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ABSTRACT. Consider an N by N matrix X of complex entries with iid real and imaginary parts. We show
that the local density of eigenvalues of XX converges to the Marchenko-Pastur law on the optimal scale
with probability 1. We also obtain rigidity of the eigenvalues in the bulk and near both hard and soft edges.
Here we avoid logarithmic and polynomial corrections by working directly with high powers of expectation of
the Stieltjes transforms. We work under the assumption that the entries have a finite 4th moment and are
truncated at N/, or alternatively with exploding moments. In this work we simplify and adapt the methods
from prior papers of Gotze-Tikhomirov and Cacciapuoti-Maltsev-Schlein to covariance matrices.

1. INTRODUCTION

In this paper we obtain optimal large deviation bounds on the Stieltjes transform for the sample covariance
random matrix ensemble. Let X be a M x N matrix with components x;; = Re x;; +4Im x;;. Assume that
Re z;; and Im z;; are independent identically distributed (iid) real random variables with mean zero and

variance % so that

Ez;j =0 and Elz;*=1 i=1,..,N,j=1,....,M. (1.1)
and
d:= M/N.
In what follows we shall denote by X the scaled matrix
Xy = X/VN. (1.2)

We are interested in the analysis of the asymptotic empirical spectral measure of the matrix X3 Xy for
N — oo, when M = N. This is the case when the limiting measure has a one over square root singularity
near 0 with typical distance between eigenvalues on the order of ﬁ We are able to obtain results on the
hard edge, the bulk, and the soft edge in a unified way.

Let s, @ =1,..., N, be the eigenvalues of X, X . Since X3 Xy is Hermitian and positive definite we can
assume that 0 < 51 < 59 < ... < sy. We denote by ny the empirical spectral distribution s,

1
ny(E) = N#{a < N|sq < E} (1.3)
and

N(I)=#{a < N|sq €1} (1.4)

For any 6 € C with Im 8 # 0 we define the Stieltjes transform of ny as

1 1 RREAN

An(0) = d = —Tr(XpXy—-0)"1=— : 1.5
¥0) = [ i) = BN -0 = L3 (15)

We denote by v the probability distribution of Re x;; and Im x;;. In this paper we assume that

sup sup Elzjp|* = pg < o0, (1.6)
N>11<j,k<N
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and that there exists a constant D > 0 such that for all NV:

sup |zjx| < DNVA. (1.7)
1<j,k<N

These assumptions are the same as in the papers of Gotze-Tikhomirov [6, 5], and with easy modifications
all the proofs and results hold as well for x;; such that E|z;;|? < (Cq)“? for universal constants C,c.
Alternatively, it is sufficient to assume that

E|zj,[* < DY NIy (1.8)
for some constants py4 and D, and all ¢ € N.
The first results about universality of covariance matrices date back to 1967. Let
Ae = (1+Vd)?,

Marchenko Pastur in [11] show that dvy — p weakly with probability 1, where p is the Marchenko-Pastur
distribution, given by

1 [y —E)E-A)
e 19

whenever E € [A_, A\;] and 0 otherwise. In the case of a square matrix X, the density of the Marchenko-
Pastur distribution is

pup(E) =

1 4
—/=—-1 0<E<4
p(B) =3 2\ E s (1.10)
0 otherwise

and for any 6 such that Im 6 # 0 we denote by A the associated Stieltjes transform

A(G)—/}inap(w)dw (1.11)

which satisfies the quadratic equation
1
=———\ 1.12
0(A+1) ( )
In [11], the convergence of the density of states is on intervals whose sizes are independent of N. In this

case, the intervals that are away from the endpoints contain an order of N eigenvalues. A natural question
to study is whether the convergence remains on intervals whose size (we call the interval size scale) goes to
zero as N grows.

In [3], Erdés-Schlein-Yau-Yin establish convergence of the empirical spectral density for general covariance
matrices to the Marchenko-Pastur law in the bulk for d < 1 on small intervals. They use a decomposition
by minors for the diagonal elements of the resolvent to establish a self-consistent equation for the Stieltjes
transform Ay of dvy. Large deviation estimates and a continuity argument are then used show the conver-
gence of the spectral measure on small intervals (involving polynomial corrections) in the bulk distribution.
These methods have been extended to the hard edge and logarithmic rather than polynomial corrections
by Cacciapuoti-Maltsev-Schlein in [1]. More precisely, the authors show that the fluctuation of the Stieltjes

transform VEAy away from vEA is on the order of \/% and they obtain convergence of the counting

function of eigenvalues everywhere including close to the hard edge. Eigenvalue rigidity with polynomial
corrections for the bulk and soft edges for entries with subexponential decay can be found in Pillai-Yin [12].

A related question is that of the universality of the correlation function of the eigenvalues. Results in the
bulk using local laws and a local relaxation flow can be found in [3, 12]. A similar result in [16] by proving
a version of the four moment theorem for random covariance matrices for any 0 < d < 1 in the bulk of
the spectrum. Wang [17] extends these results to the soft edge (cf Remark 1.8 in [17]). For the hard
edge, universality of the joint distribution of low-lying eigenvalues has been established by Tao-Vu in [15].
Another related question is about the rate of convergence of the density of states to the Marchenko-Pastur
law. In [6], the authors establish that the Kolmogorov distance between the expected spectral measure and
the Marchenko-Pastur law is O(N~1). Additionally, there has been some remarkable progress on similar
questions in the case of Wigner (matrices with i.i.d. entries up to Hermitian symmetry) and more general
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Wigner-type matrices [10, 9]. The authors use homogenization theory, which relies on coupling two Dyson
Brownian motions, to establish the Gaussianity of fluctuation of individual eigenvalues in the bulk of the
spectrum.

In this paper we obtain optimal bounds on the expectations of high moments of the fluctuation A = Ay — A
on the optimal scale. Our methods and results apply to the bulk as well as the soft and hard edges. The
main objective of this work is to extend the results and methodology of [2] to a hard edge setup. We were
able to simplify the proof of Theorem 1 in [2] avoiding different cases for the bulk and edges. Unlike in the
Wigner case, where both edges are soft, the presence of the hard edge at 0 allows us to extend the bounds
on the real part of the Stieltjes transform to the negative real line, thus also yielding a fluctuation for the
individual eigenvalue near the hard edge that is decreasing with the eigenvalue number. This paper also
improves on [1] by removing the logarithmic corrections and improving the fluctuation bounds. We also
extended the proofs in [5, 6] on fluctuations of quadratic forms to a soft edge setup by improving a factor
of |A| to a factor of Im A.

