TWENTY-FIRST YOUNG RESEARCHERS' CONFERENCE MATERIALS SCIENCE AND ENGINEERING

November 29 - December 1, 2023, Belgrade, Serbia

Program and the Book of Abstracts

Materials Research Society of Serbia &

Institute of Technical Sciences of SASA

Book title:

Twenty-First Young Researchers' Conference - Materials Science and Engineering: Program and the Book of Abstracts

Publisher:

Institute of Technical Sciences of SASA Knez Mihailova 35/IV, 11000 Belgrade, Serbia Tel: +381-11-2636994, 2185263, http://www.itn.sanu.ac.rs

Conference organizers:

Materials Research Society of Serbia, Belgrade, Serbia Institute of Technical Sciences of SASA, Belgrade, Serbia

Editor:

Dr. Smilja Marković

Technical Editor:

Aleksandra Stojičić and Dr. Ivana Dinić

Cover page: Smilja Marković

Cover: Nebojša Labus

Printing:

Gama digital centar Autoput No. 6, 11070 Belgrade, Serbia Tel: +381-11-6306992, 6306962 http://www.gdc.rs

Publication year: 2023

Print-run: 120 copies

CIP - Каталогизација у публикацији

Народна библиотека Србије, Београд

66.017/.018(048)

YOUNG Researchers Conference Materials Sciences and Engineering (21; 2023; Beograd)

Program; and the Book of abstracts / Twenty-first Young Researchers' Conference Materials Science and Engineering, November 29 – December 1, 2023, Belgrade, Serbia; [organizers] Materials Research Society of Serbia & Institute of Technical Sciences of SASA; [editor Smilja Marković]. - Belgrade: Institute of Technical Sciences of SASA, 2023 (Belgrade: Gama digital centar). - XX, 99 str.; 23 cm

Tiraž 120. - Registar.

ISBN 978-86-80321-38-7

а) Наука о материјалима -- Апстракти б) Технички материјали -- Апстракти COBISS.SR-ID 130053385

Aim of the Conference

Main aim of the conference is to enable young researchers (post-graduate, master or doctoral student, or a PhD holder younger than 35) working in the field of materials science and engineering, to meet their colleagues and exchange experiences about their research.

Topics

Biomaterials

Environmental science

Materials for high-technology applications Materials for new generation solar cells

Nanostructured materials

New synthesis and processing methods

Theoretical modelling of materials

Scientific and Organizing Committee

Committee President

Smilja Marković Institute of Technical Sciences of SASA, Belgrade, Serbia

Vice-presidents

Ivana Dinić Institute of Technical Sciences of SASA, Belgrade, Serbia Sonja Jovanović Institute of Nuclear Sciences "Vinča", Belgrade, Serbia Dorđe Veljović Faculty of Technology and Metallurgy, Belgrade, Serbia

Members

Katarina Cvetanović Institute of Chemistry, Technology and Metallurgy, Belgrade,

Serbia

Tatiana Demina Enikolopov Institute of Synthetic Polymeric Materials,

Russian Academy of Sciences

Xuesen Du Chongqing University, Chongqing, China

Nenad Filipović Institute of Technical Sciences of SASA, Belgrade, Serbia
Dragana Jugović Institute of Technical Sciences of SASA, Belgrade, Serbia
Marijana Kraljić Roković Faculty of Chemical engineering and Technology, Zagreb,

Croatia

Snežana Lazić Universidad Autónoma de Madrid, Spain

Lidija Mančić Institute of Technical Sciences of SASA, Belgrade, Serbia Bojan Marinković Pontifical Catholic University of Rio de Janeiro, Rio de

Janeiro, Brazil

Marija Milanović Faculty of Technology, Novi Sad, Serbia

Miloš Milović Institute of Technical Sciences of SASA, Belgrade, Serbia

Jelena Mitrić Institute of Physics, Belgrade, Serbia

Nebojša Mitrović Faculty of Technical Sciences, Čačak, Serbia

Irena Nikolić Faculty of Metallurgy and Technology, Podgorica,

Montenegro

Marko Opačić Institute of Physics, Belgrade, Serbia

Alexander Osmolovskiy Lomonosov Moscow State University, Moscow, Russia

Twenty-First Young Researchers Conference – Materials Science and Engineering November 29 – December 1, 2023, Belgrade, Serbia

