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Abstract 
 

 

The dopamine D1 receptor (D1) is a G protein-coupled receptor (GPCR) which 

regulates various key brain functions like attention, movement, reward, and memory. 

Understanding D1 signalling may open the horizon for novel treatments for 

neurological disorders. 

Upon agonist activation, the heterotrimeric G proteins Gαs activate adenylyl cyclase 

to increase cAMP/PKA signalling. D1 also engages β-arrestin proteins leading to β-

arrestin dependent signalling. The D1 has two palmitoylation sites on cysteines 

347&351 in its C-tail domain. However, the distinct roles and implications of 

palmitoylation on the D1 signalling, trafficking and β-arrestins recruitment are still 

largely unexplored. A palmitoylation D1 mutant was generated and  luminescent based 

techniques such as BRET and split-Nanoluc complementation assay were employed,  

to delineate D1 palmitoylation effects on its pharmacology and signalling. The D1 

agonists induced 50% less cAMP production in the mutant compared to wildtype 

(WT) and WT showed a more efficient dissociation of its Gαs. Moreover, the mutant 

receptor failed to recruit β-arrestin1&2, induced less ERK1/2 activation and 

internalises in an agonist-independent process while showing an altered intracellular 

Golgi trafficking. Also, in β-arrestin 1&2 KO HEK 293 cells similar cAMP production 

levels were reported for D1 WT and palmitoylation mutant. β-arrestin 1&2 KO 

blocked agonist-induced WT D1 plasma membrane trafficking, indicating that these 

β-arrestins are driving the differences between WT and the palmitoylation mutant D1. 

Taken together, our studies indicate that Gαs is the main transducer for D1 cAMP and 

ERK1/2 signalling and that palmitoylation is essential for its β-arrestin 1&2 

interactions and modulating D1 signalling cascades in a drug-dependant process.  
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I. Introduction  
 

In recent decades, scientists have discovered that the human proteome is much 

more complex than the human genome. While the human genome has between 20,000 

and 25,000 genes (Collins et al., 2004), the human proteome is estimated to be over 1 

million. This means that a single gene can encode for different proteins. Different 

mRNA transcripts can be generated from a single gene due to genomic recombination, 

transcription initiation with different promoters, various transcription termination, and 

splicing (Ayoubi & Van De Ven, 1996). This complexity is further mediated by 

protein post-translational modifications (PTMs) (O. N. Jensen, 2004) (Fig.1). PTMs 

are chemical modifications that play critical roles in functional proteomics because 

they impact localisation and activity and could modify protein/protein interactions and 

protein interaction with nucleic acids, cofactors, and lipids. The human proteome has 

proven itself to be very dynamic and capable of modifying itself in response to stimuli, 

and PTMs are a tool to regulate cell activity (A. B. Ross et al., 2021). PTMs occur at 

specific amino acid residues of a protein and are generally mediated by enzymatic 

activity. It is estimated that 5% of total proteins are enzymes responsible for more than 

200 types of PTMs (Wood, 2006). PTMs play a central role in various biological 

processes; they affect the structure and dynamics of proteins (Mann & Jensen, 2003; 

Y. Xu & Chou, 2016). PTMs change the properties of a protein by proteolytic cleavage 

and adding a modifying group such as acetyl, phosphoryl, glycosyl, and methyl to one 

or more amino acids (Ramazi et al., 2020). Generally, PTMs can be reversible or 

irreversible (Y.-C. Wang et al., 2014). Reversible modifications are covalent 

modifications, while irreversible ones are proteolytic modifications involving specific 

hydrolysis of peptide bonds (Blom et al., 2004). PTMs can occur in a single type of 
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amino acid or multiple amino acids and introduce changes in the chemical properties 

of the modified sites (K.-Y. Huang et al., 2019). These modifications affect protein 

behaviours and characteristics, such as enzyme function and assembly (Ryšlavá et al., 

2013), protein half-life, protein-protein interactions (Marshall, 1993), cell-cell and 

cell-matrix interactions, trafficking, receptor activation, protein solubility (Caragea et 

al., 2007; Cundy et al., 2002; Goulabchand et al., 2014; Haltiwanger & Lowe, 2004; 

Karve & Cheema, 2011; Ohtsubo & Marth, 2006), protein folding (Del Monte & 

Agnetti, 2014) and protein localisation (Audagnotto & Dal Peraro, 2017). Therefore, 

these modifications are at the centre of various biological processes, such as signal 

transduction, gene expression regulation, DNA quality control, and cell division 

control (Strumillo & Beltrao, 2015; M. Wang et al., 2015). PTMs occur in cellular 

organelles around membranes such as the nucleus, cytoplasm, endoplasmic reticulum, 

and Golgi apparatus (Blom et al., 2004). 

 

Figure 1- post-translational modifications and diversity 

Figure showing that while the genome comprises around 25,000 genes, the proteome 

is estimated to be over 1 million proteins. Changes at the transcriptional and mRNA 

levels increase the size of the transcriptome relative to the genome, and the myriad of 

different post-translational modifications exponentially increase the complexity of the 

proteome relative to both the transcriptome and genome. 
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II. Lipidations and their enzymatic regulators 
 

Protein lipidation is a PTM where there is a covalent addition of a variety of 

lipids, such as fatty acids, isoprenoids, and cholesterol, to the target proteins (Table. 

1). Protein lipidation can be segregated into two types depending on the localisation 

of the targeted proteins: those subject to glycosylphosphatidylinositol (GPI) anchor 

and cholesterylation, in the endoplasmic reticulum (ER) lumen and secreted, and those 

that are targeted for N-myristoylation, acylation, and prenylation in the cytoplasm 

(Nadolski & Linder, 2007). 

GPI anchors were first observed in a parasite the Trypanosoma brucei, where the 

highly expressed variant surface glycoprotein is attached to the cell surface via a 

glycolipid containing phosphatidylinositol (Ferguson et al., 1985; Ferguson & 

Williams, 1988). Since then, various proteins in mammalian organisms and lower 

eukaryotes have been shown to contain GPI anchors with diverse structures. These 

anchors typically consist of an ethanolamine linked to the protein’s carboxyl terminus, 

a glycan core, inositol, and lipid moieties (Paulick & Bertozzi, 2008; Thomas et al., 

1990). Proteins with GPI anchors often have a removable N-terminal signal sequence 

that guides the peptide to the endoplasmic reticulum lumen, as well as a hydrophobic 

C-terminal sequence that is cleaved during the addition of the GPI anchor (Caras et 

al., 1987; Englund, 1993; Takeda & Kinoshita, 1995). GPI anchors play a crucial role 

in tethering proteins to the extracellular side of the plasma membrane, contributing to 

various cellular functions such as adhesion, membrane trafficking, and immune 

system signalling (Chatterjee & Mayor, 2001; Fujita & Kinoshita, 2010).   

The precursor of GPI, synthesised in the ER lumen, is passed on the target proteins by 

GPI transamidase, a multi-subunit membrane-bound enzyme (Benghezal et al., 1995; 

Fraering et al., 2001). GPI transamidase cleaves the C-terminal signal peptide of target 
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proteins. It catalytically attacks the carbonyl group of the amino acid at the ω site, 

forming a carbonyl intermediate between the precursor protein and the enzyme. The 

GPI moiety is then transferred to this intermediate, where the amino group of the 

terminal ethanolamine attacks the intermediate, completing the transamidation 

reaction (R. Chen et al., 2003).  

Cholesterylation is a unique feature of the mammalian Hedgehog family proteins, 

which are secreted signalling proteins that regulate the embryonic patterning of many 

tissues and structures (Nüsslein-Volhard & Wieschaus, 1980; Porter et al., 1996). The 

Hedgehog protein undergoes an autocatalytic processing that internally cleaves 

between the conserved Gly257 and Cys258 at the GCF motif and yields a ~20kD N-

terminal signalling domain and a ~25kD C-terminal catalytic domain (J. J. Lee et al., 

1994; Porter et al., 1995). The N-terminal domain receives a cholesterol moiety and is 

active in signalling (Fan et al., 1995; Porter et al., 1995, 1996). Interestingly, various 

studies have detected other potentially cholesterylated proteins (Porter et al., 1996; 

Xiao et al., 2017). However, the identification and characterisation of these targets 

remain poorly understood. Cholesterylation of the N-terminal signalling domain of 

Hedgehog proteins appears to be dependent solely on the presence of the C-terminal 

catalytic domain, suggesting an autocatalytic process (Porter et al., 1996). 

N-myristoylation is the attachment of the 14-carbon myristic acid to an N-terminal 

Gly residue via an amide bond (Towler et al., 1987). Initially, it was described as a 

modification that blocks N-terminal degradation during Edman degradation of the 

catalytic subunit of cyclic AMP-dependent protein kinase and the calcium-binding β-

subunit of calcineurin  (Aitken et al., 1982; Carr et al., 1982). Many other proteins 

regulating key signalling pathways, including the Src family non-receptor protein 

tyrosine kinases (Buss & Sefton, 1985; Linder & Burr, 1988) and Gα proteins (Buss 
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et al., 1987; Mumby et al., 1990) were shown to be myristoylated. These proteins 

typically possess an N-terminal sequence of Met-Gly- and frequently have a 

Ser/Thr/Cys residue at position 6 (Maurer-Stroh et al., 2002; Towler et al., 1987). 

Myristoylation can happen co-translationally following the removal of the initiator 

methionine residue (Wilcox et al., 1987). Although myristoylation is necessary for 

membrane targeting of many proteins, its weak hydrophobic nature is insufficient for 

stable membrane anchoring, often requiring additional lipid modifications (Peitzsch 

& McLaughlin, 1993; Seykora et al., 1996). Additionally, myristoylation can occur 

post-translationally during apoptosis when caspase cleavage exposes an internal 

glycine in substrate proteins. Many apoptotic proteins, such as Bid, gelsolin, and p21-

activated kinase 2, require post-translational myristoylation following caspase 

cleavage for proper subcellular localisation and subsequent functions (Sakurai & 

Utsumi, 2006; Utsumi et al., 2003; Zha et al., 2000). 

N-myristoylation is catalysed by N-myristoyltransferases (NMTs) (Duronio et al., 

1989; Giang & Cravatt, 1998; Ntwasa et al., 1997). NMTs bind first to myristoyl and 

then to the peptide, followed by a direct nucleophilic addition-elimination reaction and 

subsequent release of CoA and the myristoylated peptide (Rudnick et al., 1991). 

Studies in multiple tissues and cell types have demonstrated that the enzymatic activity 

of NMTs is mainly distributed in the cytosolic fraction (Boutin et al., 1993; 

McIlhinney et al., 1993; McIlhinney & McGlone, 1996; Raju et al., 1994). Some 

studies have shown that low levels of myristoyl-CoA may be rate-limiting for NMT 

activity (Colombo et al., 2005; van der Vusse et al., 2002). However, the 

transcriptional up-regulation of NMTs under pathological conditions suggests this 

might not always be the case (Selvakumar et al., 2007). 
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Prenylation involves the addition of a 15-carbon farnesyl or a 20-carbon 

geranylgeranyl isoprenoid lipid to cysteine residues through stable thioether bonds 

(Farnsworth et al., 1990; Kamiya et al., 1978). It requires a C-terminal CAAX motif, 

where C is a cysteine, A is an aliphatic amino acid, and X can be any amino acid. 

Prenylation at the CAAX motif is found in multiple proteins, including mammalian 

Ras proteins (Casey et al., 1989; Hancock et al., 1989). In addition to its role in 

membrane association, prenylation can regulate protein-protein interactions and 

subcellular distribution of the modified targets (Berg et al., 2010; Hoffman et al., 

2000). Prenylation is catalysed by the enzymes farnesyltransferase (FTase), 

geranylgeranyltransferase I (GGTase 1), and Rab geranylgeranyltransferase (GGTase 

2) (Gibbs, 1991; Maurer-Stroh et al., 2007). These prenylating enzymes are located in 

the cytosol and transfer isoprenoids, generated from the mevalonate/HMG-CoA 

reductase pathway to the target proteins. Unlike FTase and GGTase 1, geranylgeranyl 

transfer by GGTase 2 requires the co-factor REP (Rab escort protein)  (Andres et al., 

1993). GGTase 1 and FTase generally have high specificity for the protein targets, 

depending on the X residue (Hartman et al., 2005; Taylor et al., 2003; Zverina et al., 

2012). However, they can act on each other's substrates. For example, K-Ras and N-

Ras, which are typically targets of FTase, can be geranylgeranylated in Ras-mutant 

human cancer cells treated with FTase inhibitors (Ahearn et al., 2011; Rao et al., 

2004).  

Acylation is the addition of various fatty acids, such as palmitic acid, oleic acid, and 

stearic acid, on different amino acid residues (X. Liang et al., 2002; Magee et al., 1984; 

Takada et al., 2006). One of the most studied and better understood types of acylation 

is S-palmitoylation, which is characterised by the reversible addition of the 16-carbon 

saturated palmitic acid to a Cys residues via a thioester bond (Magee et al., 1984). 
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Despite the assistance of multiple algorithms in predicting palmitoylation sites, there 

is no validated consensus sequence for palmitoylation (Y.-X. Li et al., 2011; Ren et 

al., 2008; Xue et al., 2006; Y. Zhang et al., 2021).  

G protein-coupled receptors are a protein superfamily that regulates numerous cellular 

and physiologic responses and are subject to Post-translational modifications that 

modulate there abundance and/or activity (B. Zhang et al., 2022). 

Table 1- Summary of Different Types of Lipidation 

Lipid structure Role 

GPI anchor 

 

 

Plasma membrane anchoring 
Incorporation into specific membrane 

micro-domains 
Protein-protein interaction 

Cholesterylation 

 

Hedgehog signalling activation 

Myristoylation 

 

Membrane localisation and autoinhibition 

Palmitoylation 

 

Plasma membrane targeting 
Partitioning into lipid rafts 

Protein maturation and quality control 

Farnesylation 

 

 

Membrane localization 
Conformational change 

Protein-protein interaction 

Geranylgeranylation 

 

Membrane localisation 
Protein-protein interaction 

R 

R 

R 

R 

R 

R 
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III. Cellular signalling via transmembrane 

Proteins 
 

  For the survival of any living organism, it is crucial to respond to 

environmental changes effectively. Throughout evolution, organisms have developed 

various control and regulatory systems to address this need. In multicellular systems, 

coordinating and harmonising the response across different cells within the organism 

presents a complex challenge. Consequently, disruptions and malfunctions in 

intercellular signalling pathways often underlie various disorders and diseases. 

Receptors, existing both on the cell surface and within the cell, play a vital role in 

these processes. Traditionally, receptors are viewed as recognition sites for 

endogenous hormones, neurotransmitters, neuromodulators, and potential drugs. To 

initiate a cellular response, the information from a stimulus must be transmitted across 

the cell membrane. While certain molecules can directly cross the membrane to trigger 

a response, most extracellular stimuli are detected by transmembrane receptors. 

Transmembrane receptors span the cell membrane, featuring an extracellular and 

intracellular portion. The extracellular domain detects the specific stimulus relevant 

to the receptor. The region spanning the membrane relays this information to the 

intracellular domain, which then communicates with intracellular molecules to initiate 

a cellular response. This elucidates why proteins involved in signal transduction are 

often the primary targets for drug interventions. 

To interpret and respond to extracellular stimuli, cells possess a variety of surface 

receptors that respond to specific and distinct stimuli. Transmembrane receptors are 

broadly classified into three major families based on the mechanism by which they 

generate an intracellular signal. When activated by a stimulus, Ligand-gated ion 
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channels open or close a pore unit, thereby altering the membrane's permeability to 

specific ions. This process often forms the basis for neuronal signalling. The second 

class comprises enzyme-linked receptors that contain a catalytic domain at their C-

terminus. Upon agonist binding, these receptors dimerize, activating the catalytic 

domain. A well-known example of these receptors is the receptor tyrosine kinases, 

including the insulin receptor. The final class, which will be the focus of this thesis, 

consists of G protein-coupled Receptors (GPCRs). These receptors mediate a wide 

range of physiological responses by interacting with heterotrimeric G-proteins, 

activating appropriate second messengers. 

1. Classification of GPCRs  

 

  The human genome has approximately 800 GPCRs, making it the largest 

family of membrane proteins (Ghosh et al., 2015). Various classification systems have 

grouped GPCRs based on the location of the ligand binding pocket, while some have 

utilised both the structural and physiological properties (Bockaert & Philippe Pin, 

1999; Schiöth & Fredriksson, 2005). The A–F classification system was the first to be 

introduced (Davies et al., 2007). This was first proposed in 1994 as A-F and O by 

Kolakowski as the  GCRDb system (Kolakowski, 1994) and was further developed, 

leading to the GPCRDB database by Horn et al. (Horn et al., 2003) with the rhodopsin 

family (class A) being the largest. All GPCRs comprise seven transmembrane domain 

helices alongside an eight helix and a palmitoylated cysteine at the C terminal tail (G. 

M. Hu et al., 2017). The diversity of GPCRs made it challenging to develop a 

comprehensive classification system. The A–F system orders the GPCRs into six 

classes based on their sequence homology and functional similarity: 

-Family A (rhodopsin-like receptors)  

-Family B (secretin receptor family) 
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-Family C (metabotropic glutamate receptors) 

-Family D (parasitic mating pheromone receptors) 

-Family E (cyclic AMP receptors) 

-Family F (frizzled and smoothened receptors).  

Based on phylogenetic studies, human GPCRs have been classified under a system 

called “GRAFS”. This system comprises five main families: 

-Glutamate (G) 

-Rhodopsin (R) 

-Adhesion (A) 

-Frizzled/taste2 (F) 

-Secretin (S) 

The major difference between the two systems is the additional division of family B 

into the adhesion and secretin families within GRAFS (G. M. Hu et al., 2017). This 

division was based on early findings highlighting the distinctive evolutionary history 

between the two families.  

2. Structural properties of GPCRs 

 

The G-protein-coupled receptors (GPCRs) are the superfamily of proteins that 

can recruit and regulate the activity of an intracellular heterotrimeric GTP binding 

proteins (G-proteins). Also, GPCRs can signal in a G protein independent manner 

most notably through beta arrestins (Hilger, 2018). GPCRs control the reactions to a 

wide variety of signals, like odours (Gaillard et al., 2004), taste (Hoon et al., 1999; Y. 

Zhang et al., 2003), light (Filipek et al., 2003), hormones and neurotransmitters. 

GPCRs are one of the biggest protein families in the human genome (Foord et al., 

2005; Lander et al., 2001) and the largest family of membrane receptors. To date, 826 

genes have been found to code for GPCRs in the human genome, which is equivalent 
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to approximately 4 % of the protein-coding sequences (Lagerström & Schiöth, 2008; 

D. Yang et al., 2021). These receptors are found to regulate various biological 

functions and represent one of the most important targets for therapeutic treatment. 

Around 30% of FDA-approved drugs target GPCRs. However, estimates identify 

between 88 and 157 GPCRs as drug targets, less than 20% of the total family, and 

roughly one-third of GPCRs with known endogenous ligands (Sriram & Insel, 2018). 

All GPCRs possess seven transmembrane-spanning α-helical domains (7TM) linked 

by alternating intracellular (ICL1-ICL3) and extracellular (ECL1-ECL3) loops, a 

cysteine bridge between ECL1 and ECL2  that is highly conserved among many class 

A GPCRs (Naranjo et al., 2015), and numerous studies indicate that this bridge is 

critically important for the structural stability, expression, and function of GPCRs as 

it was demonstrated by mutagenesis that the conserved cysteines between ECL1 and 

ECL2 are critical for maintaining the high-affinity ligand-binding conformation of 

rhodopsin (Karnik & Khorana, 1990), β2 adrenergic receptor (Noda et al., 1994), and 

A1adenosine receptor (Scholl & Wells, 2000). The amino terminus end points out on 

the extracellular side and the carboxyl terminus end on the intracellular side often 

containing a helical region, which lies parallel to the membrane (Fig.2). The 

extracellular N-terminus and loops, with transmembrane domains, are known to be 

central to the interaction of the receptor with its ligand (Gether, 2000).  

 

a. The N-Terminal Extracellular Domain 

 

  It is the most diverse among all the GPCR structural regions, it varies in 

length across the different families. This variation is directly linked with the different 

agonist binding modes employed by the various classes of GPCRs. The region is 

commonly shorter in family A as it is less involved in ligand binding. Family A ligands 
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bind within the transmembrane bundle, and family B1 ligands bind both a 

transmembrane binding pocket and the extracellular domain, in a two-state binding 

model (Hoare, 2005). The high-affinity interaction between the peptide and 

extracellular domain enables higher potency signalling from Class B1 GPCRs than 

observed at Class A. The N-terminus and loops, with the transmembrane domains, are 

known to be central to the interaction of the receptor with its ligand. The intracellular 

parts of the GPCR, including its C-terminal domain and the ILs (especially ICL2 and 

the ICL3), were identified to be primordial for the G-protein recognition and activation 

(Kobilka, 1992; Peeters et al., 2011). Recent advances in GPCR structural biology 

have helped to resolve the structure of transmembrane domains of several GPCRs. 

However, the interconnecting loops and the N- and C-terminal extra membranous 

regions remain largely unresolved as the high flexibility of these looping regions 

makes it challenging to resolve their conformational states, but at the same time gives 

them a functional significance (Pal & Chattopadhyay, 2019).  

 

b. Transmembrane Domains 

 

The defining 7TM domains of a GPCR form the receptor nucleus and 

transduce the binding of an agonist into an intracellular response mediated by 

conformational change. On the extracellular surface of class A GPCRs, the 

transmembrane domains form the ligand binding pocket. This region confers a degree 

of ligand specificity, particularly for class A GPCRs that do not have an extracellular 

binding domain. For class B1 GPCRs, binding to the transmembrane domains bundle 

is primordial for the receptor activation but shows less agonist specificity than the 

extracellular domain. 
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Despite being in a similar position within the extracellular portion of the 

transmembrane domain bundle, the orthostatic binding site varies significantly across 

class A; this reflects the wide variety of agonists targeting this receptor family. For 

example, the mutation of specific residues within the core region can influence the 

binding of selective antagonists of the A3 receptor without effect on non-selective 

agonists (Barkan et al., 2020). After agonist binding in the transmembrane bundle, a 

part of the N-terminus folds over the binding pocket, restricting it and providing 

additional stability between the receptor and agonist (S. Liu et al., 2022). 

The transmembrane domains also host allosteric binding sites. Allosteric ligands of 

GPCRs bind to the receptor and promote their signalling or influence the activity of 

an orthosteric agonist. Class A GPCRs contain a conserved motif in the 2nd 

transmembrane domain (Parker et al., 2008), found to bind sodium ions  (W. Liu et 

al., 2012). Allosteric modulators can influence binding to the orthosteric site. For 

example, Cannabidiol was shown to be a negative allosteric modulator of the 

cannabinoid CB1 receptor, thus inhibiting its agonist biding (Laprairie et al., 2015). 

They can also influence pathway selectivity of orthosteric agonists, as in the 

preferential promotion of 3’,5’-cyclic adenosine monophosphate (cAMP) 

accumulation pathway, but not the recruitment of a non-G protein signalling molecule, 

β-arrestin, by LUF6000 at the A3R (Z.-G. Gao et al., 2011). 

 

c. The C-Terminal Domain  

 

  Extending from the seventh transmembrane domain is the cytoplasmic C-

terminal tail, often including an eight α helix, which is parallel to the membrane. The 

C-terminal tail is less conserved compared to other structural regions of the GPCR. 

However, its role is often conserved across various receptors. It has been demonstrated 
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that residues within the C-terminal tail are involved in receptor trafficking and, 

therefore, influence plasma membrane expression. Mutations of hydrophobic residues 

in the C-terminal domain of CB1 greatly reduced maximal ligand binding and receptor 

activity (Ahn et al., 2010). This mutation affected the mutant receptor subcellular 

distribution when compared to the wild-type receptor, co-localising with markers of 

the endoplasmic reticulum (ER), suggesting impaired membrane trafficking.  

It is suggested that phenylalanine residues within the helix eight (H8) form π-stacking 

interactions with the tyrosine residue of the NP7.50xxY motif, highlighting the 

importance of this region for correct receptor folding and expression (Fritze et al., 

2003). Helix 8 is also suggested to interact with intracellular loop 1 (ICL1), forming 

interactions crucial for the stabilisation of both the inactive and active receptor 

conformations (Winfield et al., 2022). 

The current understanding of the role played by each region of the receptor primarily 

stems from studies focused on class A receptors, as they have been the most 

extensively studied, and their structures have been well resolved. By examining how 

the various domains within the receptor interact, we can gain insights into how 

modifications in the receptor sequence, such as the introduction of nucleotide 

modifications, can impact the signalling process. 
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Figure 2- General structure of a G protein-coupled receptor (GPCR) 

The schematic highlights the various intracellular domains (I.L: intracellular loop 

and C.T: cytoplasmic tail). Extracellular domains (E.L: extracellular loop and N.T: 

amino-terminal). Transmembrane (T.M) domains 1 to 7 sitting in the plasma 

membrane. The 7 T.M receptor is functional as a complex with its heterotrimeric 

associated G proteins. The disulfide bridge connecting E.L1 and E.L2 is a common 

feature for nearly all GPCRs. some receptors have a palmitoylated cysteine in CT 

creating a putative IL4. 

 

3. Structural properties of the largest GPCR families 

 

a. Family A (rhodopsin-like receptors) 

 

The rhodopsin receptor family is the largest GPCR family, consisting of 719 

members, and accounts for 80% of receptors in humans. It regroups aminergic, 

peptide, protein, lipid, melatonin, nucleotide, steroid, alicarboxylic acid, sensory, and 

orphan receptors (Foster et al., 2019; Gether, 2000). Family A  has numerous 

characteristics (Fig.3) which relate to common ancestry (Gacasan et al., 2017; Schiöth 

& Fredriksson, 2005). These characteristics include a DRY motif located at the border 

between TM3 and intracellular loop (IL) 2 and NSxxNPxxY motif in TM7, their short 

extracellular amino terminus. Adding to that, many of the receptors from this family 

have one or multiple palmitoylated cysteines in their carboxyl-terminal tail (Basith et 

al., 2018; G. M. Hu et al., 2017; Qanbar & Bouvier, 2003), promoting the formation 
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of a putative fourth intracellular loop (Palczewski et al., 2000). Family A GPCRs 

exhibit significant variability in their preference for ligand binding. While there is 

consistency in the N-termini of family A GPCRs, there is diversity within the 

transmembrane domain (TMD) regions. However, certain sequence motifs within the 

TMD region are shared among some family A GPCRs. The ligand binding site is 

situated in the extracellular region of the TMD bundle, and the transmembrane 

domains of family A receptors play a crucial role in ligand binding (Gether, 2000). 

The binding pocket for small ligands is exclusively composed of the amino acid 

residues of the transmembrane domains of the receptor (Tota & Strader, 1990). On the 

other hand, mutational mapping of the ligand-binding sites in many of the peptide 

family A receptors has demonstrated critical involvement of the N-terminus and the 

extracellular loops for binding of the larger peptide ligands along with the pocket 

formed by the transmembrane domains (Gether, 2000). Having control over numerous 

physiological functions (cardiovascular, pulmonary, mental, CNS functions, etc…),  

class A receptors are the most attractive targets for the development of therapeutics 

among all other classes with over 500 drugs (Wishart et al., 2018). 

. 
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Figure 3- Structural properties of Family A GPCRs 

The upper part of the figure illustrates the differences within the secondary structure 

of the N termini of the Rhodopsin receptors. The scissor indicates the cleavage site for 

the protease-activated receptors (PARs). In the lower part of the figure, the schematic 

transmembrane (TM) regions display the consensus of an alignment generated in 

ClustalW of eight diverse human Rhodopsin receptors. Residues conserved in all eight 

sequences are displayed as circles in which conserved aliphatic residues are shown 

in beige, polar in orange, aromatic in purple, positively charged in red and negatively 

charged in blue. The positions of the residues are calculated from the TM boundary 

starting with 1 in the N- to C-terminal direction. Numbers in italic correspond to the 

first position in each TM region of rhodopsin. Conserved sequence motifs found in the 

TM regions of the Rhodopsin receptor family are surrounded by blue boxes. 

Uppercase letters indicate completely conserved positions, lowercase letters indicate 

well-conserved positions (>50%), whereas x indicates variable positions. Conserved 

cysteine residues are pictured as yellow circles and the cysteine bridge between the 

extracellular loop 1 and 2, which is common to most G protein-coupled receptor 

(GPCR) families, is indicated by two straight lines. (Lagerström & Schiöth, 2008) 
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b. Family B (secretin receptor family)  

 

The family B GPCRs (Fig.4) form a small group and corresponds to group B 

of the A–F system of classification, and with an extracellular hormone-binding site, 

they bind to large peptide receptors. The family name “secretin” derives from the 

secretin receptor, the first cloned in this family (Fredriksson et al., 2003). It includes 

48 different receptors classed in two subfamilies: secretin (B1), for example, the 

vasoactive intestinal peptide (VIP), the calcitonin, the glucagon and others, and 

adhesion and migration (B2), such as epidermal growth factor, cadherin (S. P. H. 

Alexander et al., 2019; Hauser et al., 2017). The common feature of the (B1) receptors 

group is a large extracellular N-terminus domain, whereas the (B2) group of receptors 

possess a long N-terminal tail with unique motifs. The main characteristics of the (B2) 

subfamily is their autoproteolytic activity, a two-step activation model, the ligand N-

terminal fragment interaction and the Stachel signalling/basal activity (Vizurraga et 

al., 2020), where the N- and C-terminal regions of the peptides interact with the J- and 

N-domains of the receptors respectively, in other words, the C terminus of the peptide 

initiates a peptide recognition with the extracellular domain, therefor allowing the 

peptide N terminus to bind the transmembrane domain ligand-binding pocket 

activating the receptor and initiating a downstream signalling cascade (Parthier et al., 

2009; Wu et al., 2020). In addition, most of the receptors in this family have conserved 

cysteine residues that form a cluster of cysteine bridges in the N-terminus (Lagerström 

& Schiöth, 2008). Furthermore, they are characterised by the presence of a relatively 

large extracellular N-terminal domain of 120–160 residues, three intracellular and 

extracellular loops interconnect seven TMD (TM1-TM7) of 310–420 residues that are 

structurally similar and are thus members of the family B GPCR (de Graaf et al., 2017; 

Karageorgos et al., 2018). The presence of a conserved extracellular domain structure 
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and the ‘two-domain’ binding mode across the family B suggest a similar receptor 

activation across this GPCR family. In family B, the receptors of glucagon family 

peptides are major targets for therapeutic intervention, with obesity and mental health 

being the two hot subjects for drug research (Müller et al., 2019; Sekar et al., 2016; 

Williams et al., 2020). 

