
A Workflow for Probabilistic Calibration of Models of Left Atrial
Electrophysiology

Sam Coveney1, Cesare Corrado3, Caroline Roney4, Richard D Wilkinson5, Jeremy E Oakley2, Steven
A Niederer3, Richard H Clayton2

1 University of Leeds, Leeds, UK
2 University of Sheffield, Sheffield, UK
3 King’s College London, London, UK

4 Queen Mary University of London, London, UK
5 University of Nottingham, Nottingham, UK

Abstract

Atrial fibrillation is an increasingly common condition.
Computational models that describe left atrial electro-
physiology have the potential to be used to guide interven-
tions such as catheter ablation. Calibration of these mod-
els to faithfully represent left atrial structure and function
in a particular patient is challenging because electrophys-
iology observations obtained in the clinical setting are typ-
ically sparse and noisy, and can be difficult to register to a
mesh obtained from imaging.

Probabilistic approaches show promise as a way to ob-
tain personalised models while taking account of noise,
sparseness, and uncertainty. We have developed a work-
flow in which parameter fields are represented as Gaussian
processes, and the posterior distribution is inferred us-
ing MCMC. Our workflow has been tested using synthetic
data, generated from simulations where the spatial vari-
ation in model parameters is known, and we have shown
that both features and parameters can be recovered from
simulated sparse measurements.

1. Introduction

Atrial fibrillation (AF) is an increasingly prevalent ar-
rhythmia, and the left atrium (LA) is often the main source
of fibrillatory activity [1]. Persistent AF can be treated
by catheter ablation, and treatment guidance using person-
alised models offers promise for streamlining these proce-
dures and improving outcomes for patients [2].

The main components of a personalised LA model are
a mesh constructed from imaging data, and a calibrated
model of LA electrophysiology. Model calibration is chal-
lenging because measurements available in the routine
clinical setting are far from sufficient to fully calibrate bio-
physically detailed models. In this paper we review the dif-

ferent components of a workflow that has been developed
to address these challenges using a probabilistic approach
[3–6], with an emphasis on conduction velocity (CV).

2. Background

Our overall goal is to calibrate an electrophysiology
model so that model parameters that define local CV and
action potential (APD), as well as their restitution, are de-
termined at each mesh vertex. An important constraint
is that this calibration should be achieved through mea-
surements that can be collected during routine procedures.
Here we concentrate on CV alone. The starting point of the
workflow is a mesh representing the left atrium (LA), and
bipolar electrograms recorded at different locations within
the LA and at different pacing cycle lengths. From these
observations, we estimate local activation time (LAT) at
the electrode locations. Bipolar electrograms are routinely
used in the clinical setting because they are less susceptible
to far-field effects than unipolar electrograms, but there is
no generally accepted way to assign LAT to these signals
[7]. We therefore developed a modified centre-of-mass
method to identify LAT [3].

The second step is to interpolate LAT across the LA
mesh, taking into account uncertainties arising from both
identification of LAT from the bipolar signal and regis-
tration of electrode co-ordinates with the mesh. Interpo-
lation of LAT across the LA mesh involves taking a set
of uncertain measurements LATmesh obtained from clini-
cal bipolar electrograms at a subset of mesh vertices, and
using this information to interpolate LAT over the entire
mesh. In this approach the noisy observations of LAT
(yi ≡ LATmesh) at a location xi are modelled as

yi = f(xi) + εi, (1)

where εi is normally distributed noise with mean of zero
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and standard deviation σ2. The standard deviation of the
error in each observation can be different i.e. heteroscedas-
tic noise, or the same i.e. homoscedastic. It is possible to
model f(xi) using a variety of methods [8], but we chose
to model it as a Gaussian process (GP).

Having obtained a probabilistic interpolation of LAT,
the third step is to calculate the inverse of the gradient in
LAT, to obtain an uncertain estimate of CV magnitude and
direction at each mesh vertex. The fourth and final step
is to use these estimates to calibrate the electrophysiology
model. A key challenge at this stage is to map from model
parameters to observable features such as CV. In the next
section we describe the third and fourth step in more detail.

3. Uncertain CV interpolation

A GP requires a covariance function to be specified on
the mesh. Standard types of covariance function, which
use Euclidean distances between pairs of mesh vertices,
are not suitable since Euclidean distance does not reflect
distance travelled by an activation wave over the curved
LA mesh. Neither is it possible to use simple geodesic
distances over the mesh because the resulting covariance
matrix is not positive semi-definite. We therefore initially
used an approach based on Gaussian Markov random fields
(GMRF), where the covariance function (more specifically
the precision matrix) is approximated as a solution to a
stochastic partial differential equation solved on the mesh
[9].

The GMRF approach could be used to obtain a poste-
rior mean of LAT [3], and by calculating the inverse of the
gradient of this field we could obtain a posterior mean for
CV. However it was difficult to map uncertainty in LAT to
uncertainty in CV by stochastic sampling of the posterior
LAT. The posterior LAT samples were not smooth because
the type of Matérn function used in the GMRF method co-
variance function was constrained to take a form that is not
differentiable, and thus could not be used to calculate CV.
An alternative, and faster, method was therefore devised to
solve this problem [4] based on [10].

Key to this Gaussian process manifold interpolation
(GPMI) approach is an alternative way to construct the GP
covariance kernel as a basis function expansion. The basis
functions are eigenfunctions corresponding to the small-
est K eigenvalues of the Laplacian operator on the mesh,
combined with a spectral density that takes a form based
on a covariance function – see equations 2.5 and 2.6 of
[4] for details. These functional forms take account of
the mesh geometry and topology, can be calculated on the
atrial mesh using standard approaches, and need only to be
calculated once.

