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Open quantum systems provide a conceptually simple setting for the exploration of collective
behavior stemming from the competition between quantum effects, many-body interactions, and
dissipative processes. They may display dynamics distinct from that of closed quantum systems
or undergo nonequilibrium phase transitions which are not possible in classical settings. However,
studying open quantum many-body dynamics is challenging, in particular in the presence of critical
long-range correlations or long-range interactions. Here, we make progress in this direction and
introduce a numerical method for open quantum systems, based on tree tensor networks. Such a
structure is expected to improve the encoding of many-body correlations and we adopt an integration
scheme suited for long-range interactions and applications to dissipative dynamics. We test the
method using a dissipative Ising model with power-law decaying interactions and observe signatures
of a first-order phase transition for power-law exponents smaller than one.

I. INTRODUCTION

The interaction of a quantum system with its sur-
roundings induces dissipative effects which require the
description of its state in terms of density matrices. In
the simplest case, these matrices evolve through Marko-
vian quantum master equations [1–3]. However, solv-
ing these equations for many-body systems is a daunt-
ing task, especially beyond noninteracting theories [4–8].
This is due to the exponential growth (with the system
size) of the resources needed to encode quantum states,
which seriously limits the investigation of nonequilibrium
behavior in open quantum systems [9–20].

To overcome this limitation, several numerical ap-
proaches have been developed [21–26], including tech-
niques based on neural networks [27–32]. At least for
one-dimensional quantum systems, the state-of-the-art
methodology is based on matrix product states (MPSs)
[33–41], despite open questions on their performance for
open quantum dynamics [23] and on error bounds for the
estimation of expectation values. These aspects are par-
ticularly relevant close to nonequilibrium phase transi-
tions, where MPS methods can become unstable [14, 16],
since they struggle to capture long-range correlations in
critical systems or in systems with long-range interac-
tions.

Recently, tree tensor networks (TTNs), which are ten-
sor networks featuring both a physical and several hid-
den layers [see sketch in Fig. 1(a)], have been successfully
employed to encode critical long-range correlations [42]
in Hamiltonian systems [43–47] (see also Refs. [48–51] for
other applications). This enhanced capability is rooted in
their structure [cf. Fig. 1(a)], which is such that the num-
ber of tensors between two subsystems scales only loga-
rithmically with their distance [43] and not linearly as

FIG. 1. Tree tensor networks and dissipative Ising
model. (a) Binary tree tensor network Xτ0 living on a tree
τ0, associated with a system made by D = 8 particles. The
network consists of a physical layer, containing the leaves of
the tree (each one related to a particle), and three hidden lay-
ers. The latter are made by connecting tensors C

τ
j
i
, pairwise

joining elements from the previous layer. (b) Dissipative Ising
model with two-level subsystems and single-particle states |•⟩,
|◦⟩. The system Hamiltonian drives coherent oscillations be-
tween states |•⟩ ↔ |◦⟩ with Rabi frequency Ω and detuning ∆.
The irreversible process consists of local decay |•⟩ → |◦⟩ with
rate γ. Two subsystems in state |•⟩ interact with a strength
depending on the parameter V and on their distance through
the interaction-range exponent α.

for MPSs. Despite this feature, TTNs have not yet been
used for simulating critical or long-range open quantum
dynamics [26] (see, however, related ideas in Refs. [52–
54]).

In this paper, we present an algorithm for simulat-
ing quantum master equations which exploits a TTN
representation of quantum many-body states. Our ap-
proach, based on the integration scheme put forward in
Ref. [55], evolves a TTN by a hierarchical “basis update
& Galerkin” (BUG) method. It first updates the or-
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thonormal basis matrices which are found at the leaves
of the tree and then evolves the connecting tensors within
the hidden layers [see Fig. 1(a)], by a variational, or
Galerkin, method.

To benchmark our algorithm, we consider a paradig-
matic open quantum system, the dissipative Ising model
sketched in Fig. 1(b), in the presence of power-law de-
caying interactions. We show the validity of the method
by checking it against (numerically) exact results for
both short-range and long-range interactions and we
investigate signatures of a first-order phase transition in
the long-range scenario. We further consider a global
“susceptibility” observable and explore how TTNs
perform in describing many-body correlations. Our
results indicate that TTNs are promising for simulating
open quantum many-body systems in the presence of
long-range interactions.