 

 

Figure 4- Structural properties of Family B GPCRs 

The schematic transmembrane (TM) regions display the consensus of an alignment 

generated in ClustalW of 15 Secretin receptors from the human genome. The positions 

of the residues are calculated from the TM boundary starting with 1 in the N- to C-

terminal direction. Numbers in italic correspond to the first position in each TM 

region of the human secretin receptor (SCTR). Uppercase letters indicate completely 
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conserved positions, lowercase letters indicate well-conserved positions (>50%), 

whereas x indicates variable positions. Residues conserved in all 15 sequences are 

displayed as circles in which conserved aliphatic residues are shown in beige, polar 

in orange, aromatic in purple, positively charged in red and negatively charged in 

blue. Conserved sequence motifs found in the TM regions of the Secretin family are 

surrounded by red boxes. Conserved cysteine residues are pictured as yellow circles, 

the N-terminal cysteine bridges are drawn as lines and the cysteine bridge between 

extracellular loops 1 and 2, which is common to most G protein-coupled receptor 

(GPCR) families, as two straight lines. (Lagerström & Schiöth, 2008)  

 

  

c. Family C (metabotropic glutamate receptors)  

 

The family C GPCRs is formed of the two γ-aminobutyric acid receptors, 

odorant receptors in fish, 8 metabotropic glutamate receptors, pheromone receptors, 

calcium-sensing receptors, sweet and umami taste receptors, GPCR class C Group 6 

Member A (GPRC6A) and seven orphan receptors. These receptors possess a very 

long N-terminus domain and a short and highly conserved third intracellular loop. The 

large amino terminus forms a ligand-binding site with a conserved Venus fly trap and 

cysteine-rich domain on the ligand-binding site (Fig.5). Also, to be active, these 

receptors need to be organised in dimers (Pin et al., 2005). The latest updated 

information accounts for 16 FDA-approved drugs targeting 8 family C receptors, such 

as the metabotropic GABA receptors, which are implicated in various diseases, 

including cancer, schizophrenia, depression, and movement disorders (Messa et al., 

2008; Shaye et al., 2020). 
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Figure 5- Structural properties of family C GPCRs 

Graphical illustration of family C GPCR structure. Represents the structural 

organisation of family C GPCRs. Family C GPCRs have a peculiar structure which 

comprises of  Venus flytrap domain (VFT) with two lobes separated by an orthosteric 

binding pocket, a  cysteine rich domain (CRD) and a TMD except for GABAB receptor. 

(Chun et al., 2012) 

 

IV. The heterotrimeric G-protein as Signalling 

Mediators of GPCRs 
 

  GPCRs signal primarily via heterotrimeric G proteins, comprised of Gα, 

Gβ, and Gγ subunits (Fig.6). In the human genome, 16 genes encode for 21 Gα 

subunits, 5 genes encode for 5 Gβ subunits, and 12 genes encode for 12 Gγ subunits. 

The Gα subunit is composed of two domains: a highly conserved GTPase/Ras-like 

domain and a unique helical domain. The Ras-like domain has three flexible switch 

regions (SI-SIII) that can undergo consequent reorientations when the complex is 

activated. The helical domain has six α-helix bundles, with the N-terminal helix being 

parallel to the plasma membrane, forming a lid shape over the Gβγ subunit and 

contributing to stabilising this interaction (D. E. Coleman et al., 1994). In addition, all 

Gα subunits except Gαt, undergo post-translational modifications 
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(palmitoylation/myristoylation)  at their N-terminus, enhancing membrane trafficking 

and their interaction with Gβγ (Wedegaertner, 1998). To date, all known G-proteins 

are divided into four main classes according to their subunits' amino acid sequence 

similarity (Downes & Gautam, 1999; Oldham & Hamm, 2008). 

 

 

Figure 6- Heterotrimeric G protein structure 

Structural basis of G protein. The structure of the heterotrimeric G protein, with GDP 

bound to Gα (cyan) and Gβ (magenta) linking Gα to Gγ (green). (Protein data bank) 

 

1. Gα structure and mediated intracellular signalling. 

 

  The Gs protein class includes Gs and olfactory Golf. Gs is known to 

stimulate the adenylate cyclase (AC), leading to an increase in cAMP concentrations 

(Fig.7). This class consists of the G Stimulatory (S) group whose  subunits mediate 

signals from a variety of surface receptors to promote the activity of the adenylyl 

cyclase, thus generating cAMP. The Gs subunit is encoded by two genes that have 

various promoters, thus transcribed as various products in a tissue-specific way 

(Weinstein et al., 2004). Additionally, the Gs proteins can stimulate L-type calcium 

channels (Mattera et al., 1989) and inhibit voltage-dependent sodium channels in the 
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heart (Schubert et al., 1989). The Golf protein is exclusive for the olfactory 

neuroepithelium and links odorant receptors with the olfactory-specific form of the 

adenylate cyclase. 

The class of Gq/11 proteins includes the ubiquitously expressed Gq and G11 

proteins (Mizuno & Itoh, 2009) that share a high degree of sequence similarity, with 

over 90% identity (UniProt), the G14 (expressed in the lungs, kidneys, and liver 

tissues), and the murine G15 and its human counterpart G16 subunits expressed in 

the myeloid cells and the lymphocyte cells (Simon et al., 1991). The Gαq/11 family 

activate phospholipase Cβ (PLCβ), which produces inositol-1,4,5-trisphosphate (IP3). 

IP3 activates its receptor on the endoplasmic reticulum, mobilising (Ca2+)i from 

intracellular stores. There are further downstream signalling effects of Gαq/11 

activation, mediated through other actions of IP3, or the co-product of its production 

diacylglycerol (DAG) (Fig.7). Also, Gq directly stimulates tyrosine kinase activity in 

lymphoma cells (Bence et al., 1997). In addition, the Gq/11 proteins inhibit neuronal 

inwardly rectifying potassium channels (Firth & Jones, 2001). 

The class of Gi/o proteins includes the ubiquitously expressed Gi1, Gi2, Gi3, and 

Go proteins, as well as Gz which is specifically expressed in the brain and the 

adrenal platelets. The class also includes Gt and the Gg specific to the retina and the 

taste buds, respectively. The common property of the Gi/o protein family is their ability 

to inhibit the adenylate cyclase activity (Fig.7). They were identified to mediate the 

inhibition of the enzyme adenylyl cyclase that generates cyclic adenosine 

monophosphate (Greif et al., 2017). Moreover, the Gi and the Go proteins have been 

shown to activate the G protein coupled “inwardly rectifying potassium channels” 

(GIRK) (Yatani et al., 1988) and deactivate the L, N and P/Q subtypes of calcium 
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channels. The Gt proteins stimulate the eye-located cGMP-specific 

phosphodiesterase in the retinal rods and cones (Stryer, 1986). 

The G12 protein class is composed of the G12 and the G13 proteins, which are known 

to show relatively low sequence homology with the other classes of G-proteins. These 

proteins are implicated in the modulation of small GTPases activity and, therefore, 

contribute to of cell morphology regulation (Buhl et al., 1995; Kozasa et al., 1998; 

Suzuki et al., 2003). The G12/13 proteins are also known to activate an extracellular 

signal-regulated activated kinase (T. A. Voyno-Yasenetskaya et al., 1996) and the 

Na
+

/H
+ 

exchange (Yasenetskaya et al., 1994). 

 

Figure 7- G protein mediated pathways 

After agonist exposure, Gαs-coupled receptors activate adenylyl cyclase (AC) thus 

promoting an increase of intracellular cyclic adenosine monophosphate (cAMP). This 

triggers the activation of cAMP-dependent protein kinase (PKA) and the mitogen-

activated protein kinase (MAPK) through stimulation of the exchange protein directly 

activated by cAMP (Epac). Gαi-coupled receptors inhibit AC and its downstream 

pathways. GTP-bound Gαq subunit or free Gβγ dimers (from Gαq- or Gαi- coupled 

receptors) activate phospholipase Cβ (PLCβ). Free Gβγ dimers also stimulate or 

inhibit AC activity in an AC isoform-dependent manner. Stimulation of PLCβ activity 

leads to the production of diacylglycerol (DAG) and inositol-1,4,5-triphosphate (IP3) 
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through phosphatidylinositol-4,5-biphosphate (PIP2) hydrolysis. DAG activates 

protein kinase C (PKC) while the IP3-mediated elevation of intracellular calcium 

concentration also activates some PKC isoforms.  

 

2. Signalling capacity and structure of the Gβγ subunit 

 

  The β and γ subunits of the trimeric G protein are considered to be 

functional monomers due to their continuous tight interaction. The β subunit assumes 

a barrel-shaped beta-propeller structure consisting of an N-terminal alpha-helix 

followed by WD-40 repeats that are a repetitive sequence of about 43a.a (Fong et al., 

2006). The WD-40 domain plays the role of an adaptor in protein complexes in various 

cellular processes (Rutherford & Daggett, 2010). Each WD40 repeat comprises a four-

stranded antiparallel -sheet. The γ subunit is related to the G proteins gamma-like 

(GGL) domain superfamily (Sondek & Siderovski, 2001); they are characterised by a 

sequence similarity that is translated in an extended alpha-helical polypeptide. The γ 

subunit is found in the form of a stable dimer with the beta subunit, and it contacts the 

opposite face of the G-beta subunit. The Gβγ complex has been shown to activate ion 

channels, like the muscarinic-dependent ACh-induced K+ channel activated 

downstream of Muscarinic acetylcholine receptors activation in the heart (Logothetis 

et al., 1987), and inwardly rectifying K+ channels (GIRK) which are found in neuronal 

membranes, inducing membrane hyperpolarisation and therefore reducing the 

excitability of neurons (Lüscher & Slesinger, 2010).  

It is also important to highlight the ability of the Gβγ complex to mediate intracellular 

(Ca2+) mobilisation following activation of Gαi/o-coupled receptors. Like Gαq/11, Gβγ 

complexes directly activate PLCβ (Park et al., 1993). There is evidence that different 

isoforms of PLCβ are preferentially activated by Gαq or Gβγ, with all PLCβ isoforms 
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activated by Gαq but only PLCβ2 and 3 by Gβγ (C. W. Lee et al., 1994; Smrcka & 

Sternweis, 1993). Both Gαq and Gβγ directly bind PLCβ and induce conformational 

changes, primarily in the autoinhibitory C-terminal domain (Fisher et al., 2020). 

However, it has since been shown that, whilst mediated by Gβγ, Gαi/o dependent 

release of the intracellular (Ca
2+

) is also dependent on Gαq, with no intracellular (Ca
2+

) 

mobilisation observed in cells without active Gαq (Pfeil et al., 2020).  

3. Heterotrimeric G protein activation 

 

GPCR signalling can be dissected into three components: the heterotrimeric G 

protein, the seven transmembrane-spanning receptors and the enzymatic effector. The 

signal transmission from the outside to the inside of the cell is mediated through the 

heterotrimeric G protein cycle. GPCRs signal primarily via heterotrimeric G proteins 

(Fig.8). In the inactive state, Gα binds GDP. When the receptor is activated, it is 

accompanied by the outward movement of transmembrane helices 5 and 6; this creates 

a cavity on the cytoplasmic side of the receptor (Farrens et al., 1996). Activation-

induced conformational changes appear to be smaller in the case of Gi-coupled 

GPCRs, as compared to Gs-coupled (Koehl et al., 2018; Rasmussen et al., 2007; Van 

Eps et al., 2018). Recent structural studies showed that this cavity serves as a docking 

site for the heterotrimeric G proteins of all subtypes (Koehl et al., 2018; Liang et al., 

2017; Van Eps et al., 2018). Agonist-activated GPCRs act as guanyl nucleotide 

exchange factors for heterotrimeric G proteins. In the receptor-bound G protein, its 

nucleotide-binding pocket opens (Mahoney & Sunahara, 2016; Oldham & Hamm, 

2008), which results in the loss of GDP occupying this site in the inactive form, and 

binding of GTP, which is much more abundant in the cytoplasm (Traut, 1994). 
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The conformational change in Gα enables the dissociation of GDP and binding of 

GTP, corresponding to Gα activation. In this regard, the receptor acts as a GEF 

(guanine-nucleotide exchange factor), which is a large and diverse group of proteins 

that catalyse the release of GDP and the uptake of GTP by GPCRs. When bound to 

GTP, G proteins transition into the active conformation. Upon hydrolysis of this bound 

GTP, by virtue of their own intrinsic GTPase activities, G proteins are inactivated. 

GDP release is the rate-limiting step for the GTPase reaction in vitro; in vivo, this 

kinetic barrier is reduced by GEFs (Sprang, 2001). 

The activation of the Gα subunit leads to its dissociation from the Gβγ complex and 

diffusion towards further signalling components. G proteins can also be activated in a 

receptor-independent manner via activators of G protein signalling (AGS). Members 

of the AGS family share little structural similarity and are classified via the mechanism 

by which they activate the G protein (Blumer & Lanier, 2014). Group I act as GEFs 

and was the first discovered; AGS1 is a member of the Ras superfamily known to 

initiate G protein signalling (Cismowski et al., 2000). Group II are the largest in 

number, with seven members; they have in common a G protein regulatory (GPR) 

motif that binds the Gα subunit and stabilises the GDP-bound conformation. Group 

III interact with the Gβγ subunit but otherwise represents possibly the most diverse of 

the AGS subfamilies. 

The Gα subunit is a GTPase. Therefore, it can hydrolyse GTP back to GDP, thus 

inactivating the G protein. GTP hydrolysis and G protein inactivation can be enhanced 

by GTPase activating proteins (GAPs), which are antagonistic to GEFs. The GAPs 

most associated with heterotrimeric G proteins, as opposed to their monomeric 

counterparts, are known as regulators of G protein signalling (RGS). RGS proteins 

reduce signalling mediated by different Gα subunits, with different RGS proteins 
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showing selectivity for different G protein subfamilies (Ladds et al., 2007). The signal 

stops when the Gα subunit catalyses GTP hydrolysis into GDP (through Gα intrinsic 

GTPase activity) and then reassociates with the βγ, dimer forming the inactive 

heterotrimeric state. This enables the heterotrimeric G protein to undergo another 

activation cycle.  

However, everything the cell does has an energetic cost. Therefore, as soon as the cell 

processes the message, it makes biological sense to end the signalling. In the case of 

GPCRs, rapid signal turnoff is accomplished by a conserved two-step mechanism: 

receptor phosphorylation by GRKs followed by arrestin binding (Carman & Benovic, 

1998). 

 

Figure 8- The Heterotrimeric G protein cycle 

Activation cycle of a heterotrimeric G protein. At rest, the heterotrimeric G protein is 

associated, with GDP bound to the α subunit. Activation, through a GPCR or other 

GEF, mediates the exchange of GDP to GTP, giving an active α subunit. This then 

dissociates from the Gβγ complex. Inactivation occurs through hydrolysis of the GTP, 

back to GDP, which can be catalysed by GAPs.  
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4. Regulation of GPCRs responsiveness  

 

Living organisms employ a variety of mechanisms to tightly control the 

responsiveness of GPCRs. As mentioned earlier, G protein activity can be regulated 

by AGS and RGS (Berman & Gilman, 1998; Ross & Wilkie, 2000). The activity of 

the effector is determined by the availability of free G protein subunits but can also be 

modulated by second messenger-dependent PKA and PKC. Additionally, the effector 

products (second messengers) can be enzymatically degraded by cAMP 

phosphodiesterases (PDE), phosphatidylinositol phosphatases, and diacylglycerol 

kinases. These enzymes can be recruited to GPCRs upon receptor activation, 

promoting signal termination (Baillie et al., 2003; Perry et al., 2002). The GPCR itself 

can also undergo negative regulation. Once the signal is transduced, the signalling 

machinery must be terminated. This is achieved through a common mechanism shared 

by the majority of GPCRs: receptor phosphorylation by a G protein-coupled receptor 

kinase (GRK), followed by the binding of an uncoupling protein called arrestin 

(Gurevich & Gurevich, 2019). While various pathways can contribute to the 

phosphorylation of the C-terminal tail, the two primary kinases involved are Protein 

Kinase A (PKA) and GRKs. PKA can phosphorylate the inactive receptor, leading to 

global desensitisation of different GPCRs upon activation (heterologous 

desensitisation), whereas GRKs primarily phosphorylate the active receptor 

(homologous desensitisation) (Carmona-Rosas et al., 2019). 
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a. Arrestin mediated regulation of GPCRs 

 

The arrestin family is composed of members referred to as arrestin 1 and 4 

being expressed in the retina (and therefore addressed as the visual arrestins), arrestin 

2 and 3 are ubiquitously expressed and are referred to as β-arrestin1 and 2, due to their 

discovery in terminating β2 adrenoceptor signalling (Lohse et al., 1990). Arrestins are 

recruited to the phosphorylated C-terminal tail of the receptor, blocking G protein 

access. Arrestins exhibit preferential binding patterns to their associated receptors 

when they are active and phosphorylated at the same time (Krasel et al., 2005; Wilden 

et al., 1986).  

The role of arrestins in terminating G protein-mediated GPCR signalling is well 

established (Carman & Benovic, 1998). Recent structural data showcased the 

molecular basis of the competition between G proteins and arrestins: both engage the 

receptor in the same inter-helical cavity on the cytoplasmic side of the receptor 

(Carpenter et al., 2016; Kang et al., 2015; Liang et al., 2017; Rasmussen et al., 2011; 

Zhou et al., 2017), and the binding of one prevents the binding of the other. In its GTP 

bound state, the G protein dissociates from its receptor, in contrast, arrestins do not. 

Arrestins bind with a higher affinity to phosphorylated GPCRs compared to G proteins 

(Gurevich & Gurevich, 2004), therefore easily winning in the competition. Moreover, 

in addition to the previously defined inter-helical cavity, which is a shared docking 

site of G protein and arrestins, Arrestins bind the phosphates attached to the receptor-

attached phosphates that are arranged in patches of complete phosphorylation codes 

in their C-terminal tails of GPCRs (Zhou et al., 2017).  This predicted dual-site binding 

opened the possibility that arrestin might engage the receptor via only one site. Indeed, 

this was confirmed, in the case of mutant GPCRs and/or arrestins, where arrestins can 

exclusively engage the phosphorylated receptor C-terminus, leaving the inter-helical 
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cavity accessible for the G protein (Cahill et al., 2017; Kumari et al., 2016; Thomsen 

et al., 2016). Under these conditions, we have the formation of a “super-complexes” 

that form a single GPCR simultaneously interacting with G protein and arrestin 

(Thomsen et al., 2016). Recent findings in studies of neuropeptide Y receptors 

proposed that this mechanism might operate in the case of at least some wild-type 

GPCRs (Wanka et al., 2018). However, the model of simultaneous arrestin interaction 

with both the inter-helical cavity and phosphorylated parts of the receptor, which 

hinders G protein binding, is the rule rather than an exception. This mode of arrestin 

binding is the basis of homologous GPCR desensitisation, ensuring direct competition 

of arrestins with G proteins  (Krupnick et al., 1997; Wilden, 1995). 

Moreover, non-visual arrestins inhibit receptor coupling to the G proteins and 

facilitate GPCR internalisation via coated pits, further reducing cell responsiveness 

(Gurevich & Gurevich, 2004) (Fig.9). 
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Figure 9-Signalling regulation of GPCRs mediated by GRKs and arrestins 

Upon agonist binding to GPCRs, GRK is rapidly targeted to activated GPCR (1). GRK 

then phosphorylates the receptor. This phosphorylation triggers β-arrestin (β-arr) 

recruitment (2). β-arr binding to GPCR enables G protein coupling with the receptor 

and promotes the recruitment of clathrin and adaptor protein-2 (AP-2) (3). Once the 

clathrin-coated pit is completed, dynamin (Dyn) pinches the clathrin-coated vesicle 

off the cell membrane (4). In the early endosomes (5), a sorting occurs where class A 

receptors bind transiently to β-arr and are targeted into recycling endosomes to be 

recycled to the cell surface (6A), while class B receptors are tightly bound to β-arr in 

late endosomes (6B) and are mostly targeted toward lysosomes to be degraded (7).  
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b. GRKs and PKA mediated regulation of GPCRs 

 

 An activated receptor, through stimulation of second messenger-dependent 

kinases (PKA or PKC), can modulate the activity of a different receptor. In contrast to 

GRKs, PKA or PKC-mediated phosphorylation of a GPCR directly inhibits G protein 

binding to the receptor (Pitcher et al., 1992). Second messenger dependent kinase-

mediated phosphorylation mediates changes in GPCR charge distribution that can lead 

to alterations in the conformation of the phosphorylated region. This change in 

conformation is generally targeted to the key regions on the GPCR where the G protein 

binds and is responsible for the decreased ability of the receptor to couple to G 

proteins. It is this pathway that mainly regulates receptor internalisation and 

desensitisation. Any dysregulation in these processes, mostly due to mutations in the 

regulatory proteins or within the GPCRs, is implicated in pathophysiology states such 

as retinitis pigmentosa (Mallory et al., 2018). Therefore, targeting GPCRs 

desensitisation can also be useful in the development of therapeutics. An example 

includes non-catechol D1-targeting drugs that show reduced internalisation and 

desensitisation and are, therefore, better able to induce long-term effects (Gray et al., 

2018). Preferential signalling through one pathway over another is known as agonist 

bias but is also referred to as signalling bias or functional selectivity. Bias can take the 

form of selectivity between G proteins but also includes preference for G protein 

signalling over β-arrestin recruitment (and vice versa). Most GPCRs exhibit inherent 

bias, giving rise to their canonical G protein-coupling. However, agonist bias can be 

influenced by factors such as the stimulating agonist or interacting proteins. In general, 

GRKs and second messengers-dependent kinases phosphorylate GPCRs on different 

sites (Lefkowitz et al., 1990). Classically, homologous and heterologous 

desensitisations are two independent processes. However, many studies demonstrated 
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that PKC and PKA do not only phosphorylate GPCRs but have the aptitude to also 

phosphorylate GRKs, which is strictly required for the formation of the hanging 

complexes of arrestin and GPCR and, therefore, regulate homologous regulation 

(Haider et al., 2022). Additionally, numerous studies show that PKA and PKC can 

also regulate GPCR activity through effector phosphorylation. It was shown that PKA 

inhibits the activity of AC5 and AC6. Additionally, it was reported that 

phosphorylation of AC1, AC2, AC3, AC5 and AC7 by PKCα stimulates the activity 

of these AC isoforms but inhibits AC4 activity. Moreover, PKCδ and PKCε were 

reported to inhibit AC6 activity and PKCδ to stimulate AC5 (Sadana & Dessauer, 

2009).  

V. Dopaminergic system 
 

Dopamine, the predominant catecholamine neurotransmitter in the mammalian 

brain, plays a crucial role in various physiological processes. It regulates cognition, 

emotions, food intake, locomotor activity, positive reinforcement, and endocrine 

regulation. In addition to its central functions, dopamine also has peripheral roles in 

renal function, vascular tone, cardiovascular functions, hormone secretion, and 

gastrointestinal motility (Channer et al., 2023; Missale, Russel Nash, et al., 1998). 

Dopaminergic neurotransmission dysfunctions are found to be implicated in several 

pathological conditions such as schizophrenia, Parkinson’s disease, bipolar disease, 

depression, drug and alcohol addiction, Huntington’s disease, Tourette’s syndrome 

and attention-deficit/hyperactivity disorder (Le Foll et al., 2009; Lebel et al., 2006; 

Wong et al., 2000). 
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1. Dopaminergic synapse 

 

To induce effects on the postsynaptic neuron, the presynaptic neuron must 

synthesise and release dopamine (Fig.10). The biosynthesis of dopamine takes place 

in the terminal part of a dopaminergic neuron and can be divided into two key steps 

(Callier et al., 2003). The first step is the rate-limiting step and it consists of 

transforming the L-tyrosine to L-dihydroxyphenylalanine (L- DOPA) by a tyrosine 

hydroxylase (An et al., 2013; Molinoff & Axelrod, 1971). The second step is when 

the L-DOPA is decarboxylated into dopamine by DOPA-decarboxylase (Zhu & 

Juorio, 1995). Once dopamine is produced, it is held in storage vesicles by the 

vesicular monoamine transporter 2 (VMAT2). If dopamine is present in a free state in 

the presynaptic terminal, it can be easily degraded in the neurone by the enzyme 

monoamine oxidase (Juárez Olguín et al., 2016). 

Elevated calcium concentrations in presynaptic terminals can trigger the fusion of 

dopamine vesicles with the presynaptic membrane, leading to the release of dopamine 

into the synaptic cleft. Once in the synaptic cleft, dopamine can interact with dopamine 

receptors present on both the postsynaptic neuron and presynaptic autoreceptors. The 

binding of dopamine to these receptors activates specific signalling pathways. The 

specific pathways activated depend on the type of dopaminergic receptor being 

stimulated and the neurons expressing these receptors. Antipsychotic drugs like 

lurasidone, cariprazine, and brexpiprazole can target dopamine receptors to terminate 

dopaminergic receptor signalling (Frankel & Schwartz, 2017); these drugs are 

identified as antagonists or inverse agonists. An excess of dopamine in the synaptic 

cleft can be neutralised by the enzyme catechol-O-methyltransferase, which is located 

on the post-synaptic neuron (Montag et al., 2012). Furthermore, dopamine can also be 

shuttled into the presynaptic terminal by the dopamine transporter. Amphetamine and 
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cocaine are known as potent inhibitors of dopamine transporter functions (Zhu & 

Reith, 2008). The use of these drugs leads to a sharp increase in dopamine 

concentrations in the synaptic cleft, which is the main cause of psychosis, and it is 

associated with psychostimulant abuse and dependence. Moreover, amphetamine is 

known to stimulate dopamine release by inducing the reverse transport of dopamine 

from the presynaptic neuron to the synaptic cleft (Kahlig et al., 2005). 

 

 

Figure 10- Dopaminergic synapse 

Dopamine (DA) is synthesised in the presynaptic neuron. L-tyrosine is transformed 

into Levo-Dihydroxyphenylalanine (L-Dopa) by tyrosine hydroxylase (TH) and then 

converted into dopamine by dopamine decarboxylase (DDC). Free dopamine is 

stocked in vesicles by vesicular monoamine transporter (VMT), while the free 

dopamine can be degraded by monoamine oxidase (MAO). Upon an action potential, 

dopamine is released from vesicles to be in the synaptic cleft, where it can bind to 

postsynaptic DA receptors or presynaptic autoreceptors, generating activation of 

signalling pathways. Excess DA can be neutralised by catechol-O-methyltransferase 

(COMT) on postsynaptic cells or can be taken up by dopamine transporter (DAT) 

located in the presynaptic cells.  
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2. Dopaminergic neuronal pathways 

 

Dopaminergic neurons are located in specific areas of the human brain. They 

are organised into four main dopaminergic neuronal tracts (Iversen & Iversen, 2007; 

Kienast & Heinz, 2006) (Fig.11). The first one is the nigrostriatal pathway. Some of 

these dopaminergic neurons can be found in the substantia nigra. The dopamine 

synthesised by these neurons is then released in the dorsal striatum. The dopaminergic 

transmission in this pathway is responsible for controlling motor behaviour. The 

destruction of these neurons is a well-characterised process which is associated with 

Parkinson’s disease (Alexander, 2004). Any abnormalities in the dopaminergic system 

in the dorsal striatum have also been associated with motor tics in Tourette’s syndrome 

(Leisman & Sheldon, 2022).  

The mesolimbic pathway is another important dopaminergic pathway in the brain. 

Neurons in this pathway originate from the ventral tegmental area (VTA) and establish 

synaptic connections with neurons in the nucleus accumbens (NAc) situated in the 

ventral striatum. This specific neuronal pathway plays a crucial role in regulating 

motivation, anticipating rewards, and experiencing pleasure. Dysfunctions within this 

dopaminergic pathway are often associated with various negative symptoms observed 

in individuals with schizophrenia, such as social withdrawal, reduced motivation, 

decreased desire and pleasure, and blunted emotions (Brisch et al., 2014; McCutcheon 

et al., 2020). This neuronal dopaminergic pathway is also involved in the reinforcing 

effects of drug intake and depression (Nestler & Carlezon, 2006). 

Another dopaminergic tract that originates from VTA and is also known to be involved 

in schizophrenia symptoms is the mesocortical pathway (McCutcheon et al., 2019). 

Neurons from this tract make synaptic contact with other neurons present in the 

prefrontal cortex (Luo & Huang, 2016). This pathway is critical for the working 
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memory and various cognitive functions. An abnormal prefrontal dopamine release is 

associated with the positive symptoms of schizophrenic patients (i.e., hallucinations 

and cognitive deficits) (Brisch et al., 2014).  

The last dopaminergic tract is implicated in the neuroendocrine control (Juárez Olguín 

et al., 2016). Somas of neurons from the tuberoinfundibular tract are located in the 

arcuate nucleus of the hypothalamus. Dopamine release from these neurons occurs in 

the pituitary and causes the inhibition of prolactin secretion (Ben-Jonathan & Hnasko, 

2001; Stagkourakis et al., 2019).  

 

 

Figure 11- Dopaminergic neuronal pathways 

There are four dopaminergic neuronal pathways: nigrostriatal, mesolimbic, 

mesocortical and tuberoinfundibular. Neurons located in the subtantia nigra and 

projecting to the dorsal striatum compose the nigrostriatal pathway. Neurons located 

in the ventral tegmental area that make synaptic contact with the nucleus accumbens 

in the ventral striatum form the mesolimbic pathway, while the one projecting to the 

prefrontal cortex represents the mesocortical pathway. Neurons located in the arcuate 

nucleus of the hypothalamus send projections to the pituitary from the 

tuberoinfundibular pathway.  
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3. Dopaminergic receptor classification  

 

The dopamine receptors are members of the rhodopsin-like GPCR family and 

are widely expressed in the central nervous system (CNS). They are also expressed in 

the periphery, more prominently in the kidney and vasculature (Qaddumi & Jose, 

2021). A dysfunction in the dopaminergic signalling or neurotransmission in the CNS 

is implicated in various neuropsychiatric disorders like social phobia (Schneier et al., 

2000), Parkinson’s disease (Fuxe et al., 2006), Tourette’s syndrome (Kienast & Heinz, 

2006), schizophrenia (Hong et al., 2010), attention-deficit hyperactivity disorder 

(ADHD) (Faraone & Khan, 2006), neuroleptic malignant syndrome (Mihara et al., 

2003) and alcohol and drug dependence (Kienast & Heinz, 2006). This led the 

dopamine receptors to be an interesting, high-value target for drugs. 

Five different subtypes of dopamine receptors have been identified to this day. 

Designated as D1, D2, D3, D4 and D5 (Le Crom et al., 2003), they differ in ligand 

specificity, the nature of the G-protein coupled to the receptor, their tissue distribution 

and the physiological effect of their downstream signalling. These 5 subtypes are 

divided into two subfamilies: the D1-like family (D1, D5), which is characterised by 

its coupling to the Gαs subunit and induces an excitatory signal, and the D2-like family 

(D2, D3 and D4) which couples to the Gi/Go/Gs G-protein alpha subunit and mediates 

an inhibitory signalling pathway. Even though dopamine receptors are highly 

expressed in the brain, they can be found in different locations with various densities. 

It has been proposed that there is a functional link between receptor density and the 

roles mediated (Howes & Kapur, 2009; Missale, Russel Nash, et al., 1998). D1 and D2 

subtypes are found in greater density than the D3, D4, and D5 subtypes (Hurley & 

Jenner, 2006). 
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a. D1-like receptors 

 

D1-like receptors show 82% sequence homology and are characterised by the 

presence of a relatively short IL3, and a long serine and threonine rich CT (Xu et al., 

2022). The short IL3 is characteristic of many receptors coupled to stimulatory G 

proteins (Beaulieu & Gainetdinov, 2011; Missale, Russel Nash, et al., 1998). D1 and 

D5 have very similar TM domains.  

The D1 gene is located on chromosome 5q35.1 and is the most abundant receptor 

subtype among all dopamine receptors (Wong et al., 2000). In vertebrate brains, D1 is 

particularly abundant in the ventral and dorsal striatum, where it is mainly located on 

gamma-aminobutyric acid (GABA) medium-sized spiny neurons and co-localise with 

dynorphin and substance P (Aubert et al., 2000; De Keyser et al., 1988; Levey et al., 

1993). Medium spiny neurons constitute 95% of the striatal neurons (Kemp & Powell, 

1971). These neurons integrate inputs from glutamatergic cortical neurons and 

dopaminergic midbrain neurons. Abnormalities in these neurons to integrate these 

inputs strongly compromise striatum functions. Furthermore, D1 is also highly 

expressed in the amygdaloid complex and the nucleus tractus solitaries involved in 

fear conditioning and coordinating the autonomic nervous system respectively (Callier 

et al., 2003).  

