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Abstract

BNF (Backus Naur Form) notation, as introduced in the Algol 60 report, was followed

by numerous notational variants (EBNF ISO (1996), ABNF Crocker et al. (2008), etc.),

and later by a new metalanguage which is used for discussing structured objects in Com-

puter Science and Mathematical Logic. We call this latter offspring of BNF MBNF

(Math BNF). MBNF is sometimes called “abstract syntax”. MBNF can express struc-

tured objects that cannot be serialised as finite strings. What MBNF and other BNF

variants share is the use of production rules, whose form is given below, which state

that “every instance of ◦i for i ∈ {1, . . . , n} is also an instance of •”.

• ::= ◦1 | · · · | ◦n

This thesis studies BNF and its variant forms and contrasts them with MBNF produc-

tion rules. We show via a series of detailed examples and lemmas that MBNF, differs

substantially from BNF and its variants in how it is written, the operations it allows,

and the sets of entities it defines. We demonstrate with an example and a proof that

MBNF has features that, when combined, could make MBNF rule sets inconsistent.

Readers do not have a document which tells them how to read MBNF and have to learn

MBNF through a process of cultural initiation. We propose a framework, MathSyn,

that handles most uses of MBNF one might encounter in the wild.
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Chapter 1

Introduction

1.1 What is MBNF and Why Does it Need a

Definition?

In this thesis we discuss a form of BNF-style notation which is sometimes called ab-

stract syntax, but which we term Math-BNF (hereafter MBNF). MBNF is used because

authors want to use the power and conventions of mathematics along with and inside

BNF-style grammars in a way whose use is not covered by existing BNF variants.

MBNF is sometimes called “abstract syntax”. We avoid that name, because MBNF is

in fact a somewhat concrete form with a more abstract form. For example, consider

an abstract syntax tree representing λx.e. An abstract syntax tree is a tree where each

node is either a piece of syntax which does not stand for any function (in which case

it is a terminal node) or a function taking pieces of syntax (in which case it is an in-

terior node). Each branch in an abstract syntax tree represents the assignation of an

occurrence of a term to a value. In an abstract syntax tree for λx.e, we would not be

interested that the x and the e are arranged with a dot between them and a λ in front

of them. Rather, (λ�.�) would just be a name for a particular function taking two

arguments of an appropriate type.
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Example 1.1. The two structures below are both similar abstract syntax trees, but

the first is more verbose and includes concrete syntax which might be given as part of

an MBNF which included the expression λx.e and the production rule e ::= x.

(λ�.�)

x1 x2

f

a b

We also avoid the name “absract syntax”, because MBNF can express things that

cannot be serialised as finite strings.

MBNF differs from BNF, notably:

1. MBNF and its concrete syntax are written using what we call math text (i.e.,

text with tree-like structure, which might include super/subscripting, overbar-

ring, etc.). More information on the layout of math text can be found in The

TeXbook Knuth (1986) or in the Presentation MathML Ion et al. (2001) and

OpenDocument ISO (2015) standards. More information on math text can be

found in Section 4.1.1 of this thesis, while the structures we give t model math

text are given in Subsection 5.1.1.

2. MBNF comes with implicit rules which allow omitting parentheses without spec-

ifying this in the rules of the grammar.

3. MBNF may work with math text modulo arbitrary equivalences. Examples in-

clude α-equivalence, reordering of fields in records, and structural congruence of

π-calculus, Milner et al. (1992), and related systems.

4. MBNF production rules can feature math computations, including splicing (i.e.,

context hole filling).

5. Metavariables in MBNF production rules can depend on sets defined using stan-

dard math notation. These can in turn depend on sets defined using MBNF

production rules. There can be cycles. The problems that may arise from this are

usually avoided by having the math notation and production rues being either

inductively defined ore recursively picked out of a set of syntactic objects.
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6. MBNF may include very large mathematical objects within the syntax, including

some that cannot possibly be represented by a finite string.

7. MBNF can be defined coinductively as well as inductively. Coinductive definitions

are given for syntax trees with infinite depth and may relate to some equivalences

as well, for example, those in the π-calculus.

MBNF does not correspond to any existing formal definition. We give a more detailed

account of these differences and why they represent a significant departure from BNF

in chapter 4. Here is a brief motivating example from that chapter:

Example 1.2.

e ::= x | λx.e | ee

A ::= [ ] | A[λx.A]e

Here the square brackets with nothing between them represents a hole at the object

level of the syntax whereas the square brackets with text between them represents a

computation on the mathematical meta level, filling the leftmost hole in the tree with

the text between the square brackets.

This example includes a mathematical operator for hole filling that performs a splicing

operation on the syntax tree as a part of the production rules. It also extends the

power of BNF, producing a grammar which cannot be thought of as context free.

Finally it contains syntax that is treated as quotiented by alpha-equivalence (e in the

example) nested within syntax that is to be treated as literal (the syntax appearing

above the context hole in the syntax tree for A). We cover this example in more detail

in SubSection 4.1.4. The treatment of MBNF which this paper provides can deal with

these issues.

MBNF is important to interpreting papers in theoretical computer science. Out of

the 30 papers in the ESOP 2012 proceedings Seidl (2012), 19 used MBNF and none

used BNF. We chose ESOP 2012 but we could equally choose any other conferences.

Because the first book we chose contained an abundance of challenging instances of

MBNF, our wider searching has mainly been to find even more challenging examples.
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We will be happy to receive pointers to additional interesting cases. We also checked

the POPL 2017 proceedings Fluet (2017) and found that, out of 46 papers using BNF-

style notation, not one used notation exactly corresponding to the EBNF ISO (1996),

ABNF Crocker et al. (2008) or RBNF Farrel (2009) standards and only one Grigore

(2017) could possibly be thought of as EBNF or ABNF with variant syntax. Out of

the other 45 POPL 2017 papers featuring BNF-style notation, 44 use what we call

MBNF. Not only is MBNF widely used; it can define a far greater variety of structures

than those defined using BNF (or its most common extensions) and easily incorporates

mathematics. In addition, it allows authors to write their grammars in a more abridged

form than BNF and some of its extensions might. It is not used for automation, though

formalising MBNF could be a necessary first step towards automating it.

In Section 4.3.1 we show that MBNF rule sets may provide constraints that have no

solution. To deal with this we introduce a system called MathSyn that deals with a

consistent subset. MBNF merits a different treatment than extensions of BNF which

add one or two formal rules to BNF for building strings or parse trees. MBNF differs

significantly in its mathematical structure from other BNF variants whose main focus

is term rewriting on strings, or the parse trees generated from them.1 These differences

prevent easy translation of MBNF rule sets to the grammars of other BNF variants.

This also makes trying to define MBNF by extending some BNF variant with a pre-

existing formal definition a daunting and onerous process in which many of the tools

available are ill-suited to the job. Throughout this paper we use MBNF to refer to

the pre-existing notation which is used in a variety of papers in the computer science

literature and which has no formal definition, exactly as it might be encountered in the

wild. We use MathSyn to refer to the model we give for a large consistent subset of

MBNF.

Steele (2017) describes computer science metanotation (CSM), which features MBNF.

Steele’s work underlines the importance of MBNF to the computer science literature

and the need for a formal definition of this notation, but he does not go into the same

depth about the underlying mathematical differences between BNF and MBNF we do

1A discussion of how BNF can sometimes be used to generate parse trees and how BNF grammars
relate to rewriting on strings can be found in Section 2.2
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in this thesis. As a result, readers learning about CSM from Steele may not realise

just how distant some uses of CSM are from BNF variants which have been given a

full formal definition. Although the primary focus of MathSyn is on MBNF, some of

the features of MathSyn are designed to be integrated into other parts of CSM. An

example of another part of CSM some of MathSyn may be helpful with is the use

of syntactic objects in languages defined by a system of inference rules which contain

syntax separated by a horizontal bar and a name of a judgement γ and which can be

read loosely as, ”The syntax above and below the bar are instances of the same language

and are related by the relation γ”. We do not supplant existing notation. We intend a

number of MBNF rule sets to be read using MathSyn, without much adjustment. As

MBNF is widely used, we expect parts of MathSyn to be familiar to many readers. We

remind these readers that the only way to gain familiarity with this notation is by a

long process of cultural initiation and that there is no other definition that for those

wishing to avoid inconsistent MBNF rule sets.

Converting mathematical text into a form where it can be checked by a proof assistant

involves human input and intermediary translations. MathSyn focuses on the trans-

lation, by the reader, of MBNF production rules together with associated pieces of

mathematical text. It aims to help the reader translate these, as they appear in a doc-

ument, to a formal structure independent of any theorem prover format. The proofs in

this document therefore follow mathematical convention, rather than being written in

a theorem prover. Specifically they are translated to structures in ZFC which can be

defined using a set theoretic proof. Projects like MathLang Kamareddine et al. (2014)

for computerising mathematical text may eventually help moving from the set theoretic

proofs in this document to a full computer formalisation. There are several reasons we

have focused on this part of the translation, many of which are reasons MBNF itself is

used instead of theorem prover text:

• MBNF is often used to write rule sets which already have a lengthy computer

specification, because, even though it lacks any sort of definition, MBNF is quite

compact and readable. Jumping straight back into a lengthy definition which

requires familiarity with a theorem prover or a parser generator would defeat the

5



purpose of writing a guide to this notation.

• MBNF is wide ranging in its permissible application and work documenting this

notation has only just begun. Even for the parts of the notation which are reason-

ably well documented, definitions are scattered throughout the literature. We are

not aware of any resource which pulls them together in the way we do. Jumping

straight to a computer specification of a small part of MBNF would be premature.

Scaling the specification down in order to deal only with the most computationally

friendly and well defined parts of MBNF would leave a lot of the space of MBNF

rule sets unexplored and it wouldn’t highlight many of the important differences

between MBNF and other pre-existing BNF variants.

• The languages of the metavariables in some MBNF grammars are not serialisable

Toronto & McCarthy (2012), Mislove (1995), Eberhart et al. (2015), Frumin et al.

(2019),2 but we would still like tools which help us reason about them. We say

that a set, S, is serialisable if there exists a function, f , which takes each of

the elements of S to a unique finite string, and both f and the inverse of f are

computable.

• It is our aim to explain MBNF as it is generally used (although we stick to a

standardised syntax in the document, which may vary in the wild, and we include

some pieces of clarifying syntax, which may not always appear in the wild, but

we do allow these to be omitted by conventions we provide). Translation of this

notation to a computer would require significant rewriting of any document which

features it. Most of this translation is not necessary to understanding it, from the

perspective of the reader.

• MBNF borrows heavily from mathematics. It is likely that, even with a very

comprehensive and complete translation of various MBNF features to some sort

of computer specification, authors would still want to mix in new features which

they will define using mathematics. In this case it would be more helpful to

2The specific details of why the grammars cited here are not serialisable can be found in subsections
4.1.9, 4.1.10 and 4.1.12. Generally, MBNF grammars are not serialisable, because of the inclusion of
very large pieces of infinite syntax.
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provide a clear picture of where MBNF sits in a formal structure like the ones

used by mathematicians.

Since, in principle, MBNF may feature almost any part of mathematics, MathSyn

cannot realistically aim at a comprehensive documentation of anything which might

appear in an MBNF rule set. Instead the goal is to provide a picture of the machinery

commonly employed as part of MBNF (and CSM more broadly) in such a way that it

integrates clearly into the language of mathematics.

The main goal of MathSyn is to provide tools that enable readers unfamiliar with MBNF

to read it as it is written. The secondary goal of MathSyn is to provide sufficient tools

to determine whether an MBNF grammar has a solution and to show how that solution

might be constructed. The tertiary goal of MathSyn is to document concepts relating

to syntax that are often employed in MBNF and other forms of CSM (some of which

also incorporate mathematics and lack a formal definition), but which are used less

often in math as a whole. Finally, MathSyn provides machinery for discussing syntax

which remains largely hidden when MathSyn is used to interpret MBNF, but which

authors may find helpful, if they wish to make parts of their discussion more explicit.

1.2 Contributions and Structure of this Thesis

The contributions of this thesis are as follows:

1. The demarcation of MBNF as a notation distinct from BNF, which merits indi-

vidual study. As part of this:

(a) We argue that the entities which MBNF handles cannot always be expressed

in terms of rewriting relations on strings and the parse trees derived from

them and, as such, are not comparable to the terms handled by BNF and

its notational variants (Section 4.4). For example, MBNF deals with infinite

trees, which can have infinite depth (Subsection 4.1.12) or infinite breadth

(4.1.11) and some of which may be irregular or undecidable (subsections

4.1.10, 4.1.11 and example 4.25). In addition, MBNF rule sets may contain

7



mathematical entities like real numbers (Subsection 4.1.10) and sets, includ-

ing infinite, uncountable sets, which may even be as large as an inaccessible

cardinal (Subsection 4.1.9), as part of the syntax. As well as this, MBNF rule

sets may feature arithmetic (Subsection 4.1.6) and set-building operations

(Subsection 4.1.5) which are not encoded as operations on strings.

(b) We show, via a series of detailed examples and lemmas, that MBNF, while

superficially similar to BNF, differs substantially from BNF and its variants

in how it is written, the operations it allows, and the sets it defines (Section

4.1).

2. We give reasons that the combination of MBNF features is a process which re-

quires careful consideration, despite the lack of in-depth treatments of MBNF rule

sets which show how features are meant to be combined. As part of this:

(a) We outline multiple ways in which the features of MBNF may be combined

in such a way that the resulting set of MBNF rules does not define a language

(Subsection 4.3.1).

(b) We give an incompleteness result for MBNF (Subsection 4.3.2). That is to

say, given a definition, Def, of MBNF, then either there exists an MBNF

grammar which has a solution, but which Def cannot prove has a solution,

or there exists a grammar such that, given a proof that it has a solution,

one can construct a proof that it does not and vice versa. This provides

motivation for giving a definition for a large consistent subset of MBNF and

a reason we do not and cannot cover every imaginable use.

3. We give a system for translating MBNF rule sets to the sets of syntactic objects3

they define, which we call MathSyn. Here is what MathSyn offers:

(a) A model for the set of equivalences over “syntax” (i.e., the equivalences which

mostly relate to literal marks on a page and ways of positioning them).

3A syntactic object is either an instance of the context hole or else it consists of a set of countably
many arrangements which themselves consist of ways of typesetting symbols together with pointers to
syntactic objects.

8



This means MathSyn is well-disposed towards integration with tools from

set theory, which are already used quite regularly alongside, and sometimes

within MBNF production rules. It also means that most of the set theoretic

language which is used alongside MBNF production rules can be interpreted

literally. Finally, it means that syntactic equivalence is the same as = when

it relates syntactic “objects” regardless of the context in which they are

placed.

(b) A demonstration of one way in which this set can be safely extended with

mathematical objects not traditionally regarded as “syntax.”

(c) A set of tools for letting relations over syntax “descend” inside syntax, so

that constraints detailing these relations can be written with the shorthand

already popular amongst users of MBNF.

(d) A strategy for “solving” sets of production rules (i.e., showing we can con-

struct each of the sets which each metavariable ranges over such that all

constraints hold).

(e) A treatment of names, binding, and α-equivalence which allows for bound

names to belong to distinct sets and which allows α-equivalence to be inter-

preted in more or less the syntax the authors use, without need for translation

to some more parser friendly format.

(f) A definition of other operations appearing as part of MBNF which are fairly

specific to CSM (hole filling and capture avoiding substitution).

4. A case study for MathSyn in which we look at how MathSyn can be used to read

an MBNF rule set for the λ-calculus with records and generalised β-reduction.

As part of this:

(a) We give a practical example where MathSyn must support mathematical

operators appearing in the production rules themselves (in this case hole-

filling)

9



(b) We give a practical example where MathSyn must support the mixing of

MBNF production rules with set theory notation and the inclusion of sets

as part of the syntax.

(c) We give an account of why there is no clear way to translate the features

required by the λ-calculus with records and generalised β-reduction into the

grammar of some other formal BNF variant.

1.3 Notational Conventions

By the object-level text of a paper, we mean text that in some sense stands for itself

where it appears and forms the object of discussion. By the meta-level text of a paper,

we mean text that tells us that we have to follow some additional chain of reasoning

in order to arrive at the object of discussion. The meta-level syntax does stand for

itself when you see it and it does not appear in the object of discussion. This is not

too different to how object level and meta level are commonly used. We only include

the above descriptions of object and meta level for clarity. Since the text of other

documents’ meta-levels is part of the object level of this one, we introduce the following

notation. We use “boxes” for both inline and block text.

“
”

Text placed in a quotebox (aside from this one) is quoted directly from another

document.

Text placed in an undecorated box (aside from this one) is intended to imitate the

text of other documents which we may look to deal with and is usually derived

from things written elsewhere, but it is not a direct quote.

“
” This is used as an inline version of quotebox wherever it appears after this point in

the document.
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Chapter 2

Key Terminology and Concepts

It is necessary to outline some core concepts and terminology before we have given a

thorough overview of BNF, MBNF, and the differences between them. We have tried

to avoid making this too confusing, but the reader can skim this section and revisit it,

if they encounter terminology they are unsure how to interpret later in the paper.

Throughout this thesis we use a variety of common mathematical concepts, such as

relations, functions, sequences, etc. Sometimes, there can be several ways of repre-

senting these concepts and these may not all work in exactly the same ways in proofs

and models. In the interests of keeping our notation clear and keeping this paper as

self-contained as possible, we give definitions for the mathematical concepts we make

use of in this chapter, in Section 2.1. Also in this chapter, in Section 2.2, we give an

overview of how BNF rules are to be read. This includes key pieces of terminology

that also applies to the variants discussed in chapter 3. Despite the fact that there

is no pre-existing standard that systematises how MBNF production rules are to be

read and the only standard there is will be given later in chapters 5 and 6, we will first

sketch how MBNF production rules may be thought of as operating and provide some

important pieces of terminology in this chapter, in Section 2.3.
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2.1 Basic Logic and Mathematics

2.1.1 Metavariable Conventions

A metavariable is a variable at the meta-level which denotes something at an object-

level. For this section, v stands for an arbitrary metavariable (a meta-metavariable).

Statements of the form “let v range over C” declare and define v as a metavariable that

stands for some element of the class C. The class C will often be defined as part of the

same statement, and its definition may depend on the metavariable declaration.

We use single letters (either Roman or Greek) for metavariables.

Whenever we declare a metavariable v as ranging over a class, this also defines as

ranging over that class all variants of v obtained by either (1) adding a subscript i ∈ N

to v to produce vi (e.g., v0, v1, v2, etc), (2) adding a single, double, or triple prime to

v, producing respectively in v′, v′′, and v′′′, or (3) a combination of (1) and (2).

In contrast, we use superscripts (e.g., v1, v2) and accents (e.g., v̄, ṽ) to distinguish

metavariables that are in some way related to the corresponding undecorated metavari-

able, but not necessarily ranging over the same class. For example, if we have declared

v to range over the set S, we might have v0 ranging over S0, v1 ranging over S1, and

S1 ⊂ S0 ⊂ S.

2.1.2 Sets

The mathematical foundation we use is set theory with choice. ZFC Frenkel et al.

(1973) is suitable. So are other variants. If P (X) is a proposition of first-order logic that

mentions X , then (1) P (Y ) differs from P (X) only by mentioning Y instead of X , and

(2) the notation {X | P (X)} stands for {X ∈ S | P (X)} for some set S which is left to

the reader to infer from the context of discussion. Given some expression f(X1, . . . , Xn)

mentioning variables X1, . . . , Xn, we use the notation {f(X1, . . . , Xn) | P (X1, . . . , Xn)}

for {Y | ∃X1, . . . , Xn. Y = f(X1, . . . , Xn) ∧ P (X1, . . . , Xn)}. Given two sets X and Y

we use the notation X ⊥ Y to mean ‘X and Y are disjoint.’
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2.1.3 Pairs

We rely on a operator ( · , · ) for building ordered pairs and corresponding projection

operators Fst and Snd, such that if Z = (X, Y ), then Fst(Z) = X and Snd(Z) =

Y . We require that it is impossible for a pair to also be a set of pairs and that

the natural numbers do not overlap with pairs. We can work in a set theory with

a primitive pairing operator. Alternatively we could choose to encode pairs in set

theory, in which case we must take more care. We therefore can not use the encoding

of pairs from Kuratowski (1921) where (X, Y ) = {{X}, {X, Y }}, because (for example)

{(X,X)} = {{{X}}} = ({X}, {X}). Similarly, we can not use the “short” encoding

where (X, Y ) = {X, {X, Y }} together with von Neumann’s encoding of natural numbers

(actually of all ordinal numbers) where 0 = ∅ and i + 1 = i ∪ {i} because (0, 0) =

{0, {0, 0}} = {∅, {∅, ∅}} = {∅, {∅}} = {∅} ∪ {{∅}} = 1 ∪ {1} = 2. We can use

the encoding of pairs in Wiener (1967) where (X, Y ) = {{{X}, ∅}, {{Y }}}, because

in this encoding a pair can not be a set of pairs, a set of sets of pairs, or a von

Neumann ordinal number. Given two sets S and T , the product set S × T is the

set of pairs {(X, Y ) | X ∈ S and Y ∈ T}. Let tuple notation be defined so that

(X1, X2, X3, . . . , Xn) = ((X1, X2, X3, . . . , Xn−1), Xn).

2.1.4 Binary Relations

Let R range over sets of pairs. The statement (X, Y ) ∈ R can be written with three

kinds of alternate notation: R(X, Y ), and X R Y , and X
R
→ Y .

A relation R is reflexive with respect to S if and only if R ⊇ {(X,X) | X ∈ S}. As

is common practice, if we mention that a relation is reflexive without saying what set

S this is with respect to, this means we are leaving it to the reader to infer from the

context of discussion which set S to use.

Let R∗ be the reflexive and transitive closure ofR and let R= be the reflexive, symmetric,

and transitive closure of R; in both cases we use the above-mentioned convention that

the reader must infer the set S with respect to which to take the reflexive closure. Let

X
R
→∗ Y mean X

R∗

→ Y , and let X
R
= Y mean X

R=

→ Y .
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A relation is an equivalence if and only if it is reflexive, symmetric and transitive. Given

an equivalence relation R, let [X ]R = {Y | (X, Y ) ∈ R} be the equivalence class of X

with respect to R and let [X ]R be an equivalence class of R.

A relation R is terminating if and only if there is no infinite sequence X1, X2, . . . such

that X1
R
→ X2

R
→ · · · . If X

R
→∗ Y , and there exists no Z such that Y

R
→ Z, then we call

Y an R-normal form of X . If R is terminating, then it can be used for induction: If it

can be shown that R is terminating and ∀X ∈ S. (∀Y ∈ S. X
R
→ Y ⇒ P (Y ))⇒ P (X),

then it follows that ∀X ∈ S. P (X).

A relation is a partial order on S if and only if it is transitive and antisymmetric. A

partial order is strict if and only if it is irreflexive. A non-strict partial order, ≤, is a

total order on S if and only if for all X, Y ∈ S either X ≤ Y or Y ≤ X . A strict partial

order, <, is a strict total order on S if and only if for all X, Y ∈ S such that X 6= Y

either X < Y or Y < X .

2.1.5 Functions

A function is a relation f such that for all X , Y , and Z, if {(X, Y ), (X,Z)} ⊆ f then

Y = Z. Let S → T = {f | f ⊆ S × T and f is a function}. Let f be from S to T if

and only if f ∈ S → T . A function f is injective if and only if f−1 is a function. If

(X, Y ) ∈ f for some Y , then f(X) denotes Y , otherwise f(X) is undefined. A function

f is total on S if and only if f(X) is defined for all X ∈ S. The domain of f , domain(f),

is the largest S such that f is total on S and the range of f , range(f), such that f is

total on S is {f(x) | x ∈ S}.

A fixed point of a function f is some X for which f(X) = X . If the set of fixed points

of f has a greatest lower bound which is itself a fixed point, then we call this the least

fixed point of f and if it has a least upper bound which is itself a fixed point, then we

call this the greatest fixed point of f .

A function is f order preserving w.r.t a partial ordering ≤ if f(X) ≤ f(Y ) if and only

if X ≤ Y .
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2.1.6 Sequences

Given a set S which is not a relation (if S contains only pairs then instead the notation

refers to the definition of R∗ from Section 2.1.4, the reflexive and transitive closure of

R), let S∗, the set of finite sequences of elements in S, be the set of all finite functions

f such that range(f) ⊆ S, and domain(f) ⊆ N, and m < n ∈ domain(f) implies

m ∈ domain(f).

Convention 2.1 (Metavariables over Sequences). If v is declared to range over S, then

~v is automatically declared to range over S∗.

The notation [v0, . . . , vn] stands for the least-defined function ~v such that ~v(i) = vi

for all i ∈ {0, . . . , n}. For example, the singleton sequence [v] containing v as its only

element is {(0, v)}, and we have [v0, v1, v2] = {(0, v0), (1, v1), (2, v2)}. The component of

a sequence ~v at index i is simply ~v(i). Note that the first component of a sequence is at

index 0, and that the empty sequence ε is merely the empty set. The length of a sequence

~v, |~v| is the smallest n ∈ N which is larger than the index of all elements of domain(~v).

The concatenation of sequences ~v1 and ~v2 is ~v1 · ~v2 = ~v1 ∪ {(|~v1|+ i, v) | (i, v) ∈ ~v2}.

Note that (S∗, ·, ε) forms a monoid.

ε · ~v = ~v ~v · ε = ~v (~v1 · ~v2) · ~v3 = ~v1 · (~v2 · ~v3)

Figure 2.1: Equalities on a monoid

2.1.7 Serialisation

Let F be some finite set (for simplicity say F ⊆ N). Given a set S, if an author provides

a computable injective function f ∈ S → F ∗, which is total on S and whose inverse is

also computable (assuming any of the usual notions of a computable function), we say

that it S serialised. If this can be done, we say that S is serialisable. A set, S, can be

serialised only if it is countable.
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2.1.8 Lexicographic Order

Let the lexicographic order ≺ be the order on N
∗ (sequences of natural numbers) defined

such that ~m ≺ ~n holds if and only if there exists some i such that ~m(i) < ~n(i) and for

all j < i, ~m(j) = ~n(j). Note that the function which takes each ordinal number to its

successor, Succ (defined in SubSection ??), is terminating when restricted to sequences

of length at most n ∈ N. 1

Convention 2.2 (Induction on Tuples). When we state that induction is being done

on a tuple (n1, . . . , nm) of natural numbers, the order used is ≺ on the sequence

[n1, . . . , nm]. For example, if induction is on a tuple (m,n), the induction hypothe-

sis may be used on any (m′, n′) where m′ < m or where m′ = m and n′ < n.

2.1.9 Lattices

A lattice Davey & Priestley (2002) is a system X = (S,≤) where S is a set, ≤ is a

partial order on S and for any two elements a, b ∈ S there is a least upper bound (join)

a ∨ b and a greatest lower bound (meet) a ∧ b.

A lattice X = (S,≤) is called complete if every subset of S has a least upper bound

and a greatest lower bound in S.

2.1.10 Ordinals

We use the encoding of ordinals in von Neumann (1923): a set S is an ordinal if and

only if S is strictly well-ordered with respect to set membership (i.e. the set membership

relation is a strict total order on S and every non-empty subset of S has a least element

in the ordering given by the set membership relation) and every element of S is also a

subset of S.

For any ordinals X and Y such that X ∈ Y we define Succ(X) to be the least upper

bound of X in Y .

1(Note that the above definition of lexicographic order is equivalent to the following more relaxed
definition which can sometimes be more convenient: Let ~m ≺ ~n hold if and only if ∃i. xm(i) <

xn(i) ∧ (∀j < i. xm(j) ≤ xn(j)).)
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A limit ordinal is any ordinal which is neither a successor or 0 (the empty set).

Addition is defined inductively for ordinals α and β:

1. α + 0 = α

2. α + Succ(β) = Succ(α+ β)

3. if β is a limit ordinal then α+ β is the least upper bound of α+ δ in γ such that

α + δ ∈ γ for δ < β.

Multiplication is defined inductively for ordinals α and β:

1. α · 0 = 0

2. α · Succ(β) = α · β + α

3. if β is a limit ordinal then α · β is the least upper bound of α · δ in γ such that

α · δ ∈ γ for δ < β.

Unlike in cardinal arithmetic, neither addition nor multiplication need be commutative.

Exponentiation is defined inductively for ordinals α and β:

1. α0 = 1

2. αSucc(β) = (αβ) · α

3. if β is a limit ordinal then αβ is the least upper bound of αδ in γ such that αδ ∈ γ

for δ < β.

In contrast to cardinal arithmetic, αβ need not yield an ordinal of the same cardinality

as |β → α|.

2.1.11 Cardinals

We use the cardinal assignment from von Neumann (1923): For a well-ordered set S,

we define its cardinal number, |S|, to be the smallest ordinal number equinumerous to
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S, using the Von Neumann definition of an ordinal number. Since we are using choice

and every S can be given a well-ordering every S has an associated ordinal number.

Addition is the cardinality of the disjoint union of the sets being added, |α|+|β| = |α⊔β|,

where ⊔ denotes disjoint union. Alternatively, we may write |α| + |β| = | |α| +∗ |β| |

where +∗ denotes ordinal addition.2

The axiom of choice states that given a set there exists a choice function which takes

that set and outputs a single member. The following hold of cardinal addition without

the axiom of choice:

1. Zero is an additive identity.

2. Addition is associative.

3. Addition is commutative.

4. Addition is non-decreasing in both arguments.

In the presence of the axiom of choice, if either α or β is infinite, |α|+ |β| = max(α, β).

We can also consider infinite sums. Let γ be an ordinal and {αi | i < γ} a sequence

of ordinals. Then
∑

i<γ αi is the ordinal resulting from concatenating the αi in the

given order; formally, we consider the disjoint union
⋃

i∈γ αi × {i} and well-order it by

setting (β, i) < (δ, j) if and only if i < j or else i = j and β < δ. Let I be a set and

let {κi | i ∈ I} be an I-indexed family of cardinals. Then
∑

i∈I κi = |
∑

a<|I| κπ(a)|

where π ∈ |I| → I is a bijection, and the later sum is the infinitary addition of ordinals

defined above.

Multiplication is the cardinality of the cross product of the sets being multiplied, |α| ·

|β| = |α× β|.

The following hold of cardinal multiplication without the axiom of choice:

1. One is a multiplicative identity.

2. Multiplication is associative.

2The additional outer bars are to take the answer to the lowest ordinal of the same cardinality.
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3. Multiplication is commutative.

4. Multiplication is non-decreasing in both arguments.

5. Multiplication distributes over addition.

6. |α|+ |β| ≤ |α× β| if both α and β are at least 2.

In the presence of the axiom of choice we have the result that if either α or β is infinite

and both are non-zero, |α| · |β| = max(α, β). Let I be a set and let {κi | i ∈ I} be an

I-indexed family of cardinals. Then
∏

i∈I κi = |
∏∗

i∈I κi| where
∏∗ denotes the product

of the sets κi, the set of all functions f : I →
⋃

i κi such that for all i ∈ I, f(i) ∈ κi.

Exponentiation is given by the cardinality set of functions from the exponent into the

set it acts on |α||β| = |β → α|.

The following hold of exponentiation without the axiom of choice:

1. α0 = 1.

2. If 1 ≤ β, then 0β = 0.

3. 1β = 1.

4. α1 = α.

5. αβ+γ = αβ · αγ.

6. αβ·γ = (αβ)γ.

7. (α · κ)β = αβ · κβ.

8. Exponentiation is non-decreasing in both arguments.

The following hold of exponentiation with the axiom of choice:

1. If α and γ are both finite and greater than 1, and β is infinite, then αβ = γβ.

2. If α is infinite and β is finite and non-zero, then αβ = α.
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3. If 2 ≤ α and 1 ≤ β and at least one of them is infinite, then max(α, 2β) ≤ αβ ≤

max(2α, 2β).

We use ℵ0 to refer to the first infinite cardinal and ℵ1 to refer to the second infinite

cardinal.

2.1.12 Trees

A tree T is a partially ordered set (T,<) such that:

1. For each t ∈ T , the set {s ∈ T | s < t} is well-ordered by the relation <.

2. For each a, b ∈ T there exists x ∈ T , such that x ≤ a and x ≤ b.

A finite tree is one containing finitely many elements.

An interior node of a tree T is some x ∈ T , such that there exists y ∈ T such that

y < x and a leaf node of a tree T is some x ∈ T which is not an interior node. The root

of a tree T is some element x ∈ T , such that for all y ∈ T , y < x.

2.2 How BNF Works

BNF can be thought of as a game. You start with a “non-terminal” and are then given

rules for what you can replace this with. The value of the “non-terminal” defined by

the BNF grammar is just the set of all things you can produce by applying these rules

to each “non-terminal”, provided you reach a string entirely composed of “terminal”

symbols after a finite number of steps.

The rules are called production rules and normally look like this:

• ::= ◦1 | · · · | ◦n

A production rule simply states that the symbol on the left-hand side of the ::= must

be replaced by one of the alternatives on the right hand side. For example, the non-

terminal 〈a〉 in 〈a〉 ::= 〈b〉 | 〈b〉〈a〉 would range over things of the form 〈b〉, 〈b〉〈b〉,
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〈b〉〈b〉〈b〉, etc. If we were also given 〈b〉 ::= cd , then it would range over cd, cdcd, etc.

The alternatives are separated by | . Alternatives usually consist of “non-terminals”

and “terminals”. Non-terminals are strings that get replaced in the course of applying

production rules. All non-terminals appear on the left hand side of a ::= in a production

rule. Terminals are simply pieces of the final string that are not “non-terminals”. They

are called terminals because there are no production rules for them, so they terminate

the production process. We can write a tree (sometimes called an Abstract syntax

tree) to show how BNF style notation produces syntax as an instance of a non-terminal

(where each child node is an instance of its parent).

Example 2.3. Here is how we would write cdcd as an instance of a given the rules

〈a〉 ::= 〈b〉 | 〈b〉〈a〉 and 〈b〉 ::= cd:

a

b

c d

a

b

c d

We begin with the non-terminal a. This may either be of the form 〈b〉 or 〈b〉〈a〉. We

choose the latter. The b in our selection of 〈b〉〈a〉 consists of two terminal symbols c

and d. This time, for the a in our selection of 〈b〉〈a〉, we choose 〈b〉. This gives us cd〈b〉.

The b in cd〈b〉 also consists of two terminal symbols c and d, so we are left with cdcd.

Non-terminals are distinguished from terminals either by placing them in triangular

brackets or by surrounding terminals by quotes and using either a comma or a space to

separate both non-terminals and terminals. The language of • is the set of all things of

the form ◦i for 1 < i < n. In the example where 〈a〉 ::= 〈b〉 | 〈b〉〈a〉 and 〈b〉 ::= cd the

language of a would be {(cd)n | n ∈ N ∧ n > 0} where N is the set of natural numbers

and (cd)n denotes something of the form cd concatenated with itself n times.

21



Definition 2.4 (Terminal and Non-Terminal Strings). We write a ·b for a concatenated

with b.

• The empty string is a terminal string.

• If S is a terminal string and T is a terminal, S · T is a terminal string.

• If X is a non-terminal, X is a non-terminal string.

• If A and B are non terminal strings and T is a terminal string each of the following

are non-terminal strings: A · B, A · T , and T · A.

• Nothing else is a terminal or non-terminal string.

A rewriting relation is a relation, R, from strings to strings. The set of constraints

on R can be given as a set of pairs of the form (x, y), where x is a string containing

at least 1 character and y is a string which may be empty. What such a pair says is

for all strings of the form uxv, where u is a string preceding x, which may be empty,

and v is a string following x, which may be empty, we have uxv
R
→ uyv. BNF can

be thought of as expressing a specific kind of rewriting relation on strings where non-

terminals are rewritten with alternatives of production rules. Given a non-terminal •

and an alternative ◦i such that • ::= . . . | ◦i | . . .. We may add (•, ◦i) to the constraints

governing R. The language of a BNF non-terminal • are all the strings s such that

•
R∗

→ s and s is in R-normal form.

