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Hypergraphs are higher-order networks that capture the interactions between two or more nodes. Hypergraphs
can always be represented by factor graphs, i.e., bipartite networks between nodes and factor nodes (representing
groups of nodes). Despite this universal representation, here we reveal that k-core percolation on hypergraphs
can be significantly distinct from k-core percolation on factor graphs. We formulate the theory of hypergraph
k-core percolation based on the assumption that a hyperedge can be intact only if all its nodes are intact. This
scenario applies, for instance, to supply chains where the production of a product requires all raw materials and
all processing steps; in biology it applies to protein-interaction networks where protein complexes can function
only if all the proteins are present; and it applies as well to chemical reaction networks where a chemical reaction
can take place only when all the reactants are present. Formulating a message-passing theory for hypergraph
k-core percolation, and combining it with the theory of critical phenomena on networks, we demonstrate sharp
differences with previously studied factor graph k-core percolation processes where it is allowed for hyperedges
to have one or more damaged nodes and still be intact. To solve the dichotomy between k-core percolation on
hypegraphs and on factor graphs, we define a set of pruning processes that act either exclusively on nodes or
exclusively on hyperedges and depend on their second-neighborhood connectivity. We show that the resulting
second-neighbor k-core percolation problems are significantly distinct from each other. Moreover we reveal that
although these processes remain distinct from factor graphs k-core processes, when the pruning process acts
exclusively on hyperedges the phase diagram is reduced to the one of factor graph k-cores.
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I. INTRODUCTION

Higher-order networks—hypergraphs and simplicial com-
plexes, representing multinode interactions—have recently
gained significant attention [1–12]. Research interest is grow-
ing in both modeling higher-order network structures and
investigating dynamical processes and cooperative systems
on such networks [4,8,13–21]. Importantly, the features and
characteristics of processes and cooperative phenomena on
higher-order networks differ significantly from those on or-
dinary networks. In this work we focus on specific highly
connected substructures in hypergraphs, namely, their k-cores.

Each hypergraph can be represented by an equivalent bi-
partite graph between nodes and hyperedges, factor nodes,
which is called the factor graph of a hypergraph. Consider-
ing multiagent interactions, one can recognize two markedly
distinct classes. In the first class [16,17,22], the removal (dam-
aging) of one of the interacting agents (let the number of these
agents exceed two) doesn’t break interaction between the re-
maining agents. Typically this happens in networks of social
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interactions. For instance, an online social network group
might still be working if one or more of its members are not
participating on it actively. Such systems of multinode inter-
actions are naturally described by factor graphs, i.e., bipartite
networks. In the second class of multiagent interactions, the
removal (damaging) of one of the interacting agents breaks
interaction between the remaining agents. Supply chains and
catalytic networks [23,24], protein-interaction networks [25],
and networks of chemical reactions [26] provide an example
for higher-order interactions of this kind. Such systems of
multinode interactions are described by hypergraphs, in which
the removal of a node results in the disappearance of all the ad-
jacent hyperedges. For instance, the removal of a raw material
will impede the production of a product, the absence of a pro-
tein will impede the formation of a protein complex, and the
absence of a reactant will impede a chemical reaction to occur.
Node percolation problems for these two classes of systems
qualitatively differ from each other (compare Refs. [22] and
[27]), although edge percolation on hypergraphs coincides
with factor node percolation on corresponding factor graphs.

The issue of k-cores in ordinary networks has been ex-
tensively explored [28–33]. For a graph G, a k-core is the
maximal subgraph Gk , in which each node has degree at least
k, where k is a given threshold value. One can decompose
a graph into the set of k-shells Gk\Gk+1 and classify the
nodes according to shells to which they belong [34,35]. The
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higher k-cores play a particular role in a graph in respect of
rapid spreading phenomena, including fast disease spreading
[36,37]. The highest k-core was observed to be the center
localization in a number of network architectures [38]. The
pruning process resulting in a k-core is quite efficient algo-
rithmically: one must progressively remove each node with
degree smaller than k until no such nodes remain. The result
of this process in an infinite graph is a subgraph which can
contain a single giant and many finite components. Sometimes
it is this giant component that is referred to as the k-core.
We shall focus on this component. In the infinite treelike
networks, finite components in the k-cores are vanishingly
rare if k exceeds 1.

The k-core problems for hypergraphs have received little
attention thus far. The authors of Refs. [16,17] introduced
the (k, n)-core in a factor graph as the maximal subgraph of
the factor graph with nodes of degree equal to at least k and
factor nodes of degree equal to at least n. This subgraph is the
result of the progressive pruning of nodes with degrees smaller
than k and factor nodes with degrees smaller than n. This
definition and the pruning algorithm applied to a factor graph
are relevant for the systems that are described by bipartite
networks, like social interactions mentioned earlier. If we in-
spect, however, hypergraphs represented by the factor graphs
emerging during the execution of this algorithm, we observe
that during this pruning the cardinalities of hyperedges cor-
responding to factor nodes can decrease. Consequently, the
(k, n)-cores introduced in this way are not subhypergraphs of
the hypergraph in contrast to the k-cores of an ordinary graph.

In this work we adopt definitions of k-core hypergraph
percolation that pertain to specific multinode interactions in
which the removal or damage of one interacting agent dis-
rupts the interaction among the remaining agents (e.g., supply
chain, protein interaction networks, or networks of chem-
ical reactions). In the present work we describe a set of
k-core problems specific for hypergraphs and the correspond-
ing pruning algorithms in which nodes and hyperedges are
progressively removed (damaged) if their degrees and cardi-
nalities, respectively, are smaller than given threshold values,
k and n, and hence each step of these algorithms provides
a subhypergraph of an initial hypergraph. The (k, n)-cores
produced by these pruning algorithms are the maximal sub-
hypergraphs whose vertices and hyperedges have degrees and
cardinalities equal to at least k and n. These definitions specifi-
cally address multinode interactions that exhibit the following
characteristic: if one of the interacting agents is removed, it
disrupts the interaction among the remaining agents (as in
chemical reactions).

For such (k, n)-cores in random hypergraphs, we explore
phase transitions and obtain phase diagrams. These phase
diagrams are significantly richer than for the k-cores in or-
dinary graphs, and in factor graphs [16,17] where the phase
transition for the 2-core is continuous, while the phase tran-
sitions for (k � 3)-cores are hybrid. In particular, we observe
a significant difference between the critical properties of the
(2,2)-core on factor graphs and on hypergraphs. While in
factor graphs the (2,2)-core percolation is always continuous
[16,17], on hypergraphs we observe two transition lines on the
phase diagram—the continuous transition line and the hybrid
transition one. These lines converge at the tricritical point.

In order to solve the dichotomy between (k, n)-core perco-
lation on factor graphs [16,17] and the k-core percolation on
hypergraphs investigated here we introduce a class of k-core
problems, in which the pruning process accounts not only for
the closest neighborhood of a node (e.g., it accounts not only
for hyperedges adjacent to a node but also for all their nodes).
In this class of models, the pruning process can involve either
exclusively nodes or exclusively hyperedges, and the pruning
algorithm might depend on the nodes or hyperedges which are
second neighbors within the factor graph.

We show that the second-neighbor k-core percolation
involving exclusively pruning of the nodes or involving ex-
clusively pruning of the hyperedges are distinct, and we relate
these models to both hypergraph (k, n)-cores depending on
the closest neighborhood and to factor graphs’ (k, n)-core.
In particular, we show that the percolation threshold for the
second-neighbor k-core problems with pruning of the nodes
coincides with the percolation threshold for the first-neighbor
hypergraph k-core problems; however, in the limiting case
in which only hyperedges are initially damaged, the second-
neighbor k-core problems with pruning of the hyperedges
coincides with the percolation threshold of the factor graph
k-cores [16,17].

These results are obtained within a message-passing theory
[39–42] exact for locally treelike hypergraphs and within the
generating function theory of critical phenomena on networks,
and it is here supported by simulations. The message-passing
equations for the k-core percolation problems presented here
are derived from their definition of the k-core problems using
as starting point the message passing for percolation in hyper-
graphs [27].

Our approach is general, and the message-passing equa-
tions can be applied to arbitrary locally treelike hypergraphs.
In particular, we apply these equations to random hypergraphs
[12,43,44] with given cardinality and degree distributions.
Possibly the proposed approach could be extended in the
future in order to go beyond the locally treelike approximation
due to recent advances on message passing on networks with
loops [42,45].