To state our theorem we define the domain Sg, where we obtain our bounds:
Spy = {4n > c(E* +n* — 4E)} (1.13)

for some ¢ > 0. This domain is chosen so that Im (A + 1/2)? > c¢Re ((A + 1/2)?) which we need for the
proof of Proposition 3.2. While all the proofs work for all ¢ > 0 not dependent on N, we will specifically
work with ¢ = 1 to allow us the opportunity to illustrate it the following picture, Figure 1.

L(E+in,)

4

E+ing

E-ing

FIGURE 1. The set S, g shaded in blue and the integration contour L(zg) from (7.1) in red

Theorem 1. Let Xy be a N x N matriz as described in equation (1.2), and assume (1.6) and (1.7). Let

Ay and A be the Stieltjes transforms defined in equations (1.5) and (1.11). Moreover set § = E + in, with

% > M for some suitably large M. Then there exist positive constants cg, C such that for each K > 0

1/8
andlgqgc()('NTZ‘) and 8 € Sg,y or E <0

2

K (Cq)
— > < .
P (1an®) - a0)| = ) < L (1.1
Furthermore, for any E € R and n > 0 such that —li\;g' > M we have that
K (Cq)r
— > < . .
IP’<|Im (AN (0) — A(0)) ] > Nn) < , (1.15)

Remark 1.1. We notice that the particular an upper bound on ¢ given in Theorems 1, 2, and 3 is used for
the proof of Lemma 5.1, specifically in equation (5.11), then it gets halved in Proposition 6.4. The power
1/4 in Lemma 5.1 could be relaxed further if desired to any finite power. However, we notice that if ¢ gets
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large with N, the (Cq)® in the numerator of (1.14) and (1.15) renders the bound trivial for even modestly
large values of N7 such as a power of a log N. Our results are best used for short scales and very small
intervals, smaller than 1 < (log V)¢ for some ¢, or ¢ should remain reasonably small such as loglog N. Other
papers that use a bootstrapping argument in probability rather than in expectation such as [1] cover the
regimes with logarithmic corrections, obtaining better results.

We then use our Theorem 1 to obtain fluctuation estimates on the counting function as stated in the next
theorem. Letting

E
mip(E) = [ pla)d, (1.16)
0
we compare it to ny.

Theorem 2. With assumptions and M as in Theorem 1, there exist constants My, Ny, C,c > 0 such that
for any K >0 andEZ%

B () —marn(8) = i { VB, RENL ) < (O (1.17)

forall E€R, K>0,N> Ny, q< M.

We use the above estimate to obtain rigidity estimates that is how far each eigenvalue can fluctuate away
from its classical location. We define the classical locations of the eigenvalues, predicted by the Marchenko-
Pastur distribution, as the points 7,4, (a =1, ..., N) such that

" (E)dE = &
| otear = 5.

In particular, we obtain the fluctuation of eigenvalues near the hard edge to be of the order of loj\g[év . The

fluctuations of eigenvalues in the bulk and soft edges of both the Gaussian Unitary Ensemble and the Wishart

Ensemble are known to be respectively of the order ¥ I‘J)\%N in the bulk and kl”/;(;%f/r,

from the edge, k — oo (see [8, 14]). To our knowledge similar results are not yet available for the hard edge.

for the kth eigenvalue

Theorem 3. With assumptions and M as in Theorem 1, there exist constants C,c, Ng,e > 0 such that

logN /a (Cq)r”
P (e —e| > K (7) < 1.1
(1ha =l 2 6253 (1)) < 80 (1.18)
fora=1,....[N/2], N > Ny, K >0, and any q < M. Furthermore, for a <log N we have that
a?\ _ (Cq”
P (1ha =0l 2 Ky ) < SO, (1.19)

In this theorem the factor - accounts for the higher density at the hard edge. Here we focus on hard-edge
rigidity, since proofs of soft-edge rigidity require control of the largest eigenvalue which, to our knowledge,
is not currently available in the case of truncated entries with four moments, in either Wigner or Sample
Covariance case.

2. USEFUL IDENTITIES

In this section we collect some useful known identities. Let J,J1,J2 C {1,..., N}. We will denote by X @
the submatrix of X with columns of indices J removed, and X (5 with rows of indices J removed.
We define the resolvent matrices

(J) . {J1)y* v J1) -t () . (1) v J1) % -1
Gy = <(X(J21)) X~ 9) and G = (X(le) (X ()" = 9) : (2.1)

When our arguments work for any Ji,Jo we will mention this and then suppress them for ease of notation,

and we will write Gg;g i for the ijth element. We notice here that G is the minor of G := G with J-th

rows and J-th columns removed. Lastly we notice that

J1) _ |J1| — ‘JQ, —|—TI‘G( ) (22)

J1
TG,y =—>7 (J2)



Similarly we introduce

J) . (J1) (J1) . AW
AN,l(JIz) G(Jl) and A(Jl) AN}(JQ) -A (2.3)

and we use Ay and A when Jq,Js = 0. We will use x;, and x* for rows and columns of vV N Xy respectively.
We state some well-known identities for resolvent entries (Lemma 2.3 of [12]).

Lemma 2.1. With GEJ as before fori,j # k, we have

@) aon | CamiClmk

J1 _ ~Ju{k 2),t 2),ki

Clmis =Gy T @) (24)
J2),kk

Furthermore, as seen for example in (3.2) of [2], we have the following relationship between the (k, k) element
of G? and Im Gy, and the same holds for G(Jl) g JQ)

(Im G(2))kk

G2, =
G =

(2.5)
yielding that

(G| < I Gt

(2.6)

Next we observe that using the proof of (3.10) in [2] we can also obtain the following for the resolvent of

the sample covariance ensemble, and the proof works for G(ﬂlg, g “Ul ) for any J, Ja:

Lemma 2.2. With G and G as before, we have that
Gu(E +in/s) < sGui(E +in). (2.7)

Furthermore we have the following bounds on the Stieltjes transform of the Marchenko-Pastur law. For
E > 0 we set k := |E — 4. For any fixed E{, Ey > 0 and 79 > 0 there exist constants C' > 0 such that

1
’A+ ’>C’(/<c +n?)i > Cvr T, (2.8)
and
Ui Ui
<ImA<C , 2.9
¢ K+n ne s VvVE+D (2.9)

VEy < E<E}, 0<n<mny, k>n.