II. OPEN QUANTUM DYNAMICS

We consider one-dimensional quantum systems con-
sisting of D distinguishable d-level particles undergoing
Markovian open quantum dynamics. The density matrix
ρ(t) describing the state of the system evolves through
the quantum master equation [1–3]

ρ̇(t) = L[ρ(t)] := −i[H, ρ(t)] +D[ρ(t)] . (1)

The map L is the Lindblad dynamical generator and
H = H† is the many-body Hamiltonian operator. The
dissipator D assumes the form

D[ρ] =
∑
µ

(
JµρJ

†
µ − 1

2

{
ρ, J†

µJµ
})

, (2)

with the jump operators Jµ encoding how the environ-
ment affects the system dynamics.

The Lindblad generator in Eq. (1) is a linear map from
the space of matrices onto itself. To numerically simulate
open quantum dynamics, it is convenient to represent L
as a matrix acting on a vectorized representation of ma-
trices (see e.g. [16, 56–58]). Any matrix ρ(t) thus becomes
a vector |ρ(t)⟩, and Eq. (1) reads

|ρ̇(t)⟩ = L |ρ(t)⟩ , (3)

with L being the matrix representation of the generator
L (see Appendix A for an example). In what follows, we
show how the solution of Eq. (3) can be approximated
by means of TTNs.

III. INTEGRATION WITH TREE TENSOR
NETWORKS

TTNs feature a physical layer and several hidden lay-
ers [cf. Fig. 1(a)], which we exploit to store physical data

corresponding to the quantum state |ρ(t)⟩. The leaves of
the tree, i.e., the tensors (in fact, matrices) in the physi-
cal layer, correspond to the sites of our one-dimensional
quantum system while the connecting tensors in the hid-
den layers encode correlations between them. To ap-
proximate the open quantum dynamics, we adopt an al-
gorithm [55] that decomposes the Dirac–Frenkel time-
dependent variational principle [59–61] for TTNs into
computable discrete time steps, variationally evolving
each tensor of the TTN in a hierarchical order from the
leaves to the root (bottom-up). A single update of the
algorithm consists of two steps,

1. Construct a state-dependent reduction Lτj
i
of the

Lindblad generator, for each tensor in layer j,

2. Update the tensor variationally, by solving the sys-
tem of differential equations implemented by Lτj

i
,

which are repeated recursively going from the bottom to
the top layer. We now provide a concise description of
the algorithm and refer to Ref. [55] for details.
The physical layer is formed by D = 2ℓ leaves, each

one associated with a site of the system. Each leaf is the
smallest possible sub-tree, which we call τ ℓi , see Fig. 2(a).
The superscript ℓ labels the (physical) layer to which the
leaf belongs, while i, for i = 1, 2 . . . D, denotes the leaf
itself. The tensor associated with each leaf is a com-
plex matrix Ui, with orthonormal columns and dimen-
sions d2 × rτℓ

i
, carrying a physical basis. We will use the

letter r to denote bond dimensions within the TTN.
Proceeding towards the root (top) of the tree de-

picted in Fig. 1(a), for each hidden layer j we can recur-

sively define larger sub-trees τ ji obtained by joining sub-

trees from the previous layer, namely τ ji = (τ j+1
2i−1, τ

j+1
2i )

[cf. Fig. 2(a)]. Each sub-tree is related to a tensor net-
work Xτj

i
, at the root of which one finds the connecting

tensor Cτj
i
, with dimension rτj

i
×rτj+1

2i−1
×rτj+1

2i
. As shown

in Fig. 2(b), the first index of these tensors (bond dimen-
sion rτj

i
) points upward and is counted as the zeroth di-

mension, followed by the second and third indeces (bond
dimensions rτj+1

2i−1
and rτj+1

2i
) which point downward to

the left and right sub-tree, respectively.
We further define the tensor-matrix multiplication A =

