
Vol.:(0123456789)1 3

https://doi.org/10.1007/s11517-022-02621-0

REVIEW ARTICLE

Atrial conduction velocity mapping: clinical tools, algorithms 
and approaches for understanding the arrhythmogenic substrate

Sam Coveney1  · Chris Cantwell2  · Caroline Roney3 

Received: 7 February 2022 / Accepted: 7 June 2022 
© The Author(s) 2022

Abstract
Characterizing patient-specific atrial conduction properties is important for understanding arrhythmia drivers, for predicting 
potential arrhythmia pathways, and for personalising treatment approaches. One metric that characterizes the health of the 
myocardial substrate is atrial conduction velocity, which describes the speed and direction of propagation of the electrical 
wavefront through the myocardium. Atrial conduction velocity mapping algorithms are under continuous development in 
research laboratories and in industry. In this review article, we give a broad overview of different categories of currently 
published methods for calculating CV, and give insight into their different advantages and disadvantages overall. We clas-
sify techniques into local, global, and inverse methods, and discuss these techniques with respect to their faithfulness to the 
biophysics, incorporation of uncertainty quantification, and their ability to take account of the atrial manifold.

1 Introduction

Atrial arrhythmias, including atrial fibrillation (AF), are a 
major global health problem; AF was estimated to affect 7.6 
million people over 65 in the EU in 2016 [1]. To improve 
therapeutic strategies, which include anti-arrhythmic drug 
therapy and radiofrequency catheter ablation therapy, an 
improved understanding is needed of the factors underlying 
the arrhythmia of each individual patient. Characterizing 
patient-specific atrial conduction properties is important for 
understanding the arrhythmia drivers, for predicting poten-
tial arrhythmia pathways, and for personalising treatment 
approaches. One metric that characterizes the health of the 
myocardial substrate is atrial conduction velocity (CV), 

which describes the speed and direction of propagation of 
the electrical wavefront through the myocardium [2].

Atrial CV has been established to be a function of a range 
of functional and structural properties, including the under-
lying wavefront direction relative to the anisotropic fibre 
alignment of the tissue, the presence of atrial fibrosis, patho-
physiological changes in cell-to-cell coupling and alterations 
in the behaviour of the sodium current [3–5]. Assessment of 
atrial CV in the clinic could inform the clinician on likely re-
entry circuits. With more recent developments, these meas-
urements could be used to calibrate patient-specific models 
to predict and identify likely conduction paths during an 
arrhythmia. As a final motivation for the calculation of atrial 
CV, areas of low CV could represent an ablation target dur-
ing catheter ablation therapy.

Cardiac CV and associated mapping algorithms have 
been discussed in previous review articles [2, 6]. However, 
besides covering recent research, this review differs from 
these by grouping techniques into broad categories in order 
to offer insight into the advantages and disadvantages of 
different types of methods. We also assess CV analysis 
methods by considering the following: (i) accounting for the 
physics of electrical wavefront propagation; (ii) incorpora-
tion of uncertainty quantification; and (iii) accounting for the 
manifold nature of the atrial geometry. These characteristics 
are important to provide CV estimation that accounts for 
the physics and physiology of the heart. We then discuss 
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the latest applications of these algorithms in the clinic, and 
future research directions.

1.1  Data types, catheters and electroanatomic 
mapping systems

Electrogram data from electroanatomic mapping systems 
provide a wealth of spatiotemporal information on the pro-
gression of action potential propagation in the myocardium. 
Signals are obtained from multipole catheters, connected to 
the mapping system and inserted into the patient. By using 
this information to calculate electrical propagation speeds 
and directions at different pacing rates, the clinical electro-
physiologist can gain a more comprehensive understanding 
of potential arrhythmia activation pathways, heterogeneity of 
the substrate, and the mechanism maintaining atrial fibrilla-
tion compared to looking at activation times alone.

The unipolar and bipolar electrogram modalities have 
been ubiquitous in clinical electrophysiology. Unipolar sig-
nals are measured between a roving electrode and a distant 
fixed electrode. Clean unipolar signals, in the presence of 
relatively simple activation patterns, enable precise timing 
information to be calculated. In combination with other elec-
trodes, conduction velocity can be estimated. However, this 
is frequently unreliable in practice due to the impact of poor 
contact and far-field electrical signals. Bipolar electrograms, 
between two closely spaced roving electrodes, are effective 
at rejecting far-field activation due to their close proximity 
[2]. Their morphology is, however, dependent on the rela-
tive orientation of the inter-electrode axis to the direction of 
activation. The recently proposed omnipolar signals mostly 
overcome this direction-dependence by using three or more 
non-colinear signals to infer directional information about 
the local electric field and consequently compute a local 
virtual bipolar signal oriented orthogonal to the wavefront, 
although there are implied assumptions of locally planar 
conduction and they continue to be susceptible to the other 
issues of poor contact [7].

