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Abstract: Open pit coal mining affects surrounding populated areas, resulting in terrain surface de-
formation. Surface deformation should be monitored as often as possible to control deformations and
prevent potential incidents. This paper analyzes time series deformation estimated from the Sentinel-1
satellite images using the Persistent Scatterer Interferometry method to monitor subsidence rates
caused by open pit mining activities. It is possible to measure deformations using classical geodetic
methods, but those are rarely used in practice because they are time-consuming and expensive for
application in large areas. Using the open access radar images from the Sentinel-1 mission, 513 images
from the repository were downloaded between October 2016 and the end of December 2020. We
present the processing steps in detail in order to establish a workflow for the automated processing
of vertical displacement estimation using open source tools; a total of 402 images were processed:
215 images belonged to the ascending satellite orbit, 187 images belonged to the descending orbit,
and 111 images were rejected because of adverse weather conditions. The PS InSAR technique has
never been used for the mines of the Republic of Serbia or for land surveying practices related to
deformation monitoring. The results based on the Sentinel-1 images were compared with results
from geodetic leveling and with neotectonic uplift trends. The trend lines of vertical displacement
obtained from PS and corresponding leveling are significantly similar (a Pearson correlation of 85%
with a p-value of 0.015). The final evaluation reported results of vertical displacements at the leveling
benchmark of −3.4 mm/year with the PS InSAR method and −2.7 mm/year with the leveling
method. A comparison of the PS vertical displacements with a settlement model fits reasonably,
suggesting that the measurements are valid. As four years of PS time series data is insufficient to
establish undisputable conclusions on the neotectonics uplift, extending the time series (covering at
least a decade) implies that this approach will become attractive in future neotectonic uplift trend
estimations. This study illustrates not only the ability of Sentinel-1 data in mapping vertical deforma-
tions, but the obtained results could also be used for geohazard monitoring and land monitoring in
general for the area of interest.

Keywords: Sentinel-1 InSAR; mining subsidence; Persistent Scatterer Interferometry; Kostolac

1. Introduction

Coal exploitation through open pit mining [1] strongly affects neighboring populations,
traffic infrastructure, and all surrounding environments that are crucial for the comfortable
daily life of citizens. Subsidence rates can be expected in the immediate proximity of open
pit mines directly, caused by activities such as mining and blasting, drainage, and hydro-
logical tasks during exploitation, or as a result of excavation and transportation systems.
Therefore, monitoring the subsidence or movement of objects on the surface is a challenging
task that has, so far, mostly been done using classical terrestrial surveying techniques.

The Global Navigation Satellite System (GNSS) and conventional survey methods,
such as high precision leveling for observing displacements, introduces accuracy and
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reliability. On the other hand, they are time consuming and expensive, especially when
a large number of observations are required to cover wide areas of interest [2,3]. This
requires extensive fieldwork activities and is preferably done during optimal weather
conditions. Due primarily to leveling requirements and expenses, classical methods are per-
formed infrequently, and so extensive time series’ of vertical deformations are not provided.
Therefore, an approach such as the Interferometric Synthetic Aperture Radar (InSAR) with
persistent scatterer analysis is solution for monitoring, observing, and estimating ground
displacements, as reported in recent studies [4–6], taking open access orientation and data
availability into account. Using phase information from radar images, it is possible to
extract displacements ranging from a few decimeters to a millimeter, bearing in mind that
phase delay in interferograms is directly related to the cumulated refractivity along the
signal path [7,8]. The integration of GNSS and leveling techniques with InSAR techniques
can ensure the best results, since the number of GNSS receivers can be decreased, and the
InSAR approach can provide the required density of deformation points [9].

The InSAR based on the Sentinel-1 is a low-cost wide area Earth observation method
that provides observations independent of the clouds, contrary to optical remote sensing.
On the other hand, the technique is not perfect, since the propagation velocity through
the atmosphere is related to refractivity, which depends on temperature and pressure
variations, water vapors or raindrops, and snowflakes. Signals from low orbit satellites
such as Sentinel-1, A, and B orbiting in the lower boundary of the exosphere, the exobase,
at an altitude of 693 km (where the atmospheric pressure and temperature are very low)
are affected by the mentioned influences.

The InSAR interferogram generation of two radar images over the same area at
different dates goes back to 1974 [10]. The Synthetic Aperture Radar (SAR) interferometry
methodology was developed between 1989 and 1991 [11]. The differential InSAR (DInSAR)
is an upgraded version of InSAR that enables the monitoring of surface deformations or
movement in the Line Of Sight (LOS) direction [12–23]. DInSAR accuracy is related to the
spatial and temporal resolution of the mission, and it is affected mainly by orbital and
atmospheric errors [24–28]. Over the past 15 years, significant effort has been made by
many researchers to overcome difficulties and implement an interferometric process to
generate and monitor ground surface movements [29–31].

An important feature for reducing difficulties in monitoring the DInSAR process is
analyzing the Persistent Scatterers’ (PS) spatiotemporal movements. Certain objects reflect
a permanently stable SAR signal back to the satellite over time. Objects that possess such
properties are usually artificial structures (buildings, traffic infrastructure, etc.), rocks,
and similar objects. Ferreti [32,33] presented the first Persistent Scatterer Interferometry
(PSI) technique in 2000 and 2001, known as the Permanent Scatterer approach, while the
Small BAselines Subset (SBAS) technique was introduced as a new approach several years
later. The SBAS method is often used in addition to the PS method to supplement results
without signal response since the signal comes from distributed targets [34]. The following
important Persistent Scatterer (PS) technique step was first made by Hooper in 2004 with a
new approach for PS selection using phase preferences. His work led to the development
of software packages called the Stanford Method for Persistent Scatterers (STaMPS), with
its last edition in 2018 [35–38]. Furthermore, some studies consider a hybrid approach of
PS and SBAS methodology or advanced algorithms of the mentioned methods [39,40].