C ×m B, between an order-n tensor C and a matrix B
with respect to mth tensor index as [see, e.g., Fig. 2(c)]

Ak0,k1,...km...kn−1 =
∑
ℓm

Ck0,k1...ℓm...kn−1(B
T )ℓm,km , (4)

as well as the matricization of a tensor Mati(C) = Ci ∈
Cri×r′i , where r′i =

∏
j ̸=i rj , with inverse operation,

Teni(Ci) = C, called tensorization [cf. Fig. 2(c)]. We
work with orthonormal TTNs, for which Mat0(C)T has
orthonormal columns for each connecting tensor C, with
the exception of the connecting tensor Cτ0 at the root
(top). The relation ri ≤

∏
j ̸=i rj must be satisfied for
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FIG. 2. Tree tensor networks: sub-trees and operations. (a) Examples of tensor networks Xτ , defined on sub-trees of
the TTN shown in Fig. 1(a). Apart from the leaves, each Xτ has a connecting tensor Cτ at the top. (b) Leaves are complex
orthogonal matrices with dimension r0 × d2, where d is the dimension of the single-particle Hilbert space. Connecting tensors
are order-three tensors with bond dimension r0 × r1 × r2. The indexes of the tensors are numbered from 0 to M − 1, where M
is the order of the tensor. (c) Sketch of the tensor multiplication [cf. Eq. (4)] and of the reshaping functions Mati, Teni, shown
for i = 1. (d) Recursion algorithm for finding Lτ . Given Lτ̂ , with τ̂ being the smallest tree larger than τ and containing it,
to find Lτ we extend the tensor network Xτ to a tensor network on the larger tree τ̂ , via the operation πτ̂ ,τ . We apply the

function Lτ̂ on the extended tensor network and then reduce the resulting tensor back to τ through π†
τ̂ ,τ .

i = 0, 1, 2, to ensure that each matricization of each con-
necting tensor C can be (and usually is) of full rank.

To obtain the evolved TTN over a discrete (infinites-
imal) time-step δt, we need to find the updated leaves
U ′
i and the updated connecting tensors C ′

τj
i

. In the algo-

rithm, we first update the basis matrices Ui at the leaves.
To this end, we take the connecting tensor above the leaf
τ ℓi that needs to be updated, C = Cτℓ−1

⌈i/2⌉
, matricize it

as C1 = Mat1(C) if i is odd or as C2 = Mat2(C) if i is
even. We then perform a QR decomposition CT

i = QiRi,
with Ri having dimension ri × ri, and define the ma-
trix Yi = RiU

T
i . This provides the initial condition,

Yi(0) = Yi, for the matrix differential equation

Ẏi = Lτℓ
i
[Yi] . (5)

The linear operator Lτℓ
i
can be interpreted as a state-

dependent variational reduction to the ith physical site of
the Lindblad operator and, as we discuss below, is defined
recursively. Solving the differential equation up to time
δt, we find Yi(δt) and set the updated leaf matrix U ′

i as
the orthogonal part of the QR factorization of Yi(δt).
We then hierarchically update the connecting tensors

from bottom to top layer. At each step of the recursion,

we set Ĉτj
i
= Cτj

i
×1Mτj+1

2i−1
×2Mτj+1

2i
[cf. Fig. 2(c)], with

Mτ = U ′†
τ Uτ , where Uτ = Mat0(Xτ )

T is the matriciza-
tion of Xτ . When τ is a leaf, τ = τ ℓi , then Uτℓ

i
= Ui.