There are now many different catheters available for 
recording contact electrograms, with different electrode 
arrangements, inter-electrode spacing and coverage. 
Local multipolar mapping catheters are a relatively low-
cost and widely available tool for creating local activa-
tion time or voltage maps for the cardiac chambers. These 
catheters typically consist of twenty unipolar electrodes 
spanning a diameter of 1.5–2 cm with different configu-
rations, including a spiral (Afocus II), a circle (Lasso), 
and a five-spline arrangement (PentaRay) [8, 9]. Bipolar 
electrogram recordings are constructed from pairs of uni-
polar electrograms, and the amplitude and morphology 
are affected by the inter-electrode spacing, electrode con-
tact and wavefront direction. Other more global electrode 
arrangements include the Constellation basket catheter, 

which consists of eight splines of eight electrodes, which 
allows measurement from a larger surface area of the 
atria, at a lower resolution [10, 11]. More recently, high-
density grids of electrodes are available (HD Grid) which 
provide relatively stable inter-electrode distances in both 
directions and aids in the calculation of omnipolar signals 
[12]. Higher density plaque and basket (Orion) electrode 
arrangements are also available [13, 14]. It is important 
to consider the spatial and temporal resolutions associated 
with each of these catheters when calculating and inter-
preting CV [15, 16].

Electroanatomic mapping systems provide increas-
ingly detailed analysis modules in their latest releases. 
The CARTO Prime module from Biosense Webster inte-
grates their Coherent Mapping analysis, which includes 
algorithms to identify the most probable global propaga-
tion map; display CV vectors; and indicate areas of slow 
or no conduction [17, 18]. EnSite from Abbott includes 
omnipolar signal analysis for HD grid recordings, and the 
LiveView Dynamic module displays activation directions 
and maximum voltage maps to identify regions of wave-
front collision and conduction block [19]. Lumipoint from 
Rhythmia, Boston Scientific, also highlights regions of 
interest, fractionated signals and localizes areas of slow 
and narrow conduction [20]. It uses the Intellamap Orion 
64 electode high-density catheter to clearly identify gaps 
in re-do pulmonary vein isolation procedures [21]. Kodex-
EPD Philips cardiac imaging and mapping system uses 
dielectric mapping to estimate wall thickness [22], which 
can be compared to CV using openEP software [23]; future 
iterations of the software may combine these analyses. 
Acutus Medical AcQMap offers high-resolution global 
maps, and includes a SlowZone Locator where multiple 
maps are combined to identify regions of consistently slow 
conduction [24, 25]. Exciting new developments across the 
electroanatomic mapping systems offer detailed analysis 
of the atrial substrate.

1.2  Local activation time

The majority of the algorithms covered in this review arti-
cle require the accurate annotation of local activation time 
(LAT) on each acquired electrogram. Approaches to this 
have been discussed previously [2], and we refer the reader 
to this review article for further details about many of the 
historical methods for LAT annotation. More recently an 
approach has been proposed which incorporates uncertainty 
quantification (UQ) for LAT annotation and once defined, 
how to use it in probabilistic interpolation, but this was 
mostly a heuristic approach [26]. We briefly discuss LAT 
assignment for complicated activation, such as during atrial 
arrhythmias, in Section 6.
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1.3  CV method categories

This review places CV calculation methods into three cat-
egories: (1) local methods, whereby CV is calculated using 
only LAT observations from an immediate spatial neigh-
bourhood; (2) global methods in which a complete CV 
map is fitted to all LAT observations simultaneously; and 
(3) inverse methods which infer the CV field most consist-
ent with LAT observations in a way that accounts for phys-
ics. Our aim in this review is to give insight into the overall 
advantages and disadvantages of these different categories 
of methods.

2  Local methods

Local methods attempt to reconstruct the CV field at a 
particular position using LAT measurements in a nearby 
spatial neighbourhood. Examples for defining this spatial 
neighbourhood include the span of a catheter’s electrode 
configuration, a fixed distance threshold, and a Delaunay 
triangulation of measurement locations. A common disad-
vantage associated with local methods is that the resulting 
CV vectors can appear quite non-smooth, due to their limited 
ability to handle noisy measurements and the discontinu-
ous nature of nearest-neighbour algorithms. Nonetheless, 
a significant advantage of these methods is that reasonable 
assumptions can be made about wavefront propagation in 
a local region even if the overall activation pattern is more 
complex. With high-density measurements, these methods 
may also enable analysis of conduction velocity heterogene-
ity, and identification of small areas of conduction slowing.