Different multi-temporal InSAR techniques, such as the Coherence Pixel Technique
(CPT) [41], Interferometric Point Target Analysis (IPTA) [42], the Stable Point Network
(SPN) [43], the Persistent Scatterer Pairs (PSP) [44], and Temporarily Coherent Point In-
terferometry (TCPI) [45] are well-known and tested in various case studies. Currently,
MT-InSAR techniques are developed to monitor large areas such as the whole territory
of Germany [46], Norway [47], and Italy [48], or as an alpha version of an infrastructure
monitoring and decision-support framework remotIO based on the MT-InSAR introduced
by Bakon et al. [49]. Many studies showed subsidence results for cities in Europe [2,3,50],
the USA [45], and China [51], or of deformation monitoring of earthquakes [4,52], min-
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ing [22,30,31,53], land and coastal monitoring [2,3,7,23,39–41,54], volcanic activities [55],
glacier motions [56], or even illegal mining activities using the decorrelation problem
as valuable information [53]. In addition, by combining dual polarization channels VV
and VH, the Polarimetric Persistent Scatterer Interferometry technique (PolPSI) can be
used to reduce decorrelation effects and achieve better deformation monitoring [57]. The
intercomparison between InSAR deformation and geodetic monitoring, including GNSS
and leveling, has been reported by authors [58,59]; in addition to the comparison with
leveling, we have also provided a comparison with geotechnical simulation. With the
above developments in mind, this article presents algorithms for processing chains and
generating a subsidence time series using the PS interferometry method. The process-
ing is implemented in Sentinel Application Platform (SNAP) software [60–62] to create
interferograms. The STaMPS package is used to generate a time series of deformations.
As inputs, image collections downloaded from the ESA hub [63,64] through the Alaska
Satellite Facility data search (ASF) [65] were used. This research covers the period from
October 2016 to December 2020.

The study’s primary objective was to analyze and estimate the subsidence of the
neighboring ground surface caused by the coal mine “Kostolac”. The PS technique was
used, and we expected numerous persistent scatterers in urban areas and the lack of them
in vegetated and agricultural regions. As far as we know, the PS InSAR technique has never
been used in the mines of the Republic of Serbia or in land surveying practices related
to deformation monitoring. This study details the workflow for processing time series
derived by PS InSAR images available as open access in order to make a contribution to the
automated processing for vertical displacement estimation using open source tools. The
results from geotechnical models related to the area of interest are presented and compared
with the results from PS InSAR.

Regarding the monitoring area, the most affected villages are Drmno and Klicevac,
where the closest houses are located less than 200 m from the edge of the open pit (Figure 1d).
Additionally, two more villages, Bradarac and Klenovnik, are in the immediate vicinity.
There are two more areas of interest: the mining infrastructure area (TEKO) and the town of
Kostolac. To validate this kind of observation and to overcome orbital and low-frequency
atmospheric errors, the PS analysis was compared to the geodetic leveling technique, which
involves field measurements, after which 1D adjustment was performed using the least
square method [66]. A deformation analysis was done using the Peltzer method [67]. The
input data sets are presented in Section 2, including geotechnical maps and data, and the
methods are described in Section 3. The results of the time series analysis is presented in
Section 4, the summary results are given in Section 5, and the conclusions are given in the
Section 6.
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Figure 1. Location of the study area: (a) Republic of Serbia; (b) Sentinel S1 radar images footprints,
red (A102) ascending and blue (D80) descending; (c) processing bursts from IW1 A102 and IW3 D80
footprints, with a grey polygon representing the Kostolac coal basin; (d) the Kostolac coalfield with
neighboring populated settlements of interest (source Open Street Map (a–c) and Google Earth (d)).

2. Study Area and Datasets
2.1. Study Area

The Republic of Serbia is located in southeastern and central Europe (Figure 1a). The
Kostolac coal basin, located 90 km east of Belgrade, the capital of Serbia, is divided into
four coal deposits. Drmno encompasses the eastern and southeastern part of the basin,
Cirikovac contains the central part of the coal basin, the western part of the coal basin is
known as Smederevsko Pomoravlje, and the fourth part is Klenovnik. The basin occupies
an area approximately 25 km in length and 10 km in width, and is also known as the “Stig”
plain (Figure 1c,d).

The coal basin is in its third and last exploitation period, which began in 2019 and
will end in 2049. The main part of the Kostolac mine is the Drmno coalfield (Figure 1d)
which provides the raw material base for electricity production in the four “Kostolac”
thermal power plants. The proposed coal production of nine million tons per year assumes
five Excavator-Conveyor-Spreader (ECS) systems for the overburden works, plus one for
hummus removal and two-level excavation systems for coal exploitation.

The open pit coal layer is a homogenous structure without inlayers of overburden, with
an average thickness between 18 and 20 m. The coal layer dips to the west by approximately
six degrees and to the northeast (the advance direction of the front) by between three and
four degrees. The terrain is relatively flat, and because of the coal layer dip, the thickness
of the overburden increases from 20 m on the east side to 120 m on the west side of the pit.

The proximity of the Mlava River in the west and the Danube River in the north,
as well as its advantageous lithology structure, completely flooded the upper part of the
coal layer. For drying the open pit field, combined methods of drainage were applied to
avoid endangering the agriculture and the water supply of the surrounding settlements
as much as possible. The southern and western border of the open pit is protected from
groundwater influence by waterproof screens, which prevent groundwater inflow into the
open pit and soil drying towards the settlements of Bradarac and Majurevac. From the
open pit’s northern, eastern, and southeastern sides, drainage is done by a system of wells.
Since this system ensures overburden drying on one side, on the other side it leaves the
village of Drmno without water in its wells, so a water pipeline supply system was made
to overcome this problem.