3. EQUATIONS FOR A

Lemma 3.1. Take 0 = E+in. For any N > Ny one has

N N
AG) L ! ¥ Y- . (3.)
N{2) N (I) (J1U{k}) N AW (J1 '
=9(1+A () T Tk + 1y, ) k=1 ( AN+ Tt Y(Ju{k}))
v 104 = (3]
Ji| — |Jo| |+ 1
Tl 15| < 3.2
T, | Tk| N (3.2)
and
J k J k}) J J1)
T = (- B (@ VN GGV VN and YD = (1R, )\ﬁGEJ;U{k} z/VN. (3.3)
@yuiry 1 (J1) . @yuiry 1 (7).
T, *T GJ;) NTrG(J;) and Tr = NT Gyt - ~ ) ! (3.4)

where x* is the k—th column of the matriz X and xy is the k—th row of X.
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Proof. First we recall that for any matrix X and 6 with non-zero imaginary part we have that
X(X*X —0T) 71 X* = XX*(XX*—0)"L. (3.5)

This can be proved by expanding the inverse in a Taylor series, followed by the use of matrix associativity.
Furthermore using (3.5) and I = (X X* — 0I)(X X* — 0I)~! we obtain that

X(X*X -0 X" —T=0(XX*—0)"L. (3.6)

By the definition of Ay and using (3.6) we get

q) 1
UL e g ke x DO (e x ot 9>*1 (X UUTD g
XA (12) (I2) (I2) (I2) x
_ 1 ! (3.7)
- JI k}) B J no{eh)’
0 (1+ (xk/VN) gl D xk/\F) 0 (1+ A5, + T+ T ™)
which yields
N
(I1) 1 1
—— 3.8)
N.(I2) N Z (J1) (J1U{k}) (
i1 0 (1 + ANj(Jz) + T + T(J;) )
where Tglf{k}) is as in (3.3) and
T1U{k}) [ v (T1U{k}) | o 1 J J -
T}, = NT (X M) — 07 - LX) -0 o)
0] 1 GOy« G1U{E)) gy 1 Iy 3 @1) _ gy-1 '
=g T X)) Xy T 0T = 5 Tr((Xgy) X gy — O
Rewriting, we obtain
3 | \J Y T =15 1 G
o 1] — |J2 3 _ 1] — [J2 = L 1k ki
Ty = Z#ZkG ;Gu NO + N Z#Zk <Gm G ) ;Gu
N
\Jl\ - \Jb 1 GirGri Jal—Jof 1 1 JJ1] = 1J2]  (G*)kk
; Grer N6 N G ;G’C F N NG
(3.10)
We now use (2.5) to obtain
[ J1] = [Jaf | | Tm Gy
Ti| < + 3.11
BN T Gl (311
yielding that
VAl T < (| [J1] = |le\+1)|\/9|_
N
Note also
1
g((ﬁgl)),kk — (3.12)

1
o (1 0V (K6 ) Xy ) i)V

which similarly yields the second part of (3.1), recalling (2.2). O



Rewriting (3.1) using ﬁ = % — m we obtain (also for any Jp,J2, thus we suppress them here)

N
1 1
Av=-=%"
NTUNZ9(1+ A) 1 0A + 0(T; + YD)

k=1
1 _1§: 1 OA + 0(Ty + TURD)
01 +A) N0 +A) (14 Ax + (T + TUD))
B (3.13)
A A (tk)
:A—Nzymmﬁ—ﬁgymmn+r )
k=1 k=1
AN
This yields that
AN
— k
A_eAMA+Ay+N§;Gan+TGD) (3.14)
Let
N
Ri=N""3 Gu(Ty + 1) (3.15)
k=1
and (similarly can define Rgig) which yields the following quadratic for A
OAA% + (A% — 1)A + AOR = 0. (3.16)
Dividing by 6A, using that A = —ﬁ and the quadratic formula, yields
—(A+1/2)£/(A+1/22-R (3.17)

as two solutions. From definition of A in (2.3) it follows that Im A > Im A, thus if we take the branch cut of
the square root to be on the positive reals so that the imaginary part of the square root is always positive,
we obtain that

A=—(A+1/2)+/(A+1/22—R (3.18)
We also notice that the second solution, call it A, to (3.16) is given by
A=—-A—2A—1. (3.19)

The following proposition is analogous to Proposition 2.2 of [2].

Proposition 3.2. Let 0 = E + in. There exists a constant C > 0, such that:

. |R|

Al < C'min VIR ¢, 3.20
4] < {m%| VI (3.20)

for all (E,n) € S,.g as well as for any E < 0. Furthermore, for any E € R and n > 0 we have that

, |B|
|Im A| < C'min 5 VIR (3.21)
A+ 3]
and

min{|A},|A]} < CV/|R)]. (3.22)

(

Analogous statements hold for A(ﬁg with RE ).

J1
J2)
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Proof. To show (3.20), we apply (2.17) of [2] with @ = (A + 3)? and b = —R. Since Im A > 0, with our

choice of branch cut we have that \/(A +1/2)? = A +1/2, and we recall that we defined S, g in (1.13) to
be exactly the set where Im (A +1/2)% > c¢Re ((A +1/2)?) for some ¢ > 0. Note that (3.21) follows directly
from (2.18) of [2], while the proof of (3.22) is identical to the proof of (2.16) in [2].

Recalling that Ay (z) = % Ya saf}ffin and noting that for ' < 0 the real part of each summand is positive
we conclude that Re Ay > 0 for £ < 0, and similar to our argument about the imaginary part of A, we see
from (2.3) that Im A > —Im A while from (3.19) we see that Re A < —Re A — 1. Since we have that

Re A = — Re (A +1/2) + Re (\/(A+ 1/2)2 —R)
Re A = — Re (A +1/2) — Re <\/(A T 1/2)2 - R)

we see that Re (\/(A +1/2)2 ) > 0 and thus |Re A| < |Re A| and thus one part of (3.20) follows from
(3.22). For the other part of (3 20), we estimate that

R
V(A +1/2)2 — R+ (A+1/2)

where the last inequality follows since both real and imaginary parts of both summands in the denominator
are positive. The fact that Re (A + %) > 0 comes from the definition of our spectral domain, namely by the
constraint % + 7% — 4F < 4n.