A further benefit of the GMPI approach is that the gra-
dient of a GP is also a GP because gradient is a linear op-
erator. Thus it is possible to obtain the posterior mean and

the variance of gradients in LAT, as well as LAT itself (see
equations 2.9 and 2.10 in [4]). The posterior mean of CV
is then the inverse of the posterior mean of the gradient
of LAT. Uncertainty in CV cannot be determined directly
from the posterior variance in gradient of LAT because nei-
ther inverse nor magnitude are linear operators. Instead,
the posterior CV distribution is estimated by sampling the
posterior gradient in LAT 2000 times, and inverting each
sample. A Python implementation of the GPMI method is
available [?].

4. Step 4 - EP model calibration

Having obtained probabilistic interpolation of LAT and
CV, the next step was to use this information for calibra-
tion of an EP model. The goal was to produce uncertain
parameter fields from which samples could be drawn and
simulations run that capture uncertainties in both measure-
ments and calibration process. Identifiability of parame-
ters remains a serious and possibly intractable problem for
biophysically detailed cell models [11], and so we used a
simplified and phenomenological model with 5 parameters
that nevertheless reproduces key dynamic action potential
features [12].

Calibration of this model to observable data required a
mapping between CV and the model parameters. A key
dynamic feature of cardiac electrophysiology is restitution,
and understanding the relationship between tissue restitu-
tion and model parameters was an important component
of calibration. To address this problem, we generated data
from simulations in a tissue strip to learn the relationship
between CV and a reparameterisation of the model param-
eters. We decomposed a set of restitution curves obtained
from strip simulations using principal component analy-
sis (PCA), finding via a sensitivity analysis that the curves
could be represented either 2 or 3 principal components
[5]. We then built surrogate models of these components,
which provided a link between the model parameters and
the restitution curves. Model parameters could then be es-
timated using maximum a posteriori (MAP) estimation,
and the distribution of parameters estimated by Markov
Chain Monte Carlo (MCMC) sampling. Here we focus
on calibrating to CV recorded from constant S1 600 ms
pacing (i.e. no restitution); we built a surrogate function
to link model parameters and CV, which is much simpler
than modeling restitution curves.

The next challenge has been to extend model calibration
to the left atrial mesh [6]. This approach combines the
GPMI method [4] and surrogate models. There are two
important assumptions. First, we assume that uncertainty
in CV at each mesh vertex is Gaussian, and this can be
estimated from interquartile ranges [4]. Second, we treat
the CV at each mesh vertex as independent, whereas the
overall CV on the mesh is correlated.
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Figure 1. Ground truth CV (in m/s) from simulation with pacing at the coronary sinus. Colours show CV magnitude, and
arrows show direction.
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Figure 2. Predicted CV (in m/s) obtained by running a simulation using parameters inferred via “observations” of CV.

GPMI is used to represent each model parameter θ as
a spatially correlated random field extending over the LA
mesh at locations x

θ(x) = m+ α
K∑

k=1

ηk

√
S
(√

λk, ρ
)
φk(x), (2)

ηk ∼ N (0, 1). (3)

Here the meanm, amplitude α and lengthscale ρ are hy-
perparameters that are learned, conditional on CV obtained
at locations where LAT was observed, through Bayesian
inference; S is a spectral density determined from the co-
variance kernel; λk and φk are the K eigenvalues and
eigenfunctions obtained from solving the Laplacian on the
mesh [4]. The distributions of parameters are then obtained
conditional on observations by MCMC, using 64 eigen-
functions. This model is very similar to that used for in-
terpolation of LAT (in which GPMI is used via regression
rather than MCMC), but is more flexible in that m, α, and
ρ can all be given priors, and the likelihood on the obser-
vations can be anything we choose. Model parameters on
the mesh, determined by (2)-(3), are then mapped to CV

via a surrogate function. Given hyperparameter priors and
a likelihood function, MCMC can be performed.

Figure 1 shows CV obtained from a simulation with pac-
ing at the coronary sinus, with heterogeneity in model pa-
rameter producing heterogeneity in CV. A separate simula-
tion was then performed, using the same model parameters
and with pacing at the right pulmonary vein. Observations
of LAT, with added Gaussian noise with standard devia-
tion 1 ms and at a set of simulated electrode locations were
then used to infer CV across the mesh, and this informa-
tion was used to estimate the recovered model parameters.
This was done with MCMC, using a Gaussian likelihood
for CV ’observations’ and the prior of equations (2)-(3).
Figure 2 shows the CV obtained from a simulation with
the recovered parameters and pacing at the coronary sinus.

5. Discussion and outlook

This work has addressed the problem of probabilistic in-
terpolation and model calibration on a manifold. We have
shown that it is possible to interpolate clinical observations
and to recover model parameters used to produce synthetic
observations. We demonstrate this for CV here. In [6] we
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concentrate on inference for the parameters that determine
ERP, using a similar methodology.

Other approaches have been developed [13] that model
the diffusion tensor field directly and link this field directly
to LAT observations. However, uncertainty quantification
is difficult to include in such approaches, which are com-
putationally expensive.

The identification and uniqueness of model parameters
is a serious and fundamental difficulty, especially for bio-
physically detailed models. However, with the goal of
guiding catheter ablation it is important to probe whether
calibration of simplified models is possible with routinely
available data.

A related question is whether spatial heterogeneity in
model parameters is actually important. A key factor in
this discussion is the extent to which spatial heterogeneity
in parameters affects the behaviour of re-entry and predic-
tion of ablation targets. It is well known that structure,
and especially fibrosis, has an important impact on both of
these features. Integration of structural data such as fibro-
sis maps obtained from imaging, will be an exciting next
step in the development of the ideas discussed in this paper.
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