The D5R gene is located on chromosome 4p15.1-p15.3 (Wong et al., 2000). The 

product of this gene is particularly abundant in the hippocampus, where D1 expression 

is low (Callier et al., 2003). D5R is also highly expressed in the nucleus accumbens 

and thalamus and at a moderate level in the cortex, in cholinergic neurons of the dorsal 

striatum, substantia nigra, nucleus tractus solitaries, dorsal hypothalamus, amyloid 

complex and retina (Callier et al., 2003; Surmeier et al., 1996). 
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b. D2-like receptors  

 

D2-like receptors have a long IL3, a common feature of GPCRs coupled to the 

inhibitory G protein (Martinez et al., 2020). Furthermore, the CT of D2-like receptors 

is approximately seven times shorter than the CT of D1-like receptors (Missale, Russel 

Nash, et al., 1998). While D1-like receptors possess two N-glycosylation sites (on NT 

and EL2 regions), D2, D3 and D4 have four, three and one glycosylation sites 

respectively (Martinez et al., 2020), which affects both correct cell surface expression, 

signalling and internalisation (Min et al., 2015).   

The D2R gene is located on chromosome 11q22-23 and is the most abundant D2-like 

receptor (Wong et al., 2000). D2 exists as two alternatively spliced isoforms: D2 short 

and D2 long (Dal Toso et al., 1989; Giros et al., 1989). D2long has a 29 amino acid 

insertion in IL3, which is absent in D2 short  (Ebersole et al., 2015). The distribution of 

D2 in the brain is similar to that of D1. Similarly to D1, striatal D2 are expressed in 

GABAergic medium spiny neurons, but co-localise with enkephalin (Aubert et al., 

2000; Gerfen et al., 1995; Surmeier et al., 1996; Surmeier & Kitai, 1993). Striatal D2 

are also expressed in cholinergic interneurons (Tanimura et al., 2018).  

D3 gene is located on chromosome 3q13.3, and D3 and D2 share 75% identity within 

their TM domains (Missale, Russel Nash, et al., 1998; Wong et al., 2000). D3 is mainly 

expressed in limbic areas. GABAergic medium spiny neurons of the nucleus 

accumbens (rostral and ventrolateral shell) and granule cells of the islands of Calleja 

have the largest D3R densities (Landwehrmeyer et al., 1993; Lévesque et al., 1992; 

Murray et al., 1994). Importantly, D1 and D3 co-localise in single neurons located in 

the nucleus accumbens (Solís et al., 2017). Indeed, their interaction at cellular and 

behavioural levels has been demonstrated (Schwartz et al., 1998). An interesting 

particularity of D3 is its ability to inhibit AC5 activity but no other AC isoforms 
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(Missale, Russel Nash, et al., 1998). Furthermore, it is worth mentioning that D3 

dopamine affinity is about twenty times higher than that of D2 (Sokoloff et al., 1990). 

This difference in affinity has been related to differences between IL3 of D2 and D3 

(Missale, Russel Nash, et al., 1998). However, quinpirole, which acts as a selective D2 

and D3 receptor agonist, is the most discriminating drug between D2 and D3, with over 

100 times higher affinity for D3 (Missale et al., 1998; Sokoloff et al., 1990). 

Finally, D4R, located on chromosome 11p15.5, is mostly expressed in the same brain 

regions that D2R (Wong et al., 2000). The highest densities of D4R are located in the 

dorsomedial thalamus and the lateral septal nucleus. Comparison between amino acid 

sequences of D2-like receptors reveals that D4R is the most distantly related of the 

dopamine receptors coupled to inhibitory G proteins. Indeed, TM domains of D4R 

share only 53% identity with those of D2R (Missale et al., 1998). Notably, clozapine 

which is an antagonist of D4 receptors is particularly useful to distinguish D4 from 

other D2-like receptors (Iijima & Van Tol, 1991). Indeed, clozapine is shown to have 

about 15 times higher affinity for D4 than for D2 and D3.  

4. Dopaminergic receptor signalling 

 

D1-like and D2-like dopaminergic receptors have different structural features. 

These differences are suspected to determine their preferential coupling with 

stimulatory or inhibitory G proteins respectively (Missale et al., 1998). The nature of 

stimulated G proteins determines the signalling pathways activated downstream of the 

dopaminergic receptors upon the ligand binding to the receptor. The following section 

describes the most common signalling pathways associated with the activation of D1-

like receptors, as in my research we focus on the dopamine D1 receptor. 
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a. D1-like receptor signalling pathways  

 

D1-like receptor signalling is mainly mediated by the production of 

intracellular cAMP through AC activation by the stimulatory G proteins Gαs or Gαolf 

(Fig.12). As previously elaborated, AC activation leads to disinhibition of regulatory 

subunits of PKA. This kinase phosphorylates several proteins involved in gene 

expression and important signal transduction signals (Neve et al., 2004). Furthermore, 

PKA activates dopamine and cyclic AMP-regulated phosphoprotein 32 kDa (DARPP-

32). Phosphorylation of DARPP-32 by PKA occurs on Thr 34 (Lindskog et al., 2006). 

Phosphorylation of that DARPP-32 residue leads to inhibition of protein phosphatase 

1 (PP1) (Hemmings et al., 1984). This phosphatase catalyses the dephosphorylation 

of several important proteins in the brain, such as voltage-gated ion channels and 

numerous neurotransmitter receptors (Greengard et al., 1999). Attenuated responses 

to antipsychotic drugs, psychostimulants and dopamine have been observed in 

DARPP-32 knockout mice (Fisone et al., 2011). However, when DARPP-32 is 

phosphorylated on Thr75 (by cyclin-dependent kinase 5), DARPP-32 inhibits PKA 

(Bibb et al., 1999). However, this DARPP-32-mediated inhibition of PKA is prevented 

by dephosphorylation of Thr75 on DARPP-32 by the PKA-stimulated protein 

phosphatase-2A (PP2A) (Nishi et al., 2000). 
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Figure 12- D1-like receptor signalling pathways 

D1-like receptor signalling pathways are mediated by the production of intracellular 

cAMP via activation of adenylyl cyclase (AC) by stimulatory G proteins (αs or αolf). 

cAMP activates protein kinase A (PKA) activity, leading to dopamine and cAMP-

regulated phosphoprotein 32 kDa (DARPP-32)-mediated inhibition of protein 

phosphatase 1 (PP1). Inhibition of PKA by DARPP-32 is prevented by PKA-mediated 

stimulation of PKA-stimulated protein phosphatase-2A (PP2A) activity. D1-like 

receptor-mediated activation of PKA also stimulates ERK activity via protein kinase 

B (PKB) activation by an unknown mechanism. Both PKA and ERK lead to the 

activation of a transcription factor called cAMP response element-binding protein 

(CREB), responsible for the transcription of several genes having a cAMP response 

element. Gαq-coupling with D1-like receptors was also reported. This leads to the 

activation of phospholipase Cβ (PLCβ), resulting in an elevation of intracellular 

calcium concentration and activation of protein kinase C (PKC). The mechanism for 

which D1-like receptors couple with Gαq is not well understood but could be explained 

by the involvement of a protein called calcyon or through heterodimerisation of D1 

with D2.  
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Another important PKA substrate is the transcription factor cAMP response element-

binding protein (CREB) (Konradi et al., 1994). Phosphorylation of Ser133 of CREB 

by PKA allows the binding of CREB to CREB-binding proteins, leading to the 

transcription of genes with a cAMP response element (Cole et al., 1995). Activation 

of gene expression by phosphorylation of CREB has an important role in synaptic 

plasticity (Sakamoto et al., 2011). Gene transcription by CREB can also be mediated 

by activation of an extracellular signal-regulated kinase (ERK) (Brami-Cherrier et al., 

2002). Activation of ERK via D1-like receptors is mediated by PKA-dependent 

activation of PKB (Sun et al., 2016).  

Also, D1-like receptor signalling activates the PLCβ pathway, leading to the elevation 

of intracellular calcium concentration and PKC activation (Mahan et al., 1990). 

However, this pathway is controversial. An increase of intracellular calcium was 

reported in mouse LTK- and HEK293 cells transfected with human or goldfish D1 

upon receptor stimulation (Liu et al., 1992). Furthermore, evidence has been reported 

that D1-like receptors are coupled to PIP2 hydrolysis (Cadet et al., 2010; Undieh, 

2010). Intrarenal administration of a D1-like receptor agonist increases PLCβ activity 

(Jose et al., 1995). In addition, incubation with the D1-like receptor specific agonist 

SKF38393 increases IP3 production and PIP2 hydrolysis in rat brain striatal slices as 

well as post-mortem human prefrontal cortex membranes (Pacheco & Jope, 2002; 

Wang et al., 1995). SKF83959, a D1-like receptor agonist that does not stimulate AC 

activity, also stimulates PIP2 hydrolysis or IP3 production in membranes from the 

cerebellum and hippocampus from rat brain and in rat striatal and macaque caudate 

nucleus slices (Jin et al., 2003; Panchalingam & Undie, 2001). Some studies suggest 

that activation of this signalling pathway occurs through a D1-like receptor coupling 
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with the Gαq protein (Undieh, 2010). Surprisingly, incubation of rat frontal cortex and 

striatal membranes with SKF83959 or SKF38393 increases [
35

S]GTPγS binding to 

Gαq but not to a lesser extent than Gαs (Jin et al., 2003; Panchalingam & Undie, 2001). 

Two possible mechanisms have been hypothesised. The first one is the involvement 

of a protein called calcyon (Lidow et al., 2001). The second mechanism is via 

heterodimerisation of D1 with D2 (Lee et al., 2004). 

b. Modulation of ion channels by D1-like receptors  

 

Activation of D1-like signalling pathways can also regulate the activity of 

several ion channels. Voltage-gated potassium channels are generally inhibited upon 

D1-like receptor activation via stimulation of the PKA/DARPP-32 pathway (Neve et 

al., 2004; Surmeier & Kitai, 1993). In a similar fashion to potassium channels, the 

conductance of N- and P/Q-types of calcium channels is also decreased upon D1-like 

receptor activation via the PKA/DARPP-32 pathway (Surmeier et al., 1995; Young & 

Yang, 2004). However, in contrast to N- and P/Q-type calcium channels, L-type 

calcium currents are increased by D1-like receptor activation. Sodium channels are 

also regulated by D1-like receptors by PKA activation and inhibition of PP1 via 

activation of DARPP-32. Moreover, dopaminergic modulation increasing PKA-

mediated phosphorylation of specific serine residues of the pore-forming α-subunit of 

voltage-gated sodium channels leads to a reduction of sodium currents (Cantrell et al., 

1997; Li et al., 1992; Murphy et al., 1993; Smith & Goldin, 1997; Surmeier et al., 

1992). 
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c. Modulation of ligand-gated ion channels by D1-like receptors 

 

In addition to non-ligand gated ion channels, D1-like receptor stimulation also 

modulates ligand-gated ion channel activity such as N-methyl-D-aspartate (NMDA) 

receptors, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors 

and γ-amino butyric acid type A (GABAA) receptors.  

NMDA receptor response is increased upon D1-like receptor activation by 

phosphorylation of the NR1 subunit of the NMDA receptor (Dudman et al., 2003). 

DARPP-32-mediated inhibition of PP1, activation of PKA, ERK, L-type calcium 

channels and PKC have been described to be involved in D1-like receptor-mediated 

NMDA receptor stimulation (Cepeda et al., 1998; Chergui & Lacey, 1999; Flores-

Hernández et al., 2002; Sarantis et al., 2009; Snyder et al., 1998; Yang, 2000). It was 

also reported that D1-like receptor stimulation increases NMDA receptor trafficking 

to the membrane surface with increased expression of  NMDA receptor subunits NR1 

and NR2B (Dunah & Standaert, 2001; Hu et al., 2010). However, physical interaction 

between the  CT of the D1 and the  NR2A subunit of the NMDA receptor has been 

shown to inhibit NMDA currents (Lee et al., 2002).  

AMPA receptors are positively modulated by D1-like receptor activation. AMPA 

current amplitude is modestly enhanced through the activation of L-type calcium 

channels by D1-like-mediated stimulation of the PKA/DARPP-32 pathway (Galarraga 

et al., 1997). In addition, D1-like receptor activation stabilises the AMPA receptor 

current through PKA-mediated phosphorylation of Ser845 of the AMPA receptor 

GluR1 subunit and by inhibition of PP1-mediated dephosphorylation of this serine 

residue (Chao et al., 2002; Snyder et al., 2000; Yan et al., 1999). In the hippocampus, 

it was reported that D1-like receptor stimulation increases AMPA receptor cell surface 

expression in a PKA-dependent manner  (Gao et al., 2006). In a similar fashion to 



 48 

NMDA receptors, the GluR1 subunit of AMPA receptor surface expression is 

enhanced by D1-like receptors-mediated activation of AC (Chao et al., 2002; Gao et 

al., 2006).  

Finally, GABAA receptors are differently regulated by D1-like receptors depending 

on the brain area and the cell type in which GABAA receptors are expressed. In the 

nucleus accumbens and the medium spiny neurons of the striatum, the activity of 

GABAA receptors is decreased via PKA/DARPP-32-mediated phosphorylation of 

β1/β3 subunits of GABAA receptor (Flores-hernandez et al., 2019; Nicola & Malenka, 

1998). In contrast, in a subpopulation of zinc-sensitive GABAA receptors localised in 

large striatal cholinergic interneurons, GABAA currents are enhanced by D5R 

stimulation via activation of PKA and inhibition of PP1 (Yan et al., 1997). This 

opposite regulation of GABAA currents by D1-like receptor activation can be 

potentially explained by the presence of a variety of α, β and γ subunit isoforms of 

GABAA receptors (Neve et al., 2004). As it was described for the D1 and NMDA 

receptor, direct physical interaction has been seen between CT of D5R and the γ2short 

subunit of GABAA receptor (Liu et al., 2000). This interaction results in mutual 

inhibition of the D5R and the GABAA receptor.  

5. D1 related pathologies 

 

  The dopamine 1 receptors are abundant in the caudate-putamen, nucleus 

accumbens and olfactory tubercle, with lower levels in the frontal cortex, habenula, 

amygdala, hypothalamus, and thalamus. They are also found in the kidneys, heart, 

liver, and parathyroid glands. In humans, the pulmonary artery expresses D1 receptors, 

which can be attributed to vasodilatory effects (Ricci et al., 2006). D1 receptor 

knockout mice have been demonstrated to have reduced motivation for alcohol 
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consumption (El-Ghundi et al., 1998). D1 is very important for locomotor activity, for 

example in Huntington's disease (HD), where we see a change in dopamine levels and 

receptor numbers, the patients develop movement and cognitive deficits (Peinemann 

et al., 2005; Wang et al., 2012). Also, the bradykinesia in hemiparkinsonian animal 

models was associated with a decrease in D1 expression (Rangel-Barajas et al., 2008). 

Also, there are several drugs that target the D1, mostly for the treatment of psychosis 

and schizophrenia. Schizophrenia is a neuropsychological disorder that research work 

has tightly linked with aberrant dopaminergic signalling (Grace, 2016; Lidow, 2003). 

There are numerous D1-targeting drugs, and most of them have significant side effects. 

In the field of antipsychotics, drugs such as clozapine can lead to motor side effects, 

also known as extrapyramidal side effects (Kurz et al., 1995). These effects are caused 

by the activation of the nigrostriatal pathway which is central to motor control. It has 

been found that side effects are related to the occupancy of D2-like receptors (Farde 

et al., 1992). Beyond motor-related side effects, D1 targeting antipsychotics have been 

shown to drive metabolic and endocrine aberrations. Especially in young patients, 

treatments with clozapine were found to be associated with excessive weight gain 

(Fleischhaker et al., 2007). This is probably related to the non-selective D2-like 

receptor activation by these drugs, although some evidence links other neurological 

systems, such as the histaminergic system (Hong et al., 2010; McIntyre et al., 2001). 

In the case of neurodegenerative diseases, treatments targeting the dopaminergic 

system, such as levodopa (a dopamine precursor) for Parkinson’s Disease treatment, 

have resulted in side effects. Levodopa usage was found to cause neuronal death 

through excessive stimulation and is now not recommended as an automatic go-to 

treatment (Brooks, 2000). The side effects commonly found with dopaminergic 

agonists as treatments are low tension, hallucinations, delusions and sleepiness, likely 
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through undesired effects on the mesolimbic and mesocortical pathways (Borovac, 

2016; Gottwald et al., 1997). 

Side effects can have serious effects on the patient’s health and well-being. 

Additionally, side effects and patient perception of them are major driving factors in 

non-compliance and interruption of treatment, resulting in relapse (Haddad et al., 

2014; McIntyre et al., 2001). The development of novel antipsychotics with limited 

side effects is a must to better serve patients. Therefore, understanding the 

pharmacology of the D1 is very important as the most used pharmacological treatment 

for Parkinson disease is L-3,4-dihydroxyphenylalanine with studies showing that a 

chronic treatment may cause multiple side effects as L-3,4-dihydroxyphenylalanine 

induces dyskinesia, characterised by abnormal involuntary movements (Santini et al., 

2007). The D1-like family mediate a signalling pathway that was related to a multitude 

of neuropsychiatric disorders through PLC activation and IP3 accumulation, which 

induces intracellular calcium release. Ca2+ plays an important role in the activation of 

the protein kinase calcium-dependent (PKC) but also the modulation of 

neurotransmitter release by exocytosis (Koh et al., 2003; Loos et al., 2010). 

 

VI. S-Palmitoylation 
 

Palmitoylation is a lipid modification of proteins that was conserved during 

evolution (Hayashi, 2021; Tsukamoto et al., 2013). Palmitoylation is a reversible and 

dynamic phenom that influences many cellular properties of proteins ranging from 

protein stability, membrane domain organisation, protein trafficking and protein 

function. Recent improvements in chemical biology and proteomic techniques have 

helped discover more palmitoylated proteins in various species and tissues/cells and 
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revealed that the palmitoylation of proteins happens in membrane-bound organelles 

and specific membrane compartments. Adding to that, the identification and 

characterisation of membrane proteins with a cysteine-rich domain that contains a 

conserved sequence, Asp–His–His–Cys DHHC proteins are protein acyltransferases 

(PATs DHHC)/substrate pairs have helped to understand the regulatory mechanisms 

and pathophysiological significance of protein palmitoylation. 

Palmitoylation increases the hydrophobicity of proteins and is suspected to be 

responsible for their proper membrane localisation in the cell (Dennis & Heather, 

2023). Palmitoylation occurs on specific cysteine residues either through thioester-

linkage (S-palmitoylation) or an amide-linkage (N-palmitoylation). Unlike some other 

lipid modifications, such as myristoylation and prenylation, palmitoylation represents 

the advantage of being reversible, suggesting that palmitoylation dynamically 

regulates the subcellular localisation of proteins (Busquets-Hernández & Triola, 2021; 

Guan & Fierke, 2011).  

The first palmitoylated proteins were discovered in 1979 in the Sindbis virus (Schmidt 

& Schlesinger, 1979) and the vesicular stomatitis virus (Schmidt & Schlesinger, 1979; 

Veit, 2012). In 1987, the reversibility of the protein palmitoylation process was 

reported for ankyrin in erythrocytes, a  family of proteins that mediate the attachment 

of membrane proteins to the cytoskeleton (Staufenbiel, 1987). Palmitoylation occurs 

on soluble proteins, for example the GTP-binding proteins (G protein α subunit, H/N-

Ras), SNARE proteins (SNAP-25), postsynaptic scaffolding proteins (PSD-95, 

GRIP), cell adhesion molecules (integrin, claudin, and NCAM), and integral 

membrane proteins such as GPCRs (Chamberlain & Shipston, 2015; El-Husseini & 

Bredt, 2002; Fukata & Fukata, 2010; Linder & Deschenes, 2007). Another important 

aspect is that specific extracellular signals can modify the palmitoylation-
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depalmitoylation balance on certain proteins, such as Gαs and PSD-95 (El-Husseini et 

al., 2002). Altogether, protein palmitoylation has established itself as one of the key 

post-translational modifications that can impact the localisation and functions of 

proteins and have a great effect on cellular signalling. 

Historically, it has been challenging to investigate protein palmitoylation due to the 

lack of efficient, specific, rapid, and highly sensitive detection methods to detect and 

identify palmitoylated proteins (Gao & Hannoush, 2018; Main & Fuller, 2022), 

palmitoyl acyltransferases (PATs) that are a family of enzymes that catalyse protein 

S-palmitoylation and the depalmitoylation enzymes palmitoyl-protein thioesterases 

(PPT); the lack of tools for the spatiotemporal visualisation of the palmitoylated state 

of proteins in cells have slowed the progress of research in the field of protein 

palmitoylation, compared with that of protein phosphorylation (Gao & Hannoush, 

2018). The identification of enzyme-protein pairs completely relied on the hypothesis 

of investigators because the purification method of palmitoylated proteins was not 

established, and the consensus sequence for protein palmitoylation remained 

undetermined, unlike that for myristoylation (MGXXXS/T) or prenylation (cysteine 

in the C-terminal CAAX motif) (Xie et al., 2016). Therefore, for a long time, 

discovering new palmitoylated proteins in cells stagnated, and whether the reactions 

of palmitoylation and depalmitoylation are meditated by enzymes was difficult to 

establish until recent developments in proteomic methods and chemical biology 

approaches in parallel to the discovery of enzymes catalysing palmitoylation caused a 

paradigm shift in the field of palmitoylation.  
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1. Methods of Protein palmitoylation detection 

 

  Recent advances in protein lipidation detection by proteomics and direct 

approaches have revealed that lipidation of signalling proteins is essential for 

regulating a wide variety of pathways. One of the earliest studies on S-palmitoylation 

in mammalian cells used [H
3
] radiolabelled palmitate, followed by fluorography with 

long exposure (Schlesinger et al., 1980). To detect palmitoylation of specific proteins 

of interest, purified proteins are needed for cell-free labelling with [H
3
] palmitate 

(Bizzozero & Lees, 1986; Caron, 1997). These methods have been used to identify 

various palmitoylation targets, but they have many disadvantages. Other than the 

health hazard of radioactivity and the time-consuming autoradiography exposure step, 

the sensitivity and the efficiency of radiolabelling were extremely low for many 

proteins (Drisdel & Green, 2004). Therefore, click chemistry based chemical probes 

were developed as an alternative to enhance protein palmitoylation detection 

(Fig.13A) (Hannoush & Arenas-Ramirez, 2009). Synthetic fatty acid analogues with 

alkyne groups at the terminal end furthest away from the carboxyl group are 

incorporated into live cells (Hannoush & Sun, 2010). Cells are then fixed for imaging 

or lysed for biochemical assays, followed by a catalysed reaction with azide-

conjugated fluorescent groups or biotin for detection (Wang et al., 2003). Moreover, 

various lengths of synthetic fatty acids are shown to be incorporated into proteins via 

thioester linkage, suggesting that not only S-acylation but also other lipid groups can 

be added (Hannoush & Arenas-Ramirez, 2009). Chemistry click based probes were 

shown to have the advantage of allowing scientists to distinguish different fatty acid 

groups (Greaves et al., 2017). Even if click chemistry has led to many discoveries in 

protein palmitoylation, the efficiency of incorporating alkyne conjugated probes onto 
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substrates wasn’t the same for all proteins, and thus it was not suitable for unbiased 

proteomic studies in native tissues. Recently acyl-biotin exchange ABE (Fig.13B) has 

been developed to detect S-acylated proteins in various tissues and organisms (Dowal 

et al., 2011; Kang et al., 2008; Roth et al., 2006). The first step in ABE consists of 

blocking the free cysteine sites of the proteins using thioreactive compounds such as 

N-ethylmaleimide (NEM) or methyl methanethiosulphonate (MMTS). Then the 

thioester bonds at the palmitoylated cysteines are cleaved using hydroxylamine (HA, 

neutral PH), thus exposing the free thiol groups that can be subsequently biotinylated. 

After the biotinylation, proteins are pulled down with streptavidin beads and eluted. 

Standard Western blotting can be used to detect the palmitoylation levels of proteins 

of interest (Drisdel & Green, 2004), or mass spectrometry can be used for global 

proteomic analysis (Roth et al., 2006). 

Acyl-resin-assisted capture (Acyl-RAC) (Fig.13B) is a recently developed approach 

similar to ABE. Instead of using biotin conjugation and streptavidin pull-down, 

thioreactive Sepharose resin was used after the HA cleavage step (Forrester et al., 

2011). This method reduced the duration of the procedure and improved sensitivity 

for detecting some palmitoylated proteins that were not detectable with the earlier 

cited methods (Edmonds et al., 2017). 
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Figure 13- Schematics of methods to detect protein palmitoylation 

 

(A) fatty acid is incorporated into live cells, followed by click chemistry to detect 

palmitoylation using conjugated fluorophore (green) or biotin/streptavidin-HRP 

(yellow). (B) Procedures of using acyl-biotin exchange (ABE) and acyl-resin-assisted 

capture (Acyl-RAC). 

 

The development of purification methods for palmitoylated proteins helped speed the 

study and discovery of palmitoylated proteins. In 2004, Green and Drisdel established 

the acyl-biotinyl exchange method (ABE) for the purification of palmitoylated 

proteins (Drisdel & Green, 2004). Combining the ABE technique with quantitative 

mass spectrometry, a global analysis of protein palmitoylation in the yeast 

Saccharomyces cerevisiae (Roth et al., 2006). This approach was then applied to rat 

brain fractions (Kang et al., 2008). These experiments identified a substantial number 

of unexpected proteins that are subject to palmitoylation, such as SNAREs proteins, 

amino acid permeases, NMDA receptor subunits, and a brain-specific Cdc42 splice 
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variant (Kang et al., 2008; Roth et al., 2006). The ABE method has been modified 

since by several groups to enrich palmitoylated proteins/peptides more specifically 

and sensitively. Nonradioactive metabolic labelling methods of palmitoylated proteins 

by taking advantage of bio-orthogonal palmitate analogues were also developed 

(Charron et al., 2009; Martin & Cravatt, 2009). These two major methods contributed 

to the expansion of the knowledge about the number and types of palmitoylated 

proteins covering various species and their tissues (Fukata et al., 2016) (Table. 2). 

Table 2-Protein S-palmitoylation studied in various species. 

Species 
Tested 

organism/tissue/cell-type 

Number of 

candidate 

substrates 
DHHC family 

members  

Human 

Jurkat T cells, DU145 

prostate cancer cells, 

platelets, HEK293T cells, 

EA.hy926 endothelial 

cells, lymphoid B cells, 

and endothelial cells. 

95-393 
23 (ZDHHC 1-9, 11-

24) 
 

Mouse 

DC2.4 dendritic cells, 

Raw2.4 macrophages, 

BW5147 T cells, neural 

stem cells, adipose tissue 

plus 3T3-L1 

101-338 
24 (ZDHHC1-9, 11-

25) 

 

 

 

 

 

Rat 
Liver mitochondrial 

fraction and embryonic 

cortical neurons and brain 

21-495 
24 (ZDHHC1-9, 11-

25) 

 

 

 

 
 

For a long time, it was speculated that the majority of the palmitoylated proteins are 

located at the plasma membrane or the Golgi apparatus. Recent evidence surprisingly 

tells us that an important number of proteins, known to be localised at other specific 

organelles or subcellular compartments, are also modified by palmitoylation. 
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2. The Enzymes behind S-palmitoylation 

 

Around 30% of eukaryotic proteins are membrane-associated, also many 

intracellular proteins can undergo modifications to delocalise to the phospholipid 

bilayer and enhance their association to the membrane (Guan & Fierke, 2011). 

Palmitoylation is a PTM, during which a fatty acid is attached to a protein (Pei et al., 

2016). S-palmitoylation is the addition of a saturated 16-carbon fatty acid, for 

example, palmitic acid, to a specific cysteine thiol residue in the side chain of a target 

protein via a thioester bond (Han et al., 2015). S-palmitoylation is suspected to inhibit 

protein dissociation from the membrane, with the palmitate group acting as a 

hydrophobic membrane anchor (Greaves & Chamberlain, 2011; Yeste-Velasco et al., 

2015). 

Palmitate is the preferred substrate to attach during S-palmitoylation, but it is not the 

only one, other acyl chains can be used (stearate, oleate and arachidonate molecules) 

(Munday & López, 2007). This modification is reversible: S-palmitoylation is 

catalysed by enzymes called palmitoyltransferases (PATs) (Fig.14) that are expressed 

in various compartments of the cell (Philippe & Jenkins, 2019) (Fig.15), while 

thioesterases (PTTs) catalyse depalmitoylation (Han et al., 2015). Not all 

palmitoylations are reversible which is the case of N-palmitoylation (Linder & 

Deschenes, 2007). 
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Figure 14- Schematic diagram of a DHHC domain-containing palmitoyltransferase 

Schematic illustration of structures of mammalian and yeast DHHC protein family. 

DHHC proteins mostly have four transmembrane domains, a conserved cysteine-rich 

domain-containing DHHC motif in the cytoplasmic loop, and other conserved 

domains, DPG (Asp-Pro-Gly) and TTxE (Thr-Thr-X-Glu) motif adjacent to the C-

terminus. (Chalhoub & McCormick, 2022) 

 

 

 

 

Figure 15- Subcellular localisation of various PATs DHHCs 

The intracellular colocalisation analysis of all mammalian DHHCs exogenously 

expressed in vitro with endogenous intracellular organelle marker proteins revealed 

that the majority of DHHC proteins localise to the endoplasmic reticulum (ER) and 

Golgi, and a small number of DHHC proteins localise to post-Golgi membranes and 

Plasma membrane. (Chalhoub & McCormick, 2022) 
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d. Palmitoyltransferases (PATs)  

 

PATs are characterised by a conserved DHHC (Asp-His-His-Cys) sequence 

essential for the enzyme catalytic activity (Fukata & Fukata, 2010), 23 PATs 

exhibiting a DHHC sequence have been discovered until today. These PATs function 

as follows (Fig.16):  They first use acyl-coenzyme A, a palmitate donor, to form a 

transient acyl-enzyme intermediate.  The palmitoyl is then transferred from the 

enzyme to the substrate, the palmitoylation targets proteins specific cysteine residues  

(Jennings & Linder, 2012; Mitchell et al., 2010). Even though there are only 23 

identified DHHCs, hundreds of S-palmitoylated proteins were found in the human 

body, therefore showing the importance of protein S-palmitoylation (Blaskovic et al., 

2013). 

 

Figure 16- The PATs  mechanism 

PATs mechanism: They first use acyl-coenzyme A, a palmitate donor, to form a 

transient acyl-enzyme intermediate.  The palmitoyl is then transferred from the 

enzyme to the substrate on specific cysteine residues. (Chalhoub & McCormick, 

2022)  

 



 60 

3. Role of protein palmitoylation 

Palmitoylation is a crucial process for peripheral membrane proteins, such as 

PSD-95 and Gαq, as it plays a vital role in their trafficking and anchoring to the plasma 

membrane. By increasing the hydrophobicity of proteins, palmitoylation enhances 

their interaction with the membrane (Linder et al., 1993; Topinka & Bredt, 1998). 

Moreover, palmitoylation has the potential to influence the segregation of proteins into 

specialised membrane domains (Levental et al., 2010). thereby facilitating efficient 

signal transduction by partitioning proteins at distinct membrane compartments. 

Consequently, palmitoylation can be considered a common tag that assembles the 

appropriate compartments. For example, PSD-95, when palmitoylated, exhibits a 

restricted distribution in neurons, primarily localised to postsynaptic densities (PSDs) 

(Fukata et al., 2013). The GPCR signalling pathway also exploits palmitoylation for 

efficient and specific signal transduction. Multiple components involved in GPCR 

signalling, such as GPCRs themselves (Tobin & Wheatley, 2004), trimeric Gα 

subunits (Linder et al., 1993; Wedegaertner et al., 1993), RGS and its binding protein, 

R7BP (Rose et al., 2000), phosphodiesterase (Charych et al., 2010), undergo 

palmitoylation.  