The thermal power plant “Kostolac A” is located on the right side of the Danube
River in the Kostolac area, whereas “Kostolac B” is located a few kilometers away, at the
confluence of the river Mlava and the Danube [68]. With 1000 MW of installed power,
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the “Kostolac” thermal power plants (TEKO) annually produce 5 billion MW of electricity,
which accounts for 14% of the total electricity production of the Republic of Serbia [69].

The processing area extends over 500 km2, but the primary targets used for analyses
are the villages of Drmno, Klicevac, Bradarac, TEKO, and Kostolac, covering a total area of
about 65 km2 (Figure 1c,d) and belonging to zone 1, 2 and 3 of the mine influence (Figure 2).
The study area (area of interest (AOI)) extends to the coal deposits and involves the
neighboring settlements that are actually located on the coal deposits or around the coalfield.
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One of the issues that occurs is the subsidence of the populated settlements. As the
“Kostolac” mine does not have a monitoring service for this kind of task, this paper presents
a solution for establishing a monitoring service and implementing a procedure for tracking
the subsidence of the surrounding artificial structures, as well as the environment.

2.2. Geological Setting of the Study Area

The wider AOI is geographically bounded by the Danube River to the north, the
Resava River valley to the south, the Velika Morava River to the west, and the Golubac
Mountains to the east [71]. It belongs to the Pannonian basin (it is southern periphery),
known as the Kostolac basin, where coal layers were formed during the Pont (upper
Miocene) era.

The Drmno depression is its central structure, surrounded by the adjacent Smederevo
depression to the west and the Veliko Gradiste depression to the east, and the Pozarevac
ridge dominates the middle (Figure 3a) [72]. Its base, a few kilometers deep beneath,
includes an old crystalline complex, constituting highly tectonized, high and low-grade
tectonic rocks. These Paleozoic schists emerge on the Danube banks in the form of small
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patches (Figure 3c). After a very long continental development, the area subsided in
synchronization with the Pannonian basin development in the Tertiary era. The deepening
of all these depressions was substantial. The depth is estimated to be 3000 m in the central
part of Drmno depression and at least 2000 m in the others (Smederevo, Pozarevac, and
Veliko Gradiste depresions). They comprise primarily clastic sediments, poorly cemented
to frail, with varying proportions of sand, silt, and clay, that are locally limy or marly, and
are interlayered with several horizons of lignite coal [73]. There are coal seams of variable
thickness, from dimensions of under a meter to over 180 m [73]. The quaternary sediments
sit a top the dominant Miocene formations. Large fluvial systems of the Danube, Velika
Morava, and Mlava rivers typically produced thick alluvial plains and terraces comprising
primarily gravel and sand. The topmost parts of the Pozarevac and Sirakovo are covered
with loess. Plunging down from these plateaux, deluvial and proluvial sediments reach the
sediments of the alluvial base (Figure 3c).
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Quaternary sediments, m = Mindel Quaternary sediments, Pl = Pliocene clastites, clays and marls,
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1 = Miocene sandstones and limestones, Fq,Pt − Cm = Paleozoic
crystal schists); (d) Deformability map of the wider AOI.
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The predominant structures are trending normal faults from the Alpine tectonic stage
(the Miocene era) trending NNE-SSW. They are transected by the younger (Quaternary
period) normal faults trending NW-SE, along which the grabens and depressions subsided.
The neotectonic activity suggests a mild uplift over the entire eastern half of the AOI from
the early Miocene onwards (Figure 3b), including a horst uplift in the northernmost corner.
The youngest uplift trend from the Pontian onward is centered around the Kostolac basin
(Figure 3b). The western parts shows no change in trend, i.e., subtle subsidence from the
time of basin generation (Figure 3b). The plicative structures are indistinct, but gentle
folding with low limb angles is typical of all Miocene formations in the AOI.

From a geotechnical point of view, these formations range from being very deformable
to moderately and slightly deformable (Figure 3d). Most deformable formations are tied to
Quaternary loose sediments, which have typical immediate settlement (sand and gravel
predominates), whereas loess plateaux and poorly cemented Miocene sediments are slightly
or moderately deformable, with a possible consolidation settlement type due to variable
clay and organic (coal) content. Fly ash material deposited within the open pit tailings is also
of sandy to silty fraction, meaning that immediate settlement is to be expected, although
there were some other types of displacement reported, such as land sliding [74]. This was
favorable for the InSAR methodology, which was used to capture four-year-long processes
around the open pit contour. The groundwater regime is also highly influential [75], and it
can be anticipated that the open pit wells are constantly lowering the table below the pit
bottom so that the near-surface conditions are dry [74].

2.3. Sentinel-1 Dataset

Sentinel-1 is part of the European Copernicus program, which consists of two satellites,
S1-A and S1-B, launched on 3 April 2014, and on 25 April 2016, respectively. They monitor
the Earth’s surface, generating radar imagery that can be used for mapping land cover
changes, ground deformations, floods, etc. As a constellation of two polar satellites orbiting
180◦ apart, they provide a time resolution of six days, while radiating the surface with
C-band SAR under all weather conditions, day or night, with a swath coverage of 250 km.

All images were downloaded from the repository for Sentinel-1A and Sentinel-1B
ascending and descending tracks, in the Interferometric Wide (IW) mode, with orbit track
number 102 for ascending images and orbit track number 80 for descending images,
spanning from October 2016 to the end of December 2020 (approximately 1542 days), and,
as such, was used for processing (Table 1). Figure 1b,c show the coverage area for Sentinel-1
ascending (A102) and descending (D80) images bounded with red (A102) and (D80) blue
rectangles. Smaller red and blue rectangles in Figure 1c represent the processing areas, and
Figure 1d shows areas of interest with the surrounding populated settlements.

Table 1. Sentinel S1 datasets for processing. M.I.A.: Master Image Acquisition.