A| = (3.23)

R
<
|5l

O

4. BOUNDS ON QUADRATIC FORMS

Here we obtain the necessary bounds on quadratic forms.

Lemma 4.1. Let G = g((j];)) or G%;; for some J1,J2. Let Y := %(H — Ex)x*Gx, assuming (1.6), (1.7) for
elements of x. Then we have that

E(Im TrG)? E|Gii[*  E|Gi|?
E|T* < (Cq)™ 4.1
i < 00 (Sxme + Rt .
Moreover, we have a more precise inequality
Cq Im TrG\? Gu |? (Cq)“E(|Gr2|*? + |G11]*7)
E|T[* < E E : 4.2
i< (£2) (o () o] ) - ot o
Proof. We start by the decomposition'
Zf'?anggz + = Z(\%k! 1)Gjj = e2 + e,
J#l
where ) 1
=¥ > TmGy and € = ~ > (|l = 1G5 (4.3)
J#l J
We use Rosenthal’s inequality (see e.g. Lemma 1 in [7]) to obtain:
q
Eler|*? < (Cq)*'N"0 | Y "Elz,[“EIG;; [ + | pa > EIGj;/? . (4.4)
J J
We notice that
2] < DNY* = g, := E|2y[* < DYINTy, (4.5)

which yields that
E|€1|2q < (Cq)2qN—qE|g,.|2q

For es we use Corollary 1 from [7]. We notice that in our notation ap = 0? = E|zy|? = 1 and pgp, is
given in (4.5). We also notice that while Corollary 1 in [7] is formulated for real variables, it works in an

glcl
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identical way up to constants by separating real and imaginary parts of the random variables. With this
translation of notation in place and absorbing the constants in (4.5) into the global constant, we obtain

N g 2 N N g 2 N g 2
Eles|*? < (C19)"E PR I e D I W b B B e W (4.6)
k,l=1,k#l k=1 \I=1,l#k =1kl

! for the first two terms on the RHS

We obtain the bounds proportional to E

Trlmg and N—q/QE‘ImNQH
n

of (4.6) respectively using that lel |Gi1|? < n~'m G;;, which yields

q) + (Cq)*E \g/li

Eleg|?? < (4.7)

e

N

and putting all the bounds together (4.2) follows.
To obtain (4.1) we need to bound the off-diagonal E|Gi2| in terms of the diagonal. We observe that

1G] < ,/ fm g,, 1/ tm g]] (4.8)

which can be obtained as follows. Let u; be the jth normalized eigenvector of G and A9 = 0. Then

N N

1 “lquty |wig Uy 1 ulq‘ + ‘qu| |uig|? 1 |ugs|?
1931 23 Z\)\ — = 22) ez = Zu —zy2+ Zyx mpa
(4.9)
where in the last step we recall that the eigenvectors are normalized and use Jensen’s ineqality. O
5. NON-OPTIMAL BOUND AND BOOTSTRAP ARGUMENT IN THE BULK
Let
J J
AGY = max{| Al Xy, min{|AGH] [AGH [}, [Tm AT}, (5.1)
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where s, is the indicator function of Sg; By Proposition 3.2, |H\QE\AE§;;|2‘7 < C’Qq]0|qE|Rg;;|q. Taking

expectation of a power of #R we obtain (as in [2])

N
@)g 101 @UiED) @) |7
EIORy,) " < = ;E‘(THT(M )G(J) ‘

< | (150 62

E|Co( ] - 1521 |+ DG,

| ;
1 + ’09’4 \/]EG I‘QqE ‘T JlU{l})‘ q

<
- (Nn) (I2)
(Ih) 5
Sl B i, PR
B (Nn)e a 1 N4
(Im Trg(ﬂlu{l}))q E|G JlU{l} |2
4 R 2 | R (J2) (T2
+ |Ctq| ‘G 11‘ ( (N7)iNe (NTI)
E|CO(| 1] = W2l | + )G 4| cq\/ EIGLP
< Wy +[COq|" \| BIG() |2 SR
@) g (CO ((11T1]+1 = |2 |\ o) ot
+|00|q\/E|G(J;),11|2q(Nn)q e +E(ImA+Im A(J;) ) +E‘Q<J;)22 ja

’ (J1U{1} |2q
J2),2

< |Ctg|” \/ BIGL) [t —

615 \JEIVBG(Y 1%
+]Cq| oL G {1, !+1—|J2Hq+\/E\f/\|’1+\/E|\fgj]h;§2l} (5.2)

|J1|4+1—|J2|
Nn

is close to Im AE“%;

‘2(1)1/2 (Cq(|131]—=1J2[|+1))°|6]2/ ) B
1 (Nm)a/2

In the second to last line, the term arises from equation (2.2), and Im

similar to (3.10). Since for any x,d > 0, z'/* < dz+6~1/3, setting § = < (E|\fG
and using Cauchy-Schwarz inequality on \/E|vOA|2, we get

Cq(| |J1] = |J2| | 4+ 1))c4 q
|9|Q]E)\2q < (Cq(l| 1(|Nn|)q2/|6‘ ) |0|t1/12 <(E‘fg(J1U{1} |2Q)1/2 [ |J1] = o] + 1|2) ((]E|\/§G%S,11|2q)1/2 + 1)

| (Jlu{l})|2q

c (J1) J2)
+COq|™ \/E’G J;) 11’2q3\,—q~ (5.3)

1/4
I\f\) , Nn > |\f|M for some constant M > 0, fixred E. Assume that J1,Jo are

such that 0 < |J1|—|J2| < Cq for a uniform constant C. Then with definitions as before, E|G(J ) 11\f|q <l
and E|g Jlu{l} \f\q < C1, for some constant C.

