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Antibiotics from rare actinomycetes, beyond the genus 
Streptomyces 
Jonathan Parra1,2,*, Ainsley Beaton3,1, Ryan F Seipke4,  
Barrie Wilkinson3, Matthew I Hutchings3 and  
Katherine R Duncan5   

Throughout the golden age of antibiotic discovery, 
Streptomyces have been unsurpassed for their ability to 
produce bioactive metabolites. Yet, this success has been 
hampered by rediscovery. As we enter a new stage of 
biodiscovery, omics data and existing scientific repositories 
can enable informed choices on the biodiversity that may 
yield novel antibiotics. Here, we focus on the chemical 
potential of rare actinomycetes, defined as bacteria within 
the order Actinomycetales, but not belonging to the genus 
Streptomyces. They are named as such due to their less- 
frequent isolation under standard laboratory practices, yet 
there is increasing evidence to suggest these biologically 
diverse genera harbour considerable biosynthetic and 
chemical diversity. In this review, we focus on examples of 
successful isolation and genera that have been the focus of 
more concentrated biodiscovery efforts, we survey the 
representation of rare actinomycete taxa, compared 
with Streptomyces, across natural product data repositories 
in addition to its biosynthetic potential. This is followed by 
an overview of clinically useful drugs produced by rare 
actinomycetes and considerations for future biodiscovery 
efforts. There is much to learn about these underexplored 
taxa, and mounting evidence suggests that they are a fruitful 
avenue for the discovery of novel antimicrobials. 
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Introduction 
The phylum Actinomycetota, formerly known as 
Actinobacteria [66], includes unicellular and filamentous 
bacteria that are commonly referred to as actinomycetes. 
The former includes human pathogens such as Myco
bacterium tuberculosis (Mtb) and the industrial amino acid 
producer Corynebacterium glutamicum, whereas fila
mentous actinomycetes are studied for their complex 
developmental life cycles and their production of spe
cialised metabolites. The type genus for this phylum is 
Streptomyces, which belongs to the filamentous group and 
includes more than 1100 verified species, producing 
specialised metabolites that form the basis of ∼50% of 
clinically used antibiotics [42]. Their specialised meta
bolites are also used as cancer therapeutics (doxorubicin, 
daunorubicin), antifungal compounds (amphotericin, 
nystatin), immunosuppressants (rapamycin, FK506) and 
antiparasitic agents (avermectins). The genes encoding 
the biosynthesis of these molecules are typically 
grouped together in biosynthetic gene clusters (BGCs) 
alongside genes involved in immunity, regulation 
and transportation. As discussed below, a recent survey 
of bacterial (meta)genomes revealed that only three 
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percent of their BGCs have been matched to metabo
lites, suggesting there are many more useful pathways 
and chemical products waiting to be discovered [34]. 

‘Rare’ actinomycetes 
The term ‘rare’ actinomycetes, is an artificial grouping of all 
actinomycete genera, except for Streptomyces. The taxa in
cluded in this grouping are often ambiguous. Most view 
this as strains within the class Actinomycetes (with 
varying agreement on whether this is only filamentous 
strains or not), with the genus Streptomyces excluded. To 
provide a comprehensives overview, we define this as all 
genera within the Actinomycetes, except Streptomyces. 
These include, but are not limited to, Actinoallomurus, 
Actinoalloteichus, Actinocorallia, Actinokineospora, Actinomadura, 
Actinopolyspora, Actinoplanes, Actinospica, Actinosynnema, 
Aeromicrobium, Agromyces, Alloactinosynnema, Allokutzneria, 
Amycolatopsis, Beutenbergia, Catellatospora, Catenulispora, 
Catenuloplanes, Cellulosimicrobium, Corynebacterium, 
Couchioplanes, Dactylosporangium, Dietzia, Frankia, 
Gordonia, Isoptericola, Jiangella, Knoellia, Kocuria, 
Krasilnikoviella, Kribbella, Kutzneria, Lentzea, 
Microbacterium, Microbispora, Micromonospora, Mumia, 
Mycobacterium, Nonomuraea, Nocardia, Nocardioides, 
Nocardiopsis, Oerskovia, Planobispora, Planomonospora, 
Plantactinospora, Pseudokineococcus, Pseudonocardia, 
Rhodococcus, Saccharomonospora, Saccharopolyspora, 
Saccharothrix, Salinospora, Streptosporangium, Thermobispora 
and Tsukamurella. 