We refer to the languages which can be produced by BNF as context free.

2.3 How MBNF Works

We use an MBNF rule set to mean a set of MBNF production rules, together with an

additional set of constraints. Additional constraints are given using ordinary mathe-

matical language. Some define relations on “syntax” and others define sets of “syntax”

which are mutually recursively defined alongside production rules. An MBNF rule set
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is sometimes referred to as a grammar. This is an unusual definition of grammar for

anyone accustomed to thinking of grammars either as rules for sentence construction,

but many of the entities MBNF deals with are not strings nor are they anything like

sentences in any spoken language. For this reason, we try to refer to MBNF rule sets

instead of MBNF grammars.

Each MBNF production rule is usually of roughly this form:

• ∈ S ::= A1 | · · · | An

Where • is a metavariable, S is a set, over which • ranges (∈ S may be omitted from

the written rule for brevity) and each A is an alternative indicating a constraint. In

this context the constraint given by Ai is something like “each instance of Ai is also an

instance of S.”

An alternative A may be of roughly the form:

◦1 ⋆1 · · · ⋆n−1 ◦n where c

Where each ◦i is a metavariable, each ⋆j is a mathematical operator (which builds

MBNF syntax and which may or may not be written using syntax building operations

inherited from BNF), and c is an expression (which may use the full power of math-

ematics and which represents a side condition).3 Normally what such an expression

says is: “For some assignment of a set of MBNF syntax for each of ◦1, · · · , ◦n, which

we call the language of ◦i, for each choice of ◦i from its language, if c holds, then

◦1 ⋆1 · · · ⋆n−1 ◦n ∈ S.”

3The text where c is a part of the MBNF grammar. For our purposes side conditions may use
any part of mathematics, as there is a wide range of mathematical expressions used in side conditions
in the literature and no obvious limitations in how they are employed. Examples of the range of
mathematical expressions used in side conditions appear in SubSection 4.1.8.
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An example of an alternative like the one above comes from Chang & Felleisen (2012):

Example 2.5.

“
”

Â[A1[λx.Ǎ[E[x]]]A2[v]] = Â[A1[A2[Ǎ[E[x]]x := v]]] where Â[Ǎ] ∈ A

Here they use a mixture of BNF operators (concatenation with non-terminals) and

binary tree splicing/hole filling operators from mathematics. It also has a side condition

that depends on tree splicing and a set membership condition.

In the place of any ◦i, the expression A may include (♥)
j∈J

e where ♥ is an operator

of flexible arity, possibly of infinite arity, which builds MBNF syntax, and e is an

expression consisting of metavariables (some of which may be indexed with indexes

taken from index set J) and mathematical operators, which build MBNF syntax. We

will see examples of infinitary operators later in the paper. They are not particularly

important to the terminology and concepts we are introducing here. We include them

only for completeness.

Each constraint appearing in the rules of the grammar is “solved” simultaneously. Usu-

ally what we mean when we say that a set of constraints is solved is that for each

metavariable • appearing anywhere in one of the production rules, we assign some set

S, such that • ranges over S and all the constraints in the grammar are true.

For each metavariable • we refer to the set it ranges over as the language of •. Some

authors use • interchangeably to mean the metavariable • and the language of •, which

can be confusing. We will point out when this occurs.

MBNF syntax refers to any mathematical object which may appear inside the language

of a metavariable occurring anywhere within a production rule in the grammar. It is

worth noting that MBNF syntax may look wildly different from what we often consider

syntax. For example, unlike BNF syntax, which consists of strings only, MBNF syntax

may contain trees of infinite breadth or depth and mathematical objects like sets and

numbers.
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Chapter 3

BNF and Its Variants: A Literature

Review

We give a brief overview of BNF and its more popular variants which remains broad

enough to cover how BNF variants normally work, the kinds of entity they work with,

and the kinds of operations they usually allow. According to Zaytsev (2012):

“The grammarware technological space is commonly perceived as mature and drained

of any scientific challenge, but provides many unsolved problems for researchers who

are active in that field.”

We agree with Zaytev that there are still numerous reasons for a deeper comparison of

these relatives to BNF. For example, one which might touch on more obscure examples

and order them in terms of how quickly they may be used to build syntax or their

expressive power. However, this is not what we aim to provide here. The main purpose

of this section is as a preliminary to our examination of MBNF. The idea we intend

readers to take away from this section is that, while the notations examined here allow

for variation between them and while other fully formal BNF variants exist, they are

still more like one another than they are like MBNF. Notably each grammar in this

section is for building sets of strings and produces a language quotiented up to string

equality. Where they do deal with trees it is with unambiguous parse trees for the

strings produced. MBNF by contrast deals with tree like structures, which may start
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off quotiented by equivalences that are seemingly arbitrary. These may or may not be

finite.

3.1 Backus and Naur

To illustrate what the original BNF looked like we present an example of BNF as it

was used by Backus and BNF as it was used by Naur.

3.1.1 Backus

Backus (1959) used “:≡” to symbolise a production and “or” to separate production

rules. He distinguished non-terminals from terminals by surrounding them with angle

brackets.

Example 3.1.

“

”

〈digit〉 :≡ O or 1 or 2 or 3 or 4 or 5 or 6 or

7 or 8 or 9

〈integer〉 :≡ 〈digit〉 or 〈integer〉〈digit〉

Here, 〈digit〉 ranges over the set of symbols {“0, “1”, “2”, “3”, “4”, “5”, “6”, “7”, “8”, “9”}.

〈integer〉 ranges over the set of strings one would use to write the non-negative integers

using digits 0 to 9.

3.1.2 Naur

Naur, in Backus et al. (1963), used “::=” instead of “:≡” and “|” instead of “or”. Other

than that the grammar is the same.
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Example 3.2.

“

”

〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

〈unsigned integer〉 ::= 〈digit〉 | 〈unsigned integer〉〈digit〉

Here 〈digit〉 ranges over the same set 〈digit〉 ranged over in the previous example and

〈unsigned integer〉 ranges over the same set 〈integer〉 did.

3.2 Extensions to BNF

The following are extensions to BNF, which, unlike MBNF up until this point, have a

formal definition.

3.2.1 EBNF

(Extended Backus-Naur Form) adds facilities for dealing with repetition of syntactic

rules (braces around repeated text), special sequences (Two ?s around names of spe-

cial characters), choice of syntactic rules (square brackets around optional text), and

exceptions to syntactic rules (written R − E where R is a rule and E an exception).

For example we might write:

X ::= ‘a′ | X, ‘b′

Y ::= ‘a′ | ‘b′ | Y, Y

Z ::= Y −X,X

Here Y −X tells us to lead with string that do not consist of a single a, followed by some

number of bs. Instead of having non-terminal symbols surrounded by angle brackets,

terminal symbols are surrounded by single quotes and all symbols are separated by

commas. Each line is ended in a semicolon. Parentheses may be placed around groups

of syntax. This doesn’t alter the language produced, but aids in parsing. A full copy

of the syntax for EBNF is found in ISO (1996).

27



Example 3.3. In EBNF, the terminating decimals DI can be written as:

“

”

DI ::= [‘− ’ ], D, {D}, [‘.’, D, {D}];

D ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’;

We read the rule DI ::= [‘− ’], D, {D}, [‘.’, D, {D}]; as giving the following instructions

for producing something of the form DI : First, begin with an optional minus, [‘ − ’],

followed by a choice of D, D, followed by any number of choices of D, {D}, followed by

an optional selection of the entire sequence produced by the text in the square brackets,

[‘.’, D, {D}]. This group consists of things produced with the following instructions:

begin with a dot, ‘.’, followed by a choice of D, D, followed by any number of choices

of D, {D}.

Here is how we would generate 13.33 from example 3.3:

We choose not to include the ‘ − ’ from [‘ − ’], giving D, {D}, [‘.’, D, {D}]. We choose

the D at the start to be ‘1’, giving ‘1’, {D}, [‘.’, D, {D}]. We choose the {D} at the

start to give only one other D, giving ‘1’, D, [‘.’, D, {D}]. We choose this to be ‘3’,

giving ‘13’, [‘.’, D, {D}]. We choose to include the ‘.’, D, {D} from [‘.’, D, {D}], giving

‘13.’, D, {D}. After this choice we must include the ‘.’ and a terminating string derived

from D, {D} which must include a selection for the 1st D and which includes a selection

of how many times to repeat D thereafter. That is, after making the optional choice

of the string ‘.’, D, {D}, we parse it as normal. Each member of the sequence is not

optional. We choose the D at the start to be ‘3’, giving ‘13.3’, {D}. We choose the

{D} to give only one other D, giving ‘13.3’, D. We choose this to be ‘3’, giving 13.33.

EBNF without exceptions to syntactic rules is not more powerful than BNF in terms

of what sets of strings it can generate (see Lemma 3.5), but it is more convenient

and the parse trees it generates may look different. The above example is much more

cumbersome to write using BNF:
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Example 3.4.

〈DI 〉 ::= 〈PD〉 | −〈PD〉 | 〈PD〉.〈PD〉 | −〈PD〉.〈PD〉

〈PD〉 ::= 〈D〉 | 〈PD〉〈D〉

〈D〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Here is how we would generate 13.33 from example 3.4:

We choose 〈DI 〉 to be 〈PD〉.〈PD〉. We choose the first 〈PD〉 to be 〈PD〉〈D〉, giving

〈PD〉〈D〉.〈PD〉. We choose the first 〈PD〉 to be 〈D〉, giving 〈D〉〈D〉.〈PD〉. We choose

the first 〈D〉 to be 1, giving 1〈D〉.〈PD〉. We choose the 〈D〉 to be 3, giving 13.〈PD〉.

We choose the 〈PD〉 to be 〈PD〉〈D〉, giving 13.〈PD〉〈D〉. We choose the 〈PD〉 to be

〈D〉, giving 13.〈D〉〈D〉. We choose the first 〈D〉 to be 3, giving 13.3〈D〉. We choose

the first 〈D〉 to be 3, giving 13.33. For the following standard lemma we follow the

presentation of Attenborough (2003), who provides the same result for these functions

as they appear in EBNF, although she incorrectly characterises EBNF as context free.

Lemma 3.5 (Repetition and Choice Don’t Add Generative Power to BNF). Repetition

and choice can be translated into an equivalent set of BNF productions.

Proof. We outline the process:

• Convert every repetition { E } to a fresh non-terminal X and add

X = ε | X E.

• Convert every option [ E ] to a fresh non-terminal X and add

X = ε | E.

(We can convert X = A [ E ] B. to X = A E B | A B as an inlining of the above.)

• Convert every group ( E ) to a fresh non-terminal X and add

X = E.
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(The parentheses do not change the string output, but separating it out this way

may allow the ( E ) to be parsed as a group.)

Although this much of EBNF is context free, EBNF also features exceptions to syntactic

rules, which prevent it from being context free. Hopcroft & Ullman (1979) show that

the context-free languages are not closed under intersection. We adapt their proof to

show that the set of languages produced by EBNF is larger than the set of languages

produced by BNF. We base our proof on the version of this result given by Hopcroft

and Ullman, because it is widely referenced and quite concise in its presentation.

To help show this we also introduce some notational conventions, a definition, and a

lemma. If both a and b denote strings and n is a natural number, then we use ab

to denote a concatenated with b, |a| to denote the length of a and an to denote a

concatenated with itself n times. In order to show that EBNF is not context free this

we make use of the pumping lemma for context-free languages. We use the version

given by Berstel et al. (2009), as many earlier versions of this lemma leave out some

cases where the outer part of the string remains constant, to which the version we give

here applies.

Definition 3.6 (Substring). For all strings a, b, and c which may be empty, if s = abc,

then a, b, and c are all substrings of s.

Lemma 3.7 (The Pumping Lemma for Context Free Languages). If a language L is

context-free, then there exists some integer p ≥ 1 (called a “pumping length”) such that

every string s in L that has a length of p or more symbols (i.e., with |s| ≥ p) can be

written as

s = uvwxy

with substrings u, v, w, x, and y such that

1. |vx| ≥ 1

2. |vwx| < p
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3. ∀n > 0, uvnwxny ∈ L

Proof. In Berstel et al. (2009).

Lemma 3.8 (EBNF is Not BNF). Production rules of the form R − E have no BNF

equivalent.

Proof. First consider two EBNF languages L1 and L2 as follows:

1. The language of L1 = {anbnam | n,m ≥ 0} generated by:

〈L1〉 ::= 〈X〉〈A〉

〈X〉 ::= a〈X〉b | ǫ

〈A〉 ::= 〈A〉a | ǫ

2. The language of L2 = {anbmam | n,m ≥ 0} is generated by:

〈L2〉 ::= 〈A〉〈X〉

〈X〉 ::= a〈X〉b | ǫ

〈A〉 ::= 〈A〉a | ǫ

3. L1∩L2 = {anbnan | n ≥ 0} is not context free by the pumping lemma Berstel et al.

(2009) since, for a given p ≥ 1, we can choose n > p, such that s = anbnan is in our

language and we cannot choose any substring q of s (corresponding to vwx), such

that q is of length p, s = xqy for some strings x and y, and xvnwxny ∈ L1 ∩ L2

(since q would have to take in at least one a and should take in the same number

of as on the left as on the right of the bs).

It follows easily that rules of the form R−E where R and E are non terminals cannot

be modelled in BNF, since BNF only generates the context free grammars.
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〈P 〉 ::= 〈L1〉 − 〈L2〉

〈Q〉 ::= 〈L1〉 − 〈P 〉

The language of 〈Q〉 is {anbnan | n ≥ 0}.

As we see in lemma 3.8 there are some languages represented in EBNF which are not

represented in BNF.

3.2.2 PEGs

(Parsing Expression Grammars) Ford (2004) have many of the same facilities as EBNF,

but contain an ordered choice operator which indicates parsing preference between

options. For example, the EBNF rules A = a, b | a, and A = a | a, b are equivalent,

but the PEG rules A← a b / a, and A← a / a b are different. The second alternative

in the latter PEG rule will never succeed because the first choice is always taken if the

input string to be recognized begins with ‘a’. PEG rules also add and, ‘&’, and not,

‘!’, syntactic predicates which match a pattern only if a certain context is present. The

expression ‘&e’ attempts to match pattern e, then unconditionally backtracks to the

starting point, preserving only the knowledge of whether e succeeded or failed to match.

Conversely, the expression ‘!e’ fails if e succeeds, but succeeds if e fails. For example,

‘!EndOfLine .’ matches any single character so long as the nonterminal EndOfLine does

not match starting at the same position as that character in the parse tree. Below is a

PEG that parses the positive integers without additional leading zeros.

Example 3.9.

〈PD〉 ::= (〈PD〉 〈D〉) !(0 〈PD〉) / 〈D〉

〈D〉 ::= 0 / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9

PEG provides us with slightly more power than EBNF, at least with regards to parsing,

see Lemma 3.12. However, the languages the grammar produces (as opposed to the
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languages it unambiguously parses) are the same for PEGs and EBNF, see Lemma

3.11. Understanding PEG rules rests on the user’s intuitive understanding of parsing

and string recognition. The body of literature for this is very large. In addition there is

not a particularly close correspondence between the extra operators provided by PEG

and anything in the syntax of MBNF.

We give some basic translations from EBNF to PEGs and show how PEGs offer ca-

pacities EBNF does not Redziejowski (2013) has a more in depth treatment of the

translation of EBNF to PEG that answers the question of when an EBNF can be

treated as its own PEG. We start by defining some extra syntactic machinery that will

help with proofs later.

Definition 3.10 (Alternative Assignments for Instances of Non-Terminals). The exist-

ing syntax of PEGs allows us to create expressions that match a given non-terminal, X ,

appearing in an alternative A only in the case where a particular alternative Y succeeds

for X . We define some additional syntax to allow us to discuss this process more easily.

For a non-terminal X appearing in an alternative A, let X1 refer to the 1st occurrence

of X in A, X2 to the second, and so on. If we write A[Xn = Y ], where Y is one of the

alternatives for X , this is to be read as the expression produced by replacing the nth oc-

currence ofX inA with (X&Y ). If we are performing more than 1 of these replacements,

for non-terminals X,X ′, X ′′, ... and alternatives Y, Y ′, Y ′′, ..., then, instead of writing

A[Xn = Y ][X ′
m = Y ′][X ′′

p = Y ′′]..., we can write A[Xn = Y,X ′
m = Y ′, X ′′

p = Y ′′, ...].

In a similar vein we write A[Xn 6= Y ] as the expression produced by replacing the nth

occurrence of X in A with (X !Y ).

We may consider the “language” of a PEG non-terminal to be the set of strings that

are parsed as that non-terminal. The following lemma is folklore, but we could not find

a source stating it (perhaps because the proof is cumbersome and the result, unsurpris-

ing):

Lemma 3.11 (PEGs Cannot Generate More Languages Than EBNF). The set of

languages of PEG non-terminals is identical to that of EBNF ones.
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Proof. We begin by showing production rules of the form R−E can be used to generate

production rules of the form R&E and R!E and vice versa. R−E gives all instances of

R which are not also instances of E, which can all be parsed by R!E. Let F ::= R−E,

then R − F gives only those instances of R which are also instances of E (i.e., those

parsed by R&E).

Since no other rule of EBNF provides more power than BNF and the remaining syntax

of PNGs are written as a BNF with additional parsing precedence, all that remains is

to show that there is a way of writing the rules in a PEG such that every alternative

succeeds on some pieces of syntax, unless it is identical to another alternative.

First consider 2 alternatives for a production rule for V , A1 and A2, such that, if A1

succeeds, then A2 succeeds. In this case, either A1 and A2 are identical, or we can write

V ← A1 / A2 to ensure both succeed on some pieces of syntax.

We now consider the case where whether an alternative succeeds if another succeeds may

depend on the assignment of non-terminals in that alternative. Consider 2 alternatives

for a production rule for V , A1 and A2, such that, if

A1[P1 = Q,P2 = Q′..., Pn = Qn, P ′
1 = Qn+1, ..., P ′

m = Qn+m, ...]

succeeds then

A2[R1 = S,R2 = S ′..., Ri = Si, R′
1 = Si+1, ..., R′

j = Qi+j , ...]

succeeds. In this case, either

A1[P1 = Q,P2 = Q′..., Pn = Qn, P ′
1 = Qn+1, ..., P ′

m = Qn+m, ...]

and

A2[R1 = S,R2 = S ′..., Ri = Si, R′
1 = Si+1, ..., R′

j = Qi+j , ...]
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are identical, or we can write:

V ← A2[R1 6= S,R2 6= S ′..., Ri 6= Si, R′
1 6= Si+1, ..., R′

j = Qi+j , ...]

/ A1[P1 6= Q,P2 6= Q′..., Pn 6= Qn, P ′
1 6= Qn+1, ..., P ′

m 6= Qn+m, ...]

/ A1[P1 = Q,P2 = Q′..., Pn = Qn, P ′
1 = Qn+1, ..., P ′

m = Qn+m, ...]

/ A2[R1 = S,R2 = S ′..., Ri = Si, R′
1 = Si+1, ..., R′

j = Qi+j, ...]

to ensure both will succeed on some pieces of syntax.

The following lemma is an obvious corollary to the results presented in Redziejowski’s

work on EBNF and PEGs Redziejowski (2013). We do not make use of any of the

proofs appearing in Redziejowski’s work here, because the lemma is basic enough that

it can be proven very straightforwardly without them. In EBNF any alternative in a

production rule for a non-terminal may be “parsed” as that non-terminal.

Lemma 3.12 (PEGs Can Parse More Strings Than EBNF Does). Strings which appear

ambiguous to parsers in EBNF can be parsed by PEGs.

Proof. Consider the EBNF e ::= e ∗ e | e+ e | v where v ranges over the strings used to

write the positive integers. The string 1 + 1 ∗ 2 cannot be unambiguously parsed. We

could have either of the following:

+

1 ∗

1 2

∗

+

1 1

2

In the PEG e ::= e ∗ e / e+ e / v only the first of these parse trees would be an option.

The reader may notice that the language of an EBNF non-terminal may be larger than

the set of strings that can be unambiguously parsed as that non-terminal, so lemmas

3.11 and 3.12 may both hold.
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3.2.3 ABNF

(Augmented Backus-Naur Form) Crocker et al. (2008) Contains most of the facilities of

EBNF aside from the ability to write exceptions to syntactic rules. ABNF can generate

the same syntax as BNF. We include it here only for completeness. The following lemma

has not been stated explicitly anywhere we are aware of, although it is obviously very

similar to the result given by Attenborough (2003), which we have already given in

Lemma 3.5:

Lemma 3.13 (ABNF Grammars are Context-Free). The set of languages ABNF gram-

mars can generate is the same those as BNF ones can.

Proof. We provide translations from ABNF expressions into EBNF expressions. These

translations can be performed in reverse for EBNF expressions written without excep-

tions to get ABNF expressions. The symbol / in ABNF is translated to | in EBNF.

The expression ∗E in ABNF, where E is an expression, is translated to {E ′} in EBNF,

where E ′ is E after any translation which can be applied to E has been. The expression

n ∗E, where E is an expression and n is a natural number, is translated to n lots of E ′

concatenated with {E ′}, where E ′ is E after any translation which can be applied to E

has been. The expression n ∗mE, where E is an expression and n and m are natural

numbers, is translated to a list of m−n alternatives. The first of these alternatives has

n lots of E ′ concatenated together in the place of n ∗mE and the ith with n + i − 1

lots of E ′ in place of n ∗mE, where E ′ is E after any translation which can be applied

to E has been. Strings of binary, decimal, and hexadecimal characters are translated

to alphanumeric strings surrounded by quotation marks if possible. Otherwise, they

are translated to whichever special character(s) they indicate surrounded by ?s (and

concatenated together if more than 1 special character is specified this way). Strings

surrounded by quotation marks which aren’t preceded by %s are translated to a finite

list of alternatives with all possible variations of capitalisation. Strings surrounded by

quotation marks which are preceded by %s in ABNF are no longer preceded by %s in

EBNF.
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Since ABNF has no equivalent for production rules of the form R−E, it generates the

same languages as BNF by lemma 3.5.

Here is an ABNF for the terminating decimals:

Example 3.14.

DI ::= [%d150 ],D , ∗D , [%d46 ,D , ∗D ];

D ::= ‘0’ / ‘1’ / ‘2’ / ‘3’ / ‘4’ / ‘5’ / ‘6’ | ‘7’ / ‘8’ / ‘9’;

3.2.4 RBNF

(Routing Backus-Naur Form) Farrel (2009) Contains most of the facilities of EBNF

aside from the ability to write exceptions to syntactic rules. RBNF can generate the

same syntax as BNF. We include it here only for completeness. The following lemma

has not been stated explicitly anywhere we are aware of, although it is obviously very

similar to the result given by Attenborough (2003), which we have already given in

Lemma 3.5:

Lemma 3.15 (RBNF Grammars are Context-Free). The set of languages RBNF gram-

mars can generate is the same those as BNF ones can.

Proof. We provide translations from RBNF expressions into EBNF expressions. These

translations can be performed in reverse for EBNF expressions written without excep-

tions to get RBNF expressions. < and > in RBNF are replaced by commas. Strings of

consecutive non-terminals are grouped together and surrounded by quotation marks.

Since RBNF has no equivalent for production rules of the form R−E, it generates the

same languages as BNF by lemma 3.5.
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Here is a RBNF for the terminating decimals:

Example 3.16.

<DI> ::= [−]<D>{<D>}, [.<D>{<D>}];

<D> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9;

3.2.5 LBNF

(Labelled BNF) Forsberg & Ranta (2005) extends EBNF with functionality for dealing

with polymorphic lists of rules. It also provides a few pre-defined sets such as characters,

integers, strings, and identifiers. It also provides labels which deal with higher order

abstract syntax Pfenning & Elliott (1988). However, this is not intended to be used

in LBNF grammars written by hand, but instead in ones generated from the grammar

formalism GF (Grammatical Framework) Ranta (2004).

This means there is no clear mathematical model of this functionality to aid in human

understanding. Analysing the functions provided by LBNF requires an understanding

of the programs used to compile expressions in the grammar.

Since LBNF is not designed with human readers in mind, we do not include any lemmas

about the languages it generates and the strings it is able to parse in this paper. Proving

lemmas about LBNF would be cumbersome and involve delving into compiler code.

While LBNF is a significant expansion of BNF, we include LBNF here, because it still

deals with sets of strings generated by term rewriting rules and does not allow the

incorporation of mathematical objects and expressions into the syntax. In addition the

syntax of MBNF does not typically include anything like the labels provided by LBNF.

3.2.6 TBNF

(Translational Backus-Naur Form) Mann (2006) Puts non terminals in the place of

internal nodes and terminals in place of external (leaf) nodes on a tree (which we call
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an Abstract syntax tree or AST). When the resulting syntax is parsed, the abstract

syntax tree it creates is traversed adding to EBNF additional production arrows listed

in Figure 3.1 below.

[∼>] Reverse Production Arrow. An arrow preceding the right side of a
rule for which you want the nodes to be arranged in reverse order.

[=>] Call A Function. This means to call a function when a rule in the
grammar has been recognized. A rule in the grammar may have
multiple function calls.

[+>] Make A Node. This means to make a node corresponding to this
rule in the grammar.
During AST traversal this node will be processed with a built-in
default node processing function.

[*>] Make A Node and during AST traversal, call a function with the
same name as this node, instead of calling the default node
processing function. This allows customization of the code gener-
ation process.

[$1] Parse Stack Position. This refers to the symbol in parse stack
position #1, the first symbol in the right side of the rule. $n refers
to the nth position.

[..*] Node Traversal Indicator. Indicates when processing for this node
should occur, at top- down, pass-over, or bottom-up time, respec-
tively. *.. indicates top-down only. ..* indicates bottom-up only.
*.* indicates top-down and bottom-up.

[(...)] The Arguments. Arguments are used for function calls (=>) and
node processing (+>).
For node processing the arguments apply to the relative ‘*’ in the
Node Traversal Indicator. *-* would require two string arguments.

[& 0] Counter Indicator. When the AST processor enters a node, it inc-
rements a counter for the node and puts in on a stack. The ‘& 0’
indicates the current count for the node taken from the stack. A
‘& 1’ means the counter for the parent node on the stack and ‘& 2’
means the counter of the grandparent. This provides a unique
number for labels.

Figure 3.1: Additional production arrows

Figure 3.1 demonstrates that TBNF provides a very rich extension to EBNF which is

particularly well suited for relating expressions to their abstract syntax trees. However a

clear mathematical model of the trees generated by TBNF is not provided alongside its

syntax (again these are created in a compiler rather than presented in a form intuitive

to human beings). In addition while it covers some of the functionality authors expect
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when they use MBNF it does not particularly resemble the way in which it is written.

We do not include any lemmas about the languages TBNF generates and the strings

it is able to parse in this thesis, because TBNF is not designed with human readers in

mind, so proving these would be cumbersome and involve delving into compiler code.

3.3 A Brief History of BNF and Its Variants

The following history of BNF variants is mostly a paraphrasing of one given in a talk by

Steele (2017). We have chosen this as one of the more comprehensive histories available

provided by someone with a specific interest in notation.

• 6th–4th century BCE: Aggarwal (n.d.) writes the As.t.ādhyāȳı, a formal gram-

mar containing numerous concise technical rules that describe Sanskrit lin-

guistics, syntax, and semantics unambiguously and in particular describe its

morphology completely. This book describes the production of strings by

the substitution of non-terminals (Although it does not use the word “non-

terminal” nor does it use a notation particularly similar to BNF). Pāni.ni used

the method of “auxiliary symbols”, in which new affixes are designated to

mark syntactic categories and the control of grammatical derivations. This

technique, rediscovered by the logician Emil Post, became a standard method

in the design of computer programming languages. Bhate & Kak (1993)

Kadvany (2007)

• 1914: Thue (1914) studies string-rewriting systems defined by rewrite rules.

In this paper, Thue introduces a system consisting of pairs of corresponding

strings over a fixed alphabet:

(A1, B1), (A2, B2), ..., (An, Bn)

and poses the following problem:

Definition 3.17 (The word problem for semigroups). Given two arbitrary

strings P and Q, can we get one from the other by replacing some substring

Ai or Bi by its corresponding string in the other half of the pair? This
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replacement may take place in either direction (for example, if P was ‘mcm’

and Q was ’ncn’ and the answer would be “yes” for a Thue system containing

pairs (‘m’, ‘q’), (‘l’, ‘q’), and (‘l’, ‘n’)).

BNF is sometimes called a “Semi-Thue” system. I.e., a system in which this

replacement of substrings happens in one direction only. Every BNF is a

Semi-Thue system, but not every Semi-Thue system is a BNF.

• 1920s: Post (1943) studies “tag systems” in which symbols are repeatedly

replaced by associated strings (this work is not published until 1943). These

“tag systems” are later referred to as “post production systems” and they

correspond exactly to the Semi-Thue systems.

• 1947: Markov (1947) and Post (1947) independently prove that the word

problem for semigroups (a problem posed by Thue) is undecidable.

• 1956: Chomsky (1956) publishes “Three Models for the Description of Lan-

guage,” which describes grammars with production rules and what we now

call the “Chomskian hierarchy of grammars”. The grammars written using

BNF corresponds exactly to the context free grammars in Chomsky’s hierar-

chy.

• 1959: Backus (1959) uses a specific syntax to write production rules for a

context-free grammar for the International Algorithmic Language, which is

influenced by the “Post productions” of Emil Post. A single production may

contain multiple alternatives. This notation is discussed in Section 3.1.

• 1960: The “Report on Algol 60,” edited by Peter Naur Backus et al. (1963),

appears in CACM. It uses a slightly prettier (and easier to typeset) variant

of the Backus notation. Naur introduces use of ::= and | and makes names of

nonterminals identical to equivalent English phrases used in the text. This

notation is discussed in Section 3.1.

• 1965: IBM’s PL/I specification Radin & Rogoway (1965) combines BNF with

COBOL metanotation. An ellipsis indicates a nonzero number of repetitions

of the preceding item. Here is an example of the features added:
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“

”

expression ::= union | {expression || union}

expression-1 ::=



TO expression-2 [BY expression-3]

BY expression-3 [TO expression-2]



 [WHILE expression-4]

DECLARE [level] name [attribute] ...

[, [level] name [attribute] ...] ...;

• 1965: PL360 Wirth (1968) used a parametrised form of BNF. If in the de-

notations of the constituents of the rule the script letters A, K, or J occur

more than once, they must be replaced consistently (or possibly according to

further rules given in the accompanying text). As an example, the syntactic

rule

“ ”
〈K register〉 ::= 〈K register identifier〉

is an abbreviation for the set of rules

“

”

〈long real register〉 ::= 〈long real register identifier〉

〈integer register〉 ::= 〈integer register identifier〉

〈real register〉 ::= 〈real register identifier〉

• 1968: Adriaan van Wijngaarden et al. Mailloux et al. (1969) describe Algol

68 using a two-level grammar: one grammar has an infinite set of productions,

which are generated by another grammar. The notation used is powerful

enough to define the type 0 grammars in the Chomsky hierarchy.

• 1970: The BLISS language Wulf et al. (1971) is described using BNF, but

with a right-arrow instead of “::=”. This notation is taken for granted.

“

”

block→ begin declarations compoundexpression end

declarations→| declaration; | declarations; declaration;

compoundexpression →| e; | e; compoundexpression;

begin→ BEGIN

end→ END
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• 1976: Stanford’s SAIL Reiser (1976) language uses BNF with repeated “::=”

and no “|”.

• 1978: CMU Alphard project Shaw et al. (1977) uses regular expressions in

BNF with ∗, +, and #.

• 1980: Ada specification Barnes (1980) Boute (1980) uses BNF, but with “is”

for “::=” and “or” for “|”.

• 1981: CMU Shaw (1981) FEG and IDL use regular expressions in BNF with

* , + , and ? .

• 1981: The British Standards Institution publishes BS 6154 Scowan (1981) a

precursor to the EBNF standard.

• 1984: C: A Reference Manual Harbison (1984) uses REs in BNF.

• 1990: Common Lisp: The Language Steele (1990) uses REs in BNF.

• 1995: Python Reference Manual (Release 1.2) Rossum (1995) uses * and +

in BNF, but brackets (rather than ? ) for optional items.

• 1996: The ISO standard for EBNF ISO (1996) is published.

• 1997: The first (now deprecated) RFC standard for ABNF Crocker & Overell

(1997) is published.

• 1998: Haskell 98 Report Jones et al. (1999) uses BNF, with -> for ::=, and

also uses ellipsis.

• 1998: Ruby Language Reference Manual (1.4.6) Matsumoto (1988) uses *

and + in “pseudo BNF” (somewhat like WSN), but brackets (rather than ?)

for optional items.

• 2004: Ford (2004) introduces the concept of parsing expression grammars.

• 2005: Forsberg & Ranta (2005) document the Labelled BNF formalism.

• 2006: Mann (2006) documents the Translational BNF notation.

• 2008: The most recent RFC standard for ABNF Crocker et al. (2008) is

published.

• 2009: The RFC standard for RBNF Farrel (2009) is published.
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3.4 Limitations of BNF and Its Variants

An important thing to note when considering whether a piece of BNF-like syntax can

be readily converted into BNF is that BNF is a language for building sets of strings and

the only notion of equality it deals with easily is string equality. It is possible to derive a

notion of tree equality from the parse trees generated by an EBNF grammar, but there

is no guarantee that parse trees will be unambiguous. Unless an author writes their

grammar with a parser in mind, inferring a sensible parse tree from a set of production

rules and an input string is non-trivial.

BNF can describe exactly the context-free grammars in Chomsky’s hierarchy Chomsky

(1956). Non-context-free grammars cannot be written without extending BNF in some

way.
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Chapter 4

Introducing MBNF

In this chapter, we highlight ways in which the notation we call MBNF differs from

BNF and its variants. We demonstrate that MBNF is non-trivially different to the

existing extensions of BNF, which deal only with sets of strings and the parse trees

deriving from production rules and input strings, and that it should not be thought

of as dealing with the same kinds of entity as these extensions do. The following key

features of MBNF are covered in this chapter:

1. Where BNF and its variants use strings, MBNF uses math text.

2. MBNF is not intended for parsers.

3. MBNF uses operators that stand for chains of syntax.

4. MBNF allows powerful operators e.g. context hole filling.

5. MBNF mixes mathematical language with BNF-style notation.

6. MBNF has at least the power of indexed grammars.

7. MBNF has a native concept of binding.

8. MBNF allows “arbitrary” side conditions on production rules.

9. MBNF can contain very large infinite sets within the “syntax.”
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10. MBNF may produce large sets of undecidable syntax.

11. MBNF allows infinitary operators.

12. MBNF allows coinductive definitions.

13. MBNF may be considered up to “arbitrary” equivalences.

MBNF is widely used as a more expressive alternative to BNF notation. MBNF can

be used to write all of the grammars BNF and its variants can produce, but it also

defines grammars BNF cannot define. There are a number of reasons we think the

features discussed in this chapter should be sensibly grouped under the common heading

“MBNF”:

1. Most of the features discussed in this chapter are inherited from math and come

about from the mixing of BNF-style notation with math text. This gives MBNF

additional expressive power.

2. Some authors use more than one of the features discussed in this chapter at a time.

For example Chang & Felleisen (2012) use features discussed in Subsections 4.1.4,

4.1.7 and 4.1.8.

3. Our work is novel in that there is no existing standard for the features discussed

in this chapter as they appear alongside BNF-style notation.