The paper is structured as follows: In Sec. II we overview
the k-core problem for ordinary graphs and develop the
message-passing theory for it. Section III introduces the basic
definitions and notations for hypergraphs, in particular, the
definition of the subhypergraph of a hypergraph. In Sec. IV
we derive the message-passing and the generating functions
equations for the (k, n)-core problem on hypergraphs (the
first-neighbor version in the sense of nodes and factor nodes in
factor graphs). In Sec. V we derive the message-passing and
the generating functions equations for the second-neighbor
version of the (k, n)-core problem on hypergraphs. In Sec. VI
we provide concluding remarks.

II. OVERVIEW OF k-CORE PERCOLATION
ON SIMPLE NETWORKS

A. k-core and pruning algorithm

We consider a graph G = (V, E ). The k-core is the largest
subgraph where intact vertices have at least k interconnec-
tions. We start from a configuration in which nodes are
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initially damaged with probability 1 − p. The k-core is ob-
tained by the following algorithm:

(1) Damage iteratively all the nodes with fewer than k
undamaged neighbors.

(2) The k-core is the giant component of the network
induced by the undamaged nodes. This k-core is the giant
subgraph induced by nodes left undamaged by the pruning
process.

Note that in infinite locally treelike graphs finite k-core
components are negligible.

B. Derivation of the message-passing algorithm for k-cores

Here we aim to derive the message-passing equations for
the k-core starting directly from the pruning algorithm under
the hypothesis that the network is locally treelike. To this end,
let us assume that the initial damage of the nodes is exactly
known and encoded in the indicator function xi ∈ {0, 1} speci-
fying whether a node is initially damaged xi = 0 or not xi = 1.

At step (2) we assume to know whether each node i
has been pruned or damaged (si = 0) or not (si = 1). The
message-passing equations determining the giant component
of the network formed by undamaged nodes are

σ̂i→ j = si

⎡
⎣1 −

∏
r∈N (i)\ j

(1 − σ̂r→i )

⎤
⎦, (1)

where N (i) denotes the set of neighbors of node i. Note that
the message σ̂i→ j indicates whether node j connects node
i to the giant component (σ̂i→ j = 1) or not (σ̂i→ j = 0), and
it is defined assuming that node j is already in the giant
component (see, for instance, discussion of the message-
passing algorithm in multilayer networks with link overlap
[41,46,47]). The indicator function determining whether node
i belongs to the giant component or not is instead given by

σ̂i = si

⎡
⎣1 −

∏
r∈N (i)

(1 − σ̂r→i )

⎤
⎦. (2)

Now at step (2) we have that a node that is undamaged and
belongs to the k-core must receive at least k positive messages
(i.e., it should be connected to at least k nodes in the giant
component),

si = xi

∑
�⊆N (i)
|�|�k

∏
r∈�

σ̂r→i

∏
r∈N (i)\�

(1 − σ̂r→i ), (3)

where � is a subset of N (i) including at least k nodes. Under
the assumption that j is connected to the giant component, i.e.,
σ̂ j→i = 1, substituting the above expression for si into Eq. (1)
for σ̂i→ j we obtain then that at stationarity the messages σi→ j

satisfy

σ̂i→ j = xi

∑
�⊆N (i)\ j
|�|�k−1

∏
r∈�

σ̂r→i

∏
r∈N (i)\(�∪ j)

(1 − σ̂r→i ), (4)

while σ̂i = si is given by Eq. (3).

These message-passing equations can be averaged over the
distribution of {xi} given by

P({xi}) =
N∏

i=1

pxi (1 − p)1−xi , (5)

and using the locally treelike approximation we get

σi→ j = p
∑

�⊆N (i)\ j
|�|�k−1

∏
r∈�

σr→i

∏
r∈N (i)\(�∪ j)

(1 − σr→i ), (6)

σi = p
∑

�⊆N (i)
|�|�k

∏
r∈�

σr→i

∏
r∈N (i)\�

(1 − σr→i ). (7)

Since these message-passing equations are more cumbersome
to implement than the original pruning process, typically the
message-passing algorithms are not applied to the k-core
problems. However, their formulation can be used to derive
the equations describing the pruning algorithm on a random
(locally treelike) graph that we discuss next.

C. k-core transition on ordinary random networks

Having derived the message-passing algorithm describing
the final outcome of the pruning process, we can now demon-
strate how the known formulas for k-core percolation on a
random network relate to the pruning algorithm. This exercise
will help us clarify the correct equations determining (k, n)-
core percolation on hypergraphs.

Let us consider the k-cores of networks provided by the
configuration model with a given degree distribution P(q). In
the configuration model, to each network G = (V, E ) with
N = |V | nodes and the adjacency matrix a, the following
probability is assigned:

P(G) =
∏
i< j

p
ai j

i j (1 − pi j )
1−ai j (8)

with

pi j = qiq j

〈q〉N , (9)

where qi is the degree of node i.
By averaging the message-passing equations over a net-

work generated by the configuration model we get that Z
indicating the average message σi→ j in the configuration net-
work ensemble is given by

Z =
∞∑

q=k

qP(q)

〈q〉
q−1∑

s=k−1

(
q − 1

s

)
Zs(1 − Z )q−1−s, (10)

and that Sk = 〈σi〉 indicating the fraction of nodes in the
k-core is given by

Sk =
∞∑

q=k

P(q)
q∑

s=k

(
q

s

)
Zs(1 − Z )q−s. (11)

This latter quantity can be also written as

Sk =
∞∑

s=k

Sk (s), (12)
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where Sk (s) is the fraction of nodes that are in the k-core and
have exactly degree s � k within it. We have

Sk (s) =
∞∑

q=s

P(q)

(
q

s

)
Zs(1 − Z )q−s, (13)

and Eq. (12) follows from the observation that

Sk =
∞∑

q=k

P(q)
q∑

s=k

(
q

s

)
Zs(1 − Z )q−s

=
∞∑

s=k

∞∑
q=s

P(q)

(
q

s

)
Zs(1 − Z )q−s, (14)

where we have used the equality
∞∑

q=k

q∑
s=k

=
∞∑

s=k

∞∑
q=s

. (15)

We conclude our overview of k-core percolation on an ordi-
nary network by expressing Eq. (10) and Eq. (11) in terms
of the generating functions of a degree distribution, G(z) ≡∑

q P(q)zq, getting

Z = 1 − 1

〈q〉
k−2∑
s=0

Zs

s!
G(s+1)(1 − Z ) (16)

and

Sk = 1 −
k−1∑
s=0

Zs

s!
G(s)(1 − Z ). (17)

III. SUBHYPERGRAPHS OF HYPERGRAPHS

Denote a hypergraph by H = (V, H ), where V and H are
the sets of its vertices and hyperedges. We indicate with N
the number of nodes, i.e., |V | = N , and with M the number of
hyperedges, i.e., |H | = M, of the hypergraph. We indicate the
nodes of the hypergraph with Latin letters i, j, r, . . . and the
hyperedges of the hypergraph with Greek letters α, β, γ , . . ..
Each hyperdege α determines a set of nodes

α = [
i1, i2, i3, . . . , imα

]
(18)

with mα ≡ |α| indicating the cardinality (number of nodes)
of the hyperdege α. Likewise, each node i has degree qi

indicating the number of hyperedges it belongs to.
A subhypergraph S of the hypergraph H is defined as S =

(VS, HS ), where VS ⊂ V and HS ⊂ Hmax, where Hmax is the full
set of those hyperedges of H that have each of their end ver-
tices belonging to VS . In particular, Sinduced = (VS, Hmax) is the
vertex-induced subhypergraph of the hypergraph H, induced
by the set of vertices VS . Importantly, any subhypergraph S of
the hypergraph H cannot have hyperedges not belonging to
H, for example, hyperedges of smaller cardinalities.