2.1  Triangulation

One of the simplest methods to calculate conduction veloc-
ity is across a triangle of points, since at least three non-
collinear points are required to define the gradient vector 
of LAT in a 2D plane. The first triangulation method used a 
catheter with an equilateral triangle of electrodes to measure 
CV at specific catheter placements [27]. Data collected with 
high-density grids of electrodes can also be triangulated by 
considering triplets of neighbouring electrodes [28], and this 
method can be generalized to non-equilateral triangles [29, 
30]. A Delaunay triangulation of arbitrarily positioned meas-
urements can be defined over a manifold in order to calculate 
CV vectors in 3D [31–33], as shown in Fig. 1. Attempts 
have been made to account for geodesic distances in these 
methods [34].

In the references above, trigonometric formulas are 
used to define CV. However, all of these methods assume 
a planar wave propagation with constant velocity, and so a 
much simpler parameterization of the problem is possible 

by expressing LAT as a linear function of position in a 2D 
plane using in-plane coordinates:

from which the slowness vector ∇T = (∂T/∂x,∂T/∂y)T = 
(α1,α2)T can be immediately defined, and therefore conduc-
tion velocity defined via CV = ∇T/|∇T|2. These coefficients 
can be related to CV magnitude and angle of incidence via 
simple trigonometry [35]. Piecewise linear polynomials can 
also be used to calculate the gradient of a function on a tri-
angle using values defined at vertices [36]. This parameteri-
zation shows that measurement error cannot be accounted 
for with these methods, since the linear model has three 
parameters and three measurements, therefore the fit will 
always have zero residuals.

2.2  Flexible smooth functions

Fitting smooth functions T(x) such as quadratic 2D poly-
nomials [37] and cubic 3D polynomials [38, 39] allow 
for CV to vary in space. Using more measurements than 
model unknowns also allows for data to be noisy. Fitzger-
ald et al. compared polynomial fits to a large amount of 
data against (first-order polynomial) linear fits using 
a subset of data in a smaller spatial region, suggesting 
that the latter might detect smaller-scale features better 
(although higher-order polynomials fit to data subsets was 
not studied) [40]. Higher-order polynomials require more 
data for fitting (e.g. at least 10 data points for a 2D cubic 
polynomial), thus necessitating the consideration of larger 
spatial neighbourhood. These fits do not consider the spa-
tial manifold on which the data lies, but this consideration 
will become more important as the spatial neighbourhood 
increases in size. Lou et al. take an interesting approach 

(1)Ti = �0 + �1Xi + �2Yi

Fig. 1  LAT measurement locations (dark blue circles) connected by 
a Delaunay triangles (white lines), with CV vectors shown as arrows. 
Figure reproduced from [31]
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here by first mapping the manifold surface to longitude 
and latitude coordinates, and fitting quadratic polyno-
mials to these coordinates [41]. Radial basis functions 
(RBFs) are another flexible choice for fitting LAT fields 
to the data [42, 43], also suitable for application to an 
arbitrary configuration of measurement locations. It is 
possible to use RBFs with geodesic distances in order to 
account for the manifold.

It would be possible to alleviate some of these prob-
lems with noisy data by fitting using Regularized Least 
Squares (RLS) in place of ordinary least squares (OLS). 
For example, RBF fits will pass through the data points 
exactly using OLS (it is almost always the case that the 
basis functions are centred on each data point), but this can 
be overcome with RLS. This also has a Bayesian interpre-
tation, allowing for the posterior distribution of the fitted 
coefficients, and therefore uncertainty on CV, to be calcu-
lated (see Appendix A).

2.3  Catheter specific

Methods for calculating CV may be derived for specific 
catheter configurations. The triangular catheter method 
of [27] is one such example. The cosine method makes 
use of data collected from a circular catheter [43–46], and 
assumes a plane wave with constant velocity, for which 
the LAT data can be fit with a cosine function, from which 
CV can be calculated; see Fig. 2(A). The relatively large 
number of measurements on the decapolar catheter should 
provide robustness to noise. The cosine method assumes 
a planar wave with constant velocity, so it is not clear 
whether there is any real advantage over simply using 
Eq. (1). The extension to a circular wave (see Fig. 2(B)) 
for specific configurations of electrodes has been shown 
by [47]. Linear catheters paced from one end also provide 
a particularly simple solution to measuring CV, since the 
time differences and distances along the catheter allow CV 
to be easily calculated, e.g. [48, 49]. This method assumes 
that the wavefront is perpendicular to the catheter.

Finite difference methods, operating on regular grids 
of data, provide another possibility. Although mostly used 
for optical mapping, high-density grids of electrodes are 
also suitable for finite difference methods [50, 51]. Finite 
difference methods are very susceptible to noise, and as 
is commonly known, for a 5-point stencil consisting of an 
electrode and its four nearest neighbours, central differ-
ence first derivatives do not depend on the value measured 
at the central electrode. This is unfortunate since this is a 
very important data point for estimating CV at the central 
electrode, and is easily accounted for by other fitting meth-
ods. Other methods using high-density grids of electrodes 
have also been suggested [52, 53].