Sat. First/Last Image Orbit Track Burst M.I.A. No. of
Images Polarization

S 1A
01.10.2016–15.12.2020 Asc. 102 IW1 4–5 17.07.2018 127 vv

24.10.2016–14.12.2020 Desc. 80 IW3 6–7 22.07.2018 128 vv

S 1B
07.10.2016–21.12.2020 Asc. 102 IW1 4–5 17.07.2018 130 vv

06.10.2016–20.12.2020 Desc 80 IW3 6–7 22.07.2018 128 vv

2.4. Field Observations

In order to provide coal production improvements, the chimney construction works
were undertaken from April 2019 to June 2020. For that purpose, leveling sessions were
performed in order to monitor chimney subsidence. The survey leveling network (Figure 4)
implies five stable control benchmarks (R5, R6, R52, R53, and R35), known as the primary
control network and four working benchmarks (R1, R2, R3, R4). Control benchmarks are
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established on the stable and secured site positions outside the area of the impact of the
chimney construction, whereas working benchmarks are set on the chimney itself.
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During the observed period from April 2019 until February 2021, nine epochs were
undertaken approximately every two months except for the last epoch, which was con-
ducted at the beginning of 2021. The observation plan (Figure 4) implied twenty leveling
sides to be surveyed for each epoch.

2.5. Geotechnical Modelling Inputs

Geotechnical parameters, such as unit weight γ and constrained deformation modulus
Es, were required to perform a simple 3D ground settlement modeling and compare it to
the four-year PS measurements. Although geotechnical surveys were conducted regularly
to establish the level of compaction of the tailing fly ash, little or no data on geotechnical
properties are freely available, including the parameters and the general geometry of the site,
tailings, etc. Oral communication with the geological and geotechnical engineers involved
in conducting ground investigations was one of the essential sources of estimations used in
this work. Due to a lack of needed investigations (lab tests, field tests, etc.), it should be
highlighted that the geotechnical modelling parameters were estimated roughly and that
the results involved are only used to portray the general settlement trend and to compare it
to the measured values.

The following soil profile was considered:

• loess, 30 m thick, γ = 16 kN/m3, Es = 20.0 MPa, the immediate settlement only
• clayey sand, 50 m thick, γ = 18 kN/m3, Es = 10.0 MPa, the immediate settlement only
• coal seam 1, 15 m thick, γ = 12 kN/m3, Es = 1.0 MPa, the immediate settlement only
• clayey sand 10 m thick, γ = 18 kN/m3, Es = 10.0 MPa, the immediate settlement only
• coal seam 2, 15 m thick, γ = 12 kN/m3, Es = 1.0 MPa, the immediate settlement only
• clayey sand 35 m thick, γ = 18 kN/m3, Es = 10.0 MPa, the immediate settlement only
• coal seam 35 m thick, γ = 12 kN/m3, Es = 1.0 MPa, the immediate settlement only
• clayey sand 50 m thick, γ = 18 kN/m3, Es = 10.0 MPa, the immediate settlement only
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The settlement simulation did not include groundwater, since these conditions were
unknown, although they might be very influential [74]. It is assumed that conditions are
dry (due to the constant drainage of the open pit), that there are no pore pressures, and
that the settlement is immediate (primary).

Another segment, being the primary reason for the potential settlement around the
open pit contour, is the unloading due to the excavation and the loading of fly-ash layers
coming from the power plant. These are separated with an impermeable foil and then
compacted to a dry density of 11 kN/m3. It is assumed that each tailing can reach up to
30 m with 1:1 slope sides, and is of sandy-silty composition [75]. The pit size and geometry
were reconstructed using the available satellite imagery, and the depth was based on the
coal layer’s position. All simulations considered the first coal seam with its bottom at
−80 m as the reference level.

All calculations were performed in Rocscience software module Settle3, using the
Boussinesq method for stress σb propagation under load F Equation (1), which is based
on the theory of elasticity and applies to any point in homogeneous half-space (beneath
the ground surface) at depth z and offset angle θ (angle between the vertical and line
that connects the observed point to load point). The immediate settlement that occurs
simultaneously as the load is applied (in this case, the fly ash layers) is proportional to the
stress difference (in this case, σb) to modulus ratio Equation (2).

σb =
3F

2πz2 · cos5θ (1)

ε =
∆σ

Es
(2)

Calculations were performed only for the Drmno and Bradarac area, and compared
against the measured data.

3. Methods

The techniques for generating the InSAR time series can be separated into three groups.
The first group implies a PS technique in which single-point backscattering properties re-
main stable during the observed period, introduced by [32,33]. The second group comprises
small baseline techniques (SBAS) for time series generation through all available small base-
lines’ interferogram combinations [34,35]. A third group is a hybrid one that combines the
first two groups of techniques. All of the methodologies mentioned above are implemented
in various software packages.

For example, the ESA has been developing tools for Earth Observation (EO) processing
and analysis named SNAP [60,61] since 2014, covering all three groups of techniques. SNAP
is open source software created on the foundation of the BEAM and NEST platforms, with
its last version, 9.0, released on 29 June 2022 [62]. The software can export data to another
format or software package, such as StaMPS [35]. StaMPS is a partially open source, used
for educational purposes in the additional analysis of ground displacement developed for
two methods, PS and SBAS [36].

In this work, we chose the Persistent Scatterers method, since we engaged in defor-
mations in urban areas. In contrast, the rest of the AOI comprises agricultural fields with
systematic cultivation. Software processing in this work was divided into three stages:

1. Image filtering or preprocessing,
2. Processing with SNAP and StaMPS software,
3. Employing open source software and scripts for analyzing and visualizing the results.