Contrary to popular belief, this naming is not a reflection 
of their abundance in nature, but because they are less 
frequently isolated and relatively understudied com
pared with the genus Streptomyces. This is likely due to 
their slower growth (in laboratory environments) and the 
lack of targeted isolation methods. Increasing evidence 
suggests that the ‘rare’ should be dropped, because ex
plorations of, for example, Amycolatopsis, Micromonospora, 
Pseudonocardia, Saccharopolyspora and Salinospora, have 
yielded chemically diverse and novel specialised meta
bolites. The potential of these genera has been the focus 
of recent review articles [2,25,50], encompassing strains 
from diverse environments [30,87] or focussing on a 
particular genus, such as Micromonospora [41]. As such, in 
the quest for new antimicrobial agents, it may be ad
vantageous to not rely on over-sampled taxa, such as 
Streptomyces, but instead expand our knowledge, re
sources and expertise across these under-represented 
genera. 

A recent survey of microbial genomes reported that 
Streptomyces encodes the greatest chemical diversity 
within the Actinomycetes, but that Amycolatopsis and 
Micromonospora also have significant biosynthetic po
tential [34]. As shown in Figure 1, the number of se
quenced Streptomyces strains far exceeds all other 

filamentous actinomycete genera, with the next most 
common being Amycolatopsis and Micromonospora, this is 
discussed further below. Other genera include Pseudo
nocardia that is well-studied largely because of its mu
tualistic symbiosis with fungus-farming ants in the tribe 
Attini, which are endemic to South and Central America  
[7]. The queen of an ant colony vertically transmits a 
single strain of mutualist Pseudonocardia to worker ants, 
who cultivate the bacterium on their cuticles, providing 
it with food and shelter in return for antibiotics; these 
antibiotics influence the ant microbiome and provide a 
means to protect themselves and their food supply from 
Escovopsis, a genus of parasitic fungi [101]. Other fila
mentous actinomycetes have also been isolated from 
these ants, including Amycolatopsis and Streptomyces  
[49,78,81,101], but the stable association is typically with 
Pseudonocardia species [15]. Additionally, species of 
Saccharopolyspora and Streptomyces have been isolated 
from fungus-growing ants in Kenya and have yielded 
novel antibiotics [73,79]. 

Evidence is accumulating that free-living soil actino
mycetes have also adapted to colonise plants and ani
mals, as observed in the well-studied Pseudonocardia- 
attine ant, Streptomyces-beewolf, and Streptomyces-bark 
beetle symbioses [80,93]. Rare actinomycetes have 
been isolated from diverse environments, including 
soil, freshwater, marine animals and deep-sea sedi
ments, and from the roots of plants and trees. In ter
restrial ecosystems, plant root exudates may provide 
nutrients, so it is perhaps unsurprising that many spe
cies of Pseudonocardia [74], Micromonospora [104], Sac
charopolyspora [76] and Streptomyces have been isolated 
from plant roots. In some cases, they have been shown 
to be highly enriched in the rhizosphere and endo
sphere of plant roots [71]. 

The marine environment has also been shown to be a 
rich source of rare actinomycetes [50]. In fact, many of 
the 31 verified Saccharopolyspora species were isolated 
from marine environments and 16 have been described 
as halotolerant or halophilic [76]. The obligate marine 
genus Salinispora is perhaps one of the most compre
hensively studied for their biosynthetic and chemical 
potential and has been proposed as a model organism for 
specialised metabolite discovery [44]. The potent pro
teasome inhibitor, salinosporamide A [32], produced by 
Salinispora tropica [43], is currently in phase-three clin
ical trials as an anticancer drug [8]. Aside from the 
structurally diverse and novel chemistry produced by 
this genus, a culture collection of thousands of strains  
[75] has enabled a comprehensive assessment of the 
diversity and evolution of specialised metabolism across 
the Salinispora genus [28,51,108]. 