2.4  Generalized wave fitting

As mentioned in the sections above, many methods of cal-
culating CV assume a plane wave propagation at constant 
CV, which produces a linear LAT surface as a function of 
2D space. This raises the question of why not just fit such a 
LAT surface to data directly. For circular waves, a general fit 
to a non-specific arrangement of points is also possible. One 
catch is that points on a 2D manifold in 3D are not coplanar 
in general, although for a specific catheter placement they 
might be assumed to be. To generalize these methods to any 
arrangement of data points therefore requires projection of 
the data into a 2D plane.

The techniques presented in [54] generalize plane wave 
and circular wave fitting to arbitrary configurations of points, 
by first projecting the points down into the 2D plane of best 
fit by least squares through the 3D data coordinates. The 
method in [35] improves upon this method by explicitly 
taking into account the manifold using a multi-dimensional 
scaling technique presented by [55]: the geodesic distances 
are calculated between all measurement locations on the 
mesh, and used to project the points into a 2D coordinate 
system that best preserves these inter-point distances. Either 
plane wave or circular wave fits can then be performed in 
this flattened coordinate system. See Fig. 3. It should be 
noted that, like many other fitting methods presented above, 
these methods assume homogeneous CV and therefore 

Fig. 2  (A) The cosine method, (B) circular wavefront and arbitrary 
measurement positions. Figure reproduced from [2]
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high-frequency variations in CV are smoothed out. However, 
higher-order polynomials could be fit to data in the flattened 
coordinate systems.

2.5  Electric field from omnipolar signals

The omnipolar algorithm infers the electric field from a set 
of bipoles and expresses it in terms of a physiological coor-
dinate frame, consisting of axes normal to the tissue, and 
parallel/perpendicular to the components of the wavefront 
that are tangential to the tissue. The algorithm works under 
the assumption of activation being a local planar travelling 
wave with constant velocity. Although derived from bipolar 
signals, this form of CV differs from the others discussed 
above in that it can be estimated without explicit annotation 
of the electrogram to obtain LAT.

In 1D, a travelling wave ϕ centred at x0 at time t0 looks the 
same as the wave centred at x0 + vt at time t0 + t, i.e. ϕ(x0,t0) 
= ϕ(x0 + vt,t0 + t). Taking the derivative with respect to time 
and applying the chain rule leads to

Moving to three dimensions and applying the relation 
between the electric field E and the extracellular potential 
ϕ, E = −∇ϕ, it can be deduced that:

or alternatively � = (�̇�∕Ea)�̂ , where �̂ is the propa-
gation direction, determined by the omnipolar fitting 
algorithm, and Ea is the component of the electric field 
in that direction. Since the CV from omnipolar analysis 
is obtained from a ratio of signals, it does not necessi-
tate specific activation times [7]. In [56], the technique 
is modified to estimate the omnipolar electrogram after 
inter-electrogram alignment within each clique to reduce 
the residual angular dependency of the classical omnipolar 
electrogram. In addition, [56] use the ratio of standard 
deviations � = ([�̇�]SD∕[Ea]SD)�̂ rather than peak-to-peak 
amplitudes, with the aim of reducing the effects of noise 
on the estimate.

0 =
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Fig. 3  Generalized wave fitting method. A patch of mesh is projected down into 2D coordinates, and CV is calculated assuming either a planar 
wave or circular wave in these local coordinates. Figure reproduced from [35]
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2.6  Summary of local methods

This section has covered local fitting methods for calculating 
CV where a travelling wavefront is assumed. Although not 
applied to local methods to our knowledge, there is no rea-
son that uncertainty quantification cannot be performed with 
local methods. Besides from flexible smooth functions like 
RBFs and polynomials, most methods assume a constant CV 
model for the data in the fit. This assumption will become 
less valid as the spatial neighbourhood becomes larger: for 
small regions this may be a fairly good assumption, and for 
large regions this may yield a low-resolution result for aver-
age CV in the region. Methods for identifying wavefront 
collisions have been suggested [57, 58], which may allow 
for calculating CV for each wavefront separately. Methods 
for measuring CV around re-entrant circuits have also been 
studied but we have not directly addressed these here (see 
[59–62] for examples).

3  Global methods

Global methods attempt to reconstruct the LAT field on the 
manifold by interpolating/regressing all LAT measurements 
simultaneously, and CV can be derived from these global 
LAT maps. These methods are purely data driven and do not 
allow for including physics constraints (note that we catego-
rize several methods involving a global LAT interpolation 
with physics constraints as ‘inverse methods’, and these are 
discussed in Section 4). For ease of presentation, we first 
discuss global methods of LAT interpolation/regression, 
before addressing how CV is calculated from these results.