IV. HYPERGRAPHS (k, n)-CORE PROBLEMS AND THEIR
(FIRST-NEIGHBOR) PRUNING ALGORITHM

A. First-neighbor pruning algorithm

We consider a hypergraph H = (V, H ). In this hypergraph
we assume that a hyperedge is intact if it is not damaged and

if none of its nodes are damaged. The hypergraph always can
be represented as a factor graph, which is a bipartite networks
having two types of nodes, namely, the nodes corresponding
to the nodes of the hypergraphs and the factor nodes corre-
sponding to the hyperedges of the hypergraph. Accordingly,
we can choose to iteratively prune only nodes, only hyper-
edges, or both nodes and hyperedges. If the algorithm for the
pruning only depends on the first neighbors of a node in the
factor graph, we can treat all these variants simultaneously.
On the other hand, when the pruning algorithm depends on
the first and second neighbors of a node in the factor graph,
we need to treat independently pruning of nodes and pruning
of hyperedges as we will show in Sec. V. Moreover, for each
of the pruning algorithms, the initial damage can target either
nodes or hyperedges.

If we consider the pruning on the nodes and hyperedges de-
pending only on the state of their neighbors in the factor graph
we can define the hypergraph’s (k, n)-core. The (k, n)-core is
the maximal subhypergraph with the vertices whose (internal)
degrees are at least k and the hyperedges have cardinalities
equal or exceeding n. We start from a configuration in which
nodes are initially damaged with probability 1 − pN and/or
hyperedges are initially damaged with probability 1 − pH .
The (k, n)-core can be obtained using the following pruning
algorithm:

(1) Damage iteratively all the hyperedges having fewer
than n (undamaged) nodes and all the nodes with fewer than k
undamaged hyperedges.

(2) The (k, n)-core is the giant subhypergraph induced by
undamaged nodes and undamaged hyperedges.

Equivalently, this (k, n)-core can be obtained by, first, re-
moving all hyperedges with cardinalities smaller than n and,
second, progressively pruning all nodes with degrees smaller
than k. The (k, 2)-core can be called the k-core for hyper-
graphs.

From the above definition of hypegraph k-core percolation
we conclude that there are two major differences between
hypegraph percolation and factor graph percolation [16,17].
First, and most importantly, in hypergraph percolation the
damage of a node automatically disrupts all the hyperedges
to which the node belongs while in factor graph percolation
it reduces only by one the degree of the factor nodes to
which the node is connected. Second, hypergraph k-cores are
subhypegraphs of the original hypergraph, while this property
is not preserved in factor graph percolation (see schematic
representation of the difference in Fig. 1).

B. Message-passing algorithm for hypergraph (k, n)-core

In this subsection we derive the message-passing equa-
tions determining the (k, n)-core directly from the definition
of problem given in the previous subsection. The obtained
equations are very general and apply to every hypergraph
under the assumption that the factor graph encoding for the
hypergraph is locally treelike.

Since the definition of the (k, n)-core is given in terms
of the giant subhypergraph induced by intact nodes and
hyperedges, the message-passing equations for (k, n)-core
percolation will be derived starting from the equations valid
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(a)

(b) (c)

FIG. 1. Schematic representation of the difference between the factor graph [16,17] and hypergraph pruning algorithms. We consider the
hypergraph in panel (a) and its factor graph representation with circles representing nodes and triangles representing factor nodes. In the factor
graph pruning algorithm (b), when a node is damaged (empty circles), all the hyperedges including this node are reduced in size by one. In
hypergraph percolation (c) all hyperedges containing the damaged node are damaged leading to damaged factor nodes (empty triangles) in the
factor graph representation.

for hypergraph percolation [27], which will be used to identify
this giant subhypergraph.

Here we recall that on hypergraph percolation [27] the
node and hyperedge percolation are distinct and that an hy-
peredge is in the giant subhypergraph only if (1) it is not
damaged, (2) none of its nodes are damaged, and (3) at least
one of its nodes is connected to the giant subhypergraph.

If follows that the (k, n)-core algorithm described in the
previous subsection is equivalent to the one in which the
initial damage is modified as in the following: nodes are
initially damaged with probability 1 − pN and hyperedges α

are initially damaged deterministically if their cardinality is
smaller than n, i.e., |α| < n, while if their cardinality is larger
or equal to n, i.e., |α| � n, they are damaged with probability
1 − pH . Given this initial damage, the (k, n)-core defined by
the pruning algorithm is equivalent to the one obtained using
the following pruning algorithm:

(1′) Damage iteratively all the nodes with fewer than k
undamaged hyperedges.

(2′) The (k, n)-core is the giant subhypergraph induced by
undamaged nodes and undamaged hyperedges.

In order to derive the message-passing algorithm for (k, n)-
core percolation directly from this pruning algorithm, let us
assume that the initial damage of the nodes is exactly known
and encoded in the indicator function xi ∈ {0, 1} indicating
whether a node is initially damaged xi = 0 or not xi = 1.
Similarly, we assume that the initial damage of the hyperedges
is exactly known and encoded by the product yαθ (|α| − n) ∈
{0, 1} where yα ∈ {0, 1} indicates whether the hyperedge α is
randomly damaged while θ (|α| − n) enforces the determinis-
tic damage of hyperedges of cardinality less then n. [Note that
here θ (z) indicates the Heaviside function θ (z) = 1 if z � 0
and θ (z) = 0 otherwise.]

The message-passing equations for (k, n)-core percola-
tion are here derived starting from the definition of the
(k, n)-core and the message-passing equation for hypergraph
percolation [27].

At step (2′) of the pruning algorithm, assuming that we
know the indicator functions si ∈ {0, 1} and sα ∈ {0, 1} indi-
cating whether a node i or a hyperedge α is intact or not, the
message-passing equations that determine the nodes in the gi-
ant subhypergraph induced by the intact nodes and hyperedges
are the ones of hypergraph percolation [27]:

ŵi→α = si

⎡
⎣1 −

∏
β∈N (i)\α

(1 − v̂β→i )

⎤
⎦,

v̂α→i = sα

⎛
⎝ ∏

j∈N (α)\i

s j

⎞
⎠

⎡
⎣1 −

∏
j∈N (α)\i

(1 − ŵ j→α )

⎤
⎦, (19)

where N (i) denotes the set of neighbors of node i and N (α)
indicates the set of neighbors of factor node α. The indicator
functions σ̂i ∈ {0, 1} and r̂α ∈ {0, 1} indicating whether nodes
and hyperedges are in the giant subhypergraph are expressed
in terms of si and sα and are given, respectively, by the
equations [27]

σ̂i = si

⎡
⎣1 −

∏
β∈N (i)

(1 − v̂β→i )

⎤
⎦,

r̂α = sα

⎛
⎝ ∏

j∈N (α)

s j

⎞
⎠

⎡
⎣1 −

∏
j∈N (α)

(1 − ŵ j→α )

⎤
⎦. (20)
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Note, however, that these equations assume that the indicator
functions si and sα are known, while here we want to obtain
message-passing equations and also be able to determine their
value as obtained by implementing the pruning algorithm (1′).
According to the definition of the hypergraph (k, n)-core, the
indicator function si obtained by the pruning algorithm is
nonzero only if the node i receives at least k positive messages
from its neighbors,

si = xi

∑
�⊆N (i)
|�|�k

∏
β∈�

v̂β→i

∏
γ∈N (i)\�

(1 − v̂γ→i ). (21)

The indicator function sα obtained by the pruning algorithm
is simply given by

sα = yαθ (|α| − n). (22)

In order to get the message-passing equations for (k, n)-core
percolation we need to insert these expressions for si and sα

into Eq. (19). Considering that the messages v̂α→i is defined
under the assumption that node i is in the giant subhypergraph
and ŵi→α is defined under the assumption that hyperedge α

is in the giant subhypergraph, and exploiting the fact that the
messages take only the 0,1 values, we get

ŵi→α = xi

∑
�⊆N (i)\α
|�|�k−1

∏
β∈�

v̂β→i

∏
γ∈N (i)\(�∪α)

(1 − v̂γ→i ),

v̂α→i = yαθ (|α| − n)
∏

j∈N (α)\i

ŵ j→α. (23)

Providing an intuitive explanation of these equations and their
derivation might be instructive. The expression for ŵi→α in
(19) implies that the node sends a positive message to a neigh-
bor if it is intact (si = 1) and if it receives at least a positive
message from one of its hyperedges. The expression for si in
Eq. (21) expresses that node i is intact if it is not initially
damaged (xi = 1) and if it receives at least k-positive mes-
sages from its neighbor hyperedges. It follows that under the
assumption that α is in the giant subhypergraph, the message
ŵi→α is equal to one, if and only if xi = 1, and node i receives
at least k − 1 positive messages from neighbor hyperedges
different from α as expressed by the first equation in (23).
Similarly the equation for v̂α→i in (19) implies that one hyper-
edge can send a positive message only if (1) it is not initially
damaged, (2) all its nodes are intact, and (3) it receives at least
a positive message from one of its nodes. The condition that
all the nodes of the hyperedge must be intact, (i.e., must have
si = 1) combined with the expression of si given by Eq. (21)
implies that every node of the hyperedge should be connected
to at least other k − 1 � 1 intact hyperedges. This happens if
and only if each of these nodes sends a positive message to
the hyperedge α leading to the second equation (23).