4. There is no document we are aware of that prohibits the use of any of the features

discussed in this chapter together with one another.

5. MBNF-style featurs seem to be commonly accepted in the community, judging

from papers using this notation informally are regularly accepted in conferences

and journals in this field.
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4.1 Key Differences Between MBNF and BNF

4.1.1 Where BNF and Its Variants Use Strings, MBNF Uses

Math Text

Instead of using strings of left to right ordered symbols MBNF uses what we are calling

math text, i.e. text which one arranges as one might arrange mathematics. Paren-

theses are often used to disambiguate between similar chunks of text. But these are

not needed in MBNF and when a grammar specifies such parentheses they can often

be omitted without any need to explain. For example, writing (λx.xx)λy.y instead of

((λx.(xx))(λy.y)) . MBNF is a ”structured” as opposed to a ”linear” notation. It is

in that sense similar to BNFs, but fundamentally stronger in which kind of structures

to express (more than just finite trees) and the contents in each of the nodes (arbi-

trary equivalences corresponding to math structures). While some BNF grammars can

produce parse trees MBNF differs in that it can use structure implicit in the layout

of symbols on the page when features like superscripting and overbarring are used.

In this way it is closer to the structure a mathematician might use. For example, in

fn+1
x + y · fj the overbar can be thought of as being higher in the “tree” than the text

occurring beneath it and the superscripting operation can be thought to be higher in

the tree than the syntax inside the superscript.

Instead of non-terminal symbols, MBNF uses metavariables, which appear in what we

call math text and obey the conventions of mathematical variables. Recall a metavari-

able is a variable at the meta-level which denotes something at an object-level. The

object level of MBNF is called concrete syntax if it has no metavariables appearing in

it. Concrete syntax in MBNF loosely corresponds to the notion of a string of terminal

symbols in BNF. However, in BNF syntax must always be reduced to a string of termi-

nal symbols and fed into a parser before further computations can be performed on it,

whereas this is not always the case for MBNF. Frequently, MBNF uses metavariables

which have not been assigned any concrete syntax and reasoning about a grammar is

performed assuming some arbitrary metavariable assignment satisfying the constraints.

In fact, this practice is so commonplace each of the examples we give in this chapter
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which are taken from other papers appear in grammars where some metavariables are

not assigned a set of concrete syntax which they range over. In MBNF metavariables

are not distinguished from other symbols by annotating them as BNF and its notational

variants do, but by math text features such as font, spacing, or merely by tradition.

In addition to arranging symbols from left to right on the page, math text allows

arranging text by subscripting, superscripting, pre-subscripting, pre-superscripting, and

placing text above or below other text. It also allows for marking whole segments

of text, for example with an overbar (a vinculum). Readers can find more detailed

information on how math text can be laid out in The TeXbook Knuth (1986), or

the Presentation MathML Ion et al. (2001) and OpenDocument ISO (2015) standards.

Here is a nonsense piece of math text to illustrate how it may be laid out:

Example 4.1 (Example of Math Text Layout).

c↓ a′ = p̌〈v′′x ⊙ a2+1〉 − fn
x + y · fj +

∞∑

i=0

si∈1...n
←

a, b, c
bâ

Lemma 4.2 (Optional Parentheses Are Not Supported by Formal BNF Variants).

Neither BNF nor the variants in Section 3.2 deal with optional parentheses.

Proof. For both BNF and the variants in Section 3.2 the only way of parsing parentheses

as part of a grammar is to include them as part of the literal syntax. While PEGs and

TBNF provide tools for parser preference which enable them to express an order of

operation that may involve parentheses, they do not allow for automatic addition and

removal of parentheses.

The optional addition of parentheses allows authors who use MBNF to write in a

compact and easily readable form and one which corresponds more closely to how

mathematics is written. This is a motivation for how we will go on to model syntax. We

will give a tree like structure with internal equivalence classes around syntax boundaries,

which is similar to the treatment of parentheses in math text.
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Lemma 4.3. [Math Text Layout Is Not Supported by Formal BNF Variants] Neither

BNF nor the variants in Section 3.2 deal with the layout of math text.

Proof. Both BNF and the variants in Section 3.2 only parse text that is joined together

by concatenation. Therefore they do not handle overbarring, underbarring, subscript-

ing, or superscripting. While TBNF provides tools for building tree-like structures it

still does so by parsing strings.

4.1.2 MBNF Is Aimed Exclusively at Human Readers

MBNF can be used to write all of the grammars BNF and its variants can produce,

but it also defines grammars BNF cannot define. Unlike many BNF variants, MBNF

is meant to be interpreted by humans, not computers/parser generators, as it has not

been adequately formalised yet. Authors may give an MBNF grammar in an article for

humans and a separate grammar for use with a parser generator to build a corresponding

implementation.

Definition 4.4. When we say a grammar is serialized we mean each of the terms

generated by that grammar is given a unique numeric encoding (usually if every term is

given a corresponding binary representation in order to represent them on a computer).

A grammar is serialisable if such an encoding is possible.

MBNF defines entities not intended or expected to be serialised or parsed.

Example 4.5. We find an example in Dolan & Mycroft (2017)

“

”

e ::= x | λx.e | e1e2 | {ℓ1 = e1, ..., ℓn = en} | e.ℓ | true | false

| if e1 then e2 else e3 | x̂ | letx̂ = e1ine2

Γ ::= ǫ | Γ, x : τ | Γ, x̂ : ∀~α.τ

τ ::= bool | τ1 → τ2 | {ℓ1 : τ1, ..., ℓn : τn} | α | ⊤ | ⊥ | τ ⊔ τ | τ ⊓ τ

∆ ::= ǫ | ∆, x : τ

Π ::= ǫ | Π, x̂ : [∆]τ
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In this example Γ, ∆, and Π are never intended to be serialised. If an implementation

did end up actually serializing instances of Γ, ∆, and Π to store them in a file or

send them across the network, then the parser would almost certainly not use the

arrangement of symbols suggested by this grammar, or a renamed version of them.

The authors provide an implementation in OCaml which looks very little like the above

syntax:

https://github.com/stedolan/mlsub

Most MBNF grammars are missing features needed to disambiguate complex terms

(for example, notation for separating metavariables from concrete syntax and from

other kinds of evaluated syntax (like 〈 and 〉 do in BNF)), bracketing (as covered in

Section 4.1.1) and notation for declaring operator precedence (for the example above

Dolan & Mycroft (2017), no rules are given for the order in which patterns should be

matched)). Papers often put complicated uses of the mathematical metalanguage inside

MBNF grammars (for example hole filling, which uses syntax splicing operations that

may not be parser friendly).

Definition 4.6. A piece of syntax is undecidable if you cannot read it using any parser

(i.e., if its Abstract syntax tree is not regular).

SubSection 4.1.10 of this thesis contains undecidable syntax; i.e., syntax for which no

possible parser could be built, even if it were written very differently. Subsections 4.1.9

4.1.11 and 4.1.12 contain infinite syntax (i.e., syntax which can be written as an in-

finitely large graph), which cannot be serialised unless it also has a finite representation

(e.g. as a regular tree as is the case for example 4.26).

4.1.3 MBNF Uses Operators That Stand For Chains of Syntax

In BNF, all concrete syntax (i.e. the string of symbols which can be given an encoding

through a given data-type) are generated by non-terminals. In MBNF we can have

operators which stand for chains of binary operators, which each take 2 terms and

insert concrete syntax between them.
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Example 4.7. We find an example in Milner (1999) that appears as part of a calculus

for analysing properties of concurrent communicating processes:

“

”

P ::= A〈a1, . . . , an〉 | Σ
i∈I

αi.Pi | P1P2 | new aP

where I is any finite indexing set.

Here, choosing our finite indexing set to be the natural numbers less than n, Σ
i∈I

αi.Pi is

meant to be read as standing for α1.P1 + · · ·+ αn.Pn where each + is concrete syntax.

This notation is taken for granted. We will see more examples of operators which build

chains of syntax, where one term stands for a family of MBNF operators, in subsections

4.1.11 and 4.1.12.

4.1.4 MBNF Allows Powerful Operators e.g. Context Hole

Filling

Chang & Felleisen (2012) present a grammar defining the λ-term contexts with one

hole where the spine is a balanced segment. We define the spine as follows: The root

node is on the spine. If A is applied to B by an application on the spine, then the

root node of A is on the spine and the root node of B is not. If a node on the spine

is an abstraction each of its children is on the spine (i.e., every node appearing on the

furthest left hand side of the tree is on the spine). We define a balanced segment as

follows: A balanced segment is one where each application has a matching abstraction

and where each application/abstraction pair contains a balanced segment.

For explanatory purposes, when presenting this grammar, we write e@e instead of e e

and add parentheses. Concrete syntax and BNF-style notation are olive. Metavariables

are blue. Tree-splicing operators (aka operators like hole filling which replace one node

on the tree with of another tree) are red. We have also slightly standardised their

notation to use “::=.” Apart from these adjustments we use the same syntax Chang

and Felleisen use.
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Example 4.8.

e ::= x | (λx.e) | (e@e)

A ::= [ ] | (A[(λx.A)]@e)

One can think of the context hole filling operation ( [ ] in (A[(λx.A)]@e) ) as performing

tree splicing operations within the syntax. Here the green square brackets with nothing

between them represents a hole at the object level of the syntax whereas the red square

brackets with text between them represents a computation on the mathematical meta

level, filling the leftmost hole in the tree with the text between the square brackets.

Figure 4.1 illustrates steps in building syntax trees for A (the operation •@• is higher

up the tree than •[ • ] because of parsing precedence inherited from math):

@

[ ]

[ ] λx1

[ ]

x2 @

λx1

[ ]

x2

Figure 4.1: Steps in building a syntax tree for A

Figure 4.1. shows the result of the second rule where each A is [ ] and e is a variable.

The tree on the left is the tree corresponding to A[λx.A]@e before the hole filling

operation is performed, where the first A is assigned [ ]. The tree on the right represents

an unparsing of the typical syntax tree for ((λx1.[ ])@x2) . x1 and x2 are disambiguated

instances of x. A metavariable assigned a value won’t appear in the final tree. If it is

not a terminal node, [ ] tells us to fill in the leaf in the frame on the left with the tree

in the frame on the right. Once performed, [ ] disappears.

We can show that, unlike BNF, the language of the metavariable/non-terminal A (the

set of strings derived from A using roughly the rules of BNF plus hole filling) is not

context-free and so MBNF certainly isn’t, as we show in Lemma 4.9.
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For this section we use ToStr informally to mean a function which takes pieces of MBNF

syntax, provided it can be written as a chunk of math text whose only operation is

concatenation and whose only equivalence is syntactic equivalence, and takes them to

the fully parenthesised string one might normally use to refer to it. For example, if

we let O = (λa.[ ])@b declare the object O, then ToStr(O) = “((λa.[ ])@b)”, where

“((λa.[ ])@b)” is the symbol “(” concatenated with another “(” concatenated with “λ”

etc., and O is the data structure (λa.[ ])@b represents. In order to show that MBNF is

not context free, we make use of the pumping lemma for context-free languages, which

appears in Berstel et al. (2009) and which we reproduce in this paper as lemma 3.7 for

ease of reference.

Lemma 4.9 (Hole Filling is Not “Context-free”). For A given by the MBNF grammar

in example 4.8, the language given by {x ∈ String | x = ToStr(A)} is not Context-free.

proofsketch. We need to show that for any given p ≥ 1 we can produce an s = ToStr(A)

such that no substring of s can be “pumped” (some non-empty part of one or both of

its outermost substrings repeated) to give another string in the language {x ∈ String |

x = ToStr(A)}.

Since each A has a balanced segment along the spine we must be expected to keep count

of both abstractions and applications. Parentheses must also be balanced. Getting the

desired result is as simple as selecting an s = ToStr(A) such that the abstraction at

the bottom of the spine of A is more than p abstractions away from the application

closest to the bottom of the spine of A and such that A contains no e long enough

to be pumped. Since parentheses are balanced, the only possible section we might

choose to “pump” is around the hole. Since there are p abstractions before we reach an

application, there is no way that “pumping” this could give us a balanced segment.

Corollary 4.10 (Hole Filling Adds Power to BNF and its Close Variants). Hole filling

can generate languages that BNF, ABNF, and RBNF cannot.

Proof. BNF generates the context free languages. By lemmas 3.13 and 3.15 ABNF and

RBNF can also only generate the context free languages. By lemma 4.9 Hole filling can
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generate languages BNF, ABNF, and RBNF do not.

EBNF ISO (1996), parsing expression grammars, LBNF Forsberg & Ranta (2005), and

TBNF Mann (2006) do not have an analogue for context-hole filling.

4.1.5 MBNF Mixes Mathematical Language With BNF-Style

Notation

Germane & Might (2017) mix BNF-style notation freely with mathematical notation

in such a way that the resulting grammar relies upon both sets produced with math-

ematical notation and MBNF production rules which use metavariables defined using

mathematical notation:

Example 4.11.

“

”

u ∈ UVar = a set of identifiers ccall ∈ CCall ::= (q e∗)γ

k ∈ CVar = a set of identifiers e, f ∈ UExp = UVar + ULam

lam ∈ Lam = ULam + CLam q ∈ CExp = CVar + CLam

ulam ∈ ULam ::= (λe(u∗k)call) ℓ ∈ ULab = a set of labels

clam ∈ CLam ::= (λγ(u
∗)call) γ ∈ CLab = a set of labels

call ∈ Call = UCall + CCall ucall ∈ UCall ::= (fe∗q)ℓ

The results of math computations are interleaved with MBNF production rules. They

are not just applied after the results of the production rules have been obtained. This

grammar uses •1 ∈ •2 to mean “•2 is the language of •1” (this is the case in both the

MBNF production rules (::=) and the math itself (=)).

In the MBNF grammar above + is used as union and we have the additional requirement

that there must exist some procedure for choosing sets fulfilling these constraints such

that, if, for some terms X and Y , X + Y appears in the grammar, then X and Y do

not intersect. This is not stated in the grammar the authors expect us to infer it from

the use of +. Here, the requirement is most likely fulfilled by the author following the
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convention that any arbitrary sets declared separately are disjoint. However, in order

to check that the rules of grammars like the one above can be satisfied, we would still

need a general procedure for checking that ULam and CLam do not overlap, if such a

convention is chosen.

It is worth mentioning briefly, that, unlike in many MBNF grammars where parenthe-

ses may be omitted, the parentheses here are mandatory. The syntax u∗ indicates a

repetition, ~u is a slightly more common way of writing this in MBNF.

BNF, EBNF, ABNF, RBNF, PEGs, LBNF, and TBNF do not have a concept of disjoint

union and do not allow one to interleave set theoretic operations on the language of a

non-terminal with ordinary BNF definitions.

4.1.6 MBNF Has at Least the Power of Indexed Grammars

Every language that can be produced by an indexed grammar can also be produced by

an MBNF. Inoue & Taha (2012) use this grammar:

Example 4.12.

“ ”
E ℓ,m ∈ ECtx ℓ,m

n
::= · · · | 〈E ℓ+1,m〉 | · · ·

This suggests that MBNF deals with some close relative of the family of indexed gram-

mars Hopcroft et al. (2006), which is yet another reason it is not context-free. The

ℓ+1 is a calculation that is not intended to be part of the syntax. The production rule

above defines an infinite set of metavariables ranging over different sets.

One possible definition of an Indexed Grammar is given by Aho (1968) (from whom

we take both of the following definitions and the resulting lemma).

Definition 4.13 (Indexed Grammars). An indexed grammar is a 5-tuple, given by

G = (N, T, F, P, S), in which:

1. N is a finite nonempty set of symbols called the nonterminal alphabet.
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2. T is a finite set of symbols called the terminal alphabet.

3. F is a set of so-called index symbols, or indices.

4. In productions as well as in derivations of indexed grammars, a string (or “stack”),

σ ∈ F ∗, of index symbols is attached to every nonterminal symbol A ∈ N , denoted

by A[σ]. For an index stack σ ∈ F ∗ and a string α ∈ (N ∪T )∗ of nonterminal and

terminal symbols, α[σ] denotes the result of attaching [σ] to every nonterminal in

α. Using this notation, each production in P has to be one of the following forms:

(a) A[σ] ::= α[σ]

(b) A[σ] ::= B[fσ]

(c) A[fσ] ::= α[σ]

Where A,B ∈ N , f ∈ F , σ ∈ F ∗ is a string of index symbols, and α ∈ (N ∪ T )∗

is a string of nonterminal and terminal symbols.

5. S, the sentence symbol, is a distinguished symbol in N .

The ℓ+ 1 in the example above is loosely comparable to adding an index to the stack.

We give the definition above only to relate the concept of an indexed grammar to a

context free grammar and to make it clear that indexed grammars have a historical

definition like the one above, which is already one step removed from the indexing in

MBNF.

Definition 4.14 (Direct Derivation, Language of an Indexed Grammar). Let G =

(N, T, F, P, S) be an indexed grammar the relation ⇒ (“direct derivation”) is defined

on the set (N [F ∗] ∪ T )∗ of “sentential forms” as follows:

Let
∗
⇒ be the reflexive transitive closure of direct derivation ⇒.

1. If A[σ] ::= α[σ] is a production of type a and S
∗
⇒ βA[φ]γ, then βA[φ]γ ⇒ βα[φ]γ.

That is, the rule’s left hand side’s index stack φ is copied to each nonterminal of
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the right hand side.

2. If A[σ] ::= B[fσ] is a production of type b and S
∗
⇒ βA[φ]γ, then βA[φ]γ ⇒

βB[fφ]γ. That is, the right hand side’s index stack is obtained from the left hand

side’s stack φ by pushing f onto it.

3. If A[fσ] ::= α[σ] is a production of type 3 and S
∗
⇒ βA[φ]γ, then βA[fφ]γ ⇒

βα[φ]γ That is, the first index f is popped from the left hand side’s stack, which

is then distributed to each nonterminal of the right hand side.

The language L(G) = {w ∈ T ∗ : S
∗
⇒ w} is the set of all strings of terminal symbols

derivable from the start symbol.

Lemma 4.15. [Indexed Grammars are not Context Free] The language of a metavari-

able appearing in an indexed grammar may not be context free.

Proof. Consider the grammar G = ({S, T, A,B, C}, {a, b, c}, {f, g}, P, S). This pro-

duces the language {anbncn : n ≥ 1}, where the production set P consists of:

S[σ] ::= T [gσ] A[fσ] ::= aA[σ] A[gσ] ::= a

T [σ] ::= T [fσ] B[fσ] ::= bB[σ] B[gσ] ::= b

T [σ] ::= A[σ]B[σ]C[σ] C[fσ] ::= cC[σ] C[gσ] ::= c

This language is not context free by the pumping lemma, since for any pumping length

p we can select n > p such that no string of length p can encompass a, b, and c and

thus cannot be ”pumped.”

Corollary 4.16. [Indexed Grammars Add Power to BNF and its Close Variants] In-

dexed grammars can generate languages BNFBackus et al. (1963), ABNFCrocker et al.

(2008), and RBNFFarrel (2009) cannot.

Proof. Follows trivially from previous lemmas 4.15, 3.13, 3.15.
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Lemma 4.17. [Indexed Grammars Generate Languages EBNF Cannot] We can find a

language generated by the indexed grammars that is not in the context free grammars

plus their complements.

proofsketch. It is known that the language {ww | w ∈ {a, b}∗} can be generated by

the indexed grammars Vijay-Shanker & Weir (1994). There is no way to generate this

language from the context free grammars plus their complements.

4.1.7 MBNF Has a Native Concept of Binding

In Germane & Might (2017) we found the following:

Example 4.18.

“ ”
pr ∈ Pr = {ulam : ulam ∈ Ulam, closed(ulam)}

In order to perform this evaluation of the set Ulam we must recognise which variables

in each term ranged over by metavariable ulam are bound.

In addition we need a notion of binding to deal with some of the issues surrounding α-

equivalence that often arise when authors start working with the grammar they define

as part of a reduction system. Chang & Felleisen (2012) give the following axiom:

Example 4.19.

“
”

Â[A1[λx.Ǎ[E[x]]]A2[v]] = Â[A1[A2[Ǎ[E[x]]x := v]]] where Â[Ǎ] ∈ A

Each pair of square brackets denote a hole being filled. The notation x := v denotes a

capture avoiding substitution of x with v. In the side condition the reader is meant to

infer that Â and Ǎ are metavariables, wheras A is meant to denote a language A, A1

and A2 belong to. I.e., A is overcoded both as a language and as a metavariable.
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Here we are meant to recognise an implicit convention, known as the Barendregt conven-

tion, on the terms we are β-reducing over. In this case the Barendregt convention would

require that we choose terms from the α-equivalence class of Â[A1[λx.Ǎ[E[x]]]A2[v]]

such that no bound variable of A1[λx.Ǎ[E[x]]] is a free variable in A2[v] and none of

the bound variables in A2[v] are free variables in Ǎ[E[x]]].1 Since Chang and Felleisen

also expect the Church-Rosser property to hold of their reduction relations, terms are

identified up to α-equivalence again after performing the reduction and filling the holes.

Many different kinds of binding need to be handled, some of them quite complicated.

For example: Dami (1998), uses an MBNF grammar to talk about dynamic binding,

which is beyond the scope of what can be represented using Higher Order Abstract

Syntax.

Example 4.20.

“

”

a ::= xl labelled variable

| λx.a abstraction

| a(l = b) bind expression

| a! close expression

| ε runtime error

A notion of binding is not native to BNF, EBNF, ABNF, RBNF, TBNF, or PEGs but

must be defined after the grammar.

4.1.8 MBNF Allows “Arbitrary” Side Conditions on Produc-

tion Rules

An example of a production rule with a side condition can be found in Chang & Felleisen

(2012):

1Actually a slightly weaker condition than the one we give here is probably sufficient for the Baren-
dregt convention to hold, but it would be more complicated to state.
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“ ”
E = [ ] | Ee | A[E] | Â[A[λx.Ǎ[E[x]]]E] where Â[Ǎ] ∈ A

Note that in the above example the two xs are the same, as are the Ǎs and the Âs but

the Es and As are all different. Likewise, the A appearing in the side condition stands

for the language of A, but, elsewhere, E, e, A, x Ǎ, and Â are all metavariables. The

author does not mention this anywhere. Instead, the reader is supposed to intuit it.

It is possible to make side conditions that prevent MBNF production rules from having

a solution. We give a detailed proof of this in Subsection 4.3.1. A definition for MBNF

can help in finding conditions on side conditions that ensure MBNF rules actually define

something. We believe that authors often have some heuristic in mind which allows

them to avoid cross reference of the sort in Subsection 4.3.1, but do not know of a

definition which explicitly says what’s allowed. Neither BNF nor any of its notational

variants allow arbitrary side conditions on production rules.

Features of Mathematics Used in Side Conditions

Here are some parts of mathematics which might appear in side conditions:

1. Set membership Chang & Felleisen (2012)

“
”

Â[Ǎ] ∈ A and Frumin et al. (2019)

“
” ξ ∈ {L, U}

2. Hole filling Chang & Felleisen (2012)

“
”

Â[Ǎ] ∈ A

3. Equals on index variable Inoue & Taha (2012)

“
” m = ℓ

4. Greater than on index variable Inoue & Taha (2012)

“
” ℓ > 0

5. Natural numbers (i.e., 0) Inoue & Taha (2012)

“
” ℓ > 0

6. Set literals Frumin et al. (2019)

“
” ξ ∈ {L, U}

7. Real intervals Frumin et al. (2019)

“
” q ∈ (0, 1]

8. Types Forster et al. (2020)

“
” x : N, f : FΣ, P : PΣ

9. Intersection Garnock-Jones & Felleisen (2016)

“
” πadd ∩ πdel = ∅
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10. Emptyset Garnock-Jones & Felleisen (2016)

“
” πadd ∩ πdel = ∅

11. Equals on sets Garnock-Jones & Felleisen (2016)

“
” πadd ∩ πdel = ∅

12. Sets appearing in side conditions with additional constraints involving =, and ∀

Hausmann & Schröder (2019)

“
” ♥ ∈ Λ with additional constraints

“

”

for each modal operator ♥ ∈ Λ, there is a dual ♥ ∈ Λ, such that ♥ = ♥

for all ♥ ∈ Λ

These suggest that very nearly the full power of mathematics may appear in a side

condition. Indeed in subsection 4.3.1 we show that the parts of maths appearing in

these side conditions are sufficient that constraints provided by an MBNF rule set may

not be solvable.

4.1.9 MBNF Can Contain Very Large Infinite Sets Within the

“Syntax”

Any set that is larger than countable is larger than we would typically think of data

streams and the sets that house them as being, but in this case very large is the size of

an inaccessible cardinal. Toronto & McCarthy (2012) write:

Example 4.21.

“

”

e ::= · · · | 〈tset , {e
∗κ}〉

Here {e∗κ} means sets comprised of no more than κ terms from the language

of e.

...The language of v ::= 〈tset , {v∗κ}〉 is comprised of the encodings of all the

hereditarily accessible sets.

The authors do not state what κ is, but elsewhere in the paper it is an inaccessible
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cardinal. It seems as though κ is also intended to be an inaccessible cardinal here.

It is worth noting that the sets contained in syntax produced by the above grammar

are too large to be serialisable under any encoding.

BNF and its notational variants, by contrast, only deal with strings of finite length.

4.1.10 MBNF May Produce Large Sets of Undecidable Syntax

Frumin et al. (2019) use an MBNF grammar whose syntax contains metavariables

which can be taken from a real interval

Example 4.22.

“ ”
P,Q ∈ Prop ::= · · · | l

q
7→ξυ | · · · (q ∈ (0, 1])(ξ ∈ {L, U})

If (0, 1] is taken to be the real interval, then Prop includes syntax that is undecidable.

BNF and its notational variants, by contrast, are computationally decidable and do not

produce uncountably large sets of syntax.

4.1.11 MBNF Allows Infinitary Operators

Llana Dı́az & Núñez (1997) write a grammar which includes an infinitary operator:

Example 4.23.

“

”

P ::= · · · | ⊓
i∈I

Pi | · · ·

...But, for instance in our language we have the term

⊓
n∈N

where each Pn is born at time n, and so P is born at time ω + 1.

62



“

”

...So, to fully formalize the set of valid expressions, we begin by bounding

the size of the possible sets of indices I, and that of the set of actions Act

by some infinite cardinal κ. The functional governing the right hand side of

the equation is clearly monotone, but it is not so obvious whether it has any

fixpoint. Fortunately it has. Besides, it is guaranteed that it is reached after

(at most) λ iterations, where λ is the smallest regular cardinal bigger than

κ. Then, the principle of structural induction is valid and corresponds to the

principle of transfinite induction.

We can assume without loss of generality that I is an ordinal. Then ⊓
i∈I

Pi stands for

P1 ⊓ P2 ⊓ · · · ⊓ Pω ⊓ · · · where ∀i < I, Pi appears somewhere in this chain.

Another example of a grammar which includes infinitary operators is given by Mislove

(1995):

Example 4.24.

“

”

P ::= ... |
⊕

i∈I

Pi | ...

...While
⊕

is defined to be an operator just like the others, there is one delicate

point here. Namely all other operators have finite arity, but
⊕

is assumed to

apply to any index set I. ...we can fix a regular cardinal κ that is larger than

the cardinality of the family A of atomic actions in our language, the family X

of variables, and ω, the first infinite cardinal. Then we can assume all index

sets I satisfy card I < κ.

We can assume without loss of generality that I is an ordinal. Then
⊕

i∈I

Pi stands for

P1 ⊕ P2 ⊕ · · · ⊕ Pω ⊕ · · · where ∀i < I, Pi appears somewhere in this chain.

The terms constructed by both of the infinitary operators given here are too large to
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be serialisable. This is an issue if we are imagining the syntactic objects produced by

a set of MBNF production rules to be data structures held in some computer.

We may think of infinitary operators as defining trees of infinite breadth (i.e., trees

whose internal nodes may have infinitely many direct children), where BNF and its

notational variants deal with finite data structures (with a string representation).

4.1.12 MBNF Allows Coinductive Definitions

We are not aware of any fairly general attempts to formally define coinduction on the

language of an MBNF although we sketch what this may mean and some of the issues

which it may entail later in the document. Coinduction is normally defined on a stream

of data which has a head and a possibly countable tail. It is the counterpart to parsing

for infinite streams of data.

Eberhart et al. (2015) write:

Example 4.25.

“

”

We consider processes to be infinite terms as generated by the grammar:

P,Q ::= Σi∈nGi | (P |Q) G ::= a〈b〉.P | a(b).P | νa.P | τ.P | ♥.P

up to renaming of bound variables as usual. Such a coinductive definition...

We can assume without loss of generality that n is an ordinal. Then Σi∈nGi stands for

G1 +G2 + · · ·+Gω + · · · where ∀i < n, Gi appears somewhere in this chain.

The syntax generated by the above grammar is not serialisable.

Castagna et al. (2009) also use MBNF coinductively:

Example 4.26.
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“

”

The set of contracts Σ is the set of possibly infinite terms coinductively gener-

ated by the following grammar:

α ::= a | a a ∈ N

σ ::= 0 | α.σ | σ ⊕ σ | σ + σ

The above grammar would typically be read inductively and it is only the natural

language text accompanying it that tells us to read it otherwise. In this example the

author expects us to recognise that Σ denotes the set of contracts σ ranges over.

The coinductive use of MBNF is further complicated by the fact that there are papers

that depend on both the inductive and coinductive readings and they might even be

tangled together. For example, Castagna et al. use the grammar above alongside

recursive contracts and recursive filters which they define inductively.

The grammar given by Castagna et al. is meant to produce the regular trees, so it

is serialisable, although not under some encodings. These serialisation of these terms

cannot be the syntax one would typically associate with this grammar (it could be

given by a grammar, but it would have to be a different grammar). This is in contrast

to the grammar given by Eberhart et al. which is unserialisable because it produces

uncountably many terms.

We may think of coinductive definitions as allowing us to define trees of infinite depth

(i.e., trees in which paths may pass through infinitely many nodes), where BNF and its

notational variants deal with finite data structures.

4.1.13 MBNF May Be Considered up to “Arbitrary” Equiva-

lences

As well as α-equivalence and binding, the syntax created by an MBNF grammar may be

considered up to various other equivalences. For example, associativity and composition
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with a 0 element (as in the π-calculus Milner et al. (1992)), equivalence up to the

exchanging of labels (as in the λ-calculus with records Pierce (2002)) equivalence up to

repetition of elements (as with set-like syntactic objects), and additional equivalences

which may be defined by the author.

Example 4.27. Tobisawa Tobisawa (2015) defines equivalences ≃s and ≃t. First he

introduces the operator ·〈·, ·〉.

“

”

id〈v, d〉 := vd[id],

(w↓ (M) · σ)〈v, d〉 :=







M If v = w and d = 0,

σ〈v, d− δvw〉 otherwise,

(↑w ·σ)〈v, d〉 := σ〈v, d+ δvw〉

where δvw is the integer defined by

“

”
δvw :=







1 If v = w

0 otherwise.

Then ≃s and ≃t are defined inductively.

“

”

id ≃s id

σ ≃s τ if σ〈v, d〉 ≃t τ〈v, d〉 for any v, d

vd[σ] ≃t vd[τ ] if σ ≃s τ

λv.M ≃t λv.N if M ≃t N

M1 @ℓ M2 ≃t N1@ℓN2 if M1 ≃t N1 and M2 ≃t N2

The operator ·〈·, ·〉 does not appear in the production rules of the grammar. Both ·〈·, ·〉

and large parts of the syntax which occurs inside equivalences ≃s and ≃t are intended

to be given using the quoted text alone.

It may not be obvious to the reader that MBNF equivalences cannot simply be applied
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after the MBNF grammar has been solved by quotienting on the literal syntax. Indeed,

in the grammar above this might work. However, we may use existing features of MBNF

to construct an example where this is not possible. In the grammar given by Tobisawa

equivalences are given over terms that do not occur within the literal syntax of the

language given by the MBNF (so we know this is permissible). Given the side conditions

covered in Subsection 4.1.8, it also seems reasonable to assume that we are allowed to

use /∈ as part of a side condition. We may use these assumptions to prove equivalences

must be calculated as an MBNF grammar is solved. I.e., MBNF does not just rest on

inductive definitions, but on inductive recursive definitions too. Further discussion of

induction recursion is given by Dybjer & Setzer (2003). Our model for defining nested

equivalences over syntax given in section 5.2 relates to induction recursion as the set

Object is inductively defined with recursively defined set Pointer acting as a decoding

function. Like induction recursion in set theory the set Object is captured formally as the

least fixed point of a monotone operator on the lattice of subsets of a sufficiently large

base set. A more thorough investigation of the relation between induction recursion

and MBNF is left for future work.

Lemma 4.28 (Equivalences Must be Calculated as an MBNF Grammar is Solved).

Quotienting by syntactic equivalence cannot always be done over a set of “literal” terms

generated by an MBNF grammar (i.e., those terms where every part of their tree is

alone in its equivalence class), but must be done as the MBNF grammar is solved.

Proof. Consider the following MBNF grammar:

a ∈ A ::= b where b /∈ C

b ∈ B ::= ♥ | ♠ | 〈b〉b

c ∈ C ::= ♥ | c@c

With no further equivalences the only element of B, which is not also an element of A,

is ♥. Suppose now we add the following equivalence:

c1@c2 ≈ 〈c2〉c1
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Now 〈♥〉♥, for example, is no longer a member of A, whereas it was before the equiv-

alence was added. In this case, the only members of B which are allowed in A after

adding the equivalence are those pieces of syntax containing at least one instance of ♠.

Since adding equivalences changes the syntax that can belong to an MBNF grammar,

equivalences must be calculated as the grammar is solved or, as a bare minimum,

grammars must be recalculated after equivalences are added.

Even if we wanted to exclude grammars like the one in the proof above, we would still

need a notion of “safe” equivalences to do so, which would require consideration of

equivalences as part of the grammar.

A sufficiently general notion of equivalence is not native to BNF and its notational

variants but must be defined after the grammar.

4.2 A Brief History of MBNF

What follows is our best attempt at tracing a history of MBNF to give a general

background of this notation. One difficulty we had in putting together this history is

that MBNF was not recognised as a separate entity to BNF until this thesis. Therefore

we welcome readers to send us earlier examples if they have found any.

• 1964: McCarthy (1964) introduces the notion of “abstract syntax” as opposed to

syntax as functions on strings. He uses it to describe a subset of ALGOL called

Microalgol. He does not use BNF-style syntax, but has been credited with coining

the term.

• 1968: While the hole filling and BNF are defined separately Morris (1968) uses

the notion of context hole filling alongside BNF-like syntax to analyse recursive

definitions and type declarations in the λ-calculus, as shown in the following

extracts:
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“

”

< wfe >::= λ < variable > . < wfe >|< combination >

< combination >::=< combination >< atom >|< atom >

< atom >::=< variable >|< constant >| (< wfe >)...

...E[λx.M ] may be converted to E[λy.M ′] if y is not free in M and M ′

results from M by replacing every free occurrence of x by y. We write

E[λx.M ] =α E[λy.M ′]...

...E[(λx.M)N ] is β-reducible if no variable which occurs free in N is

bound in M . (This proviso prevents the ”capturing” of free variables.)

Specifically, E[(λx.M)N ] is reducible to E[M ′] where M ′ results from the

replacement of all free occurrences of x...

...A wfe E[(λx.M)] where x is not free in M is reducible (>η)to E[M ].

He also identifies syntax up to α-equivalence while establishing Church-Rosser

properties, without explicitly stating that he’s doing so. He does not use any hole

filling in the BNF-like syntax itself, though. We include it as an early case of BNF

and hole filling appearing in the same context before the merging of the two.