3.1  Radial basis functions

Radial Basis Functions (RBFs) are powerful mesh-free 
methods for interpolation and regression. It is almost always 
the case that an RBF is centred on each observation location 
xi. The basis functions then have the form Ri(x) := R(d(x,xi)), 
depending only on the distance d(x,xi) and usually hyper-
parameters that control the RBF shape (depending on the 
choice of basis function). RBFs are used for LAT interpola-
tion by both [63] and [64]. Both use ‘polyharmonic splines’, 
consisting of RBFs with additional polynomial terms, as 
follows:

Both [63] and [64] used Euclidean distances, which can-
not account for the manifold, and interpolating conditions, 
which cannot account for observation error. However, we 
note the following: (i) to account for the manifold, Euclid-
ean distances can be replaced with geodesic distances and 

(2)f (�) =
∑N

i=1
�iR(||� − ��||) +

∑M

j=1
�jP(�)

the polynomial term dropped entirely (this term is usually 
included to improve extrapolation, where CV estimation is 
undoubtedly very poor); (ii) to account for noisy observa-
tions, smoothing interpolation is possible using regularized 
least squares; in fact the posterior distribution can be easily 
obtained — see Appendix A. We mention these ideas here so 
that RBFs are not discounted against other published global 
methods that account for the manifold and for uncertainty 
quantification.

3.2  Gaussian processes

The first global method accounting for both the manifold 
and noisy LAT observations was given by [26]. The LAT 
field was modelled as:

where the basis functions ϕk(x) are piecewise linear for 
every node on a triangular domain, and β0 is an intercept. 
This model is a Gaussian process, as the prior distribution 
for the probabilistic weights βk is multivariate normal, with 
a particular form of precision matrix (inverse covariance 
matrix) accounting for the manifold. Although CV can be 
calculated from the posterior mean, which provides a good 
global LAT interpolation (see Fig. 4) and corresponding CV, 
the posterior samples of such a model are not smooth enough 
for calculating a posterior distribution for CV by sampling 
from the posterior distribution for LAT.

To alleviate this problem, [65] generalized Gaussian pro-
cesses to non-Euclidean manifolds for the first time, using 
the following model based on theory provided in [66]:

where �k ∼ N(0, �2

�
) , S(⋅) is the spectral density of a covari-

ance kernel (the intercept was omitted by centering the data, 
but can generally be included in the model), ϕk(x) and λk are 
eigenfunctions and eigenvalues of the cotangent Laplace-
Beltrami operator on the domain. Note that shortly after the 
publication of [65], an independent derivation of the same 
result for Gaussian processes on manifolds appeared in [67].

3.3  CV calculation with global methods

Global methods obtain a LAT map, from which the spatial 
gradient of LAT ∇T(x), also called the ‘slowness’ vector, can 
be obtained and inverted CV = ∇T(x)/|∇T(x)|2. The slowness 
vector can be calculated on every mesh element using piece-
wise linear functions [36]. It is also possible to subdivide 
the mesh first and calculate gradients of the basis functions 
[65] (Fig. 5).

(3)f (�) = �0 +
∑n

k=1
�k�k(�)

(4)f (�) =
�M

k=1
�k

�
S(
√
�k)�k(�)

2468 Medical & Biological Engineering & Computing (2022) 60:2463–2478



1 3

Isochronal methods use the distances between isochro-
nal contours to calculate CV, effectively fitting distances 
between wavefronts to activation times in order to calcu-
late CV. These results are often averaged across pairs of 
points on the wavefront to increase robustness, and are 
mostly applied to LAT maps obtained with clinical map-
ping system [3, 48, 68–76]. However, these methods could 

be applied for any global LAT interpolation technique, 
and it would even be possible for use them for probabilis-
tic models by applying them to posterior samples of LAT 
maps. Isochronal methods utilize global LAT maps, but 
are similar to local methods that fit a single constant CV 
model over a spatial region.

Fig. 4  Posterior mean of LAT 
from the Gaussian process 
model of [26]. Measurement 
point sizes reflect measurement 
uncertainty. Figure reproduced 
from [26]

Fig. 5  CV simulation ground 
truth (top) and posterior predic-
tion and uncertainty, obtained 
with the Gaussian process 
model in [65] which general-
ized Gaussian processes to 
manifolds. Figured reproduced 
from [65]
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3.4  Summary of global methods

The main advantage of global methods is that all data can be 
accounted for simultaneously, and predictions of LAT and 
CV can be made everywhere. However, these models cannot 
guarantee physical behaviour, and for probabilistic models 
where the posterior mean looks reasonable, the posterior 
samples may not do. The global methods discussed above 
cannot model singularities where wavefronts collide, since 
they will interpolate LAT continually over these regions 
and the results here have no physical meaning, although this 
would be true of local methods fit to such regions unless the 
data was partitioned into different wavefronts first.

