrounds such
that the TCFH matches with the conditions (A.29) but if this is the case, such examples
will be restricted.
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[20] Ulf Lindström and Özgür Sarıoğlu. “New currents with Killing–Yano tensors”. In:
Class. Quant. Grav. 38.19 (2021), p. 195011. doi: 10.1088/1361-6382/ac1871.
arXiv: 2104.12451 [hep-th].
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