Lemma 5.1. Let ¢ < (

Proof. We Wlll implement an induction argument similar to [2, 5]. The induction hypothesis will be that for
n; = no/167 for some constant ng, any Jq ;,Jo; with [J1 ;] = [J2,;| < |logign|+1—j =:Lj and k ¢ J; ;

11Ul 11031 ;U{1})
E|GEJ;UJ;;§,11( VO < Cf  and ]E|g(J21uJ21JJ 3 Ve < ¢ (5.4)

\1/4
for ¢ < (@%) for a universal constant Cy. We notice that this holds to initiate our induction for ng

constant. Letting 741 =n;/16 and L;j;1 = L; — 1 we will show that inequality (5.4) taken at n; implies the
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same inequality with the same constant Cy for n;,1. For easier notation, we will suppress the dependence
on Ji,J2 mentioning only the step where they come up (which is equation (5.12)).
From the induction hypothesis and Lemma 2.2 we see that

E|G(17) 1 (n40)VOIT < (16C0)T and  EIG 0" () VBT < (16C0)" (5.5)

for any Jy;,J2; with [J1;] = |[J2,;/] < L — j. This will need to be improved to the bound C{ for any
J1j+1,d2,j41 of size up to L — j — 1.
From (3.7) and (3.19) we obtain that

(J1.5+1) J (J1 101\ ~T1541)
G =A- \[A(WA IJH —VoT, - Vo Uiy GG 0 (5.6)

J1+1) J ( U{1})\ ~( ) (J1,5+1)
Gl lia = A= VOIA(- \fA ) = VOT - VoY) T )GE T TOARA 1)G(J;,jﬁ>’1l(' )
5.7

The analogous statements for Q @, J)U ) follow similarly from (3.12) and (3.19):

G = A= van [Vargs D - vam - vavSri g Y 6
This yields that
Gl S TAL+ G (VBG4 WaTE ) o (a0 4 v/
O <[ aga | I (V08 ol T
and using (1.11) we see that 1 — 0A(2A + 1) = —0A? and thus m =~

We will use the bounds C; < [v/A| < Oy, valid in our domain, and let C' = max{C}, Cy}. So, we have that:
’\/éG(Jl’jH) ‘ <C [1+ ’\/éG(Jl,jJrl ‘ ’\/” mln{\A (J1,5+1) ‘ ’ J1J+1 ’}+ ’\/>T1| + ‘\/’T J1]+1U{1})’):|

(J2,5+1),11 (J2,541),11 (J2,54+1) (J2,5+1) J2.i+1)

and, taking power ¢, expectation, and using Cauchy-Schwarz we get at 1,41

E|\/5G(J1,j+l) ’qSCq[ \/]E’\/>G(Jlj+l 1|2q\/ (’f}\(ﬂlfrl |)

(J2,541),11 (J2,5+1)

+ (]\L\{| T ‘\/>G(J1y+1 11|q \/E|\/§G%;j13 112q\/E’fT J1J+1U{1} |2q] (5.9)
j+1 , )

Using the above, Lemma 4.1, and a calculation similar to (5.2) we obtain again at 7,41

J1.5 .
E|\/§GEJ;§:3JJ" < (Cq)*™

Lo \JBVBGG ) o fRvaAE o VI gy gty

J2+1) (N7j41)1 T2

+ \/E‘\/éG(JLJ‘Fl) ’2q’\/§|q/4\/ + E‘\/7A Jl ]+1)‘q + E’fg Jl NES] U{l}’q

(J2,541),11 (Nnjy1)e/? (J2,5+1),22

E|VBg o P
\/EMG (Ti1) g (J2,51),22 (5.10)

2,j+1),11 N4

We use (5.5) to bound the terms IE\\[G Jl J+1 11|2q and E[V0G ﬁ; JII)UQE}IQ‘I in the above inequality, noting

1/4
that |J1 41 U {1} < L;. To use (5.5) we need 2¢q < (IJ\\;%I) , which gives us exactly the requirement that

<1é|vxnf |>1/4 B <]|V\Z%rl>l/4 (5.11)
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found in the in the induction hypothesis. Then using (5.5) on equation (5.3) at 1,41 and recalling that
| lJ1] — [J2] | < Cq we obtain

2 (Cq)*(16Cy)™
+( q)“(16Co)

a7 (5.12)

T4+ (Cq) /12 2
BIVONG 1" < oy 017 ((16C0) + (Co?)

Substituting this into (5.10), we obtain that at 7j41:

’6|q/12

(16Cp)3
(N1j11)9/6

J j C C
EIVOG) 17 < (Ca)* |1+ (16Co) (16C0)" + (Ca)™) + 0

cq q/4 cq
+ (16(3’0)‘1(1'\@'\/2 + &ye\q/u ((16Cp) + (Cq)q/2)2 + (16Cy)4

(N1j41)9/2 (N1j41)9/6
q/6
< (Cq) 2+K”Cx?> (5.13)

for a constant K > 0 depending on Cy and C. We can choose Cy > 2C and Noos M o> K6, so that

M
\\/§| a/6 a . . L
K1 (5 < 1 and therefore E[v/0G11(nj+1)]? < C§ as required. We notice that all the steps are identical

for G jh) ;2}) using (5.8), and exactly one row gets stripped as well as exactly one column so |J1 j+1| = [J2,j4+1]-
O

6. OPTIMAL BOUND FOR THE STIELTJES TRANSFORM

In this section we prove Theorem 1. We will use the matrix expansion algorithm from [2], which carries
over directly as it is based entirely on linear algebra of resolvents. We will make a note of the important
modifications. We note, importantly, that as we expand resolvent entries, we will be removing columns of
X and we never need to remove rows. The expansion algorithm yields results in terms of high moments
of the following quantities:

NZevil (@ = By)———|, VoG, (6.1)

x/éc

\kak

and we begin this section by estimating these moments.