• 1975: Mosses (1975) uses syntax he describes as BNF-like. This has ellipses inside

production rules.

“

”

ε ∈ ExpB ε ::= λβ.ε | valβ.ε | fixβ.ε | ε→ ε, ε |

εωε | ωε | ε(ε) | 〈ε, ..., ε〉 | 〈 〉 |

ιi | νi | ωi | true | false | err

β ∈ Bvs β ::= ιi | 〈β, ..., β〉 | 〈 〉

In the above, he omits angle brackets around production rules and refers to them

as metavariables.
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• 1994: Ariola & Felleisen (1994) use hole filling operations as part of the meta-level

BNF-style syntax.

“ ”
E ::= [ ] | EM | (λx.E)M | (λx.E[x])E

Both Ariola and Felleisen have earlier articles covering similar ground, but this

is the first where hole filling is used within BNF-style notation as a meta-level

syntax building operation.

• 1995: Mislove (1995) uses BNF style syntax with an infinitary operator drawing

from index sets smaller than a large cardinal, as shown in the following extracts:

“

”

P ::= STOP | SKIP | a→ P | P\a | P ;P | P ||P |
⊕

i∈I

Pi | x | µx.P...

...While ⊕ is defined to be an operator just like the others, there is one

delicate point here. Namely all other operators have finite arity, but ⊕

is assumed to apply to any indexset I. Of course such an operator is not

well-defined; there is no set of all sets to use as a basis for such a definition.

But there is a way around this problem... ...we can fix a regular cardinal

κ that is larger than the cardinality of the family A of atomic actions in

our language, the family X of variables, and ω, the first infinite cardinal.

Then we can assume that all index sets satisfy card I < κ.

• 2007: Sewell et al. (2007) develop Ott. This is a tool for specifying languages with

a few of the capacities of MBNF. Ott is a metalanguage with relatively lightweight

expressions for binding and list forms that produces an output in both MBNF

and theorem prover formats. It is possible to generate MBNF specifications from

Ott specifications, but not the other way around.

• 2009: Castagna et al. (2009) use BNF-style production rules coinductively, as

indicated by a piece of natural language text accompanying the MBNF grammar.
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“

”

The set of contracts is the set of possibly infinite terms coinductively

generated by the following grammar:

α := a | a a ∈ N

σ ::= 0 | α.σ | σ ⊕ σ | σ + σ

They use this alongside BNF-style production rules which are meant to be read

inductively.

• 2017: Steele (2017) begins documenting uses of MBNF as part of his efforts to

document computer science metanotation (CSM). He points out the need for a

greater understanding of this notation.

4.3 Some Mathematical Properties of MBNF

4.3.1 Constraints Provided by an MBNF Rule-Set May Not

be Solvable

We consider 2 different cases whereby the constraints given by the production rules

appearing in a grammar may not have a solution. The first case we will consider is

where the grammar features side conditions which prevent it from having a solution.

This is not identical to an empty inductive type instead its a definition of sets whose

constraints demand they be populated, but for which no stable solution can be found.

The second case we will consider is where infinitary operators give syntax that is too

large for the MBNF grammar to have a solution within any standard foundation of

mathematics. The examples given in this section are based on known constraints on

set-theoretic constructions, although we develop them for MBNF ourselves.

Case 1: Unsolvable Side Conditions

Consider again the following by Chang & Felleisen (2012):

“ ”
E = [ ] | Ee | A[E] | Â[A[λx.Ǎ[E[x]]]E] where Â[Ǎ] ∈ A
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Side conditions like this one may cause problems in making sure that an MBNF gram-

mar defines a language. We offer a set of assumptions about what one may be allowed

to do in MBNF which are separately plausible and unproblematic, but which allow us

to create a grammar which does not define a language, if we use all of them unrestrict-

edly. Cases like this provide motivation for a definition of when an MBNF grammar is

safely defined.

Where we are allowed to use ∈, we are usually allowed to use /∈. The side condition

of the MBNF production rule for E has a term that is created by filling a hole in

a instance of Â with a instance of Ǎ. This suggests that we may be allowed to use

mathematical operations similar to those used in the production rules themselves to

create the terms featuring in the side conditions of the production rules. We may

conclude that, provided we have a production rule of the form b ∈ B ::= · · · , we can

have ♥b in one of our side conditions where ♥b is just a syntax building operation

applied to b. MBNF, like BNF, also allows us to have production rules that reference

themselves, either directly or indirectly. By allowing all these assumptions, we can

make a grammar that does not have a solution. The grammar below is slightly more

complex than a ∈ A ::= t where False . We wanted to showcase a grammar whose side

conditions used operations you could find in the wild. We also wanted a language where

each set could not be statically defined, rather than where one was defined as empty.

Lemma 4.29 (Not Every Use of MBNF Which Features Side Conditions Has a Solu-

tion). Unrestricted application of side conditions that use the full power of mathematics

and syntax building notation can provide constraints which have no solution when used

alongside BNF-style notation.

Proof. Consider the following MBNF grammar:

a ∈ A ::= ◦ | ♥a | b where ♥b /∈ C

b ∈ B ::= ◦ | a | ♠b

c ∈ C ::= a | b

Observe that ♠◦ ∈ B.
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Suppose that ♥♠◦ /∈ C. Then ♠◦ ∈ A. Then ♥♠◦ ∈ A, because for all a ∈ A it holds

that ♥a ∈ A. Then ♥♠◦ ∈ C, because C ::= a | b.

Suppose instead that ♥♠◦ ∈ C. Then either ♥♠◦ ∈ A, or ♥♠◦ ∈ B. Then ♥♠◦ ∈ A,

because every term in B is either an ◦, or else it begins with ♠, or else it is also in A.

Then ♠◦ ∈ A, because ♥y ∈ A if and only if y ∈ A. Then ♠◦ can only be produced by

the production rule

a ∈ A ::= · · · | b where ♥b /∈ C,

because ♠◦ is not of the form ◦ or ♥A. Then ♥♠◦ /∈ C, because otherwise this

production rule could not produce ♠◦.

So we have that, if ♥♠◦ ∈ C, then ♥♠◦ /∈ C and if ♥♠x /∈ C then ♥♠◦ ∈ C.

So there is no assignment of sets of terms to A, B, and C we can choose that satisfies

the rules of the grammar.

It is worth mentioning that, in the above case, we can’t isolate any particular production

rule which causes the problem. Each rule alone may be fine within the context of a

slightly different grammar.

Readers may suspect that ♥b /∈ C is not a permissible side condition, but since set

literals, equals on sets, intersection, and emptyset may all be used in side conditions

we may write {♥b} ∪ C = ∅ instead. The guidance we will give on side conditions

(to structure them such that sets are built up in a monotonic fashion) would rule out

the above case, as we will demonstrate in Example 6.5 once we have provided our

construction.

Case 2: Infinitary Operators

Consider again the following from Llana Dı́az & Núñez (1997):

“
”

P ::= · · · | ⊓
i∈I

Pi | · · ·
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This suggests it is possible to have infinitary operators whose arguments are taken from

some subset of a language whose members can be given indexes by some index set I. In

most instances where sets and metavariables appear in an MBNF grammar, we allow

them to be generated by MBNF production rules. As mentioned in Case 1, MBNF,

like BNF, allows us to have production rules that reference themselves, either directly

or indirectly.

We use PX to denote the powerset of X . The following grammar gives a non strictly

positive inductive type.

Lemma 4.30 (Not Every Use of MBNF Which Features Infinitary Operators Has a

Solution). Unrestricted application of infinitary operators can provide contraints which

have no solution.

Proof. Consider the following MBNF grammar:

p ∈ P ::= • | ⊓
j∈I

pj

i ∈ I ::= ◦ | p

Since P ⊆ I we have |I| ≥ |P |. Since ⊓
j∈I

pj denotes an infinitary operator ⊓ whose

arguments are taken from those subsets of P which can be given indexes in I, | ⊓
j∈I

pj | =

|PP |. Since ⊓
j∈I

pj ⊆ P we have |P | ≥ |PP |. This is impossible as a set cannot be the

same cardinality as its powerset in any standard set theory.

Again, in the above case, we can’t isolate any particular production rule which causes

the problem. Each rule alone may be fine within the context of a slightly different gram-

mar. This prevents us from saying one problematic term doesn’t contribute anything

to the grammar.

4.3.2 An Incompleteness Result for MBNF

We consider some properties it might be desirable for a definition of MBNF to have.

Ideally, MBNF would exist within some foundation already well known to people who
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do not have a deep familiarity with the theoretical computer science literature, as it is

often an entry point to said literature. Ideally, in most cases where authors write some

MBNF grammar that they believe to define some languages, a definition of MBNF

would allow us to derive what those languages are. We have no reason to believe a

definition fulfilling these properties cannot be given.

Ideally we would like for a definition of MBNF to be able to tell us in every instance

whether a set of MBNF production rules is satisfied by some assignation of languages

to metavariables, or whether it is not. We show that this cannot be done, (i.e., that

any definition of MBNF is either inconsistent or incomplete). The general form of our

incompleteness result is as follows:

Lemma 4.31 (An Incompleteness Result for MBNF). Given a definition, Def , of

MBNF, either 1) Def is incomplete (i.e., there exists a grammar which has a solution,

but which Def cannot prove has a solution), or 2) Def is inconsistent (i.e., there exists

a grammar such that, given a proof that it has a solution, one can construct a proof

that it does not and vice versa).

Proof. Suppose that F is some foundation we use to model MBNF and G is a Gödel

sentence in F Consider U(y), with open variable y. U(y) is defined as “For all x, x

does not code for a sequence of numbers that constitutes a proof of the diagonalization

of the well formed formula coded for by y.” The Gödel sentence is the diagonalization

of U(y). Meaning, the Gödel sentence is “For all x, x does not code for a sequence

of numbers that constitutes a proof of the diagonalization of U(y).” Now consider the

following MBNF grammar:

x ∈ X ::= ◦ where G is defined

| undefined otherwise

The constraint undefined here stands in as a shorthand for some set of rules which

lacks a solution. If we can prove that the above grammar has a solution then we can

derive a proof that it does not and if we cannot prove that the above grammar has

a solution we can show that letting the language of X equal {◦} ought to satisfy the
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above constraints.

It may not be immediately obvious to the reader that the grammar below (seen in the

proof of lemma 4.31) is really an allowable MBNF grammar.

X ::= ◦ where G is defined

| undefined otherwise

The reader may question whether we are allowed to include production rules that state

that a grammar is undefined. They might also question whether our foundation can

necessarily be given a Gödel encoding, or that “G is defined” is a side condition MBNF

allows readers to write. We offer a few remarks and a more complex example to convince

the reader that a grammar similar to this one can be written with established features

of MBNF.

Remark 4.32. There exist ways of writing sets of MBNF production rules and formal

proofs involving them as a string of symbols (for example, the latex we might use to

write the math text). We consider it fairly safe to assume that a proof involving sets of

MBNF production rules and their mathematical properties may be written using some

syntax which can be given a Gödel numbering.

Remark 4.33. MBNF production rules may be given side conditions that depend upon

arithmetic computations.

For example Inoue & Taha (2012) have side conditions in the production rules of

their MBNF grammar which depend on the truth of various arithmetic statements and

Tobisawa (2015) includes side conditions on equivalence relations and reduction rules,

which depend on the truth of arithmetic statements.

It is therefore reasonable to assume that, at the very least, Def is able to tell us when

an arithmetic statement holds within a side condition.

Remark 4.34. Natural numbers are allowed to appear in MBNF. Tobisawa (2015)

uses natural numbers inside MBNF production rules which also appear in the resulting
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grammar.

Example 4.35. Let us consider a Gödel encoding of various statements in arithmetic

which are either provable or not in Def , where Def is a definition of MBNF. Let

G(n, s) denote “s is provable in Def and n is a Gödel encoding of s”. For an arithmetic

statement s we can alter the MBNF grammar from lemma 4.29 to create a grammar

that is well-defined (i.e., there are set and metavariable assignations which satisfy its

constraints) if and only if s is provable in Def .

n ∈ N

as ∈ As ::= ◦ | ♥as | ds

bs ∈ Bs ::= ◦ | as | ♠bs

cs ∈ Cs ::= as | bs

ds ∈ Ds ::= bs where ♥bs /∈ Cs and ∀n ∈ N,¬G(n, s)

| n where G(n, s)

Consider the case where s is not provable in Def . Then there is not a natural number

n corresponding to a Gödel encoding of s such that G(n, s). Therefore, Ds is the set of

all bs such that ♥bs /∈ Cs holds. In this case As, Bs, and Cs are syntactically equivalent

to A, B, and C from the MBNF in lemma 4.29. Therefore they do not have a solution.

Consider the case where s is provable in Def . Then D consists of a single natural

number. If we take x to be a terminal symbol, then we can read this in more or less

the same way as we read a piece of ordinary BNF. When s is provable in Def , the

only differences between a set of BNF production rules and the above MBNF grammar

are that, rather than non-terminals, we have unbracketed and decorated metavariables

and the set produced is of mixed sequences of numbers and characters, rather than of

strings. These are fairly trivial semantic differences, so we can be confident that, if s is

provable in Def , the above set exists.

Therefore, the above MBNF has a solution, if and only if s is provable in Def .

Suppose Def can prove all such rule sets have a solution. Then “s is provable” is

equivalent to As has a solution. Take, s to be the Gödel sentence in the encoding
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defined by Def . Then, if As provably has a solution, then we can prove that it does

not have a solution and vice versa. So, either there exists a grammar which is satisfied

by some choice of languages for each of the metavariables in each rule of the grammar

and that Def cannot prove is satisfied in this way, or Def is inconsistent.

4.4 Conclusions for this Chapter

BNF and the other variants dealt with in chapter 3 either deal with a concept of

language as a set of strings (which is usually context-free), or else the parse trees

derived from a set of strings. SubSection 4.1.1 shows that MBNF is written using

math text, which has a richer structure than a string. Subsections 4.1.7 and 4.1.13

show that pieces of math text may have complex equivalences over them, which are

nonetheless considered part of the MBNF “syntax.” Subsections 4.1.9, 4.1.10, 4.1.11

and 4.1.12 show that MBNF may have infinitely large structures inside its syntax,

which cannot possibly be represented by strings. MBNF may include operations that

go beyond the scope of the context-free languages (proofs of this appear in Section 4.1.4

and 4.1.6, but many of the other features discussed put BNF far beyond the scope of

the context-free languages, simply because they cannot be represented in terms of sets

of strings). MBNF may include operations which are not just operations on strings,

such as operations on sets (subsections 4.1.5, 4.1.7 and 4.1.8) and arithmetic operations

(Subsection 4.1.6). Sets, natural numbers which have not been given an encoding as

strings, and real numbers may also appear inside MBNF syntax (subsections 4.1.6,

4.1.9, 4.1.10 and 4.1.13).
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Chapter 5

Introducing MathSyn

In this chapter we define some of the underlying machinery of the model for understand-

ing MBNF which we call MathSyn. The material in this chapter doesn’t include the

actual MBNF production rules used in picking out syntactic objects. This is described

in chapter 6. Instead, it offers a basic conception of what a syntactic object is and what

sort of operations may be performed on one, which is applicable even to grammars pro-

duced by those parts of what Steele (2017) calls computer science metanotation (CSM)

which are sometimes used outside of MBNF production rules.

Before we give examples of how MathSyn is used to define MBNF rule sets, we sketch

some of the machinery it uses. The contributions given in this section are an overview

of some tools MathSyn offers for discussing syntactic objects picked out by MBNF

grammars and a proof that objects in MathSyn have a model. Syntactic objects and

arrangements in MathSyn are an abstraction of math layout allowing for nested equiv-

alences.

While we acknowledge that, in MBNF, constraints providing relations can be given

using any part of mathematics, some of the tools for doing so which are more popular

in CSM are given special treatment by MathSyn.
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MathSyn provides special facilities for relations defined using constraints of the form:

◦1 ≈ ◦n

which are briefly discussed in Subsection 5.1.3 under the heading “Syntactic Equiva-

lences in MathSyn.” Such a constraint says something like, for any pair (A1, A2) such

that A1 satisfies ◦1 and A2 satisfies ◦2, A1 and A2 are syntactically equivalent for any

context in which they appear.

Design Decision 5.1. We include holes and hole filling in MathSyn for several reasons.

Hole filling operations are popular in computer science literature discussing syntax.

They are used extensively in CSM and far less outside it, so it makes sense that we make

an effort to define them, rather than defer to mathematics for their meaning. Hole filling

operations can appear inside MBNF production rules (e.g., Chang & Felleisen (2012)

write A = [ ] | A[λx.A] e). We aim to explain what it means when they do. Hole filling

is already used alongside MBNF when providing contexts for syntax evaluation. We

want to explain this use. MathSyn makes use of this feature in defining the compatible

closure of a relation with respect to some syntactic context. This notion of compatible-

closure allows us to define production rules and equivalences as operating “inside” other

syntactic contexts (allowing relations to descend through the syntax tree to the point

where they apply). The presence of a hole effects our notions of syntactic equivalence.

E.g., bound variables above a hole cannot be renamed until the hole is filled. A concept

of hole filling is useful for a rigorous treatment of substitution and binding. Hole filling

allows us to write n-ary functions which build objects from other objects which do

not abstract away the arrangements and symbols used. E.g., if we wanted to write

(x → y) → z as a series of functions on syntax with a tree-like ordering, terminating

with symbols we could write (�→ �)[(�→ �)[x, y], z]. These functions provide a tool

to disambiguate syntax boundaries, which is used in the notion of primitive constructor

decomposition we introduce in Subsection 5.1.6. Since hole filling on objects coerces

them into an equivalence class (see definition 5.25.3) this means we can represent an

object with any such construction appearing in its equivalence class (e.g., λx.xy may

alternately be represented (λ�.�)[ x, (��)[x, y] ], (λ�.�)[ z, (��)[z, y] ], etc.).
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We cover context hole filling in Subsection 5.1.4 and make use of it throughout this

chapter.

MathSyn also provides special facilities for relations defined using constraints of the

form:

LetA bind the object placed in the nth of its holes in the nth, ith, jth,

kth, ...,etc. of its holes.

Let • ∈ S be identified up toα-equivalence.

which are briefly discussed in Subsection 5.1.7 under the heading “α-Equivalence,

Names and Binding.” Constraints of this form also apply to the relation ≈. Such a

constraint says something like, for any pair (A1, A2) such that A2 is “α-equivalent” to

A1 by the constraint given above, A1 and A2 are syntactically equivalent for any context

in which they appear.

Additionally MathSyn provides special facilities for relations defined using constraints

of the form:

Our rewriting rules for S are:

◦1
∗
→ ◦2

which are briefly discussed in Subsection 5.1.5 under the heading “Contexts and Com-

patible Closure.” Such a constraint says something like, for all •1, •2 ∈ S, •1
∗
→ •2 if

and only if there exists a pair (A1, A2) and a context C, such that •1 consists of A1

appearing in the context C, •2 consists of A2 appearing in the context C, A1 satisfies

◦1 and A2 satisfies ◦2.

While we acknowledge that MBNF may feature operations from any part of mathemat-

ics, some of the tools for doing so which are more popular in CSM are given special

treatment by MathSyn. MathSyn covers operations which may be used to position

math text. This is briefly discussed in Subsection 5.1.1 under the heading “Objects,

Arrangements, Symbols and Pointers” and one way of representing these operations

81



is given in the model in Section 5.2. MathSyn covers what it means when an MBNF

grammar uses hole filling operations on syntax. This is briefly discussed in Subsection

5.1.4 under the heading “Hole Filling.” MathSyn covers what it means when an MBNF

grammar uses Capture Avoiding Substitution. This is briefly discussed in Subsection

5.1.8 under the heading “Substitution, Sub-Object, Sub-Arrangement.”

MathSyn provides machinery for discussing syntax which remains largely hidden when

MathSyn is used to interpret MBNF, but which authors may find helpful, if they wish

to make parts of their discussion more explicit. We will mention where notation is

optional, convention enables authors to abbreviate what they write, or machinery is

hidden.

Most of the lemmas and proofs in this section refer to the inductive case only. However,

the construction we give for syntax doesn’t preclude putting similar treatments for the

co-inductive case on top of what we have now.

5.1 What Tools Does MathSyn Offer?

5.1.1 Objects, Arrangements, Symbols and Pointers

MathSyn consists of syntactic objects belonging to the set Object, these contain syn-

tactic arrangements which belong to the set Arrangement. The set Symbol of symbols

may be thought of as the “glue” that holds objects together. Each symbol is a mark

that can be made on the page, which is not used to represent a syntactic equivalence, a

syntactic boundary, a pointer to a piece of syntax or a hole and which can be arranged

alongside a collection of symbols in any way one can arrange text in mathematics (or

wrapped round it as may be the case with overbarring). The set Arrangement may be

thought of as corresponding to pieces of syntax which are joined together with sym-

bols in any way permitted by mathematical text (e.g. by concatenation, subscripting,

superscripting, overbarring, underbarring etc.). One can think of an arrangement as a

tree with internal nodes for sequencing, subscripting, etc. The underlying set-theoretic

representation will need to capture this tree-like structure. Sometimes symbols are used

like non terminals, but often they appear as parts of arrangements higher up the syntax
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“tree.” The set Object may be thought of as corresponding to the set of equivalences

over arrangements of syntax (where these equivalences can also be applied to syntax

boundaries where it is relevant to do so). This quotienting by equivalences, which may

occur at any syntax boundary (analogous to a node) in the tree-like structure of an

arrangement is why we refer to arrangements as tree-like rather than as trees.

There are many challenges we face when constructing objects and arrangements.

• Syntax is not always represented as strings of symbols concatenated together.

Ideally we would want a model that covered every way in which an author might

arrange text.

• The context hole and the empty arrangement are, in some sense, not concrete

syntax, but their inclusion in sets of syntax still renders them non-empty. Ideally

our model would give them special treatment. Hole filling does not work like

substitution or rewriting (both of which take somewhat arbitrary syntax and

neither of which has an inherent order). We would like to distinguish the context

hole from other symbols. Empty sequences may appear in arrangements at any

point and their addition does nothing (i.e. even when regarding syntax as literal

we still need to deal with syntax building operations that are idempotent (which

may include more than just concatenation) we also need a way to represent an

empty sequence that sets it apart from symbols).

• Objects should be identical to equivalences over syntactic arrangements. It is

common practice to write two pieces of syntax next to one another with an =,

which we would like to understand as equality, even though how they are written

differs. Sometimes demonstrating properties, (e.g., confluence) requires working

modulo some equivalence, yet these are presented as properties of the syntax

itself.

• MBNF users do not always tell us how their equivalences should be serialised.

Usually equivalences are given with math. Our model should allow most syntactic

equivalences to be treated as an object.
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• Objects and arrangements should resemble trees and incorporate syntax bound-

aries. Syntax is often treated as having boundaries corresponding to a tree like

structure. Equivalences like associativity are difficult to express without a tree

like ordering of operations. Manipulation of syntax (e.g., capture avoiding sub-

stitution, hole filling) can often be thought of in terms of operations on trees.

Language and concepts associated with parse trees may be employed alongside

MBNF grammars for which no parser exists.

• Objects should be nested so equivalences can appear at each node of a syntax

tree. Some terms in MBNF grammars only feature equivalences on sub-trees (e.g.

α-equivalence in terms with a hole). The treatment of syntax as trees and the

treatment of the same syntax as equivalences can occur in the same paper without

any switch being acknowledged, much less problematised. An MBNF grammar

may perform an operation on a tree and expect it to be simultaneously coerced

into an equivalence.

• Our model should use set theory. MBNF grammars are discussed and interleaved

with set theory. Some use sets inside syntax.

• Ideally, there should be a set of all objects. MBNF features constraints that

evaluate over the universe of syntax. MBNF grammars use mathematical and

syntactic functions to build sets in a monotonic increasing way and expect the

universe of syntax to give an upper bound for a fixed point. Some are defined

co-inductively over all syntax.

• Objects should be allowed to feature themselves. Some MBNF grammars feature

syntax that is idempotent (e.g., the 0 element of the π-calculus). Some include

regular trees in their syntax.

Naively, we might try to meet these requirements as follows. Objects and arrangements

are encoded as sets. There is a set of all objects and a set of all arrangements. Each

object is a subset of Arrangement, representing an equivalence. Each arrangement to

takes a number of objects and concrete symbols and arranges them in any way we might

arrange math text. There can be cycles in which objects contain themselves. We run
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into various problems with this. Here, the set of objects is the powerset of the set of

arrangements, yet we also expect objects to be contained within arrangements. This is

not possible if we want Object and Arrangement to be sets within a standard set theory.

We want to allow objects to have arrangements as elements which may also have those

objects inside them. While there are some set theories that allow this, they tend to be

unfamiliar to the average reader and restrictive in ways that prove awkward. They also

sacrifice set comprehension, which is a tool MBNF grammars use.

Design Decision 5.2. We fix this by limiting objects to countable subsets of Arrangement,

since even authors who do not show their syntactic equivalences are serialisable do not

usually require that each equivalence feature uncountably many pieces of syntax. This

commits us to ZFC, or similar, because we require cardinal arithmetic to show that a

set can be equinumerous with countable equivalences over itself. This does mean that

Object and Arrangement are uncountable, however this is ultimately less problematic

than restricting allowable equivalences further. Having done this, the least complicated

way of dealing with objects containing themselves is to have them contain pointers to

themselves.

Definition 5.3 (Symbol). The set Symbol of syntactic symbols (or simply symbols)

is a non-empty countable set of syntactic symbols (arbitrary marks on the page) such

that: Symbol does not contain �, ε, [, ], (, ), {, }, and ≈.1 Symbol does not contain syntax

consisting of symbols positioned around one another using the positioning operations

of math text (e.g. for A,A′ ∈ Symbol, none of the following are elements of Symbol:

AA′, AA′
, AA′, and neither is any way of wrapping symbols around A like A).

Definition 5.4 (Objects, Arrangements, Pointers and Arity). Object is a set of syn-

tactic objects. Arrangement is a set of syntactic arrangements. Let O range over Object

and let A range over Arrangement. The set Pointer contains pointers to objects. We use

the notation PO for the pointer that indicates O. Our model requires we choose some

1This is purely so as not to cause any confusion with our use of �, ε, [, ], (, ), {, }, and ≈ in the
meta-level notation of this paper. There is nothing especially conceptually wrong with these marks on
the page being represented somehow in Symbol, but, in this paper, placing them inside Symbol instead
of reading them as meta-level syntax would require we mark them in some way. If an author wants to
include these as part of Symbol, this should be fine so long as they do not also want to use them like
we do here and any reference to our use of them in this paper can be clearly distinguished from the
author’s object-level syntax.
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bijection ptr ∈ Pointer→ Object,2 PO is then defined in such a way that, for O ∈ Object

there exists a unique PO ∈ Pointer such that ptr(PO) = O. We do this to avoid any

ambiguity in context hole filling which is defined in Subsection 5.1.4.

We define the sets Object and Arrangement as the smallest sets satisfying the following

conditions.

1. The empty arrangement ǫ is in Arrangement.

2. The core items of arrangements are symbols, pointers to objects, natural numbers,

and underlined or overlined arrangements. For any symbol x, pointer PO, number

n ∈ N, and non-empty arrangement A 6= ǫ, all of the following are in Arrangement:

x, PO, n, A, and A. Furthermore, these are all core arrangements, which are

ranged over by the metavariable Â.

3. Left-to-right sequencing allows appending additional core arrangements to a non-

empty arrangement. For any arrangement A 6= ǫ and core arrangement Â, it

holds that AÂ is in Arrangement.

4. Superscripting, subscripting, pre-subscripting and pre-superscripting, etc. are sup-

ported. For non-empty arrangements A, A1 and A2, all of the following are in

Arrangement: AA1 , AA2
, AA1

A2
, A1A etc.

5. If S ⊆ Arrangement does not contain any arrangements consisting of a single

pointer to an object with no other syntax surrounding it, S is non-empty, and

|S| ≤ ℵ0, then S ∈ Object. The cardinality constraint here enables us to find a

fixed point satisfying all of these constraints. If we did not have the cardinality

constraint here there would be no model for this definition in ZFC.

6. The syntax � is in Object. It indicates a hole to place an object in.

7. The number of � in an object or an arrangement is its arity. I.e., let Ari(A)

denote the arity of A, then:

2Technically we only need a 1 to 1 function as all we are interested in is that an inverse can be
found for every mapping, but a bijection makes it so that every arrangement containing a pointer has
a corresponding object, which makes the definition more convenient.
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(a) Symbols and natural numbers have arity 0.

(b) � has arity 1

(c) If A ∈ O, then O has the same arity as A. If there are multiple A of different

arity, then O has arity 1.3

(d) PO has the same arity as O

(e) A, and A have the same arity as A

(f) AÂ has an arity of Ari(A) + Ari(Â)

(g) Ari(AA1) = Ari(A) + Ari(A1), Ari(AA2
) = Ari(A) + Ari(A2),

Ari(AA1

A2
) = Ari(A) + Ari(A1) + Ari(A2)

...

Design Decision 5.5. We use pointers to objects inside arrangements rather than

the objects themselves, since we want to allow objects to be nested within themselves,

provided some syntax is added. As we are using sets to represent arrangements and

sets to represent objects, without the use of pointers it would be the case that, reading

the above definition inductively, at each step and each limit point, the set of arrange-

ments made with all countable equivalences over prior arrangements would yield new

arrangements. As such, without pointers, Arrangement could not be constructed as a

set as we would have a chain of sets of arrangements which is not bounded above and

so no limit point may be found.

Lemma 5.6. Pointers enable us to include all equivalences over regular trees in Object.

Proof. For every finite number of pointers there is a countable number of arrangements

containing them. Each arrangement can be thought of as having branches wherever

there is a pointer to an object below (which may include any arrangement), as such each

3We need not concern ourselves with objects containing arrangements of different arity, we include
them here to make sure our definition is complete, but later definitions will exclude them from ≈-well-
formed objects.
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regular tree is modelled. The set of regular trees is countable, as such each equivalence

over it is countable. Each countable equivalence over arrangements is an object. As

such every equivalence over regular trees has a model in Object.

Arrangements do not replace existing standards, such as OpenMathISO (2015), MathML

Presentation Ion et al. (2001), Latex Knuth (1986), etc. They are an abstraction of

math layout allowing for nested equivalences.

Design Decision 5.7. There are a few reasons for building equivalence classes into

arrangements rather than making them identical to literal syntax. We want to allow

object-to-object operations in production rules. When we define equivalences induc-

tively over arrangements we want some of that structure to be represented by our model.

As demonstrated in Subsection 4.1.13 some features of MBNF can also be combined to

give a rule set which necessitates that nested equivalences are calculated as the rule set

is solved.

Design Decision 5.8. Object, Arrangement and Pointer are uncountable, because we

want syntactic objects to represent all the countable equivalences over syntax. It did

not make sense to give further restrictions as:

1. Authors define syntactic equivalences with mathematical language and only some-

times provide a representation of these equivalences as strings (or similar finite

data structures). If this is given at all, it is usually in a separate computer imple-

mentation and much of the detail is not included in the paper with the MBNF

grammar.

2. Where authors do provide tools for serialising equivalences, these frequently re-

quire significant rewriting of the syntax (e.g. writing α-equivalence with De-Bruijn

indices often requires changes to the syntax as written in the MBNF). The exact

method used to deal with an equivalence is often the messiest part of the im-

plementation of an MBNF rule set. Authors usually will not explain how they

perform the translation from a syntactic equivalence given by an MBNF rule set

in their paper to the version used in their computer representation.
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3. For almost every kind of equivalence authors use a different method. The ap-

proaches which are used for α-equivalence are not used for associative operators,

different approaches again may be used for operators that are commutative or

idempotent. Sometimes a canonical representation may be given, other times it

may be necessary to perform a calculation to check two pieces of syntax are struc-

turally congruent (i.e. equivalent). Providing documentation for each and every

one of these tactics and when they can be effectively employed could easily be

several years of work. Before this work can take place, though, we must first pro-

vide a thorough account of the objects given by an MBNF rule set, which are then

translated to a computer implementation. An account of how these objects may

be derived is part of what MathSyn provides. Definition 5.4 covers how countable

equivalences are worked into the structure of syntactic objects. Subection 5.1.3

deals with what it means to work modulo an equivalence.

4. MBNF syntax can include uncountably large sets anyway. It seems pointless to

limit ourselves to countable representations of syntax when MBNF does not. If we

did so, we would still need to account for how our ideas may be extended to deal

with MBNF rule sets whose syntax does not have a countable representation. This

means that, regardless of whether our set of syntactic objects can be serialised,

our methodology for reading production rules would still need to work on sets

that are not serialised (so we couldn’t provide an account which tells us whether

an MBNF rule set has a solution and which mathematical entities could satisfy

it when it does, if this account also relies on every piece of syntax within that

solution being computable).

5. We do not need to be able to serialise Object to prove an MBNF grammar has a

solution. Our focus is to provide readers with tools to check the consistency of

MBNF rule sets as they are given in the papers they appear in and to give them

some way of finding mathematical entities which can be thought to satisfy these

rule sets under an abstract encoding of “syntax,” which we provide in Definition

5.4 and cover in more depth in Section 5.2. It is not to use an MBNF rule

set to independently reproduce an implementation which may already be given
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separately to that rule set and which usually looks quite different to it. For

example, in this paper it is not necessary to build a parser for all of Object and

this is not necessary to understand how to read MBNF grammars. If authors

require a parser for their MBNF grammar we expect it to exist in some form, the

issue we aim to deal with here usually being the difference between implementation

and what is given on the page for the reader.

A Pair of Examples to Illustrate the Use of Symbols, Objects and Arrange-

ments, Etc.

Example 5.9. Consider, for example, the object λx.x, generated by the following:

e ∈ exp ::= v | λv.e | e e

In MBNF and, likewise, in MathSyn, ‘λ’ and ‘.’ would normally be symbols (and they

are in this case). Each x likely represents a pointer to an object, in this case the same

object consisting of a literal symbol (which need not be ‘x’).

Example 5.10.

• Symbol could include a, C, λ, Γ, 〈, 〉, etc. In this case, none of these symbols can be

used unambiguously in the place of objects or pointers.

• Pointers include P�, P{P�P�}, P{P{P
�
P
�
}P{P

�
P
�
}}.

• Core arrangements could include all above symbols and pointers in addition to 1, 2,

3, a, C, λ, Γ, 1, 2, P�, P{P�P�}, P{P{P
�
P
�
}P{P

�
P
�
}}.

• Arrangements could include all above core arrangements in addition to ways of mixing

them like P�

P� , P�P�
, P�

P�

P�
.

• Objects include �, {P�

P�}, {P�}, {a, aa, aaa, ...} and {P�P�
, P�

P�

P�
}.4

4Although, when we come to definition 5.18, the last of these objects is not well-formed
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5.1.2 Inclusion of Mathematical Entities Outside of Syntactic

Objects

Design Decision 5.11. Pointers also enable us to extend the set Object with a set of

mathematical entities which are disjoint from Object, while still allowing these to appear

inside arrangements. Suppose we had a set of mathematical entities (i.e. entities which

may be defined using any part of math, provided they can be placed in a set), M , such

that M is disjoint from Object the cardinality of M is no larger than ℵ1 (i.e., we require

M to be no larger than Pointer) and no element of M was also an element of Pointer.

We use ObjectM to denote a set which has the same mathematical properties as Object,

but where arrangements may also include pointers to mathematical entities taken from

M .

The definition below enables the inclusion of math directly in the syntax, which is

one of the features of MBNF and related grammars. This accounts for grammars

where authors mix mathematical definitions of entities with more standard syntactic

definitions of grammars.

Definition 5.12 (ObjectM , ptrM). ObjectM and ptrM are defined as follows:

• ptrM : Pointer → ObjectM is a bijective function from Pointer to ObjectM .