Despite the success stories from the genera studied in 
detail, many remain vastly understudied, this includes 
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Catellatospora, of which three new plant-growth-pro
moting ansamacrolactams have recently been discovered  
[54] and Saccharothrix, where strains from the marine 
environment were found to produce eight novel, cyto
toxic amphiphilic siderophores [84]. Genome sequen
cing and mining of existing genomic databases 
combined with availability through culture collections 
can certainly aid the prioritisation of strains. 

Chemical and biosynthetic potential 
As noted above, it has been estimated that only three 
percent of bacterial BGCs have been matched to known 
products [34]. Among bacteria, the Actinomycetota 
phylum harbours a particularly high biosynthetic po
tential, dedicating up to 3.0 Mb of coding capacity, over 
15% of their genome, to specialised metabolite bio
synthesis [3,18]. Despite the biosynthetic potential of 
this phylum, fewer than 10% of the sequenced microbial 
genomes available in public repositories belong to this 
group [45]. Furthermore, it has been estimated that 
currently only 30–50% of the biological diversity of this 
phylum is represented by sequenced strains [83]. The 
potential of the Streptomyces genus, as mentioned pre
viously, is reflected in the high number of BGCs with 
their genomes [46]. In fact, a comparison of biosynthetic 

diversity calculated as unique gene cluster families 
showed that the Streptomyces genus is responsible for 
most of the phyla-level biosynthetic diversity [34]. An
other comparative analysis based on the abundance of 
BGCs per genome, identified the orders Pseudono
cardiales, Streptosporangiales and Micromonosporales as 
gifted taxa, with an average of 19.8, 15.0 and 13.3 BGCs 
per genome, respectively, in comparison with the 21.6 
calculated for the order Streptomycetales [27]. However, 
although rare actinomycetes usually have fewer BGCs 
per genome, their novelty and diversity could be higher 
than Streptomyces. For example, a study performed with 
marine-derived actinomycetes showed that when gene 
diversity was normalised by the number of BGCs, it was 
higher in rare actinomycetes, with the genera Cor
ynebacterium, Gordonia, Nocardiopsis, Sacchar
omonospora and Pseudonocardia representing the highest 
BGC diversity [77]. This study also determined that 
phylogeny and genome size combined can be used to 
predict the likelihood of BGC diversity. Similarly, recent 
work that applied a genomic metric called biosynthetic 
novelty index (BiNI) to assess BGC novelty was applied 
to actinomycetes strains from various taxonomic and 
ecological backgrounds and revealed that Streptospor
angium, Lentzea, Actinokineospora and Saccharothrix genera 
exhibited the highest novelty index [35]. Similarly, a 

Figure 1  
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Number of entries per genus in the National Center for Biotechnology Information (NCBI) Genome, antiSMASH, MIBiG and NPAtlas databases for the 
phylum Actinomycetota.   
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Nonomuraea sp. was recently found to harbour the largest 
actinomycete chromosome encoding approximately 32 
BGCs [65]. However, not all rare actinomycetes appear 
to be as talented. For example, genome sequencing of 
genera such as Micrococcus and Agrococcus demonstrated 
less than five predicted BGCs per genome [86], and 
whilst this does not preclude these metabolites from 
being useful, it does highlight the incredible variation 
within this group. 

The frequent rediscovery of known specialised meta
bolites typically comes from screening multiple isolates 
of common Streptomyces strains [96]. Representatives of 
the Actinomycetota, and their numbers of predicted 
BGC are shown in Figure 1, with Micromonospora, Sali
nispora, Actinomadura, Nocardiopsis, Amycolatopsis, 

Saccharopolyspora and Pseudonocardia identified as 
common ‘rare actinomycete’ genera across the three 
databases (Figure 1). The antiSMASH database (anti
SMASH DB), which provides pre-calculated anti
SMASH annotations for completed, publicly available 
bacterial genomes [10,11], shows that 38% of Actino
mycetota BGCs belong to the Streptomyces genus (Figure 
2). The prevalence of Streptomyces-encoded specialised 
metabolites increases when manually curated metadata, 
such as specialised metabolite chemical identity, are 
included. In the Minimum Information about a Bio
synthetic Gene cluster (MIBiG) database [88], 74% of 
Actinomycetota BGCs belong to the Streptomyces genus. 
A similar situation is observed for the Natural Products 
Atlas (NPAtlas), a database of known microbial-specia
lised metabolite structures [94], where 72% of 