To obtain optimal bounds on A near the soft edge the fluctuation bound on relevant quadratic forms (4.1)
needs to be improved. For that purpose we will use (4.1) to obtain bounds on |\/§G%S wl as well as

Vo Q(Jl) 4| then use these in (4.2) to improve on the RHS of (4.2). For convenience of notation we introduce
the control parameter

1 { [tm (|9]A))2 +EJA|2 6] } (6.2)

b0 = Najgparz T o (N

We now show how to estimate the last quantity in (6.1), using the formulas (see e.g. (2.20) of [12]) (valid
also for any Ji,Jo, with k,1 ¢ J1 U J2)

VG = VOGuVoG,), (D) (Vo(xE VN gD (xE V) = szsz{})

VoG = \/égu\/ég({l}),kk(\/é(xk/\/N)G({k,Z})(Xl/\/N)) =: \/égll\[g({l}),kklckl-
We can define K ((Jl)) Kl IC%;; i analogously. The following lemma provides the necessary bound on E| K|

(J1)

and an improved bound on T(Jz)'

(6.3)
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Lemma 6.1. Assume (1.6) and (1.7) for the entries of the matriz Xn as before and let 0 = E +in. Then
there exist constants c, co, C, My, My > 0 such that

max{E|Ky|[*, B[y |7} < (Cq)“E, (6.4)

for E;ne€ Sgy,, N> M, |NT"| > Mo, k#1e€{l,...,N}, ¢ € Nwith g < cgN. Assuming | |J1]| — |J2|| < Cq

for some constant C', same inequality holds for K((J ))k:l’ ’Cg;;,kl

Proof. The following argument is identical for K ((“Hl)) kD> IC%;; 4> 50 we work with Kj;. By the definition of

Ky and using the notation e, €k, for €1 and ez as in (4.3) we get that:

CVo)) 1) Cqlvo))
E|Kkl2q§(j|v2q|) E|€k2|2q+EZ|Q( ;| g((]’\fml)

(6.5)
where E|exo| is bounded using (4.7), (4.6) and E} |g](-§l)xijlj]2q is bounded by Rosenthal’s inequality like
Elex1|? in (4.4). We also use Lemma 5.1 to bound E|Gy|??. Now using (6.5), (6.3), and Lemma 5.1 we

obtain that
(Cq)

E|G|* < . (6.6)
(Nn)?
To improve the bound (4. 1) we see that using equation (4.2) and (6.6) as well as Lemma 5.1 (also using
that (NU)ENQ/Q < (N}ﬂgq + &), we obtain
Cq 1 1

E[T[* < EImTr G|+ (Cq)* |~ + ge 6.7
P < (§2) Bl Tl + (€ (55 + oo (6.7

and using (6.6) we can improve the bound on E|eg;|?? in (4.7), which yields (6.4).
g

Lemma 6.2. Assume (1.6) and (1.7) for the entries of Xn as before and let § = E +in € Sg,. There
exist constants ¢, C, M > 0 such that

e 1
VoG
for 0 € Sp.,, Nn > |VOIM, ¢ < c(Nnp)Y/* and J C {1, ..., N}, with |J| < 2q.

Proof. We can take J = () as the argument is similar in the general case. We have that:

1
E—— —ENO(1 + (x))*¢Wx/N)|22 < ¢ + (C9)E|(x})*¢Wx! /N |24
NN IVO(1+ (x7) /N)| (C|0])IE|(x") /N|

< CU1 + |0)°E|(x)*¢Wx! /N — B (x)*¢Wx! /N2 + E|E,. VO *¢Wx! /N |?9).
The second term on the RHS is small by Lemma 4.1. For the third term, we find that:

2q

E|E vVO(x')*¢Wxt /N2 = ‘ \fTr(gU)‘ —E‘ ( +Tr(G<>)> <, (6.8)

where we used Lemma 5.1 and that ]A%) —Apn| < N—n as in (3.11).
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To estimate the third quantity in (6.1), we find by (6.7) that:

1
VOG i,

q
which we obtain in the following lemma.

- B

- \—\/éﬂ{k”\ < (Cq)€,. (6.9)

1
1 il
X VoG

Lemma 6.3. Let E,n € Sg,), where § = E +in. There exist constants ¢,C, M > 0 such that:

Lastly, we also need a bound on E

q

1
E|l—| <0
x! VOG11
1/4
foan>|\f|Mandforquwzthq<c< ) .
IV
Proof. The proof is similar to Lemma 5.1 in [2]. We define
— 1 1
G = =— .
U Eags 01+ Trgm)

We calculate that

. A {1h
d —— , d 1 d 1 i g Irg
—1 E =|—1 = —1 . —E NS
an og G11( —l—’m)‘ ’dn og <9> + og( >‘ ‘

dn 1+ Trg{1) 0 1+ Trg{1h)

We show that ‘% Tr g({l})‘ < W as follows:

ifex, (GH)%ey,)

WE

N
p= Trg(l) Zd gk{l} (6) = Zi((g({l}))Q)kk:

k=1 k=1
N N
d Im (G {1} Im Tr gD
|4 g ‘ GDy-gih) . (6.10
7] < @ e = ;o
We conclude that ({1
1 Im TrG 2
‘loan W —‘l—i—Trg({l})’ < H, (6.11)
yielding that
__ ' __ . n d __ . n 9 )
log G11(F + in) —log G11(F + zn/s)} = — log G11(E +iv)dv| < —dv =log s (6.12)
n/s AV n/s ¥

and thus ]é;(E +in)| < 32|éI(E +1in/s)|. The proof now proceeds by induction on 7 just like in the proof
of Lemma 5.1 using the identity

\/56!\1—1 = \/§G11 + \/§G11\/§é\1—1(ﬂ — Exl)(\/an)_l (6.13)
as well as (6.9) and the results of Lemma 5.1. O

Lastly, we use the matrix expansion algorithm to take advantage of the fluctuations. Hence the following
proposition, analogous to Lemma 4.1 of [2]:

Proposition 6.4. Let & be the control parameter as in (6.2). There exist constants C, M, cy > 0 such that

2q

1 cq? o1/2
By L VITIOVEG < (Co)” Eir’, (6.14)

=

forléqSCO(N

| >M ,K>0,0=FE+1inc Sgy.

1/8
)z

S
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Proof. To match notation in [2], we introduce Wy, = VoY \V0 Gkk and we split:
1 1
N%:Wk = Nzk: (I —Ex) Wi + — ZEka

By Holder’s inequality,
2q

< CE + CIE|E, Wy |. (6.15)

1 2
E NZW;C

k

% > ([ —EBx) Wy
p

we obtain

To bound the second term in (6) above, using that vVTWE) = —(I — Ej)
B, [VOG ik (vVOTTE))2]

1
VoG’

Er Wi = (6.16)
Ej,—-L )
( VG
and applying Lemma 6.3 to (6.16), we get that:
1 8q i
E|E, W1 |2 < (E[VOG11[29)3 | E - (E[VoY 1D Bays
e
1
c 6|1 Im |8|A))% + E|OA]4\ 2
_(Cq)q<\!8q+( \\))4q!\>’
() (Nn)

which is what we want.