• If S ⊆ Arrangement does not contain any arrangements consisting of a single

pointer to an object, S is non-empty, and |S| ≤ ℵ0, then S ∈ ObjectM .5

• � is in ObjectM it indicates a hole to place an object in.

• M ⊆ ObjectM

Example 5.13. We could extend the set of objects Object with the real interval [0, 1)

as follows: Let Object[0,1) = Object ∪ [0, 1). Let ptr[0,1) : Pointer → Object[0,1) be a

5We continue to use arrangements from the set Arrangement here, rather than supplying some new
ArrangementM , as the construction of ObjectM does not affect the construction of Arrangement. The
only difference is in the function ptrM (which is a bijection from ObjectM instead of Object) and in
ObjectM itself. Likewise we do not need to construct a PointerM as the only constraint on Pointer is
its cardinality, which remains the same.
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bijective function from Pointer to Object[0,1). Define Arrangement as normal.

In section 5.2. we will prove that Object, Arrangement and Pointer have a model. For

now, we will assume that this is true and demonstrate that, given this assumption we

can prove ptrM and ObjectM can also be given a model.

Theorem 5.14. If Object, Arrangement, M and Pointer have a model in ZFC, then so

do ptrM and ObjectM .

Proof. For all S ⊆ Arrangement such that S does not contain any arrangements con-

sisting of a single pointer to an object, S is non-empty, and |S| ≤ ℵ0, S ∈ Object.

We also have that � ∈ Object and nothing else is a member of Object. As such,

ObjectM = Object ∪M which is well defined if Object and M are. If Object, Pointer

and M are of cardinality ℵ1, then there exists a bijection ptrM between Pointer and

Object ∪M . Consider a bijection b : Pointer → κ from Pointer to limit ordinal κ. Let

c : κ → κ map each ordinal of the form α + n where α is a limit ordinal and n is

a natural number to α + n · 2. Let ptrM(O) = b−1(c(b(ptr(O)))). Let ptrM(M) be a

mapping to the largest subset of Pointer whose elements are not of the form ptrM(O)

(which is of the same cardinality as Pointer). This is true of M and happens to be true

of Object and Pointer as well as is shown to be the case in Section 5.2.

In this way we can readily support the inclusion of more arbitrarily defined mathemat-

ical objects in MBNF grammars, provided these objects can be placed in a set and we

have a proof it is the correct cardinality. These objects can safely include syntactic ob-

jects, consisting of sets of arrangements of symbols and pointers in their construction,

even if these syntactic objects reference members of M (this is because the sets ObjectM

and Object ∪M are identical, essentially the only difference is between ptr and ptrM).

5.1.3 Syntactic Equivalences in MathSyn

In MBNF it is necessary to consider syntax up to various syntactic equivalences simul-

taneously to constructing the grammar. One might associate these equivalences with

the idea of quotient inductive types, but as our model is in ZFC and not homotopy

92



type theory, we would also include the law of excluded middle and the axiom of choice

in our reasoning. In order to support α-conversion and operators that are associative,

commutative, idempotent, etc., objects are defined in effect to work modulo an equiv-

alence relation ≈ on arrangements, which is defined as part of the MBNF rule set.

In MathSyn, if A is an arrangement, then [A]≈ can optionally6 be used to denote the

object whose elements are every arrangement which is syntactically equivalent to A by

some equivalence ≈ on the set Arrangement. If ≈ is not defined on an arrangement, A,

then by convention A ≈ A and ∀A′ ∈ Arrangement if A′ 6= A, then A′ is not equivalent

to A by ≈.

Definition 5.15 (Arrangement-Equivalence ≈). An Arrangement-Equivalence ≈ can be

any equivalence relation on Arrangement such that:

• If A ≈ A′ then either both A and A′ are arrangements of arity 0 or A = A′.7

• For every arrangement A, |[A]≈| ≤ ℵ0 where [A]≈ is the ≈-class of A.8

The following lemma tells us when [A]≈ is an object.

Lemma 5.16. Let ≈ be an Arrangement-Equivalence and let A ∈ Arrangement.

1. [A]≈ ∈ Object.

2. If A is of arity ≥ 1, then, [A]≈ is an object iff [A]≈ = {A}.

Proof. 1. By Definition 5.15, |[A]≈| ≤ ℵ0. Hence, [A]≈ ∈ Object.

2. By definition of [·]≈ and of objects (see Definitions 5.15 and 5.4).

We build equivalence classes into arrangements and define the well- and ill-formed

arrangements and objects. Objects that are well-formed can be considered to represent

6We say “optionally” here because there are syntactic conventions that allow it not to be written,
but we include it for disambiguation.

7We do this to avoid any ambiguity in context hole filling. Arrangements above a hole cannot form
an equivalence class where one would not have a single path to descend which has a leftmost hole.

8This is the same size constraint we have on objects so that each instance of [A]≈ is also a member
of Object.
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equivalence classes of ≈, whereas objects that are ill-formed cannot. An arrangement

or an object is ≈-ill-formed iff it is not ≈-well-formed.

Design Decision 5.17. We use ≈ to distinguish between the syntactic equivalences

an author may provide for an arrangement as opposed to =, which we reserve for the

identity relation over Arrangement and Object. It is not unusual to coerce non-identical

arrangements into the ≈-well formed objects that can be thought to represent their

≈-equivalence classes. As objects quotient arrangements into equivalence classes at

syntactic boundaries, so are our notions of ≈-well-formedness built up inductively over

these boundaries.

Definition 5.18 (≈-well-/ill-formed, Preserves ≈-well-formedness). For each choice

of Arrangement-Equivalence ≈ (which the author must indicate they require at a given

point in a document), we define ≈-well-formed objects and arrangements simultaneously

as follows:

• ǫ, and all elements of Symbol ∪ N are ≈-well-formed arrangements.

• If O is a well-formed object then PO is a ≈-well-formed arrangement.

• If A 6= ǫ is a ≈-well-formed arrangement then A is a ≈-well-formed arrangement.

• For core arrangement Â and non-empty arrangements A, A1 and A2, if Â, A,

A1 and A2 are ≈-well-formed arrangements then all of AÂ, AA1 , AA2
, AA1

A2
are

≈-well-formed arrangements.

• � is a ≈-well-formed object.

• If O is an ≈-equivalence class, every element of O is a ≈-well-formed arrangement,

and O ∩ Pointer 6= O, then O is a ≈-well-formed object.

• An Arrangement-Equivalence ≈ preserves ≈-well-formedness iff (for all A,A1 such

that A ≈ A1 and A is ≈-well-formed, we also have A1 is ≈-well-formed).

Design Decision 5.19. Whether or not an object/arrangement is ≈-well-formed de-

pends on the value chosen for ≈ at a given point in the document. We will use this
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notion later to describe how an arrangement A may be coerced into an ≈-equivalence

class of A at any point where it is necessary to do so and how objects can be re-defined

up to equivalence following a substitution. There are various reasons why we have built

equivalence classes into arrangements rather than making them identical to math-text.

We want to eventually support mathematical language in syntax, with mathematical

language containing objects not arrangements. We want to allow object-to-object oper-

ations in production rules. When we define equivalences inductively over arrangements

we want some of that structure to be represented by our model. When we come to

hole filling in the next section it will also become apparent that holes always need to be

on their own in their equivalence class, but that larger equivalence classes are allowed

to appear in an arrangement beside them. There is no way this can be accomplished

without allowing equivalence classes to appear within arrangements.

The following lemma tells us that no well formed object has a pointer to an object of

arity ≥ 1 in an equivalence class of more than one arrangement (i.e. there is a sense in

which context holes always appear on their own within their equivalence classes).

Lemma 5.20. Let ≈ be an Arrangement-Equivalence. An Object O of arity ≥ 1 is

≈-well-formed iff one of the following holds:

1. O = �.

2. O = {A} = [A]≈ for some ≈-well-formed A of arity ≥ 1 such that A 6∈ Pointer.

Proof. ⇐) is by definition of ≈-well-formedness (see Definition 5.18).

⇒) Assume O 6= �, O ⊆ Arrangement, O 6= ∅ and |O| ≤ ℵ0. Since the arity of

O ≥ 1, let A ∈ O such that the arity of A ≥ 1. Since O is well-formed, then O is an

equivalence class and for all A′ ∈ O, A′ ≈ A. Since A has at least one �, by definition

of ≈, for all A′ ∈ O, A′ = A. Hence O = {A} = [A]≈ where A is ≈-well-formed. Since

O ∩ Pointer 6= O, A 6∈ Pointer.

Example 5.21. Depending on the constraints placed on ≈, ≈-well-formed objects

might include �, {xi | i ∈ N}, {P�

P�}, {PO1
| PO2

, PO2
| PO1

} and {PO1
| PO2

, PO3
}
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where O1, O2 and O3 are ≈-well-formed objects. Non ≈-well-formed objects include

{P�P�
, P�

P�

P�
} and {P�P�,♥P�}.

In most papers authors do not write [A]≈ to denote a syntactic object and MathSyn

allows it to be left out. We include it only to disambiguate objects and arrangements

in our discussion. An upright font may optionally be used to denote symbols and a

slanted font to denote metavariables, (e.g. x for a metavariable and x for a symbol).

Again not all authors do this and MathSyn allows it to be left out, but we include it

for disambiguation. If O is an object, then ptr(O), or PO may optionally be used to

denote the pointer to O. Again not all authors do this and MathSyn allows it to be left

out, but we include it for disambiguation.

Design Decision 5.22. All objects and sub-objects in an MBNF rule set are instances

of [A]≈ for whatever value of ≈ is given at that stage in the paper. MathSyn interprets

grammars dynamically throughout a document as new rules are read, so authors may

work with one equivalence, prove some results about it, and switch to another, in which

case the rule set is recalculated with the new equivalence.

Example 5.23. For example, consider the following:

e ∈ exp ::= v | λv.e | e e

Given no further information, ≈ for exp is the identity relation on Arrangement. An

author may want to make a number of statements about, e.g., the sub-terms of elements

of exp, for which they want ≈ to be the identity relation. They might then want to talk

about, e.g., the Church-Rosser property, for which they want ≈ to be α-equivalence.

5.1.4 Hole Filling

We now define ≈-context-hole filling for arbitrary objects and arrangements (although

it is usually only useful for ≈ equivalence classes of objects and arrangements with the

correct arity). Not only do authors make use of context-hole filing in their own papers,

we will also use it in this paper to describe how objects appear inside one another and

to describe “primitive constructors,” which are used for disambiguating functions on
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syntax. As such, we deal with hole filling on both the object and meta-levels of this

paper.

Design Decision 5.24. As previously mentioned in Definition 5.4, we use the special

object � to indicate a hole to be filled. Hole filling is an operation that descends the

arrangement tree in a left to right order, filling holes in the order it encounters them,

and producing an object corresponding to some [A]≈. Filling O1 with O2 is usually

denoted by O1[O2]. While we permit this denotation in other texts, in our definition

we disambiguate between objects followed by sequences and hole filling operations by

writing fill≈ to denote any non-zero number of filling operations and O~O≈ to be the

result of filling the holes of an object with every object in the sequence ~O. We support

hole filling in arrangements whose parts are arranged by orderings other than left to

right (E.g. subscripting, superscripting...), but we do not make use of this feature here

and omit it, for simplicity. Hole filling offers some motivation for nesting equivalences

in MathSyn, as parts of a tree occurring above � can only be considered up to literal

equivalence on syntax, but parts of a tree featuring �, which do not occur above it,

may occur in larger equivalences.

Definition 5.25 (Contexts and ≈-Hole Filling).

Let ≈ be an Arrangement-Equivalence and ~O be a sequence of objects.

• A context is an object with arity ≥ 1.

• We define hole filling inside arrangements and objects as follows:

1. fill≈(�, [O] · ~O) = (O, ~O)9.

2. fill≈(O, ~O) = (O, ~O), if O is not a context10 or ~O = [ ], where [ ] denotes the empty

sequence

3. fill≈({A}, ~O) = ([A′]≈, ~O
′)11 if the arity of A ≥ 1, and fill≈(A, ~O) = (A′, ~O′).12

9Each hole uses up one of the replacements. Recall [O]· ~O is the result of concatenating the sequence

[O] with ~O.
10The only way context-hole filling skips embedded objects which are non-singleton equivalence

classes of arrangements.
11Note that we do not define fill≈(O, ~O) where O is a context and |O| > 1 as such O are not

well-formed unless they do not contain �.
12Context-hole filling in a well formed context only descends inside an arrangement that is alone

in its equivalence class, else ambiguities may arise over whether free variables in an inserted object
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This is similar to the previous example except it refers to the cases where O is a

context.

4. fill≈(ǫ, ~O) = (ǫ, ~O) fill≈(s, ~O) = (s, ~O) fill≈(n, ~O) = (n, ~O).

5. fill≈(A, ~O) = (A′, ~O′) if A 6= ǫ and fill≈(A, ~O) = (A′, ~O′)

6. For13 non-empty arrangements A1, A2, A3, core arrangement Â, and lists of ob-

jects ~O1, ~O2, ~O3, ~O4, if fill≈(Â, ~O2) = (Â′, ~O3)and for all 1 ≤ i ≤ 3, fill≈(Ai, ~Oi) =

(A′
i,
~Oi+1) and A′

i is non-empty then:14

fill≈(A1Â, ~O1) = (A′
1Â

′, ~O3) fill≈(A1
A2

A3
, ~O1) = (A′

1
A′

2

A′
3

, ~O4)

fill≈(A1A2
, ~O1) = (A′

1A′
2
, ~O3) fill≈(A1

A2 , ~O1) = (A′
1
A′

2 , ~O3)

7. fill≈(PO, ~O) = (PO′, ~O′) if fill≈(O, ~O) = (O′, ~O′).15

8. We define notation for when no hole filling operations remain and we may dis-

play only the object or arrangement relating to the hole filling operation without

displaying the sequence still. Let O (resp. A) be such that fill≈(O, ~O) = (O′, [ ])

(resp. fill≈(A, ~O) = (A′, [ ])). We define the object (resp. arrangement) which fills

the holes � reachable from O (resp. A) with the objects in the sequence ~O as

O~O≈ = O′ (resp. A~O≈ = A′).

9. We say that ≈ is closed under hole filling if for any ≈-well-formed A,A′, and

any sequences of ≈-well-formed objects ~O, ~O′, if A~O≈ ≈ A′ ~O′≈ then A ≈ A′

and ~O = ~O′.16 For example if the equivalence relation ≈ had equivalence up to

reordering of objects for an arrangement with multiple holes, say a, b ≈ b, a for

the filled arrangement �,� then for two sequences of non identical ≈-equivalence

classes [O1, O2] and [O2, O1], we could have �,�[O1, O2]
≈ ≈ �,�[O1, O2]

≈ where

[O1, O2] 6= [O2, O1], so ≈ wouldn’t be closed under hole filling in this case.

become bound (e.g., fill≈({λx.�, λy.�}, [{x}]) would create ambiguities of whether the inserted X was
bound by the λ). This is why ≈ must not relate distinct arrangements containing holes.

13Context-hole filling essentially traverses arrangement trees left-to-right filling holes in the reached
order.

14These ~Oi are threaded through a series of calls to fill
15Context-hole filling descends object pointers until it encounters a hole.
16This is needed to show the unique decomposition of an object into a context and a list of objects.
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Note that if O~O≈ = O′ then also PO
~O≈ = PO′. Note additionally that most authors

dealing with hole filling drop the ≈ off of the notation A~O≈ and O~O≈. This is because

the works we tend to deal with assume working modulo ≈ equivalence.

Example 5.26. Let ≈ be an Arrangement-Equivalence. Here are some examples of

context-hole filling (use Lemma 5.20):17

• Arrangement �� stands for P� P�. Hence

fill≈(��, [O,O,O,O]) = fill≈(P�P�, [O,O,O,O]) = (POPO, [O,O]) = (OO[O,O]).18

And, fill≈(��, [O,O]) = fill≈(P�P�, [O,O]) = (POPO, []) = (OO, []).

Hence, the arrangement (��)[O,O]≈ = OO.

• Object �� stands for [P� P�]≈. Hence object (��)[O,O]≈ =

[P� P�]≈[O,O]≈ = [PO PO]≈ = OO.

• Arrangement �→ O1[O2 → O2]
≈ = (P� → PO1

)[PO2
→ PO2

]≈ =

P[PO2
→PO2

]≈ → PO1
= O2 → O2 → O1.

• Object �→ O1[O2 → O2]
≈ = {P� → PO1

}[PO2
→ PO2

]≈ =

[P[PO2
→PO2

]≈ → PO1
]≈ = (O2 → O2)→ O1.

19

• Object (� := �,�)[O1, O2, O3]
≈ = {P� := P�, P�}[O1, O2, O3]

≈ = [PO1
:=

PO2
, PO3

]≈ = (O1 := O2, O3).

• Object (� := �,�)[O1, O2]
≈ = {P� := P�, P�}[O1, O2]

≈ = [PO1
:= PO2

, P�]≈ =

(O1 := O2,�).

• Arrangement (λx.x)[]≈ = λx.x and object [λx.x]≈[]
≈ = [λx.x]≈.

• Pointer P[λx.x]≈[]
≈ = P[λx.x]≈.

We show that hole filling is a well defined partial function that reduces the arity of an

object or arrangement by the size of the sequence of objects holes are filled with.

17To illustrate the different ways hole filling may be written we also write down object names in the
place of pointers and leave arrangement coercions [A]≈ as optional. The rules for doing this will be
discussed in Convention 5.46.

18Note (O O[O,O]) here is not another fill≈ operation, but a result of the hole filling operation being
applied to a sequence longer than the arity of the arrangement being filled.

19The curly braces here denote a set containing the arrangement P� → PO1
.
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Lemma 5.27. Let an Arrangement-Equivalence ≈, a sequence of objects ~O, an object

O and an arrangement A. The following hold.

1. If fill≈(A, ~O) = (A′, ~O′) then A 6∈ Pointer iff A′ 6∈ Pointer.

2. fill≈ is a well defined partial function which when ≈ is defined, takes an object

(resp. an arrangement) and a list of objects and returns an object (resp. an ar-

rangement) and a list of objects.

3. Let fill≈(♥, ~O) = (♥′, ~O′). If ♥ is an object (resp. an arrangement) then ♥′ is an

object (resp. an arrangement) and ~O = ~O′′ · ~O′ for some ~O′′. Furthermore:

(a) If Ari(♥) ≤ | ~O| then | ~O′′| = Ari(♥), and for any list of objects ~O′′′ we have

fill≈(♥, ~O · ~O′′′) = (♥′, ~O ·′ ~O′′′).

If Ari(♥) = | ~O| then ~O′ = [], else if Ari(♥) < | ~O| the ~O′ 6= [].

(b) If Ari(♥) > | ~O| then Ari(♥′) ≥ 1 and ~O′ = [].

4. Let ♥ be an object (resp. arrangement). Then:

(a) ♥~O≈ is well defined iff (fill≈(♥, ~O) is well defined and Ari(♥) ≥ | ~O|).

(b) If fill≈(♥, [ ]) = (♥′, ~O′) then ♥ = ♥′ and ~O′ = [].

(c) fill≈(♥, ~O) = (♥, ~O) iff fill≈(♥, ~O) is well defined and (the arity of ♥ = 0 or

~O = []).

5. If fill≈(A, ~O) = (A′, [ ]) then fill≈([A]≈, ~O) = ([A′]≈, [ ]).

Proof. 1. By induction on the structure of the derivation fill≈(A, ~O) = (A′, ~O′).

2. By simutaneous induction on the structure of O and A.

3. By induction on the derivation fill≈(♥, ~O) = (♥′, ~O′).

4a. By definition 5.25 and 3. above.

4b. By induction on the derivation fill≈(♥, ~O) = (♥′, ~O′).

4c. By induction on the structure of A.

5. If the arity of A ≥ 1 then since [A]≈ is an object, by Lemma 5.16.2, [A]≈ = {A} and
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A 6∈ Pointer. Then by definition, fill≈([A]≈, ~O) = fill≈({A}, ~O) = ([A′]≈, [ ]).

If the arity of A = 0 then by 7. above, fill≈(A, ~O) = (A, ~O). Hence (A, ~O) = (A′, [ ])

and so, A = A′ and ~O = [ ]. Since the arity of A = the arity of [A]≈ = 0, we

get fill≈([A]≈, ~O) = ([A]≈, ~O). Since A = A′ and ~O = [ ], we have fill≈([A]≈, ~O) =

([A′]≈, [ ]).

We show that hole filling preserves ≈-well formedness on objects or arrangements that

are ≈-well formed.

Lemma 5.28. Let an Arrangement-Equivalence ≈, a sequence of objects ~O, an object

O and an arrangement A. The following hold.

1. If O (resp. A) is ≈-well-formed then fill≈(O, ~O) (resp. fill≈(A, ~O)) is well defined.20

2. If fill≈(♥, ~O) = (♥′, ~O′) where ♥′ is ≈-well-formed and ~O′ is a sequence of ≈-well-

formed objects, then ♥ is ≈-well-formed and ~O is a sequence of ≈-well-formed

objects.

3. If ~O is a sequence of ≈-well-formed objects and ≈ preserves ≈-well-formedness

then:

(a) If O is ≈-well-formed then fill≈(O, ~O) = (O′, ~O′) where O′ is ≈-well-formed.

(b) If A is ≈-well-formed then fill≈(A, ~O) = (A′, ~O′) where A′ is ≈-well-formed.

4. If the arity of O ≥ | ~O| and O is ≈-well-formed then O~O≈ is well defined. If also

~O is a sequence of ≈-well-formed objects and ≈ preserves ≈-well-formedness, then

O~O≈ is ≈-well-formed.

Proof. 1. By simutaneous induction on the structure of O and A.

2. By induction on the derivation fill≈(♥, ~O) = (♥′, ~O′).

3. By simutaneous induction on the structure of O and A. We only do one case. Assume

a ≈-well-formed O 6= � of arity ≥ 1. By Lemma 5.20, O = {A} = [A]≈ for some ≈-

well-formed A of arity ≥ 1 such that A 6∈ Pointer. By IH, fill≈(A, ~O) = (A′, ~O′) where

20We mean well defined not ≈-well-formed here as fill≈(O, ~O) (resp. fill≈(A, ~O) is not necessarily an
object.
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A′ is ≈-well-formed. Hence by definition, fill≈({A}, ~O) = ([A′]≈, ~O
′). By Lemma 5.27.1,

A′ 6∈ Pointer. Since ≈ preserves ≈-well-formedness, [A′]≈ is ≈-well-formed.

4. The first part is a consequence of 1. above and Lemma 5.27.4a. The second part

follows from 3. above.

5.1.5 Contexts and Compatible Closure

Next we define the set of contexts O of arity 1 which are functions from a set of objects

S1 to a set of objects S2, as well as S-compatible closure. An S-compatible closure

describes the set of relations produced when a given relation is allowed to descend

inside some set of contexts S. This gives a tool for describing relations that “descend”

inside syntactic objects. For example rewriting relations make use of the notion of

S-compatible closure to perform rewriting on sub-objects in a grammar. Example 5.30

will give an example of how S-compatible closure are used for rewriting relations, but

first we define what an S-compatible closure is.

Definition 5.29 ((S1, S2)−Context, S−Context, S-compatible closure).

Let ≈ be an Arrangement-Equivalence which preserves ≈-well-formedness. Let S1, S2,

S be sets of ≈-well-formed objects.

• We define a kind of function space (S1, S2)−Context =

{Oc | Ari(Oc) = 1 ∧Oc is ≈-well-formed object ∧ ∀O′ ∈ S1, Oc[O
′]≈ ∈ S2}.

• We write S−Context for (S, S)−Context.

• For relation R where (domain(R) ∪ range(R)) ⊆ S ⊆ Object, define the S-

compatible closure of R, [R]S by: if Oc ∈ S−Context and there exists O1 and

O2 such that, O1
R
→ O2,

21 then Oc[O1]
[R]S

→ Oc[O2]. Write [R] for [R]S for some

S which can be inferred from the context of discussion. The above should define

S-compatible and then rely on our earlier definition of closure to get S-compatible

closure of R.

21O1

R
→ O2 is an alternative notation for (O1, O2) ∈ R.
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By Lemma 5.28, all of (S1, S2)−Context, S−Context and S-compatible closure are well-

defined.

Contexts allow relations to descend inside of sets, which can be particularly relevant

for rewriting. For example, we will model the η-reduction relation on the λ-calculus.

Example 5.30. Recall the grammar exp given by:

e ∈ exp ::= v | λv.e | e e

We may write ec ∈ exp-Context ::= � | λv.ec | ec e | e ec. Suppose we define the relation

then η as the smallest relation (in the ordering given by ⊆) satisfying the constraint

[λv.e1v]≈
η
→ e1, where e1 ∈ exp and v is an element of a countable set of names which

is not free in e1. Then the exp-compatible closure of η, [η]exp is the smallest relation s.t.

ec[λv.e1v]
[η]exp

→ ec[e1] and v is not free in e1.

Convention 5.31 (Choosing contexts for rewriting rules on a set). For a set S, and a

relation ∗ : S → S and a set of constraints on ∗22, if we write that ∗ is a rewriting rule

on S then ∗ is the S-compatible closure of the least ∗ satisfying these constraints.

5.1.6 Sub-Objects and Primitive Constructor Decomposition

Next, we will define 2 related notions, primitive constructors and Primitive constructor

decomposition.

Design Decision 5.32. Primitive constructors may be thought of as representing

applications of syntactic “functions” to a list of objects in order to produce another

syntactic object which has each of the objects in the list as an immediate sub-object.

A primitive constructor decomposition gives a notion of how a syntactic object may

be broken down into sets of syntactic “functions” applied to symbols. We start by the

definition of an immediate sub-object.

22E.g., statements of the form ◦1
∗

→ ◦2 if c, where each ◦1 and ◦2 is an element of S and c is an
optional side condition s.t. each c yields a boolean. If so, they are read as “Each (◦1, ◦2) is an element
of ∗ if c holds.”
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Definition 5.33 (Immediate sub-objects isub, ln). We define immediate sub-objects

isub on objects and arrangements as follows:

• isub(�) = isub(ǫ) = isub(s) = isub(n) = ∅.

• isub(PO) = {O}.

• isub(A) = isub(A).

• isub(AÂ) = isub(A) ∪ isub(Â).

• isub(AA1) = isub(AA1
) = isub(A) ∪ isub(A1).

• isub(AA1

A2
) = isub(A) ∪ isub(A1) ∪ isub(A2).

• If O 6= � then isub(O) =
⋃

A∈O isub(A).

One may think of ln as counting the number of arrangements that make up an object.

We define ln of an object and an arrangement as follows:

• ln(♥) = 1 if ♥ = � or ♥ is an arrangement.

• If O 6= � then ln(O) = |O|

Lemma 5.34. 1. isub is well defined and isub(O) ∪ isub(A) ⊆ Object.

2. Let ≈ be an Arrangement-Equivalence. For all O ∈ Object A ∈ Arrangement, if O

and A are ≈-well-formed then isub(O) ∪ isub(A) ⊆ {O′ | O′ is ≈-well-formed}.

Proof. Easy.

We can now give the following convention:

Convention 5.35 (Choosing contexts for rewriting rules where no set is given). There

is also a similar convention that can be used for rewriting rules where S is not given.

This helps with practices in CSM (e.g., where an author declares a number of relations
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with a horizontal bar, but doesn’t tell us what set they are drawn from). In the case

where S is not given, then it is assumed to be the largest subset S of Object such that:23

1. Its elements and their sub-objects are equivalence classes of ≈.

2. For all A ∈ Arrangement whose immediate sub-objects are holes, and O1, . . . , On ∈

Object A[O1, . . . , On] is only contained within an element of S, or within a sub-

object of an element of S, if, there exist x1, . . . , xn where each xi is either an

object or a metavariable and A[x1, . . . , xn] appears somewhere in the rule set.

Example 5.36. isub(��) = isub(P� P�) = isub({P� P�}) = {�}.

isub(� = � ∈ �) = isub(P� = P� ∈ P�) = isub({P� = P� ∈ P�}) = {�}.

isub(λ�.�) = isub(λP�.P�) = isub({λP�.P�}) = {�}.

isub(〈(λO1.O2)〉) = isub(〈(λPO1
.PO2

)〉) = isub(〈P[λPO1
.PO2

]≈〉) = {[λPO1
.PO2

]≈} = {[λO1.O2]≈}.

isub(〈O1O2〉) = isub(〈PO1
PO2
〉) = {O1, O2}.

isub((O1 +O2) +O3) = isub(P[PO1
+PO2

]≈ + PO3
) = {O1 +O2, O3}.

ln(��) = ln(� = � ∈ �) = ln(〈�〉) = 1.

ln([〈(λO1.O2)〉]≈) = ln([〈P[λPO1
.PO2

]≈〉]≈) = |[〈P[λPO1
.PO2

]≈〉]≈| = |[〈(λO1.O2)〉]≈|.

ln([〈O1O2〉]≈) = ln([〈PO1
PO2
〉]≈) = |[〈PO1

PO2
〉]≈|.

If [O1 +O2]≈ = {O1 +O2, O2 +O1} then ln([O1 +O2]≈) = 2.

We now define the notion of decomposition into constructors. We may think of con-

structors as the hole filling operations that would yield an object.

Example 5.37. A simple example of a single decomposition is as follows:

dc
︷ ︸︸ ︷

P�P[λx.x]≈ = {(P�P�, [�, [λx.x]≈])}

Definition 5.38 (Decomposition
dc

︷︸︸︷. ). Let ≈ be an Arrangement-Equivalence. We

define the decompostion class

dc
︷︸︸︷

♥ of objects and arrangements ♥ as follows:

23We pick a subset of object where arrangements referenced in the text act like production rules for
the grammar and objects are considered up to ≈-equivalence.
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• If ♥ ∈ {�, ǫ, s, n} then

dc
︷︸︸︷

♥ = {(♥, [])}.24

• If (O′, ~O) ∈

dc
︷︸︸︷

O then (P�, [O
′ ~O≈]) ∈

dc
︷︸︸︷

PO

• If A 6= ǫ and (A′, ~O) ∈

dc
︷︸︸︷

A then (A′, ~O) ∈

dc
︷︸︸︷

A .

• For non-empty arrangements A1, A2, A3, and core arrangement Â, if (Â′, ~O) ∈
dc

︷︸︸︷

Â and for all 1 ≤ i ≤ 3, (A′
i,
~Oi) ∈

dc
︷︸︸︷

Ai and A′
i is non-empty then:

(A′
1Â

′, ~O1 · ~O) ∈

dc
︷︸︸︷

A1Â (A′
1
A′

2

A′
3

, ~O1 · ~O2 · ~O3) ∈

dc
︷︸︸︷

A1
A2

A3

dc
︷︸︸︷

A1A2
∈ {(A′

1A′
2
, ~O1 · ~O2)}

dc
︷︸︸︷

A1
A2 ∈ {(A′

1
A′

2, ~O1 · ~O2)}

• If O 6= � then

dc
︷︸︸︷

O = {([A′]≈, ~O) | A ∈ O and (A′, ~O) ∈

dc
︷︸︸︷

A }.

We show that decomposition breaks objects (resp. arrangements) into objects (resp.

arrangements) whose arity is equal to their immediate sub-objects and a sequence of

these objects.

Lemma 5.39. Let ≈ be an Arrangement-Equivalence.

1. If ♥ is an object (resp. arrangement) and (♦, ~O) ∈

dc
︷︸︸︷

♥ then ♦ is an object (resp.

arrangement), ~O is a sequence of objects, ♦~O≈ is well defined, and if ♦ 6= � then

the arity of ♦ = | ~O|.

Proof. 1. By induction on the structure of ♥. We do the following cases:

• Case PO where (P�, [O
′ ~O≈]) ∈

dc
︷︸︸︷

PO and (O′, ~O) ∈

dc
︷︸︸︷

O then by IH, O′ is an ob-

ject, ~O is a sequence of objects and O′ ~O≈ is well defined. Now, fill≈(P�, [O
′ ~O≈]) =

24The set of tuples we build here may be thought of as each hole filling operation that constructs
an object from its immediate sub-objects.
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(PO′ ~O≈, []) and hence P�[O
′ ~O≈]≈ is well defined. Finally, the arity of P� =

|[O′ ~O≈]|.

• Let non-empty arrangements A1, and core arrangement Â, where (Â′, ~O) ∈

dc
︷︸︸︷

Â

and (A′
1,
~O1) ∈

dc
︷︸︸︷

A1 and A′
1 is non-empty. Then, (A′

1Â
′, ~O1 · ~O) ∈

dc
︷︸︸︷

A1Â. Use IH

to show that A′
1Â

′ is an arrangement and ~O1 · ~O is a sequence of objects. Also

by IH, A′
1[
~O1]

≈ and Â′[ ~O]≈ are well defined (i.e., for some arrangements A′′
1 and

Â′′ we have fill≈(A
′
1,
~O1) = (A′′

1, [ ]) and fill≈(Â
′, ~O) = (Â′′, [ ])) and the arity of

A′
1 = | ~O1| and the arity of Â′ = | ~O|. By Lemma 5.27, fill≈(A

′
1, ~O1 · ~O) = (A′′

1, ~O)

and by definition, fill≈(A
′
1Â

′, ~O1 · ~O) = (A′′
1Â

′′, [ ]). Hence (A′
1Â

′)[ ~O1 · ~O]≈ is well

defined. Arity is easy by IH.

• Let ([A′]≈, ~O) ∈

dc
︷︸︸︷

O where O 6= �, and for some A ∈ O, (A′, ~O) ∈

dc
︷︸︸︷

A . By

IH, A′ is an arrangement, ~O is a sequence of objects, A′ ~O≈ is well defined (hence

fill≈(A
′, ~O) = (A′′, [ ]) for some A′′), and the arity of A′ = | ~O|. By Lemma 5.16,

[A′]≈ is an object. By Lemma 5.27.5, fill≈([A
′]≈, ~O) = ([A′′]≈, [ ]). This means

that [A′]≈ ~O≈ is well defined. Finally, if the arity of A′ = | ~O| = 0, then the arity

of [A′]≈ = 0 = | ~O|; else, if the arity of A′ = | ~O| 6= 0, then by Lemma 5.16,

[A′]≈ = {A′} and hence the arity of [A′]≈ = the arity of A′ = | ~O|.

If we want to prove that for all 1 ≤ i ≤ n, ([A′
1]≈,

~O1) = ([A′
i]≈,

~Oi) (i.e., unicity of

decomposition), then we would need to assume ≈ to be closed under hole filling and in

this case,

• If the arity of O ≥ 1 then by Lemma 5.20, n = 1 and we are done.

• If the arity of O = 0 then since for all 1 ≤ i ≤ n, Ai = A′
i
~O≈
i , and Ai ≈ A1,

we get for all 1 ≤ i ≤ n, A′
i
~O≈
i ≈ A′

1
~O≈
1 . Since ≈ is closed under hole filling,

we get for all 1 ≤ i ≤ n, A′
i ≈ A′

1 and ~Oi = ~O1. Hence, for all 1 ≤ i ≤ n,

([A′
1]≈,

~O1) = ([A′
i]≈,

~Oi).
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We show that decomposition preserves ≈-well formedness.

Lemma 5.40. Let ≈ be an Arrangement-Equivalence which preserves ≈-well-formedness.

♥,♥′ be ≈-well-formed objects/arrangements and let A be ≈-well-formed.

1. If (♦, ~O) ∈

dc
︷︸︸︷

♥ then ♦ is ≈-well-formed, ~O is a sequence of ≈-well-formed

objects, and fill≈(♦, ~O) = (♥, [ ]) (hence ♥ = ♦~O≈). Furthermore, if either ♥ = �

or ♦ = � then both ♥ = � and ♦ = � and ~O = [].