Palmitoylation of membrane proteins is essential for their proper conformation and 

protection from degradation via the ER-associated degradation (ERAD) pathway. 

Therefore, palmitoylation contributes to their stability and facilitates their trafficking 

to the plasma membrane (Blaskovic et al., 2013; Linder & Deschenes, 2007) (Fig.17). 

The significance of palmitoylation in protein stability is evident from studies showing 

that palmitoylation-deficient transmembrane proteins have a shortened half-life and 

reduced cell-surface expression. Examples of such proteins include the A1 adenosine 

receptor (Gao et al., 1999) and the chemokine receptor CCR5 (Blanpain et al., 2001; 
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Percherancier et al., 2001). Additionally, it is speculated that S-palmitoylation plays a 

broader role in modulating protein conformation (Ko & Dixon, 2018; Yeste-Velasco 

et al., 2015; Zhang et al., 2021).  

  

 

Figure 17- Roles of protein palmitoylation 

(A)Palmitoylation modulates protein trafficking to the plasma membrane and protein 

incorporation into specialised membrane domains (e.g., detergent-insoluble lipid-

enriched domains). In addition, palmitoylation and depalmitoylation cycles allow 

several proteins to traffic between the inter-membrane compartments. The shuttling 

route could be determined by specific DHHC PAT and PPT. (B) Palmitoylation of 

integral membrane proteins regulates their conformation and stability. In this case, 

non-palmitoylated proteins are recognised as misfolded by the ER quality control 

system, do not exit the ER, and finally enter the ERAD pathway for degradation. 

DHHC, aspartate-histidine-histidine-cysteine; ER, endoplasmic reticulum; PAT, 

palmitoyl acyltransferase; PPT, palmitoyl-protein thioesterases; ERAD, ER-

associated degradation. (Chalhoub & McCormick, 2022) 
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VII. G proteins and G protein coupled receptors 

are subject to palmitoylation 

When investigating protein/lipid and protein/protein interactions, it is crucial 

not to disregard post-translational modifications of signalling proteins, including 

receptors, G proteins, G protein-coupled effector enzymes, and receptor kinases. 

These modifications play a significant role in modulating the activity, localisation, and 

interaction of these signalling molecules. Thus, considering PTMs is essential for 

understanding the intricate mechanisms underlying cellular signalling pathways. 

(Buss et al., 1987; O’Brien & Zatz, 1984; Stoffel et al., 1994; Sugars et al., 1999). 

GPCRs are post-translationally modified in a multitude of ways, including 

glycosylation, phosphorylation and palmitoylation.  

Palmitoylation occurs on one or more cysteines on the intracellular side of GPCRs 

(Goddard & Watts, 2012), usually on the cytoplasmic (C-terminal tail) of the receptor. 

Moreover, GPCR palmitoylation can occur in other sections, for instance, in the 

intracellular loops in the case of the vasopressin receptor (Hawtin et al., 2001). The 

thioester bond that links the palmitate to the cysteine is cleavable; a receptor's 

palmitoylation state can be a tool to regulate its activity (Gorinski et al., 2019). The 

effects of palmitoylation are unpredictable and GPCR-dependent (Shpakov, 2023) and 

depalmitoylation seems to be regulated by the bound state of the receptor, being 

accelerated upon agonist binding as demonstrated for certain receptors (dopamine D1, 

serotonin 4A, delta opioid and adrenergic receptors for example) (Chini & Parenti, 

2009). Palmitoylation exerts a comprehensive impact on all facets of GPCR signalling. 

The addition of palmitate to the cytoplasmic side of the plasma membrane can 

generate an additional loop, thereby influencing the structure of GPCRs and 

subsequently affecting their interactions with intracellular partner proteins. This 
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modification plays a pivotal role in shaping the functional properties of GPCRs and 

regulating their intracellular signalling events. (Chini & Parenti, 2009). Up to three 

palmitate groups can be found on GPCRs and different palmitoylation profiles can 

result in various conformations of the carboxy-terminal tail, which may select for 

certain G protein interactions (Baccouch et al., 2022). Palmitoylation can influence 

the phosphorylation of a receptor, modulating desensitisation and control 

internalisation independently of phosphorylation (Gauthier-Kemper et al., 2014; 

Zhang et al., 2022). It has been suggested that palmitate binding in the endoplasmic 

reticulum ensures correct processing and trafficking of receptors and, once at the cell 

membrane, may target GPCRs to lipid rafts and impact dimerization (Chini & Parenti, 

2009; Qanbar & Bouvier, 2003). However, not all palmitoylated receptors associate 

with rafts and not all raft-associated GPCRs are palmitoylated (Chini & Parenti, 2009). 

In the case of OPRM1, it appears that palmitoylation and cholesterol association (and 

presumably raft interactions) are intrinsically linked (Zheng et al., 2012). In addition, 

palmitoylation plays an important role in receptor trafficking and localisation to the 

cell surface. 

1. Effect of S-palmitoylation on GPCR surface expression 

 

Palmitoylation plays a role in regulating GPCR surface expression. Mutation 

of three C-tail cysteine residues of the chemokine CCR5 receptor resulted in its 

retention in the ER and Golgi complex (Blanpain et al., 2001; Percherancier et al., 

2001), they also showed that the non-palmitoylated CCR5 mutant presented impaired 

diffusion properties in the ER. Likewise, loss of palmitoylation caused a significantly 

reduced expression of endogenous protease-activated receptor 2 (PAR2) at the plasma 

membrane (Adams et al., 2011). This was also observed for the thyrotropin receptor, 
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vasopressin V2 receptor, adenosine A1 receptor, histamine H2 receptor, and the 

dopamine D1 and D2 receptors (Ebersole et al., 2015; Fukushima et al., 2001; Sadeghi 

et al., 1997; Schülein et al., 1996; Tanaka et al., 1998). The mechanism by which 

altered palmitoylation reduces GPCR surface expression is attributed mainly to 

receptor misfolding, leading to proteasomal degradation (Patwardhan et al., 2021). 

This has been reported for deficiencies in palmitoylation of CCR5 and adenosine 

A1 receptor, where the loss of palmitoylation enhanced receptor degradation (Gao et 

al., 1999; Percherancier et al., 2001). In the case of the Follicle-stimulating hormone 

receptor containing three cytosolic cysteine residues, the mutation of a single 

C269 was sufficient to compromise cell surface expression, likely due to protein 

misfolding and degradation (Uribe et al., 2008). These conclusions are coherent with 

an important role for palmitoylation in assisting the proper folding and maturation of 

GPCRs. 

2. Effects of GPCR palmitoylation on dimerisation and lipid 

rafts  

GPCRs incorporation into rich cholesterol lipid raft at the plasma membrane 

microdomains is regulated by palmitoylation (Fig.18;19)  (Barnett-Norris et al., 2005; 

Villar et al., 2016). The palmitoylation mutant serotonin 5-HT1A receptor showed a 

reduction in its association with lipid rafts (Papoucheva et al., 2004; Renner et al., 

2007). Similarly, the dopamine D1 receptor (Tiu et al., 2020) and cannabinoid receptor 

type 1 (CB1) (Oddi et al., 2012, 2018) palmitoylation mutants displayed an impaired 

lipid raft association.  
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Figure 18- Effects of GPCR palmitoylation and membrane distribution 

DHHC PATs are located in the endoplasmic reticulum (ER), Golgi, and plasma 

membrane. GPCR palmitoylation on the C-terminal tail cysteines creates a fourth IL 

and can facilitate GPCR localisation to lipid rafts and membrane localisation. 

(Patwardhan et al., 2021)  

 

Also, the crystal structure of the human β2-adrenoceptor revealed a receptor dimer 

complex, where palmitic acid and cholesterol mediated the majority of the dimer 

interactions (Cherezov et al., 2007). Furthermore, palmitoylation of several other 

GPCRs has been shown to facilitate lipid raft association and dimerization, including 

the μ-opioid receptors (MOR) (Zheng et al., 2012), rhodopsin (Seno & Hayashi, 

2017), and the serotonin 5-HT1A receptor (Kobe et al., 2008). These results supported 

that for some GPCRs, palmitoylation facilitates receptor compartmentalisation in lipid 

rafts and dimerisation. 
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Figure 19- Model of GPCR regulation by palmitoylation 

GPCRs are palmitoylated during their biosynthesis and can occur at the endoplasmic 

reticulum (ER), endoplasmic-reticulum-Golgi intermediate compartment (ERGIC), 

Golgi and the plasma membrane, where DHHC PATs are known to be localised. 

GPCR palmitoylation regulates partitioning into membrane microdomains such as 

lipid rafts and caveolae. GPCR palmitoylation has also been implicated in receptor 

dimerization and G protein coupling. Palmitoylation of GPCRs can influence β-

arrestin recruitment and receptor internalisation. GPCR palmitoylation is also 

important for regulating receptor recycling and lysosomal degradation. (Patwardhan 

et al., 2021) 

 

3. Effects of palmitoylation on GPCR internalisation, 

recycling, and degradation  

In addition to GPCR plasma membrane localisation, palmitoylation is 

implicated in GPCR internalisation, recycling, and lysosomal degradation (Fig.19). 

Several studies have reported a role for palmitoylation in GPCR internalisation. 

Defects in CB1 palmitoylation inhibited agonist-induced internalisation and 

association with caveolin 1 a scaffolding protein (Oddi et al., 2017). Similarly, defects 

in palmitoylation of the prostanoid thromboxane A2 receptor (TxA2), PAR2, and 



 67 

thyrotropin receptor affected agonist-induced β-arrestin recruitment and receptor 

internalisation (Adams et al., 2011; Reid & Kinsella, 2007; Tanaka et al., 1998). On 

the other hand, the vasopressin V1A receptor palmitoylation deficient mutant displayed 

an increased rate of agonist-induced internalisation without it affecting intracellular 

signalling (Hawtin et al., 2001). Similarly, the dopamine D1 receptor palmitoylation 

mutant showed an enhanced rate of plasma membrane internalisation compared to the 

wild-type and manifested a preference to internalise via a clathrin-dependent pathway 

over caveolae (Kong et al., 2011). 

Once internalised, GPCRs either recycle back to the cell surface or are targeted to the 

lysosomes for degradation. Although palmitoylation of PAR2 is essential for its 

efficient internalisation and lysosomal degradation (Adams et al., 2011), 

palmitoylation has an opposing effect on PAR1, the palmitoylation-deficient PAR1 

mutant presented an enhanced rate of internalisation and lysosomal degradation 

(Canto & Trejo, 2013). The altered trafficking caused by PAR1’s  absence of 

palmitoylation is due to the masking of C-tail tyrosine-based sorting motifs for 

endocytic adaptor proteins (Canto & Trejo, 2013). For instance, in the absence of 

palmitoylation, PAR1 sorting motifs are more accessible to the clathrin adaptor 

binding proteins (AP-2) and adaptor protein complex 3, which are implicated in 

accelerating the rate of internalisation from the plasma membrane as well as enhancing 

sorting from endosomes to lysosomes and degradation (Canto & Trejo, 2013). 

Similarly, a CCR5 palmitoylation mutant exhibits rapid lysosomal degradation and a 

reduced half-life (Percherancier et al., 2001). 
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4. Effects of Palmitoylation on GPCR Signalling 

In addition to regulating GPCR trafficking, palmitoylation is important for 

modulating activated GPCR coupling to G protein signalling (Fig.19). In many cases, 

deficiencies in GPCR palmitoylation failed to affect ligand binding but affected G 

protein coupling or altered the specificity of coupling to certain G protein subtypes. 

Studies of a β2-adrenoceptor C341 palmitoylation mutant highlighted defects in 

coupling to the stimulatory guanine nucleotide binding protein (Gs) and impaired 

cAMP production (O’Dowd et al., 1989). In other studies, deficiencies in GPCR 

palmitoylation were shown to hinder the G protein coupling of the agonist-activated 

serotonin 5-HT1A receptor, human somatostatin receptor type 5 (SSTR5), human 

endothelin ETA receptor, α2A-adrenoreceptor, dopamine D1 receptor, human 

adenosine A1 receptor, and the human thyrotropin receptor (Albert et al., 1999; 

Hukovic et al., 1998). This is not surprising since GPCR localisation in lipid rafts is 

known to promote the assembly of signalling ensembles (Barnett-Norris et al., 2005; 

Villar et al., 2016). Actually, methyl-β-cyclodextrin, a cholesterol-chelating reagent 

that disrupts lipid rafts, reduced the localisation of the serotonin 5-HT1A receptor to 

lipid rafts and its G protein coupling (Papoucheva et al., 2004; Renner et al., 2007). 

Thus, palmitoylation-driven lipid raft localisation of certain GPCRs is primordial for 

signalling regulation. However, some studies suggest that conformational changes 

induced by modulating lipid interaction of pre-existing dimers may alter G protein 

coupling preferences. Although the β2-adrenoceptor couples to both Gs and Gi 

proteins, depletion of cholesterol resulted in preferential coupling to Gs proteins 

(Xiang et al., 2002). Moreover, β2-adrenoceptor coupled to Gs protein was shown to 

occur with receptor monomers (Whorton et al., 2007), showcasing that dimers are not 

conditional for Gs coupling. In mice, treatment with palmostatin B, a cell-permeable 
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inhibitor of the acyl-protein thioesterases 1 (APT1), increased the melanocortin 

receptor 1 (MC1) palmitoylation and enhanced its stimulated cAMP production, which 

protected against the progression of melanoma (Chen et al., 2017). Thus, the effects 

of palmitoylation are partly due to defects in compartmentalisation, receptor 

conformation, and receptor capacity to couple to G protein activation. 

5. Dopamine receptors palmitoylation 

 

Impairments in dopaminergic neurotransmission within the brain have been 

implicated in a range of neuropsychiatric disorders, including Parkinson's disease 

(Lavine et al., 2002), schizophrenia (Lee et al., 2001), attention-deficit hyperactivity 

disorder (Lefkowitz et al., 2002), and drug addiction (Lefkowitz & Shenoy, 2005; Li 

et al., 2000). Disruptions in the normal functioning of dopamine pathways contribute 

to the pathogenesis and manifestation of these conditions. Five subtypes of dopamine 

receptors have been reported (Sibley & Monsma, 1992), which can be classified into 

two subfamilies: D1-like and D2-like. The D1-like family consists of the D1 and 

D5 receptors, which couple to the Gαs subunit, whereas the D2-like family consists of 

the D2, D3, and D4 receptors, which couple to the Gαi/o subunit. Each dopamine 

receptor subtype exhibits a different tissue expression pattern and density (Luttrell et 

al., 1997; Missale et al., 1998). 

The palmitoylation of D1 was demonstrated almost three decades ago using 

overexpression of recombinant receptors in the baculovirus system (Ng et al., 1994). 

In the same study, the authors identified that agonist activation of the receptor resulted 

in an increased level of [3H]-palmitate incorporation into the receptor. Studies on the 

functional role of D1 palmitoylation revealed that substitution of palmitoylated 

cysteines residues Cys347 and Cys351 (fig.20) by alanine failed to affect the receptor 
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affinity for agonists as well as receptor ability to stimulate AC (Jin et al., 1997, 1999). 

More recently, Kong et al. demonstrated that palmitoylation of D1  plays an essential 

role in agonist-dependent receptor internalisation (Kong et al., 2011). 

Both short and long isoforms of D2 (D2S and D2L) have also been shown to be 

palmitoylated (Grünewald et al., 1996; Ng et al., 1994). The palmitoylation of D2L 

occurs at the Cys443 residue and is involved in the regulation of receptor stability and 

trafficking to the plasma membrane (Ebersole et al., 2015). In the same study, 

palmitoyl acyltransferase (PAT) DHHC4 was identified as a D2L interaction partner, 

suggesting that this PAT is responsible for its palmitoylation.  

The D3 receptor also undergoes PTMs, which were found to be involved in the 

regulation of various receptor functions, including cell surface expression, protein 

kinase C-mediated endocytosis, agonist affinity, and agonist-induced receptor 

tolerance (Zhang et al., 2016). The same study also noted that despite the C-terminal 

domains of D2 and D3 receptors having a high sequence homology, the D3 receptor is 

palmitoylated more extensively. Based on these results, it was suggested that 

regulating palmitoylation may represent a new strategy for selective modulation of D3. 

This assumption is highly important since D2 and D3 receptors are the main targets of 

currently used neuroleptic drugs. The most serious side effects of the currently used 

antipsychotics are disturbances in motor functions (Cho et al., 2010). Since D2 and D3 

receptors are heavily expressed in the regions responsible for motor and emotion-

related mental functions. Development of D3 receptor-specific ligands or selective 

manipulation of the specific signalling pathways of D3 receptors can be used as a 

strategy to separate the desired therapeutic antipsychotic activities from side effects 

on motor function. 
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Moreover, D4-4, an alternatively spliced form of D4R, undergo palmitoylation on its 

Cys467, the terminal amino acid residue of the receptor. When palmitoylation of D4 

was inhibited by mutation of the consensus site or by treatment with the palmitoylation 

inhibitor 2-bromopalmitate, D4 plasma membrane expression, signalling, 

and endocytosis were all hindered (Zhang & Kim, 2016).  

 

 

Figure 20- The human dopamine D1 receptor palmitoylation sites in its carboxyl tail 

 

The Snake plot of D1 with its carboxyl tail containing two putative palmitoylation 

sites (Cys347 and Cys351) are highlighted in black. (image generated with gpcrdb.org) 

 

 

VIII. Hypothesis and Aims 
 

Previous research findings have highlighted the significant role of 

palmitoylation in the function and signalling of G protein-coupled receptors (GPCRs). 

However, the identification of the enzymes responsible for catalysing the 

palmitoylation of GPCRs, namely palmitoyl acyltransferases (PATs) and palmitoyl 
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thioesterases (PTTs), has been largely overlooked in most studies. Given the vast 

number of GPCR family members, their functional diversity, and their importance as 

drug targets, investigating palmitoylation holds great potential for advancing our 

understanding of GPCRs. Therefore, gaining deeper insights into this modification 

and its functional effects on GPCRs, particularly focusing on the D1 receptor in this 

thesis, will contribute to the development of novel therapeutic strategies. 

As discussed earlier in this chapter, GPCRs are dynamic proteins that are regulated by 

their ligands and interacting proteins. This inherent flexibility is reflected in receptor 

post-translational modifications (PTMs), which enable 7-transmembrane receptors to 

control and modulate intracellular processes through diverse mechanisms such as 

differential trafficking, pharmacology, and protein interactions. However, the 

functional consequences of palmitoylation on D1 receptor signalling, including its 

cAMP signalling pathway and downstream pathways such as ERK 1/2, as well as its 

interactions with effector proteins (e.g., arrestins and G proteins), remain understudied 

and poorly understood. 

Therefore, the specific aims of my research were as follows: 

• To understand the effects of palmitoylation on D1 receptor signalling. 

• To investigate the interactions of D1 receptors with effector proteins, including 

arrestins and G proteins. 

• To identify the specific DHHC enzymes responsible for the palmitoylation of 

the D1 receptor. 

Classically, GPCRs suffered from poor spatial and temporal resolution to differentiate 

various aspects of their trafficking and signalling. These limitations have been 

overcome by the application of fluorescence resonance energy transfer (FRET)-based 

sensors that allowed real-time observations of signalling and trafficking events in live 
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cells (Irannejad et al., 2013; Vilardaga et al., 2009), and enhanced bioluminescence 

resonance energy transfer (BRET) experiments that allowed measurement of GPCR 

activation and trafficking (Namkung et al., 2016b; Szalai et al., 2014).  

Spatial and temporal resolution are crucial aspects when studying G protein-coupled 

receptors (GPCRs). Spatial resolution refers to the ability to determine the precise 

location and distribution of GPCRs within cells or tissues. This includes identifying 

the specific subcellular compartments where GPCRs are localised, such as plasma 

membrane domains or intracellular compartments. Techniques such as 

immunohistochemistry, fluorescence microscopy, and electron microscopy enable us 

to visualise and map the spatial distribution of GPCRs, providing valuable insights 

into their localisation patterns and potential functional implications. On the other hand, 

temporal resolution focuses on understanding the dynamic nature of GPCR signalling 

over time. GPCRs exhibit complex temporal dynamics, including ligand binding, 

receptor activation, desensitisation, and internalisation. Studying the temporal aspects 

requires techniques that can capture and analyse rapid changes in GPCR activity and 

downstream signalling events. By combining spatial and temporal resolution, we can 

gain a comprehensive understanding of GPCR function and signalling dynamics. This 

knowledge is crucial for unravelling the complex regulatory mechanisms underlying 

GPCR-mediated cellular responses and can aid in the development of novel 

therapeutic strategies targeting GPCR signalling pathways. 

BRET has emerged as a valuable tool for investigating G protein-coupled receptor 

(GPCR) activation and trafficking. BRET allows the measurement of protein-protein 

interactions and conformational changes in real-time within live cells. In the context 

of GPCRs, BRET can be utilised to monitor receptor activation by detecting the 

proximity between the receptor and downstream signalling molecules, such as G 
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proteins, arrestins, or other interacting proteins. By fusing the GPCR of interest with 

a bioluminescent donor and the interacting protein with an acceptor fluorophore, 

BRET signals are generated upon receptor activation, enabling the dynamic 

monitoring of protein-protein interactions, trafficking and signalling events. 

Therefore, gaining insights into the spatiotemporal dynamics of GPCR activation and 

trafficking provides valuable information for understanding GPCR function and 

developing new therapeutic strategies. In the context of the above, we sought to re-

examine the role of palmitoylation and explore its effects on the spatial and temporal 

aspects of GPCR function. 
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I. Materials 
 

1. Primary & Secondary Antibodies  

 

Table 3- Primary & Secondary Antibodies 

Antibody Host 
Application& 

(Dilution; v: v) 
Supplier Catalogue no. 

Anti-mouse Alexa FluorTM 

488 
Goat IF (1:10000) 

Thermo Fisher 

Scientific 
A-11029 

AlphaLISA® CaptSure™ 

Acceptor Beads 

N.A. (1:100) Perkin Elmer® 
ALSU-PERK-

A10K 

AlphaScreen® Streptavidin 

Donor Beads 
N.A. (1:100) Perkin Elmer® 

ALSU-PERK-

A10K 

Anti-rabbit Alexa Fluor
TM 

568 
Goat IF (1:10000) 

Thermo Fisher 

Scientific 
A-11011 

Monoclonal Anti-FLAG 
Mouse IF (1:1000) Sigma-Aldrich F1804-50UG 

Anti-beta Actin antibody 
Mouse IF (1:1000) Abcam ab8226 

Monoclonal 

Anti-HA 
Rabbit IF (1:1600) Sigma-Aldrich 3724S 

 

 

2. Bacterial strains and mammalian cell lines 

 

Table 4- Bacterial strains and mammalian cell lines 

Strain Source Catalogue no. 

DH5α In-House - 

HEK293T ATTC
®
 CRL-1573TM 

HEK293T β-arrestin 1/2 KO Pr. Asuka INOUE - 
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3. Commercial Kits 

 

Table 5- Commercial Kits 

Kit Name Supplier Catalogue no. 

AlphaLISA SureFire Ultra p-ERK1/2 

(Thr202/Tyr204) Assay Kit 
Perkin Elmer® ALSU-PERK 

Dream Taq PCR Master Mix (2X) Fisher Scientific K 1071 

Macherey-Nagel™ NucleoSpin™ Gel and PCR 

Clean-up Kit 
Fisher Scientific 11992242 

Macherey-Nagel™ NucleoSpin™ Plasmid Kit Fisher Scientific 11932392 

NanoBiT® PPI MCS Starter System Promega N 2014 

NanoBRET™ PPI Flexi® Starter System Promega N 1821 

NEBuilder® HiFi DNA Assembly Master Mix New England Biolabs E 2621S 

Pierce™ BCA Protein Assay Kit Thermo Scientific™ 23225 

PureYield™ Plasmid Maxiprep System Promega A 2393 

 

 

4. Compounds and Ligands 

 

Table 6- Compounds and Ligands 

Name Supplier Catalogue no. 

SKF 81297 hydrobromide Tocris® 1447 

Dopamine hydrochloride Tocris® 3548 

A-68930 hydrochloride Tocris® 1534 

Forskoline HelloBio HB1348 

Dynasore HelloBio HB1245 
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5. Solutions, Enzymes and Other Reagents 

 

Table 7- Solutions, Enzymes and Other Reagents 

 
Solutions, Enzymes and Other Reagents Supplier Catalogue no. 

50X Tris-Acetate EDTA (TAE) Severn Biotech Ltd
®
 20-6001-10 

1 Kb Plus DNA Ladder 
Thermo Fisher Scientific SM0331 

Agar 
Thermo Fisher Scientific 10548030 

Acetic acid glacial 
Thermo Fisher Scientific 12686657 

Ampicillin 
Thermo Fisher Scientific 10193433 

Agarose 
Sigma-Aldrich A9539 

β-Nicotinamide Adenine Dinucleotide (NAD+) 
New England Biolab B9007S 

CaCl2.2H2O 
Thermo Fisher Scientific 10316313 

Bovine Serum Albumin 
Sigma-Aldrich A4503 

CH3CO2K 
Thermo Fisher Scientific 10522955 

Coelenterazine 400a NanoLight Technology 
340 

DPN1 New England Biolab R0176L 

DMEM, High Glucose with sodium pyruvate 
Sigma-Aldrich D6429 

DTT (Dithiothreitol) Thermo Fisher Scientific R0862 

DMEM, High Glucose without sodium pyruvate 
Sigma-Aldrich D5796 

DMSO Sigma-Aldrich 276855 

Dulbecco′S Phosphate Buffered Saline Sigma-Aldrich D8537 

Ethanol Thermo Fisher Scientific 10000652 

dNTPs Mix Thermo Fisher Scientific 18427013 

Fetal Bovine Serum PAN-Biotech P40-37500 

Firefly Luciferin Free Acid NanoLight Technology 306 
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Freezing Medium Cryo-SFM PromoCell® C-29910 

Glycerol (99.5%) Thermo Fisher Scientific 10692372 

HBSS 10X no calcium, no magnesium, no phenol red 
Thermo Fisher Scientific 14185052 

HBSS 10X, calcium, magnesium, no phenol red 
Thermo Fisher Scientific 14065056 

HEPES Sigma-Aldrich H3375 

Invitrogen LipofectamineTM 3000 Thermo Fisher Scientific 

 

15212475 

Isopropanol Thermo Fisher Scientific 10173240 

KOH Thermo Fisher Scientific 

 

10366240 

 LB Broth (Lennox) 

 

Sigma-Aldrich 

 

Sigma-Aldrich 

 

L3022 

 Loading Dye (6x) 

 

Thermo Fisher Scientific 

 

R0611 

 MgCl2.6H2O 

 

Thermo Fisher Scientific 

 

10647032 

 MgSO4.7H2O Thermo Fisher Scientific 

 

10346190 

 MnCl2.4H2O 

 

Thermo Fisher Scientific 

 

11452844 

 MOPS 

 

Sigma-Aldrich 

 

M3183 

 NaCl 

 

Thermo Fisher Scientific 

 

S7400 

 NaHCO3 

 

Thermo Fisher Scientific 

 

10244683 

 NanoFuel Solvent 

 

NanoLight Technology 

 

399 

 NanoFuel® Glow Assay Oplophorus Luciferases 

 

NanoLight Technology 

 

325 

 Nano-Glo® Luciferase Assay System 

 

Promega N1150 

 NaOH 

 

Thermo Fisher Scientific 

 

10396240 

 Opti-MEMTM 

 

Thermo Fisher Scientific 

 

31985062 

Penicillin-Streptomycin 

 

Sigma-Aldrich 

 

P4458 

 
Phosphate Buffered Saline Tablets 

 

Thermo Fisher Scientific 

 

10209252 

 
Phusion™ High-Fidelity DNA Polymerase 

 

Thermo Fisher Scientific 

 

F530S 

 
Pierce™ 16% Formaldehyde (w/v) 

 

Thermo Fisher Scientific 

 

28908 

 
Poly-D-Lysine Hydrobromide 

 

Sigma-Aldrich 

 

P0899 

 



 80 

Poly(ethylene glycol) PEG8000 Sigma-Aldrich 

 

P2139 

 
RbCl 

 
Thermo Fisher Scientific 

 

10549390 

 
T5 Exonuclease 

 

New England Biolab M0663S 

 
TAQ 2X MM 

 

New England Biolab M0270L 

 
TAQ DNA Ligase 

 

New England Biolab M0208L 

 
Triton™ X-100 

 

Fisher Scientific BP151 

 
Trypan Blue Solution (0.4%) 

 

Thermo Fisher Scientific 

 

11538886 

 
Trypsin-EDTA 10X 

 

Sigma-Aldrich 

 

59418C 

 
Tryptone 

 

Thermo Fisher Scientific 

 

11365982 

 
Ultrapure™ DNAse/RNAse-Free Distilled Water 

 

Thermo Fisher Scientific 

 

10977035 

 
UltraPure™ Tris Hydrochloride 

 

Thermo Fisher Scientific 

 

15506017 

 

Yeast Thermo Fisher Scientific 

 

11385992 

RIPA buffer Thermo Fisher Scientific 

 

89900 

 

6. Homemade buffers and solutions 

Table 8- Homemade buffers and solutions 

 

Buffer Ingredient Final Concentration 

Gibson Assembly 

Master Mix 

 

•  2X ISO Buffer  

• Phusion DNA Polymerase 

• Taq DNA Ligase 

•  T5 Exonuclease  

• H2O 

 

 

• 66 % 

• 0.033 U/μl 

• 5.3 U/μl 

• 0.005 U/μl 

• *to a final volume 

HBSS-based 

luminescent assay 

buffer 

 

• HBSS 10X (with Ca2+/Mg2+) 

• HEPES 1M 

• NaHCO3 1M 

• MgSO4.7H2O 1mM 

• CaCl2.2H2O 

• BSA 10% 

• H2O 
 

*Adjust to pH 7.4 with Sodium Hydroxide (1M) 

 

 

• 1x 

• 24 mM 

• 3.96 mM 

• 1 mM 

• 1mM 

• 0.1% 

• *to a final volume 
 

ISO buffer (2X) 
 

• PEG 800 

• Tris-HCl pH 7.5 

 

• 10% 

• 200 mM 
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• MgCl2.6H2O 

• DTT 

• dNTP mix 

• NAD + 

• H2O 

 

• 20 mM 

• 20 mM 

• 0.4 mM 

• 2 mM 

• *to a final volume 

 

LB Agar 

• LB Broth 

• Agar 

• H2O 

 

• 2% (w:v) 

• 1.5% (w:v) 

• *to a final volume 

 

LB Broth Media 

 

• LB Broth 

• H2O 
 

 
• 5% (w:v) 
• *to a final volume 

 

TRUPATH Buffer 

 

• HBSS 10X (with Ca2+/Mg2+) 

• HEPES 1M 

• H2O 

* Adjust to pH 7.4 with Sodium Hydroxide (1M) 
 

 
• 1x 

• 20 mM 

• *to a final volume 

 

Transformation Buffer 

1 (TFB1) 

 

• CaCl2.2H2O 

• CH3CO2K 
• Glycerol 

• MnCl2.4H2O 

• RbCl 

• H2O 

* Adjust to pH 5.8 with Glacial Acetic Acid (2M) 
 

• 10 mM 

• 30 mM 

• 15% (v:v) 

• 50 mM 

• 100 mM 

• *to a final volume 

 

Transformation Buffer 

2 (TFB2) 

 

• CaCl2.2H2O 

• MOPS 

• Glycerol 

• RbCl 

• H2O 

 

* Adjust to pH 6.5 with Potassium Hydroxide (1M) 
 

• 75 mM 

• 10 mM 

• 15% (v:v) 