Following a similar line of thought, and exploiting the fact
that both si, sα and the messages ŵi→α, v̂α→i are taking values
0,1, one can immediately show that

σ̂i = si = xi

∑
�⊆N (i)
|�|�k

∏
β∈�

v̂β→i

∏
γ∈N (i)\�

(1 − v̂γ→i ),

r̂α = yαθ (|α| − n)
∏

j∈N (α)

ŵ j→α. (24)

Hence Eqs. (23) and (24) are the message-passing equa-
tions for hypergraph (k, n)-core percolation when the initial
random damage of nodes, i.e., {xα}, and of hyperedges, i.e.,
{yα}, is known.

Another set of message-passing equations hold when we
do not have direct access to the configuration of the initial
damage {xi}, {yα} but we know only the probability that nodes
and hyperedges are initially intact, i.e., pN and pH , respec-
tively. This second set of message-passing equations can be
simply obtained by averaging the messages over the initial
damage distribution

P({xi}, {yα}) =
N∏

i=1

pxi
N (1 − pN )1−xi

×
M∏

α=1

pyα

H (1 − pH )1−yα . (25)

In this way we obtain the following set of message-passing
equations (note that the messages wi→α and vα→i now take
real values between 0 and 1):

wi→α = pN

∑
�⊆N (i)\α
|�|�k−1

∏
β∈�

vβ→i

∏
γ∈N (i)\(�∪α)

(1 − vγ→i),

vα→i = pHθ (|α| − n)
∏

j∈N (α)\i

w j→α. (26)

The probability σi that the node i belongs to the (k, n)-core
and the probability rα that the hyperedge α belongs to the
(k, n)-core are given by

σi = pN

∑
�⊆N (i)
|�|�k

∏
β∈�

vβ→i

∏
γ∈N (i)\�

(1 − vγ→i ),

rα = pHθ (|α| − n)
∏

j∈N (α)

w j→α. (27)

It follows that Eq. (26) and Eq. (27) uniquely determine the
hypergraph (k, n)-core when we know only the probabilities
pN and pH that nodes and hyperedges are initially undamaged,
respectively. The fraction Skn of nodes in the (k, n)-core can
be expressed in terms of σi and rα given by Eq. (27) as

Skn = 1

N

N∑
i=1

σi, (28)

and the fraction Rkn of hyperedges in the (k, n)-core is
given by

Rkn = 1

M

M∑
α=1

rα. (29)

C. Hypergraph (k, n)-core percolation on random hypergraph

In many occasions the exact structure of the hypergraph
might be unknown, and so we need to rely on predictions
based on the hypergraph ensembles from which the hyper-
graph is drawn. Here we consider the ensembles of random
hypergraphs H = (V, H ) of N = |V | nodes and M = |H | hy-
peredges whose node degree distribution is P(q) and whose
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distribution of hyperedge cardinalities is Q(m). In this ensem-
ble the probability of a hypergraph H of incidence matrix b is
given by

P(H) =
N∏

i=1

M∏
α=1

pbiα
iα (1 − piα )1−biα , (30)

with

piα = qimα

〈q〉N , (31)

where qi is the degree of node i and mα is the cardinality of
hyperedge α.

We can obtain the analytical equations determining the
(k, n)-core percolation problem in this ensemble by averaging
the message-passing equation over the probability P(H).

Let us indicate with V and W , respectively, the averages of
the messages vi→α and wα→i over the distribution P(H). We
obtain then the equations of V and W given by

V = pH

∑
m�n

mQ(m)

〈m〉 W m−1,

W = pN

∞∑
q=k

qP(q)

〈q〉
q−1∑

s=k−1

(
q − 1

s

)
V s(1 − V )q−1−s. (32)

Similarly the fractions of vertices, Skn, and hyperedges, Rkn,
belonging to the (k, n)-core can be obtained by Eq. (28) and
Eq. (29) by averaging over P(H) giving

Rkn = pH

∑
m�n

Q(m)W m, (33)

Skn = pN

∞∑
q=k

P(q)
q∑

s=k

(
q

s

)
V s(1 − V )q−s. (34)

In particular, setting n = 2, we obtain the formulas for the
k-cores in this problem.

Using the generating functions, we get

V = pH

[
GQ1(W ) −

∑
m<n

mQ(m)

〈m〉 W m−1

]
, (35)

W = pN − pN

〈q〉
k−2∑
s=0

V s

s!
G(s+1)

P (1 − V ), (36)

where GQ1(x) ≡ G′
Q(x)/G′

Q(1) = G′
Q(x)/〈m〉, and

Rkn = pH

[
GQ(W ) −

∑
m<n

Q(m)W m

]
, (37)

Skn = pN − pN

k−1∑
s=0

V s

s!
G(s)

P (1 − V ). (38)

D. Critical behavior of (k, n)-core percolation
on random hypergraphs

The hypergraph (k, n)-core percolation process has a
critical behavior that differs significantly from the k-core
percolation on simple networks and the (k, n)-core percola-
tion on factor graphs. One of the most striking properties of
(k, n)-core percolation is the presence of discontinuous phase

transitions also for k = 2, while the k-core percolation on sim-
ple networks and the (k, n)-core percolation on factor graph
are discontinuous only for k � 3. Here we will emphasize
this significant difference showing that a continuous transi-
tion in hypergraph (k, n)-core percolation is possible only for
(k, n) = (2, 2)-core percolation also displaying the tricritical
point at which the (2,2)-core percolation transition changes
from continuous to hybrid transitions, i.e., discontinuous tran-
sitions displaying a singularity above the transition (see for
a definition of hybrid transitions and background information
[31,41,48]).

We consider the (k, n)-core percolation transitions on ran-
dom hypergraphs captured by Eq. (32). By defining the
functions

fW (W ) = pH

∑
m�n

mQ(m)

〈m〉 W m−1,

fV (V ) = pN

∑
q�k

qP(q)

〈q〉
q−1∑

s�k−1

(
q − 1

s

)
V s(1 − V )q−1−s,

(39)

we write Eq. (32) as

V = fW (W ), W = fV (V ). (40)

These equations can be written as

h(V ) = V − fW ( fV (V )) = 0. (41)

According to the theory of critical phenomena [41], we see
that the lines of continuous (second-order) phase transitions
are determined by the conditions

h(0) = 0, h′(0) = 0; (42)

the tricritical point is determined by

h(0) = 0, h′(0) = 0, h′′(0) = 0; (43)

while the lines of discontinuous (hybrid) phase transitions are
determined by the equations

h(V �) = 0, h′(V �) = 0 (44)

with V � > 0. By direct inspection of these equations, it
emerges immediately that the continuous (second-order) tran-
sitions lines and the tricritical point can occur only for
(k, n) = (2, 2). In particular, a second order takes place for

1 = pH pN
2Q(2)

〈m〉
〈q(q − 1)〉

〈q〉 , (45)

while the tricritical point occurs when Eq. (45) is satisfied
together with the following equation:

〈q(q − 1)(q − 2)〉
〈q(q − 1)〉 = pH p2

N

6Q(3)

〈m〉
( 〈q(q − 1)〉

〈q〉
)2

. (46)