2. There is a ≈-well-formed ♦ and a sequence of ≈-well-formed objects ~O such that

(♦, ~O) ∈

dc
︷︸︸︷

♥ .

3. If (A′, ~O) ∈

dc
︷︸︸︷

A then:

(a) If � ∈ isub(A′) then isub(A′) = {�} and A′ differs from A exactly in having

� in place of every non-� object appearing in A.

(b) If � 6∈ isub(A′) then isub(A′) = ∅, A = A′ and ~O = [].

4. If

dc
︷︸︸︷

♥ ∩

dc
︷︸︸︷

♥′ 6= ∅ then ♥ = ♥′.

5. If (♦, ~O) ∈

dc
︷︸︸︷

♥ and (♦′, ~O′) ∈

dc
︷︸︸︷

♥ then ♦~O≈ = ♦′ ~O′≈.

6. If ♥ is an arrangement or ♥ is a context, then |

dc
︷︸︸︷

♥ | = 1, else |

dc
︷︸︸︷

♥ | = ln(♥).

Proof. 1. By induction on the structure of ♥. We do the following cases:

• Case PO is ≈-well-formed where (P�, [O
′ ~O≈]) ∈

dc
︷︸︸︷

PO and (O′, ~O) ∈

dc
︷︸︸︷

O then

by IH, O′ is an ≈-well-formed object, ~O is a sequence of ≈-well-formed ob-

jects, and fill≈(O
′, ~O) = (O, [ ]), and hence O = O′ ~O≈. Now, fill≈(P�, [O

′ ~O≈]) =

(PO′ ~O≈, []) = (PO, []) (hence PO = P�[O
′ ~O≈]≈).

• Let non-empty arrangements A1, and core arrangement Â, where (Â′, ~O) ∈

dc
︷︸︸︷

Â

and (A′
1,
~O1) ∈

dc
︷︸︸︷

A1 and A′
1 is non-empty. Then, (A′

1Â
′, ~O1 · ~O) ∈

dc
︷︸︸︷

A1Â. Use
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IH to show that A′
1Â

′ is an ≈-well-formed arrangement and ~O1 · ~O is a sequence

of ≈-well-formed objects. Also by IH, fill≈(A
′
1,
~O1) = (A1, [ ]) and fill≈(Â

′, ~O) =

(Â, [ ]). But, by Lemma 5.39, the arity of A′
1 = | ~O1| and hence, by Lemma 5.27,

fill≈(A
′
1,
~O1 · ~O) = (A1, ~O) and by definition, fill≈(A

′
1Â

′, ~O1 · ~O) = (A1Â, [ ]) and

A1Â = (A′
1Â

′)( ~O1 · ~O)≈.

• Let ([A′]≈, ~O) ∈

dc
︷︸︸︷

O where O 6= �, O is ≈-well-formed and for some A ∈ O,

(A′, ~O) ∈

dc
︷︸︸︷

A . Since O is ≈-well-formed and A ∈ O then A is ≈-well-formed and

[A]≈ = O. By IH, A′ is an ≈-well-formed arrangement, ~O is a sequence of ≈-well-

formed objects, and fill≈(A
′, ~O) = (A, [ ]) (hence A = A′ ~O≈). By Lemma 5.27.5,

fill≈([A
′]≈, ~O) = ([A]≈, [ ]) =

25(O, [ ]). This means that O = [A′]≈ ~O≈ where [A′]≈

is an ≈-well-formed object and ~O is a sequence of ≈-well-formed objects.

2. By induction on the structure of ♥.

3. By induction on the derivation (A′, ~O) ∈

dc
︷︸︸︷

A where A is ≈-well-formed.

4. By 1. above, ♥ = ♦~O≈ and ♥′ = ♦~O≈. Hence, ♥ = ♥′.

5. By 1. above, ♥ = ♦~O≈ and ♥ = ♦′ ~O′≈. Hence ♦~O≈ = ♦′ ~O′≈.

6. By induction on the structure of ♥.

Example 5.41. The following are examples of decomposition (we write ♥ instead of

♥[]≈]):

•

dc
︷︸︸︷

λx.x = {(λx.x, [])}.

•

dc
︷ ︸︸ ︷

[λx.x]≈ = {([λx.x]≈, [])}.

•

dc
︷ ︸︸ ︷

λP[x]≈.P[x]≈ = {(λP�.P�, [[x]≈, [x]≈])}.

•

dc
︷ ︸︸ ︷

P[λx.x]≈ = {(P�, [[λx.x]≈])}.

•

dc
︷︸︸︷

� = {(�, [])}.

25This is the only place we needed ≈-well-formedness.
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•

dc
︷︸︸︷

P� = {(P�, [�])}.

•

dc
︷︸︸︷

P P�

�
= {(P P�

�
, [�,�])}.

•

dc
︷ ︸︸ ︷

P�P[λx.x]≈ = {(P�P�, [�, [λx.x]≈])}.

• Assume

dc
︷︸︸︷

O = {(O′, ~O)} then

–

dc
︷ ︸︸ ︷

[!O]≈ = {([!�]≈, [O
′ ~O≈])} = {([!�]≈, [O])}.

– Using our Coercion Convention 5.46,

dc
︷︸︸︷

!O = {(!�, [O])}.

– Since (!O) = P[!O]≈ then

dc
︷︸︸︷

(!O) = {(P�, [[!�]≈[O
′ ~O≈]≈])} = {(P�, [[!�]≈[O]≈])} =

{(P�, [[!O]≈])}.

–

dc
︷ ︸︸ ︷

〈(!O)〉 = {(〈P�〉, [[!O]≈])}.

– Using our Coercion Convention 5.46,

dc
︷ ︸︸ ︷

〈(!O)〉 = {(〈�〉, [!O])}.

• Assume

dc
︷︸︸︷

O = {(O′, ~O)} and O1 = {!PO, 〈POPO〉} where the arity of O = 0.

Then

dc
︷︸︸︷

O1 = {(!P�, [O
′ ~O≈]), (〈P�P�〉, [O′ ~O≈, O′ ~O≈])}

= {(!P�, [O]), (〈P�P�〉, [O,O])}.

Note that in all the cases of the above example except for the first 2 lines, if

dc
︷︸︸︷

♥ =

{(♦, ~O)} then isub(♦) = {�}. For the first 2 lines, isub(♦) = ∅.

From our notion of decomposition we move into a notion of decomposition into primitive

constructors.

Design Decision 5.42. Sub-objects in a decomposition can similarly be recursively

decomposed. A recursive decomposition of an object into primitive constructors is

similar to an abstract syntax tree of a string in a language defined by a grammar. If
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an object is a non-singleton equivalence class, then it will not have a unique recursive

decomposition.

Definition 5.43 (Primitive Constructors, p.c.d.). Let≈ be an Arrangement-Equivalence.

• A primitive constructor is an object O such that isub(O) = {�}. We use c to

range over primitive constructors.

• Aprimitive constructor decomposition (p.c.d.) of O is a pair (c, ~O) such that c is a

primitive constructor, ~O is a sequence of objects and O = c ~O≈. A p.c.d. is related

to a decomposition as follows: each p.c.d, of O is an element of the set

dc
︷︸︸︷

O , but

not every element of the

dc
︷︸︸︷

O is a p.c.d. (it may start with an arrangement in

which one of the holes are filled).

• We give the following syntax for the set of primitive constructor decompositions:

Let p.c.d.(O) = {(c, ~O) | c ∈ Object, isub(c) = {�} and O = c ~O≈}. 26

The next lemma shows that p.c.d.s exist for ≈-well-formed objects.

Lemma 5.44. Let ≈ be an Arrangement-Equivalence which preserves ≈-well-formedness

and let O be ≈-well-formed.

1. If there is an A ∈ O such that (A′, ~O) ∈

dc
︷︸︸︷

A and isub(A′) = {�}, then ([A′]≈, ~O)

is a primitive constructor decomposition ( p.c.d.) of object O.

2. p.c.d.(O) =

dc
︷︸︸︷

O ∩{({A}, ~O) | � ∈ isub(A)}.

Proof. 1. By Lemma 5.34, isub(A′) = {�}. Since the arity of A′ ≥ 1 then [A′]≈ = {A′}

and isub([A′]≈) = {�}. By definition 5.43, ([A′]≈, ~O) ∈

dc
︷︸︸︷

O and hence by Lemma 5.39,

26Every well formed non-hole object O = {A1, . . . , An} where n ≥ 1 which is an equivalence class
of ≈ can be decomposed into a primitive constructor and the sub-objects to be placed in its holes, as

long as for each 1 ≤ i ≤ n,

dc
︷︸︸︷

Ai = (A′

i
, ~O) where isub(A′

i
) = {2}. This depends crucially on O being

an equivalence class of ≈, so that any one of the object’s arrangements can be chosen and the whole
object can be recovered by filling the holes.

111



O = [A′]≈ ~O≈ and ([A′]≈, ~O) is a p.c.d. of O.

2. Assume ({A}, ~O) ∈

dc
︷︸︸︷

O ∩{({A}, ~O) | � ∈ isub(A)}. By Lemma 5.39, {A} is an

object and by Lemma 5.39. O = {A}≈ ~O≈. Since ({A}, ~O) ∈

dc
︷︸︸︷

O , then (A, ~O) ∈

dc
︷︸︸︷

A′

for some A′ ∈

dc
︷︸︸︷

A . Since � ∈ isub(A) then � ∈ isub({A}) and by Lemma 5.34,

isub(A) = {�}. Hence, ({A}, ~O) ∈ p.c.d.(O).

Conversely, assume (c, ~O) ∈ p.c.d.(O)

Example 5.45. • Primitive constructors (derived from (Chang & Felleisen 2012, p

134), (Tobisawa 2015, p. 386), (Inoue & Taha 2012, p. 360), Rahli et al. (2017))

include:

(��) � ↓ � ·� !� 〈�〉 � = � ∈ � .

• Some examples of recursive decomposition of an object into primitive constructors

can already be seen in Examples 5.26 and 5.41.

• Note that (O1 +O2) +O3 is a shorthand for [P[PO1
+PO2

]≈ + PO3
]≈ and can be decom-

posed as [P� + P�]≈[[P� + P�]≈[O1, O2]
≈, O3]

≈ which can be written as

(�+�)[(�+�)[O1, O2], O3]
≈. That is,

(O1 +O2) +O3 = (�+�)[(�+�)[O1, O2]
≈, O3]

≈.

Convention 5.46 avoids the need to write [ · ]≈ by implicitly invoking [ · ]≈ at obvious

arrangement boundaries and at most uses of ( ·) in arrangements. E.g.,

dc
︷ ︸︸ ︷

(O1@O2)@O3 =

{(c@, [c@[O1, O2]
≈, O3])} where c@ = �@�. Due to the restriction on the allowed posi-

tions for parentheses in proper arrangements, this expression does not stand for a (hypo-

thetical) object with p.c.d. c′[O1, O2, O3] where c
′ = (�@�)@�, because (�@�)@�

is an improper arrangement, so by Convention 5.46 it forms a context that is not a

primitive constructor.

But Convention 5.46 is not enough. We also want to infer uses of [ · ]≈ in other places

in the middle of what appear to be arrangements. E.g., if we have already used the ar-

rangement O@O′ somewhere in the text, then we want to infer that O1@O2@O3 stands

for the same object as (O1@O2)@O3. We want [ · ]≈ in other places in the middle of

what appear to be arrangements. We want O1@O2@O3 to not stand for the object
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whose p.c.d. is c′′[O1, O2, O3] where c′′ = (� @ � @ �). This is so that arrangements

declared in the text can help divide objects into complex parse trees, rather than as-

suming a flat structure every time. For this, we build parsing mechanisms for declaring

primitive constructors and parsing arrangements. We adapt operator precedence and

declared associativity to allow splitting what appears as a single primitive constructor

into multiple primitive constructors. Remember that every arrangement consists of

core arrangements (symbols, objects, numbers, or overlined arrangements), arranged in

a finite number of positions.

An arrangement A′ can be spliced into A′′ by inserting the main core arrangement

sequence of A′ into one of the core arrangement sequences of A′′ in place of an occurrence

of �.

Convention 5.46 (Declaring and Parsing Primitive Constructors). 1. Unless pre-

vented by part 2 below, at the first use of an A, if there are A′, ~O such that � ∈

isub(A′) and

dc
︷︸︸︷

A = {(A′, ~O)} then this use of A declares the primitive constructor

c = {A′} = [A′]≈ and the arrangement A′.27

2. We define what it means to coerce an arrangement A into an object O. Whenever

we coerce an arrangement A into an object O using Convention 5.46, the arrangement

A is inspected to see if it can be built by splicing already declared arrangements. If A

can be built entirely by splicing together already-declared arrangements, and filling the

holes in the splicing result in objects, and there is no explicit indication forbidding the

use of this convention, then A is to be interpreted as though it had been written with

uses of [ · ]≈ around each splice point. If there is more than one way A can be built by

splicing already-declared arrangements, then it must be specified somewhere which one

to choose.28

Example 5.47. •

dc
︷ ︸︸ ︷

〈PO1
〉 = {(〈P�〉, [O1])}. Using Convention 5.46,

dc
︷︸︸︷

〈O1〉 = {(〈�〉, [O1])}.

By Convention 5.46, arrangement 〈O1〉 declares arrangement 〈�〉 and primitive

constructor [〈�〉]≈.29

27Recall Lemma 5.44 which states that A′ differs from A exactly in having � in place of every non-�
object appearing in A.

28This choice typically involves notions of operator precedence and declarations of associativity.
29The notation 〈·〉 here is just an arbitrary choice of syntactic function.
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•

dc
︷︸︸︷

!PO2
= {(!P�, [O2])}. Using Convention 5.46,

dc
︷︸︸︷

!O2 = {(!�, [O2])}. By Conven-

tion 5.46, arrangement !O2 declares arrangement !� and primitive constructor

[!�]≈.

• By Convention 5.46, arragement 〈!O′〉 can be coerced into object [〈!O′〉]≈. Inspect-

ing 〈!O′〉, we see that it can be built by splicing already declared arrangements

!� and 〈�〉. More specifically,30 〈!O′〉 can be built by splicing !� into 〈�〉 and

filling the hole with O′.31

• Take O1@O2 which declares primitive constructor c@ = �@�. If we state that

c@ is left-associative, then writing O = O1@O2@O3 produces the same result as

writing O = (O1@O2)@O3. Without associativity of c@, writing O = O1@O2@O3

would be an error, because there are multiple distinct ways the arrangement

�@�@� can be built by splicing the arrangement �@� into itself.

Convention 5.46 allows syntactic equivalences and syntactic boundaries to be inferred

from uses of constructors. Note that parsing can happen in clauses of syntax produc-

tion rules and that occurrences of arrangements in syntax production rules are not

necessarily declaring occurrences.

Example 5.48. The top line gives objects derived from (Chang & Felleisen 2012, p

134), Rahli et al. (2017), (Tobisawa 2015, p 386). They may not be well formed, as the

singleton sets may not be ≈-equivalence classes, as they are singleton sets. The objects

under them are adjusted to be well formed (when O1 · · ·O4 are also adjusted):

{λPO1
.PO2
} {ΠPO1

: PO2
.PO3
} {PO1 ↓ {PO2

PO3
} · PO4

}

[λPO1
.PO2

]≈ [ΠPO1
: PO2

.PO3
]≈ [PO1 ↓ [PO2

PO3
]≈ · PO4

]≈

5.1.7 α-Equivalence, Names and Binding

The relation ≈ gives a mechanism for working with syntax modulo equivalences on

arrangements. An important equivalence is α-conversion which renames bound names.

30By Convention 5.46 this gives the same result as writing O = 〈(!O′)〉.
31If we wanted to avoid the interpretation of Convention 5.46, we could do so by avoiding the

implicit coercion of Convention 5.46 and writing instead O = [〈!O′〉]≈, which would use the primitive
constructor 〈!�〉 instead of the two smaller primitive constructors 〈�〉 and !�.
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We do not give a complex notion of binding here. We are only interested in providing

a concept of binding that can be readily grasped and is sufficiently general for wide use

in a variety of grammars. 32 The notion of α-conversion is the basis of higher-order

syntax, such as in the λ-calculus.

To define α-equivalence we need some notion of swapping objects inside a binder for

objects of a similar kind. In MathSyn, we use names. Any countable number of names

may belong to the same group.

Definition 5.49 (Free/Bound/Swapping Names/Closed under Swapping).

• Names/groups of names are given by an equivalence relation ∼ ⊂ Object×Object

relating names in the same group.

– Object O is a name iff O ∼ O. Let Name = {O ∈ Object | O ∼ O}. We use

Ox, Oy, · · · to range over Name.

– If S ⊂ Object is an ∼-equivalence class i.e., O1 ∼ O2 for all O1, O2 ∈ S, and

no other names are related by ∼ to members of S, we call S a name group.

– The relation ∼ is extended incrementally with declarations of groups.

– Objects not declared related by ∼ are not related by ∼.

– We require that � 6∈ Name.

– We require that no name occurs as a sub-object inside another name. I.e.,

if O ∈ Name, O′ ∈ Name and A ∈ O′, then O does not occur anywhere in A.

• For names Ox and Oy where Ox∼Oy, swap(Ox, Oy, O) (resp. swap(Ox, Oy, A)) is the

object (resp. arrangement) obtained by simultaneously changing all occurrences

of Ox resp. Oy in O (resp. Arrangement) by Oy resp. Ox.

An Arrangement-Equivalence ≈ is closed under swapping if whenever ♥ ≈ ♥′ then

swap(Ox, Oy, FN(♥)) ≈ (Ox, Oy,♥′).

32The notion of equivalence we provide is intended to be used in defining other syntactic equivalences
in addition to α-equivalence. E.g., suppose we wanted to declare that the primitive constructor (� | �)
is equivalent up to reordering when the holes are filled with u ∈ U , we can write (u1 | u2) ≈ (u2 | u1).
We allow other equivalences to be declared in this way.
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• A primitive constructor c can be declared to bind a name placed in one of its

constructor holes across some of its constructor’s holes.

• We define FN(O), the free names of object O by:

– If O is a name, then FN(O) = {O}.

– If O = �, then FN(O) = ∅.

– Otherwise if O is not a name,

∗ define the free names of primitive constructor decompositions ( p.c.d.’s)

of O: if (c, ~O) is one such p.c.d., and for every O′ ∈ ~O, BcO′ are the

names bound by c in O′ then FV(c, ~O) =
⋃

O′∈ ~O FN(O′) \BcO′;33

∗ if there exists a set S s.t. S = FV(c, ~O) for every p.c.d. (c, ~O) of O, then

FN(O) = S else FN(O) = ∅.

• The free names of an arrangement A, are defined as follows:

– If A = PO then FV(A) = FN(O) else if there is A′, ~O such that

dc
︷︸︸︷

A =

{(A′, ~O)} and � ∈ isub(A′) then FV(A) = FV({A}).

– Else, FV(A) = ∅.

• A name that is not free is bound.

For names Ox and Oy where Ox∼Oy, and object O (resp. arrangement A) we have:

• swap(Ox, Oy, Ox) = Oy

• swap(Ox, Oy, Oy) = Ox

• If A 6= ǫ then swap(Ox, Oy, A) = swap(Ox, Oy, A).

33Note that FV refers only to one p.c.d. of O. It is equivalent to FN only in the case where for any
(c1, ~O1), (c2, ~O2) ∈ p.c.d.(O), FV(c1, ~O1) = FV(c2, ~O2)
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• swap(Ox, Oy, PO) = Pswap(Ox,Oy,O).

• swap(Ox, Oy, {A}) = {swap(Ox, Oy, A)}.

• swap(Ox, Oy, FN(♥)) = ♥ if ♥ ∈ {ǫ,�, s, n}.

• swap(Ox, Oy, Â) ∈ C− Arrangement.

• For core arrangement Â and non-empty arrangements A, A1 and A2,

– swap(Ox, Oy, AÂ) = swap(Ox, Oy, A)swap(Ox, Oy, Â).

– swap(Ox, Oy, A
A1) = swap(Ox, Oy, A)

swap(Ox,Oy,A1).

– swap(Ox, Oy, AA1
) = swap(Ox, Oy, A)swap(Ox,Oy,A1).

– swap(Ox, Oy, A
A1

A2
) = swap(Ox, Oy, A)

swap(Ox,Oy,A1)

swap(Ox,Oy,A2)
.

• swap(Ox, Oy, O) = {swap(Ox, Oy, A) | A ∈ O}.

Note swap(Ox, Oy, A) is an arrangement and swap(Ox, Oy, O) is an object.

We prove some facts about when free variables or free names are preserved and that

they are well defined for ≈-well formed objects or arrangements.

Lemma 5.50. 1. If ♥ ∈ {�, ǫ, s, n} then FN(♥) = ∅.

2. If A = PO then FV(A) = FN(O).

3. If A 6= ǫ then FV(A) = FV(A), provided that, for

dc
︷︸︸︷

A = {(A′, ~O)} we have

FV(fill≈(A′, ~O)) = FV(fill≈(A
′, ~O))34.

4. If O (resp. A) is ≈-well-formed then FN(O) (resp. FV(A)) is well defined.

Proof. 1. If ♥ ∈ {ǫ, s, n} then ♥ 6= PO and there are no A′, ~O such that

dc
︷ ︸︸ ︷

FN(♥) =

{(A′, ~O)} and � ∈ isub(A′). Hence FN(♥) = ∅. By definition, FV(�) = ∅.

2. By definition, FV(PO) = FN(O).

34I.e. A′ does not bind anything which A′ does not and vice versa.
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3. FV(A) = FV({A}) = FV(fill≈(A′, ~O)) = FV(fill≈(A
′, ~O)) = FV({A}) = FV(A).

4. If O is either a name or � then this is trivial. If there is no A′, ~O such that
dc

︷︸︸︷

A = {(A′, ~O)} and � ∈ isub(A′) then this is likewise trivial. If O or A do not contain

names anywhere in their construction then likewise this is trivial. Otherwise we prove

it inductively on p.c.d.s of O (or {A}). Suppose O (or {A}) is the first such that FN

(or FV) is well defined on its immediate sub-objects, but FN(O) (or FV(A)) is not well-

defined. Consider each (c, ~O) such that (c, ~O) is a p.c.d. of O (or {A}). For each of

these FV(c, ~O) =
⋃

O′∈ ~O FN(O′) \BcO′ exists. So FN(O) (or FV(A)) exists.

Example 5.51. Assume that Ox, Oy and Oz are names.

• If Ox∼Oy then

– swap(Ox, Oy, [λPOx
.POy

]≈) = [λPOy
.POx

]≈.

– swap(Ox, Oy, [λPOx
.(POy

@POx
)]≈) = [λPOy

.(POx
@POy

)]≈.

• Consider cλ = [λP�.P�]≈ of arity 2. Suppose we declare that cλ binds any name

placed in its first hole in both of its holes. Since

dc
︷ ︸︸ ︷

[λPOx
.POx

]≈ = {(cλ, [Ox, Ox])},

we have FV([λPOx
.POx

]≈) = ∅.

• Since

dc
︷ ︸︸ ︷

[λPOx
.POy

]≈ = {(cλ, [Ox, Oy])}, we have FN([λPOx
.POy

]≈) = {Oy}.

• Suppose that we have not declared any bindings for the constructor c@ = [P�@P�]≈.

Then since

dc
︷ ︸︸ ︷

[POx
@POy

]≈ = {(c@, [Ox, Oy])}, we have FN(POx
@POy

]≈) = {Ox, Oy}.

Since

dc
︷ ︸︸ ︷

[λPOx
.(POx

@POy
)]≈ = {([λP�.P�]≈, [Ox, [POx

@POy
]≈])}, we have

FN([λPOx
.(POx

@POy
)]≈) = {Oy}.

• Since

dc
︷ ︸︸ ︷

[(λPOx
.(POx

@POy
))@Oz]≈ = {(c@, [[λPOx

.(POx
@POy

)]≈, Oz])}, we have:

FN[(λPOx
.(POx

@POy
))@Oz]≈) = {Oy, Oz}.

• Consider clet = [letP� = P�in�]≈ of arity 3. If we declare clet binds any name

placed in its 1st hole in its 1st and 3rd hole, then since [letPOx
= POz

inPOx
@POy

]≈ =
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(clet, [Ox, Oz, [POx
@POy

]≈]) we have:

FN([letOx = POz
inPOx

@POy
]≈) = {Oy, Oz}.

A primitive constructor c of the form {A�} that binds a name in its rightmost hole is

a prefix binder.

Convention 5.52 (Parsing of Prefix Binders). Unless otherwise specified, for a prefix

binder c = {A�}, the connection between the hole � and the rest of the arrangement

A is parsed with lower precedence than all non-binding constructors (usually, the scope

extends as far to the right as allowed by parentheses). I.e., when we recursively decom-

pose an object into a tree of primitive constructors, prefix binders appear as high up

the resulting tree as permissible by parentheses.

Definition 5.53 implies that ≈ will change whenever adjustments are made to the de-

clared bindings of primitive constructors or to the definition of ∼.

Definition 5.53 (α-Conversion as a Syntactic Equivalence). • Let ≡α be the smallest

equivalence relation such that: for all Ox, Oy, O, and A, if Ox ∼ Oy and {Ox, Oy} ∩

FN(O) = {Ox, Oy}∩ FN(A) = ∅, then O ≡α swap(Ox, Oy, O) and A ≡α swap(Ox, Oy, A).

• If a paper says that it is “working modulo α” or “identifying α-equivalent terms”

that means ≡α restricted to arrangements is a subset of ≈, i.e., if A1 ≡α A2 then

A1 ≈ A2.

If we consider an object, O up to α-equivalence, then ∀A ∈ O, if n is bound in A, no

occurrence of n is above �, and n′ is in the same group as n, then, if A′ is the result

of replacing each occurrence of n in A by n′, A′ ≈ A and A′ ∈ O and all sub-objects of

A are also considered up to α-equivalence. If a name occurring in a piece of syntax is

not bound, then it is free.

Convention 5.54 (Interpreting unassigned variables). If the set a variable ranges over

has no constraints telling us what it contains (such as the set v ranges over above), it

is assumed to range over a countable set of names, which is also a group of names and

disjoint from any other such set.
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We may redefine ≈ to be α-equivalence35 for the grammar in example 5.23 as follows:

Let λ�.� bind the object placed in the first of its holes in both of its holes. Let

e ∈ exp be identified up to α-equivalence.

This text is sufficient for MathSyn to be able to recognise an author is working modulo

α-equivalence and construct the relevant objects, but we will show how it is interpreted

using the hidden machinery of MathSyn.

Names are arrangements consisting only of symbols (not pointers).

In the example above, MathSyn would define α-equivalence as follows: if A is a syntactic

arrangement of the form λn1.O whose first hole is filled with the name n1 and whose

second hole is filled by some object O, then each occurence of n1 in A is bound. Also,

if A is a syntactic arrangement of the form λn1.O whose first hole is filled with the

name n1 and whose second hole is filled by some object O such that O does not contain

� and such that, ∀A1, A2 ∈ O, we have A1 ≈ A2, then let n2 be a name in the same

group as n1, which is not free in A, but which may be free in O, and let A1 be the

arrangement produced by replacing every instance of n1 in A with n2, then A1 ≈ A

(i.e. A1, A ∈ [A]≈).

Assuming ≈ is the α equivalence relation given above and x, y, and z are in the same

group of names, then the object [λx.x]≈ denotes the syntactic object:

{λP{x}.P{x}, λP{y}.P{y}, λP{z}.P{z}, · · · }.
36 Normally, provided they have written the

text given in the grey boxes above, notational conventions would allow authors to

write variously λx.x, λy.y, and λz.z and these would be understood as standing for the

same syntactic object, unless the author tells us, explicitly or by convention, that x, y,

and z are not in the set v ranges over.

35Recall from lemma 4.28 equivalences are calculated simultaneously with production rules. They
must also be calculated simultaneously with hole filling.

36Modelling equivalences as sets of arrangements at syntax boundaries may seem odd to those
focused on building parsers that reduce equivalences to a single term. However, MathSyn is interested
in a model for human readers looking to reason about articles using MBNF. These include many more
equivalences than just α-equivalence. They often define equivalences using standard math notation
and do not limit themselves to equivalences that have been translated to a parser friendly form.
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We show that name swapping preserves ≈-well formedness under any equivalence that

is closed under swapping (e.g. one that has α-equivalence amongst its equivalences).

Lemma 5.55. Let ≈ be an Arrangement-Equivalence which preserves ≈-well-formedness

and is closed under swapping. If ♥ is ≈-well-formed, Ox and Oy are names such that

Ox∼Oy then:

1. swap(Ox, Oy,♥) is ≈-well-formed.

2. If {Ox, Oy} ∩ FN(♥) = ∅ then we have FN(♥) = FN(swap(Ox, Oy,♥)).

Proof. 1. By induction on the structure of ♥.

2. For any arrangement A, since ≈ is closed under name swapping then we know that

[A]≈ = swap(Ox, Oy, [A]≈). Since ♥ is ≈-well formed then, for some A, [A]≈ = ♥, then

FN(♥) = FN(swap(Ox, Oy,♥)).

Example 5.56. If Oy∼Ox, then

• [λPOx
.POx

]≈ ≡α [λPOy
.POy

]≈.

• [λPOx
.POz

]≈ ≡α [λPOy
.POz

]≈.

• [λPOx
.POz

@POx
]≈ ≡α [λPOy

.POz
@POy

]≈.

• [λPOy
.(letOx = OzinOx@Oy)]≈ ≡α [λPOx

.(LetOy = Ozin[Oy@Ox)]≈.

5.1.8 Substitution, Sub-Object, Sub-Arrangement

We now show how MathSyn defines O[Ox := O′] the substitution of all free occurrences

of Ox in O by O′.37

Design Decision 5.57. Here, O[Ox := O′] should a) not allow free names in O′ to be

captured by bindings in O; and b) respect ≈: if O and O′ are equivalence classes of ≈,

then so is O[Ox := O′].

37This is sometimes called capture avoiding substitution to distinguish it from the swapping of
objects without avoiding capture by bindings.
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Definition 5.58 (Substitution). • For name Ox, define O[Ox := O′] as follows:

1. If O = Ox, then O[Ox := O′] = O′.

2. Otherwise, O[Ox := O′] is defined as follows.

First, we must define substitution for primitive constructor decompositions

(p.c.d.’s). Given O = c[O1, . . . , On], let S be the subset of {O1, . . . , On} of

names bound by this occurrence of c. If S ∩ FN(O′) 6= ∅ or (Ox ∈ S, and

O′ ∈ FN(O)), then let (c, [O1, . . . , On])[Ox := O′] be undefined38 (This prevents

us from substituting names that are free in O1, ..., On, but would be bound by c.

This prevents us, e.g., from replacing x with y in λx.λy.xy[x := y]). Otherwise,

let (c, [O1, . . . , On])[Ox := O′] = c[O1[Ox := O′], . . . , On[Ox := O′]].

If ∃O′′ such that O′′ = (c, ~O)[Ox := O′] for all c, ~O, s.t. both (c, ~O) is a p.c.d. of

O and (c, ~O)[Ox := O′] is defined, then O[Ox := O′] = O′′. Otherwise O[Ox := O′]

is undefined.39

Definition 5.59 (Sub-object, Sub-arrangement). • O′ is a sub-object of an object O

iff (O′ = [O′]≈ and either ((∃O1, O2, O3, O4 such that (O1 6= O and O3 = O1[O2 := O4]

and (∀A ∈ O, ∀A′ ∈ O3, A
′ ≈ A) and (∀A ∈ O′, ∀A′ ∈ O4, A

′ ≈ A))) or (O′ is bound

in O and any instances of O′ appearing in the same {O}−Context are written using a

“literal” arrangement40 which is coerced into O′))).

• O′ is a sub-object of an arrangement A if O′ is a sub-object of {A}

• A′ is a sub-arrangement of an object O if ∃O′ such that O′ is a sub-object of O and

A′ ∈ O′.

38For simplicity, we do not check whether the substitution needs only to proceed into holes of c
which are not subject to its bindings. This will behave well enough for our uses provided each group
of names is big enough that fresh names can be found.

39So the substitution must be defined for at least one of the p.c.d.s to get a defined result.
40By literal arrangement we mean one that is equal to one which has been coerced up to arrange-

ment equivalence. We use “equal to” here, rather than saying it is been coerced that way, as literal
arrangements may be used in other syntax coercions.
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• A′ is a sub-arrangement of an arrangement A if ∃O′ such that O′ is a sub-object of

A and A′ ∈ O′.

Design Decision 5.60. We use substitution to pick out sub objects rather than ex-

tending recursively the notion of immediate sub-object for three reasons. The first is

that the notation is more compact this way. The second is that this way works for

chains of syntax that are self-referential whereas an extension of immediate sub-object

would loop. The third is that this way allows us to treat differently objects appearing

as bound variables.

Note that, without an infinite supply of names, O[Ox := O′] may not be defined. This

is permissible but, given a set S, with no more than countably many objects, we may

extend ∼ for any name group, G appearing in S. We choose objects disjoint from any

other set of objects occurring within the same “context” as G and also disjoint from

the set of any sub-objects of these, provided these sub-objects were not in the same

position as a “bottom-level” metavariable (i.e. a sub-object ranged over by a declared

metavariable with no other sub-objects ranged over by declared metavariables beneath

it). By convention 5.54, if a variable is used without its range being declared, we assume

it ranges over an appropriate such set of names. Therefore, this is not normally an issue.

5.2 The Model for Object and Arrangement

It may not be obvious to the reader that Object and Arrangement exist, or how they

are modelled. We provide one such model in this section.

Recall we chose to have arrangements contain pointers to objects. This leads to some

tricky technical details in the proof Object and Arrangement exist, since they depend

on some choice of function mapping pointers to an uncountable set and this can only

be made after the fixed point containing them is constructed. Therefore, each stage of

our construction contains every candidate for this function.

We give a sketch illustrating roughly how it works below. Let Symbol be some countable

set and Pointer be some uncountable set. The proof relies on building an ordinal indexed
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sequence of sets. Readers more well versed in computer science literature than set theory

may associate this idea with transfinite step indexing Spies et al. (2021) (our proof does

not rely on the example cited).

Theorem 5.61. (Object, Arrangement and ptr Have a Model). There exists some

selection of Object, Arrangement and ptr such that:

∀S ⊆ Arrangement s.t., S is countable S ∈ Object. Every way of arranging a finite

number of symbols and pointers that is allowed in math text is in Arrangement. There

is a bijection ptr : Pointer → Object.

Proof. (sketch) We define a sequence of sets, OPAi, containing closer approximations of

Object and Arrangement one contains a model for Object and Arrangement themselves.

The smallest set in our sequence, OPA0, contains all triples of:

• The set containing Ob0 = {�} (approximating Object).

• An injective function Pt0 ∈ {�} → Pointer (approximating ptr).

• Ar0 = Symbol (approximating Arrangement).

For (Obi,Pt i,Ar i) ∈ OPAi, let OPAi+1 contain all triples of:

• Obi+1 = Obi ∪ {S | S is countable and S ⊆ Ar i}

• {Pt i+1 ∈ Obi+1 → Pointer | Pt i+1 is injective and Pt i ⊆ Pt i+1}41

• Ar i∪Pti(Obi)∪S = Ar i+1 where S is the set of every way of positioning one element

of Pti(Obi) ∪ Ari around another in math text.42

Before we give the limit case we define what it is to be a “chain” of triples (Obi,Pt i,Ar i) ∈

OPAi. If, for some (Ob1,Pt1,Ar 1) ∈ OPA1, (Ob2,Pt2,Ar 2) ∈ OPA2,...,etc., we have each

of Ob1 ⊆ Ob2 ⊆, . . . , etc., Pt1 ⊆ Pt2 ⊆, . . . , etc., and Ar 1 ⊆ Ar 2 ⊆, . . . , etc. then we

call these a chain of (Obi,Pt iAr i) ∈ OPAi.