Figure 2  

Current Opinion in Microbiology

Phylogenetic tree generated by AutoMLST [1] showing genome size, number of BGCs predicted by antiSMASH and the proportion of these 
that are predicted to be more than 10% of a match to previously characterised clusters identified by antiSMASH (in the MIBiG database). The input to 
AutoMLST was 20 representitive, compleate genomes of genera discussed in this review.   
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specialised metabolites were isolated from Streptomyces 
strains. As such, even though antiSMASH DB contains a 
considerable number of rare actinomycete BGCs, only a 
very small proportion of their products has been che
mically characterised (i.e. correlated MIBiG and NPA
tlas database results). 

Of the 45,956 Actinomycetota genomes in the NCBI 
database, 3234 are complete genome sequences and only 
630 of these are NCBI reference sequences of rare ac
tinomycetes [72]. To highlight the biosynthetic potential 
of rare actinomycetes, reference genomes from diverse 
genera were selected, including where possible, those 
mentioned in this review. The abundance and phylo
genetic distribution of (un)characterised BGCs har
boured by rare actinomycetes is shown in Figure 2. This 
analysis reinforces common knowledge, that is, that 
Streptomyces sp. typically harbour more BGCs that have 
already been characterised or are highly matched to 
those that have, further illustrating a lower potential for 

novel discoveries. For example, S. venezuelae and S. coe
licolor showed 24/30 and 14/21 ‘matched’ BGCs, re
spectively. In contrast, the rare actinomycete 
Saccarothrix syringae shows a remarkable number of pre
dicted BGCs. AntiSMASH predicted that the 10.88-mb 
genome contained 56 BGCs, of which 20 of these had 
10% or less similarity to known BGCs. In addition, al
though there are strains with a lower number of pre
dicted BGCs, for example, Gordonia insulae only 
encodes 16 predicted BGCs in its 5.96-Mbp complete 
genome, 10 of them are predicted to be novel BGCs. 
Whilst these types of analyses have caveats, including 
the assumption of accurate assembly, large-scale 
genome mining data have confirmed that there is ex
tensive novel biosynthetic potential encoded in rare 
actinomycete genomes. 

Clinically used drugs from rare actinomycetes 
In total, five classes of clinically used antibacterial drugs 
are derived from rare actinomycetes, several of which are 

Figure 3  

Current Opinion in Microbiology

Chemical structures of antibacterial drugs derived from natural products of rare actinomycetes. Rifampicin is a semisynthetic molecule derived from 
rifamycin S, and the active pharmaceutical ingredient (API) of gentamicin and teicoplanin comprises a complex mixture of congeners, the most 
abundant of which are shown in each case.   
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on the WHO list of Essential Medicines [99] (Figure 3,  
Table 1). The oldest of these is the macrolide antibiotic 
erythromycin produced by Saccharopolyspora erythraea, 
introduced into clinical use over 70 years ago [59]. 
Macrolide antibiotics, with a 14-atom ring size, inhibit 
protein synthesis and are particularly useful for the 
treatment of upper respiratory tract infections. Yet, ery
thromycin suffers from acid instability that is linked to 
its common gastrointestinal side effects and action as a 
motilin agonist [97]. These and other limitations are 
overcome to some degree by a range of semisynthetic 
variants of which clarithromycin and azithromycin are 
the most successful [26]. This motilin agonist activity 
means erythromycin is commonly used off-label for 
gastroparesis, and its immunomodulatory activity has led 
to low-dose off-label use in Southeast Asia for the 
treatment of diffuse panbronchiolitis [53]. Intriguingly, 
nature has produced an acid-stable erythromycin con
gener called sporeamicin, which is also the product of a 
Saccharopolyspora species [103], but the biosynthetic 
steps that differentiate these pathways remain un
resolved. 