Finally, the comparison stage implies a correlation test between the survey leveling
trend and the PS vertical displacement trend obtained on the benchmark. Furthermore, we
compared PS InSAR vertical displacements with the results of the settlement simulation model.
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3.1. Interferometry

Interferometric SAR (InSAR) is a combination of conventional SAR techniques and the
principles of interferometry [76–78]. In the interferometric methods, the phase difference
between two propagating EM waves reaching the same point is obtained from the intensity
of the interferogram fringes, and is used to measure the difference in their path lengths. In
order to form an interferogram, the InSAR technique uses at least two complex-valued SAR
images of the same area made from two SAR antennas positioned at some distance (base-
line), each carrying the amplitude and phase information of backscattering microwaves
from all scatterers of the target resells. The single antenna-based InSAR system made im-
ages of the same area twice, from slightly different orbits and at other times. The obtained
interferometric phase difference value between those two passing times could be treated
as a sum of the phase shift terms. The most important among them carries information
about the target height change. The other phase shift terms refer to the initial target area
topography, the wrapped phase ambiguity, different atmospheric conditions at the time of
image acquisition, errors in the exact position estimation of the antennas, their phase noise,
and the variations of target backscattering characteristics over time [8].

3.2. Pre-Processing

The first processing stage involves downloading images from the ESA open hub [64]
using ASF Data Search [65] and filtering them according to weather conditions with regard
to snow cover and rainfall during image acquisition. The weather data are downloaded
from the Ogimet database [79] for weather station 13285 Veliko Gradište, which is the
closest weather station for the AOI. After this stage, 402 images were left, 215 images were
from the ascending track, and 187 were from the descending track.

3.3. Processing

The key part of processing implies two independent processing chains: the first is a
SNAP processing chain, and the second is a StaMPS processing chain. SNAP is a fully open
source software, whereas StaMPS relies on command line/power shell/terminal scripting,
in addition to its more significant part, in the MATLAB software.

3.3.1. SNAP Processing

The SNAP processing [60] chain is shown in Figure 5 and provides the data struc-
ture for the StaMPS mt_prep_snap shell script file, in addition to further data processing
with StaMPS.
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After downloading and filtering, depending on the weather conditions, the Sentinel-1
Single Look Complex (SLC) products (images) and product splitting should be applied to
the image bursts and subswats. This will result in a new, smaller-sized product, followed
by the applying of orbit files for each image separately. In the next step, the back geocoding
operator co-registers all SLC products (master and slaves) and produces a stack of co-
registered master–slave SLC files with the same master image for every master–slave pair.
Enhanced Spectral Diversity (ESD) follows the back geocoding operator and produces
co-registered master–slave images with the range and azimuth shift corrections applied to
the slaves [38,80].

The ESD step is divided into two branches. The first branch follows the product
deburst operator. Interferometric Wide (IW) SLC products have three swats, and each
sub-swath consists of a series of bursts, where each burst is processed as a separate SLC
image. Bursts have an overlap of 50–100 samples, and after debursting, they result in a
single sub-swath image. After debursting, users can take a subset of the AOI to reduce
the data size. The second branch starts with an interferogram formation operator and
the computation of a complex interferogram, after which users should apply product
debursting. Subsequently, Topographic Phase Removal is performed, estimating and
subtracting the topographic phase from interferograms. The branch is completed by taking
a subset representing the AOI. The final step enters both branches into the StaMPS export
operator to produce readable files and a data structure for the StaMPS application for PS
Interferometry. Figure 5 shows the SNAP workflow for generating interferograms and
input data for further processing with STaMPS.

3.3.2. StaMPS Processing

StaMPS is a software package for generating PS deformation rates through time series
using coregistered SLC stacks of the master–slave interferogram pairs from SNAP [36,81]
or other software. StaMPS processing starts with the mt_prep_snap script file initializing
permanent scatterer candidates and their information, run from the command line. After ex-
porting StaMPS compatible files from SNAP and running the mt_prep_snap script file, there
are eight straight steps to generate a deformation time series. All eight steps are processed
using MATLAB [82], and this part of the processing is done in proprietary software.

Processing starts with the (stamps (1,1)) step, loading the permanent scatterer candi-
dates from the mt_prep_snap script file, with amplitude dispersion as the threshold setting
up the value to 0.4. The stamps (2,2) step implies phase noise computations for every
interferogram candidate pixel. The stamps (3,3) step implies final PS pixel adoption. The
stamps (4,4) step, called permanent scatterer weeding, eliminates pixels with too much
noise. Stamps (5,5) imply phase correction, stamps (6,6) imply phase unwrapping [83–86],
and stamps (7,7) step estimates the spatially correlated look angle (SCLA) error. Stamps
(8,8) is the last step, which requires the use of the Toolbox for Reducing Atmospheric
InSAR Noise (TRAIN), where we applied linear atmospheric filtering [24–28] to reduce the
topography-correlated atmospheric phase. The estimated atmospheric noise was removed
from the results.

The digital elevation model (DEM) used is Shuttle Radar Topography Mission (SRTM),
with a resolution of 3 arc seconds [87].

We selected a stable reference point in the middle of the processing area (marked as a
black triangle), showing 0 mm/year of vertical movement. The whole neighboring area of
the reference point shows stable phase preferences throughout the time series.

3.4. Post-Processing

Using the previous steps from SNAP and STAMPS processing, we could generate two
sets of ascending and descending Line of Sight (LOS) displacements into the time series
formation from satellites S1A and S1B. As we focused only on the vertical displacements in
this study, we combined the LOS measurements from descending and ascending geometries
to obtain the vertical displacements [50,52,88,89].
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The final analysis was transferred into QGIS [90] for visualization and deformation
map generation overlaid with satellite images. With this approach, it was possible to
separate the vertical motion rates in the specified areas.

3.5. Least Squares and Pelzer Method

The classical approach for deformation analysis implies collected field measurements
of leveling. For leveling sides, the geometric method was used with the standard back-
front-front-back option in the forward direction during the morning and the backward
direction during the evening. A Leica brand classical instrument with proper barcode
leveling bars was used, resulting in a stated accuracy of 0.3 mm/km.