41We prove in lemma 5.67 if Pti has an injective function then Pti+1 does.
42We can represent this as a triple (x, y, z) where x and y are members of Pti(Obi) ∪ Ari and z is a

member of some countable index set representing positions
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For a limit, ε, and a chain, C, of (Obi,Pt iAr i) ∈ OPAi, s.t. ∀i < ε, we have

(Obi,Pt iAr i) ∈ C let OPAε contain all triples of:

• Obε =
⋃
{Obi | (Obi, x, y) ∈ C}

• {Ptε ∈ Obε → Pointer | Ptε is injective and ∀(x,Pt i, z) ∈ C,Pt i ⊆ Ptε}43

• (
⋃
{Ar i | (x, y,Ari) ∈ C}) ∪ Ptε(Obε) ∪ S = Ar ε and S is the set of every way of

positioning one element of Ptε(Obε)∪
⋃
{Ar i | (x, y,Ari) ∈ C} around another in math

text.

These sets remain sufficiently small to pick mappings for each Obi. Further, there is

a fixed point for the function mapping each member of this sequence to the member

above it. We pick a bijection from this fixed point which itself will give a model for

Object and Arrangement as well as ptr.

Both this definition and its proof sketch are very informal. We include them only to

make following the proofs in this section easier. A formal definition is given by definition

5.65. A formal proof is given by theorem 5.68. The particular encoding of positioning,

symbols and pointers to objects is arbitrary. We have chosen one that keeps the proof

simple. In practice, the specifics of this model need not be used when reading MBNF

grammars and we can stick to a general, semi-formal definition like definition 5.4.

Definition 5.62 (Symbol, Pos, Pointer, �, ǫ). The ordinal interval D = [ω .. ω · 2)

represents symbols, marking/wrapping and positioning. We use ω to indicate the first

countably infinite ordinal. We start at ω to free the natural numbers to stand for

themselves. Let Pos ⊂ D and |Pos| < ℵ0 such that Pos has enough members to represent

positions subscript, superscript, text above, text below, etc. This will also be used

to represent placing items in a sequence and wrapping an accent symbol around an

arrangement in the version of our model used to construct the proof. Let � and

ǫ be two distinct elements of D \ Pos, representing the context hole and the empty

arrangement, and let Symbol = D \ (Pos ∪ {�, ǫ}), representing any symbol one might

43We prove in lemma 5.67 that Ptε remains of cardinality less than or equal to Pointer and thus
choice can be relied on to give us an injection.
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draw. Let the interval of ordinals from ω · 2 which are less than the first uncountable

ordinal, Pointer = [ω · 2 .. ω1), represent pointers to objects.

Definition 5.63 (Constraints). • Invariant Constraints. IC(Ob,Pt ,Ar) is true if

the following hold:

1. Pt ∈ Ob → Pointer and Pt is injective and total on Ob.

2. Pt(Ob) ∈ Ar .

3. � ∈ Ob \ Ar and ǫ ∈ Ar .

4. Pos ∩ (Ob ∪Ar) = ∅.

5. x ⊂ Ar for all x ∈ Ob such that x 6= �.

6. Symbol ∪ N ⊂ Ar .

• Constraints at each step. STEP(Ob0, ..,Obε,Pt0, ..Ptε,Ar 0, ..Ar ε) holds if:

∀i < ε, (Pt i ⊆ Ptε and Ar i ⊆ Ar ε); and

(if A ∈ Ar i and x ∈ Pos→ Ar i \ {ǫ} and x 6= ∅ then (Ar i, x) ∈ Ar ε);

and if S ⊂
⋃

j<ε

Ar j and |S| ≤ ℵ0 and S 6= {p} where p ∈ Pointer, then S ∈ Obε.

Some constraints only hold of the sets we build if they are in the fixed point.

• Final Selection Constraints. FS(Ob,Pt ,Ar) is true if the following hold:

1. If A ∈ Ar and x ∈ Pos→ A \ {ǫ} and x 6= ∅ then (A, x) ∈ Ar .

2. If S ⊂ Ar and |S| ≤ ℵ0 and S 6= {p} where p ∈ Pointer, then S ∈ Ob.

We will show that Object, Arrangement and ptr such that FS(Object, ptr,Arrangement)

and

IC(Object, ptr,Arrangement) exist. First, we establish a lemma.

Lemma 5.64. 1. There is a bijection b ∈ α→ α× α for each infinite ordinal α.

2. For cardinals |a| and |b| where a or b is infinite, |a× b| = max(a, b).

3. If A is a countable set and B, a set of all trees C s. t. the interior nodes of C are

elements of A and the leaf nodes of C are elements of ω1. We have |B| ≤ ℵ1.
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Proof. 1. We take our sketch of this standard result from a longer proof in Lévy (1979).

For ordinals On let P be the function on On × On which is the isomorphism of (On×

On, R) on (On, <), where R is the canonical ordering on On×On. This function exists.

All that remains to show is |P (α×α)| = |α|. We proceed by induction on the size of |α|.

If |P (α× α)| < |α| then |α× α| < |α| so |P (α× α)| ≥ |α|. Suppose for a contradiction

|P (α × α)| > |α| then |P (γ × δ)| = |α| for some γ, δ < |α|. Let η be the successor of

max(γ, δ). Since |α| is a limit ordinal, η < |α|. We have |α| ≤ |η × η|. If η is finite this

cannot hold. If η is infinite let |η| = ξ. We have ξ < |α|. By the induction hypothesis

|P (η × η)| = |η|. Hence |α| ≤ ξ giving us our contradiction. It follows that b exists.

2. By choice, there is a well ordering on a and b. There is a bijection b ∈ α → α × α

for each infinite α. Let m = max(a, b) then |m| ≤ |a+ b| ≤ |a× b| ≤ |m×m|.

3. |B| ≥ ℵ1 as B contains all trees consisting of a single node in ω1. Let D be the set

of finite trees E where |E| ⊂ ω1. The injection A → ω1 gives an injection B → D, so

|B| ≤ |D|. For S ⊂ ω1∧S finite, < on S is a finite subset of ω1×ω1. By 2., |ω1×ω1| = ℵ1

The cardinality of the set of finite subsets of ω1 is ℵ1 (|ω1+ω1×ω1+ ...| = |ω1+ω1...| =

|ω1 × ω| = |ω1|). So |B| = |D| = ℵ1.

For ordinal i we define OPAi, a step towards the tuple (Object, ptr,Arrangement). Each

element of OPAi, (Obi,Pt i,Ar i) ∈ OPAi is such that IC(Obi,Pt i,Ar i) holds. Let f be a

function that takes OPAi to OPAi+1 and OPAfix be the least fixed point of this function

(we will demonstrate that both this function and its least fixed point exists). Then each

element of OPAfix, (Obfix,Ptfix,Arfix) ∈ OPAfix is such that FS(Obfix,Ptfix,Arfix) holds.

We choose this construction rather than defining a single triple, (Obi,Pt i,Ar i), which is

intended to approximate (Object, ptr,Arrangement), because otherwise our assignment

of pointers to objects throughout would have to depend on the choice of mapping for

the fixed point of Object and Arrangement and we wanted to reassure this readers that

relying on a choice of function made at the end was permissible.

Definition 5.65 (OPAi, fun). • We define OPAi by cases:44

0 Case: Ob0 = {�},

44The i of Obi,Pt i,Ar i and Cr i is just decorative to show which OPAi they are in. I.e., we do not
define these independently of the OPAi and they may be defined with any tuple from this function.
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ptrSpace0 = {x ∈ Ob0 → Pointer | x is total injective on Ob0},

OPA0 =






(Ob0,Pt0,Ar0)

∣
∣
∣
∣
∣
∣

Pt0 ∈ ptrSpace0

∧Ar0 = N ∪ {ǫ} ∪ Symbol ∪ {Pt0(O) | O ∈ Ob0}







+1 Case: Define buildOpSC((Obn,Ptn,Arn)) and buildA((Obn,Ptn,Arn),Ptn+1) by:

For (Obn,Ptn,Arn) ∈ OPAn

Let Layoutn+1 = Arn × {x ∈ Pos→ Arn \ {ǫ} | x 6= ∅}.

Let Obn+1 = Obn ∪ {x ∈ P(Arn) | |x | ≤ ℵ0 ∧ ∀y ∈ Pointer, x 6= {y}}.

(note that ∀i{Pt i(O) | O ∈ Obi} ⊆ Ar i)

Let ptrSpacen+1 = {x ∈ Obn+1 → Pointer | x is total on Obn+1 ∧ x is injective}. 45

Let ptSn+1 = {p ∈ ptrSpacen+1 | ∀x ∈ Obn, (x,Ptn(x)) ∈ p}.

For Ptn+1 ∈ ptSn+1:

let Arn+1 = Arn ∪ Layoutn+1 ∪ {Ptn+1(O) | O ∈ Obn+1}.

Then buildOpSC((Obn,Ptn,Arn)) = (Obn+1, ptSn+1).

And buildA((Obn,Ptn,Arn),Ptn+1) = Arn+1.

OPAn+1 =







(Obn+1,Ptn+1,Arn+1)

∣
∣
∣
∣
∣
∣
∣
∣
∣

(Obn,Ptn,Arn) ∈ OPAn ∧ Ptn+1 ∈ ptSn+1∧

buildOpSC((Obn,Ptn,Arn)) = (Obn+1, ptSn+1)

∧buildA((Obn,Ptn,Arn),Ptn+1) = Arn+1







.

Limit Case: We now define OPAi for a limit point ε.

stackε =







S ⊆
⋃

i<ε

OPAi

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

S 6= ∅ ∧ ∀(Ob,Pt ,Ar) ∈
⋃

i<ε

OPA,

∀(Ob ′,Pt ′,Ar ′) ∈ S,

((Ob,Pt ,Ar) ∈ S)⇔
((Ob ′ ⊆ Ob ∧Ar ′ ⊆ Ar ∧ Pt ′ ⊆ Pt)

∨(Ob ⊆ Ob ′ ∧ Ar ⊆ Ar ′ ∧ Pt ⊆ Pt ′)))







.

Note stackε is the union of the subset of the OPAi such that pointers are consistently

assigned the same objects.

45We will prove in the next lemma this is always non-empty.
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Let SbuildOpSC(Sε) and SbuildA(Sε,Ptε) be defined as follows:

For Sε ∈ stackε:

Let Obε = (
⋃
{Ob | (Ob, a, b) ∈ Sε})∪






x ∈ P(

⋃
{Ar | (a, b,Ar) ∈ Sε})

∣
∣
∣
∣
∣
∣

|x | ≤ ℵ0∧

(y ∈ Pointer ⇒ x 6= {y})






.

Let ptrSpaceε = {x ∈ Obε → Pointer | x is total on Obε ∧ x is injective}.

Let ptS ε be the {p ∈ ptrSpaceε | ∀(Ob,Pt ,Ar) ∈ Sε, Pt ⊆ p}.

For Ptε ∈ ptS ε let Ar ε = {Ptε(O) | O ∈ Obε} ∪
⋃
{Ar i | (a, b,Ar i, c) ∈ Sε}.

Then SbuildOpSC(Sε) = (Obε, ptS ε) and SbuildA(Sε,Ptε) = Ar ε.

Now let

OPAε =






(Obε,Ptε,Ar ε)

∣
∣
∣
∣
∣
∣

Sε ∈ stackε ∧ SbuildOpSC(Sε) = (Obε, ptS ε)

∧Ptε ∈ ptS ε ∧ SbuildA(Sε,Ptε) = Ar ε






.

• Let Z = {OPAi | i < κ} for κ < ω2 and fun ∈ Z → Z s.t. fun(OPAi) = OPAi+1

Remark 5.66. If we can show each OPAi is Non-Empty for all Ordinals i, then

IC(Obi,Pt i,Ar i) and STEP(Ob0, ...,Obi,Pt0, ...,Pt i,Ar0, ...Ar i) hold for some for some

(Ob0,Pt0,Ar0) ∈ OPA0, ..., (Obi,Pt i,Ar i) ∈ OPAi by construction.

The next result rests on the Knaster–Tarski theorem Tarski (1955) which states: Let

(L ≤) be a complete lattice and let f : L → L be an monotonic function (w.r.t. ≤).

Then the set of fixed points of f in L also forms a complete lattice under ≤ (notably

there is a least fixed point).

Lemma 5.67. 1. OPAi 6= ∅ for all Ordinals i. 2. fun has a least fixed point.

Proof. 1. OPAi = ∅ only if |Obi| > |Pointer| for Obi s.t. (Obi, a, b) ∈ OPAi. By induction

on the |Obn| and |Arn| s.t. (Obn, x,Arn) ∈ OPAn this cannot hold.

0 Case: |Ob0| = 1 ≤ ℵ1 and for all Ar 0 ∈ ArrSpace0, |Ar0| = ℵ0 ≤ ℵ1.

+1 Case: If, ∀(Obn, x,Arn) ∈ OPAn, |Obn| ≤ ℵ1 and |Arn| ≤ ℵ1, then ∀Obn+1,
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|Obn+1| ≤ ℵ1 (since Obi and Ar i can be ordered as by choice, the cardinality of the

set of subsets of ℵ1 which are of cardinality ≤ ℵ0 is (2ℵ0)ℵ0 = 2ℵ0·ℵ0 = 2ℵ0). Suppose

it is possible to choose a Ptn that assigns a injection between Obn and Pointer we can

also choose an injection from Pointer to a subset S of pointer such that |Pointer \ S| =

|Pointer|. Say, for example, given a bijective mapping b ∈ Pointer → κ from Pointer to

an ordinal κ, for each limit ordinal γ ≤ κ, we could have S = {q | b(q) = γ + 2 · n}. As

such there exists Ptn that can assign a injection from some Obn to S. We can define this

recursively taking first a composition of the mappings from Obn to Pointer and Pointer

to S and then dropping those Obn containing pointers not in this mapping. Since

Obn+1 can contain at most ℵ1 objects Obn doesn’t, there is always a injection between

Obn+1 and Pointer, if there is one between Obn and Pointer. For Ptn that’s an injective

mapping from Obn to S we can extend it to Ptn+1 by taking an injective mapping

p ∈ Obn+1 \Obn → Pointer \S and letting Ptn+1 equal Ptn ∪ p. Since Layoutn+1 cannot

add cardinality greater than ℵ1, if |Obn| ≤ ℵ1 and |Arn| ≤ ℵ1, then |Arn+1| ≤ ℵ1.

Limit Case: Show ∃ε, ∀i < ε, (|Obi| ≤ ℵ1 ∧ |Ar i| ≤ ℵ1)⇒ (|Obε| ≤ ℵ1 ∧ |Ar ε| ≤ ℵ1).

No Ar i has ℵ0 sub-arrangements and all Ar i can be identified with a finite tree whose

interior nodes are labelled corresponding to the finite number of possible combinations

of positions and whose leaf nodes are labelled with members of ω1. By lemma 5.64,

|
ε⋃

i=0

Ar i| ≤ ℵ1. Similarly we identify each set in Obi apart from � with a countable

subset of the set of trees used to define each Ar i. The cardinality of the countable

subsets of a set of size ℵ1 is (2ℵ0)ℵ0 = 2ℵ0·ℵ0 = 2ℵ0. So |
ε⋃

i=0

Obi| ≤ ℵ1. As Obε ⊆ Obi,

for i ≤ ε there is a Pt which assigns pointers for Obε and can be used to assign pointers

for Obi.

2. For OPAa,OPAb ∈ Z define ≤ such OPAa ≤ OPAb iff (either, ∀(Obb, p, q) ∈ OPAb,

∃(Oba, b, c) ∈ OPAa s.t. Oba ⊂ Obb, or,∀(Obb, p,Ar b) ∈ OPAb,

∃(Oba, b,Ara) ∈ OPAa s.t. (Oba = Obb and Ara ⊂ Ar b)). Z is a complete lattice

ordered by ≤ and fun is an order preserving function on Z. By Knaster–Tarski theorem

Tarski (1955), we are done. The way in which we have defined Ob and Ar is such that

j ≤ i implies (Obj ⊆ Obi and Ar j ⊆ Ar i). For all limit ordinals ε ≤ κ; (Obε,Ar ε) ∈ Z.

Finally ω2 is large enough that it has a larger cardinality than any Obi or Ar i, so we can
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select some κ larger than the partition of Obi and Ar i into the extra elements added

at each stage.

Theorem 5.68. (Object, Arrangement and ptr Have a Model). There exist Object,

Arrangement, and ptr such that FS(Object, ptr,Arrangement) and IC(Object, ptr,Arrangement).

Proof. For OPAi least fixed point of fun, OPAi+1 = OPAi. Take the least fixed point

lfp(fun) of fun ∈ Z → Z and (Ob,Pt ,Ar) ∈ lfp(fun). Let Object = Ob, Arrangement =

Ar , ptr = Pt . Then FS(Object, ptr,Arrangement) and likewise IC(Object, ptr,Arrangement).

We have chosen Zermelo Frankel Set theory with the axiom of choice (ZFC) as the

metatheory for MathSyn, although it is not preferred by people whose primary focus

is parsing and theorem provers, as most mathematicians and computer scientists are

familiar with it and is likely to be used in fields adjacent to theoretical computer

science where people do not use MBNF, but may have an interest in articles using it.

Set theory notation is also heavily used as part of MBNF grammars, which made it a

natural choice.

5.3 What Was Covered by This Chapter

In this chapter we defined the concept of syntactic objects and arrangements as they

appear in various uses of Computer Science Metalanguage, including, notably for us,

MBNF production rules. These provide enough power for authors to consider syntax

up to arbitrary countable equivalences, while preserving the idea of a syntax tree and

enabling authors to use them on only parts of this tree. We proved that these have

a model within set theory. We showed that the universe of syntactic objects can be

readily extended to include any other mathematical object the author may wish to

define, provided they do not do so for more than ℵ1 such objects.

We also covered what it meant to coerce syntactic arrangements into an equivalence ≈

provided by the author. We defined the hole filling operation on syntactic objects and

arrangements, showed that it preserves the well-formedness of objects arrangements
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under ≈-equivalence and used it to provide the notion of a context and the compatible

closure of a set of objects with respect to a set S. This allows us to define relations

that descend into the syntactic objects within a context, such as rewriting relations.

We will introduce a solution to a grammar which relies on hole filling as part of the

grammar rules in Lemma 7.6.

We introduced the idea of an immediate sub-object and introduced the notion of a

primitive constructor. We covered what it means to decompose objects into their prim-

itive constructors. This provides a notation for writing syntactic objects as a number

of functions applied to symbols and names. It also provides something comparable to

a parse tree for syntactic objects.

We provided an account of names, binding and what it means for an object to be an

α-equivalence class. We showed that α-equivalence classes can be well-formed. We

used this to give an account of substitution and give the notion of a sub-object and

sub-arrangement. This is helpful as authors often take various notions of binding and

substitution for granted.

In the next chapter we will show how the notions of object and arrangement given here

can be included alongside an equivalence relation and a set of MBNF production rules

to pick out a set of syntactic objects.
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Chapter 6

Interpreting Production Rules in

MathSyn

In this chapter we will describe how MBNF production rules are to pick out objects

from the set Object. Due to how many ways production rules are employed we do not

define them formally from the outset. Instead we start with an informal definition and

look at one way in which the interpretation of production rules may be formalised to

cover most use cases. In Section 6.1 we give an account of what may be included in an

MBNF production rule and give an informal account of how a set of MBNF production

rules is read that does not include an account of how to tell if a set of production rules

defines something. We also cover some of the conventions that generally operate while

reading production rules and discuss the effect different conventions of indexing may

have on how production rules are read. In Section 6.2 we give one general approach for

determining whether a set of MBNF production rules has a solution.

6.1 What is an MBNF Production Rule

Expressions appear in MBNF production rules. We give an account of what an ex-

pression is and what it means to evaluate one. Expressions may be pieces of syntax

with metavariables which are replaced in the process of evaluating them or they may

be other operations taken from maths, although we will consider them only as syntax
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which may evaluate to different syntax.

Definition 6.1 ((Evaluating) and (Part-Evaluating) Expressions). • Expressions are

objects (i.e., elements of Object), which need not be well formed. Instead of adjusting

expressions to be equivalence classes of≈, we are allowed to use any object they evaluate

to in their place.

• Expressions may “Evaluate” to other expressions or to objects. In order to define

what it means for an expression to evaluate to another expression or object, we first

define what it means for an expression to part-evaluate to another. Expression X part-

evaluates to expression Y iff either Y is X with one instance of a metavariable replaced

by an object it ranges over; or Y is X after a mathematical operation defined outside

of this document has been computed;1 or X part-evaluates to Z and Z part-evaluates

to Y .

• Expression X evaluates to expression Y iff either (X part-evaluates to Y and Y doesn’t

part-evaluate to anything) or (X = Y and X doesn’t part-evaluate to anything).

The default range constraint for a metavariable v states that v ranges over S if v ∈ S

is given in the text, or if v occurs in the left hand side of a production rule whose

alternatives give S. A metavariable v occurring on its own is assumed to have a de-

fault range constraint saying that it ranges over some set of names distinct from other

metavariables occurring in the grammar.

The set Object given in Definition 5.4 whose model in set theory you can find in Section

5.2 is uncountable (cardinality ℵ1). Subsets ofObjectmay be given via syntax production

rules like:

v1, . . . , vn ∈ S ::= A1 | · · · | Am

where v1, . . . , vn are metavariables, S is the subset of Object being defined, and A1,

. . . , Am are alternatives. Each alternative is either the special notation · · · (in which

case it appears as the first alternative in a list and after some alternatives for S have

1In principle we allow for any well defined computation as long as it is expressed mathematically
and it takes one object to another. Typically such computations are basic arithmetic or set theoretic
constructions.
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been given, or at the end of a list indicating that it will be extended. The notation

S ::= · · · | A is like ABNF’s incremental alternatives.) or an expression e, together

with an optional side condition c (written “e if c”, where c is a formula with expressions

in the place of variables), which evaluates to a member of Object when values are

supplied for metavariables occurring in e, provided:

1. c holds of that choice of metavariables.

2. The values supplied for metavariables occurring in e obey any default range con-

straints for them (E.g. those introduced by production rules with those metavari-

ables on the left-hand side).

Sometimes the same side condition is applied to multiple alternatives. One can omit

the ∈ S , allowing the reader to fill in S whose name is distinct from the names of all

other declared sets. One can omit the side condition in which case we read it as if true.

One can provide a “global” side condition if c′ which we read as appending if c′ to all

A.

A context is a chunk of math text that is sufficient to define the default range constraints

of any metavariables appearing in that context and the ≈-equivalence of any arrange-

ments appearing in that context. Given a context, ctxt , we write Constraint(ctxt) to

be the set of all constraints derived from ctxt . Each member of Constraint(ctxt) is a

statement that is held to be true in that context. Constraints of the form v1, ..., vn ∈ S

say each of v1, ..., vn range over S. Constraints of the form O ∈ S for some object O say

that S = S ∪{O} (alternatives in production rules also give constraints of this form for

multiple objects). Constraints of the form A1 ≈ A2 for alternatives A1 and A2 give the

≈-equivalence classes arrangements A1 and A2 are coerced into when they are treated

as well-formed objects. Contexts can be extended throughout the document. Multiple

rules can be given for the same S. If a later rule for S begins with the alternative

· · · , then its alternatives are combined with the alternatives already in force for S.

Usually the alternatives of the later rule replace the previous alternatives if this is not

the case. However, if the author uses a single alternative in each production rule, then

they normally expect these to be combined as though they had used · · · . If · · · is

135



used as the final alternative of a rule, it has no consequence and is used only as a signal

to the reader warning that there will be later rules for the same set. Such a syntax

production rule is intended to communicate the following constraints:

1. S is the smallest set of objects that satisfies all constraints placed on it by this

rule and the rest of the document. The metavariables v1, . . . , vn range over S.

2. A “global” side condition if c′ appends ∧c′ to the constraints added by each

A1, . . .An (i.e. any assignment of objects to metavariables such that Ai ∈ S must

also satisfy c′ in order for this constraint to hold). So for example, supposing

if e 6= 0 was a global side condition for S then each ei appearing in any Ai of S

would have to obey the constraint ei 6= 0.

3. If each A1, . . .An contains only undecorated instances of v, then for any Ai con-

taining multiple instances of v and no side conditions containing v that apply to

Ai, we usually rewrite it with each v given a different decoration. As an example,

m ∈M ::= x | mm is read as though it were m,m1, m2 ∈M ::= x | m1m2.

4. For each alternative Ai which is not · · · , a constraint on the membership of S

is added to Constraint(ctxt), where ctxt is the context in which Ai is read. The

constraint is that for each legal choice2 of values for the metavariables in A, if

O ∈ Object is the result of evaluating an expression e inA using those metavariable

assignments, then O ∈ S. So for example if we have m ∈M ::= λv.m then, say

the object O1 ∈ Object was one of the objects v ranges over and the object

O2 ∈ Object was a member of M (and so an object M ranges over) and letting

POi
signify a pointer to the object Oi, then the object given by [λPO1

.PO2
]≈ is a

member of M .

5. By default, metavariables occurring in Ai, that are not yet declared to range

over any set, are presumed to range over a countable set of names containing

objects disjoint from any other undeclared sets of metavariables and which do not

use symbols occurring elsewhere in the grammar. This assumption is dropped if a

2By legal choice we mean a choice of metavariables satisfying the constraints of their default range
and fulfilling any side conditions.
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metavariable is declared later than Ai and values are recalculated. So for example

given the production rule m ∈M ::= v r | λv.m | ♥ , v and r would be expected

to range over disjoin sets of names that do not include λ , . or ♥ . If we added

the production rule r ∈ R ::= ♠ , then r would range over {[♠]≈} and the values

for S would be recalculated accordingly.

6. If the first alternative is not the special alternative · · · , then any constraints

on the membership of S appearing in Constraint(ctxt) are usually removed. So

given production rules m ∈M ::= ♥ and m ∈M ::= · · · | ♠ we would write

M = {[♥]≈, [♠]≈}, but if instead we had the 2 rules given as m ∈M ::= ♥ and

m ∈M ::= ♠ , we might sometimes read the second rule as overwriting the first

and redefining M . We are unable to provide a convention for when authors expect

us to do this. As such we avoid it in this thesis.

7. A recalculation of all sets appearing in Constraint(ctxt), to a “least” solution that

makes all the constraints in Constraint(ctxt) true. This also happens when the

definition of ≈ or of what metavariables range over is altered.

Note, if we do not rewrite it as in the convention for 3. above, that an alternative Ai

written as Oc[v, v] behaves quite differently than an alternative Ai written as Oc[v1, v2].

By the rules we give for interpreting alternatives, the former requires using whatever

value is assigned to v twice, while the latter allows using two different values.

Note also that the recalculation of all sets appearing in Constraint(ctxt) evaluates all the

constraint expressions for all syntactic sets using the current bindings for all metavari-

ables, set names, ≈, etc., and rebinds the set names to the recalculated values in the

subsequent text. This is important as it allows parts of documents to be checked in

the context they appear in and grammars to be amended throughout a paper. Such a

recalculation cannot (and should not) be performed if there is no unique assignment of

smallest values to the declared sets after each undeclared metavariable has been chosen

to range over a countable set of names. Normally, the existence of a unique assignment

will be provable using a fixed point theorem like the Knaster-Tarski theorem Tarski

(1955). However, the notation doesn’t automatically rule out putting side conditions
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in the constraint expressions in alternatives that prevent sets from being defined in a

monotonic increasing way, which can cause a failure. We have discussed some such

difficulties caused by side conditions (and other MBNF features) in Section 4.3

Outermost parentheses on an alternative are not required as they would be to get

unique parse trees if we were defining our syntax as a set of strings like many BNF

variants do. Declared metavariables take a similar role to non-terminals in BNF, while

syntactic symbols correspond to terminals. The font is used to distinguish them. When

an alternative allows building terms from multiple subterms3 of the same set, we need

to use distinct metavariables for each possible subterm to allow the subterms to differ.

We find distinct metavariables for the same set by using subscripts. The following

example illustrates how different use of subscripts can be used to make terms that are

read differently:

Example 6.2 (Simple types). We can use the following MBNF to define the syntax of

simple types :

a, b ∈ Ty− Variable ::= ai T ∈ Simple− Type ::= a | T1 → T2

Here a stands for a variable whereas a is a symbol. A possible type is T0 = a→ (b→ a)

where exact type variables are left unspecified in T0. We could make T0 concrete by

stating a = a0 and b = a1 yielding T0 = a0 → (a1 → a0). If we had written the second

alternative in the production rule for Simple− Type as T → T , or less ambiguously as

T1 → T1 then we would expect it to be translated to something like the above, but if we

didn’t then the type T0 would not be allowed and we could only write types like a→ a

and (a→ a)→ (a→ a) where both arguments of each→ are equal. This would yield a

set like {a, a→ a, (a→ a)→ (a→ a), . . .}. We would not usually default to assuming

this is the set intended, but for some cases 2 instances of the same metavariable are

meant to stand for the same object. We rely on readers to know when to treat them as

such and when to follow our convention of treating them as though they were labelled

differently.

3B is a subterm of A if there is a context C such that filling the hole in C with B gives us A.
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6.2 One Way in Which Production Rules are to be

Safely Defined

So far we have talked about how production rules in MBNF are interpreted but we have

deliberately left out the detail of how the sets of objects satisfying these constraints are

supposed to be calculated. This is largely because we want readers and authors to be

able to use the full power of set theory in determining whether such a set of constraints

has a solution. However, we sketch one method of doing so which is generally adequate.

With this method each set, S, is built inductively in a monotonic increasing fashion.

Since Object gives an upper bound on the possible syntactic objects we can take a least

fixed point of this set building operation. We define this operation so that it exists in

most cases (it only fails where sets are defined coinductively or where a side condition

means an appropriate increasing function cannot be found).

Methodology 6.3 (A Safe Process for Defining Production Rules). Let S be the

name of each of the sets in our grammar and i be an ordinal index (of size less than

ℵ2). Assuming no notational conflicts occur, we write Si for the set whose name is

given by the pair (S, i). We proceed by induction on i. We define S0 as follows:

1. If the first alternative of any set S corresponds to a piece of concrete syntax

O′ ∈ Object (i.e. syntax which does not contain any metavariables) then we write

S0 = {O′}.

2. If the first alternative of object corresponds to a set of names N then we write

S0 = N .

3. If some set T of objects and metavariable t ∈ T are already defined, no value

given to any set not yet calculated would trigger a recalculation of T and the

first alternative of S is t, then we might choose to write S0 = T . This is just

an optional choice for notational convenience, to cut down on pointless steps and

make presentation a little easier to digest.

4. Otherwise S0 = ∅.
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We write Si+1 as follows:

1. For S consisting of a single alternative of the form O ∈ Object or a set of names

N , Si+1 = Si.

2. If S consists of a single alternative of the form Oc[v1, · · · , vn] if c. Suppose also

that c is defined such that it is a boolean for some choice of some v1 ∈M1, · · · , vn ∈

Mn. Let c
′ be the result of replacing each instance of Mj in c with M i

j , where M i
j

is the set defined as having a name that corresponds to the pair (Mj , i). There

are a few such cases to consider:

(a) In the case where each of M1 · · ·Mn are already defined at this point of our

reading of the document, then we have

Si+1 =






O ∈ Object

∣
∣
∣
∣
∣
∣

∃v1 ∈M1, · · · , vj ∈Mn

s.t.O = Oc[v1, · · · , vn] ∧ c







(b) In the case where M i
j is already defined and that it would be a well defined

statement to use in the right hand side of a set comprehension in this case.

In this case, if

Si ⊂ {O ∈ Object | ∃v1 ∈ M i
1, · · · , vn ∈ M i

n s.t.O = Oc[v1, · · · , vn] ∧ c′},

then

Si+1 = {O ∈ Object | ∃v1 ∈M i
1, · · · , vj ∈ M i

n s.t.O = Oc[v1, · · · , vn] ∧ c′}.

(c) We have ommitted the cases where the first alternative is O′ if c for O′ ∈

Object or where it is N if c for a set of names as these are not generally used,

but if they were a similar principle would apply.

3. Production rules with more than one alternative are “read” as follows:

(a) The first alternative of every production rule in the present context is con-

sidered to need to be “read.”

(b) When only the first alternative A has been “read” for Si we define Si+1 as

it would be defined if S ::= A provided Si ⊂ Si+1.
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(c) Supposing we have already “read” alternatives A1, · · · ,An for Si and let X i

and Y i be names not already in use by the grammar.

i. Let X ::= A1, · · · ,An and suppose X i ⊂ X i+1. Then we continue to

read the first n alternatives in which case Si+1 = X i+1.

ii. Let M be some set in our construction that is defined simultaneously to

S. If X i ::= A1, · · · ,An and no An+1 exists amongst the alternatives

for S and X i would equal X i+1, then we delay reading Si+1 until one or

other of the following is true:

A. We have tried to read every alternative to any M such that vi ∈M

appears amongst the alternatives for S and for each of them M i

would equal M i+1 in which case we consider every alternative to Si

to have been “read” and write Si = Si+1 = S.

B. There is some M such that vi ∈M appears amongst the alternatives

for S such that M i ⊂ M i+1, in which case we consider Si to have

been “read” afterM i and calculate Si+1 as though every such vi were

taken from M i+1. In this case we say that reading M i “triggered a

recalculation” of Si+1.

iii. If there exists some An+1 amongst the alternatives of Si and nothing

would trigger a recalculation of X ::= A1, · · · ,An, then we read An+1

in which case:

A. If An+1 corresponds to a piece of concrete syntax O′ ∈ Object then

we write Si+1 = Xi ∪ {O
′}.

B. IfAn+1 corresponds to a set of names N then we write Si+1 = X i∪N .

C. If S consists of a single alternative, of the form Oc[v1, · · · , vn] if c,

where c is defined such that it is a boolean for some choice of some

v1 ∈ M1, · · · , vn ∈Mn and supposing M i
j is already defined and that

it would be a well defined statement to use in the right hand side
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of a set comprehension in this case. Let c′ be the result of replacing

each instance of Mj in c with M i
j . In this case,

Si+1 = Xi ∪






O ∈ Object

∣
∣
∣
∣
∣
∣

∃v1 ∈M i
1, · · · , vj ∈M i

n

s.t.O = Oc[v1, · · · , vn] ∧ c′






.

Note that, by 3 (c) i., for as long as Si+1 would continue to be larger

than Si we would continue to read this alternative and any previous

alternatives before moving on to An+2 if it exists.

For a limit case Sǫ we write

Sε =







x

∣
∣
∣
∣
∣
∣
∣

(a ∈ x ∧ b ∈ x)⇔

(a, b ∈
⋃ ⋃

i<ε

Si ∧ a ≈ b)







Example 6.4 (Non-positive inductive types).

For t ∈ T ::= f(where f is in (T → T ) → T ). We’d first begin with T 0 = ∅. We have

T 0 → T 0 = {∅}. There is no function with a nonempty domain and an empty range.

So t ∈ T 1 = ∅ by our methodology. So T = ∅ and t ∈ T doesn’t exist.

There are some functions this approach would rule out which we might like to allow. For

example if we had an existing type S such that t ∈ T ::= f(where f is in (S → T )→ T )

where S 6= T the default assumption that T 0 = ∅ would similarly rule it out. Readers

could not rely on our methodology to determine it is permitted, but would instead have

to defer to type theory.