The glycopeptide vancomycin produced by Amycolatopsis 
orientalis [58] inhibits cell wall biosynthesis by binding 
to the lipid-II precursor. This is prescribed for life- 
threatening infections by Gram-positive bacteria that 
are resistant to other treatments: this reserved use 
stems, in part, from a range of serious side effects. 
Glycopeptides are poorly absorbed by the gastro
intestinal tract, meaning they are mostly restricted to 
intravenous use, except for Clostridioides difficile infec
tion (CDI) treatment. The related glycopeptide teico
planin, produced by Actinoplanes teichomyceticus, differs 
most notably in two of the seven amino acids that form 
its backbone, and in the glycosylation pattern [16,67]. 
Semisynthetic modification of these and the related 
A40926 family of glycopeptides, produced by an Acti
nomadura sp., led to the development of the second- 
generation lipoglycopeptide drugs telavancin, or
itavancin and dalbavancin [9]. 

Rifamycin, first isolated from Amycolatopsis rifamycinica in 
1959, is the founding member of the ansamycin family of 
polyketides [82]. It is an inhibitor of the DNA-depen
dent RNA polymerase, but the metabolite itself lacks 
the properties required for effective pharmacological 
application, meaning semisynthetic modification was 
required to produce successful drug molecules [33]. The 
most widely used is rifampin that was first marketed in 
1968 and has become a first-line antituberculosis therapy 
when used in combination with other agents. The rifa
mycin congener kanglemycin A produced by Amycola
topsis spp. maintains potency against RNA polymerases 
containing rifampicin-resistant mutations and has be
come the subject of significant recent interest as a lead 
for semisynthetic optimisation [61,69]. T
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The aminoglycoside antibiotic gentamicin is produced 
by Micromonospora purpurera and was introduced into 
clinical use in 1964 [98]. Aminoglycosides can be highly 
effective for the treatment of Gram-negative pathogen 
infections, in particular sepsis, and target the bacterial 
ribosome 30S subunit, inhibiting protein synthesis by 
interfering with initiation, codon fidelity and transloca
tion. However, their use is often limited due to side 
effects, and gentamicin displays significant renal and 
ototoxicity. The pharmaceutical formulation gentamicin 
C comprises a complex of five congeners and there is 
evidence to suggest that individual components may 
have lower toxicity, which has led to efforts for pathway 
engineering [48]. The mechanism of action, which in
terferes with codon fidelity, means gentamicin is being 
repurposed for the treatment of genetic diseases such as 
Duchenne muscular dystrophy in which mutations lead 
to the presence of premature stop codons leading to 
truncated proteins [95]. 

The most recently approved antibacterial drug (2011) to 
come from a rare actinomycete is fidaxomicin for CDI, 
an inhibitor of RNA polymerase that inhibits the same 
enzyme but acts through a different mechanism to rifa
mycin-based molecules [29]. The active entity of fidax
omicin is the 18-membered macrolide tiacumicin 
produced by Dactylosporangium aurantiacum subsp. ham
denesis. Tiacumicin B was first discovered in 1986 [89] 
and is part of a larger group of more than 40 related rare 
actinomycete-specialised metabolites, the first being li
piarmycin that was discovered in 1975 from Actinoplanes 
deccanensis [21,68]. This delay in development stems 
from poor oral bioavailability limiting broad-spectrum 
application, but this would later prove beneficial for the 
narrow-spectrum treatment of CDI and the resurrection 
of this compound class. 

Beyond the approved drugs, peptide antibiotics produced 
by rare actinomycetes have proven very successful as leads 
for the treatment of CDI [70]. These include the glycoli
podepsipeptide ramoplanin that is a cell wall-targeting 
antibiotic produced by Actinoplanes ramoplaninifer [23,56]. 
LFF-571 is a semisynthetic derivative of the thiopeptide 
GE2270A produced by Planobispora rosea that inhibits 
protein synthesis via bacterial elongation factor thermal 
unstable (EF-Tu) [62], and NVB302 is a semisynthetic 
analogue of the type-B lantipeptide deoxyactinogardine 
produced by Actinoplanes liguriae that binds the cell wall 
precursor lipid II [12]. All three peptides are narrow- 
spectrum agents for the treatment of CDI, but while ra
moplanin is being fast-tracked through Phase-III clinical 
trials, the development of LFF-571 and NVB302 appears 
to have halted. Very recently, semisynthetic variants of the 
unusual macrolide sequanamycin produced by Allo
kutzneria albata were reported as candidates with utility 
against Mtb that overcomes the inherent macrolide re
sistance of Mtb [105]. 