The matrices U ′
τ are defined analogously but for the al-

ready updated X ′
τ (see also Appendix B). The tensor Ĉτj

i

provides the initial data for the differential equation

˙̂
Cτj

i
= Lτj

i
[Ĉτj

i
×1U

′
τj+1
2i−1

×2U
′
τj+1
2i

]×1U
′†
τj+1
2i−1

×2U
′†
τj+1
2i

. (6)

The updated tensor is C ′
τj
i

= Ten0(Q
T ), where Q

is the orthogonal part of the QR decomposition of

Mat0(Ĉτj
i
(δt))T . Note that the matrices Uτ , U

′
τ are never

explicitly constructed since products involving them are
computed by contracting corresponding TTNs.
Finally, we discuss how the reduced Lindblad operators

Lτj
i
can be obtained (see Refs. [62] and Appendix B for

details). For any sub-tree τ , Lτ can be found from the
knowledge of Lτ̂ associated with the smallest sub-tree τ̂
containing τ . By defining a state-dependent extension
operator πτ̂ ,τ , which maps the tree τ into the larger tree

τ̂ , the operator Lτ is given by Lτ = π†
τ̂ ,τLτ̂πτ̂ ,τ . The

starting point of the recursion is given by Lτ0 , related
to the whole tree τ0, which is nothing but a (possibly
truncated) TTN-operator representation of the matrix
L.
The integrator presented above [55], which extends

the BUG matrix integrators of Refs. [63, 64], does not
have any backward-in-time propagation in contrast to
those of Refs. [37, 38, 62]. This makes it better suited
for the simulation of dissipative dynamics.

IV. LONG-RANGE DISSIPATIVE ISING
MODEL

To benchmark our algorithm, we consider a long-range
interacting version of the dissipative Ising model [21, 67–
75]. It consists of a one-dimensional model with two-level
particles, characterized by excited state |•⟩ and ground
state |◦⟩. The model Hamiltonian [cf. Fig. 1(b)] is given
by

H = Ω

D∑
k=1

σ(k)
x +∆

D∑
k=1

n(k) +
V

2cα

D∑
k ̸=h=1

n(k)n(h)

|k − h|α
, (7)

where n = |•⟩⟨•| and σx = |•⟩⟨◦| + |◦⟩⟨•|. The first
two terms in the above equation describe a driving term,
e.g., from a laser, with Rabi frequency Ω and detuning
∆. The last term describes two-body interactions solely
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FIG. 3. Benchmark of the method. (a) Time evolution of
the density ⟨n⟩ computed with our algorithm (solid lines) and
other approaches (symbols). For the nearest-neighbor inter-
acting case (D = 16, α → ∞), we benchmark our results
against converged MPS simulations with a time-evolving-
block-decimation (TEBD) algorithm. For D = 8, α = 1 and
D = 32, α = 0, we compare with results obtained with exact
diagonalization of the Lindblad generator. For our simula-
tions we used a maximal bond-dimension rmax = 30. We con-
sider Ω/γ = 0.3, 0.7, 1 respectively for the different curves.
(b) Stationary values of the density as a function of Ω/γ,
obtained by evolving up to γt = 15 the TTNs and exact-
diagonalization simulations. Here, we show the infinite-range
interacting case (α = 0), for system sizes D = 8, 16, 32, for
which we used maximal bond dimension rmax = 10, 20, 30, re-
spectively. The dashed-line shows the mean-field prediction,
which is exact for D → ∞ [65, 66]. The parameters not ex-
plicitly specified in the panels are ∆/γ = −2, V/γ = 5.

occurring between particles in the excited state |•⟩. The
parameter V is an overall coupling strength while the
algebraic exponent α controls the range of the interac-
tions. For α = 0 the interaction is of all-to-all type while
for α → ∞ it only involves nearest neighbors. The coeffi-

cient cα =
∑D

k=1 1/k
α keeps the interaction extensive for

any value of α [76–78]. Dissipation [cf. Eq. (2)] is encoded

in the jump operators Jk =
√
γσ

(k)
− , where σ− = |◦⟩⟨•|

describes irreversible decay from state |•⟩ to state |◦⟩. In
the following, we shall consider as initial state the state
with all particles in |•⟩.

A. Benchmark of the TTN algorithm

To show that our algorithm faithfully approximates
the open quantum dynamics, we test our results for
different values of α. When α = 0, we check our numer-
ics against an efficient diagonalization method for the
generator, possible for permutation-invariant systems
[79–82]. For α → ∞, we compare numerical results
with those obtained using MPSs and a time-evolving-
block-decimation (TEBD) algorithm [24, 33, 34, 39, 83].
For 0 < α < ∞, we can only benchmark our results
against a standard exact diagonalization of the Lind-
blad generator, possible for relatively small systems.
As shown in Fig. 3(a-b), the results from our TTN al-
gorithm agree with the corresponding reference solutions.