Let us apply these equations to the uncorrelated hypergraph
with a Poisson degree distribution P(q) and a shifted Poisson
cardinality distribution Q(m). Note that we need to shift the
Poisson Q(m) distribution since cardinalities m = 0, 1 are
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FIG. 2. Fraction of nodes in the (k, n)-core Skn as a function of
pN for different (k, n)-cores and pH = 1. The (k, n)-core percola-
tion is displayed for the (2,2)-core (a), the (2,3)-core (b), and the
(3,2)-core (c). The (2,2) percolation transition is continuous for
〈m〉 = 2.5 and discontinuous for 〈m〉 = 3.5. Note that for 〈q〉 = 2〈m〉
and pH = 1 the tricritical point of the (2,2)-core occurs at pN =
0.492143 . . ., 〈m〉 = 2.67731 . . .. All hypergraphs have Poisson car-
dinality and degree distributions defined in Eq. (47) with average
degree 〈q〉 = 2〈m〉, while 〈m〉 is indicated in the legend. Symbols in-
dicate simulations obtained for N = 104 node hypergraphs averaged
100 times, and solid lines indicate our theoretical predictions.

impossible:

P(q) = e−〈q〉 〈q〉q

q!
,

Q(m � 2) = e−(〈m〉−2) (〈m〉 − 2)m−2

(m − 2)!
. (47)

Note that 〈m〉 and 〈q〉 satisfy the equality 〈m〉M = 〈q〉N , so
that 〈m〉/〈q〉 = N/M. The generating functions for these dis-
tributions are

GP(z) = e〈q〉(z−1),

GQ(z) = z2e(〈m〉−2)(z−1). (48)

In Fig. 2 we show the sizes of the (2,2), (2,3), and (3,2)-
cores obtained from Monte Carlo simulations on random
hypergraphs with the Poisson cardinality and degree dis-
tributions given by Eq. (47) with 〈q〉 = 2〈m〉 and pH = 1.

FIG. 3. Phase diagram of (k, n)-core percolation in the 〈q〉-〈m〉
plane is shown for uncorrelated Poisson hypergraphs with pH =
pN = 1. (a) Phase diagram for (k, n)-core percolation with (k, n)
given by (2,2), (2,3), (2,4), (2,5), and (2,6); (b) core percolation
phase diagram for (k, n) given by (3,2), (3,3), (3,4), (3,5), and
(3,6). Each (k, n)-core exists in the whole region to the right of
the corresponding boundary. All boundaries are discontinuous tran-
sitions with one exception, the leftmost dotted piece of the boundary
for the (2,2)-core, which is a continuous phase transition. The
tricritical point at the (2,2)-core’s phase boundary is 〈q〉tricritical =
1.628 . . . = 7e1/3/6, 〈m〉tricritical = 2.333 . . . = 7/3. For the (2,2)-
core, the phase boundary ends at the point 〈q〉 = 1, 〈m〉 = 2. For
the (3,2)-core, the phase boundary ends at the point 〈q〉 = 3.350919,
〈m〉 = 2.

The simulations are in excellent agreement with our the-
oretical results and demonstrate that the (2,2)-core per-
colation can display both continuous and discontinuous
transitions. Note that for 〈q〉 = 2〈m〉 and pH = 1 the tri-
critical point of the (2,2)-core occurs at pN = 0.492143 . . .,
〈m〉 = 2.67731 . . ..

The phase diagram of the (k, n)-core percolation for pH =
pN = 1 is shown in Fig. 3 in the 〈q〉-〈m〉 phase space
for (2, n)- and (3, n)-cores. The difference from the k-core
problem for ordinary graphs, where the phase transition is
continuous for k = 2 and discontinuous for k � 3 is apparent.
Indeed, for random hypergraphs, the (2,2)-core phase bound-
ary consists of two lines—a continuous transition (dotted) and
a discontinuous one (solid)—converging at the tricritical point
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FIG. 4. Relative sizes Skn of the (k, n)-cores vs 〈q〉 for 〈m〉 = 2.2 (a, b) and 〈m〉 = 2.5 (c, d) plotted for pN = pH = 1. (a) Curves from left
to the right display the (k, n)-core percolation for (k, n) given by (2,2), (3, 2), (4, 2), (5, 2), (6, 2), (7, 2), (8, 2), (9, 2), (10, 2), (11, 2), (12, 2),
(13, 2), (14, 2), (15, 2), (16, 2), and (17, 2); (b) curves from left to right display the (k, n)-core percolation for (k, n) given by (2, 3) and (3, 3).
The phase transition for the (2,2)-core for 〈m〉 = 2.2 is continuous, and for the other (k, n)-cores the transitions are hybrid. (c) Curves from
left to the right display the (k, n)-core percolation with (k, n) given by (2,2), (3, 2), (4, 2), (5, 2), (6, 2), (7, 2), (8, 2), (9, 2), (10, 2), (11, 2),
(12, 2), (13, 2), (14, 2), (15, 2), and (16, 2); (d) curves from left to right display (k, n)-core percolation with (k, n) given by (2, 3), (3, 3),
(4, 3), (5, 3), (6, 3), and (7, 3).

with the following coordinates:

〈q〉tricritical = 7
6 e1/3 = 1.628 . . . ,

〈m〉tricritical = 7
3 = 2.333 . . . . (49)

The phase boundary for (2, n)- and (3, n)-core percolation can
be obtained by imposing that 〈m〉 = 2, which corresponds to
the minimum possible value for the average cardinality of the
hyperedges. Indeed, for 〈m〉 = 2 the hypergraph reduces to an
ordinary network.

For the (2,2)-core, the phase boundary ends at the point
〈q〉 = 1, 〈m〉 = 2. One can see in Fig. 8(b) that for the (3,2)-
core, the phase boundary ends at a point on a line 〈m〉 = 2.
The coordinate 〈q〉 of this point can be obtained exactly. We
substitute the degree and cardinality distributions, Eq. (47),
into the equations (44) for k = 3, n = 2, and 〈m〉 = 2 [one can
conveniently use the generating functions of the distributions,
Eq. (48)]. This results in the following equations:

V � = 1 − (1 + 〈q〉V �)e−〈q〉V �

,

1 = 〈q〉2V �e−〈q〉V �

(50)

for 〈q〉 and V �. Excluding V � from Eq. (50),

〈q〉V � = 1
2 [〈q〉 − 1 +

√
(〈q〉 − 1)2 − 4], (51)

we get the equation for 〈q〉:

e〈q〉−1+
√

(〈q〉−1)2−4 = 〈q〉2 〈q〉 − 1 +
√

(〈q〉 − 1)2 − 4

〈q〉 − 1 −
√

(〈q〉 − 1)2 − 4
, (52)

whose root 〈q〉 = 3.350919. Thus the phase boundary of the
(3,2)-core ends at the point 〈q〉 = 3.350919, 〈m〉 = 2.

Figure 4 shows the dependencies of the relative sizes Skn of
the (k, n)-cores on 〈q〉 for different values of mean cardinality
〈m〉 for the Poisson hypergraph with pN = pH = 1.

V. HYPERGRAPH (k, n)-CORE SECOND-NEIGHBOR
PROBLEMS AND THEIR PRUNING ALGORITHM

A. Second-neighbor pruning algorithm

Until now we have defined the (k, n)-core of a the hyper-
graph based on a pruning algorithm that prunes nodes and
hyperedges according to their connectivity. However, there is
another possibility, i.e., pruning nodes or hyperedges depend-
ing on the state of their second neighbors in the factor graph.
This implies a set of algorithms pruning nodes considering
the connectivity of the hyperedges they belong to pruning hy-
peredges according to the connectivity of the nodes belonging
to it.

To this end we distinguish two types of second-neighbor
(k, n)-core problems: in the first nodes are iteratively pruned,
and in the second hyperedges are iteratively pruned. We
note that there is no symmetry between these two pruning
algorithms. This is due to the fact that in hypergraph percola-
tion hyperedges in order to be belong to the giant component
must have all their nodes undamaged, while no correspond-
ing constraint holds for the nodes. Interestingly we will
observe important differences between the second-neighbor
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(k, n)-cores obtained pruning only nodes and the ones ob-
tained pruning only hyperedges.

Let us consider these two algorithms and their correspond-
ing message-passing equations separately.

B. Message-passing equations for second-neighbor
node-pruning algorithm

Let us start from a configuration in which we initially dam-
age nodes with probability 1 − pN and/or hyperedges with
probability 1 − pH . If we consider the pruning on the nodes
the second-neighbor hypergraph (k, n)-core can be obtained
using the following pruning algorithm:

(1) Damage iteratively all nodes belonging to fewer than k
hyperedges each connected to at least n (undamaged) nodes.