Vuk Radmilović Faculty of Technology and Metallurgy, Belgrade, Serbia

Milan Radovanović Technical Faculty in Bor, Serbia

Vladimir Rajić Institute of Nuclear Sciences "Vinča", Belgrade, Serbia

Julietta Rau Institute of the Structure of Matter of the Italian National

Research Council (ISM-CNR), Rome, Italy

Ana Stanković Institute of Technical Sciences of SASA, Belgrade, Serbia

Boban Stojanović Faculty of Sciences, Kragujevac, Serbia

Ivana Stojković Simatović Faculty of Physical Chemistry, Belgrade, Serbia

Srečo Škapin Institute Jožef Stefan, Ljubljana, Slovenia

Konrad Terpiłowski Department of Interfacial Phenomena, Institute of Chemical

Sciences, Faculty of Chemistry, Maria Curie-Skłodowska

University in Lublin, Poland

Vuk Uskoković TardigradeNano, Irvine, CA, USA Rastko Vasilić Faculty of Physics, Belgrade, Serbia

Ljiljana Veselinović Institute of Technical Sciences of SASA, Belgrade, Serbia

Conference Secretary

Aleksandra Stojičić Institute of Technical Sciences of SASA, Belgrade, Serbia

Conference Technical Committee

Katarina Aleksić, Marko Jelić, Rauany Cristina Lopes Francisco, Tamara Matić, Nina Tomić.

Results of the Conference

Beside printed «Program and the Book of Abstracts», which is disseminated to all conference participants, selected and awarded peer-reviewed papers will be published in journal "Tehnika – Novi Materijali". The best presented papers, suggested by Session Chairpersons and selected by Awards Committee, will be proclaimed at the Closing Ceremony. Part of the award is free-of-charge conference fee at YUCOMAT 2024.

Sponsors

Acknowledgement

The editor and the publisher of the Book of abstracts are grateful to the Ministry of Science, Technological Development and Innovation of the Republic of Serbia for its financial support of this book and The Twenty-First Young Researchers' Conference - Materials Sciences and Engineering, held in Belgrade, Serbia.

13-4

Dependence of alumina/ascorbate oxidase biosensor electrocatalytic activity on alumina type

Barbara Ramadani¹, Sonja Novaković¹, Miloš Mojović¹, Zorica Mojović²

¹University of Belgrade Faculty of Physical Chemistry, Belgrade, Republic of Serbia ²University of Belgrade – Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Belgrade, Republic of Serbia

Biosensors have emerged as indispensable tools across various disciplines, facilitating realtime monitoring of specific biomolecules. Within this context, a biosensor system integrates alumina, a versatile material, with ascorbate-oxidase, enabling the electrocatalytic detection of ascorbic acid. This study investigates the influence of different alumina types on the electrocatalytic activity of alumina/ascorbate-oxidase biosensors. The electrocatalytic performance of these biosensors critically hinges on the properties of the alumina substrates. Specifically, two distinct alumina variants were examined: aluminum oxide trihydrate (referred to as "T") and anhydrous (referred to as "G"). Biosensors were meticulously constructed by immobilizing ascorbate oxidase onto these designated substrates. Electrochemical experiments unveiled marked disparities in the electrocatalytic performance of the biosensors, contingent on the type of alumina used. Cyclic voltammetry and square wave voltammetry were employed to assess electrocatalytic activity. The outcomes demonstrated that G alumina exhibited the highest electrocatalytic activity. In contrast, T alumina displayed diminished electrocatalytic activity due to its reduced surface area, mainly ascribed to the presence of surrounding water molecules. Besides electrochemical characterization, the alumina substrates underwent analysis via Fourier Transform Infrared Spectroscopy and Electron Paramagnetic Resonance. After determining the more favorable alumina variant, an optimization test was initiated, and the calibration curve generation process commenced. This investigation underscores the pivotal role of alumina in shaping the electrocatalytic performance of biosensors, exerting significant influence over sensitivity, selectivity, and stability. An understanding of these effects is imperative for optimizing biosensor design and enhancing their utility in diverse fields. Future research endeavors may further explore alternative alumina modifications and their repercussions on biosensor performance.