• 100 mM 

• *to a final volume 

 

Tris-ACETATE 

EDTA Buffer (TAE) 

▪ TAE 50X 

▪ H2O 
 

1x 

*to a final volume 

 

2X Yeast (YT) Media 

• Tryptone 

• Yeast 

• NaCl 

• H2O 

 
* Adjust to pH 7.0 with Sodium Hydroxide (1M) 

 

• 1.6% (w:v) 

• 1% (w:v) 

• 0.5% (w:v) 

• *to a final volume 
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7. Plasmids 

Table 9- Outsourced Plasmids 

Name  
Source 

 

pcDNA5/FRT/TO-GAlphasS-RLuc8 Addgene 

pcDNA3.1-Beta1  Addgene 

pcDNA3.1-GGamma8-GFP2  Addgene 

pcDNA5/FRT/TO-GAlphasL-RLuc8 Addgene 

pcDNA3.1-Empty-Vector Addgene 

pcDNA3.1-SmBiT-b-arrestin 2 
Dr Joaquin Botta 
 

pcDNA3.1-LgBiT-b-arrestin 1 
Dr Joaquin Botta 
 

pcDNA3.1-LgBiT-CAAX 
Genscript 
 

pBiT1.1-C [TK/LgBiT] Promega 

pBiT1.1-N [TK/LgBiT] Promega 

pBiT2.1-C [TK/SmBiT] Promega 

pBiT2.1-N [TK/SmBiT] Promega 

pcDNA3.1-Flag-D1 Genscript  

pcDNA3.1-ARRB2 cDNA resource centre 

pcDNA3.1-D1 cDNA resource centre 

pcDNA3.1-Galphai1 Dr. Andy Chevigné 

pcDNA3.1-Galphai3 Dr. Andy Chevigné 

pcDNA3.1-Galphaq Dr. Andy Chevigné 

pGAP43-CFP-Gαi1 Dr. Josef Lazar 

HA-DHHC1 Dr. Stephane Lefrancois 

HA-DHHC2 Dr. Stephane Lefrancois 

HA-DHHC3 Dr. Stephane Lefrancois 

HA-DHHC4 Dr. Stephane Lefrancois 

HA-DHHC5 Dr. Stephane Lefrancois 

HA-DHHC6 Dr. Stephane Lefrancois 

HA-DHHC7 Dr. Stephane Lefrancois 

HA-DHHC8 Dr. Stephane Lefrancois 

HA-DHHC9 Dr. Stephane Lefrancois 
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HA-DHHC10 Dr. Stephane Lefrancois 

HA-DHHC11 Dr. Stephane Lefrancois 

HA-DHHC12 Dr. Stephane Lefrancois 

HA-DHHC13 Dr. Stephane Lefrancois 

HA-DHHC14 Dr. Stephane Lefrancois 

HA-DHHC15 Dr. Stephane Lefrancois 

HA-DHHC16 Dr. Stephane Lefrancois 

HA-DHHC17 Dr. Stephane Lefrancois 

HA-DHHC18 Dr. Stephane Lefrancois 

HA-DHHC19 Dr. Stephane Lefrancois 

HA-DHHC20 Dr. Stephane Lefrancois 

HA-DHHC21 Dr. Stephane Lefrancois 

HA-DHHC1-GFP Dr. Stephane Lefrancois 

HA-DHHC2-GFP Dr. Stephane Lefrancois 

HA-DHHC3-GFP Dr. Stephane Lefrancois 

HA-DHHC4-GFP Dr. Stephane Lefrancois 

HA-DHHC5-GFP Dr. Stephane Lefrancois 

HA-DHHC6-GFP Dr. Stephane Lefrancois 

HA-DHHC7-GFP Dr. Stephane Lefrancois 

HA-DHHC8-GFP Dr. Stephane Lefrancois 

HA-DHHC9-GFP Dr. Stephane Lefrancois 

HA-DHHC10-GFP Dr. Stephane Lefrancois 

HA-DHHC11-GFP Dr. Stephane Lefrancois 

HA-DHHC12-GFP Dr. Stephane Lefrancois 

HA-DHHC13-GFP Dr. Stephane Lefrancois 

HA-DHHC14-GFP Dr. Stephane Lefrancois 

HA-DHHC15-GFP Dr. Stephane Lefrancois 

HA-DHHC16-GFP Dr. Stephane Lefrancois 

HA-DHHC17-GFP Dr. Stephane Lefrancois 

HA-DHHC18-GFP Dr. Stephane Lefrancois 

HA-DHHC19-GFP Dr. Stephane Lefrancois 

HA-DHHC20-GFP Dr. Stephane Lefrancois 
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HA-DHHC21-GFP 
Dr. Stephane Lefrancois 

pGβ1 
Dr. Josef Lazar 

pGγ2 
Dr. Josef Lazar 

pFN21A HaloTag® CMV Flexi® Vector 
Promega 

pGloSensor™-22F cAMP Plasmid 
Promega 

SmBiT-PRKACA 
Promega 

pcDNA3.1-GGamma1-GFP2 
Addgene 

pcDNA3.1-Beta1 
Addgene 

Venus K-Ras 
Dr. K.P. Flegger 

pcDNA5/FRT/TO-GAlphasL-RLuc8 
Addgene 

Venus-Rab1 
Dr. Kevin.P. Flegger 

Venus-Rab5 
Dr. Kevin.P. Flegger 

Venus-Rab7 
Dr. Kevin.P. Flegger 

Venus-Rab6 
Dr. Kevin.P. Flegger 

Venus-Rab4 
Dr. Kevin.P. Flegger 

Venus-Rab11a 
Dr. Kevin.P. Flegger 

 

Table 10- Plasmids generated in my thesis. 

Construct primers Tag Backbone 

D1 p.C347;351S 

palmitoylation 

mutant receptor 

FW_C347S: GGC ATT TTC AAC CCT CTT AGG AAG 

CTA CAG 

REV_C347S: TCG CAG GGC AAA GTC TGT AGC TTC 

CTA AG 
FW_ C351S: ACC CTC TTA GGA TGC TAC AGA CTT 

AGC CCT G 

REV_C351S: TCT ATG GCA TTA TTC GTC GCA GGG 

CTA AGT CTG 

 

N-ter Flag tag PCDNA3.1 

D1_p.C347;351S-

Nluc 

D1_FWD: CGC ATT CTG GCG TAA CTC GAG TCT 

AGA GGG C 

D1_REV: GCC GCT CGA GCC GAG GGT TGG GTG 

CTG ACC 

Nluc_FWD: GGT CAG CAC CCA ACC CTC GGC TCG 
AGC GGC 

Nluc_REV: CCC TCT AGA CTC GAG TTA CGC CAG 

AAT GCG TTC 

N-ter Flag 

 

C-ter Nluc 

PCDNA3.1 

D1-Nluc 

D1_FWD: CGC ATT CTG GCG TAA CTC GAG TCT 

AGA GGG C 
D1_REV: GCC GCT CGA GCC GAG GGT TGG GTG 

CTG ACC 

Nluc_FWD: GGT CAG CAC CCA ACC CTC GGC TCG 

AGC GGC 

Nluc_REV: CCC TCT AGA CTC GAG TTA CGC CAG 
AAT GCG TTC 

N-ter Flag 

 

C-ter Nluc 

PCDNA3.1 

D1_p.C347;351S-

Rluc8 

D1_FWD: TGC TGA AGA ACG AGC AGT AAC TCG 

AGT CTA GAG GGC CCG TTT AAA CG 

Rluc8_FWD: CTC TGA ACA CCT CTG CCA TGG A 

Rluc8_REV: GCC TTG GGG GTC ATC TTT CTC T 

N-ter Flag 

 

C-ter Rluc8 

PCDNA3.1 
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D1_REV: TCG TAC ACC TTG GAA GCC ATG CCG 

CTC GAG CCG AGG GTT G 

D1-Rluc8 

D1_FWD: TGC TGA AGA ACG AGC AGT AAC TCG 

AGT CTA GAG GGC CCG TTT AAA CG 

Rluc8_FWD: CTC TGA ACA CCT CTG CCA TGG A 

Rluc8_REV: GCC TTG GGG GTC ATC TTT CTC T 

D1_REV: TCG TAC ACC TTG GAA GCC ATG CCG 
CTC GAG CCG AGG GTT G 

N-ter Flag 

 

C-ter Rluc8 

PCDNA3.1 

D1-LgBiT 

D1_FW: TCC GAG TAA CCA TCA ACA GTA TGG 

TCT TCA CAC TCG AAG ATT TCG TTG GGG ACT 

GGG AAC A 

LgBiT_FW: GGG AGT TCC GGT GGC GGG AGC GGA 
GGT GGA GGC TCG AGC GGT ATG GTC TTC ACA 

CTC GAA GAT TTC GTT GGG GAC TGG GAA CAG 

ACA 

D1_REV:  ACC GCT CGA GCC TCC ACC TCC GCT 

CCC GCC ACC GGA ACT CCC ACT GTT GAT GGT 
TAC TCG GAA CAG CAT GGA GCC GTC GGG GGT 

GAT 

LgBiT_REV: TCT TCG AGT GTG AAG ACC ATA CTG 

TTG ATG GTT ACT CGG AAC AGC ATG GAG CCG 

N-ter Flag 

C-ter LgBiT 
PCDNA3.1 

D1_p.C347;351S-

LgBiT 

D1_FW: TCC GAG TAA CCA TCA ACA GTA TGG 
TCT TCA CAC TCG AAG ATT TCG TTG GGG ACT 

GGG AAC A 

LgBiT_FW: GGG AGT TCC GGT GGC GGG AGC GGA 

GGT GGA GGC TCG AGC GGT ATG GTC TTC ACA 

CTC GAA GAT TTC GTT GGG GAC TGG GAA CAG 
ACA 

D1_REV:  ACC GCT CGA GCC TCC ACC TCC GCT 

CCC GCC ACC GGA ACT CCC ACT GTT GAT GGT 

TAC TCG GAA CAG CAT GGA GCC GTC GGG GGT 

GAT 
LgBiT_REV: TCT TCG AGT GTG AAG ACC ATA CTG 

TTG ATG GTT ACT CGG AAC AGC ATG GAG CCG 

N-ter Flag 

C-ter LgBiT 
PCDNA3.1 

 

 

II. Methods 
 

1. Molecular Biology 

 

a. Chemical Competency of E.coli  bacteria preparation 

The DH5α strain of Escherichia coli chemically competent cells 

commercially acquired was thawed on ice for 20 to 30 minutes. The thawed cells 

were streaked under sterile conditions on previously prepared agar plates and 

incubated at 37°C overnight. The next day, Lysogeny broth (LB) media (15 mL) was 

added to an Erlenmeyer flask, and a single colony was carefully picked from the agar 

plate. The flask is then placed in a shaking incubator at 37°C overnight. The next day,  

the  flask was removed from the shaking incubator, and 2.5mL of this culture was 

added into a new Erlenmeyer flask containing 250mL of Yeast media (YT).  This flask 
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was then placed back inside the shaking incubator for 2 hours ; thereafter, 1mL of the 

growing bacterial culture was used to measure the optical density OD600 until it 

reached 0.5. Thereafter, the culture was centrifuged at 1800 x g for 15 minutes and 4 

°C; the pellet was rinsed (25 mL) and then vortexed (40 mL) with TFB1 buffer to 

resuspend the pellet. This mixture was then centrifuged at 4 °C and 2500 xg, for 5 

minutes. The supernatant was then removed and TFB2 (4 mL) was added to the cell 

pellet and resuspended on ice while Aliquots were made and stored at -80 °C. 

b. Bacterial Transformation. 

DH5α competent cells that are stored at -80°C were used to perform the 

transformation.  Under sterile conditions, 5µL of DNA plasmid was added to E.Coli 

50 µL of DH5α competent cells in a 1.5 mL microcentrifuge tube. The tube was gently 

flicked to allow a gentle mixing and then incubated on ice for 10 minutes. The tube 

containing the mixture was then heat-shocked by placing it into a water bath at 42°C 

for 30 seconds. Thereafter, the tube containing the transformed solution was placed 

back on ice for an additional 2 minutes. At this stage, previously prepared agar plates 

with the desired antibiotic resistance Ampicillin (100µg/mL) or Kanamycin (50 

µg/mL) were warmed up to room temperature (RT). Under sterile conditions, 1mL of 

LB media was added to the mixture and placed into a shaking incubator at 220 rpm 

and 37 °C for 1 hour. Then, 50 µL of the transformation solution was added and 

spread on the agar plates. The plates were then placed in a stationary incubator at 37 

°C overnight, allowing colonies to grow optimally. 

 

c. Plasmid Amplification and DNA purification. 

 

The following day after the bacterial transformation and upon the colonies' 

successful formation, the plasmid DNA is isolated from the bacteria. For small-scale 
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amplification (miniprep), a small isolated bacterial colony was picked from the agar 

plate and grown in a falcon tube containing 10mL of LB supplemented with the 

selection antibiotic. This falcon tube was then placed at 37 °C overnight in a shaking 

incubator, thus allowing optimal bacterial growth. Around 18 hours later, instructions 

from a commercially available kit (Macherey-NalgenTM, Germany) were followed to 

process the culture and extract the plasmid DNA. For the processing of a large-scale 

amplification of plasmid (maxiprep), an isolated colony was picked and placed into a 

falcon tube with 6mL LB media containing the appropriate antibiotic and grown in a 

shaking incubator at 200 rpm at 37 °C. When bacterial growth was visible in this LB 

media, it was transferred into a sterile Erlenmeyer containing 250 mL of LB media 

supplemented with the proper antibiotic. The Erlenmeyer was then placed into the 

shaking incubator at 200 rpm at 37 °C overnight.  

The following day, an Invitrogen TM PureLink HiPure Plasmid Maxiprep Kit was used 

to extract the amplified DNA. 

Once the plasmid DNA was obtained using the kits, it was quantified on the BMG 

CLARIOstar plate reader and LVis Plate to obtain the purity (A260/A280) and 

concentration using UV/Vis absorbance. 

d. PCR Amplification, PCR-Clean Up, Gibson Assembly & Bacterial 

Transformation 

The Gibson Assembly method was used to create constructs with encoding 

fusion proteins or tags. In general, this molecular cloning method allows for the 

assembly of multiple linear DNA fragments, bypassing the usage of restriction 

enzymes. 

First, each DNA fragment of the final construct was amplified via PCR to produce 

linear fragments using the primers designed on Benchling. This reaction's product 
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generated DNA fragments with at least 20 bp homology at the desired sites of the 

junction. To validate the amplification of the desired DNA fragments, agarose gel  

(1%  w:v) electrophoresis was performed, and the parental template was digested 

with DpnI overnight at 37 °C. 

Thereafter, a PCR clean-up kit (Macherey-Nagel-NucleoSpin® Gel and PCR clean-up 

Kit, Germany) was used to clean the DNA amplification sample. Briefly, the DNA 

fragments were bound to the provided silica membrane column, washed, dried, and 

eluted with the NE buffer. Then, the concentration of the final products was obtained 

using the CLARIOstar. Next, 50 ng of the backbone DNA vector fragment was 

combined with the insert at 1:2, 1:5 and 1:7 molar ratios in a final volume of 5 µL. 

To this mix, 15 µL of the Gibson Assembly master mix was added, containing  T5  

exonuclease,  Phusion DNA polymerase and Taq DNA ligase. This complete mixture 

underwent a quick centrifuge spin and was then incubated in a preheated PCR Machine 

at 50 °C for 15 to 60 minutes. Thereafter, 2 to 10 µL of the assembly reaction product 

was used to perform bacterial transformation with E.coli DH5α competent cells 

following the protocol previously described in this section (b). 

The next day, a portion of single colonies were picked to grow in LB culture; in 

parallel, the rest was added into a mixture containing DreamTaq PCR Master Mix and 

the primers that flank the insert region. The PCR was carried out, where the 

temperature was initially increased to 95 °C for 3 minutes before initiating 30 

amplification cycles. Per cycle (lasting 3 min 30s), the temperature was maintained 

for denaturing of template DNA (98 °C, 10 s), then decreased for primer annealing 

(50- 75 °C, 20 s) and finally increased again for extension based (72 °C, 10 s). After 

completing all cycles, a final extension step was performed (72 °C, 10 min). The PCR 

products were then observed via agarose gel (1% w:v) electrophoresis. The colonies 
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that gave a band at the correct molecular weight were processed further for plasmid 

amplification and purification following section (c). To confirm that the correct clone 

was obtained, samples of the DNA were sent for Sanger sequencing using universal 

primers for pcDNA3.1 forward primer and BGH reverses primer by Eurofins 

Genomics. 

e. Site-directed Mutagenesis.  

 

The Site-directed Mutagenesis (SDM) technique is a PCR reaction where the 

primer pair have an overlapping region of 8 base pairs (bp) containing the mutation 

and a non-overlapping region complementary to the target sequence where the 

mutation is to be inserted. The primers were designed based on the protocol elaborated 

by (H. Liu & Naismith, 2008). 

The PCR product is a linear double-stranded DNA. After DpnI digestion, 3 μl of the 

digest reaction was directly added to 50 μl of competent DH5α cells, incubated for 10 

min on ice, heat-shocked at 42 °C for 1 min and then transferred to ice for 2 min. After 

adding 450 μl of LB, the cells were incubated on a shaker at 37 °C for 60 min. 

Duplicate aliquots of 250 μl of cell suspension were spread on LB plates containing 

Ampicillin (100 μg/ml). After incubating the plates overnight at 37 °C, we selected 

five colonies at random for each transformation and grew them overnight in 5 ml LB 

supplemented with Ampicillin medium at 37 °C. The plasmids were isolated using a 

miniprep kit. and each isolated plasmid, ~100 ng of the plasmid DNA, was sent for 

sequencing to confirm the mutation insertion.  
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2. Mammalian cell culture and maintenance 

 

a. Culturing and maintenance Protocol for HEK293T cells 

Human  Embryonic  Kidney  (HEK293)  cells acquired from ATCC® (CRL-

1573TM)  were grown in  Dulbecco’s  Modified Eagle’s medium (DMEM)-high 

glucose (Sigma Aldrich) supplemented with 100 U/mL penicillin, 100 µg/mL 

streptomycin and 10% (v:v) heat-inactivated Fetal Bovine Serum (PAN Biotech, 

Germany) at 37 °C in a 5% CO2 incubator. 

HEK293 adherent cells were grown in T-75 cm2 flasks. Upon reaching 80% 

confluency, cells were washed with DPBS without Ca2+ and Mg2+ ions, detached 

from the culture surface using 3 mL of a Trypsin-EDTA solution and incubated at 37 

°C for 5 minutes. 10 mL DMEM-High Glucose media was used to neutralise the 

trypsin effect before room temperature centrifuging the cells at 1000 x g, for 5 min. 

The supernatant was discarded, and the cell pellet was resuspended in an adequate 

volume of DMEM-High Glucose media to give the desired cell density. 

3. Transfection using Lipofectamine 3000  

 

HEK293 cells were transiently transfected following the reverse transfection 

method using LipofectamineTM 3000 (Thermo Fisher). Two transfection mixes (A & 

B) were prepared in Mix A; the plasmid DNA was diluted in an adequate volume of 

OptiMEM® media. To this, a 1:3 ratio of DNA(μg) to P3000TM (μl) was mixed. 

Thereafter, LipofectamineTM was added to the OptiMEM® media, and each mix was 

incubated for 5 minutes. HEK293 cells that were previously seeded in 10 cm dishes 

or 6 well plates were washed with DPBS without Ca2+ and Mg2+, and fresh DMEM-

high Glucose media was added . Meanwhile, the diluted DNA mix was added to the 

LipofectamineTM mix in a dropwise manner and incubated for 15 minutes at RT. The 
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transfection mix was added, and cells were incubated at 37 °C in a 5% CO2 incubator 

for 24 hours. 

4. Real-Time Assays 

 

a. cAMP Assay 

 

The transfection mix was prepared such as, in Mix A, 3 μg of receptor and 1 

μg of  pGloSensorTM-22F cAMP sensor plasmid (Promega); in some experiments, an 

additional 1 μg of pcDNA3.1 or accessory protein were added to OptiMEM® media. 

The appropriate amount of P3000TM (3:1 ratio) was added to this. In Mix B, the 

appropriate amount of LipofectamineTM was added to the OptiMEM®. 

Twenty-four hours after transfection via lipofectamine 3000, the cells were detached 

and reseeded in a 96-well white bottom plate at 60,000 cells per well for an extra 24 

hours, then the cell culture media was removed. The cells were washed with the 

HBSS-based luminescent assays buffer (1X HBSS, 24 mM HEPES, 0.1% (w:v) BSA, 

3.96 mM NaHCO3, 1 mM MgSO4, 1.3 mM CaCl2.2H2O). The plate was then 

equilibrated for 1 hour at 28 °C with 70-90 μl of cAMP Buffer supplemented with 

0.45 mg/mL of Firefly D-Luciferin free acid (Nano Light Technology). 

Where dynasore (HelloBio) is involved, after equilibration, 20 μl of dynasore (80 

μM/well) is added and incubated for 15 mins at RT before initiating the basal readings. 

Where the use of an antagonist was incorporated into the assay, 10 μl of the antagonist 

was pre-incubated for 15 minutes before the basal readings were initiated. 

A total of six basal reads were recorded before stimulating the cells with 10 μl of 

agonist. The bioluminescence was measured using the CLARIOstar® Plus Plate 

Reader (BMG LabTech, Germany). An average of these basal reads was used to 
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normalise the response of each well. Bioluminescence was measured for 36 cycles (1 

min per cycle), with a 1 sec. integration time and no lens. 

b. TRUPATH Assay 

 

  HEK293 cells were transiently transfected in a 10 cm dish following the 

reverse transfection method using Lipofectamine
TM 3000 (Thermo Fisher). Two 

transfection mixes were prepared, the first containing 1 μg/plate of each of the G  α, 

β,  γ subunits, receptor plasmid either in with the empty vector pcDNA3.1 replacing 

the γ subunit which was added to 250 μl  OptiMEM® media. To this, 12 μl/dish of 

P3000
TM was added. Thereafter, 12 μl/dish of Lipofectamine

TM was added to 250 μl 

OptiMEM® media, and each mix was incubated for 5 minutes. HEK293 cells were 

then washed without DPBS, without Ca2+ and Mg
2+

, and 10 mL of fresh water was 

added . Meanwhile, the diluted DNA mix was added to the Lipofectamine
TM mix in a 

dropwise manner and incubated for 15 minutes at RT. 500 μl of the transfection mix 

was added to each dish. The dish was incubated at 37 °C in a 5% CO2 incubator for 

24 hours, then reseeded in white bottom 96-well  plates at a density of 60000 cells per 

well. 

Twenty-four hours later, the cell culture media was removed, and cells were washed 

with PBS and, after that, replaced with 80 μl of assay buffer (pH 7.4), followed by a 

10 μl addition of freshly prepared 50 µM coelenterazine 400a (Nanolight 

Technologies) in the same buffer. After 5-10 min equilibration basal reads at RT in 

the CLARIOstar® Plus Plate Reader (BMG LabTech, Germany) with both the 515-30 

and 410-80 emission filter for γ-GFP2 (Green Fluorescent Protein 2) and α-RLuc8 

(Renilla Luciferase 8) coelenterazine 400a, respectively, at integration times of 1sec. 

per well are acquired. After equilibration, cells are treated with 10 μl of ligand and the 

assay completed within 15 cycles from basal.  
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BRET2 ratios were computed as the ratio of the GFP2 emission to Rluc8 emission. 

The BRET is calculated by dividing the acceptor emission value by the donor emission 

value for each sample to generate raw BRET ratio values. Then, we determined the 

mean BRET ratio for each set of samples and normalised the mean BRET values to 

no ligand control; the Net BRET ratio was calculated by subtracting the normalised 

mean BRET values for the donor-only control set. All concentration-response curves 

were fit to a four-parameter logistic equation in Prism (GraphPad Software). BRET2 

concentration-response curves were analysed as either raw net BRET2 (fit Emax-fit 

Baseline) or by normalising to a reference receptor construct for each experiment. 

c. β-arrestin recruitment Assay 

 

To establish the optimal total DNA ratio of receptor: β-arrestin, HEK293 cells 

(60,000 cells/well) were seeded in white 96 well plates reverse co-transfected with the 

plasmids encoding the receptor (12.5 ng/well) and the -arrestin1 or 2 fusions at 

increasing concentrations in the presence of empty vector (pcDNA3.1) to account for 

differences in the total amount of DNA/well and the ratio giving the better fold change 

to the absence of treatment was adopted. Based on this, 2.5 ng/well of SmBiT -

arrestin 1 or 2 were co-transfected with 100 ng/well of the receptor. After 24h, 25 

μl/well of a 5X solution of the Nano-Glo® Live cell reagent was added, and 

luminescence readings were taken every minute at 37 °C until the signal was stable.  

Immediately after, 10 μl of agonists/vehicle were supplemented, and the luminescence 

was measured for 60 min (0.5s integration time and 1 min intervals for arrestins) at 37 

°C using a CLARIOstar® Multimode Plate Reader (BMG Labtech, Germany). To 

account for differences in expression/cell density, the average of at least 3 stable pre-

readings was used to normalise each well response. 
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d. Bystander β-arrestin recruitment Assay 

 

The β-arrestin recruitment to the P.M was measured using a bystander 

NanoBiT approach with SmBiT-β-arrestin and the LgBiT-CAAX constructs. HEK 

293 cells were seeded in white 96 well plates and reverse co-transfected with the 

plasmid encoding the receptor (50 ng/well), SmBiT-β-arrestin (2.5 ng/well), and 

LgBiT-CAAX (12.5 ng/well). 24h post-transfection, the cells were rinsed once with 

assay buffer, and the plates were pre-equilibrated for 1h at 37 °C with 80 μl of assay 

buffer. 10 μl/well of a 5X solution of the Nano-Glo® Live cell reagent was added, and 

luminescence readings were taken every minute at 37 °C until the signal was stable 

(3-5 min). Immediately after, 10 μl of agonist/vehicle were added and luminescence 

was further recorded for 30 min (no lens, 0.5 s integration time and 1 min intervals at 

37 °C using a CLARIOstar® Plus Multimode Plate Reader (BMG Labtech, Germany). 

To account for differences in expression/cell density, the average of at least 3 stable 

pre-readings was used to normalise each well response. 

e. Bystander BRET 

 

HEK293 cells were transiently transfected with cDNA encoding wild-type or 

mutant D1-Nluc (100 ng/well of a 6-well plate), as well as Venus/K-Ras (100 ng/well 

of a 6-well plate) or Venus/Rab proteins or empty vector (200 ng/well of a 6-well 

plate). 24 hours after transfection, cells were harvested and seeded into white bottom 

96 well plates at 80 000 cells/well in DMEM containing 25mM HEPES, 0.3-mg/mL 

glutamine, 100-IU/ml penicillin, and 100-μg/mL streptomycin supplemented with 

10% FBS. Forty-eight hours after transfection, the medium was removed, and cells 

were incubated in 80 μl of HBSS assay buffer for 1 hour at 37 °C in 5% CO2. After 

basal measurements, 10 μl of furimazine was added after 10-15 min of equilibration, 
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the cells were treated with 10 μl HBSS buffer with or without agonist. Real-time 

BRET measurements were taken at 37°C using a CLARIOstar plate reader. Filtered 

light emissions were sequentially measured at 475-30 nm for Nluc and 515-30 nm for 

Venus. The “BRET ratio (ligand-vehicle)” was calculated by subtracting the ratio of 

515-20 nm emission over 475–30 nm emission for a vehicle-treated cell sample from 

the same ratio for a sample treated with an agonist. BRET signals for assays where 

basal/constitutive localisation of Nluc-tagged wild-type D1 or D1 mutant proximal to 

Venus-tagged subcellular markers were calculated as described previously by 

subtracting the ratio of 515-30 nm emission over the 475-30 nm emission for a cell 

sample containing only the Nluc fusion protein from the same ratio of a second aliquot 

of cells containing both the Nluc and Venus fusion proteins. 

 

5. Measuring ERK1/2 phosphorylation levels 

 

To measure ERK1/2 (Thr202/Tyr204) phosphorylation in HEK293 cells, 

50,000 cells per well were seeded in poly-D-lysine coated white clear 96 well plates 

and reverse transfected with 100 ng/well of receptor (D1 WT and D1 p.C347;351S 

mutant receptors). 24 hours after transfection, and the cell culture medium was 

removed, the cells were starved in FBS-free DMEM supplemented with 0.1% (w/v) 

BSA for 4 h at 37 °C in a 5% CO2 humidified atmosphere. ERK1/2 phosphorylation 

levels were measured using the AlphaLISA SureFire Ultra™ ERK1/2 cellular assay 

kit following the manufacturer’s instructions. In summary, after the starvation step, 

the cell media was removed and replaced with 50 μl of ERK media containing vehicle 

or, when necessary, the required antagonist and the plates were incubated for 20 min 

at 37 °C. After agonist stimulation (5 min), the media was quickly aspirated, replaced 

with 50 μl of the proprietary lysis buffer and the plates were agitated (350 rpm) for 30 



 96 

min at RT. 10 μl of the Lysates were transferred to low-volume round bottom white 

384 well/plates (ProxiPlate-384 Plus) and 5 μl of each donor/acceptor mix beads were 

added. Plates were sealed in foil, protected from light, and incubated for 24 hours at 

RT before the readings were acquired. The alpha screen signal was measured at 615 

nm and analysed on a CLARIOstar Multimode Plate Reader (BMG Labtech, 

Germany) equipped with an Alpha Technology optical module. 

6. Cell surface Staining for Flow Cytometry  

 

HEK293 cells were transfected in 6 well poly-D lysine coated plates using 

lipofectamine 3000, after 24h cells were washed twice with cold PBS. Then the cells 

were detached with 10mM EDTA, 1% BSA in PBS and the cells were filtered using 

a 100 m cell strainer. Afterwards, the required concentration of cells is transferred to 

labelled Eppendorf tubes and a washing step is performed by spinning at 1500 rpm for 

5 min at 4 °C and the pellet is resuspended in 1 mL FACS buffer (1% BSA, 2mM 

EDTA in PBS). That was followed by an Incubation step on the ice for 30 minutes, 

followed by a centrifugation step at 1500 xg for 5 min at  4 °C. Then, the supernatant 

was removed and vortexed to resuspend the cells. After that, 100 l of anti-Flag 

primary antibody (1:1000 dilution), or FACs buffer (for controls), is added to each 

tube and incubated on ice for 30 minutes. After that, 1 ml of cold FACS buffer is added 

to each tube and washed by centrifugation and the supernatant is removed. The cell 

pellet is resuspended in 100 l of secondary antibody (1:10000 dilution) in FACs 

buffer or FACs buffer (for controls) and incubated on ice for 30 min in the dark. 

Finally, 1 ml of cold FACS buffer was added to wash, after centrifugation the pellet 

was resuspended in FACS buffer and fixed with 1% paraformaldehyde for 10 minutes 

(100-200 l) and then the cells underwent a final washing, and the pellet was 
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resuspended in 300-400 l FACS in FACS tube and stored at 4 °C in the dark until 

acquisition. 