(2) Define the (k, n)-core as the giant component of the
network induced by the undamaged nodes and their connected
hyperedges.

As we will see in the following this algorithm is very
closely related to the algorithm defined in Sec. IV A. Note that
also in this case, as in the algorithm defined in Sec. IV A, due
to the definition of the hypergraph giant component, every hy-
peredge of cardinality m � n belonging to the (k, n)-core will
be connected to exactly m � n undamaged nodes. Therefore
the result of the algorithm is unchanged if only hyperedges of
cardinality less than n are pruned at stage (1).

In order to derive the corresponding message-passing
equation we start with the message-passing equations [27]
implementing hypergraph percolation at step (2). Using the
same notation used in Sec. IV A we see therefore that the
messages ŵi→α, v̂α→i obey

ŵi→α = si

⎡
⎣1 −

∏
β∈N (i)\α

(1 − v̂β→i )

⎤
⎦,

v̂α→i = yα

⎛
⎝ ∏

j∈N (α)\i

s j

⎞
⎠

⎡
⎣1 −

∏
j∈N (α)\i

(1 − ŵ j→α )

⎤
⎦, (53)

where si indicates whether node i has been damaged or
pruned, si = 0, or not, si = 1. The indicator functions σ̂i ∈
{0, 1} and r̂α ∈ {0, 1}, indicating whether nodes and hyper-
edges are in the giant component and hence in the (k, n)-core,
are expressed in terms of si, xi, and yα , and given, respectively,
by the equations

σ̂i = si

⎡
⎣1 −

∏
β∈N (i)

(1 − v̂β→i )

⎤
⎦,

r̂α = yα

⎛
⎝ ∏

j∈N (α)

s j

⎞
⎠

⎡
⎣1 −

∏
j∈N (α)

(1 − ŵ j→α )

⎤
⎦. (54)

The pruning of the nodes determines the indicator function si,
which is nonzero only if the node i receives at least k posi-
tive messages from its hyperedge neighbors of cardinality at
least n,

si = xi

∑
�⊆N (i)
|�|�k

∏
β∈�

ṽβ→i

∏
γ∈N (i)\�

(1 − ṽγ→i ), (55)

where we have defined

ṽα→i = θ (|α| − n)v̂α→i (56)

with θ (x) = 1 if x � 0 and θ (x) = 0 otherwise. Inserting this
expression of si into Eq. (53), and taking into account that the
messages v̂α→i are defined under the assumption that node i
is in the giant hypergraph component and the messages ŵi→α

are defined under the assumption that hyperedge α is in the
giant component, exploiting the fact that the messages take
only 0, 1 values we get

ŵi→α = xi

∑
�⊆N (i)\α
|�|�k−1

∏
β∈�

ṽβ→i

∏
γ∈N (i)\(�∪α)

(1 − ṽγ→i ),

ṽα→i = yαθ (|α| − n)
∏

j∈N (α)\i

ŵ j→α. (57)

Exploiting furthermore the fact that both si and the messages
ŵi→α, v̂α→i take values 0, 1, it is also immediate to show that

σ̂i = si = xi

∑
�⊆N (i)
|�|�k

∏
β∈�

ṽβ→i

∏
γ∈N (i)\�

(1 − ṽγ→i ),

r̂α = yα

∏
j∈N (α)

ŵ j→α. (58)

Another set of message-passing equations holds when we do
not know direct access to the configuration of the initial dam-
age {xi}, {yα} but we know only the probability that nodes and
hyperedges are initially intact, i.e., pN and pH , respectively.
This second set of message-passing equations can be simply
obtained by averaging the messages over the initial damage
distribution P({xi}, {yα}) given by Eq. (25). In this way we ob-
tain the following set of message-passing equations (note that
the messages wi→α and vα→i now take real values between 0
and 1):

wi→α = pN

∑
�⊆N (i)\α
|�|�k−1

∏
β∈�

vβ→i

∏
γ∈N (i)\(�∪α)

(1 − vγ→i),

vα→i = pHθ (|α| − n)
∏

j∈N (α)\i

w j→α. (59)

The probability σi that the node i belongs to the (k, n)-core
and the probability rα that the hyperedge α belongs to the
(k, n)-core are given by

σi = pN

∑
�⊆N (i)
|�|�k

∏
β∈�

vβ→i

∏
γ∈N (i)\�

(1 − vγ→i ),

rα = pH

∏
j∈N (α)

w j→α. (60)

The fraction Skn of nodes in the (k, n)-core is given by

Skn = 1

N

N∑
i=1

σi, (61)
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FIG. 5. Fraction of hyperedges Rkn in the (2,4)-core is plotted vs
pN for the second-neighbor node (2,4)-core and for the first-neighbor
(2,4)-core percolation. The percolation threshold is the same but Rkn

differ. The hypergraph has Poisson cardinality and degree distribu-
tion with 〈m〉 = 4, 〈q〉 = 16 and number of nodes N = 5000. The
symbols correspond to Monte Carlo simulations averaged over 100
iterations for pH = 1. The solid lines are the theoretical predictions.

and the fraction Rkn of hyperedges in the (k, n)-core is
given by

Rkn = 1

M

M∑
α=1

rα. (62)

Therefore this algorithm is essentially reduced to the first-
neighbor (k, n)-core studied in Sec. IV A. Indeed, the
percolation threshold and the nature of the transition are the
same, and the fractions of nodes within these (k, n)-cores, Skn,
also coincide, while only the fractions of hyperedges within
the (k, n)-cores, Rkn, can in general differ; see Fig. 5.

C. Message-passing equations for second-neighbor hyperedge
pruning algorithm

We start from the configuration in which we initially dam-
age either nodes with probability 1 − pN and/or hyperedges
with probability 1 − pH . If we consider the pruning on the
hyperedges of the hypergraph, the (k, n)-core can be obtained
using the following pruning algorithm:

(1) Damage iteratively all hyperedges having fewer than n
nodes each connected to at least k undamaged hyperedges.

(2) Define the (k, n)-core as the giant component of the
network induced by the undamaged hyperedges.

This (k, n)-core is the maximal connected subhypergraph,
each of whose hyperedges has at least n nodes with degrees
at least k. Note that this pruning algorithm doesn’t change the
number of nodes in the network. It stays equal to N .

Our starting point is always the set of message-passing
equations for hypergraph percolation [27] where now at step
(2) of the pruning process each hyperedge α is either damaged
(sα = 0) or not damaged (sα = 1). Using always the same

notations we have been using so far we get

ŵi→α = xi

⎡
⎣1 −

∏
β∈N (i)\α

(1 − v̂β→i )

⎤
⎦,

v̂α→i = sα

⎛
⎝ ∏

j∈N (α)\i

x j

⎞
⎠

⎡
⎣1 −

∏
j∈N (α)\i

(1 − ŵ j→α )

⎤
⎦. (63)

The indicator functions σ̂i ∈ {0, 1} and r̂α ∈ {0, 1} indicating
whether nodes and hyperedges are in the giant component at
step (2) and hence in the (k, n)-core are expressed in terms of
xi and sα , and they are given, respectively, by the equations

σ̂i = xi

⎡
⎣1 −

∏
β∈N (i)

(1 − v̂β→i )

⎤
⎦,

r̂α = sα

⎛
⎝ ∏

j∈N (α)

x j

⎞
⎠

⎡
⎣1 −

∏
j∈N (α)

(1 − ŵ j→α )

⎤
⎦. (64)

The pruning of the hyperedge determines the indicator func-
tion sα . The indicator function sα is nonzero only if the
hyperedge is connected to al least n nodes, each connected to
at least k undamaged hyperedges [belonging to the (k, n)-core
or giant component]. Let us define a node i to be active if it
receives at least k positive messages from its neighbors,

ai = xi

∑
�⊆N (i)
|�|�k

∏
β∈�

v̂β→i

∏
γ∈N (i)\�

(1 − v̂γ→i ). (65)

The damage of the hyperedges is therefore determined by the
activity of their nodes by

sα = yα

∑
�⊆N (α)
|�|�n

∏
r∈�

arŵr→α

∏
r∈N (α)\�

(1 − arŵr→α ). (66)

Let us define w̃i→α as

w̃i→α = aiŵi→α. (67)