Field measurements were later processed through algorithms based on the Least
Squares Method [66] for network adjustment and the Pelzer method for deformation
analysis based on the time series [67].

4. Results

The entire AOI is divided into smaller areas that are more suitable for the presentation
of the results related to subsidence velocity and a map showing vertical displacements
obtained after post-processing. Areas to be investigated included Drmno, Klicevac, Klen-
ovnik, and Bradarac, as surrounding settlements, the Thermal Power Plant Area (TEKO)
and the Kostolac settlement, as well as the rest of the overlapped area after processing. The
obtained results are related to the urban areas of the AOI, whereas the signals received from
the vegetated areas and excavation sites were unusable. LOS velocities of the PS motion
are presented in Figures 6 and 7, in ascending and descending tracks. The number of PSs
for the processing area with basic statistics is shown in Table 2.
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Table 2. PS statistics for LOS ascending and descending orbit for processing AOI, and vertical
decomposition of the ascending and descending orbit.

Satellite PS Max Min Mean Uplift Mean Subsidence

Orbit (LOS) [mm/year] [mm/year] [mm/year] [mm/year]

Asc 79,060 6.9 −8.1 0.5 −1.1

Desc 81,217 6.1 −8.8 0.5 −0.7

Asc + Desc 8951 4.1 −8.2 0.5 −0.7

A decomposed vertical velocity motion map is presented in Figure 8. The resolution
cell is set up to 50 m, and 8951 PS was generated, and is shown in the histogram (Figure 9).

4.1. Drmno Area

The Drmno area is located near the mine, and this site was most affected by mining
activities in the past. However, this part of the mine has not been widely exploited in
the last six years. Figure 10 shows the velocities of the subsidence in the range from 0 to
−4.5 mm/year, where it can be seen that the whole village is showing a subsidence effect.
Subsidence velocities are dominant and highest at the edge of the village and the open pit.
Table 3 shows the statistical parameters for PS in the Drmno settlement.
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8951 resulting PSs for the processing area (a 50 m resolution cell).
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Figure 10. Drmno vertical velocity motion map [mm/year], raster cell 50 m.

Table 3. Persistent Scatterers statistics for Drmno AOI (50 m resolution).

PS Max Min Mean Uplift Mean Subsidence Mean

Total [mm/year] [mm/year] [mm/year] [mm/year] [mm/year]

93 0 −4.5 / −1.5 −1.5

4.2. Klicevac and Bradarac Areas

The Klicevac area is located on the northeast side of the mine, and most future pit
activities will be directed around this village. The pit bypasses the nearest houses by
less than 200 m, and the exploitation will reach close to the village border. Figure 11
shows Klicevac PS deformation velocities ranging from −2.2 to +2.4 mm/year. A total of
235 PSs were used to generate the Klicevac velocity deformation map shown in Table 4 and
Figure 11. Subsidence on the edge of the village and the open pit can be clearly seen, while
the rest of the area shows a vertical uplift motion increasing value by moving away from
the edge of the open pit on the southwest side, reaching the highest value on the northeast
side of the village.

The Bradarac area is located on the south side of the mine. Figure 12 shows a de-
formation map of the Bradarac area where deformation velocity values range from −8.2
to +1 mm/year. PSs near the open pit edge reach maximum subsidence values from
−8.2 mm/year. As distance increases from the edge of the open pit, subsidence velocities
decrease. A total of 270 PSs could be seen in the Bradarac velocity deformation map, as
shown in Table 4.
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4.3. Thermal Power Plant Area (TEKO)

TEKO is located on the west side of the mine and the north side of the Drmno village.
Figure 13 shows the velocity rates of the vertical motion for the TEKO area. Maximal
subsidence was detected in the area close to lake “TE Kostolac B”, ranging from −2 to
−5 mm/year. A total of 102 PSs are shown on the vertical motion map with a 50 m
resolution cell (Table 5 and Figure 13).
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Table 5. PSs statistics for TEKO (mine infrastructure objects) AOI.

PS Max Min Mean Uplift Mean Subsidence Mean

Total [mm/year] [mm/year] [mm/year] [mm/year] [mm/year]

102 −0.6 −5.0 / −2.9 −2.9

Thermal Power Plant Area (TEKO) Leveling Benchmarks

A survey control network has been established for new chimney construction within
the thermal power plant. The control network contains five leveling benchmarks: R52, R53,
R35, R5, and R6, which are mounted on neighboring objects and represent stable points
for chimney subsidence monitoring during construction (Figure 13). There are also four
working benchmarks mounted on the chimney for subsidence observations. A survey
campaign conducted by contractors hired by TEKO lasted from April 2019 to February
2021. It consisted of monitoring the subsidence of the chimney under construction and
providing results for verification.

The PS InSAR vertical displacement estimations were referenced to the same date as
the start of leveling to be comparable with the leveling data. The survey team used leveling
methods, and the observed subsidence on benchmark R6 is −2.7 mm/year (Figure 14),
whereas this study obtained results in a few PSs where the overlapped PS with the bench-
mark R6 resulted in −3.4 mm/year. The Pearson correlation is 85%, with a p-value of 0.015.
The benchmark R6 was the only one that had the PS directly above, and the roof of the
building was the PS.
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Figure 14. Benchmark R6, PS time series and leveling time series, dotted lines represent trends of the
PS and leveling time series.

4.4. Kostolac Area

The Kostolac settlement is located five kilometers to the west of the open pit. Different
power plant facilities and water and land transport junctions are built in the north part
of the Kostolac. The whole area shows subsidence behavior, which is clearly displayed,
increasing from south to north, where power plant activities are the highest. The maximal
subsidence detected was −4.3 mm/year, as shown in Table 6 and Figure 15.