7. Bret Saturation assay 

 

In the BRET saturation experiments, cells were transfected with a constant 

amount of the BRET-donor D1-Rluc8 tagged in the presence or absence of increasing 

amounts of the acceptors DHHCs-GFP10. Theoretically, for any specific interaction 

between the Receptor-donor and Receptor-acceptor fusions, the BRET ratio increases 

hyperbolically as a function of increasing GFP/Rluc value to reach an asymptote 

(saturation) when all donor molecules are associated with acceptors. By contrast, in 

the case of nonspecific interactions (bystander BRET), a  linear plot is expected or 

eventually reaches a plateau for higher values of receptor density. The cells are pre-

incubated in the absence of agonist drugs. BRET ratio measurements are acquired 

after adding coelenterazine-400a diluted in HBSS buffer to reach a final concentration 

of 5μM. BRET ratio readings are acquired using a CLARIOstar® Plus Plate Reader 

(BMG LabTech, Germany) that allows sequential integration of luminescence signals 

detected with two filter settings (515-30 and 410-80). The specific BRET ratio was 

calculated by subtracting from the mean BRET ratio value above the background 

BRET ratio, which corresponds to the signal obtained with cells expressing the BRET 

donor alone. BRET ratio values were plotted as a function of the GFP2/Rluc fusion 

protein ratio. 

8. Acyl-Rac labelling 

 

  HEK 293 cells were seeded in 10 cm dishes and transfected 24h hours later 

with Flag-D1 WT or mutant. 48 hours later, the cells were lysed in RIPA buffer (Tris 
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50 mM pH 7.5, NaCl 150 mM, Nonidet P-40 1%, deoxycholic acid 0.5%, SDS 0.1%, 

protease inhibitor cocktail) supplemented with 75 mM NEM (N-ethylmaleidimide) for 

2 hours at 4 °C. The lysates were cleared by centrifugation at 13000 rpm for 15 min 

and incubated for 2 hours at room temperature. Two volumes of cold acetone were 

added to precipitate the proteins, and the samples were incubated overnight at -20 °C. 

The next day, the samples were centrifugated at 15000 rpm for 20 min then the cell 

pellets were washed once with cold acetone and centrifugated again for 10 min. The 

dried pellets were then resuspended in binding buffer (100 mM Hepes, 1 % SDS, 1 

mM EDTA) containing 250 mM hydroxylamine or NaCl and incubated until the 

pellets were dissolved. Thiopropyl beads were then added to the samples and 

incubated for 2 hours at RT. After the incubation, the samples were washed 4 times 

with binding buffer and eluted with 3X Laemmli sample buffer containing 100 mM 

dithiothreitol. The samples were then resolved by SDS-PAGE electrophoresis 

followed by immunoblotting using an anti-Flag antibody. 

9. bioinformatics (CSS-Palm) 

 

CSS-Palm is a computer-based program for (Clustering and Scoring Strategy) 

palmitoylation site prediction for Palmitoylation sites prediction (F. Zhou et al., 2006). 

The experimentally verified palmitoylation sites were automatically clustered into 

three clusters by different thresholds of peptide similarity. When the program is given 

a putative palmitoylation site for prediction, the CSS-Palm will calculate a score 

between the sites with each cluster dependent on the BLOSUM62 matrix respectively. 

If the largest score was exceeded the cut-off value (2.6), the putative site would be 

predicted as a positive hit. 
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10. Sanger sequencing 

 

Sanger sequencing is a method for determining the nucleotide sequence of 

DNA. The method was developed by Frederick Sanger and his colleagues in 1977. 

Sanger sequencing was performed in an automated fashion via a sequencing machine 

by Eurofins Genomics, Germany.  

11. Live-cell Confocal imaging 

 

Live-cell imaging was carried out using a Nikon spinning disk confocal 

microscope with a ×60, 1.4 numerical aperture, oil objective and a CO2 and 37 °C 

temperature-controlled incubator. A 488, 568 nm and 640 Voltran were used as light 

sources for imaging GFP, mRFP, and Snap-647 signals, respectively. Cells expressing 

both the Snap-tagged receptor (2 μg) and the indicated nanobody–GFP (200 ng) were 

plated onto glass coverslips. Receptors were surface labelled by the addition of Snap-

Cell 647 SiR (1:1000, New England Biolabs) to the media for 20 min. 

 

III. Data analysis and graphing  
 

 GraphPad Prism software (GraphPad Software, USA) was used for all cAMP 

data analysis. In the case of data obtained from BMG microplate readers (ClarioStar), 

the software provided by the manufacturers (MARS) was used for averaging, baseline 

corrections and area under the curve analysis. The baseline corrected data was 

obtained by averaging the last five points of the baseline before the effect to be 

measured took place. Each given point of datum was divided by this average baseline 

to give a fold-over-baseline value. Concentration-response curves were fitted using a 

four-parameter logistic nonlinear regression. As for the BRET acquired using the 
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TRUPATH open-source biosensor, GraphPad Prism software was used following the 

method of calculation and analysis detailed in the paper of Olsen et al. For several 

experiments performed, the R
2 values were calculated using GraphPad Prism software 

as a measure of goodness of fit of the data to the curve generated. 
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I. Introduction 
 

G protein-coupled receptors serve as pivotal drug targets, their intricate 

involvement in human pathophysiology renders them subjects of extensive study 

(Hauser et al., 2017). The understanding of mechanisms regulating GPCR signalling 

is crucial in advancing therapeutic interventions. Palmitoylation is one of those 

regulatory mechanism and was shown to impact GPCRs signalling as reported in 

chapter 1. 

The Dopamine D1 undergoes palmitoylation exclusively at cysteines 347 and 351 on 

its C-tail (Jin et al., 1999). GPCR palmitoylation has been reported to have 

implications on these receptors’ pharmacology, signalling and trafficking (Ernst et al., 

2018; Qanbar & Bouvier, 2003). GPCRs interact with their heterotrimeric G proteins 

at the plasma membrane upon agonist stimulation and promote the dissociation of G-

protein subunits. These G-proteins regulate different intracellular second messenger 

pathways depending on the type of Gα subunit involved. Since D1 is coupled to Gαs it 

promotes the production of cAMP via the activation of adenylyl cyclase by stimulatory 

G proteins. cAMP activates protein kinase A that stimulates ERK1/2 activity (Fonseca 

et al., 2020), with both PKA and ERK leading to activation of a transcription factor 

called cAMP response element-binding protein (CREB), orchestrating the 

transcription of genes modulating cell behaviour (H. Zhang et al., 2020).  

In addition, D1 recruit β-arrestins (Kotowski et al., 2011), they play a crucial role in 

biological processes by recruiting effector proteins from diverse signalling pathways 

(e.g. ERK1/2, Raf-1, JNK3 and Akt) and important components of the endocytic 

machinery (DeWire et al., 2007; Jean-Charles et al., 2017).  
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While previous studies have touched on the palmitoylation of Dopamine D1, they fell 

short of fully characterising its impact on receptor signalling and trafficking. These 

studies observed changes in cell surface internalisation without delving into 

intracellular localisation or functional outcomes post-receptor activation (Kong et al., 

2011).  

 In this chapter, our focus is to comprehensively identify the impact of palmitoylation 

on the Dopamine D1 receptor signalling. Our goal is to enhance the understanding of 

the role of palmitoylation of the C-tail in shaping receptor behaviour. 

II. Outlines & Aims 
 

To study the effects of loss of palmitoylation on D1 pharmacology and protein-

protein interactions, a palmitoylation-deficient mutant (D1 p.C347S; C351S) was 

generated by mutating the cysteines in position 347 and 351 into serines using site-

directed mutagenesis (SDM). D1 Wild type and D1 palmitoylation mutant sequences 

were validated by Sanger sequencing (Fig.22). To confirm the loss of palmitoylation 

in D1 p.C347S;C351S an Acyl-RAC labelling was performed (Fig.23) (Tewari et al., 

2020), this technique allows the detection of protein acylation.  

Moreover, to investigate the effect of DHHCs and loss of palmitoylation on D1 

signalling a luminescent-based live-cell assay was used to look at cAMP production 

with a genetically engineered firefly luciferase that changes conformation when it 

binds to cAMP and generates light in the presence of its D-Luciferin substrate 

(Fig.21).  
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Figure 21-cAMP luciferase assay principle 

Schematic representation of the biosensor (GloSensor) cAMP binding leads to a 

conformational shift in the biosensor that promotes an increase in luminescence 

activity in the presence of D-luciferin substrate.(DiRaddo et al., 2014) 

 

Also, a measurement of β-arrestin related ERK1/2  production of D1 was performed 

using AlphaLISA SureFire Ultra™ ERK1/2 cellular assay kit to investigate any 

changes in its production between D1 WT and D1 palmitoylation mutant. Finally, 

cAMP was profiled for D1 WT and mutant in Hek293   β-arrestin 1&2 Knockout cells 

and the phenotype was compared between a restored β-arrestin 1&2  expression or an 

empty vector control. 

 

III. Results 

1. D1 palmitoylation deficient mutant generation 

 

Previous studies have shown that D1 has two palmitoylation sites on the 

cysteines in positions 347 and 351 located on its C-terminal tail (H. Jin et al., 1999). 

This is also predicted by bioinformatics (CSS-Palm) and further confirmed by 

mutagenesis of the cystines into alanines at these sites leading to loss of the 

palmitoylation (H. Jin et al., 1999). Knowing that cysteine and serine are proteinogenic 

and the closest amino acids in structure, mutating cysteine into a serine will have 
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minimal effect on the structure and won’t interfere with other local post-translational 

modifications. Using site-directed mutagenesis a D1 palmitoylation deficient receptor 

was generated by mutating the two cysteines into serines. The sequence was confirmed 

by Sanger sequencing (Fig.22).  

 

Figure 22- Sequence validation of the palmitoylation D1 mutant by Sanger 

sequencing 

Electropherograms of DNA sequences of D1 WT (right) and palmitoylation mutant 

(left). Arrows indicate mutated bases changing cysteine (TGC) to serine (TCC) at 

position 347 and 351. 

 

 

2. D1  p.C347;351S  mutations  lead to receptor loss of 

palmitoylation 

 

After generating the palmitoylation mutant and validating the sequences by 

Sanger (Fig.22), loss of palmitoylation was validated by Acyl-RAC labelling. To this 

end, to check if the mutant has lost its ability to undergo palmitoylation. Equal 

amounts of D1 WT or palmitoylation mutant were transfected in HEK 293. The lysates 

were then treated with NaCl (negative control) hydroxylamine-free buffer to make 

sure the protein could not bind the beads non-specifically (Forrester et al., 2011; 

Ulengin-Talkish et al., 2021). Whereas buffer with hydroxylamine breaks the bond 

between the palmitate group and the cysteine residues (Tewari et al., 2020). The freed 

cysteine residues could bind the thiopropyl beads if the protein was palmitoylated. The 

D1 WT D1 C347S;C351S
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samples were then eluted and resolved by SDS-PAGE electrophoresis followed by 

immunoblotting using an anti-Flag antibody against the Flag-D1. 

The results demonstrated that only D1 WT was palmitoylated in HEK  cells as it was 

pulled down with the thiopropyl beads, whereas the mutant could not be resolved for 

acylation (Fig.23). 
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Figure 23-Validation of loss of palmitoylation in D1 C347S; C351S mutant 

Acyl-RAC detection of D1 WT and D1 p.C347S; C351S mutant. Equal amounts of total 

protein lysates from HEK293  were run on SDS-PAGE in duplicate and were analysed 

by Western blotting against Flag-D1. Equal amounts of total protein lysates were 

processed for acyl-RAC Hyd: Hydroxylamine. 

 

3. The p.C347;351S on D1 reduces cAMP production  

 

To further evaluate the effects of mutating the cysteines into serines and 

confirm that the receptor still presents a cAMP production profile similar to previously 

published papers where the cysteines palmitoylated residues were mutated into 
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alanines (H. Jin et al., 1997, 1999; Kong et al., 2011), D1 cAMP production was 

assayed in live-cells where the receptor was co-transfected with a genetically 

engineered firefly luciferase that changes conformation when it binds to cAMP and 

generates light in the presence  D-Luciferin. To this end, HEK293 cells were 

transfected with equal amount of D1 WT or palmitoylation mutant with a cAMP Glo 

sensor and treated with a concentration gradient of either SKF 81297 (D1 selective 

agonist) (Vermeulen et al., 1994), dopamine or  A-68930 hydrochloride (D1-Like 

selective agonist) (Johnson et al., 1992; Langen & Dost, 2011). The D1 palmitoylation 

mutant showed a reduced ability to produce cAMP compared to D1 WT, its cAMP 

production was 51%, 42% and 41% lower than D1 WT with SKF 81297, A-68930 and 

dopamine respectively (Fig.24; Table 11). 

 

 

Figure 24- Characterisation of D1 cAMP production 

D1 WT and D1 palmitoylation deficient mutant cAMP production assay performed in 

HEK 293 cells. Concentration response of cAMP production where cells were treated, 

respectively, with vehicle or a gradient of the D1 agonist A-69830 (A), SKF 81297(B), 

and Dopamine(C). cAMP production was plotted as a percentage of D1 WT maximum 

production of cAMP (n of at least 3 independent repeats performed in triplicate).  
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Table 11- Comparing D1 WT pEC50&Emax with various agonists. 

 A-69830 

 

SKF 81297 

 

Dopamine 

D1 WT pEC50 

 

10.5± 0.33 

 

10.13± 0.08 

 

9.08± 0.11 

 
D1 C347S;C351S pEC50 

 

10.66± 0.12 

 

10.41± 0.09 9.25± 0.14 

 
D1 WT Emax  96.98± 3.11 

 

103.4± 3.22 

 

98.86± 2.03 

 
D1 C347S;C351S Emax 

55.45± 8.11∗∗∗ 
49.62± 1.2∗∗∗ 57.34± 1.04∗∗∗ 

 

Values are representative of n of at least 3 independent repeats performed in triplicate. 

Concentration responses shown in Fig.24 were analysed by nonlinear regression 

using Prism, and the pEC50, and Emax values were derived. Statistical significances of 

the differences were determined using unpaired Student's t test. 

 

 

4. Effect of DHHCs overexpression on D1 signalling 

Starting from the hypothesis that if a DHHC  interacts with D1 it was assumed 

that this would lead to a change in cAMP production in response to agonist stimulation 

for D1 WT but not for the palmitoylation mutant. To test this hypothesis, various 

DHHCs were overexpressed with D1 WT or mutant with the cAMP GloSensor 

(Fig.25).  

The results showed that DHHC 7 and 21 could not generate a significant difference in 

cAMP production between D1 WT and D1 palmitoylation mutant. The other DHHCs 

reduced cAMP production for both constructs, with DHHC 17 driving the most 

significant cAMP reduction between D1 WT and the palmitoylation null mutant and 

DHHC 5 inducing a higher cAMP for the mutant than the WT. Surprisingly, 

overexpression of DHHCs did not statistically t impact receptor affinity to SKF81297 

(Table 12). 

 These findings align with publications arguing and demonstrating that DHHCs are 

enzymes that palmitoylate a pleiotropy of proteins. Therefore, DHHCs can impact D1 
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by modulating its palmitoylated accessory proteins, such as G proteins and ion channel 

transporters (S. Chen et al., 2018; Jennings & Linder, 2010, 2012; Ohno et al., 2006).  

 

Figure 25- Effect of DHHCs overexpression on D1 cAMP production 

D1 WT and D1 palmitoylation mutant cAMP production in DHHCs overexpression 

conditions. The assay was performed in HEK 293 cells with D1 WT or palmitoylation 

mutant in various DHHC overexpression conditions and D1 WT and palmitoylation 

mutant transfected with an empty vector as a control. The concentration response of 
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cAMP production was measured by treating with vehicle or a gradient of 

concentration of the D1 agonist SKF 81297 panel A to K represent independent 

experiments of D1 cAMP production with the available DHHCs 

(1;2;4;5;6;7;8;9;14;17&21). cAMP production was plotted as a percentage of D1 

WT+EV Emax (n  of  3 independent experiments).  

 

 

 

Table 12- Comparing D1 WT pEC50&Emax with various DHHCs. 

 
E.V DHHC1 DHHC2 DHHC4 

D1 WT pEC50 

 

9.8± 0.1 9.22± 0.12 

 
9.73± 0.1 9.64± 0.14 

D1 C347S;C351S pEC50 

 
9.74± 0.12 9.08± 0.08 

 
10.06± 0.14 9.54± 0.8 

D1 WT Emax 98.06± 4.43 81.63± 1.93 

 
66.32± 2.62 98.59± 5.21 

D1 C347S;C351S Emax 53.59± 6.42*** 62.8± 2.23*** 

 

31.42± 1.63*** 

 
60.1± 3.41*** 

     

 DHHC5 DHHC6 DHHC7 DHHC8 

D1 WT pEC50 

 

9.44± 0.13 9.87± 0.05 8.76± 0.02 9.82± 0.16 

D1 C347S;C351S pEC50 
 

9.68± 0.09 9.9± 0.06 8.71± 0.12 9.91± 0.05 

D1 WT Emax 74.01± 4.08 126.2± 2.25 97.68± 0.45 50.55± 3.12 

D1 C347S;C351S Emax 83.32± 1.1** 119.6± 2.51* 97.92± 3.65 75.36± 1.23*** 

     

 DHHC9 DHHC14 DHHC17 DHHC21 

D1 WT pEC50 

 

9.4± 0.14 9.18± 0.2 9.75± 0.17 9.32± 0.19 

 

 C347S;C351S pEC50 

 

9.51± 0.16 9.25± 0.26 9.8± 0.15 9.48± 0.22 

D1 WT Emax 57.4± 3.54 148.2± 9.76 115.91± 1.33 102.3± 2.85 

D1 C347S;C351S Emax 48.01± 2.42** 133.58± 5.26* 55.33± 2.3*** 99.4± 3.88 

 

Concentration responses shown in Fig.25 were analysed by nonlinear regression 

using Prism, and the pEC50, and Emax values were derived. Statistical significances of 
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the differences were determined using unpaired Student's t test (Values are 

representative of n of at least 3 independent repeats performed in triplicate). 

 

 

5. Loss of palmitoylation reduces D1 ERK 1/2 production 

 

After agonist activation of a GPCR, Gs cAMP production stimulation and β-

arrestins recruitment one of the downstream effects of these cascades is the production 

of ERK1/2. To measure ERK 1/2 production, we used the AlphaLISA SureFire 

Ultra™ ERK1/2 cellular assay kit. ERK1/2 was measured 10 min after SKF 81297 D1 

selective agonist or dopamine treatment as recommended after optimisation of 

treatment time and cell number (Garbison et al., 2015) (Fig.26). The results showed 

that regardless of the D1 activating agonist, the palmitoylation mutant receptor had a 

33% reduction in ERK1/2 production compared to D1 WT with dopamine and SKF 

81297 (Table 13). 
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Figure 26- D1 Wild type and D1 palmitoylation deficient mutant 
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Agonist-induced ERK1/2 phosphorylation in response to D1 agonist dopamine (top) 

SKF 81297  (bottom). Values represent the mean Emax ± SEM percentage normalised 

to WT receptor maximal ERK1/2 production (n=3).  

 

Table 13- Statistical evaluation of ERK1/2 phosphorylation profile of D1 WT and the 

palmitoylation mutant 

 Dopamine SKF81297 

D1 WT Emax 
78.71± 12.54 

105.48± 7.21 

D1 C347S;C351S Emax 
45.01± 2.42** 

72.08± 8.43*** 

 

Concentration responses shown in Fig.26 were analysed by nonlinear regression 

using Prism, and the Emax values were derived. Statistical significances of the 

differences were determined using unpaired Student's t test (Values are representative 

of n of at least 3 independent repeats performed in triplicate). 

 

6. Investigating the impact of β-arrestin 1&2 on D1 cAMP 

production 

 

The data showed that the D1 palmitoylation mutant has a reduced ERK1/2 

phosphorylation compared to WT (Fig.27), as reported in HEK 293 cells expressing 

the D1, β-arrestin recruitment contributes to the activation of ERK1/2 (Kaya et al., 

2020). To understand the impact of β-arrestin 1&2  absence on D1 signalling, HEK 

293 β-arrestin 1&2 knockout cells provided by Dr Asaka Inoue are extensively used 

to understand loss on arrestins impact on various receptors (Tréfier et al., 2018; Wan 

et al., 2018) were chosen to evaluate the impact of β-arrestin 1&2  on D1 WT and 

palmitoylation mutant cAMP profile. For that purpose, HEK293 β-arrestin 1&2 

Knockout cells were transfected with D1 WT or palmitoylation mutant with the Glo 

sensor and cAMP production was assayed with a gradient of SKF 81297 result showed 
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that in the absence of β-arrestin 1&2  the mutant loses the cAMP production difference 

previously observed between D1 WT and the palmitoylation mutant, in fact the 

difference in cAMP production is nullified with no statistically significant impact on 

pEC50 (Fig.27& table 14). This suggested that arrestins play a major role in driving 

the cAMP production differential between D1 WT and the palmitoylation mutant. To 

validate this hypothesis, a phenotype rescue experiment was performed where D1 WT 

or the mutant with the Glo sensor were transfected with β-arrestin 1&2 or an empty 

vector plasmid and assayed for cAMP the results demonstrated that restoring β-

arrestin 1&2  expression rescued the cAMP production phenotype of the wild type 

receptor previously observed in HEK293 normal cells (Fig.27 B, C& table 14). 

 

D1 WT and D1 palmitoylation deficient mutant cAMP production assay performed in 

HEK 293 KO cells for β-arrestins 1&2 (A) concentration response of cAMP 

production a gradient of the D1 agonist SKF 81297. (B)&(C)HEK 293 KO cells for β-

arrestins 1&2 were transfected with  D1 WT or  D1 palmitoylation mutant with β-

arrestins 1&2or an empty vector control. Values are mean ± S.D. of n = 3 independent 

experiments of D1 WT (A) or D1 WT+EV maximum cAMP production percentage 

normalised to vehicle-treated cells and basal reading. 

 

 

Figure 27- Functional characterisation of D1 in HEK 293 KO cells for β-arrestin 1&2 
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Table 14- Statistical evaluation of cAMP production profile of D1 WT and the 

palmitoylation mutant in HEK 293 β-arrestin1&2 KO cells 

 

Dopamine pEC50 Emax 

D1 WT+ β-arrestin 1&2 7.97 ±0.93 149.2 ±11.3** 

D1 Mutant+ β-arrestin 1&2 8.56 ±0.55 84.59 ±10.24 

D1 WT+ E.V 8.70 ±0.56 98.4 ±6.5 

D1 Mutant+ E.V 8.42 ±0.44 88.3 ±9.2 

   

SKF 81297   

D1 WT+ β-arrestin 1&2 9.94 ±0.56 133.2 ±7.95** 

D1 Mutant+ β-arrestin 1&2 10.1 ±0.65 79.83 ±10.38 

D1 WT+ E.V 10.29 ±0.26 89.07 ±5 

D1 Mutant+ E.V 10.09 ±0.57 94 ±5.24 

D1 WT 9.90 ±0.1 106.1 ±4.32 

D1 Mutant 9.99 ±0.1 107.3 ±4.25 

 

Concentration responses shown in Fig.27 were analysed by nonlinear regression 

using Prism, and the pEC50, and Emax values were derived. Statistical significances of 

the differences with WT+E.V control or WT were determined using unpaired 

Student's t test (Values are representative of n of at least 3 independent repeats 

performed in triplicate). 

 

 

IV. Discussion & conclusion 
 

The data demonstrated a 50% decrease in cAMP production for D1 

palmitoylation mutant compared to D1 WT, in line with Jin et al. findings (Jin et al., 

1999). Furthermore, the D1 palmitoylation mutant decreased cAMP production was 

coupled to a reduced capacity to promote ERK1/2 phosphorylation. Interestingly, in 

HEK 293 β-arrestin 1&2 KO cells, the mutant’s decreased cAMP production 

compared to WT was nullified. However, restoring β-arrestin 1&2 expression rescued 

D1 WT phenotype. The data seem to indicate that arrestin is required for D1 cAMP 
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response; this is supported by new studies on the biochemical basis of GPCR G protein 

activation that are looking at the subcellular organisation of GPCR signalling 

(Calebiro & Koszegi, 2019; Lobingier & von Zastrow, 2019; Sutkeviciute & 

Vilardaga, 2020).  

GPCRs are not confined to the plasma membrane, they transit in the endocytic 

pathway (Hanyaloglu & von Zastrow, 2008). GPCR cellular cAMP signalling can be 

determined by many factors, including the ligand’s binding affinity for receptors 

(Feinstein et al., 2013; Ferrandon et al., 2009) and specific features of the receptor’s 

trafficking itinerary (Sposini et al., 2017) and β-arrestins binding at the GPCR carboxy 

terminus can co-exist with G protein binding in endosomes, which sustains G protein 

signalling inside the cell (Thomsen et al., 2016). One important factor is the interaction 

between GPCRs and β-arrestin, they were discovered as scaffolding proteins which 

are recruited to and functionally desensitise activated receptors at the plasma 

membrane (Gurevich & Gurevich, 2019). Additionally, they serve as essential 

endocytic adaptor protein for many GPCRs, promoting receptor endocytosis via 

clathrin-coated pits and driving receptor delivery to endosomes (Moo et al., 2021). 

However, endocytosis was long believed only to impact the longer-term homeostatic 

regulation of GPCRs and not affect the response to acute agonist application. This 

view has changed due to the accumulation of evidence that various GPCRs can engage 

G proteins after endocytosis, as well as from the plasma membrane, and can leverage 

the endocytic network to promote or sustain cellular signalling (Calebiro & Koszegi, 

2019; Lobingier & von Zastrow, 2019; Sutkeviciute & Vilardaga, 2020). For GPCRs 

that signal by coupling to stimulatory heterotrimeric Gs, a number of them have now 

been shown to engage Gs on the endosome as well as the plasma membrane, enabling 

receptors to initiate signalling from each location (Calebiro et al., 2009; Calebiro & 
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Koszegi, 2019; Feinstein et al., 2013; Irannejad et al., 2013; Sutkeviciute & Vilardaga, 

2020). This highlights how spatiotemporal aspects of GPCR activation can profoundly 

influence cAMP production. However, how such signalling diversity is programmed 

remains poorly understood. Moreover, recent work using HEK293 cells in which β-

arrestin1 and β-arrestin 2 are stably knocked out to delineate D1 pharmacology and 

signalling mechanisms, Dose responses with the D1 agonist SKF-81297 in β-

arrestin1/2 KO impaired D1 desensitisation (Jain et al., 2020).  

In addition, when looking at the effect of DHHC enzymes overexpression on D1 cAMP 

signalling, the co-expression with both D1 WT and the mutant served to underscore 

the intricacies of post-translational modification regulation. In retrospect, a Forskolin 

control for all cAMP production experiments would have been of use to make sure 

there is no system production saturation. Also performing the ERK1/2 

phosphorylation assay in the HEK 293 β-arrestin 1&2 KO cells with a phenotype 

rescue and delineating the impact of β-arrestin 1 from 2 on D1 WT. 

However, studying palmitoylation faces challenges due to a lack of defined and 

characterised pharmacological inhibitors. Moreover, the mutation of palmitoylated 

cysteines may have unintentional consequences on other cysteine modifications, such 

as redox modifications, S-glutathionylation and S-nitrosylation, as it is typically 

solvent exposed cysteines that participate in palmitoylation and are thus open to 

additional post-translational modifications (Main et al., 2021). DHHCs can show some 

form of redundancy, limiting the information gained from individual knockout or 

over-expression models on their function and any subsequent change in substrate 

behaviour. Moreover, pharmacologically inhibiting selected DHHCs for shorter 

periods would be very instructive. Nevertheless, DHHCs-specific inhibitors targeting 

the active site have yet to be fruitful. This is due to the lack of structural information 
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on these proteins for example, DHHC inhibitor 2-bromopalmitate (2-BP). 2-BP, which 

is thought to irreversibly alter the  DHHC active site cysteine through nucleophilic 

displacement and alkylation, has been widely used to determine the effect of reducing 

palmitoylation on proteins of interest (Jennings et al., 2009). However, there are 

several caveats to its use, including poor potency and bioavailability and extensive 

off-target effects, suggesting up to 99% of its targets are not DHHCs (Chase & Tubbs, 

1972; Jennings et al., 2009). Mass spectrometry supports this, suggesting it does not 

favour DHHCs over other proteins (Davda et al., 2013; Draper & Smith, 2009; B. 

Zheng et al., 2013). Another example of a palmitoylation inhibitor is the antibiotic 

tunicamycin, which has been shown to inhibit the palmitoylation of calcium channels 

(Hurley et al., 2000) and presynaptic plasticity protein GAP-43.  

This chapter’s findings put forward the question of arrestin 1&2 interactions with the 

palmitoylation mutant and their impact on ERK1/2 phosphorylation, as previous 

studies reported that knocking out β-arrestin 1&2 impacted ERK1/2 phosphorylation 

(Urs et al., 2011). Moreover, the data presented in this chapter indicate that loss of 

palmitoylation of D1 might be having the same effect that previous studies already 

characterised for knocking out β-arrestin 1&2 on D1 as it reduced its ERK1/2 

phosphorylation (Bono et al., 2023) and impaired its desensitisation.  

GPCRs can be regulated by: desensitisation, in which the receptor loses its ability to 

signal in the presence of stimuli; internalisation, which lowers the number of receptors 

on the cell surface; and degradation, which lowers the total level of receptors inside 

the cell (Krupnick & Benovic, 1998), exploring the effects of loss of palmitoylation 

on D1 G protein coupling and β-arrestin 1&2 recruitment becomes vital. In parallel, 

we need to  identify the DHHCs responsible for the D1 palmitoylation, since 

pharmacological approaches are not the best suited; thus, we will use techniques aimed 
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at the study of protein-protein interactions such as Co-IP (Co-immunoprecipitation) 

and Bioluminescence resonance energy transfer as they are valuable approaches to 

overcome the lack of pharmacological tools. 
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I. Introduction 
 

GPCR studies have historically heavily relied on radioligand-binding assays to 

study the pharmacology of the receptors (Beerkens et al., 2022; Zhang & Xie, 2012). 

The use of biochemical methods, like SDS-PAGE, cysteine cross-linking and co-

immunoprecipitation, were the first employed assays to study GPCRs in tissues and 

cell models (Avissar et al., 1983; Bai et al., 1998; Fraser & Venter, 1982; Limbird et 

al., 1975; Rogers, 1984). However, these methods relied on membrane solubilisation 

using detergents under denaturating conditions such as boiling or relying on poor-

quality antibodies and tagged constructs, thus prone to artefactual results (Guo et al., 

2017). Even though these biochemical tools contributed to uncovering many GPCRs 

related mechanisms (Maziarz et al., 2020; Mo & Fu, 2016; Wan et al., 2018), they 

lacked precision and presented the inconvenience of not being adapted to high 

throughput screening. The development of biophysical approaches such as protein 

complementation and BRET have provided useful tools to understand GPCR 

pharmacology and related mechanisms (signalling, kinetics, protein-protein 

interactions…) in cells, tissues, and whole organisms.  

Previous studies in GPCRs indicated that the proximal part of the C-terminus between 

TM7 and the palmitoylation site forms the short helix 8 parallel to the plane of the 

membrane. Since helix 8, along with the ICLs, is part of the cytoplasmic “face” of 

GPCRs that is recognised by intracellular signal transducers. Not surprisingly, helix 8 

was shown to play a role in arrestin-1 binding (Kirchberg et al., 2011). Interestingly, 

biophysical studies using fluorescently labelled vasopressin V2 receptor (Rahmeh et 

al., 2012) and β2AR (Liu et al., 2012) found that G protein-biased agonists perturb 

TM6 and arrestin-biased agonists perturb TM7 and helix 8, whereas unbiased agonists 
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induce both perturbations. Furthermore, the D1 receptor mutated in helix 8 displays 

enhanced G protein signalling but reduced arrestin-mediated desensitisation (Yang et 

al., 2019). These data suggest that helix 8 and TM7 play a major role in arrestin 

binding. Indeed, helix 8 of rhodopsin was found to contact the finger loop of arrestin-

1 in the complex (Y. Kang et al., 2015). Similarly, T491 and T360 on the C-terminus 

of M2R and V2Rpp, respectively, establish interactions with R25 (N-domain) and 

K294 (gate loop) of arrestins (Staus et al., 2020).  