In order to handle the first term of (6), we use the matrix expansion algorithm as in Section 5.2 of [2]. We
notice that equations (5.7), (5.8), and (5.9) are the basis of the expansion algorithm, and they are equivalent
to the following (see e.g. (2.18) in [12]):

VoGVeG
\[G(T \[Gm) —]wforzy,kqé']randzy;ék
VoG, (6.17)
1 1 VoG veay

= - for i,k ¢ T and i # k
(T) (Tk) (T) (Tk) (T) ’
Vi ~ ad™ /e aam™ /GatT
Using the above equation (6.17), we see that in our case the steps of the expansion algorithm (5.13), (5.14),

(5.15) in [2] are the same except that each resolvent entry is multiplied by a factor of v/6. Using our definition
of W, equation (5.6) in [2] becomes analogous to

1
(I — By )Wy, = (I—Ey,) [(]1 — Eks)\/%] VoG, s=1,...,2q, (6.18)

so the initial terms of the algorithm are A" := v/#G}, , and B := ﬁ% are the same as (5.16), (5.17) of
krkr

[2] except that each resolvent entry is multiplied by a v/@. Then (5.18), (5.19), and (5.20) of [2] carry over
directly as well as properties (1) through (5) of relevant strings. We then obtain the desired result

1
E ¥ %:(11 — Ex)W;

using the proof of (5.32) of [2]. It relies on counting the types of terms that result from the expansion
algorithm. Since our algorithm yields the same type and number of terms in each step, the proof in our
case will be identical. In [2], we notice the use of bounds (3.9) and Lemma 5.2 in (5.44) as well as in Case
2, bounds (5.26) and (3.4) in (5.43) and (5.49). We can replace (3.9), Lemma 5.2, (5.26), and (3.4) of [2] by
our bounds on the relevant quantities in (6.1) as well as our (5.4).

2q
< (Cq)rey)

0
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Proof of Theorem 1. By Proposition 3.2, in order to control A, we need to control high moments of R =

N
N~ Gn(Ti + YWFD). Taking expectation of 2¢ power we obtain

k=1
1 2q 1 2q
E[6R[* < C? | E v > VO V0G| +E v > VOrUIVeG,.| | . (6.19)
k k
For the first term by (3.11), we obtain
1 2 1
_ <(OC9——__. .
E | Xk: VOT V0G| <C N (6.20)

while the second term is handled in Proposition 6.4, yielding that
E|6R[* < (Cq)" €.

Here we are able simplify the analysis in [2] by only using the bounds proportional to R from Proposition
3.2 to control E|A*? on Sk, and E|Im A|*?. Our simplifications carry over also to the Wigner case. We
can assume that

0%
Im (J9]A)] + EJ6A™ >
[Im (|0]A)] + E[GA]™ > o)
(otherwise E|A |7 < W, as we want) and in this case:
o 1 Im (|0|A)]?7 + E|OA|* s Im (|0]A)]%7 + E|OA |
N (N2 B ()2 ’

Using the bound proportional to |R| from Proposition 3.2, we obtain

1/2
E|0A|? <

q q cq? q 2g\ 1/2 cq? q q
CIEORE _ (Cort (o + mOIAP P (CoT o (o,
A+ L7 T A+ S (Nn)2 A+ g7 (Nm)7 \ [6]>

NG q+ mA )
0]]A + 5 A+

To obtain the desired bound we now note that Im A < |A + %] and | 0||\A/z 1) < C on our domain. The first
2

(Cq)*’ |6)7
= (Nn)

one follows easily and for the second one we argue as follows:

Vi 2/
oIa+3 " Ve 4

and by triangle inequality either |§| > 2 or |#—4| > 2. Then in the first case, we use the bound /n < /|0 — 4|

and in the second case the bound /7 < \/@ .
Overall, this implies that

2

(Cq)™
Ka ’

q
P <\AN — Al > ;;7) < TN < (6.21)

K4

forlgqgco(M >M,K>0,0=FE+inec Sg, .

)1/8 Ny
Vo)
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7. CONVERGENCE OF THE COUNTING FUNCTION

In this section we prove Theorem 2.

Proof of Theorem 2. Let 0 < E < 4. We will use a Pleijel argument from [13], recently used in obtaining
estimates on a measure from estimates on a Stieltjes transform in [4]. We start from the following equations
(equations (13) and (14) in [4], following from equation (5) of [13]):

1
w(—K,E) = / mu(2)dz + L Re my(20) + O(no Im my(20)) (7.1)
270 J1(z0) T
and
1 . )
w(z,z') = 5 /( )mu(z)dz + O(no(|my(z + ino)| + |mu(z" + ino)|)) (7.2)
y(z,x’

where m,, is the Stieltjes transform of ;1 and L(zg) is a contour as in Figure 1 (see also [4] Fig 1A), namely
connects with line segments the points ¥ —ing, £ —iQ,—1—1iQ,—1+1iQ, E 4+ iQ, E 4+ ing in that order with
an arbitrarily chosen constants —1 and @, and ~(z,2’) is the contour connecting x + ing, z + iQ, ¥’ + iQ,
and 2’ + inp in that order.

By Markov’s inequality we obtain that

v (\HN(E) —nup(E)| > KlOgN> < NE(jny (E) — nap(E)|)

N (K log N)1 (7.3)

Then using (7.1) and taking zg := E + ing with 79 := MT‘/E with M as in Theorem 1 we obtain that

1 q

il /L( )A(z)dz + % Re A(z0) + O (no(Im An(20) + Im Aprp(20)))

27
/ A(z)dz
L(20)

< oo <E

noting that the constant in the O comes from the Pleijel formula and is uniform in the matrix randomness.
We study the above expression one term at a time. For £ < 4 we can bound the second term as follows

E(lnn(E) —nup(E)|?) =E

q

+ O (NiE|A(20)|? + 1 Im AMp(zo)q)> , (7.4)

qu2 qu2
The third term is bounded using the above inequality (7.5) on A as well as
C CM
noIm Aprp < % < (7.6)

Now for the integral, we note that it suffices to study the part of the contour where Im z > 0 since
A(Z) = A(z). Thus we obtain