To convince readers that we do indeed rule them out we therefore give another example

of a non-positive inductive type:

p ∈ P ::= • | ⊓
j∈I

pj

i ∈ I ::= ◦ | p

In this case we can show that as I reaches its limit point p exceeds the size of O ∈ Object.

As such there is no lattice on which P is monotonic increasing.
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Example 6.5 (Conflicting Side Conditions). Consider the following MBNF grammar:

a ∈ A ::= ◦ | ♥a | b where ♥b /∈ C

b ∈ B ::= ◦ | a | ♠b

c ∈ C ::= a | b

For b ∈ Bi, suppose b ∈ Ai and every rule in the grammar has been read, then ♥b ∈ Ai

and ♥b ∈ C i, then b /∈ Ai+1. Suppose by contrast b ∈ Bj and b /∈ Aj then ♥b /∈ Cj

then b ∈ Aj+1. Then A is not monotonic under ⊆. Then A is undefined.

The following grammar is simple enough to be expressed with a BNF but should provide

a picture of how this process should work. A more comprehensive study of an example

which cannot be expressed in MBNF appears in the next chapter.

Example 6.6.

p ∈ Letter ::= A | B | C | D | E | F | G | H | I | J | K | L | N | O | P | Q | R

| S | T | U | V |W | X | Y | Z

w ∈ Word ::= p | wp

Here the first alternative of Letter is a piece of concrete syntax so we write Letter0 =

{{A}} (here the object corresponding to the arrangement A is the set containing A as no

other arrangements have been placed in the same equivalence class. The first alternative

of Word is neither a piece of concrete syntax or a set of names so we write Word0 = ∅.

For Letter1, we check whether “reading” A again would give a larger result. It would not

so we “read” B by 3(c)iiiA in our set of rules. In this case Letter1 = Letter0 ∪ {{B}} =

{{A}, {B}}. Reading {A} triggers a recalculation of p inWord so, by 3. (b) and 2 (b) we

have Word1 = {{A}}. Similarly we have Letter2 = Letter1∪{{C}} = {{A}, {B}, {c}}, ...,

Letter26 = Letter25∪{{Z}} and Word2 = Letter1, ..., Word27 = Letter26. When we get to

Letter27 there are no further alternatives and nothing which might trigger a recalculation

if another alternative is “read” so by 3. (c) ii. A. Letter27 = Letter26 = Letter. When
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we get to Word28 then by 3(c)iiiC. we have the following:

Word28 = Word27 ∪






O ∈ Object

∣
∣
∣
∣
∣
∣

∃w ∈ Word27, p ∈ Letter

s.t. O = {wp}







This new value of Wordi means we reread this alternative by 3. (c) i., so for ordinals

27 < i < ω we have the following:

Wordi+1 = Wordi ∪






O ∈ Object

∣
∣
∣
∣
∣
∣

∃w ∈ Wordi, p ∈ Letter

s.t. O = {wp}







We apply our rule for the limit case where i = ω:

Wordω =







x

∣
∣
∣
∣
∣
∣
∣

(a ∈ x ∧ b ∈ x)⇔

(a, b ∈
⋃ ⋃

i<ω

Wordi ∧ a ≈ b)







Note that in this case a ≈ b if and only if they are the same arrangement because we

haven’t applied any arrangement equivalences. There are no further Alternatives to

read for Word and

Wordω = Wordω ∪






O ∈ Object

∣
∣
∣
∣
∣
∣

∃w ∈ Wordω, p ∈ Letter

s.t. O = {wp}







By 3 (c) ii. B. Wordω = Wordω+1 = Word.

Since no value given toWord could trigger a recalculation of Letter we could have elected

to calculate Word in a context where the value for Letter was already given. in this case

we could write Word0 = Letter, the rest of the calculation would precede similarly with

the 1st 26 steps skipped.

The above example is a simple one which can be dealt with using BNF and this may

leave readers wondering what the extra machinery is for. However we may have chosen

any equivalence over Object for ≈ and any number of n-ary functions f : Object∗ →

Object for our alternatives and, provided these preserve ≈-well-formedness and our

method for building sets form production rules is monotonic, these would still yield a
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value. This allows for the full power of mathematics to be used alongside production

rules. We will discuss a real world example which showcases more of the power of this

method for reading MBNF in the next chapter.

Lemma 6.7. Let P be a set of production rules whose definition can be given by the

process in Methodology 6.3. Then P has a solution.

Proof. For each set S given by the above process and for each Ai amongst the alter-

natives for S. Si is monotonic increasing and bounded above by Object. So Si has

a least fixed point. S0 ⊆ S by construction (it only contains values the first alter-

native tells us are members of S). If Si ⊆ S and for each A,B,C, ... defined by P

Ai ⊆ A,Bi ⊆ B,Ci ⊆ C, ..., then Si+1 ⊆ S by construction (objects are only members

of Si+1 if some alternative would tell us to add them to S, given values known to be

in S and A,B,C, ...). For a limit case Sε, if Si ⊆ S for all i < ε then Sε ⊆ S (by

construction since Sε has no members which are not mebers of those Si). We can now

see that, if Z is a limit point of Si, Z ⊆ S. In fact, if some alternative Ax would tell

us that an additional object O were a member of S, if Z ⊆ S, then Z would not be a

fixed point of Si by construction, as reading Ax would trigger a recalculation of Z so

in fact Z = S. As such the above process gives us the solution to P as the fixed point

of each set S which P provides constraints for.

6.3 Notes on the Coinductive Case

One might well wonder reading Definition 6.3, whether a similar process might be used

to find the greatest rather than least fixed point of the sets involved. We believe such

a process does exist and provides something analogous to the coinductive definition of

a production rule alluded to in Example 4.25. The set Object provides a good starting

point for a monotonic decreasing function to give these fixed points. The reason we do

not provide a more thorough account of this process is that the only way we could think

of as doing this relied on a coinductive definition which relied on both something akin

to a coinductive model for equivalence and something akin to a coinductive definition

of a primitive constructor decomposition, the latter of which might in turn rely on
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something like a coinductive notion of hole-filling. Furthermore each of a coinductive

notion of primitive constructor decomposition and a coinductive notion of equivalence

could be much better understood within the context of a coinductive grammar. In

addition, most of the above would be set theoretic analogues for coinduction which resist

definition in the normal way with a head and a tail because they would be dealing with

objects modulo equivalences as opposed to streams so much of the standard notation

and conventions for dealing with coinduction would need to be rethought. As such we

had something of a tangle of definitions with no one thread to pull to disentangle them

and we thought the resulting thesis would not be able to build its definitions and proofs

so clearly and simply as we have done here. Disentangling this Gordian knot could be

a fruitful avenue for future work.

6.4 What Was Covered by This Chapter

In section 6.1. we covered what it means to evaluate an expression and we gave an idea

of how production rules could be read as a set of constraints. We also cover some of

the conventions that generally operate while reading production rules and discuss the

effect different conventions of indexing may have on how production rules are read. In

section 6.2. we defined a family of production rules whose alternatives could be read as

contributing syntactic objects to a series of sets in a monotonic increasing manner. We

showed that these are well defined and gave an example of how the proof of this may

be applied to a specific set of production rules. In section 6.3 we suggested a greatest

fixed point computation to find subsets of Object may be comparable to production

rules said to work coinductively and we discuss barriers that still exist to providing this

definition in a clear and easy to follow manner.

146



Chapter 7

The λ-Calculus and Extensions in

MathSyn v BNF

In this section we showcase some features of MathSyn, which BNF lacks. First we ex-

amine the λ-calculus without records or generalised β-reduction in BNF and MathSyn,

an example which is widely popular in the computer science literature. We discuss

small adjustments that need to be made to the BNF-like syntax authors may write in

order to use BNF here. Finally, we show how this syntax may be extended with records

and generalised β-reduction in MathSyn and discuss why a similar extension cannot be

made in BNF.

7.1 The Lambda Calculus in BNF

In BNF we can define the strings used in the λ-calculus like this:

〈v〉 ::= v | 〈v〉′ 〈e〉 ::= 〈v〉 | (λ〈v〉.〈e〉) | (〈e〉 〈e〉)

Our raw syntax is the language of e. BNF needs extensions to define the λ-calculus

that MathSyn does not and also requires careful use of syntax. These adjustments are

trivial and well documented, but we discuss them briefly below.
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7.1.1 BNF Alone Only Permits String Equality

The only thing the above grammar gives us is a set of strings (consisting only of con-

catenated terminal symbols). There is no sense of syntactic equivalence up to renaming.

MathSyn supports syntactic equivalence at syntactic boundaries which allow the identi-

fication of multiple arrangements of text with one another. The grammar above would

give λv.v and λv′.v′ as two separate strings with nothing to indicate their syntactic

equivalence up to renaming. To provide α-equivalence, we would have to partition this

language into α-equivalent terms after it is generated, and build the rest of our seman-

tics for sets of strings in these partitions, or we would have to provide some semantics

for reducing α-equivalent terms to the same string. BNF lacks this semantics. Normally

this is handled with De-Bruijn indices, or similar. De-Bruijn indices are numbers that

relate term positions back to the λ they are bound with. A De-Bruijn index of 1 binds

to the previous lambda A De-Bruijn index of 2 binds one further λ back in scope and

so on. Details can be found in de Bruijn (1972).

7.1.2 BNF Must Provide “Arbitrary” Non-Terminals as Sets

of Strings

At a trivial syntax level, we must include brackets around each non terminal, although

many authors omit these. Moreover, we cannot just declare 〈v〉 to range over a count-

able set. We need to define the set of strings 〈v〉 ranges over, otherwise the BNF is

meaningless. If two authors use different 〈v〉, BNF regards these as generating unre-

lated sets of strings, unless we provide semantics for translating one to the other. Many

authors view the choice of set of variables as irrelevant to the structure of the λ-calculus

and offer no method for selecting one. Moreover, our choice of 〈v〉 must be a string,

countable sets of objects of different data types (e.g. N) cannot be used for 〈v〉 unless

they are first translated into sets of strings consisting of terminal symbols. BNF has

no default way of performing these translations, or choosing a language for 〈v〉.
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7.1.3 BNF Might Not Produce a Unique Abstract Syntax Tree

We need brackets around terms if we want their range to be clear. These brackets must

always appear in the literal syntax. For example, if our syntax was:

〈v〉 ::= v | 〈v〉′ 〈e〉 ::= 〈v〉 | λ〈v〉.〈e〉 | 〈e〉 〈e〉

Then λv.v v′ could be read either as an instance of 〈e〉 〈e〉 where we choose the first 〈e〉

to be λ〈v〉.〈e〉 or an instance of λ〈v〉.〈e〉 where we choose 〈e〉 to be 〈e〉 〈e〉. If we wanted

to read λ-calculus syntax where some of the parentheses are omitted, we would need

to provide semantics for reducing these to a string where all the brackets are present.

This semantics is not part of BNF. Suppose we wanted a separate semantics for dealing

with optional parentheses. First we need a syntax for the λ-calculus where parentheses

were not mandatory:

〈v〉 ::= v | 〈v〉′ 〈e〉 ::= 〈v〉 | λ〈v〉.〈e〉 | 〈e〉 〈e〉 | (〈e〉)

Then we would need a parser to read the strings in which parentheses are ommitted.

Here is how that might look: Starting with the leftmost, outermost instances of λ〈v〉.〈e〉

in a piece of syntax, if the λ is not preceded by (, replace with (λ〈v〉.〈e〉). Starting

with the rightmost, innermost instances of 〈e〉 〈e〉, if the 〈e〉 〈e〉 is not surrounded by

brackets, replace with (〈e〉 〈e〉). Build the abstract syntax tree as though for the fully

parenthesised BNF:

〈v〉 ::= v | 〈v〉′ 〈e〉 ::= 〈v〉 | (λ〈v〉.〈e〉) | (〈e〉 〈e〉)
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7.2 The Lambda Calculus in MathSyn

Because of the automatic interpretation of parentheses amd identification of metavari-

ables, in MathSyn we can define the λ-calculus using a standard MBNF grammar:

Example 7.1.

e ∈ exp ::= v | λv.e | e e

By convention 5.54, in the grammar given by Example 7.1 each v ranges over a countable

set of object-level variables which are not sub-objects of any e containing a pointer. The

production rule e ∈ exp ::= v can be read as giving us the constraint var ⊆ exp. The

rule e ∈ exp ::= λx.e gives {[λPv.Pe]≈ | ptr(v) = Pv ∧ ptr(e) = Pe} ⊆ exp. The rule

e ∈ exp ::= e e gives {[Pe1 Pe2 ]≈ | ptr(e1) = Pe1 ∧ ptr(e2) = Pe2} ⊆ exp. We pick the

least exp ⊆ Object and var ⊆ Object satisfying these constraints with an ordering given

by ⊆.

As well as declaring e as ranging over exp, MathSyn also declares e1, e2,..., e
′, e′′ etc.

ranging over exp, likewise for v ∈ var. The subset of Object chosen by these constraints

depends on the choice of equivalence relation ≈, in the λ-calculus this is likely α-

equivalence, but it may also be the identity relation on Arrangement. It also depends

on the choice of set for v to range over.

In order to be confident that this set can be chosen (e.g. for exp) MathSyn begins

with exp0 equal to the set ranged over by v and lets exp1 contain the objects exp

must contain if exp is at least exp0 and so on as an i-step approximation of the limit

point. For a limit point1, ε, we let expε be
ε⋃

i=0

expi. We take the least fixed point of the

function f : P(Object) 7→ P(Object) such that f(expi) = expi+1 over some appropriately

large set of expi ordered by ⊆. The same method of proof is employed in each of our

demonstrations a grammar has a model in MathSyn.

1We are only interested in demonstrating the existence of a set of objects here. Limit points needn’t
be computed when parsing. To “parse” an object, O, defined using MathSyn we require a proof that a
particular use of BNF-style notation defines a set, S, and a proof that, if ∃S, then O ∈ S. This notion
is deliberately kept general, as we are not yet prescribing methods of implementation.
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Lemma 7.2 (The BNF Syntax of the λ-Calculus up to Identity has a Model in Math-

Syn). The grammar for the λ-calculus where ≈ is the identity relation on Arrangement,

given by Example 7.1 (i.e. loosely the same syntax BNF generates for the λ-calculus)

has a model in MathSyn.

Proof. First we read v. It ranges over a set of countable object-level variables, V . If this

were the only constraint we’d have exp = V . Call this exp0. When the λv.e is read it

triggers a recalculation of exp0. We define expn+1 = expn∪{{λPv.Pe} | v ∈ V ∧e ∈ expn}

(we increment the index on exp each time a recalculation is performed). For a limit

point ε we define expǫ =
⋃

i<ε

expi (we can think of this as the limit of each of these

recalculations as exp ⊆ expn+1). If v and λv.e were the only constraints then exp would

be the least fixed point of the least function f : Object 7→ Object such that ∀expi,

f(expi) = expi+1 (which exists by the Knaster-Tarski theorem Tarski (1955)). Instead,

if k is the first k such that expk = expk∪{{λPv.Pe} | v ∈ V ∧ e ∈ expk}, then we look to

see if there are any other constraints which would trigger a recalculation of e. In this

case there is the constraint e e. We update our definition of expi like so: If n < k, then

expn+1 = expn ∪ {{λPv.Pe} | v ∈ V ∧ e ∈ expn}, otherwise expn+1 = expn ∪ {{λPv.Pe} |

v ∈ V ∧ e ∈ expn} ∪ {{Pe Pe} | e ∈ expn}. Since there are no further constraints, the

least fixed point of f gives us the desired result.

7.2.1 Adding α-Equivalence

If we wanted an α-equivalence, we could extend the grammar in Example 7.1:

e ∈ exp ::= v | λv.e | e e

Let λ�.� bind the object placed in the first of its holes in both of its holes. Let

e ∈ exp be identified up to α-equivalence.

Lemma 7.3 (MathSyn Fully Supports the Syntax of the λ-Calculus with α-Equivalence).

The λ-calculus with all syntax trees and sub-trees quotiented by α-equivalence has a

model in MathSyn.
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Proof. exp0 would remain the same. For the n + 1 case (for n < k where k is the first

k such that expk = expk ∪ {[λPv.Pe]≈ | v ∈ V ∧ e ∈ expk}) we have:

expn+1 =






x

∣
∣
∣
∣
∣
∣

(a ∈ x ∧ b ∈ x)⇔

(a, b ∈ (
⋃

expn) ∪ {λPv.Pe | v ∈ V ∧ e ∈ expn} ∧ a ≈α b)







This is the same as we had for the λ-calculus up to identity with the added requirement

that any two terms in the object x are identified up to α-equivalence.

For n > k we have:

expn+1 =







x

∣
∣
∣
∣
∣
∣
∣
∣
∣

(a ∈ x ∧ b ∈ x)⇔


a ≈α b ∧ a, b ∈
(
⋃

expn) ∪ {λPv.Pe | v ∈ V ∧ e ∈ expn}

∪{Pe1 Pe2 | e1, e2 ∈ expn}











For a limit point ε we have expε =







x

∣
∣
∣
∣
∣
∣
∣

(a ∈ x ∧ b ∈ x)⇔

(a, b ∈
⋃ ⋃

i<ε

expi ∧ a ≈α b)







The least fixed point of the least function f : P (Object) 7→ P (Object) such that ∀expi,

f(expi) = expi+1 gives us the result.

This syntax also let us consider α-equivalent sub-trees, which quotienting after cal-

culating BNF does not let us do and which some authors may find useful. This is

particularly helpful if we want calculations on the tree that depend on equivalence to

descend inside of sub-trees. We will see examples of this in Section 7.3. This feature is

not used much here, but MBNF grammars may not feature the same pieces of literal

syntax after quotienting, and may feature holes in syntax, in which case some sub-trees

may be quotiented by some equivalence, but parts of the tree occurring above the hole

are literal syntax (e.g. for λx.�λy.yy, λy.yy may be quotiented up to α-equivalence,

but everything else is literal). For Chang & Felleisen (2012) this quotienting cannot

wait until afterwards and is instead done on the fly.
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7.2.2 Adding β and η rewriting

If we wanted β and η rewriting, we could add:

...Our rewriting rules are: (λv.e1)e2
β
→ (e1[v := e2]) λv.e1v

η
→ e1

then MathSyn gives β rewriting as the exp-compatible closure of the smallest β (ordering

given by ⊆) satisfying (λv.e1)e2
β
→ (e1[v := e2]). Similarly for η. This is relevant as with

BNF we often see rewriting rules being mentioned without covering how they descend

through syntax, a question answered more explicitly in MathSyn.

We address the idiosyncrasies of our approach. In order to arrive at exp, we pass

multiple ordinal limits. However, all we are interested in is that, for each ordinal i, j,

such that j < i, we have expj ⊆ expi ⊆ Object. Remember, BNF also cannot construct

the set of strings used in the λ-calculus in finite time, although we can use it to prove

such a language exists. We extend the syntax building relation as production rules are

read, instead of calculating them all from the start. This is because there are documents

where production rules are slowly extended and proofs about a grammar are expanded

throughout. Reading each fresh rule separately keeps track of what is true at a given

point.

7.3 The λ-Calculus in MathSyn With Records and

Generalised β-Reduction

In this section we will provide an example grammar which is handled by MathSyn

that deals with two features often added to the λ-calculus: generalised β-reduction

(introduced by de Bruijn’s Automath de Bruijn (1970) then used in Nederpelt’s strong

normalisation Nederpelt (1994) and subsequently appearing in several other papers

Kamareddine & Nederpelt (1995), Bloo et al. (1996), Ariola et al. (1995), Groote (1993),

Kfoury & Wells (1995) ) and records Cardelli (1988), Cardelli & Mitchell (1990). These

features cannot be handled by BNF. We suggest MathSyn as a useful way of inter-

preting many uses of MBNF that deals with inclusion of mathematical objects (E.g.
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function sets) and mathematical operators (E.g. hole filling) better than other BNF for-

malisms, such as EBNF ISO (1996), parsing expression grammars Ford (2004), LBNF

Forsberg & Ranta (2005) etc.

Records are given as finite functions from labels to terms. They are used to deal with

typing for hierarchically organised data such as objects.

We give the following as an informal remark meant to aid intuition about what gener-

alised β-reduction is and how it works. Generalised β-reduction is a form of β-reduction

which descends through balanced segments.2 In ((λx.λy.N)P )Q, the function starting

with λx and the argument P result in the redex (λx.λy.N)P which when contracted

will turn the function starting with λy and Q into a redex. Generalised β reduction

allows us to exploit this fact by giving the future redex based on matching λy with Q

the same priority as the redex based on matching λx and P .

Example 7.4. We can extend the λ-Calculus in MathSyn with records, like this:

ℓ ∈ Label t ∈ Term ::= v | λv.t | t t | t.ℓ | r

r ∈ Rec = Label
fin
→ Term S

fin
→ T =







f ∈ S × T : f is a function

∧f is finite







Let λ�.� bind the object placed in the first of its holes in both of its holes. Let

e ∈ exp be identified up to α-equivalence.

We have used math to define r ∈ Rec rather than define it using a production rule. The

“=” in r ∈ Rec = Label
fin
→ Term is a math = and

fin
→ is a function defined using maths

that builds a set from two other sets. However, MBNF and MathSyn both allow math

to be mixed freely with production rules. By construction r ∈ Rec is no larger than

Object (in fact there is a direct mapping onto those objects containing finitely many

arrangements consisting of a pair of pointers to Label and Term), so we can support its

inclusion as some other kind of mathematical entity to an object, using the construction

2A balanced segment is one where each application has a matching abstraction and where each
application/abstraction pair contains a balanced segment.
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ObjectM . Since there is at least one way of encoding Rec as syntactic objects, this would

clearly be the case. This is permitted in MathSyn where it clearly would not be in BNF

as the only mathematical entities BNF allows inside a grammar are strings. For a BNF

grammar each of these records would have to be given an encoding as a finite string.

Lemma 7.5 (MathSyn Supports the Syntax for the λ-Calculus with Records). The

MBNF grammar for Term given in example 7.4 has a model in MathSyn.

Proof. Here, the first 3 constraints for Term are the same as those for exp. So, for each

n such that expn+1 6= expn, we have Termn = expn. Let j be the 1st ordinal such that

expj = exp. Then Termj = exp. When we get to Termj, we look to any constraints that

would trigger a recalculation of Term. In this case, there is the constraint t.ℓ. For n > j

we define a function f as follows:

f(Termn) =







x

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(a ∈ x ∧ b ∈ x)⇔






a ≈α b ∧ a, b ∈

(
⋃

Termn) ∪ {λPv .Pt | v ∈ V ∧ t ∈ Termn}

∪{Pt1 Pt2 | t1, t2 ∈ Termn}

∪{Pt.Pℓ | t ∈ Termn ∧ ℓ ∈ Label}














For n > j such that n is less than the least fixed point of f on Termi (with the ordering

given by ⊆), we have Termn+1 = f(Termn).

For a limit point ε we have Termε =







x

∣
∣
∣
∣
∣
∣
∣

(a ∈ x ∧ b ∈ x)⇔

(a, b ∈
⋃ ⋃

i<ε

Termi ∧ a ≈α b)







At m equal to the least fixed point of f , we look for any constraints which may trigger

recalculation. We see the constraint r. Each recalculation of Term causes a recalculation

of Rec, so, for each ordinal i, r ∈ Reci = Label
fin
→ Term.

We define a function g as follows: For n < the least fixed point of f on Termi with the

ordering given by ⊆, we have g(Termn) = Termn+1. In a sense we use g to “extend” the

step function f beyond the ordinal giving us fixed point.

For n > the least fixed point of f (on Termi with the ordering given by ⊆:

155



g(Termn) =







x

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(a ∈ x ∧ b ∈ x)⇔






a ≈α b ∧ a, b ∈

(
⋃

Termn) ∪ {λPv.Pt | v ∈ V ∧ t ∈ Termn}

∪{Pt1 Pt2 | t1, t2 ∈ Termn}

∪{Pt.Pℓ | t ∈ Termn ∧ ℓ ∈ Label} ∪ Recn














As there are no other constraints which trigger a recalculation, Term is the least fixed

point of g on Termi. Since, for j < i, Recj ⊆ Reci, this fixed point exists.

Before we add rewriting rules, we need extra machinery for generalised β-reduction.

For terms rewritten in item notation Nederpelt (1992) generalised beta reduction ap-

plies to any couple. Item notation writes [x]Y for the abstraction λx.y and (B)A

for the application AB. Generalised beta reduction skips over application abstrac-

tion pairs. E.g. if βgen is the name of the generalised β-reduction relation, then

(λz.(λx.λy.N)P )RQ
βgen

→ (λz.(λx.N [y := Q])P )R may be written in item notation

(Q)(R)[z]P [x][y]Nβgen→(R)[z]P [x]{N [y := Q]}. In each case it skips over abstrac-

tions which are already paired off with an application. In item notation this is very

clear. (R)[z] and (P )[x] are couples and so (Q)[y] is a couple around them. To extend

our grammar for Term with generalised β-reduction, we define the balanced segments

ending with a hole. We add to our grammar the following rule based on one used by

Chang & Felleisen (2012):

b ∈ bseg ::= � | b[λx.b] t

We note that while the grammar above can be expressed easily with MathSyn (as we will

show later) it cannot possibly be expressed using BNF. We can show that, unlike BNF,

bseg is not context-free (This result has been proven already using the pumping lemma

in Lemma 4.9 “Hole filling is not context-free”). Not only is bseg not context-free, but

even BNF variants which allow for the generation of non-context-free grammars do not

usually allow hole filling as the syntax is generated (we were unable to find any in our

literature search). Even if we were to work with another BNF variant with far more

expressive power than BNF, we would have to rewrite the above grammar.
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Lemma 7.6 (MathSyn Supports Balanced Segments with a Hole). The set bseg has a

model in MathSyn.

Proof. When � is read, we define bseg0 = {�}. Since no further calculations are

invited by this constraint, we move on to the constraint b[λx.b] t. Since, in MathSyn, ≈

is always literal equivalence on an object containing a hole (although crucially subterms

without holes can still be quotiented by their own equivalences), and b[λx.b] t doesn’t

trigger a recalculation of Term we can write:

bsegn+1 = bsegn ∪ {{b[λx.b] t} | b ∈ bsegn, t ∈ Term}

And, for a limit point ε, we have bsegε =
⋃

i<ε

bsegi

Since there are no further constraints, bseg is the least fixed point of f on bsegi, such

that f(bsegn) = bsegn+1.

Notably, while the parts of each a ∈ bseg above � are alone in their equivalence class,

each record term t ∈ Term, remains quotiented by α-equivalence.

We can now add rewriting rules, like so:

...Our rewriting rules are

r.l
RCD
→ t if (l, t) ∈ r b[λv.t1] t2

βgen

→ b[t1[v := t2]] λv.t1v
η
→ t1

We also add the following rule, where ∗ can be either βgen, RCD or η:

r1
∗
→ r2 if t1

∗
→ t2 and (l1, t1) ∈ r1 and (l1, t2) ∈ r2

Then MathSyn gives generalised β-reduction, η-reduction and the rewriting rule for

records, RCD, as the Term-compatible closures of the smallest βgen, η and RCD satis-

fying all of the functions above.
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Chapter 8

Related Work, Conclusions and

Future Work

8.1 Advance Over State of the Art

There has already been some work done on CSM that uses BNF-style notation, however,

to our knowledge, no other authors have highlighted all the issues we have, or presented

it as a significant departure from BNF. We take a look at some of the existing work in

this area.

Ott Sewell et al. (2007) provides a language for writing specifications like those written

with CSM. An Ott specification can be written automatically into BNF-style nota-

tion. However, the focus of this PhD is moving the other way, i.e. it is on translating

BNF-style notation into a mathematical formalism. Ott does not offer support for

interpreting CSM without requiring it to be specified in a theorem-prover friendly for-

mat. As a key design principle, we wish to provide a general mathematical intuition

suitable for translation to multiple theorem provers, whereas Ott focuses on translating

to Coq 8.3, HOL 4 and Isabelle directly, but offers less support for those seeking a

general mathematical intuition. Our method should be reasonable to translate to any

theorem prover which can model ZFC (as this is the metatheory of our model). Ott

only allows contexts with a single hole, does not allow for hole-filling operations to ap-
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pear in the clause of a production rule and currently does not support rules being used

coinductively. Ott also does not handle the common practice of using mathematical

text outside of the production rules as part of its definition. We handle more cases

of context hole filling. We allow integration with mathematical text. It seems more

feasible MathSyn could be extended to handle co-induction as the kinds of trees one

could feasibly define coinductively are already part of our universe of Objects and can

be picked out by means of set comprehension, whereas Ott contains no such structures,

though this remains future work.

There are also a variety of systems supporting higher order abstract syntax (HOAS),

some examples are Hybrid Battell & Felty (2016), Twelf Schürmann (2009) and Beluga

Pientka & Dunfield (2010). HOAS is a technique for the representation of abstract

syntax trees for languages with variable binders. There are a number of reasons why

this technique is useful. First, it makes the binding structure of a program explicit:

just as there is no need to explain operator precedence in a first order abstract syntax

representation, there is no need to have the rules of binding and scope at hand to

interpret a HOAS representation. Second, programs that are alpha-equivalent (differing

only in the names of bound variables) have identical representations in HOAS, which

can make equivalence checking more efficient. While HOAS bears some resemblance

to CSM as it is used with BNF-style notation and is widely used, it does not support

all the same uses. For example, Dami (1998), uses an BNF-style notation to talk

about dynamic binding. It also is not as flexible as our approach in providing syntactic

equivalences beyond equivalences on binding.

Steele (2017) began documenting the grammars which MathSyn deals with as part

of CSM. He covers many of the notational variants of BNF, including some MBNF

grammars. However, Steele’s interest is primarily with making an initial attempt at

documenting computer science meta-notation. He is interested in the differences be-

tween CSM and earlier versions, such as BNF, only insofar as they help this goal and

remind us of alternative choices that might have been better than the ones we ended up

with. While the grammars which MathSyn deals with are examples of CSM, he does

not discuss how the underlying mathematical structure of some of these differs wildly
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from grammars based around rewriting relations on strings and the parse trees derived

from them, such as BNF and many of its formal variants. He admitted his exploration

of CSM was only a start and called for rigorous exploration and documentation of this

notation. Our work is an attempt to fit this call.

Grewe et al. (2018) discuss the exploration of language specifications with first-order

theorem provers. However, they still require the reader to be able to intuitively trans-

late language specifications to a sufficiently formal language first. This is the part of

language specification checking this PhD aims to help with.

(Reynolds 2009, 1-51) gives an attempt at a definition of CSM used with BNF-style

notation. This is the closest to the basic groundwork for a human readable definition

of this notation which we could find after looking through the books in our collection,

which he calls “abstract syntax”1. However, he only deals with context-free grammars

and in many places he proceeds by example.

None of the above examples deal with sets generated by BNF-style syntax which have

very large infinite things in them (i.e., infinite sets or trees with infinite depth) or with

the mixing of BNF and set theory. We have explored these in our introduction to

MBNF and they are supported insofar as MathSyn provides a system for defining sets

of objects and the objects in the set Object may be infinitely “deep” (i.e. they may

be represented only by an infinite tree) furthermore they may contain any countable

equivalence over arrangements. All that is necessary to make use of this power is a little

extra text describing how these are picked out of Object as some of the more complex

functionality of MathSyn has been defined for the inductive case only.

8.2 Conclusions

Following on from Steele, we explore a previously unexplored area of computer Science

metanotation we call MBNF. One concrete contribution arising from this is a series

1We do not use the term “abstract syntax”, because some of the things we are interested in are
concrete syntax. For example, if we were to write λx.e in the form of an abstract syntax tree, we
would not be interested that the x and the e are arranged with a dot between them and a λ in front
of them. Rather, (λ�.�) would just be a name for a particular function taking two arguments of a
certain type.
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of examples and proofs showing MBNF to be strictly more expressive than BNF and

some of its variants and showing it to deal with syntactic entities other than strings

which may be infinite rather than finite and which are defined modulo some notion of

equivalence, where it is largely irrelevant to understanding the syntax whether or not

members of that equivalence class have a canonical order. Further contributions are the

proof that some constraints provided by an MBNF ruleset may not be solvable and the

establishment of an incompleteness result for MBNF. This motivates the development

of a system for defining some subset of MBNF grammars safely.

We outlined one such system, which we call MathSyn. MathSyn offers tools to handle

some non MBNF “Grammars” which appear in CSM and gives a notion of what it

means to handle the strucures of math text together with syntactic equivalences and

operations for manipulating syntax, even outside of MBNF. It allows a flexible notion of

equivalence (including over sub-objects), which is sufficient to deal with most notions

of binding (i.e., both those expressed as countable equalities on syntax trees as well

as their subtrees up to name swapping, including for typed groups of names and the

use of arithmetic in syntax for De Bruijn indices while permitting any syntax to be

used for the binder itself), equality up to reordering of finitely many chunks of syntax,

etc. as well as any countable author-defined equivalence. MathSyn allows syntax to be

combined in a mathematical layout, encodes invisible bracketing structure and allows

use of the inherited structure of objects. While MathSyn retains functionality inherited

from BNF, it also allows hole filling and inherits more functionality from set theory.

MathSyn offers facilities which help deal with semantics in addition to syntax. MathSyn

also explicitly allows extension of its syntax with sets of mathematical objects, which

needn’t be serialisable. We have proven that the syntactic entities MathSyn uses have

a model in ZFC. We have also proven that some of the more advanced machinery of

MathSyn is well defined in the inductive case.

We outline how MBNF production rules function and provide one way of ensuring

production rules select a subset of Object. We show that production rules plus MathSyn

allow for the definition of multiple grammars including one for the λ-calculus with β-

reduction and and records that makes use of hole filling within the syntax, nested
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equivalences and function sets.

8.3 Future Work

8.3.1 Coinduction Analogues in MathSyn

Some of the lemmas in this work are provided only for the inductive case. It is the

case that Object contains all countable equivalences over Arrangement and most cases

of nesting objects that one might typically define with coinduction. While there are

several ways of writing coinductive definitions, coinduction in the area of parsing syntax

traditionally works with streams of symbols with a head and a tail. These do not closely

resemble syntactic objects. We can sketch certain intuitions about selecting objects one

might traditionally define using coinduction.

We give the following as a guideline to authors hoping to expand our system to coin-

ductive readings for production rules: for given a set of constraints we may look only at

those subsets of Object which are well-formed ≈-equivalence classes and whose primitive

constructors match at the top level and then at the next level down and so on (similarly

to how we defined the inductive reading but working the other way). For a limit point

we may look at the intersect of each of these steps. We may take the greatest fixed

point of a function which takes each step in this process to the subsequent step and

this should correspond to something like a coinductive reading of a set of production

rules.

One issue for this is that it might require a definition of primitive constructor de-

composition and well-formed ≈-equivalence classes which is not inductive. Ultimately

coinductive uses would require a reworking of several lemmas and definitions which

could no longer be thought of as necessarily being independently defined (at least for

the general case). This was simply too cumbersome and redundant for an introduction

to interpreting MBNF and related parts of CSM, it would require that much of the

material in chapters 5 and 6 were rewritten slightly and treated simultaneously. Pro-

ducing a coinductive version, or, given that we do not define objects as streams, some

version that dealt with entities traditionally expressed via coinduction, is an avenue for
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authors interested in expanding on MathSyn.

8.3.2 Parsing Analogues in MathSyn

We have not dealt with parsing in this thesis as usually the parser for an MBNF will

be presented separately using a different grammar altogether. However, there is a close

analogue to parsing in MathSyn. Parsing a syntactic object may be thought of as

similar to proving it belongs to a set of syntactic objects given by an MBNF rule set

by means of primitive constructor decomposition. Authors may wish to apply this

intuition with respect to individual cases, but also proving this more generally given a

framework written in MBNF might be a fruitful area for future research.
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