In order to express v̂α→i we need to distinguish the case in
which i is active, i.e., ai = 1, and the case in which ai is not
active. Moreover, using the fact that sα, ai and the message all
take values 0, 1 we obtain that

v̂α→i = ỹα,iai

∑
�⊆N (α)\i
|�|�n−1

∏
r∈�

w̃r→α

∏
r∈N (α)\(�∪i)

(1 − w̃r→α )

+ ỹα,i(1 − ai )
∑

�⊆N (α)\i
|�|�n

∏
r∈�

w̃r→α

∏
r∈N (α)\(�∪i)

(1 − w̃r→α ),

where ỹα,i is given by

ỹα,i = yα

⎛
⎝ ∏

j∈N (α)\i

x j

⎞
⎠, (68)

and w̃i→α is given by

w̃i→α = ai

∑
�⊆N (i)\α
|�|�k−1

∏
β∈�

v̂β→i

∏
γ∈N (i)\(�∪α)

(1 − v̂γ→i ). (69)
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Similarly one can show that the indicator functions σ̂i and r̂α

are given by

σ̂i = xi

⎡
⎣1 −

∏
α∈N (i)

v̂α→i

⎤
⎦,

r̂α = ŷα

∑
�⊆N (α)
|�|�n

∏
r∈�

w̃r→α

∏
r∈N (i)\�

(1 − w̃r→α ), (70)

where

ŷα = yα

⎛
⎝ ∏

j∈N (α)

x j

⎞
⎠. (71)

We now derive the second set of message-passing equa-
tions that hold when we do not have direct access to the
configuration of the initial damage {xi}, {yα} but we know only
the probability that nodes and hyperedges are initially intact,
i.e., pN and pH , respectively, by averaging the messages over
the initial damage distribution P({xi}, {yα}). First, we observe
that w̃i→α are nonzero only if the node i is active. Therefore
we consider only the average message vα→i = 〈aiv̂α→i〉 and
the average message wi→α = 〈w̃i→α〉, which constitute the
closed form equations determining the percolation threshold.
In this way, paying attention to the fact that the messages take
real values between 0 and 1, we obtain the following set of
message-passing equations:

vα→i = pHN

∑
�⊆N (α)\i
|�|�n−1

∏
r∈�

wr→α

∏
r∈N (α)\(�∪i)

(1 − wr→α ),

wi→α =
∑

�⊆N (i)\α
|�|�k−1

∏
β∈�

vβ→i

∏
γ∈N (i)\(�∪α)

(1 − vγ→i), (72)

where pHN = pH pm−1
N .

The probability rα that the hyperedge α belongs to the
(k, n)-core is given by

rα = pHN

∑
�⊆N (α)
|�|�n

∏
r∈�

wr→α

∏
r∈N (α)\�

(1 − wr→α ). (73)

However, we need additional care to express the probability σi

that node i belongs to the (k, n)-core. In particular, the giant
component will include all active nodes and the inactive nodes
that are intact and are connected to at least one undamaged
hyperedge. Note that an hyperedge including an inactive node
can be active only if at least n of its other nodes are active.
This implies that the all intact nodes will belong to the giant
component unless both (1) and (2) are satisfied. These two
conditions are (1) the node is not connected to any hyperedge
including at least to n other active nodes and (2) the nodes
belongs to fewer than k hyperedges linked to n − 1 other
active nodes. It follows from this that the probability that a

node belongs to the (k, n)-core is

σi = pN

×

⎡
⎢⎢⎣1 −

⎛
⎜⎜⎝ ∑

�⊆N (i)
|�|�k−1

∏
r∈�

θr→i

∏
r∈N (α)\�

(1 − ρα→i )

⎞
⎟⎟⎠

⎤
⎥⎥⎦,

(74)

where θα→i and ρα→i are given by

θα→i = pHN

∑
�⊆N (α)\i
|�|=n−1

∏
r∈�

wr→α

∏
r∈N (α)\(�∪i)

(1 − wr→α ),

ρα→i = θα→i

+ pHN

∑
�⊆N (α)\i

|�|�n

∏
r∈�

wr→α

∏
r∈N (α)\(�∪i)

(1 − wr→α ).

(75)

The fraction Skn of nodes in this (k, n)-core is given by

Skn = 1

N

N∑
i=1

σi, (76)

and the fraction Rkn of hyperedges in the (k, n)-core is
given by

Rkn = 1

M

M∑
α=1

rα. (77)

D. Discussion of differences between first-neighbor
and second-neighbor pruning algorithm

When we consider the second-neighbor pruning
algorithms, node pruning and hyperedges pruning give
rise to very different definition of (k, n)-cores.

For the random hypergraphs belonging to the configuration
model ensembles, the equations determining the average mes-
sages W = 〈wi→α〉 and V = 〈vα→i〉 of the second-neighbor
(k, n)-core with pruning of nodes are

V = pH

∑
m�n

mQ(m)

〈m〉 W m−1,

W = pN

∞∑
q=k

qP(q)

〈q〉
q−1∑

s=k−1

(
q − 1

s

)
V s(1 − V )q−1−s. (78)

These are the same equations determining the average mes-
sages of the first-neighbor (k, n)-core algorithm. It follows
that the phase diagram of the first-neighbor (k, n)-core
percolation coincides with the phase diagram for the second-
neighbor (k, n)-core percolation with pruning of the nodes.
However, the order parameters might differ. Indeed, the order
parameter Skn = 〈σi〉 and Rkn = 〈rα〉, where σi and rα are
given by Eqs. (74) and (73), are

Rkn = pH

∑
m

Q(m)W m, (79)

Skn = pN

∞∑
q=k

P(q)
q∑

s=k

(
q

s

)
V s(1 − V )q−s. (80)
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Note that only Eq. (79) differs from the corresponding equa-
tion determining the first-neighbor (k, n)-core percolation,
Eq. (33), while Eqs. (80) and (34) coincide. Indeed, Eq. (79)
includes a sum extended to hyperedges of arbitrary cardinality
m, while in Eq. (33) the sum is extended only to hyper-
edges of cardinality m � n. It follows that the order parameter
Skn is unchanged if one considers first-neighbor (k, n)-core
percolation or second-neighbor (k, n)-core percolation with
node pruning, but the order parameter Rkn can change for
n � 3. In order to demonstrate this, we show in Fig. 5 Monte
Carlo results for first-neighbor (k, n)-core percolation and for
second-neighbor (k, n)-core percolation with node pruning.
The results are in very good agreement with our theoretical
predictions.

The critical behavior in second-neighbor (k, n)-core per-
colation with pruning of the hyperedges is distinct from these
results. Indeed, not only the order parameters can differ from
the first-neighbor (k, n)-core transition, but also the nature
of the transition and its critical points. Indeed, the system of
equations determining the nature of the phase transition reads
in this case as

V =pH

∑
m�n

pm−1
N

mQ(m)

〈m〉
m−1∑

s=n−1

(
m−1

s

)
W s(1−W )m−1−s,

W =
∑
q�k

qP(q)

〈q〉
q−1∑

s=k−1

(
q − 1

s

)
V s(1 − V )q−1−s, (81)

where V and W are the average messages. The equation deter-
mining the fraction of hyperedges, Rkn, in the second-neighbor
(k, n)-core with pruning of hyperedges is given by

Rkn = pH

∑
m�n

pm
N Q(m)

m∑
s=n

(
m

s

)
W s(1 − W )m−s. (82)

Moreover, the equation determining the fraction of nodes Skn

in the second-neighbor (k, n)-core with pruning of hyperedges
is more subtle. This equation is

Skn = pN

∑
q

P(q)

⎡
⎣1 −

∑
s�min(k−1,q)

(
q

s

)
Ṽ s(1 − Ṽ − V̂ )m−s

⎤
⎦,

(83)

where V̂ and Ṽ are given by

V̂ = pH

∑
m�n+1

pm−1
N

mQ(m)

〈m〉
m−1∑
s=n

(
m−1

s

)
W s(1−W )m−1−s,

Ṽ = pH

∑
m�n

pm−1
N

mQ(m)

〈m〉
(

m − 1

n − 1

)
W n−1(1 − W )m−s. (84)

The rationale behind Eqs. (83) and (84) was explained while
deriving the message-passing Eqs. (74) and (75), from which
these equations directly follow.