? 0 q Q q B q
E / A(z)dz| <C1 (E A(—1+1iy)dy| +E / A(-1+1iy) — A(E+idy)dy| +E ‘/ Az +1iQ)dz )
L(z0) 0 0 -1
(7.7)
Since all eigenvalues are positive we bound A for —1 < 0 by A(—1 + in) < 2 which yields
70 q 70 q
=1+ ig)dy| < < [+ iy>|dy> < cm, (7.5)
0 0
Next we note that
§ N ()
E / Al +1Q)dx| < 7.9
[ s o] < (55 &
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q q
Now we can bound the expected value of the integrals E (fncg |IA(E + iy)|dy> and E (fncj |A(—1+ zy)|dy)
for £ < 4, noting that the argument is identical at E' and —1,

Q q Q Q Q
E(/ IA(E+iy)|dy) ZE/ IA(E+iy1)|dy1/ A(E+iyz)\dyz'~/ |A(E + iyq)|dy,
0

10 1o 10

:E/n:?~--/nfli[\A(E—|—iyj)|f[dyj:j]f---[]fEli[|A(E+iyj)|ﬁdyj
S/Q /QﬁE]AE—HyJ ;li[ Jé/n /an[( Cqﬁdy]

0 m =1 A Yj
(CQ) /Q 1, q<(C Jes ;2 (log N )4
B N4 10 Y Y B ! N4

where we can apply (6.21) inside the integral because our estimates on A are uniform on compact sets.

To prove the second part of (1.17), we use the (7.2) and study the interval [—E, E], noting that ny(E) =
N([-E,E])/N and nyp(E) = nyp(E) — nyp(—FE). The corresponding integral can be bounded similar
to above

q

E E
E ’/ A(z +ing) — Alx — ino)dx| =E ’/ 2Im A(x + ino)
—-E —-F

B B 2 (Cq)C’ BT (Cq)°?" (VE)4
= E||2ImAm-—|—i dzy---dry < < 7.10
/_E /_'E j:1 | ( J 770)| 1 q (Nn())q Mq ( )

and, similar to (7.6)

max{noAMp(—E),noAMp( )} < \/» < ]]\\{ (7.11)

which together with (7.5) yields the second part of (1.17) for E < 4.
To establish the (1.17) for E > 4, we use (1.17) for E = 4 to establish bounds on the number of eigenvalues
outside the spectrum. Letting N; be the number of eigenvalues in an interval I, we see that

Ny = N — Nn(4) = N(nyp(4) —n(4)) (7.12)
which by (1.17) for E = 4 yields that

Nuoo) . KlogN (Cq)”"
3 < .
P ( s = ) <=L (7.13)
and for E > 4,
Klog N N oo Klog N
]P’(nN(E) — nyp(E)| > ]\f ) < IP’( (;\} ) > Ng ) (7.14)
thus (7.13) gives the desired bound. O

8. RIGIDITY OF THE EIGENVALUES
The aim of this section is a proof of Theorem 3.

Proof of Theorem 3. Let a < % We will make use of the following inequalities near the hard edge and
away from the soft edge:

vz < nyp(z) < Cyz,
and
enyp(z) ! < p(x) < Cnprp(e) ™
valid for = € (0, 3]. The second inequality implies that

N N
— < a < — 1
c— < p(va) < O— (8.1)
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for any a < %
For € > 0, we have that

P <|)\a — Ya| > KE%)
<P (I =7l 2 Ko and A < 9) + P (|ha = 7l = Ko and Ay > 70
=A+D.
We consider first the term A. We set

a
{=Ke—.
°N
From A\, <7, and |Aq — 74| > £ we find that A, <, —£. This implies that ny (v —¢) > & = nup(va). By
the mean value theorem for the function nysp, there exists a point x* € [y, — £, 4] such that narp(ve) —
nap(Ya — €) = p(x*)l, yielding that
* * a
N (Ya = ) = nup(Ya =€) = nv(va =€) = nup(va) + p(@7)l 2 p(a™)l 2 p(ra)Key 2 cKe, (8.2)
because p is non-increasing, a < N/2, and from (8.1). Setting e = IOJgVN we deduce from Theorem 2 that
cKlog N (Cq)”
A< (ontn = 0 — naapn - 0] = S EN ) < (OO 83)
For a <log N, set ¢ = § > ¢,/7, to obtain
2
AgIP’(]nN( ) = narp(Ya — O] > K /(e — 0) )g (8.4)

We now estimate the term B. From the estimate nysp(x) ~ 1/ near the hard edge, we have that
a2
Ya S C (N) )
for some constant C' > 0 for all a < N/2. We consider the number
a2
o (5)
Y N

and we further consider the cases that v, + £ <y or v, + £ > y.

In the first case since A, > 7, and |\, — V4| > ¢, we have that A\, > 75+ ¢ and so ny (7, +¢) <
Hence, from the mean value theorem, we find z* € [v4,va + ¢] C [Va,y] such that nayrp(ve +£€) — narp(va)
p(x*)¢, yielding that

npp (Yo + ) — (Yo +€) =npp(Va) — nN(Ya + £) + p(™)l > p(x*)l = p(:r*)Ke% > p(y)Ke

C

where we used that p is nonincreasing and that p(y) > near the hard edge. Setting e = =5~ and using

S

Theorem 2, we conclude that

C2
logN> < (Cg)
N

BSP(|HMP(%+€)—TLN(%+€)| > cK < S pd

as required. For rigidity at the hard edge equation (1.19), let ¢ = & to obtain

K
B < # (Jnaspla+ 0 = vt + 0] = )

<P<|TLMP(’}’Q—|—€)—TLN(’7@+£ ] >C\F\/’ya ) < Cq)cq
(8.6)
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where the second line follows as before because /7, < ¢ and £ = KN—C‘;

In the other case we have that ~, + ¢ > y so the inequality A\, > 7, + £ implies that A\, > y and therefore
nn(y) < & = nup(Va). Hence from the mean value theorem there exists #* € [yq,y] such that nyp(y) —
nap(Ya) = p(x*)€, which yields

* * * a a
nap(y) = nn(y) = narp(va) = nv(y) + p(@")l 2 p(a")l = p(a") Ker 2 p(y)Ke s 2 cKe,
and we can conclude (1.18) and (1.19) as above. This finishes the proof of Theorem 3. O
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