Table 6. PSs statistics for Kostolac AOI.

PS Max Min Mean Uplift Mean
Subsidence Mean

Total [mm/year] [mm/year] [mm/year] [mm/year] [mm/year]

479 1.0 −4.3 0.3 −1.2 −1.2
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4.5. Settlement Model

The settlement model applies to the areas of Drmno and Bradarac, and is located
on the southernmost contour of the Drmno open pit. The simulation, under assumed
properties and conditions, shows that surface subsidence from loading on the bottom of the
pit can reach noticeable values, e.g., −4.0 cm in the Drmno area and −5.0 cm in the Drmno
village. In comparison, −1.0 cm can be expected in the Bradarac area (Figure 16, black dots,
see Section 2.5 for details on the geotechnical properties). These are immediate settlements
according to the model, but their totals can match relatively well with the four-year vertical
displacements at the specified sites. For instance, at the first check point (A) −4.0 cm of
modeled settlement corresponds to the measured vertical displacement of −4.5 mm/year,
i.e., −1.8 cm in total (multiplied by four years). In the Bradarac area (the second checkpoint)
it is the opposite. Captured vertical displacement was −8.2 mm/year, i.e., −3.3 cm in total,
which is underestimated in comparison to modeled immediate settlement of −1.0 cm, but
still shows a similar trend. On the western outskirts (at the third check point B), measured
−2.2 mm/year, i.e., −0.9 cm in total, while modelled settlement equals −5.0 cm. Having
in mind that the settlement model was simplified and based on roughly estimated input
parameters, the comparison shows that the model fits reasonably well with the measured
data, implying that the PS measurements have a valid trend and magnitude, despite
apparent over/underestimations. Further improvements of the settlement model, which
are currently not feasible due to a lack of operative geotechnical data, might result in an
even better fit (e.g., assuming the presence of pore pressures [75] and primary consolidation
or even secondary settlement, which might justify the analysis of a longer time series).
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5. Discussion

The time series analysis and processing workflow was described in detail. The entire
process is not fully automated; however, as it relies on scripts and algorithms, it can be fully
automated. The dense coverage of the reliable PSs over the AOI provides a good base for
monitoring deformations. The process results in 8951 PSs, in a regular geometry, occupying
a processing area of approximately 1000 km2. Considering an open pit exploitation area and
vegetated areas, which cover about 50% of the AOI, where the SAR signal was not received,
there was a total of ~20 PS targets/km2. The smallest number of PS regarding populated
places is in the Drmno area. The area and density of the artificial objects, primarily PS, in
Drmno are significantly smaller than, for example, the Klicevac and Bradarac areas. Only
a co-polarized (VV) channel was used from the satellite imagery for processing. Using
both polarizations (VV + VH), as well as using other wavelengths, should lead to more PSs
being obtained.

The 50 m rasterization of the PS’s ascending and descending pairs was performed,
and vertical motions, uplift, and subsidence were reconstructed to achieve reliable results.

The AOI displays apparent uplift and subsidence trends, showing subsidence rates
around the open pit border, as well as the area of the thermal power plant TEKO and the
town of Kostolac, which are directly related to coal production. All areas distanced from the
open pit showed positive values for the vertical motions. The largest subsidence velocity
can be found on the west side of the mine, where the thermal power plant infrastructure
is located. The results related to the populated areas did not show high deformation
values, whereas the construction sites had higher subsidence rates. Velocity values of the
motion in the AOI correspond to the interval of +2.4 mm/year in the Klicevac area to the
maximal gained subsidence value of −8.2 mm/year in the Bradarac area. These results
are correlated with the results obtained by the classical geodetic approach and the other
four benchmarks that follow subsidence trends. The verification process was performed
through comparison with the survey leveling results, where benchmark R6 shows a Pearson
correlation of 85% with a p-value 0.015; this confirms a significant correlation and recom-
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mends this method as an alternative to classical leveling. Searching for the subsidence in
the populated areas, maximal velocity values were found to be −4.5 mm/year for Drmno,
−2.2 mm/year for Klicevac, and −8.2 mm/year for Bradarac, −5.0 mm/year for the TEKO
area, and −4.3 mm/year for the Kostolac region. Uplift velocity values were found to
be +2.4 mm/year for Klicevac and +1.1 mm/year for Bradarac, and +1.0 mm/year for
Kostolac, whereas uplift motion was not found in the areas of Drmno and TEKO.

The PS tool shows good potential for the long-term monitoring of ground displace-
ments. Still, given that it is a novel technique that relies on missions of up to one decade old,
it is reasonable that analysis of the geodynamic uplift will become attractive in the future.
In the current AOI, the general uplift directions and descriptive trends were determined
from the geological investigations [73]. When cross-compared with the final results with
annual displacement rates (Figure 17), it is noticeable that the urban areas of Pozarevac
and Veliko Gradiste and villages in the eastern part introduce upward displacements of a
small magnitude (up to 4 mm/year). These could be related to the geological background
of the structural blocks, which have been predominantly in slight uplift since the Miocene
era or later. However, numerous targets with negative vertical displacements suggest
otherwise. These can be considered as artificially affected targets, e.g., settlements due to
mining [74], loading, landsliding, etc., which is usually very common in an area dominated
by deformable rocks.
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It is important to note several limiting issues of the SAR system and the PS procedures.
The first one involves its coarse temporal resolution (revisiting period), which was a
problem in the past. With the launching of ESA satellites S1-A and S1-B, this characteristic
has been significantly improved, resulting in a temporal resolution of six days. The
second issue is related to the low PS distribution in vegetated areas and areas with low
reflectivity. Furthermore, steep terrain or snow coverage can bring a complete loss of PSs
and lead to signal decorrelation. PS locations cannot be known a priori before PS processing,
whereas geodetic techniques use predefined points of interest to monitor deformations. A
comparison of the deformations obtained with the PS technique and those with geodetic
techniques has to be carefully considered. The Sentinel-1 images have a temporal resolution
of six days, which brings users the privilege of monitoring and establishing a vertical
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motion management system. According to the mission data time resolution of 6 days, in this
study, the proposed monitoring procedure is preferable, since low rates of spatiotemporal
deformation behavior were expected. Phase unwrapping limits the observation of fast
deformation phenomena to 1/4 of the wavelength over the satellite revisiting time because
of phase ambiguity. PS analysis results in the LOS geometry based on the line that connects
the satellite sensor and the surface target. The vertical displacements can be resolved using
different orbit pairs, i.e., pairs of ascending and descending orbit datasets. PS velocity maps
may contain orbital and low-frequency atmospheric errors, which can be resolved using
multiple overlapping tracks or combined with geodetic techniques such as leveling.