Intuitively an active node will be always part of the second-
neighbor node (k, n)-core. An intact inactive node will be part
of the (k, n)-core only if it belongs to at least one hyperedge
that belongs to the (k, n)-core. It follows that a node will be
always in second-neighbor node (k, n)-core unless (1) none
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FIG. 6. Fraction Skn of nodes in the second-neighbor (k, n)-core
with hyperedge pruning is plotted vs pH for different values of k
and n: (k, n) = (2, 2) (a); (k, n) = (2, 3) (b); (k, n) = (3, 2) (c). The
hypergraphs have Poisson cardinality and degree distributions given
by Eq. (47), 〈q〉 = 2〈m〉, 〈m〉 indicated in the legend, and N = 104

nodes.

of its hyperedges is connected to at least n other active nodes,
which occurs with probability V̂ , and (2) there are fewer than
k hyperedges connected to n − 1 active nodes, which occurs
with probability Ṽ . Note that condition (2) together with (1)
ensures that the node is not active.

The phase diagram of second-neighbor (k, n)-core perco-
lation with pruning of the hyperdeges is very different from
the phase diagram for second-neighbor (k, n)-core percolation
with pruning of the nodes. In particular, the phase transition is
continuous if and only if (k, n) = (2, 2) with the second-order
phase transition line obtained for

1 = pH

〈
m(m − 1)pm−1

N

〉
〈m〉

〈q(q − 1)〉
〈q〉 , (85)

and the phase transition is hybrid for any other (k, n). In Fig. 6
we show the order parameter Skn as a function of pH for
different (k, n)-cores for a random Poisson hypergraph with
the hyperedge cardinality and node degree distributions given
by Eq. (47). The figure demonstrates excellent agreement with
our theoretical predictions.

Let us now compare the equations determining the
second-neighbor (k, n)-core percolation with pruning of the
hyperedges to the factor graph (k, n)-core equations [16,17]
characterizing the sub-factor graph induced by the nodes of at
least degree k and the factor nodes of at least cardinality n. In
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FIG. 7. Fraction Skn of nodes in the (3,2)-core is plotted vs pH

for the second-neighbor (k, n)-core with pruning of the hyperedges
and for the factor graph (k, n)-core. The latter displays the same
critical threshold of the first but a smaller fraction of nodes in the
care. The hypergraph has Poisson cardinality and degree distribution
with 〈m〉 = 4.0 and 〈q〉 = 2〈m〉.

this model the fraction of nodes Skn and the fraction of factor
nodes (hyperedges) in the (k, n)-core Rkn are given by

Rkn = pH

∑
m�n

Q(m)
k∑

s=n

(
k

s

)
W s(1 − W )m−s,

Skn = pN

∑
q�k

P(q)
n∑

s=k

V s(1 − V )q−s, (86)

with W and V obeying

V = pH

∑
m�n

mQ(m)

〈m〉
m−1∑

s=n−1

(
m − 1

s

)
W s(1 − W )m−1−s,

W = pN

∑
q�k

qP(q)

〈q〉
q−1∑

s=k−1

(
q − 1

s

)
V s(1 − V )q−1−s. (87)

We note that when pN = 1 the nature of the phase transition of
the second-neighbor hypergraph (k, n)-core percolation and
its percolation threshold coincides with the one of the (k, n)-
core on factor graphs. Moreover, Rkn coincides for the two
models while Skn differs (see Fig. 7).

It follows that the phase diagram of the second-neighbor
hypergraph (k, n)-core percolation reduces to the phase dia-
gram of the (k, n)-cores of a factor graph for pN = 1. Figure 8
shows this phase diagram for pH = pN = 1. Comparing this
figure with the corresponding one for the first-neighbor
(k, n)-core percolation problem (Fig. 3), we notice the ab-
sence of the tricritical point in Fig. 8 with hybrid transitions
only present for k � 3.

The explicit equation for the continuous transition line for
(2,2)-core in this phase diagram is given by

〈m〉 = 1 +
√

1 + 8〈q〉2

2〈q〉 . (88)

FIG. 8. The phase diagram of the second-neighbor hyperedge
(k, n)-core percolation in the 〈q〉-〈m〉 plane is shown for uncorre-
lated Poisson hypergraphs with pH = pN = 1. (a) Phase diagram
for (k, n)-core percolation with (k, n) given by (2,2), (2,3), (2,4),
(2,5), and (2,6); (b) the (k, n)-core percolation phase diagram for
(k, n) given by (3,2), (3,3), (3,4), (3,5), and (3,6). Each core exists
in the whole region to the right of the corresponding boundary. All
boundaries are discontinuous (hybrid) transitions with one exception,
namely, the (2,2)-core, which is always a continuous phase transition.
For the (2,2)-core, the phase boundary ends at the point 〈q〉 = 1,
〈m〉 = 2. For the (3,2)-core, the phase boundary ends at the point
〈q〉 = 3.3509 . . ., 〈m〉 = 2.

Furthermore, the end point of the phase boundary (hybrid
transition line) for the (3,2)-core is given by

〈q〉 = 3.3509 . . . , 〈m〉 = 2. (89)

Here the number 3.3509 . . . = (1 + x + x2)/x, where x is the
nonzero root of the equation

1 + x + x2 = ex. (90)

VI. CONCLUSIONS

In this work we have developed a message-passing theory
for hypergraph (k, n)-core percolation assuming that hyper-
edges can be intact only if all their nodes are undamaged.
This simple hypothesis is relevant for a wide variety of
real scenarios, including supply networks, protein interactions
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networks, and networks of chemical reactions. The k-core de-
composition is a widely used tool for the discovery of highly
connected substructures within complex networks, which es-
sentially determine the character of cooperative and spreading
phenomena in networks. We demonstrate that k-core problems
for hypergraphs are significantly different from the k-core
problem on ordinary graphs. While the hypergraph structure
is represented by an equivalent bipartite graph between nodes
and hyperedges—factor nodes (factor graph)—here we reveal
that the set of k-cores on hypergraphs is distinct from this set
for their factor graphs [16,17].

The reason for this difference is that the deletion of a
node in a hypergraph also removes all the adjacent hyper-
edges, while the deletion of a node in a factor graph doesn’t
lead to the removal of factor nodes, only the connections of
the neighboring factor nodes to the removed node disappear.
Accounting for this difference, we describe a set of k-core
problems [also called first-neighbor (k, n)-core problems]
for hypergraphs and the corresponding pruning algorithms
in which nodes and hyperedges are progressively removed
(damaged) if their degrees and cardinalities, respectively, fall
behind given threshold values, k and n. We obtain phase
diagrams for such (k, n)-cores in random hypergraphs. In
contrast to ordinary graphs, where the phase transition for the
2-cores is continuous, while the phase transitions for (k � 3)-
cores are hybrid, for the (2,2)-core we observe two transition
lines on the phase diagram—the continuous transition line
and the hybrid transition one. These lines converge at the
tricritical point.

In order to bridge the gap between the k-core problems
defined on hypegraphs and on factor graphs, we introduce
a class of hypergraph k-core problems in which the pruning
process involves only nodes or only hyperedges and accounts
for the connectivity of their neighbors in the factor graph.
We call these latter problems second-neighbor (k, n)-core
percolation processes. We show that the second-neighbor
(k, n)-core percolation process where only nodes are pruned
is rather distinct from the one where only hyperedges are
pruned. In particular the nature of the (k, n)-core percolation
transition and the percolation threshold of the two variants
of the second-neighbor (k, n)-core percolation process is dif-
ferent. The second-neighbor (k, n)-core percolation process
with node pruning has a phase diagram that coincides with
the first-neighbor (k, n)-core process. The second-neighbor
(k, n)-core percolation process with hyperedge pruning has a
phase diagram that for pN = 1 coincides with the factor graph
(k, n)-core percolation problems [16,17]. Note, however, that
the order parameters for second-neighbor (k, n)-cores with
pruning of nodes or hyperedges [fractions of nodes and hy-
peredges within these (k, n)-cores] do not all reduce to the
ones for the hypergraph or factor graph (k, n)-cores.

We suggest that this work will highlight the important
differences between hypergraphs and factor graphs and will
contribute to a better understanding of specific critical phe-
nomena in higher-order networks. It is our hope and trust that
the first-neighbor and second-neighbor (k, n)-core hypergraph
problems defined here might find wide applications in the
study or real-world higher-order networks.
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