FIG. 4. Long-range interactions and “susceptibility”
parameter. (a) Stationary behavior of the density ⟨n⟩ as a
function of Ω/γ for different values of α and D = 16, as es-
timated at γt = 15. We consider α = 0, 0.25, 0.50, 0.75, 1, 2, 5
and α → ∞, growing as denoted in the plot. For all val-
ues of α, we consider rmax = 30 but for α = 0, for which
rmax = 20 is sufficient. (b) Dynamics of the susceptibility
χ for Ω/γ = 0.65, for both TTN and MPS simulations with
rmax = 38 and D = 32. The TTN curve essentially coincides
with the exact solution while the MPS curve still shows some
deviation. The inset displays the maximal errors εTTN/MPS

in estimating χ as a function of the bond dimension. The pa-
rameters not explicitly specified in the panels are ∆/γ = −2,
V/γ = 5.

B. Role of the interaction range

We now exploit our algorithm to explore the behav-
ior of the system for intermediate values of α and larger
system sizes. Such regime is of interest for at least two
reasons. First, values such as α = 3 or α = 6 are typically
encountered in experiments [84]. Second, for α = 0 and
in the thermodynamic limit D → ∞, the dissipative Ising
model features a first-order nonequilibrium phase transi-
tion from a phase with a low density of excitations ⟨n⟩ to
a highly excited one [cf. dashed line in Fig. 3(b)]. On the
other hand, for α → ∞ the transition is not present in
the one-dimensional model [71]. Our TTN algorithm can
interpolate between these two regimes and allows us to
explore the fate of the transition for α > 0. In Fig. 4(a),
we see that for α > 1 the stationary density ⟨n⟩ behaves
similarly to the case α → ∞, i.e., there appears to be a
smooth behavior of the density ⟨n⟩ as a function of Ω/γ.
On the other hand, for α ≤ 1 for which the sum of the in-
teraction terms in Eq. (7), without considering cα, would
become super-extensive, we observe the emergence of a
sharp crossover which is reminiscent of what happens in
the α = 0 case.

To assess the capability of TTNs to capture corre-
lations, we also consider the total density fluctuations

in the system χ =
∑N

k,h=1

(
⟨n(k)n(h)⟩ − ⟨n(k)⟩⟨n(h)⟩

)
.

This quantity, which is highly nonlocal as it contains
all possible two-body density-density correlations,
represents a susceptibility parameter. Here, we focus
on the case α = 0, for which we can obtain exact
results for larger systems [79–82], and compare results
for TTNs and MPSs. MPS simulations are also per-
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formed using our algorithm for a TTN of maximal
height, which is equivalent to the MPS ansatz [55]. In
Fig. 4(b), we display simulations with a same, relatively
large, bond dimension for TTNs and MPSs. The
plot shows that the TTN results are almost perfectly
overlapping with the exact values of the susceptibility,
while deviations can still be appreciated in the MPS
simulations. In the inset of Fig. 4(b), we show the errors
εTTN/MPS = maxγt∈[0,15]

∣∣χTTN/MPS − χ
∣∣, where χ is the

exact susceptibility, while χTTN/MPS the value estimated
with TTNs and MPSs, respectively. Already for the
simple all-to-all (α = 0) interaction considered, which
does not develop critical long-range correlations since it
features a first-order transition in the thermodynamic
limit, we can observe that TTNs perform systematically
better than MPSs. More precisely, we observe, in the
inset of Fig. 4(b), that TTNs describe more accurately
than MPSs the behavior of the susceptibility for a same
bond dimension.