Experimental data identifying the receptor residues participating in arrestin binding 

are incomplete in the case of the dopamine D1 receptor (Kaya et al., 2020) and virtually 

absent for hundreds of other GPCRs. The fact that palmitoylation can impact both 

TM7 and helix 8, it became evident that the impact of D1 loss of palmitoylation on β-

arrestins recruitment and G protein activation needed to be investigated. 

II. Outlines & Aims 
 

 

In the previous chapter, investigating the effects of D1 loss of palmitoylation 

on its cAMP production and downstream ERK1/2 phosphorylation led to question and 

hypothesise whether loss of palmitoylation has an impact on D1 protein interactions 

such as β-arrestin 1&2 and G protein recruitment. In addition, uncovering the DHHCs 

involved in D1 palmitoylation would be a breakthrough as they are yet to be identified.  

To this end, BRET and Luciferase protein complementation assays (Fig.28) were used 

to characterise the effects of loss of palmitoylation on  D1 G protein activation by 

TRUPATH BRET2 (Fig.29), β-arrestin 1&2 recruitment and identify the DHHCs 

responsible of palmitoylating D1. 
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Figure 28- Schematic of the NanoBiT complementation assay for measuring D1 β-

arrestin 1&2 recruitment. 

Engineered split-luciferase system to detect Protein-protein interaction between D1-

LgBiT and SmBiT-β-arrestin 1&2 (A) or indirectly between D1 and SmBiT -β-arrestin 

1&2 Via their interaction in a Bystander fashion with a Plasma membrane marker the 

LgBiT-CAXX probe (B). Genetically fusing the proteins of interest to the two split 

components of NanoLuc, termed LgBiT and SmBiT. These chimeric proteins are then 

expressed in cells and interactions between them are detected by the addition of a cell-

permeable furimazine substrate that is converted to light by the reconstituted 

NanoLuc. As the NanoBiT components have negligible affinity for one another (~190 

μM), their association and the subsequent reconstitution of functional NanoLuc are 

dependent on the PPI being studied. 
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Figure 29- TRUPATH measures heterotrimeric G protein dissociation by 

bioluminescence resonance energy transfer 2, or BRET2. 

The TRUPATH BRET2 biosensor system was developed by constructing luciferase 

donor Rluc8-Gα chimaeras, acceptor GFP2-Gγ chimaeras, and untagged Gβ 

constructs. For the Gγ constructs, the GFP2 tag is fused to the N-terminus of the 

protein. For the Gα constructs, the localisation of the Rluc8 was optimised by protein 

engineering and experimental refinement to determine the optimal localisation of the 

Rluc8 insert within the Gα. With the binding of the drug, the alpha and beta subunits 

dissociate resulting in decreased BRET2 signal. With increased concentration of the 

drug, the BRET2 signal decreases. 
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III. Results 

1. Loss of palmitoylation impairs D1 β-arrestin 1&2 

recruitment 

 

After D1 agonist activation and G protein complex dissociation is the 

recruitment of β-arrestin 1&2, with β-arrestin 2  being mainly responsible for D1 

mediated ERK1/2 phosphorylation and desensitising the receptor (Kaya et al., 2020; 

Y. Yang et al., 2022). 

D1-LgBiT constructs were generated by Gibson assembly and, as previously found 

they had a similar cAMP profile to D1 WT and Palmitoylation mutant (Fig.30A). The 

split Nanoluc system was used to investigate  D1-LgBiT constructs recruitment of β-

arrestin 1&2 tagged SmBiT. If arrestins are recruited to D1, the functional Nanoluc 

will be reconstituted, and in the presence of Furimazine, its substrate, light will be 

emitted. With β-arrestin 1&2, the mutant could not exhibit any statistically significant 

recruitment, and no concentration response could be derived. As for D1 WT, it was 

able to recruit both β-arrestin 1&2 (Fig.30B). One primary concern was that the LgBiT 

tag on D1 influenced β-arrestin 1&2 recruitment in comparison to D1 untagged C-

terminally as the  pEC50  for the WT was 9.34 and 10.92 for β-arrestin 1 and 2 

respectively in comparison to a 7.8 in literature for β-arrestin 2  (Conroy et al., 2015). 

Therefore, to rule out a potential effect of the LgBiT tag of the D1 on its arrestin , we 

used another approach to monitor arrestin recruitment using a plasma membrane-

specific Probe LgBiT-CAXX (Janetzko et al., 2021). When arrestins are recruited to 

the untagged receptor, they will come in proximity of the LgBiT-CAXX, and the 

functional Nanoluc will be reconstituted and can emit light. The results demonstrated 

that loss of palmitoylation still reduces significantly β-arrestin 1&2 recruitment to D1 

with a reduction of  70 and 64% for β-arrestin 1&2 respectively, and the pEC50 for 
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D1 WT were comparable to what is reported in the literature for β-arrestin 2 

recruitment stimulation by Conroy& Sibley (Conroy et al., 2015).  

 

 

Figure 30- Effects of loss of palmitoylation on D1 β-arrestin1&2 recruitment 

Agonist-mediated ß-arrestin 1&2 recruitment plotted as dose-dependent recruitment 

of -arrestin 1&2 to D1 WT and D1 palmitoylation deficient mutant. (A) D1 WT and 

D1 palmitoylation deficient mutant tagged with LgBiT cAMP production assay 

performed in HEK 293 cells. Concentration response of cAMP production, cells were 

treated respectively, with vehicle or a gradient of the D1 agonist SKF 81297. (B)  

luminescence in response to serial dilution of D1 agonist SKF-81297 over vehicle in 

HEK293 cells transfected with either 12.5 μg D1-LgBiT WT (black) or palmitoylation 

mutant (red) and with either 2.5 μg of SmBiT-βarrestin1 or βarrestin2-SmBiT. (C) The 

concentration response of luminescence was measured in response to a serial dilution 

of D1 agonist SKF-81297 or vehicle in HEK293 cells transfected with either 50 μg D1 

WT (black) or palmitoylation mutant (red) and with either 2.5 μg of SmBiT-βarrestin1 

or βarrestin2-SmBiT and 12.5 μg of LgBiT-CAXX probe. Data are mean ± SEM 

percentage of activation normalised to agonist-induce maximal response of four 

individual experiments each performed in triplicate. Dose-response curves were 

analysed by nonlinear regression using Prism.  
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Table 15- Statistical evaluation of D1 β-arrestin1&2 recruitment 

A pEC50 Emax 

D1 WT-LgBiT 10.66 ±0.14 99.19 ±3.2 

D1 Mutant-LgBiT 10.7 ±0.33 52.38 ±2.07*** 
   

B   
D1 WT-LgBiT (β-arrestin1) 9.34 ±0.5 104.1 ±18.1 

D1 Mutant-LgBiT (β-arrestin1) - - 

D1 WT-LgBiT (β-arrestin2) 10.92 ± 1 93.18 ± 14.1 
D1 Mutant-LgBiT (β-arrestin2) - - 

   
C   

D1 WT (β-arrestin1) 7.3 ±0.38 98.78 ±12.69 

D1 Mutant (β-arrestin1) 7.94 ± 0.26 28.09 ±6.33** 

D1 WT (β-arrestin2) 7.72 ±0.43 91.49 ±5.94 

D1 Mutant (β-arrestin2) 7.08 ±0.54 27.3 ±12.11** 

 

The concentration responses shown in Fig.30 were analysed by nonlinear regression 

using Prism, and the pEC50, and Emax values were derived. Statistical significances to 

WT with the same condition of transfection were determined using an unpaired 

Student's t test.  

 

 

2. Loss of palmitoylation reduces D1 trimeric G protein 

activation in HEK293 cells but not HEK 293 β-arrestin 

1&2 KO cells 

 

The changes in signalling at the cAMP and ERK1/2 level suggest a difference 

in G protein-coupling. D1 has been described previously to couple to Gαs G proteins 

(Moritz et al., 2023). Gαs coupling leads to increased cAMP production. The effects 

of loss of palmitoylation on D1 palmitoylation mutant reduced cAMP accumulation, 

and ERK1/2  phosphorylation could therefore be through a decrease in Gαs coupling. 

Using the TRUPATH biosensor platform, the effect of D1 WT or the palmitoylation 

mutant on agonist-mediated GαsL (GαsLong) dissociation was investigated. HEK293 

cells were transfected with GαsL-Rlu8, Gβ1, and Gγ1- GFP2, and stimulated with 

SKF 81297  in the concentration range 1 μM to 1 pM SKF 81297 was used as the 

stimulating agonists due to its high potency in cAMP accumulation.  
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The results showed a reduced decrease of BRET percentage for the D1 palmitoylation 

mutant compared to D1 WT  of 30% in HEK 293 cells after stimulation with a gradient 

of concentration of SKF81297 (Fig31A, Table 16). In contrast, no statistically 

significant difference was observed in in HEK 293 β-arrestin 1&2 KO cells (Fig31B, 

Table 16). 

The data suggests that the reduced cAMP production observed for the D1 

palmitoylation (Fig.24) mutant is potentially due to a reduced ability to drive G protein 

activation after agonist stimulation. How this might occur is unclear, but it is tempting 

to speculate that the change in flexibility of helix 8 due to not being “pinned” closer 

to the plasma membrane might influence the receptor’s ability to drive G-protein 

activation. In studies of the Beta-Adrenergic receptors, the c-tail has been implicated 

in influencing G-protein association, supporting a role for the c-tail in G protein 

association/activation. Interestingly, this difference in G protein dissociation was not 

observed in cells lacking β-arrestin 1&2 (Fig.31B, Table 17). These results imply that 

D1 needs to recruit β-arrestins to signal properly and activate its associated G protein.   
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Figure 31- Characterising the effects of D1 loss of palmitoylation on its Gαs 
subunits dissociation from its trimeric G protein complex. 

WT D1 and palmitoylation deficient mutant D1 BRET TRUPATH assay in HEK 293 

cells(A) and HEK293 β-arrestin 1&2 K. Cells (B) were transfected with (1:1:1:1) ratio 

of receptor: GαSL-Rluc8: Gβ1: Gγ1-GFP2. Rluc8 being the BRET donor and GFP2 

acting as the BRET acceptor were treated, respectively, with vehicle treatment and a 

gradient of the D1 agonist SKF 81297 or dopamine. Net BRET  was plotted as a 

percentage of D1 WT maximal BRET signal  (n = 4 independent experiments). 
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Table 16-  Statistical evaluation of the effects of D1 loss of palmitoylation on its Gαs 

subunits dissociation from its trimeric G protein complex 

Cell type Agonist Receptor pEC50 Emax 

HEK 293 SKF 81297 

D1 WT 8.27 ±0.35 95.91 ±7.9 

D1 Mutant 8.9 ± 0.73 66.78 ±8.01* 

 

     

HEK293 β-

arrestin 1&2 KO 

SKF 81297 
D1 WT 8.31 ±0.42 103.6 ±13.2 

D1 Mutant 7.89 ±0.57 92.6 ±11.1 

    

Dopamine 
D1 WT 7.56 ±0.73 83.45 ± 12.2 

D1 Mutant 7.25 ±0.65 92.8 ±15.3 

 

The percentages of BRET  shown in Fig.31 were analysed by nonlinear regression 

using Prism, and the pEC50, and Emax values were derived. Statistical significances to 

WT with the same condition of transfection were determined using an unpaired 

Student's t test. 

 

 

3. Investigating D1 Protein-Protein interaction with DHHCs 

 

To identify potential DHHCs that could be involved in the palmitoylation of D1, we 

screened a panel of DHHC enzymes for their ability to interact with D1 by co-

immunoprecipitation. HEK 293 cells were transfected with Flag-D1 and available HA-

DHHC family members. To determine the transfection efficiency for the DHHC, an 

equal amount of total cell lysate was loaded into each well and blotted for -HA. DHHC 

expression was not uniform across the family members (Pre-IP) (Fig.32). A Co-IP was 

performed to elute the Flag-D1 with their interacting protein partners. The samples 

were then resolved by SDS-PAGE electrophoresis followed by immunoblotting using 

an anti-Flag antibody (Fig. 32). The western blot suggested that D1 WT can bind to 

several DHHCs, at least in an overexpressed setting.  
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Figure 32- Co-IP of D1 WT with various DHHCs. (Etienne S.) 

 

Co-immunoprecipitation (Co-IP) assays showing interactions of FLAG-D1 WT with 

22 HA-DHHCs found in humans (DHHC1–22). The cells were lysed then subjected to 

immunoprecipitation with anti-Flag antibodies and then blotted with anti-HA 

antibodies to look for which DHHCs can co-precipitate.  As a control for transfection 

and expression, we also re-blotted for D1 WT with anti-Flag (bottom panel).  The 

middle panel shows that each DHHC is expressed.  Co-precipitating DHHCs can be 

observed in the upper panel and include 1, 4, 7, 11, 14, 17, 19 and 21.     

 

Although the co-IP screen implicated several DHHCs in their ability to interact with 

D1, we wanted to validate these interactions using an alternative approach. To 

accomplish this, we used BRET assays using D1 C-terminally tagged with Rluc8 and 

DHHC tagged with GFP10 constructs provided by Dr Stephane Lefrancois. In this 

assay, if D1 is found at an interacting distance with the DHHC, we expect energy 

transfer to occur in the presence of Coelenterazine 400a, the substrate of Rluc8. Then 

we proceeded to try and validate our potential interactions by BRET (Fig.33). Our 

data supported a potential interaction between DHHC9 and the D1 WT compared to 



 132 

the D1 palmitoylation mutant that did not show interaction with any DHHC (Fig.33, 

Table 17). 

A saturation BRET was performed To define if the interaction between D1 WT and 

DHHC 9 is specific, where the amount of BRET donor D1-Rluc8 construct was kept 

constant, and the amount of BRET acceptor DHHCs-GFP10 was titrated. Suppose the 

BRET signal comes from random collisions. In that case, the signal should increase 

linearly (Besson et al., 2022), such was the case for DHHC7 (Fig.34B). On the other 

hand if a protein pair are interacting, the net BRET increases as a hyperbolic function 

reaching saturation as the limited amount of donor protein will not be able to bind with 

all the excess amount of acceptor protein (Sauvageau & Lefrancois, 2019)which was 

the case for D1 WT and DHHC 9 (Fig.34A). Taken together, our co-IP and BRET 

experimental results both suggest that DHHC 9 can interact with D1 WT. 
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Figure 33- Screening for interaction Between D1 and available DHHCs-GFP10 

WT D1 and palmitoylation deficient mutant BRET with DHHCs-GFP10, assay in HEK 

293 cells. Cells were transfected with a (1:1) ratio of receptor: D1-Rluc8: DHHC’s-

GFP10 or empty vector. Rluc8 is the BRET donor and GFP10 acts as the BRET 

acceptor. Net BRET was obtained by normalising the raw BRET values to the BRET 

of donor only (n = 3 independent experiments). 

 

Table 17- Statistical evaluation of the BRET between D1 and the DHHCs-GFP10 of 

figure 33. 

 D1 WT-Rluc8  D1 Mutant-Rluc8 

DHHC7-GFP10 
2.36±04.57 -0.2±4.45 

DHHC9-GFP10 
16.3±4.3* 0.21±3.6 

DHHC10-GFP10 
0.4±4.2 0.4 ±4.1 

DHHC11-GFP10 
0.64±4.43 0.64 ±4.3 

DHHC13-GFP10 
2.51±4.41 2.5±4.41 

DHHC14-GFP10 
-1.3±4.2 -1.3±4.21 

DHHC15-GFP10 
1.45±4.3 2.22±5.93 
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DHHC16-GFP10 
2.5±9 5.11±4.96 

DHHC17-GFP10 
2.2±4.97 -0.95±4.21 

 

BRET value represented in Fig.33 in mBU (milliBRET units) statistical significances 

to WT were determined using unpaired Student's t test. 

 

 

 

Figure 34- Detection of spontaneous interaction between D1 WT and DHHC 9&7 by 

BRET titration experiments. 

The existence of an interaction between D1 WT and  DHHC9 validation using 

quantitative BRET saturation curves assay in HEK 293 cells co-transfected with a 

constant amount of D1 WT-Rluc8 plasmid and an increasing amount of the DHHC 9 

(A) or 7(B)-GFP10 plasmid. BRET signals were plotted as a function of the expression 

ratio of receptorDHHC-GFP10 over D1-Rluc8 (n = 3). The amount of receptor 

effectively expressed in transfected cells was monitored for each individual 

experiment by correlating both total luminescence and total fluorescence. While 

A 

B 
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D1WT-Rluc8/DHHC 7-GFP10 yields a straight line, D1WT-Rluc8/DHHC 9-GFP10 

yields a clear hyperbola. 

 

IV. Discussion & Conclusion 
 

  This chapter explored the impact of palmitoylation on the ability of D1 to 

signal. Previous studies using a palmitoylation deficient receptor had already 

indicated reduced cAMP production using single endpoint assays (H. Jin et al., 1999). 

Here, we revisited this using a real-time assay reaffirmed the diminished cAMP 

production in the D1 palmitoylation mutant, consistent with existing literature. Further 

examination of the receptor ability to activate G-protein revealed a significantly 

reduced ability of the mutant receptor to activate G-protein. Suggesting a 

potential link between palmitoylation and alterations in membrane interaction or 

conformation of the cytosolic loop housing the palmitoylated cysteine. For 

instance, the C-terminal tails of AMPAR or NMDAR (ionotropic glutamate receptors) 

are palmitoylated, enabling attachment of the receptor tail to the plasma membrane, 

therefore enabling their interaction with downstream signalling protein partners that 

are important for the signalling activity of these receptors (Hayashi, 2021). 

Palmitoylation, is executed by a family of acyl transferases, plays a crucial role in 

receptor function. Screening several members of this enzyme family identified a 

potential interaction with multiple DHHCs. Subsequent BRET interaction screening 

narrowed down the potential involvement to DHHC 9, localised in the Golgi apparatus 

(Mansilla et al., 2007; Swarthout et al., 2005). This finding positions DHHC 9 as a 

plausible candidate implicated in D1 palmitoylation. 

Also the data are promising to support this, the Co-Ip can benefit from appropriate 

controls, such as a D1 control with a given amount of purified recombinant protein, 
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this would give a single defined clean band which could be used as a reference and 

included aliquots of all the supernatants, washes and flow through to make sure the 

immunoprecipitation is specific not elution dependant, and that the targeted D1 not 

being lost in any other fractions, one last useful control would be to load a lane where 

the beads have been denatured to release the antibodies, to detect bands that might be 

coming from the light and heavy chains of the primary antibody this will ensure that 

the antibody was efficiently crosslinked to the beads. The TRUPATH experiment, 

investigating G protein interaction in HEK293 β-arrestin 1&2 KO cells, could benefit 

from a phenotype rescue control. Reinstating β-arrestin 1&2 expression could 

elucidate whether the observed phenotype in HEK293 is reinstated, providing valuable 

insights into the role of β-arrestin in the observed cAMP result. Finally, the BRET in 

the saturation assay using a fixed ratio of donor and variable acceptor amount can 

significantly be affected, in particular for high A/D plasmid ratios, such a problem 

defeats one of the main interests of the fix donor method, developed to determine the 

homomeric stoichiometry of proteins based on a single variable (James et al., 2006)  

as a decrease of expression of the Rluc-8 at the highest concentration of acceptor can 

occur and affect the energy transfer events. Therefore, using a variable expression of 

both donor and acceptor, BRET saturation assays provide a better range for acceptor 

detection and improve the robustness of the assay. Alternatively, validating D1 loss of 

palmitoylation in HEK293 DHHC 9 KO cells could provide additional insights.  

The data strongly indicate that the lack of palmitoylation influences receptor function. 

However, D1 agonist-induced palmitoylation needs to be evaluated to understand if  

D1 interaction with DHHC9 or other DHHCs is modulated by receptor activation, as 

it was reported in the literature that some GPCRs such as the serotonin receptor 5-HT7 
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and adrenergic receptor  β2AR  (Kvachnina et al., 2009; O’Dowd et al., 1989)  can 

undergo agonist-mediated palmitoylation.  

The requirement for β-arrestin 1&2 in the cAMP result is interesting and suggests a 

few different possibilities. The first is the possibility of the formation of some super-

complex involving receptors, arrestins, and G-proteins (Thomsen et al., 2016). 

Alternatively, this could be due to a trafficking event that requires β-arrestins. The 

upcoming chapter aims to delve into the trafficking disparities between WT and 

mutant D1, examining the potential role of palmitoylation in receptor sub-cellular 

localisation.  
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I. Introduction 
 

More than 200 different post-translational modifications have been reported 

(Zmuda & Chamberlain, 2020). Palmitoylation and S-acylation refer to the same PTM 

because most protein acyl transferases that attach fatty acids to the SH group of 

cysteine residues prefer to use palmitoyl-CoA as a substrate, and palmitate is one of 

the most abundant fatty acids in cells (Lemonidis et al., 2017). Palmitoylation is 

reversible, with depalmitoylation being performed by acyl-protein thioesterases 

(Linder & Deschenes, 2007; Y. Peng et al., 2018). Therefore, This reversibility allows 

the organism to regulate its protein function and/or localisation via palmitoylation (Ko 

& Dixon, 2018; Zmuda & Chamberlain, 2020). DHHCs catalysing S-palmitoylation  

are polytopic membrane proteins, and most of them are found in the ER or the Golgi 

membranes. Depending on cell type, 2-3 of them localise to the plasma membrane 

(Chopard et al., 2018; Ko & Dixon, 2018). 

Palmitoylation of a membrane protein can affect its localisation and, for instance, from 

the Golgi apparatus to the plasma membrane as for c-Met (D. T. Coleman et al., 2016), 

or from the plasma membrane to the nucleus or the mitochondria like for EGFR 

((Bollu et al., 2014). Kong et al. demonstrated that palmitoylation of the D1 receptor 

is critically involved in agonist-dependent receptor internalisation (Kong et al., 2011). 

Moreover, our results indicated that loss of palmitoylation impaired β-arrestin 1&2 

recruitment to D1. β-arrestins are master regulators of cellular signalling that operate 

by desensitising ligand-activated GPCRs at the plasma membrane and promoting their 

subsequent endocytosis. Receptor endocytosis was demonstrated to contribute to 

distinct cAMP signalling profiles for different GPCRs. Regulated trafficking of 

GPCRs has clear consequences for their signalling. The discovery of endosomal G 
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protein signalling indicates that receptor endocytosis and localisation to endosomal 

compartments contribute to “spatial bias” in GPCR signalling (Calebiro et al., 2009; 

Ferrandon et al., 2009). For example, inhibiting endocytosis partially decreases cAMP 

production by the activated Gαs-coupled dopamine receptor D1 and the β2-adrenergic 

receptor (Irannejad et al., 2013; Kotowski et al., 2011). Moreover, there is evidence 

of GPCR activation and signalling in the Golgi. Conformational biosensors, as well as 

mini-G protein biosensors which mimic Gα subunit interactions with active GPCR 

conformations (Nehmé et al., 2017), revealed activation of GPCRs Gαs proteins in the 

Golgi (Irannejad et al., 2017; Nash et al., 2019). 

Given the pivotal roles of β-arrestin recruitment and palmitoylation in GPCR 

internalisation and trafficking, this chapter undertakes an in-depth investigation into 

the effects of palmitoylation on Dopamine D1 receptor localisation and trafficking. 

The aim is to unravel the dynamic interplay between these molecular processes and 

their implications on GPCR functionality.  

II. Outlines & Aims 
 

Previously, in chapters 3 and 4, we reported that loss of D1 palmitoylation 

reduced its cAMP production and downstream ERK1/2 phosphorylation. Moreover, 

this reduced signalling was coupled to an altered β-arrestin 1&2 and G protein 

recruitment. In addition, uncovering that DHHC9, which is located in the trans Golgi 

apparatus, was involved in D1 palmitoylation.  

Trafficking of receptors from or to the plasma membrane and their shuttling to 

specialised intracellular compartments are pivotal processes to maintain cellular 

homeostasis. The signal transduction of G protein-coupled receptors is closely 

regulated by endocytosis, targeting of receptors to endosomes and their sorting to 
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lysosomes or recycling to the plasma membrane (Di Fiore & von Zastrow, 2014; 

Posner & Laporte, 2010). To this end, bystander BRET, dynasore as a 

pharmacological agent that inhibits dynamin GTPase activity blocking dynamin-

dependent endocytosis in cells (Macia et al., 2006), and Western blotting were used to 

look at the effect of agonist treatment on D1 WT at various time points. In addition, 

the FACS technique was used to understand the effects of loss of palmitoylation on  

D1 plasma membrane expression and trafficking to various subcellular compartments 

and its signalling effects (Fig.35). 

Finally, conformational biosensors based on nanobodies have recently emerged as a 

powerful method that complements traditional signalling assays to study spatially 

restricted signalling. These nanobodies are a single protein domain derived from the 

antigen-binding region of heavy-chain only antibodies produced in camelid species 

(Manglik et al., 2017). Several generated nanobodies specifically bind the active 

conformation of a specific GPCR or family of GPCRs (Manglik et al., 2017) or 

recognise a nucleotide-free Gαs conformation as a readout of GDP exchange by the 

Gαs subunit of the activated G protein (Irannejad et al., 2013). Therefore, two  

nanobodies were selected as biosensors to visualise D1 in its active conformation 

(Nb6B9) or the D1-G protein complex (Nb37).  
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Figure 35- Bystander BRET principle 

D1-Nluc act as the BRET donor for a compartment marker tagged with Venus (Kras 

for example). When D1-Nluc is within 10 nm of the acceptor in presence of Furimazine 

the substrate transfer of energy will occur. 

 

 

III. Results 

1. Dynasore reduces D1 cAMP production 

 

Dynamin has a function in membrane tubulation and fission and structuring 

vesiculo-tubular structures (Kirchhausen et al., 2008). It is vital for clathrin-dependent 

endocytosis from the plasma membrane, for the fission of caveolae in the plasma 

membrane to form free transport vesicles, and for vesicle formation at the trans-Golgi 

network (Cao et al., 2000; Corda et al., 2002; Nichols, 2003; Takei et al., 2005). 

Treating cells with dynasore inhibits clathrin-mediated endocytosis. 

To assess the effects of D1 loss of palmitoylation on its cAMP production in the 

absence of endocytosis, D1 WT and the palmitoylation mutant were pre-treated with 

80 µM of dynasore or vehicle and cAMP production was measured after addition of a 

gradient of concertation of SFK81297.  

Bystander BRET principle

BRET:
Bioluminescence 

Resonance 
Energy 

Transfer

NLuc is a 19.1 kDa luciferase enzyme
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The results demonstrated that dynasore treatment drastically reduced cAMP 

production of D1 WT and palmitoylation mutant compared to vehicle treatment by 73 

and 35 % respectively (Fig.36, Table 18). This result highlighted that clathrin-

mediated endocytosis is central to D1 signalling regardless of its palmitoylation state. 

Taking into consideration that D1 can signal intracellularly from the Golgi apparatus 

(Puri et al., 2022) and endosomes (G. E. Peng et al., 2021), exploring the effects of 

loss of palmitoylation on D1 intracellular trafficking will be the focus of the future 

approaches. 

 

 

Figure 36- Dynasore effects on D1 cAMP production 

D1 WT and D1 palmitoylation deficient mutant cAMP production assay performed in 

HEK 293 cells. Concentration response of cAMP production where cells were treated, 

respectively, with vehicle and a gradient of the D1 agonist SKF 81297 or 80 µM 

Dynasore and a gradient of SKF 81297. Statistical analysis of the cAMP production 

normalised to the D1 WT+ vehicle production of cAMP.  
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Table 18- Statistical evaluation of the effects of dynasore on  D1 cAMP production 

 pEC50 Emax 

D1 WT+vehicle 10.25±0.34 93±3.48 

D1 Mutant+vehicle 10.27±0.46 40.93±14.36* 

D1 WT+Dynasore 7.94±4.2 19.57±10.8** 

D1 Mutant+Dynasore 8.72±5.1 6.43±4.79*** 

 

 

Concentration responses  shown in Fig.36 were analysed by nonlinear regression 

using Prism, and the pEC50, Emax values were derived. Statistical significance to 

WT+vehicle was determined using unpaired Student's t test.  

 

 

4. Investigating the trafficking properties of D1 WT and D1 

palmitoylation mutant using bystander BRET 

 

To examine the distribution and trafficking of D1 WT and D1 palmitoylation 

mutant, a bystander BRET method was followed (Lan et al., 2011, 2012). Taking 

advantage of several Venus-tagged subcellular localisation markers Rab4, Rab5, 

Rab6, Rab7, Rab8, Rab9 and Rab11a in addition to K-Ras (D. D. Jensen et al., 2013; 

Lan et al., 2011; Szakadáti et al., 2015; Tiulpakov et al., 2016).  

To investigate the effect of palmitoylation on receptor trafficking, D1 WT and 

palmitoylation mutant were C-ter tagged with Nluc using the Gibson assembly cloning 

method. The insertion of the Nluc tag did not affect the D1 cAMP production profile 

as the mutant cAMP production was reduced by 32% compared to WT (Fig.37 & 

Table 19). Moreover, the pEC50 of both Nluc tagged constructs was not affected and 

was in line with the results obtained with the untagged version of the receptor (Fig.24 

& Table 12). 
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Figure 37- D1-Nluc constructs validation. 

D1 WT and D1 palmitoylation deficient mutant tagged with Nluc on the C-ter, cAMP 

production assay performed in HEK 293 cells. Concentration response of cAMP 

production where cells were treated, respectively, with vehicle and a gradient of the 

D1 agonist Dopamine. Values are mean ± S.D of n = 3 independent experiments. 

Table 19- Statistical evaluation of D1-Nluc constructs cAMP production. 

 pEC50 Emax 

D1 WT-Nluc 9.01±0.18 99.84±9.16 

D1 Mutant-Nluc 9.04±0.22 67.64±5.4* 

 

Concentration-response curves (Fig.37) were analysed by nonlinear regression using 

Prism (GraphPad Software), and the EC50 values were derived from the curves. 

Statistical significances of the differences were determined using unpaired 

Student's t test. p < 0.05 was considered statistically significant. 

 

 

To study D1 trafficking,  selective markers of various compartments of interest 

were needed. To this end,  small GTPases that must  localise at the plasma membrane 

for biological activity (Szakadáti et al., 2015) and Rab-GTPase (Rab) proteins 

associated with intracellular membrane trafficking that have been identified to localise 

to specific domains of the endocytic compartments (Pfeffer, 2013) (Fig.38) were 

tagged with Venus and paired with D1-Nluc for bystander BRET. To this end, Rab5 

was used as a marker for early endosomes, Rab4 was used to monitor fast recycling to 

the plasma membrane on the other hand Venu-Rab11a to monitor the slow recycling 
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process (Coppens & Romano, 2020; Hutagalung & Novick, 2011; Pavlos & Friedman, 

2017; Shearer & Petersen, 2019; Sposini et al., 2017a; Tiulpakov et al., 2016). Rab9 

monitors D1 sorting toward the endo-lysosomal compartments (Kucera et al., 2016). 

Rab7 was used to look at trafficking in the late endocytic and autophagic pathways 

(Guerra & Bucci, 2016; Kucera et al., 2016). Finally, Rab6 and Rab8 were used to 

look at the trans-Golgi and Cis-Golgi trafficking respectively (Antony et al., 1992; 

Dickson et al., 2020; Henry & Sheff, 2008). 

 

Figure 38- A simplified schematic representation of subcellular markers and their  

localisation for receptor trafficking BRET experiment. 