Although not used for LAT interpolation, [77] presents 
a generalization of spline interpolation for manifolds that 
makes use of Laplacian eigenfunctions weighted by the 
inverse of the corresponding eigenvalues. Note that the 
Laplacian eigenfunctions also allow various other measures 
of distance over a manifold to be defined, such as biharmonic 
distance [78]. It is possible that Laplacian-based techniques 
for minimizing variation of a smooth function could be uti-
lized for LAT interpolation [79, 80]. A method to calculate 
a consistent set of activation times at all measurement loca-
tions was suggested by [81]. We do not know for sure what 
different proprietary clinical systems use for LAT interpola-
tion, so we do not attempt to comment on these here.

4  Inverse methods

Inverse methods explicitly model the diffusion/conductivity/
CV field and link it to observations in a way that accounts 
for the physics of electrical propagation. It could be argued 
that some local methods also do this (e.g. fitting a plane 
wave of constant velocity), but these methods are restricted 
to the assumption of constant CV. Inverse methods model a 
heterogeneous CV and optimize it with respect to the data. 
The methods presented below are global, but we believe 
that the explicit modelling of CV and physics, not present in 
the ‘global methods’ presented above, warrants an entirely 
separate category. It is possible that local inverse methods 
will be developed in the future.

4.1  Physics informed neural networks

Physics Informed neural networks (PINNs) were introduced 
for simultaneous LAT interpolation and CV prediction by 
[82] (Fig. 6). The idea is to represent LAT and CV by sepa-
rate neural networks, T(x) ≈ NN(x,𝜃T),V (x) ≈ NN(x,𝜃V), and 
to train the parameters of these networks using a single loss 
function that penalizes (i) differences between predicted and 
measured LAT; and (ii) residuals of the Eikonal equation 
V (x)||∇T(x)||− 1. Additional regularization terms are also 

included in the loss function. In this way, the physics of elec-
trical wave propagation in excitable media are approximately 
obeyed, so the resulting solutions should be more physically 
realistic even though the neural networks are regressing LAT 
and CV using 3D Euclidean distance that do not account 
for the manifold. Further exciting research on PINNs that 
model heterogeneous diffusion fields is also underway [83]. 
The approach is effectively the same, but neural networks 
are used to model tensors representing diffusion fields and 
the loss function utilizes the anisotropic Eikonal equation.

[82] show that the networks can approximate discontinui-
ties in the LAT field that occur where wavefronts collide, 
something that other techniques find difficult to model. How-
ever, the general performance of the method on atrial mani-
folds was demonstrated only for extremely simplified cases 
and was only compared against simple linear interpolation 
in 3D Euclidean space. Training such networks can also take 
hours [83]. Nonetheless, PINNs show great promise, and it 
seems reasonable to assume that further developments in 
the loss function and the neural network architecture might 
improve performance.

4.2  Eikonal simulations

PINNs only weakly imposed the Eikonal equation via the 
loss function. Another approach called PIEMAP [84, 85] 
is to learn the heterogeneous diffusion field by running full 
anisotropic Eikonal simulations [86] in order to optimize 
the diffusion tensor field (Fig. 7). By comparing simulated 
LATs to measured LATs and by regularizing the solution 
in the loss function, it is possible to learn the diffusion ten-
sor field. Similar to [83], this methodology requires that a 
coordinate system is first formed on the manifold, describing 
two orthogonal directions on each element of the mesh that 
vary smoothly between neighbouring elements. This may 
preclude the ability to learn certain fibre fields, but it may 
be possible to use a fibre field coordinate system based on a 
physiological prior [87]. Similar to PINNs, training time is 
much higher than local or global approaches, and is reported 
as around 1 hour for a high-end desktop with a GPU. A large 
disadvantage of PIEMAP is that the location of first activa-
tion is not learned along with the parameters, something that 
is not an issue for PINNs or for global methods. However, it 
is likely that this can be overcome by future work. Similar 
to PINNs, this promising research has so far only been dem-
onstrated for fairly simplified cases.

4.3  Summary of inverse methods

The inverse methods discussed here have enormous potential 
for recovering CV and diffusion tensors, since physics is 
imposed on the solutions via the Eikonal equation. There is 
a lot of recent work using deep-learning methods to solve 
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the Eikonal equation [89–91]. These inverse methods should 
easily allow incorporation of LAT measurements from dif-
ferent stimulus positions, whereas for other approaches it is 
less clear how to combine this information to obtain a single 
estimate of CV or diffusion (a local method for learning dif-
fusion fibre fields from multiple activation maps is given by 
[35]). While inclusion of uncertainty in LAT measurements 
via the loss functions would be fairly straightforward, poste-
rior (prediction) uncertainty is less straightforward, e.g. the 
form of uncertainty quantification attempted in [82] requires 
training of  101 −  102 neural networks. These methods are 

also more computationally expensive than global or local 
methods, so they may find more use in offline analysis rather 
than computation in vivo during clinical procedures.