C. Computational cost

The most time-consuming part of our numerical sim-
ulations are: i) the applications of the TTN-operator to
the TTN-representations of the state; ii) the computation
of the state-dependent extension operator [cf. Fig. 2(d)]
needed for the construction of the sub-functions Lτ from
B. In particular, for a single time-step we need O(D)
applications of the TTNO, with the actual number de-
pending on the chosen method to solve the differential
equations (5)-(6). As stated in Lemma 4.1 of Ref. [55],
performing a complete time-step with our integrator re-
quires O(ℓD2r2max(d

2 + r3max)) arithmetical operations,
where ℓ denotes the number of layers of the TTN [see
sketch in Fig. 1(a)], D the number of particles, rmax the
maximal bond dimension and d the physical single-site
dimension. In our implementation, the constant ℓ scales
linearly for MPS (we note that MPSs correspond to trees
of maximal height), while it only scales logarithmically
with D for TTNs. In practice, we observed that the run-
time for each dynamical simulation was, on average, of
the order of a few days.

V. CONCLUSIONS

We have introduced a method for the numerical sim-
ulation of long-range open quantum systems with TTNs
and benchmarked it considering the paradigmatic dissi-
pative Ising model. With our method, we could explore
the regime of intermediate interaction ranges where we
found signatures of the persistence of the phase transi-
tion for α ∈ [0, 1], in the thermodynamic limit. We also
tested the capability of TTNs to encode correlations. We
found that for the considered system, TTNs perform bet-
ter than simulations with MPSs. Our simulations were

performed using standard PCs.
As a future perspective, it would be interesting to

compare the two approaches for open quantum systems
featuring second-order nonequilibrium phase transitions
and a critical building-up of correlations [14]. It would
also be relevant to explore different tree structures.
Here, we mainly considered balanced binary trees and
MPSs, but the algorithm is general and applies to any
tree [55]. This opens up the possibility of a systematic
investigation on the role of the tree structure in the
encoding of many-body correlations for extended open
quantum systems.
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Appendix A: Matrix representation of the Lindblad
generator

We show here how the time evolution of the density
matrix ρ(t) can be formulated in terms of a vector differ-
ential equation. For the sake of concreteness, we focus on
the case of the dissipative Ising model discussed in the
main text, for which the time evolution of the density
matrix is given by the Lindblad equation

ρ̇(t) = −i[H, ρ(t)]+
D∑

k=1

γ

(
σ
(k)
− ρ(t)σ

(k)
+ − 1

2

{
ρ(t), n(k)

})
.

For this model, we have the single-particle basis states

|•⟩ , |◦⟩, with which we can define σ− = |◦⟩⟨•|, σ+ = σ†
−

and n = |•⟩⟨•|. The system Hamiltonian is

H = Ω

D∑
k=1

σ(k)
x +∆

D∑
k=1

n(k)+
V

2cα

D∑
k ̸=h=1

n(k)n(h)

|k − h|α
, (A1)

with σx = σ− + σ+.
The starting point of the mapping of the above matrix

equation into a vector one is to take the density ma-
trix ρ(t), and write it as a vector in an enlarged single-
particle Hilbert space. This can be achieved, for instance,
through the following mapping ρ(t) → |ρ(t)⟩ with

ρ(t) =
∑
ℓ⃗,m⃗

rℓ⃗m⃗(t) |ℓ⃗⟩⟨m⃗|
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and

|ρ(t)⟩ =
∑
ℓ⃗,m⃗

rℓ⃗m⃗(t)

D⊗
k=1

[|ℓk⟩ ⊗ |mk⟩] .

Here, we have that ℓ⃗ = (ℓ1, ℓ2, . . . ℓD) and m⃗ =
(m1,m2, . . .mD) are many-body configuration states,
where ℓk,mk = •, ◦ specify the single-particle state. In
this representation, the Lindblad generator is given by
the following matrix

L = γ

D∑
k=1

(
σ
(k)
−,Iσ

(k)
−,II −

1

2
n
(k)
I − 1

2
n
(k)
II

)