Considerations for the future study of rare 
actinomycetes 
Recent advances in genetic modification systems for 
actinomycetes have been the subject of several review 
papers [24,60], including genetic modification focussed 
on cloning and heterologous expression in Streptomyces 
species [64,102]. Protocols for genetic engineering of 
actinomycetes, as well as vector maps, are freely avail
able on http://actinobase.org [23,31] where you can also 
download a free pdf copy of the Practical Streptomyces 
Genetics manual, first published in 1985, and updated in 
2000 [47]. Genetic engineering has provided a promising 
avenue for exploiting the biosynthetic potential of mi
croorganisms, but in the case of actinomycetes, most of 
the protocols were developed for Streptomyces species, 
and are not generally applicable to other genera without 
modifications [55]. For example, while site-specific re
combination systems based on bacteriophage integrases 
have been a fundamental tool for Streptomyces genetic 
engineering, mediated by phage-based vectors such as 
pSET152 and pMS82, the application of these tools in 
rare actinomycetes depends largely on the presence of 
the same genetic elements [31,37]. Bacteriophage in
tegration occurs between DNA sequences on the phage 
attachment site and the host genome on the bacterial 
attachment site (attB) [20]. While innate attB sites are 
regularly found in Streptomyces genomes, they are less 
conserved in rare actinomycetes [4], but an attB se
quence in Pseudonocardia alni, with an identity of 89% to 
the canonical attB sequence in S. coelicolor, facilitated its 
genetic engineering to produce a host mutant ([52], p. 
200). In many cases, the attB site could be also in
troduced before recombination and this strategy was 
successfully applied to produce a Salinispora tropica 
mutant [106,107]. The yeast meganuclease I-SceI has 
also been introduced into Streptomyces species on an in
tegrative phage vector and used to make targeted 
double- strand breaks, but this is mediated by a self- 
replicating plasmid and such plasmids would need to be 
identified and/or developed for use in rare actinomy
cetes [85]. 

In the absence of tools to make precise gene deletions, it 
is sometimes possible to disrupt genes using a suicide 
vector approach, that is, by introducing a non-replicating 
vector through conjugation with E. coli. A suicide vector 
approach to disrupt the nystatin P1 antifungal BGC was 
successful in Pseudonocardia P1 [6]. The disruption 
plasmid harboured an ∼1500-bp internal fragment of nypI 
polyketide synthase as well as an apramycin resistance 
cassette and conjugal origin of transfer, which was used to 
mobilise the plasmid from E. coli to Pseudonocardia P1. 
Integration of the disruption plasmid into nypI abolished 
the ability of Pseudonocardia P1 to inhibit Candida albicans 
in a whole-cell bioassay (Figure 4). Recent advances in 
Clustered Regularly Interspaced Short Pallindromic Re
peats-associated protein 9(CRISPR-Cas9)-based 
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engineering also represent an opportunity to precisely 
edit the genomes of rare actinomycetes, spanning mul
tiple genera [40,91]. For example, CRISPR–Cas9-based 
techniques have been successfully applied in Actinoplanes  
[100] and Micromonospora [13,19], but again this is de
pendent on successful conjugation and plasmid replica
tion in these bacteria. If conjugation is not possible, then 
polyethylene glycol (PEG)-mediated protoplast transfor
mation is another historically important tool in Strepto
myces genetics that has successfully applied in rare 
actinomycetes. However, the efficiency for protoplast 
formation and regeneration varies widely depending on 
the strain and seems to be less effective than in Strepto
myces species [63]. 