The monitoring process shows that using the time series generated through PS InSAR
algorithms could be an appropriate stand-alone solution for deformation monitoring, or the
presented approach can complement the measurement gaps that exist in leveling survey
data and provide a much more detailed time series of vertical displacements [31]. The
results of comparison with the classical surveying method are significantly correlated, as
also reported by [31], and shows that this method could be even more preferable, especially
regarding the costs and area of coverage that could be monitored. Several large deformation
oscillations were obtained from the PS time series within short periods in the deformation
curve (see Figure 14) which is inconsistent compared to classical surveying methods. We
assume that external influences caused the jumps in the time series, metal roof construction
oscillating depending on solar radiation, temperature, or similar influence. The trend lines
in both results are significantly similar (a Pearson correlation 85% with a p-value of 0.015);
similar results were obtained in other studies [58] related to the trendline comparison.
Therefore, vertical displacement should investigate a linear trend of a more extended (at
least one year) time series in order to be comparable with classical surveying leveling. The
final results display overall yearly displacements of −3.4 mm/year with the PS InSAR
method and −2.7 mm/year with the leveling method.

Comparing the PS InSAR vertical displacement estimations shown in Figure 14 with
the velocity rates of vertical motion shown in Figure 13 identifies that all of the TEKO
area is unstable, including all leveling benchmarks. Considering the above conclusion
of the instability benchmark network, the network’s primary purpose could be to show
whether some benchmark subsidence is bigger or smaller than the rest of the network.
According to the displacements of PS InSAR (Figure 14), the R6 benchmark site experienced
subsidence within a range of 15 mm (based on trendline) to 20 mm (based on PS time series
observations) during the period of October 2016 to December 2020. The results from the
Peltzer analyses also confirmed the most significant drop at the R6 benchmark (from April
2019 to February 2021). This study could help identify stable reference points in the TEKO
area for impartial evaluations of vertical displacements across benchmarks.

6. Conclusions

This article presents surface deformation behavior in the environment near the Kosto-
lac open pit, primarily using open-source software packages and the Copernicus Sentinel-1
mission data. According to the results and discussion above, the PSI procedure is a power-
ful tool for recognizing and understanding surface motion behavior. Processing images
and generating results onto vertical geometry and with their overlapping with the area of
interest, it was possible to determine the vertical surface motion. To ensure comparability
with classical surveying leveling, it is recommended to investigate the linear trend of an
extended time series (at least one year) regarding vertical displacement. The final outcomes
reveal yearly displacements of −3.4 mm/year via PS InSAR and −2.7 mm/year using the
leveling method.

Regarding the results of vertical motion shown in Figure 13, it showed that all of
the TEKO area is unstable, including all leveling benchmarks. Despite some variations,
these vertical motions are also in accordance with the general settlement trend established
in the geotechnical model (Figure 16). The outcomes of this study have the potential to
offer guidance on identifying stable reference points in the TEKO area, thereby yielding
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impartial evaluations of vertical displacements across all benchmarks. Such a PS InSAR
vertical displacement estimations approach would prove beneficial for designing leveling
networks focusing on benchmark stability.

As four-year time series PS data is insufficient to establish undisputable conclusions
on the neotectonics uplift, which last across much longer time scales, extending the time
series (covering at least a decade) would be interesting, with the filtering of the ground
targets by field control (using only reliable, uncompromised targets).

The proposed monitoring system solution could be implemented in typical mining
and geodetic (land surveying) practices. In this case, because of the lack of leveling
data, estimated vertical displacements are the only source of the deformation monitoring
information for the period from October 2016 to April 2019. This research is the first
application of wide-area vertical deformation mapping with Sentinel-1 data in Serbia, and
it has not been as widely used in regions of the Balkan Peninsula as it has in other countries
of Western Europe [9]. Previously, it was reported as the proper solution for underground
mining, where vertical displacements are much higher [30,31]. These results reported for
the AOI could also be used for geohazard monitoring [4,50,52] and land monitoring in
general [2,3].

Future work should use different methods over the AOI, and comparisons with the
PS method could be presented. Finally, sensors with better spatial resolution or new
acquisition modes will be available soon, in addition to the existing ones, increasing the
precision and density of the PSs.
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66. Perović, G.; Ninković, S.; Moritz, H. Least Squares:(Monograph): With 87 Figures and 90 Tables; TON: Belgrade, Serbia, 2005;

ISBN 86-907409-0-2.
67. Pelzer, H. Zur Analyse Geodätischer Deformations-Messungen; DGK, Verlag der Bayer. Akad. d. Wiss.: Munich, Germany, 1971.
68. Electric Power Industry of Serbia. Available online: http://www.eps.rs/lat/kostolac/Stranice/o-nama-teko.aspx (accessed on

5 November 2021).
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organic geochemical study of the lignite from the Smederevsko Pomoravlje field (Kostolac Basin, Serbia). Int. J. Coal Geol. 2018,
195, 139–171. [CrossRef]
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