− i

D∑
k=1

Ω
(
σ
(k)
x,I − σ

(k)
x,II

)
+

− i

D∑
k ̸=h

V

2cα|k − h|α
(
n
(k)
I n

(h)
,I − n

(k)
II n

(h)
,II

)
(A2)

where σ−,I = σ− ⊗ 12, σ−,II = 12 ⊗ σ− and similarly,
σx,I = σx ⊗ 12, σx,II = 12 ⊗ σx as well as nI = n ⊗ 12,
nII = 12 ⊗ n and 12 is the 2 × 2 identity. Note that, in
principle, one should have transposition of all the terms
denoted with II in the above Eq. (A2), exception made
for those in the first term of the first sum (see also, e.g.,
Refs. [16, 58]). However, in our case all the matrices in-
volved are already self-transposed. The time evolution is
thus implemented via the vectorized differential equation

|ρ̇(t)⟩ = L |ρ(t)⟩ .

To conclude we recall how expectation values can be
computed within this vectorized formalism. Let us con-
sider an elementary operator

O =

D⊗
k=1

xk ,

where xk are 2× 2 matrices. Then, its expectation value
can be computed as

⟨O⟩t = ⟨−|
D⊗

k=1

x
(k)
k,I |ρ(t)⟩ ,

where we have defined xkI = xk⊗12 as well as the vector
representation of the identity

|−⟩ =
D⊗

k=1

|12⟩ ,

with |12⟩ = |•⟩ ⊗ |•⟩ + |◦⟩ ⊗ |◦⟩. In the main text, we
always considered as initial state the state

|ρ(0)⟩ =
D⊗

k=1

(|•⟩ ⊗ |•⟩) .

Appendix B: Additional details on the tree tensor
network algorithm

1. Recursive definition of a tree tensor network
(TTN)

Suppose to be given a set of basis matrices Uj for j =

1, . . . , D and of connecting tensors Cτj
i
for all subtrees τ ji

of τ0. We recursively define a tree tensor network Xτ0

as follows

(i) For each leaf, we set

Xj := UT
j ∈ Crj×nj .

(ii) For each subtree τ ji = (τ j+1
2i−1, τ

j+1
2i ) of the maximal

tree τ0, we set nτj
i
= nτj+1

2i−1
nτj+1

2i
and

Xτj
i
:= Cτj

i
×1 Uτj+1

2i−1
×2 Uτj+1

2i
∈ C

r
τ
j
i
×n

τ
j+1
2i−1

×n
τ
j+1
2i ,

Uτj
i
:= Mat0(Xτj

i
)T ∈ C

n
τ
j
i
×r

τ
j
i .

2. Construction of the Mτ matrices

The matrix Mτ = U
′†
τ Uτ , where τ = (τ1, τ2), can be

constructed recursively. By definition of a tree tensor
network we know that it holds

U
′

τ = Mat0(C
′

τ ×1 U
′

τ1 ×2 U
′

τ2)
T

Uτ = Mat0(Cτ ×1 Uτ1 ×2 Uτ2)
T ,

where U
′

τi and Uτi , for i = 1, 2, are either basis matri-
ces or again a matricized tree tensor network from the
level below. Using the unfolding formula for tree tensor
networks (see equation 2.2 in [55]) we obtain

Mτ = U
′†
τ Uτ

=
(
Mat0(C

′

τ ×1 U
′

τ1 ×2 U
′

τ2)
T
)†

Mat0(Cτ ×1 Uτ1 ×2 Uτ2)
T

= Mat0(C
′
τ )

(
×1U

′†
τ1Uτ1 ×2 U

′†
τ2Uτ2

)
Mat0(Cτ )

T .

The products U
′†
τiUτi , for i = 1, 2, can now be computed

recursively until we reach the basis matrices.

3. Constructing and applying the tree tensor
network operators (TTNOs) Lτ

As we have shown in the first section of this Supple-
mental Material, the Lindblad operator can be written,
in its matrix representation, as a linear operator of the
form

A =

s∑
k=1

a1k ⊗ · · · ⊗ aDk ,
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where ajk are complex matrices which act on the jth par-
ticle. Similar ideas for the construction and application
of TTNO’s can be found in [87]. We define the tree tensor
network operator A = Lτ0 , which acts on a tree tensor
network Xτ0 , to be the tensor network with

1. The jth leaf equal to the matrix
[vec(aj1), . . . ,vec(a

j
s)], where vec(B) denotes

the vectorization of the matrix B.