5  Related approaches and applications

Additional properties of atrial conduction can be estimated 
and assessed, including conduction anisotropy, tracking 
activation waves, or vector field analysis. These associ-
ated analyses can be used together with CV for mechanistic 

Fig. 6  Predicted LAT maps 
and CV maps from a physics 
inspired neural network (PINN), 
using LAT observations at the 
locations indicated by white 
points. Figure reproduced from 
[82]
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assessment in the clinic and to personalize atrial models. 
We will briefly discuss these analyses and applications here.

5.1  Conduction anisotropy

An extension beyond the calculation of conduction velocity 
is to consider the dependence of conduction speed on propa-
gation direction, which is important to assess as atrial tissue 
exhibits anisotropic conduction [92, 93]. A local method 
for estimating anisotropy was developed by extending the 
generalized wave fitting approaches to consider an elliptical 
wave of activation, so that the fit could consider longitudi-
nal and transverse conduction speeds, and the orientation of 
the longitudinal conduction direction [35]. More advanced 
inverse methods that also estimate conduction anisotropy 
were given above [83–85].

5.2  Other methods for tracking wavefront 
directions

Other wavefront tracking techniques have been developed 
that consider wavefront propagation vectors over time. These 
propagation vectors can either be constructed using CV vec-
tors calculated through LAT assignment, or through tracking 
constant values of another variable — for example, isopo-
tential or isophase methods. Directed graph mapping assigns 
propagation vectors and uses a network theory approach to 
determine re-entrant wavefront activation directions [94] 
and determine atrial tachycardia and flutter mechanisms [95, 

96]. Pathways of activation during atrial fibrillation can be 
assessed through optical flow mapping or Electrographic 
Flow mapping [97, 98], and this analysis is available in the 
clinic through Ablacon Ablamap Software [98].

5.3  Clinical systems and mechanistic assessment

Conduction velocity measurements can be calculated across 
different pacing rates to test how the atrial tissue responds 
to changes in activation interval. These conduction velocity 
restitution curves provide information on how atrial conduc-
tion speeds are likely to change with changing activation 
intervals and at the shorter cycle lengths observed in atrial 
arrhythmias, including tachycardia and fibrillation. Weber 
et al. presented a pacing protocol for measuring CV restitu-
tion [99]. Conduction velocity restitution was measured in 
humans by Lalani et al. to demonstrate conduction slowing 
immediately before the onset of AF [100]. Recent tools have 
been developed to automate conduction velocity restitution, 
for example Nothstein et al. [101].

Conduction velocity vector fields can be post-processed 
through vector calculus to calculate properties of the wave-
front propagation field, including focal activation (peaks of 
divergence) and rotational activity (by calculating curl) [102, 
103]. Yavin et al. demonstrate a technique for using acti-
vation vectors to differentiate between conduction gap and 
conduction block for interrogating regions of the substrate 
[104]. Luther et al. highlighted the importance of carefully 

Fig. 7  Ground truth fibres (top 
left) and fitted fibres inferred 
with PIEMAP (top right), along 
with simulation LAT and LAT 
observations (bottom left) and 
fibre angle error (bottom right). 
Figure reproduced from [88]
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assigning LAT when differentiating between conduction 
mechanisms [105].

6  Discussion

Besides direct quantitative comparison, there are three cri-
teria we can consider for assessing different methods: (i) 
accounting for physics; (ii) uncertainty quantification in pre-
dictions; (iii) accounting for the manifold. Local methods 
can account for physics under certain simplifying assump-
tions about constant conduction velocity, as well as account-
ing for the manifold by locally flattening the mesh. Uncer-
tainty quantification can be easily incorporated into most 
local methods. Global methods cannot account for physics, 
but can directly account for the manifold in a more general 
way and can incorporate uncertainty quantification in a way 
that is consistent with all data. This is as opposed to local 
methods, for which independent fits at different locations are 
not really self-consistent as correlations cannot be accounted 
for. Inverse methods approximately account for all three cri-
teria, and future work may improve upon this even further.