Despite evidence that vertical inheritance is critical for 
BGC diversity [17], it is widely accepted that novel ha
bitats, lifestyles or ecological interactions of rare actino
mycetes may influence their potential to harbor novel 
BGCs and thus in turn, influence the structural diversity 
of their produced metabolites. This functional diversi
fication can result from both abiotic and biotic ecosystem 
pressures, and the latter includes drivers such as sig
nalling, protection and defence. Even with these widely 
accepted views, studying chemical ecology linked to 
function is a challenge and there is limited evidence to 
pinpoint this to biosynthetic diversification. Studies 
showing the recruitment of BGCs as a strategy for 
‘sampling from the environment’ before becoming more 
‘fixed’ in a population are still in their infancy [14,108], 
yet they provide an exciting step forward in our under
standing of ecology and BGC evolution. 

In order to incorporate ecological thinking across taxa, 
we must first improve out ability to capture these less- 
studied species. Part of the challenge of working with 
rare actinomycetes, is they are harder to grow and often 
grow more slowly under standard culture conditions 
compared with Streptomyces strains. For example, in our 
experience, Pseudonocardia strains isolated from attine 
ants take 2–4 weeks to grow, compared with 2–4 days for 
many Streptomyces species, and Pseudonocardia bacteria 
can typically only be cultured on solid agar. In soil, 
Streptomyces species have been found to be the dominant 
group among the total actinomycete population, al
though of course this could be biased based on approach  
[5,36]. However, selective isolation of a particular rare 
actinomycete genus must involve techniques that en
hance the growth of desirable actinomycetes (enrich
ment) and eliminate Streptomyces and other undesirable 
taxa from the isolation media [39,90]. There have been 
several relatively recent advances in the area of isolation 
and culturing of previously unculturable organisms. One 
example that was successful for Nanohaloarchaeota was 
fluorescent in situ hybridisation and fluorescence-acti
vated cell sorting to specifically isolate live cells of in
terest, allowing them to be cultured [38]. High- 
throughput dilution to extinction experiments has been 
effective with marine organisms by avoiding the need for 
artificial media whilst removing other, potentially faster- 
growing microorganisms [38]. The availability of meta
genomes also enables scientists to specifically target or
ganisms of interest. For example, Cross and colleagues 
described a method termed ’reverse genomics isola
tion’ in which cell surface proteins were predicted from 

Figure 4  

Current Opinion in Microbiology

Bioassay plates showing colonies of wild-type Pseudonocardia P1 and an isogenic mutant in which a suicide vector was inserted into nypI polyketide 
synthase gene responsible for production of the polyene antifungal nystatin P1. Both colonies are overlaid with soft agar inoculated with the human 
pathogen Candida albicans. Disruption of nyp1 abolished the zone of inhibition, suggesting this strain no longer makes nystatin P1.   
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sequencing data and allowed for specific target anti
bodies to be generated [22]. Moving forward, a range of 
techniques, old and new, will be required along with 
communication of results. One solution is the sharing of 
methods and protocols through community platforms 
such as http://actinobase.org [31]. Another solution is to 
adapt a culturing approach that mimics their natural 
environment more closely, such as soil mesocosms and 
microcosms, as was demonstrated through the impact of 
bacterial community structure on the metabolome of 
marine sediments [92]. Another strategy to elicit new 
chemistry is that of co-culture because it is well-known 
that microorganisms exist in complex multi-species/ 
kingdom niches and, as such, competition and interac
tions are commonplace. There are several excellent 
pioneering ecology studies focussed on such interac
tions, including mutualism and competition, for ex
ample, interactions of the genus Couchioplanes [57], and 
such approaches could be particularly useful if the goal is 
to elicit specialised metabolites with antibiotic potential. 

In summary, rare actinomycetes are under-represented 
in natural product databases, they exhibit more BGC 
diversity than streptomycetes and their potential is often 
undervalued. While we have outlined some considerable 
experimental hurdles to working with these genera, in
cluding genetic tractability, isolation and metabolite 
elicitation, they harbour considerable biosynthetic po
tential and it is worthwhile developing tools to exploit 
these bacteria. Their taxonomic and ecological diversity 
is both a blessing and a curse and success will come from 
shared knowledge across strains and communities, and 
from perseverance. There are some taxonomic starting 
points for rare actinomycete natural product discovery, 
for example, from Pseudonocardia, Salinispora and 
Micromonospora species, and community data sharing 
will enable us to evaluate rare actinomycete genera and 
thus be informed about where efforts are best spent. In 
the future, these understudied taxa may be anything 
but rare. 
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