A simplified schematic representation of subcellular marker localisation and receptor 

trafficking. Ligand-induced trafficking, as well as constitutive localisation, was 

monitored using Nluc-tagged wild-type or palmitoylation mutant D1 by measuring 

proximity via BRET with the plasma membrane marker Venus/K-Ras, or the 

subcellular compartment markers Rabs: Venus/Rab5 for early endosomes; 

Venus/Rab4 for early endosome recycling; Venus/Rab11 for recycling endosomes; 
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Venus/Rab7 for late endosomes/lysosomes; Venus/Rab9 for late endosome trafficking 

to the trans-Golgi network; Venus/Rab6 for Golgi apparatus and trans-Golgi 

network; or Venus/Rab8 for trans-Golgi network to plasma membrane.  

 

 Therefore, D1-Nluc constructs (WT and p.C347S; C351S) were co-transfected 

with the trafficking markers or an empty vector (donor-only control) in HEK 293 cells, 

and BRET was generated after treatment with 1µM of SKF 81297 or vehicle.  

The results showed that upon agonist treatment, D1 WT receptors BRET increases 

plasma membrane whereas D1 palmitoylation mutant levels are not affected by the 

treatment (Fig.39 &table 20),this is shown in the bystander BRET with the K-Ras 

construct. Shortly after the D1 selective agonist SKF81297 treatment, the BRET signal 

value of for D1 WT peaks at 53 milliBRET Units (mBU), whereas the mutant is 

unaffected. A significant difference was found with Rab 8, after treating with the 

agonist, the D1 mutant receptor BRET peaks at 12 mBU while the D1 WT Bret peaks 

at 1 mBU after going below basal for the first 5 min, suggesting that when treated D1 

WT is trafficked out of the trans-Golgi whereas the palmitoylation mutant receptor is 

trapped in the Golgi compartment and cannot exist at the same rate. Moreover, no 

statistical difference was observed between D1 WT and the palmitoylation mutant with 

Rab’s 4, 5, 7, 9 and 11. Moreover, in HEK293 β-arrestin 1&2 Knockout cells, no D1 

agonist mediated trafficking to the plasma membrane was observed for D1 WT and 

the palmitoylation mutant (Fig.40). 
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Figure 39- Bystander BRET of D1 WT and palmitoylation mutant with various 

cellular compartments markers. 

 

HEK 293 cells were transiently transfected with wild-type D1 (Black), D1 p.C347S; 

C351S palmitoylation mutant (Red), tagged with Nluc and various cellular markers 

K-Ras and Rab’s 4;5;6;7;8;9;11 tagged with Venus (panel A to H respectively). BRET 

ratio was calculated as described in Materials and Methods by normalising the 

SKF91297 agonist treated conditions to the untreated conditions. SKF 81297 (1μM) 

was added at t = 0 after the establishment of the baseline. Points represent the mean 

± SEM of 3 independent experiments. 
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Table 20- Statistical evaluation of maximum BRET over basal determined from 

Figure 39. 

 D1 WT D1 Mutant 

K-Ras 0.053±0.015** -0.008±0.002 

Rab4 0.005±0.002 0.004±0.002 

Rab5 0.004 ±0.004 -0.001±0.004 

Rab6 0.011±0.004 0.013±0.003 

Rab7 0.016±0.009 0.019±0.021 

Rab8 0.001±0.002** 0.012±0.002 

Rab9 0.04±0.04 0.036±0.05 

Rab11 0.008±0.002 0.001±0.002 

 

 

BRET signals represented in (Fig.39) were analysed and the maximum values for D1 

WT and D1 palmitoylation mutant were compared for the various Bystander BRET 

markers used. Statistical significances were determined using unpaired 

Student's t test. p < 0.05 was considered statistically significant. 

 

 

 

 

 

Figure 40-Bystander BRET of D1 WT and palmitoylation mutant with plasma 

membrane marker Venus/K-Ras in HEK293 β-arrestin 1&2 Knockout cells. 

HEK293 β-arrestin 1&2 Knockout cells were transiently transfected with wild-type 

D1 (Black), D1 p.C347S; C351S palmitoylation mutant (Red), tagged with Nluc and 

cellular markers K-Ras tagged with Venus. BRET ratio was calculated as described 

in Materials and Methods by normalising the SKF91297 agonist treated conditions to 

the untreated conditions. SKF 81297 (1μM) was added at t = 0 after the establishment 

of the baseline. Points represent the mean ± SEM of 3 independent experiments. 
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5. Detection of active D1 WT and palmitoylation mutant at 

subcellular membranes using Nanobody-based 

conformational-sensitive biosensors 

 

It has been previously shown that a single-domain camelid antibody, nanobody 

80 (Nb80) (Rasmussen et al., 2011), can be repurposed as a conformational biosensor 

to detect activated β2AR and β1AR in living cells (Irannejad et al., 2017). Through 

directed evolution on Nb80, a high-affinity nanobody (Nb6B9) was generated that 

stabilises the active conformation of epinephrine-bound β2AR (Ring et al., 2013). 

Given that β2AR/Nb6B9 binding sites are highly conserved among other aminergic 

receptors such as β1AR and D1 (Rasmussen et al., 2011), this nanobody could also be 

used as a conformational-sensitive biosensor to detect activated D1 WT and 

palmitoylation mutant in real time and living cells (Fig.41). 

 Preliminary experiments performed in collaboration with Dr. Roshanak Irannejad 

at the University of  California San Francisco, demonstrated that Hela cells expressing 

Snap-tagged D1 and Nb6B9 (Fig.41A) and NB37 (Fig.41B) fused to GFP was diffuse 

throughout the cytoplasm (Fig.41A). Upon stimulation of these cells with 10 μM DA, 

Nb6B9-GFP was rapidly recruited first to the plasma membrane and shortly after to 

the Golgi apparatus (Fig.41A, 5 min, 10min). These data suggest that the D1 WT and 

palmitoylation mutant  Golgi and P.M receptors are activated in response to 

extracellular DA addition. We suspect that shortly after treatment the activated D1 WT 

in the Golgi diffuses outside whereas the D1 palmitoylation mutant localisation is 

unaffected as it can be seen in Figure 41.A that at 10 min after treatment D1 WT 

colocalisation is reduced with the Golgi marker GalT-mRFP but the Palmitoylation 

mutant colocalisation is unchanged. Moreover, Nb6B9 dynamics look relatively 

comparable between the D1 WT and the palmitoylation mutant, suggesting that the 
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mutations do not affect the receptor changing into its active conformation upon 

binding the ligand (DA) (Fig.42). 

To investigate whether palmitoylation affected activated D1 coupling to G proteins 

to elicit a G-protein-mediated response at the P.M, another nanobody-based biosensor 

was used, Nb37-GFP that was previously employed to detect transiently active 

β1AR/Gs and β2AR/Gs complexes (Irannejad et al., 2017). Nb37-GFP was recruited 

to the plasma membrane upon stimulation with DA, suggesting that the D1 WT and 

palmitoylation pool couples to G protein and activates it (Fig.41B). However, the 

kinetics suggested that the palmitoylation mutants result in earlier Nb37 recruitment 

suggesting that D1-G protein coupling/activation occurs earlier for palmitoylation 

mutants compared to D1 WT (Fig.42).  

 

 

 

Figure 41- Conformational biosensors detects activated D1 at the plasma membrane 

and the Golgi upon dopamine stimulation. 

(A)Nb6B9 binds to the receptor exclusively in its active conformation. Nb6B9 is fused 

to GFP and used it as a conformational biosensor for D1DR. Confocal images of 

representative Snap-D1 WT and palmitoylation mutant expressing HeLa with Nb6B9-

Nb37 binds to the GPCR-G 

protein complex in the 

nucleotide free state

Nb6B9 binds to the GPCR in 

its active conformation0 min
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GFP and GalT-mRFP expression before and after 10 µM DA addition. Stimulation 

with 10 µM DA results in the recruitment of Nb6B9 to active D1 at the plasma 

membrane and the Golgi in HeLa cells. (B)Representative Hela cells expressing Snap-

D1  WT and palmitoylation mutant and Nb37-GFP before and after 10 µM DA 

addition. DA stimulates G protein activation at the Golgi in D1DR-expressing Hela 

cells.  

White arrow: P.M activation 

Yellow arrowhead: Golgi activation 

 

 

 

 

 

 

 

 

 

Figure 42- Quantification of Nb6B9-GFP  and Nb37-GFP recruitment at the Plasma 

membrane. 

Quantification of Nb6B9-GFP (A) and Nb37-GFP (B) recruitment at the plasma 

membrane upon 10 μM DA stimulation in Hela cells; normalised fluorescence 

intensity of Nb6B9-GFP relative to Snap D1 at the P.M (n = 8 and 10 For D1 WT and 

D1 palmitoylation mutant respectively, 1 biological replicates). 

 

 

 

6. Investigating the effect of palmitoylation on plasma 

membrane D1 in HEK293 β-arrestin 1&2 Knockout cells 

and HEK293 cells. 

 

As previously discussed in chapter 4 loss of D1 palmitoylation impaired its β-arrestin 

1&2 recruitment. Moreover, loss of palmitoylation affected the P.M trafficking of D1 

in response to agonist treatment. To quantify D1 on the plasma membrane.  

A B
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HEK293 & HEK293 β-arrestin 1&2 Knockout cells were transfected with equal 

amounts of D1 WT or palmitoylation mutant. Cells were sorted using the Flow 

cytometry (FACS) sorting to assay D1 protein expression on the surface of the cells. 

Flow cytometry uses a laser-based technology to count, sort, and profile cells in a 

heterogeneous fluid mixture. With Flag-D1 being fluorescently labelled with a 

secondary antibody against Flag that is coupled to a fluorochrome, the fluorescence 

intensity represents the amount of D1 on the cell surface (Fig.43). 

The FACS result (Fig.43) showed a similar number of cells positive for D1 WT and 

D1 palmitoylation mutant. Mean Fluorescence Intensity (MFI) was not different 

between the D1 WT sample and the palmitoylation mutant in HEK293 cells in the 

absence of agonist treatment but when treated for 10 min with SKF 81297 D1 WT was 

more found at the P.M than the palmitoylation mutant. In Contrast, in HEK293 β-

arrestin 1&2 Knockout cells SKF81297 treatment was unable to generate a higher 

fluorescent signal for D1 WT when compared to the palmitoylation mutant as both 

fluoresced at similar levels. 

This preliminary data suggests no significant difference in the basal surface expression 

of D1 WT and palmitoylation mutant in HEK293 cells. However, after agonist 

stimulation, D1 WT can traffic better to the P.M. In contrast the palmitoylation mutant 

P.M levels aren’t affected. Moreover, in the absence of β-arrestin 1&2 D1 WT and 

palmitoylation mutant are found at similar levels afters agonist treatment suggesting a 

dual role of palmitoylation and β-arrestin 1&2   in D1 trafficking on the P.M in 

response to agonist activation. 
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Figure 43- FACS sorting of D1 WT and palmitoylation mutant in HEK293 cells and 

HEK293 β-arrestin 1&2 Knockout cells after 10 min SKF81297 selective D1 agonist 

treatment. 

 

 

Flag-D1 WT, palmitoylation mutant or vehicle empty vector were equally transfected 

in HEK 293 cells. The Flag tag was detected using an anti-mouse Flag tag antibody 

that was coupled later to an anti-mouse Alexa Fluor® 488.(N=1) 

 

 

IV.  Discussion & Conclusion 
 

Data previously presented in chapters 3&4 demonstrated a  decrease in cAMP 

production for D1 palmitoylation mutant in comparison to D1 WT, D1 palmitoylation 

mutant decreased cAMP production is correlated with a less efficient trimeric G 

protein dissociation and an impaired β-arrestin1&2 recruitment. In HEK 293 β-

arrestins 1&2 KO the difference between D1 WT and mutant cAMP production was 

lost suggesting that D1 palmitoylation is central to β-arrestin1&2 recruitment and 

impacts receptor downstream signalling. Plasma membrane and Golgi trafficking data 

suggest that the D1 WT intracellular pool can exist the Golgi and get shuttled to the 

plasma membrane after agonist treatment whereas the palmitoylation mutant remains 
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trapped. These findings support the previous data that demonstrated that DHHC 9 is 

the enzyme suspected of palmitoylating D1 located in the Golgi and is responsible for 

modulating D1 trafficking to the plasma membrane. Similar to D1, DHHC 9's role 

extends beyond D1 palmitoylation, impacting the localisation and function of various 

peripheral membrane proteins. For instance, N/H-Ras localisation and signalling from 

the P.M and Golgi critically depend on the dynamics of palmitate turnover. These two 

small GTPases are palmitoylated by DHHC9 in the Golgi. This lipidation mediates 

their localisation to the plasma membrane  (Vartak et al., 2014). In addition, the 

glucose transporter GLUT1 S-palmitoylation is required for maintaining GLUT1 P.M 

localisation and DHHC9 is the palmitoyl transferase responsible for this critical post-

translational modification (Zhang et al., 2021). 

To further support our findinds, the FACS and Nanobody-based biosensor data require 

meticulous repetition for robust statistical analysis. Moreover, The FACS experiments 

are missing a vehicle treatment control for the  HK293 β-arrestin1&2  KO cells. The 

data would benefit from a phenotype rescue by transfecting β-arrestin1&2 to see if the 

restoration of β-arrestin1&2 expression leads to observing a phenotype similar to that 

seen in HEK293 cells. Also, the nanobody-based conformational-sensitive biosensors 

experiment needs to be repeated in HEK293 cells with SKF81297 to rule out any 

impact of differential agonist effect or cell type on the results observed. Moreover, the 

bystander BRET experiments could benefit from more optimisation by including a 

Vasopressin receptor used in the original paper where these constructs were used as a 

positive control (Tiulpakov et al., 2016). In addition, switching to well-mode kinetics 

and automatic injections with a fixed gain instead of manual injection would produce 

a better temporal resolution with more consistency limiting human error and 

intervention. Lastly, the inclusion of a control that allow to determine that the BRET 
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signal differences are not the result of differences in the conformations between D1 

WT and the palmitoylation mutant knowing that protein palmitoylation can regulate 

and impact its P.M distributions, density, conformation, orientation (Jeyifous et al., 

2016; Naumenko & Ponimaskin, 2018).  

Finally, dynasore has undesirable non‐specific and specific binding properties in 

common with many other small‐molecule inhibitors. For example, it binds to serum 

proteins, causing it to lose dynamin inhibitory activity (Kirchhausen et al., 2008), 

limiting its use for many experimental designs. Dynasore also exhibits cytotoxicity 

and stoichiometric binding to the trace level of detergents commonly used in 

biological assays (McCluskey et al., 2013). Therefore, the dynasore experiment should 

incorporate a cell viability control to discern whether the observed reduction in cAMP 

is attributable to dynasore inhibiting dynamin activity, preventing endocytosis, rather 

than inducing cell death. Alternatively, using siRNAs against clathrin could be 

explored as an alternative to dynasore (Mayle et al., 2012). 

This chapter underscores the multifaceted impact of palmitoylation on D1 

function, signalling, and trafficking. Rigorous experimental refinement and additional 

controls will fortify the validity and interpretability of the presented data, paving the 

way for a more comprehensive understanding of the intricate interplay between 

palmitoylation, receptor dynamics, and downstream signalling events. 
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I.  Discussion 
 

Dopamine is a neurotransmitter of the central nervous system that acts through 

the activation of a huge variety of different receptors to modulate various aspects of 

human and animal behaviour. Signalling properties of the D1 receptors are under tight 

control of multiple factors regulating their functional activity, affecting behaviour. 

One of these factors is receptor palmitoylation, a post-translational receptor 

modification. Palmitoylation is a dynamic modification, and repeated cycles of 

palmitoylation/depalmitoylation are known to modulate different protein functions  

(Zhang & Hang, 2017). More than 70% of all known GPCRs contain potential 

palmitoylation site(s) downstream of their seventh transmembrane domain, suggesting 

that palmitoylation can represent a general feature of neurotransmitter receptors 

(Probst et al., 1992). Disruption of palmitoylation could significantly affect a variety 

of neurotransmitter receptor properties, including conformation, trafficking, and 

localisation on the plasma membrane and downstream signalling. 

1. D1 palmitoylation is central for its G protein activation 

and β-arrestin 1&2 interactions 

 

Understanding the basis governing D1 palmitoylation effects on its protein-

protein interactions required the development of suitable tools to delineate the 

influence of each of the individual component contributions in the overall system 

responses. Our first objective was to implement an approach flexible enough to readily 

answer how D1 interacts with DHHCs and how palmitoylation affects D1’s direct 

recruitment of downstream effectors (G proteins and Arrestin). Thus, we chose to use 

a BRET approach and a NanoBiT complementation assay, which, as discussed in 

chapter 4, provided assays suitable for studying GPCR dynamics (Dixon et al., 2016). 
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For the first time, DHHC9 is reported to palmitoylate D1. Moreover, the palmitoylation 

state of  D1 affects the trimeric G protein dissociation and β-arrestin 1&2 recruitment. 

The specificity of D1 WT interaction with certain DHHC was raised after the CO-IP 

experiment and Acyl-Rac validation of the palmitoylation state of D1 WT and the 

p.C347S;C351S mutant. Then, the BRET interaction study of  D1 WT with the 

available panel of DHHCs identified DHHC9, which is located in the Golgi apparatus 

as the enzyme behind D1 palmitoylation.  

In addition, non-visual arrestins (β-arrestin-1 and β-arrestin-2), which are adaptor 

proteins that function to regulate G protein-coupled receptor signalling and trafficking 

(Burtey et al., 2007), were shown to be poorly recruited to D1 palmitoylation mutant 

in comparison to D1 WT. These results were in line with the work of Kong et al. that 

demonstrated that the internalisation of the D1 receptor palmitoylation mutant was 

attenuated when treated with inhibitors of clathrin-mediated endocytosis. However, 

these treatments did not wholly abolish endocytosis, and in the presence of the 

cholesterol depleter, methyl-β-cyclodexytrin inhibitors of clathrin-mediated 

endocytosis, the palmitoylation mutant receptor internalisation was still more resistant 

to cholesterol depletion than wild type D1 (Kong et al., 2011). These results are in line 

with the findings presented in this work as it shows that the D1 palmitoylation mutant 

recruitment of β-arrestin-1 and β-arrestin-2 is impaired compared to the WT receptor 

and since receptor clathrin-mediated endocytosis requires the coordinated interaction 

of β-arrestins with clathrin (Tian et al., 2014) it would be expected for its 

internalisation to be less sensitive to clathrin mediated endocytosis inhibitors. 

In parallel, a BRET-based assay using the TRUPATH probes (Olsen et al., 2020) to 

monitor the trimeric G protein dissociation for Gαs. This assay demonstrated that D1 
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WT dissociates the trimeric G protein more than the palmitoylation mutant receptor, 

thus explaining the reduced cAMP production observed for the mutant receptor. 

Since palmitoylation influences all aspects of GPCR signalling, the palmitoylation 

state of certain receptors can preferentially direct signalling through particular G 

proteins and hence give different responses to the same ligand. Up to two palmitate 

groups can be found on D1 and different palmitoylation profiles can result in various 

conformations of the carboxy-terminal tail, which may select for certain G protein 

interactions (Chini & Parenti, 2009). Therefore, investigating the whole panel of G 

protein activity of D1 single-site palmitoylation mutants can be an addition to the 

present work. Moreover, Palmitoylation can influence the phosphorylation state of the 

receptor, modulating desensitisation (Naumenko & Ponimaskin, 2018). Therefore, 

uncovering how palmitoylation affects the phosphorylation profile of D1 is interesting 

to explore using Phosphoproteomic techniques such as mass spectrometry, and 

Western blotting using commercially available Anti-D1 phospho antibodies. 

2. D1 palmitoylation is essential for agonist-induced 

trafficking and proper Golgi transport 

 

To understand the impact of palmitoylation on D1 trafficking, bystander BRET 

and nanobody-based conformational-sensitive biosensors were used. This approach 

highlighted the differential trafficking of D1 depending on its palmitoylation state, 

showing that agonist treatment directed intracellular D1 WT  to the plasma membrane; 

when intracellular trafficking was checked as suspected, the Golgi trafficking after 

agonist treatment was impaired for the palmitoylation mutant receptor. When D1 

internalisation was tested in HEK 293 β-arrestin 1&2 KO cells, we found that in the 

absence of arrestins, the agonist-induced trafficking of D1 WT to the P.M was 

terminated. To better understand D1 trafficking, it would be beneficial to test D1 WT 
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trafficking and the palmitoylation mutant intracellular recycling and degradation path 

in the β-arrestin 1&2 KO HEK 293 and try to rescue the phenotype with arrestin 

transfection to understand which of  1 or 2 is responsible for the agonist-induced effect 

on D1 WT. One of the limiting factors in studying D1 internalisation and trafficking 

was the overlap in Rab’s presence in multiple sub-compartments, such as Rab4’s 

presence in early endosomes and recycling vesicles and Rab7’s presence in late 

endosomes and lysosomes. Therefore, having more specific markers and relying on 

antibodies and confocal microscopy might provide more flexibility to assay and 

discriminate subpopulations of vesicles and trafficking compartments at the expense 

of losing temporal resolution. 

II. Future directions 
 

The work presented in this thesis highlights the effect of D1 loss of 

palmitoylation on its G protein activation and β-arrestin 1&2 recruitment and how that 

impacts its trafficking and localisation. The biochemical basis of GPCRs activation 

has been studied to an atomic detail level (Weis & Kobilka, 2018). However, we are 

only now beginning to understand the subcellular organisation of GPCR signalling 

(Calebiro & Koszegi, 2019; Lobingier & von Zastrow, 2019). Many GPCRs are not 

restricted to the plasma membrane and transit the endocytic pathway (Hanyaloglu & 

von Zastrow, 2008). However, endocytosis was long believed only to impact the 

longer-term homeostatic regulation of GPCRs and not their acute signalling. Over the 

past years, this view has changed due to new evidence that GPCRs can engage G 

proteins after endocytosis and leverage the endocytic network to promote and 

attenuate cellular responses (Sutkeviciute & Vilardaga, 2020). Support for this 

emerging view is particularly well-developed for signalling mediated by GPCRs that 
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couple to stimulatory heterotrimeric G proteins (Gs) and activate adenylyl cyclases to 

produce cAMP. Several such GPCRs have now been shown to engage Gs on the 

endosome and the plasma membrane and stimulate sequential phases of cAMP 

production from both locations (Godbole et al., 2017). It is increasingly clear that 

GPCRs vary considerably in the magnitude and duration of cAMP production that 

they stimulate from endosomal membranes compared to the plasma membrane (Cahill 

et al., 2017; Thomsen et al., 2016; Tsvetanova & von Zastrow, 2014). Such differences 

have been clearly shown to impact downstream cellular responses mediated by 

GPCRs, both at the cell and tissue levels (Calebiro et al., 2009; Godbole et al., 2017), 

but little is known about how such signalling diversity is programmed. 

The current view holds that endosomal signalling by GPCRs is strictly dependent on 

β-arrestin and that receptor-specific signalling is programmed according to the overall 

stability of the GPCR /β-arrestin complex (Godbole et al., 2017; Sutkeviciute & 

Vilardaga, 2020; Thomsen et al., 2016). Some GPCRs require binding to β-arrestin 

for internalisation and then remain bound, using β-arrestin as a molecular scaffold to 

stabilise receptors together with other signalling proteins on the endosome limiting 

membrane (Nguyen et al., 2019; Oakley et al., 2000), this resulted in a sustained 

cAMP elevation (Cahill et al., 2017; Feinstein et al., 2013; Nguyen et al., 2019). Other 

GPCRs similarly require β-arrestin to internalise but then dissociate from β-arrestin 

during or shortly after endocytosis (Oakley et al., 2000). This behaviour is still β-

arrestin-dependent due to β-arrestin being needed to internalise, but receptors 

dissociated from β-arrestin transit endosomes rapidly and produce a transient cAMP 

response (Cahill et al., 2017). 
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On the other hand, some GPCRs do not require β-arrestin for endocytosis (Moo et al., 

2021). Therefore, an additional mode of GPCR signalling from endosomes might exist 

that does not strictly require β-arrestin (Blythe & von Zastrow, 2023).  

Since D1 loss of palmitoylation impaired its β-arrestin recruitments, reduced its cAMP 

production, and altered its localisation. It became evident that it is of interest to map 

D1 cAMP microdomains signalling to understand if the drop in cAMP production for 

the palmitoylation mutant is resulting in altered P.M or/and intracellular Gs signalling. 

This could be achieved using conformational fluorescent GPCR biosensors based on 

a variety of strategies, such as fluorescent resonance energy transfer (Kim et al., 2022). 

More recently, a strategy of biosensors utilising nanobodies has been developed to 

detect the active GPCR conformation (De Groof et al., 2019; Puri et al., 2022).  

Furthermore, D1 arrestin interaction on the endosomes needs to be evaluated to 

understand how the loss of palmitoylation is impacting its β-arrestin interaction on the 

endosomes. This could be achieved using an endosomal bystander LgBiT, utilising 

the FYVE domain of endofin (Namkung et al., 2016a), in combination with the 

SmBiT-βarrs. This assay robustly detected endosomal translocation of all GPCRs 

known to colocalise with βarrs at the endosome (Janetzko et al., 2022). One interesting 

question would be to understand the phosphorylation profile of D1 WT vs the 

palmitoylation mutant to understand the reasons behind β-arrestin not being recruited 

to the receptor. Since agonist activation of  D1 rapidly leads to receptor desensitisation 

and a return to basal levels of signalling. This desensitisation process is intimately 

linked with receptor phosphorylation. The D1 receptor is highly phosphorylated, with 

32 intracellular serine and threonine residues, and is known to be phosphorylated by 

several kinases including protein kinase A, protein kinase C, and G protein-coupled 

receptor kinases (Moritz et al., 2023). Previous studies indicate that the D1 is 
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phosphorylated on its third intracellular loop (ICL3) and C-terminus in a hierarchical 

fashion, in that phosphorylation must first occur on the C-terminus before the ICL3 

can be phosphorylated (Moritz et al., 2023). These results indicate that a large fraction 

of DA-induced D1 phosphorylation occurs on residues T360 and S362 in the proximal 

C-terminus and that these residues are also responsible for most DA-induced β-arrestin 

recruitment to the D1. Thus, Using the same approach, we can identify the effect of 

loss of palmitoylation on D1 phosphorylation and understand if β-arrestin impaired 

recruitment in the palmitoylation mutant is resulting from a difference in its 

phosphorylation or the hypothesis that it is caused by a conformational change in the 

C-tail and ICL3 blocking access of Kinases or/and β-arrestin. Finally, D1 differential 

localisation and trafficking of D1, depending on its palmitoylation profile can be 

monitored using microscopy imaging.  

 

III. Concluding remarks  
 

The modern challenges in the GPCR field involve translating the continuing 

boom in structural and signalling information to decipher the molecular processes 

underpinning these receptors' dynamic and protein-protein interactions to incorporate 

them into drug discovery. Nevertheless, among the pending questions, we need more 

fundamental information about GPCRs PTMs and their role in tuning receptor 

activity. Accordingly, even if our knowledge of GPCR signalling has developed 

extensively, little is known about what mechanisms drive these structures' spatial and 

temporal functions. Therefore, to take advantage of the new information arising from 

palmitoylation and its impact on receptor signalling and trafficking, two of the main 

objectives of this thesis were to investigate the mechanistic basis for palmitoylation 
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effect on D1 to potentially explore its in vivo relevance in the context of disease in 

future studies.  

Past behavioural and physiological studies have provided some insight into D1-

mediated β-arrestin functions. Urs et al. showed that both β-arrestin2 and D1 knockout 

mice had lower morphine-induced locomotor activity than control mice (Urs et al., 

2011). They concluded that the D1-dependent, β-arrestin-related ERK signalling 

cascade was required for acute morphine-induced locomotor activity. These data 

support the importance of β-arrestin signalling in locomotor functions. A phase I 

clinical trial evaluated a novel D1 agonist with partial cAMP activity but no activation 

of β-arrestin, which suggested its superiority to levodopa in treating late-stage 

Parkinson’s patients. These data suggest that understanding mechanisms that can 

govern D1 receptor/β-arrestin interactions and signalling is of therapeutic importance. 

Such studies, however, are in their infancy, and future research is necessary as the data 

suggest that functional selectivity at D1-mediated β-arrestin may be a route to 

precision medicine. For some conditions, such as young adult rats in the T-maze task 

(Yang et al., 2021), bias toward D1-mediated β-arrestin appears essential.  

In contrast, bias against D1-mediated β-arrestin may be more beneficial for other 

conditions, at least in non-human primates (Wang et al., 2019). Several ongoing clinic 

trials are using novel D1 drugs that are biased against β-arrestin (Huang et al., 2020; 

Yang et al., 2022). All the compounds currently in clinical trials, however, are partial 

cAMP agonists. Determining if the lack of β-arrestin activity helps or hinders 

therapeutic responses will be very useful. Precise functional targeting may be crucial 

for maximising the effectiveness of D1 agonists. 

 The data presented in this thesis added and reinforced the current knowledge on the 

importance of palmitoylation of neurotransmitter receptors, in this case, D1 and its 
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crucial role in the regulation of receptor functions such as trafficking signalling and 

β-arrestin interactions, and consequently, in the control of different kinds of 

physiological and potential pathological behaviours. We are only beginning to 

uncover how these diverse extracellular signals integrate to establish unique patterns 

of cAMP-signalling within a given cell type. Although the medicines we use to 

modulate the cAMP pathway are helping patients, they are also associated with 

unwanted adverse effects. We need a detailed understanding of the system's 

complexity to increase the specific efficacy of drugs targeting these signalling 

pathways. To achieve this, we must strive to map out all cellular cAMP signalosomes. 

The unique combination of phosphoproteomics, interactome analysis, and imaging 

may support the discovery of new pharmacological targets by increasing the chance 

of identifying biologically meaningful interactions. Functional phosphoproteomic 

analysis downstream of D1  may help define novel signalosomes by identifying new 

signalling targets. Interactomes of new or known signalosome components may 

support the identification of suitable targeting domains for resonance energy transfer 

sensors that can then be used to characterise cAMP signalling at that site in space and 

time. With a detailed model of the spatiotemporal distribution of cyclic nucleotides in 

D1 WT versus D1 palmitoylation mutant cells, we may be able to design specific 

targeted interventions, such as signalosome disruptor peptides or small molecules, to 

correct pockets of aberrant cyclic nucleotide signalling for precision medicine that can 

be used to on a broader scale for address similar signalling phenotypes occurring in 

disease models. 

Although this thesis has focused on the palmitoylation of the D1 receptor, many 

other GPCRs are known to be palmitoylated. For example: The serotonin receptor 5-

HT1A, where the lack of palmitoylation impairs the interaction with its Gαi subunits, 
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thus losing the ability to inhibit cAMP production (Papoucheva et al., 2004). Also, the 

β2 Adrenergic receptor In the absence of palmitoylation, agonist activation promotes 

reduced cAMP production and a different phosphorylation profile of the receptor (Liu 

et al., 2012; Loisel et al., 1996; Moffett et al., 2001). In addition, upon ligand 

activation, palmitoylated C-C chemokine receptor type 5 (CCR5) is phosphorylated 

on four serine residues in position 336, 337, 342, and 349, but these phosphorylations 

could not be found in unpalmitoylated CCR5 (Kraft et al., 2001). Moreover, inhibition 

of palmitoylation affected CCR5 signalling (Blanpain et al., 2001; Kraft et al., 2001). 

CCR5 palmitoylation is essential for its incorporation into plasma membrane raft 

domains, raft localisation, caveolae-dependent internalisation, transport to the plasma 

membrane, and its protein stability (Boncompain et al., 2019; Jansen & Beaumelle, 

2022; Venkatesan et al., 2002). 

All the above examples highlight the importance of palmitoylation and show that 

it is responsible for modulating receptor trafficking, phosphorylation, and signalling 

and works in tandem with other regulatory mechanisms. Therefore, the information 

and approaches used here can now be applied to these other receptors to understand 

how general these findings are. 

. 
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