How important it is to incorporate physics constraints or 
account for the manifold is not clear. Of the inverse meth-
ods, PINNs only weakly do both of these things whereas 
PIEMAP strongly does both. Local methods may be able to 
consider the manifold to be approximately flat, where global 
methods probably need to account for the manifold. The 
importance of uncertainty quantification in making predic-
tions from sparse and noisy data should not be understated, 
especially for methods aimed at personalizing electrophysi-
ology models that might be used for informing clinical deci-
sions. Whereas inverse methods may be the best option for 
model personalization to date, in our opinion the uncertainty 
quantification of these techniques in particular needs much 
more development. Although only a few of the methods out-
lined in this article actually incorporated uncertainty quan-
tification in existing publications (exceptions being [26, 65, 
82]), we have tried to highlight where and how uncertainty 
quantification can be incorporated into existing methods.

It is difficult to calculate CV during atrial arrhythmias due 
to challenges in assigning LAT for complicated activation: 
(i) electrograms may be multi-component, low-voltage, and 
fractionated; (ii) there may be multiple wavefronts and wave-
front collision; (iii) wavefronts may take complicated paths, 
including re-entry. Only local methods for CV can be applied 
in these complex cases. Current technologies for assessing 
electrical activity during atrial fibrillation, including LAT 
assignment during AF, have been recently reviewed [106]. In 
particular, the importance of detecting and removing signal 
noise, subtracting far-field QRS and annotating AF poten-
tials have been highlighted. Techniques have been devel-
oped to assign LAT to complex signals including wavelet 

decomposition, morphological approaches, and tracking 
wavefronts [107–109]. Uncertainty quantification techniques 
for LAT assignment have also been developed [26], but the 
correct activation would need identifying and bracketing first 
prior to applying the method. In the instance of wavefront 
collisions, CV may be assigned to individual wavefronts if 
these wavefronts are first identified and analysed separately, 
for example using the residual of a wavefront fit to screen 
wavefronts [57, 58, 110]. Another approach is to mark all 
possible LAT on all electrograms and choose the most con-
sistent set as an activation vector map [111]. These activa-
tion vector maps can then be analysed with physiological 
constraints to find areas of conduction slowing and complex 
circuits. Techniques have also been developed to calculate 
CV in the case of re-entrant circuits [59–62]. It is important 
to correctly assign LAT and interpret activation patterns 
to differentiate re-entry from pseudo-reentry [112]. Dur-
ing fibrillation there may be multiple wavefronts with short 
wavelengths so the spatial resolution of the recording device 
should be considered during this assessment [16].

This review article has attempted to give an overview of 
the different categories of methods for calculating conduction 
velocity. We hope our proposed categorization offers some 
insight, and helps expose the assumptions, limitations, and 
benefits of different techniques. Another reason for present-
ing methods in this way is that it is currently very difficult to 
compare methods in any other way. In our opinion, there is a 
clear need for benchmark data for evaluating algorithms for 
calculating conduction velocity. Reproducible simulated data 
where the ‘ground truth’ LAT (and therefore CV) is known 
everywhere would probably be the easiest solution, especially 
as computational electrophysiology simulations are extremely 
well developed [113, 114]. Open-source code for methods is 
important [23] but is only part of the solution, as its existence 
can imply that the burden of quantitative comparison (against 
an ever increasing cannon of previous methods) should be 
placed entirely on researchers proposing new methods, rather 
than being shared amongst the research community more 
broadly. Hopefully the next CV review paper will be a quanti-
tative evaluation of methods by many different authors work-
ing using many different methods on the same benchmark data.

7  Conclusion

Atrial conduction velocity mapping algorithms are under con-
tinuous development in research laboratories and in industry. 
Our aim in this review article was to give a broad overview of 
the different categories of currently published methods for cal-
culating CV, and to give insight into their different advantages 
and disadvantages in the context of different applications. 
Our approach was to group techniques into local, global, and 
inverse methods, and discuss these techniques with respect to 
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their compliance to the governing physics, scope to quantify 
uncertainty, and their ability to take into account the atrial 
manifold. Although further research is likely to be promising, 
quantitative evaluation of different techniques on a common 
ground truth dataset is still lacking, and hopefully future work 
will aim at addressing this shortcoming.

Appendix

A.1 Bayesian linear models

It is common to assume that noisy measurements y of a vari-
able f have normally distributed errors p(y|f ) ∼ N(y|f , �2

n
I) . 

A linear model f = Φβ can be given normal priors on the 
basis weights p(�|��) ∼ N(�|�, �2

�
I) . The posterior distribu-

tion for the weights is then given by:

Values of σβ, σn, as well as any hyperparameters in the 
basis functions, can be determined by maximizing the mar-
ginal (log-) likelihood. The posterior distribution of f follows 
easily from above; the posterior mean can be recognized as 
the expression for regularized least squares solution. It is 
fairly simple to include heterogeneous errors. Any methods 
that fit LAT using a linear model can be readily fit into a 
Bayesian framework in this way, and posterior samples can 
be used to calculate uncertainty about CV.
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