2. All connecting tensors Cτ ∈ Cs×s×s with entries
C(k1, k2, k3) = 1 if and only if k1 = k2 = k3. Else
the entries are zero.

3. The connecting tensor Cτ0 ∈ Cs×s×1 at the top
level with again entries Cτ0(k1, k2) = 1 if and only
if k1 = k2, and otherwise zero.

The resulting tree tensor network should be then or-
thonormalized and possibly truncated to a reasonable
bond dimension. We will call this orthonormal TTN Ã.
Now we define the application of Ã to a tree tensor net-
work Xτ0 . The leaves and connecting tensors are applied
in the following way:

1. Let Uj be the jth leaf of Xτ0 . Then the jth leaf of

Ã(Xτ0) is defined as the matrix [ãj1Uj , . . . , ã
j
nUj ],

where ãji are the matricizations of the ith columns

of the jth leaf of the TTNO Ã.

2. Let Cτj
i
be the connecting tensor at jth level and

ith position of Xτ0 and respectively C̃τj
i
the con-

necting tensor at jth level and ith position of Ã.
Then the connecting tensor of the application is de-
fined as C̃τj

i
⊗ Cτj

i
, where ⊗ denotes the canonical

extension of the Kronecker product to tensors.

4. Constructing L
τ
j
i

Suppose to be given a TTNO Lτ0 , constructed as
above. Now we are interested in constructing the sub-
functions Lτj

i
, which are needed for the algorithm (see

main text). The definition of these functions is again
done recursively from the root to the leaves.

Suppose that for a tree τ = (τ1, τ2) the function Lτ is
already constructed. Let Xτ be a TTN with connecting
tensor Cτ and matrices Uτ1 = Mat0(Xτ1)

T and Uτ2 =
Mat0(Xτ2)

T , i.e. Xτ = Cτ ×1 Uτ1 ×2 Uτ2 . We define the

space Vτ = Crτ×nτ1×nτ2 , where nτ =
∏2

i=1 nτi is defined
recursively. We define the matrices

V 0
τ1 = Mat1

(
Ten1(Q

T
τ1)×2 Uτ2

)T
,

V 0
τ2 = Mat2

(
Ten2(Q

T
τ2)×1 Uτ1

)T
,

where Qτi , for i = 1, 2, is the unitary factor in the QR-
decomposition of Mat0(Cτi)

T = QτiRτi and Cτi is the
connecting tensor ofXτi . Further we define two functions

πτ,i(Yτi) = Teni((V
0
τiMat0(Yτi))

T ) ∈ Vτ , for Yτi ∈ Vτi

π†
τ,i(Zτ ) = Ten0((Mati(Zτ )V

0
τi)

T ) ∈ Vτi , for Zτ ∈ Vτ .

The function Lτi now is defined recursively by

Lτi = π†
τ,i ◦ Lτ ◦ πτ,i, for i = 1, 2. (B1)
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schelde, and F. Verstraete, Time-dependent variational
principle for quantum lattices, Phys. Rev. Lett. 107,
070601 (2011).

[62] G. Ceruti, C. Lubich, and H. Walach, Time integration
of tree tensor networks, SIAM J. Numer. Anal. 59, 289
(2021).

[63] G. Ceruti and C. Lubich, An unconventional robust inte-
grator for dynamical low-rank approximation, BIT Nu-
mer. Math. 62, 23 (2021).

[64] G. Ceruti, J. Kusch, and C. Lubich, A rank-adaptive ro-
bust integrator for dynamical low-rank approximation,
BIT Numer. Math. 62, 1149 (2022).

[65] F. Benatti, F. Carollo, R. Floreanini, and H. Narnhofer,
Quantum spin chain dissipative mean-field dynamics, J.
Phys. A 51, 325001 (2018).

[66] F. Carollo and I. Lesanovsky, Exactness of mean-field
equations for open dicke models with an application to
pattern retrieval dynamics, Phys. Rev. Lett. 126, 230601
(2021).
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